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Abstract

Phoenix is an interactive, hierarchical, custom integrated circuits placement program used

for designing very large scale integrated circuits. It has the following novel features:

* Ability to handle arbitrary-sized rectangular blocks with some of the corners removed.

* A complete and extensible set of operations on the model.

" Efficient tracking and backtracking support for these operations.

Underlying Phoenix is a topological layout model. Based on this layout model, powerful

search heuristics, using the tracking and backtracking capabilities, have been developed to

address both top-down (floorplanning and shape determination) and bottom-up (initial

placement and placement improvement) placement problems. When combined with a

topological router, this topological approach ensures routing completion of all interconnection

nets.

This thesis describes the topological model and the layout heuristics developed, shows the

results obtained, and discusses future research based on Phoenix.
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Company Supervisor: Dr. Bryan T. Preas
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Chapter 1

Introduction

This chapter gives a brief introduction to the Integrated Circuit (IC) layout problem. It is

intended to put the work in a proper perspective. See [121 for a general overview of circuit

layout.

1.1 The IC Layout Problem

Rapid advances in IC fabrication technology, especially in Very Large Scale Integration

(VLSI) technology, have made possible the fabrication of single chips with enormous numbers

of transistors. As the number of transistors integrated onto a chip increases, so does the

difficulty in designing the chip. This makes the task of designing a state-of-the-art chip

extremely difficult.

1.1.1 VLSI Layout Systems

Designing a large VLSI circuit is a costly, time consuming, and tedious process. Part of

the complexity is in the physical layout of the components (circuit elements) in the circuit.

Various computer-aided design tools are needed, and have been developed, to help the circuit

designers in this phase of the design. The kinds of VLSI design tools range from general-

purpose drawing systems (systems with little or no knowledge of the VLSI layout problem)

and special-purpose drawing systems (systems specifically built for VLSI layout) to silicon

compilers that compile the high-level functional descriptions of circuits into physical layouts.

See Chapter 7 in [13] for an overview of VLSI design systems.
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1.1.2 Automatic Layout Systems

Between the two extremes are the automatic layout systems, which take as input a

description of the components and their interconnection requirements, and automatically

place the components and route their interconnections. Automatic layout systems vary in the

amount of interaction needed from the designer. They range from completely automatic to

requiring detailed manual interactions from the designer throughout the design process. This

thesis is about an automatic layout system that can support both modes of operation.

1.2 Phoenix Overview

Phoenix is an interactive, hierarchical, automatic VLSI layout system. It addresses one of

the most difficult and important combinatorial problems in VLSI layout systems (Section 9.5,

[131): given a collection of blocks with pins on the boundaries, and a collection of nets, which

are sets of pins that are to be wired together, find a good way to place the blocks (placement)

and run the wires (routing) so that the wires are short and the layout area is small.

The layout problem is separated into a placement phase and a routing phase to make the

problem more manageable. The focus of this thesis is on the placement phase. The routing

phase has not been completed yet. (The design of the routing phase is based on [71.)

1.2.1 Topological Model

Phoenix uses a topological layout model. The model is topological in the following sense:

only relative positions of the blocks matter. Moreover, during the routing phase, if more

spaces are needed to route the interconnections, the blocks can be moved apart to increase the

widths of the routing channels, without changing the placement topology. This property is

one of the main advantages of the topological approach: it strongly de-couples routing from

placement.
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1.2.2 Topological Operators

A set of topological operators (topological operations) is defined for the model; only these

operators can operate on the model. These topological operators are complete, and they have

the properties of being extensible and supported by the undo and redo capabilities. The undo

and redo capabilities are essential for implementing the placement heuristics developed in

this thesis.

1.2.3 Modes of Operations

Phoenix allows the designer to interact with the system in real time. It uses a graphical

interface to display information to the designer and the designer can execute the topological

operations and enter data through the keyboard and the mouse. The system can also be used

in a batch (stand-alone) mode. This interactive feature was invaluable for debugging the

system in the early implementation phase, and for developing and refining placement

heuristics in the later phases.

1.2.4. Hierarchical Decomposition

A large layout is usually decomposed into a hierarchy of smaller, more manageable sub-

problems. The hierarchy may be part of the input specified by the designer (in which case it

often corresponds to the functional decomposition of the circuit), or obtained by using

automatic partitioning algorithms. At each level of the hierarchy, the complete layout

including the lower-level blocks and their interconnections is collectively called an assembly.

The complexities involved in implementing a truly hierarchical layout system is not

address in this work. Nevertheless, Phoenix is hierarchical in that it can hierarchically

decompose a layout problem. The model and layout heuristics developed can handle the

layout problem of an assembly at any level of the hierarchy.
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1.2.5 Bottom-up and Top-down Design

Phoenix supports both bottom-up and top-down design methodologies. In the former

method, blocks are placed and routed in an assembly to form a super-block at a higher

hierarchical level. In the latter, blocks are placed and shaped to fit within an outline derived

from higher-level constraints. The shapes of the blocks obtained then become constraints for

designing the lower-level blocks. This thesis describes only the bottom-up and top-down

layout at one level of the hierarchy. Nevertheless, the results are applicable to any other

levels in the hierarchy.

1.2.6 Problem Size

The number of blocks the layout heuristics are intended to handle approximates the

number of circuit components a VLSI designer works with in the layout process. This number

is typically on the order of ten to twenty. The topological model, however, can handle an order

of magnitude or more blocks in an assembly.

1.3 Complexity of IC Layout

The difficulty of the circuit layout problem is well recognized by both the applied and the

theoretical computer scientists. Theoretical computer scientists have proved that many

routing and placement related problems, under highly simplified formulation, are NP-

complete. NP-complete problems are widely believed to have no polynomial-time algorithms;

they can only be solved by methods that require exponential amount of time with respect to

the size of the input. This is one of the justifications for using heuristics to solve layout

problems. (See [15] for a very accessible discussion on NP-completeness and approximation

methods for addressing NP-complete problems.)
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1.4 Thesis Outline

The main body of the thesis describes the ideas and the concepts developed during the

design and implementation of Phoenix. Implementation issues are discussed in the Appendix

B.

Chapter 2 describes the topological layout model and the operations supported by the model.

The properties of the topological operators are characterized and a proof of their completeness

is given. This chapter contains the major results of the thesis.

Chapter 3 discusses the placement heuristics. Initial placement, placement improvement,

floorplanning and shape determination are described

Chapter 4 discusses the routing heuristics. The main reference for this chapter is [7].

Chapter 5 summarizes the thesis and suggests future work.

Appendix A shows the preliminary results obtained using the placement heuristics on three

block-packing problems and two floorplanning examples.

Appendix B discusses the design and implementation of Phoenix. Implementation hints are

given.

5
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Chapter 2

The Layout Model

Circuit layout, as described in this thesis, is inherently a two-dimensional geometrical

problem, but the languages used to implement a solution are linear - proper layers of

abstraction must be built to represent the problem in a more tractable form. This chapter

gives a conceptual view of the layout model developed. The ideas here form the basis for the

rest of the thesis.

2.1 The Modeling Problem

To address the layout problem effectively, the layout model must provide tools to tackle

the complexities in the placement and the routing problems. This chapter is focused on the

tools used to tackle the placement problem. (The modeling of the routing problem is discussed

in Chapter 4.) First the complexities in modeling the placement problem are described.

The placement problem is to place a collection of blocks on a plane so that they do not

overlap and all the interconnections between the blocks can be routed. The objective is to

minimize the layout area and the interconnection length.

An example of placing a block is given in Figure 2-1 to illustrate the ideas behind the

layout model. The problem is to place the block B7 with the rest of the blocks. The following

questions must be answered before B7 can be placed:

( How to represent the holes (unoccupied spaces) available to place B7?

@ Perhaps the hole is not large enough to fit B7; it needs to be enlarged (by moving

surrounding blocks apart). How to represent this expansion operation?
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B1

B5

B4

B3

B6

Figure 2-1: Placing a block

@ The hole is too large for B7, wasting the surrounding spaces. Moving the surrounding

blocks a little closer is desired. How to represent this compaction operation?

2.2 Convex Quadrics

The kinds of shapes the layout model can handle are rectangles with some of their corners

removed. In this thesis such shapes are called convex quadrics and are specified as follows: the

nth-order Convex Quadrics, CQn, is the class of rectangles with up to n corners removed from

each of the four principal corners of the rectangles. The dimensions of the shapes do not

matter; only the number and location of the corners removed are relevant. The resultant

8



figures must remain connected. It is clear that CQn contains CQm for n larger than m, and

there are (n+ 1)4 different shapes in CQn.

Figure 2-2 shows every representative of CQ1 partially ordered by the relation,

topologically contains, a transitive and reflexive relation. An object topologically contains

another object iff for every corner that is removed from the object, the corresponding corner is

also removed from the other object. This is distinct from geometrical containment where one

object can physically contain another.

2.3 Layout Model Overview

The model is essentially an extension of the Channel Intersection Graph Model in [7]. The

topological operators on the model are inspired by the Shrink and Grow operations of the Wall

Model in [10]. These three models are topological models; only relative positions matter. The

geometry must be computed explicitly and the computation is deferred until needed.

Nevertheless, the novel features of the model in this thesis are:

( Ability to handle non-rectangular blocks.

Z A complete and extensible set of topological operators.

( Tracking and backtracking capabilities.

2.3.1 A Formal Description

§ An assembly is a finite collection of channels and blocks satisfying the topological and the

geometrical invariant below.

§ Channels are finite line segments.

§ Blocks are CQn of arbitrary dimensions. They are either placed or unplaced, but not both.

2.3.1.1 Topological Invariants:

( The assembly is bounded by four channels forming a rectangle.

@ Only orthogonal channels may intersect.

9



Y

Y topologically contains X

X

Figure 2-2: Partial ordering of CQI
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§ Two channels intersect to form an intersection.

3 Every channel is bounded by an intersection at each end.

§ A topological hole is a finite region bounded by channels.

§ Two topological holes are adjacent iff they lie on opposite sides of a channel.

§ Two holes have the same topology iff they topologically contain each other.

§ Two assemblies have the same topology iff there exists a 1-1 mapping between holes of the

same topology in the two assemblies, and the mapping preserves the adjacency

relationship between the holes.

@ There is a 1-1 correspondence between topological holes and placed blocks. Every

topological hole topologically contains its corresponding block.

2.3.1.2 Geometrical Invariant:

(1 Every topological hole geometrically contains its blocks such that the perpendicular

distance between a channel and the blocks on its sides is at least half the channel-width.

2.3.2 The Topological Model

There are two kinds of objects in the topological model, namely, blocks and channels. A

circuit layout is represented by an assembly of blocks and channels. (See Figure 2-3)

2.3.2.1 Blocks

Blocks are abstractions of the layout components. Layout components may have internal

structures but only their shapes matter with respect to the model. This information is

captured by the dimensions of the blocks and the constraint that blocks do not overlap. The

model restricts the shapes of the blocks to be CQ1. However, the generalization to CQn is

possible.

11



h7

v1 4 v8

v26

h1 h

9 block

channel

Figure 2-3: Blocks and channels

2.3.2.2 Channels

Channels are auxiliary line segments surrounding each block. They define the placement

topology by partitioning the layout surface into topological holes (see Figure 2-4). Each

topological hole contains a block.

Figure 2-5 shows how the same channel topology in Figure 2-3 can accommodate different

geometries. Notice how the channels move and stretch. Blocks are placed after positioning the

channels.

Channels denote the tracks needed to route the interconnections among the blocks. Each

channel has the following attributes:

a position

12



Figure 2-4: Topological holes

@ channel-width

3 slack

The position of a channel is the coordinates where the channel lies. The channel-width

represents the thickness of the channel. Blocks are placed at least half the channel-width

from the channel, so that associated with each channel there is a band of empty space at least

the channel-width wide. Changing the channel-width does not affect the placement topology.

The slack is the range of feasible positions of the channel. For example, the slacks of

channels h3, h6, v3, v4 and v7 in Figure 2-5 (b) and (c) have a larger range than the rest of the

channels. Similarly blocks can also have slacks (in both horizontal and vertical directions).

2.3.2.3 Intersections

Every channel in the assembly is bounded by two other channels, which determine the

length of the bounded channel. The only possible intersections bounding a channel are T-

13



(a) Channels are stretched horizontally about dotted line

(b) Channels and blocks are positioned
from left to right and bottom to top

(c) Channels and blocks are positioned
from right to left and top to bottom

Figure 2-5: Different geometries with the same topology
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intersections and L-intersections. In general, three types of intersections are possible:

S+ -intersection

@ T-intersection

@ L-intersection

Figure 2-6 shows an example of each type of intersection. The T-intersection and the L-

intersection can have four different orientations. There is only one orientation for the +-

intersection.

h7
h

v3
v4

V
h6

(a) + -intersection (b) T-intersection (c) L-intersection

Figure 2-6: Three possible types of channel intersections

2.3.2.4 Channel Intersection Graph

Every channel keeps a set of pointers to its intersections and surrounding blocks, and

every block keeps a set of pointers to its surrounding channels. The pointers between the

channels and the intersections implicitly define an underlying graph. This underlying graph

is the Channel Intersection Graph (CIG). Any changes made on the assembly updates the

underlying CIG.

2.3.2.5 Advantages of the Topological Model

I The notion of holes is well-defined.

( There is no problem of blocks not fitting a hole. Holes expand and contract to fit blocks of

any sizes.
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As a consequence of (, the same model can be used for top-down placement

(floorplanning and shape determination).

@ The topological approach ensures the routing completion of all interconnections among

the blocks since the channel-widths can be changed to accommodate any amount of

interconnections, without affecting the placement topology.

S Working in the topological domain is more convenient because well-defined and powerful

topological operators are available to modify the placement topology.

2.3.3 Layout Model Summary

Instead of working on the layout problem in the geometrical domain, the problem is

mapped into an equivalent problem in the topological domain. Working in the topological

domain has the advantage of not being overwhelmed by geometrical complexities. Only in the

final phase of the layout process, or when the quality of a layout is evaluated, is the geometry

computed.

To use the above approach, the following operations are provided by the model:

T An operation which maps a placement problem, formulated in the geometrical domain,

into the topological domain. This is the Topologize operation.

@ An operation which computes the geometry given the topology. This is the Geometrize

operation.

@ A set of operations which operate on the problem in the topological domain. These are the

topological operators.

These operations are discussed in subsequent sections of this chapter.
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2.4 Topologize Operation

This operation maps the placement problem from the geometrical domain into the

topological domain. The inputs are the shapes and the positions of the blocks. Topologize

assumes that the blocks do not overlap. The objective of Topologize is constructing channels

for the blocks, and hence defining the placement topology.

Topologize is discussed in Section 2.4.1, and an algorithm for Topologize is given in

Section 2.4.2

2.4.1 Topologize Overview

The algorithm consists of four phases. Figure 2-7 shows the effect of each phase.

( For each block, construct the largest possible outline around it, so that the outlines do not

intersect or contain each other. Then, construct a bounding rectangle of the assembly. (An

outline of a block is a closed figure that topologically and geometrically contains the block

and is as short as possible.)

@ Choose the horizontal or vertical direction as the primary direction. The other direction is

considered secondary. Collapse the edges of the outlines in the primary direction so that

every channel is perpendicular to the primary direction.

3 Collapse the edges of the outlines in the secondary direction. This completes all the

channels.

@ Use Geometrize to reposition the blocks and the channels if necessary.

Remarks:

T There are different ways of constructing the outlines. (See Figure 2-8.)

2 After constructing the outlines for the blocks, in phase B, the number of interior L-

intersections is determined. This number is independent of the primary direction chosen.

3 It may not be possible to position some channels so that they do not intersect any blocks

without moving the blocks. (See Figure 2-9.)
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(a) Block X has higher precedence (b) Block Y has higher precedence

Figure 2-8: Different ways of forming outlines

@ This algorithm tends to produce longer channels in the primary direction. (See Figure 2-

9.)

Note: Only L-intersections and T-intersections are formed by the algorithm. + -

intersections must be formed explicitly.

2.4.2 Topologize Algorithm

This algorithm consists of two routines: MakeOutlines and MakeChannels. Without

loss of generality, let vertical be the primary direction.

2.4.2.1 MakeOutlines Routine

Input: The shapes of the blocks and their positions.

Output: A rectangle that contains all the blocks and the outlines around them. The blocks

do not intersect or contain each other.

Method: See Figure 2-10.

Notations:

D "n" means intersection.
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(a) Primary direction is vertical (b) Primary direction is horizontal

Note: Blocks are repositioned by Geometrize

Figure 2-9: Different ways of forming channels

"--" is the comment symbol.

Remark:

The average number of pairwise comparisons between blocks on line 3 can be reduced by

sorting the blocks in increasing order as follows:

( Sort blocks by the y-coordinates of their bottom edges.

@ If the y-coordinates are equal then sort by the x-coordinates of the left endpoints of the

edges.

This ordering is unique from the assumption that blocks do not overlap. The number of

comparisons is reduced by comparing the first block in the list with the rest of the blocks until
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PROCEDURE MakeOutlines

1. p: list of block pairs +- NIL; -- conflict pairs

2. Initialize outline of every block to its bounding rectangle;

3. FOR every unordered pair of blocks (X, Y) DO
IF X n Y THEN ERROR; --Should not overlap
IF (outline of X) n Y TH EN retract the corner of X's outline that intersects Y;
IF X n (outline of Y) TH EN retract the corner of Y's outline that intersects X;

IF (outline of X) n (outline of Y) THEN p +- p + (X, Y); -- found a conflict pair
ENDLOOP;

4. FOR every (X, Y) in p DO
IF (outline of X) n (outline of Y) THEN -- check if X and Y still conflict

retract either the corner of X or
the corner of Y so that the outlines do not intersect;

ENDLOOP;

5. Construct a bounding rectangle of all blocks

END MakeOutlines
-----------------------------------------------------------------------

Figure 2-10: MakeOutlines routine

the y-coordinate of the top edge of the first block is less than the y-coordinate of the bottom

edge of the second block. In the worst case, the running time is still n choose two.

2.4.2.2 MakeChannels Routine

Input: Output from the MakeOutlines routine.

Output: Channels around the blocks.

Method: See Figure 2-11.

Explanations:

(D Edge refers to an edge of the outline.

2 The span of an edge is the interval of the x-coordinates of its two endpoints.

3 The range of an edge is a semi-infinite interval pointing outward from the coordinate

of the edge to infinity in the direction away from the interior. The edge of the

bounding rectangle has a range pointing inward.
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PROCEDURE MakeChannels

1. PosEdges *- ordered list of all horizontal edges with positive range;

2. NegEdges +--ordered list of all horizontal edges with negative range;

3. UNTIL PosEdges = NIL DO
Curtain: set of intervals +- 0;
s +- first edge in PosEdges;
PosEdges <- PosEdges - s;
r +- range of s;
remove all edges from NegEdges with y-coord less than y-coord of s;
FOR each t in NegEdges in ascending order DO

IF (span oft) f (span of s) AND
(span of t does not intersect intervals in Curtain OR coord of t is in r) THEN

BEGIN
mark s and t to be in the same cluster;
r +- r n (range of t);
END;

Add (span of t) to Curtain;
IF some union of intervals in Curtain covers (span of s) THEN EXITLOOP;
ENDLOOP;

ENDLOOP;

4. Collapse all horizontal edges of the same cluster into a horizontal channel

5. FOR each horizontal channel DO
cluster the pair of adjacent vertical edges at each end of the channel;
cluster up the pairs of adjacent vertical channels on both sides of the channel;
ENDLOOP;

6. Collapse each vertical cluster into a vertical channel;

END MakeChannels

Figure 2-11: MakeChannels routine

Remarks:

T This algorithm systematically clusters the edges of the outlines.

2 Operations on a set of intervals can be speeded up by ordering the intervals and

incrementally forming unions of intervals to reduce the number of intervals in the set.
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2.4.3 Topologize Summary

T The efficiency of Topologize is not critical since it is used only once.

@ Every channel-width can either be set to some default value or to the resultant range of

the corresponding cluster. The latter setting reduces the relative movements between

blocks when Geometrize is run.

2.5 Geometrize

This operation computes the positions of the channels and the blocks. It is called to update

the geometry of the assembly after any changes. Given the topology of the assembly and the

dimensions of the blocks, it is possible to position the blocks and the channels in such a way

that the geometrical invariant (in Section 2.3.1) is preserved. Since this operation is called

frequently, its running time is critical. A linear-time algorithm for Geometrize using a

graph-theoretic approach is described.

2.5.1 Geometrize Overview

At the top level, the algorithm consists of two phases:

T Channel positioning.

In this phase, the algorithm computes the positions of the channels and their slacks.

There is usually no unique way of positioning the channels. The channels are positioned

in such a way that the geometrical invariant can be preserved. After this phase the

topological holes are completely defined.

@ Block positioning.

In this phase, the algorithm positions the blocks inside their topological holes so that the

perpendicular distances between the edges of the blocks and their corresponding channels

are at least half the channel-width, preserving the geometrical invariant. Again there

may be no unique way of doing this.
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2.5.1.1 Channel Position Graph

Channel positioning is further divided into two independent sub-problems: the

positioning of horizontal channels and the positioning of vertical channels. The former will be

described; the latter is analogous. Positioning the horizontal channels has two phases:

( Construct Channel Position Graph

Channel Position Graph (CPG) is a weighted directed acyclic graph. Each node

corresponds to a channel and each edge corresponds to a constraint between two channels.

The weight on the edge represents the minimum separation between the two channels.

(See Figure 2-12.) Two CPGs (bottom-to-top and top-to-bottom) are needed to position the

h7 h7

h1

Bottom-to-top CPG

h3

h1

Top-to-bottom CPG

Topological constraint, from L-intersection

Block constraint

Note: Weights on the edges are not shown

Figure 2-12: Horizontal channel position graphs
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horizontal channels and compute their slacks. Four CPGs are needed altogether.

@ Compute channel positions and slacks.

Using a CPG, the positions of the nodes can be computed, in time linear with the total

number of nodes and edges. This is done by assigning node positions such that the position

of a node is assigned only after the positions of all its predecessors have been assigned

(i.e., in topological order.) Since the graph is acyclic, this is always possible.

Remarks:

T The bottom-to-top CPG is the same as the top-to-bottom CPG except that the directions of

the edges are reversed.

2 The mapping from topology to geometry is not unique. The positions of a channel

computed using the bottom-to-top CPG and using the top-to-bottom CPG may not be the

same. The position of a channel computed using a top-to-bottom CPG is always greater

than (above) or equal to the position computed using a bottom-to-top CPG.

§ The slack of a channel is the interval of the positions computed from the two CPGs.

§ Critical channels are channels with zero slacks.

§ A critical path is a path in the CPG where every node corresponds to a critical

channel.

0 There is at least one critical path between the nodes corresponding to the opposite sides of

the channels bounding the assembly. Increasing the weight of an edge on the critical path

always increases the dimension of the assembly. (For example, increasing the channel-

width of a critical channel or increasing the dimension of a block along its critical

dimension will increase the dimension of the assembly by the same amount.) Decreasing

the weight does not necessarily reduce the dimension of the assembly since there may be

more than one critical path.
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@ In principle, a channel may be positioned anywhere within its slack. However, to ensure

that the topological holes are properly formed, the channels are either positioned using

the bottom-to-top CPG or the top-to-bottom CPG.

S Channel-width and slack are related to each other.

2.5.2 Geometrize Algorithm

2.5.2.1 Channel Positioning

Only the algorithm to compute the positions of horizontal channels from bottom to top will

be described, the algorithm to compute channel positions from top to bottom is analogous.

This algorithm consists of two routines:

( MakeBot2TopCPG Routine.

This routine constructs a bottom-to-top CPG based on the topology and the dimensions of

the blocks. The algorithm is given in Figure 2-13.

PROCEDURE MakeBot2TopCPG

1. Create a node for each horizontal channel;

2. FOR each block DO
Construct edges of appropriate weights from nodes of lower
channels to nodes of upper channels;
ENDLOOP;

3. FOR each L-intersection DO
Add an appropriate topological constraint to prevent
horizontal channels from sliding beyond the intersection;
ENDLOOP;

END MakeBot2TopCPG

Figure 2-13: MakeBot2TopCPG routine

Explanations:

0 Line 2: An edge is added to the CPG for each pair of nodes (from lower to upper)

corresponding to channels on opposite sides of the topological hole. The weight on the
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edge, W, is given by:

W = - * (sum of the two channel-widths) + (appropriate constraint from the

block)

(See Figure 2-14.)

20 h5 h5
h5 0

15.8

21
h3 h3

10
h4

h4 o 18

5 -4
h1 6

hi

0 h2

Note: All channel-widths are 2 units.
Upper channels: h4 and h5.
Lower channels: h1, h2, and h3.

Figure 2-14: Block constraints

* Line 3: For each interior L-intersection, it may be necessary to add a constraint

between the horizontal channel in the L-intersection to the horizontal channel

opposite the L-intersection to ensure that the latter channel does not move past the L-

intersection. See Figure 2-15.

@ PositionChannelsBot2Top Routine

This routine takes a CPG and computes the positions of the channels based on the CPG.

The routine is shown in Figure 2-16. The running time of this algorithm is 0 (number of

nodes + number of edges).
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Figure 2-15: Topological constraints

PROCEDURE PositionChannelsBot2Top

1. Assign positions of all nodes to -oo;

2. Find root and assign position of root to a default value;

3. I: 1ist of nodes +- root;

4. UNTIL I = NIL DO
n +-node in I;
I+- I -n;
FOR each edge (n, m) from n DO

position of m +- MAX[position of m, weight of edge + position of n];
remove edge;
decrement incidence count of m by 1;
IF incidence count of m = 0 THEN I +- I + m;
ENDLOOP

ENDLOOP;

END PositionChannelsBot2Top

Figure 2-16: PositionChannelsBot2Top routine

Explanations:

* Each node has a position and an incidence count. Position refers to the position of the

channel. Incidence count is the number of edges pointing at the node.

0 The root of the CPG is the node with zero incidence count, and there should be exactly

one root.
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Remarks:

T Cycles in the CPG can be detected by counting the number of times the loop in line 4 is

executed. It should be equal to the number of nodes.

@ To save space, the bottom-to-top CPG and the top-to-bottom CPG can be merged into one

graph.

2.5.2.2 Block Positioning

Each block is positioned within its topological hole so that it is at least half the channel-

width away from all its surrounding channels. Only when a block is critical in both directions

is its position unique.

2.5.3 Geometrize Summary

Geometrize is the key connection from the topological domain back to the geometrical

domain. This operation is needed to compute the geometrical information for the layout. The

geometrical information is used to evaluate the quality (or cost) of a layout and is part of the

final output of the system. The Geometrize algorithm allows the dimensions of the assembly

and the critical channels to be determined in linear time. This linear time algorithm is

especially effective for handling an assembly with a small number of blocks.
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2.6 Topological Operators

This section describes the operations on the model. A number of important notions are

introduced to show the power of this topological model. The words operation and operator will

be used interchangeably to refer to the topological operators.

2.6.1 Topological Operators Overview

The interfaces (arguments and return values) of these operators are inherently

complicated because of the amount of information needed to specify the operations. These

operators can be called by a client program or by a user through an interactive graphic

interface. The latter requires a lot of the arguments to be defaulted for the convenience of the

user. Unless stated otherwise, properties mentioned in this section apply to all the operators.

2.6.1.1 Tracking and Backtracking

The system supports these capabilities by keeping the changes made by each operation on

two stacks: an undo stack and a redo stack. The redo stack records the sequence of forward

changes, while the undo stack the sequence of inverse changes.

When an operator is called it is pushed onto the redo stack and its inverse onto the undo

stack. The effect of the operation is undone by popping both stacks and executing the inverse

operation that was on the undo stack. Executing the operation that was stored on the redo

stack return the system to the state before undoing. This method is both space and time

efficient and renders the keeping of multiple solutions feasible.

2.6.1.2 First Class Operations

All first class operations have the following properties:

T If the system is in a valid state, calling the operations will either raise an error (because

the arguments are not valid) without executing the operations or execute the operations

and result in a valid state. This implies built-in checking of arguments in the operations.
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This property is essential for debugging and building an interactive user interface.

Associated with each first class operation is a predicate that returns true iff executing the

operation will not raise an error.

@ They can be used to build other (composite) first class operations. The argument checking

can be turned off temporarily if a composite operation involves some illegal move.

@ They are supported by the undo and redo capabilities. When this feature is activated,

executing a first class operation will push a frame onto the undo and the redo stacks. This

simplifies the bookkeeping of the stacks. For example, when the user calls any operation

and then desires to return to the previous state, undoing once will suffice. This property

and property ( capture the extensibility of first class operations.

2.6.1.3 Simplifications

Because the system has a lot of internal states, the functional inverse of an operation may

not be its actual inverse. For example, executing the functional inverse of an operation after

executing the operation does not necessarily return the system to the original state - the

stacks have grown by two frames. It is the actual inverse and not the functional inverse that

is pushed onto the undo stack.

For simplicity, however, this distinction will be ignored by treating the system as though

it has no internal states. Another simplification is that the operation for only a particular

orientation is presented. It should be understood that the same operation can be applied to

any of the eight possible orientations. The model has all the symmetries of a rectilinear

model.
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2.6.2 Simple Operations

This section describes the simple topological operators while the more complex ones are

described in the next section. The classification of operations into simple and complex is

arbitrary and does not reflect any inherent differences between them.

For clarity, the operation and its (functional) inverse, if one exists, are grouped together.

More complex operations, however, may not have an easily describable inverse. Refer to

Figure 2-17 for the operations in this section.

BreakCross FormZ

FormCross 1femoveZ

TtoL FlexKnee,

LtoT -- --... ExtendKnee

FlipT

FlipT

Figure 2-17: Simple operations
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BreakCross converts a + -intersection into two T-intersections by breaking one of the

intersecting channels into two channels at the intersection. The number of channels is

increased by one.

FormCross takes the ends of two channels each forming a T-intersection on opposite sides of

another channel and merges them into a + -intersection. The number of channels is decreased

by one.

FormZ takes two blocks, each with a corner missing at the corners diagonally across, on

opposite sides of a channel and create two L-intersections by breaking the channel and adding

an appropriate orthogonal channel so that each of the L- intersections fits into one missing

corner. The number of channels is increased by two.

RemoveZ takes a channel which has no interior intersections except an L-intersection at

each of its ends (the L-intersections are in opposite directions), removes the channel, and

merges its intersecting channels. The number of channels is decreased by two.

TtoL converts a T-intersection on the side of a channel into an L-intersection by breaking the

channel to form an L-intersection and a new T-intersection. The L-intersection fits into a free

(unused) missing corner of a block on the opposite side of the channel. The number of channels

is increased by one.

LtoT merges an L-intersection with a T-intersection next to it to form a new T-intersection.

The number of channels is decreased by one.

FlexKnee takes a channel with an end bounded by a T-intersection and converts it into an L-

intersection by splitting and sliding out part of the intersecting channel. The L-intersection

fits into a missing corner of a block. The number of channels is increased by one
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ExtendKnee converts an L-intersection into a T-intersection by merging one of the channels

in the L-intersection with another nearby channel, to form the T-intersection on the side of

the nearby channel. There must be no obstruction between them. The number of channels is

decreased by one.

FlipT takes a channel with a T-intersection on its side and bend part of the channel at the

intersection, away from the intersection channel so that the intersecting channel and the part

bent become one channel. As a result, a new T-intersection bounding the remaining part of

the channel is formed. It requires that the part of the channel bent to be bounded by a T-

intersection. This operation is its own inverse. The number of channels and the number of T-

intersections are unchanged.

Remarks:

( Topological operations may have certain geometrical characteristics:

" BreakCross, FormZ, TtoL, and FlexKnee tend to result in a smaller assembly,

whereas their inverses have the opposite effect.

* In FormCross, when the two channels are merged into one, the slack of the resultant

channel is the intersection of the slacks of the two channels. If their slacks do not

overlap, then the resultant channel will be a critical channel and the dimension of the

assembly along the direction orthogonal to the channel will increase.

2 When implementing these operations, the arguments of the operations must at least

contain enough information to specify the operations and for all possible orientations.

There may be drastic difference in complexities between the interface of an operation and

the interface of its inverse.
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2.6.3 Complex Operations

These are the more complicated operators. In some operators, the inverse operators are

not implemented because of the complexities in specifying their operations. But in principle

they can always be implemented.

GrowO places a block by growing a rectangular topological hole and inserting the block into

the hole. This topological hole is created by splitting a channel bounded by two of its

intersections. The number of channels is increased by one. (See Figure 2-18 for Grow and

Shrink operations.)

ShrinkO removes a block from a rectangular topological hole and collapses the hole by

merging two opposite sides of the hole. There must be either two T-intersections at the ends of

one of the sides or two T- intersections diagonally across so that the collapse is not obstructed.

The number of channels is decreased by one.

Growl adds a block to the topological hole created at a free corner of a placed block, by adding

two channels that form an L-intersection. The number of channels is increased by two.

Shrink1 removes a block from a rectangular hole bounded by two channels forming an L-

intersection. These two channels must have no interior intersections. The number of channels

is decreased by two.

Grow2 is a highly restricted operation. It adds a block with the four surrounding channels,

forming a rectangle, to an empty assembly. The number of channels is increased by four.

Shrink2 removes the last block and its four surrounding channels from the assembly; only an

empty assembly remains. The number of channels is decreased by four.

BreakCrosses is a composite operation which applies BreakCross to all + -intersections

between two specified intersections of a channel. It does not do anything if there are no + -
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(a) GrowO and ShrinkO

empty
assembly:

(b) Growl and Shrink1 (c) Grow2 and Shrink2

Figure 2-18: Grow and shrink operations

intersections. The increase in number of channels is equal to the number of +-intersections

broken. (No figure.)

ClearlnteriorKnee is a composite operation which removes an interior knee (an interior L-

intersection) from the corresponding corner of a block, freeing the corner of the block. It uses

one of LtoT, ExtendKnee, or RemoveZ whichever is appropriate. It may be necessary to

apply BreakCross to break any +-intersection that is in the way. It is clear that this can
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always be done, and perhaps in many ways. (Figure 2-19 shows action taken only on the

vertical part of the L-intersection.)

LtoT

bemoveZ

ExtendKne

... \ ~.

Figure 2-19: ClearInteriorKnee operation

ClearExteriorKnee is another composite operation similar to ClearInteriorKnee except

that it is executed from a different perspective. It changes an exterior knee (a corner L-

intersection) of a topological hole into a corner T-intersection by applying LtoT (and

BreakCross if necessary). This operation may not always achieve its objective (e.g., an L-

intersection of two bounding channels). (See Figure 2-20.)

LtoT

Figure 2-20: ClearExteriorKnee operation
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Remarks:

( The last three operations are more heuristic in nature. Their effect on the number of

channels and on the topology depends on the situation.

@ Some geometrical properties of these operations are listed below:

* Growl always results in an assembly no smaller than the original

* GrowO usually results in an assembly no smaller than the original.

2.6.4 Primitives

Sections 2.6.2 and 2.6.3 describe a large number of topological operations. This section

unifies them. The issues concerning the primitive operators of the model are addressed.

§ A subset of the operations that can express all the operations of the original set are the

primitives of the original set.

In the two preceding sections, it is clear that BreakCrosses, ClearlnteriorKnee, and

ClearExteriorKnee can be expressed by other operators. Hence, a set of primitives for the

operations in Sections 2.6.2 and 2.6.3 are as follows:

I FormCross and BreakCross

@ LtoT and TtoL

3 FlexKnee and ExtendKnee

@ GrowO and ShrinkO

( Grow2 and Shrink2

FormZ can be expressed by two appropriately chosen FlexKnee's or TtoL's, using

BreakCross and FormCross when some + -intersection is in the way. Similarly, RemoveZ

can be expressed by ExtendKnee's and LtoT's.
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FlipT can be expressed by a FlexKnee (an invalid intermediate topology may be formed

but this is all right) and an LtoT. Or equivalently, it can be composed of a TtoL and an

ExtendKnee.

Growl can be expressed as a GrowO followed by a FlexKnee, and Shrink1 can be

expressed as a ShrinkO following an ExtendKnee.

FlexKnee can be expressed as a FlipT followed by a TtoL (and ExtendKnee can be

expressed by an LtoT followed by a FlipT). Hence, another possible set of primitives for the

operations is the same list as above but replacing FlexKnee and ExtendKnee by FlipT.

Remarks:

( For implementation purposes, it may be easier and more efficient to implement a

composite operation (non-primitive) as though it is a primitive operation. Examples are

Shrink1 and Growl.

2 At the level beneath these operations, it is possible to express them by a yet smaller set of

implementation primitives. However, these primitives by themselves may not be valid

topological operators.

2.6.5 Shrink

This composite operation is the key to proving that the topological operators are complete.

This operation removes any block in an assembly and shrinks its topological hole. It includes

ShrinkO, Shrink1, and Shrink2 which are restricted to removing blocks from rectangular

topological holes only. It is assumed in the rest of the discussion that there is more than one

block in the assembly. Removing the last block can always be handled by Shrink2.

2.6.5.1 Complexity of Shrink

The complexity of Shrink is largely in the closing up of the topological hole containing

the block. In principle, it is possible to collapse the hole by studying the intersections of
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channels surrounding the hole. In particular, it is possible to collapse most (but not all, see

Figure 2-24) topological holes simply by performing actions based on only the corner

intersections.

I.

Figure 2-21: Twenty possible corner intersections for CQ1

However, for CQ1, there are 204 different combinations of corners. (See Figure 2-21.) It is

possible to pre-compute a table of actions based only on this corner information. The

drawbacks with this approach are:

T Generating this table of actions may be non-trivial, in light of the fact that there are

many ways of collapsing some topological holes.
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2 The table may take up a lot of memory.

3 This approach does not readily generalize to CQ2, CQ3, and so on.

2.6.5.2 Overview of Shrink

A heuristic approach is used instead. The idea is to apply a series of reductions to simplify

the problem to a case that can be handled by ShrinkO and Shrinki. This approach can

always remove a block but does not consider all the possible ways of doing it. This is

justifiable because different ways of removing a block do not necessary results in drastically

different topologies. In case it does make a difference, one can always use the basic operations

and apply ShrinkO.

2.6.5.3 Algorithm for Shrink

( Apply ClearlnteriorKnee to every corner that contains an interior knee.

@ Apply ClearExteriorKnee to every corner that contains an exterior knee.

( Apply either ShrinkO or Shrink 1 to remove the block.

2.6.5.4 Proof of Correctness

After step T the resultant topological hole is rectangular, since ClearlnteriorKnee can

always remove the interior knee. Step 2 may not be able to remove all the exterior knees but

a little case analysis shows that there cannot be more than two exterior knees in the resultant

topological hole. (If there are two they must be diagonally across the topological hole.) At step

(, case analysis shows that the resultant hole must be collapsible by either ShrinkO or

Shrink1.
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2.6.5.5 Shrink Summary

* Shrink is a composite operation.

* At each step there may be many ways of achieving the objective. It may be desirable to

give hints as arguments to Shrink to allow finer control.

2.6.5.6 Completeness

Duality: The functional inverse of any operation in the set can be composed by a sequence of

operations in the set. This is slightly weaker than requiring that the functional inverse of any

operation be in the set, but is enough to ensure that if a sequence of operations changes a

topology to another topology then there exists another sequence that changes it back.

Completeness: There exists a sequence of operations in the set that transforms any valid

topology to any other valid topology. It is clear that completeness implies duality.

Claim. The operations in Sections 2.6.2 and 2.6.3 are complete.

Proof. These operations satisfy the duality properties since the primitives of the operations

occur in dual pairs. To prove completeness, use Shrink to remove all blocks in the first

assembly and all the blocks in the second assembly. The two empty assemblies are

topologically equivalent. By duality, for each sequence of Shrink's there exists a sequence of

inverses that returns the assembly to its original state. Now, to go from one to the other, apply

the sequence of Shrink's of the former and then apply the sequence of inverses of the latter (in

reverse order).
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2.6.6 Grow

This is the functional inverse of Shrink, and in principle can be implemented by

reversing the steps in Shrink and applying the inverse to each step as follows:

T Use GrowO or Growl to add a block to the assembly.

@ Try all possible ways of forming an exterior knee at each corner (using TtoL).

0 For each missing corner in the block, try all possible ways of forming an interior knee

(using FlexKnee, TtoL, or FormZ).

Remarks:

* It is easy to see that the number of ways of growing a new topological hole onto any

assembly is finite. So the above algorithm can only give a finite number of possibilities.

" Step 0 of the above algorithm depends on the existence of free missing corners of

surrounding blocks, while step 0 depends on the missing corners of the block.

Because of the large number of ways of growing a new topological hole, specifying the new

hole precisely requires a complicated interface. A restricted Grow will be described. It has a

relatively simple interface like GrowO but includes both GrowO and Growl. But first the

notion of generalized slack is discussed.

2.6.6.1 Generalized Slack

Recall that the slack of a channel is the range of feasible positions of the channel.

Intuitively it is clear that a good place to add a block using GrowO is to a channel that has

slack matching one dimension of the block and the distance between the two bounding

channels matching the other dimension. So slacks can be useful estimators for growing new

topological holes.

This notion can be further generalized. Suppose all blocks on each side of a channel are

moved as far away from the channel as possible (with the other channels placed at the further
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extremes of their slacks) the spaces between the channel and the blocks on its sides

determine the generalized slack of the channel. (See Figure 2-22)

2.6.6.2 Restricted Grow

This grow is a direct generalization of GrowO, which is specified by a reference channel

and the two intersecting channels (or intersections) bounding the region to be split. The

generalization is that these bounding channels may include pseudo-channels of appropriate

directions. Pseudo-channels (see Figure 2-22) are associated with the edges of a free missing

corner of a block, and potentially become real channels when that corner is used.

This restricted Grow is composed of GrowO followed by FlexKnee. The number of

FlexKnee's needed depends on the number of pseudo-channels used. (See Figure 2-23.) It may

be necessary to apply BreakCrosses to remove any +-intersections between the bounding

channels.

Remarks:

( It is clear that this Grow is restricted because it only forms rectangular holes.

0 It does not enumerate all possible rectangular holes. (See Figure 2-24.)

0 It includes GrowO, Growl, and Grow2.
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(a) Channels are positioned from left to right and blocks are centered in their holes

+1 |+Slack of vCH

(b) Channels and blocks are moved away from vCH

--
Generalized slack of vCH

Pseudo-channel

Figure 2-22: Generalized slack
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K'
Figure 2-23: Some restricted grow operations using pseudo -channels

Figure 2-24: A topological hole formed from pseudo-channels only
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2.6.7 Miscellaneous Operations

This section describes various operations supported by the model. Again, all except Save,

Restore, and the stack operations are first class operations.

2.6.7.1 Stack Operations

StackSize returns the number of frames in the undo (or redo) stack.

GetTrack returns a copy of the sequence of operations from a specified depth to the top of the

redo stack.

Redo takes a sequence of operations from GetTrack and returns the system (in an

appropriate state) to the state described by the sequence, by successively applying the

operations. (If the system is not in the proper starting state then some operation in the

sequence will raise an error.)

Undo undoes a specified number (less than or equal to the stack size) of steps by successively

applying and popping the operations on the undo stack. This returns the system to an old

state. The redo stack is also popped to ensure that both stacks have the same size.

2.6.7.2 Other Operations

SetBlockShape changes the shape of the block to any specified shape. This operation is used

in shape determination.

SwapBlocks swaps two blocks with respect to their topological holes. This can easily be

generalized to permutation of any number of blocks. It is useful for placement improvement.

OrientBlock changes the orientation of a block to any of the eight possible orientations. This

operation includes mirroring and rotating the block.
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Remarks:

( The above three operations are their own inverses.

0 In any of the three operations, if a block does not fit its assigned topological hole, the hole

can be reshaped using ClearlnteriorKnee.

SplitHole splits a topological hole into two by adding a channel and replacing the block by

two blocks. Depending on where the channel is added, the final number of channels may

increase by one, decrease by one, or not change at all.

MergeHole is the functional inverse of SplitHole. It merges two holes by removing part of a

channel and replacing the two blocks by an appropriate block. The resultant hole must be a

CQ1. These two operations are used in floorplanning.

Save creates a text file describing the system.

Restore takes the above text file and reconstruct the system.

2.6.8 Topological Operators Summary

The topological operators described above are the basic tools for the placement problem.

They modify the placement topology, and the resultant geometry is computed using

Geometrize. The tracking and backtracking support for these operations makes them

especially effective for addressing the placement problem.
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2.7 Layout Model Summary

2.7.1 Other Layout Model Issues

Here are some issues not discussed in the previous sections.

2.7.1.1 Fake Blocks

Fake blocks are auxiliary blocks that are not part of the input. There are a number of uses

for them:

( Corner Pads

Assembly with fake blocks to shape its corners Shape of assembly

fake block

9 real block

Figure 2-25: Using fake blocks to shape corners of an assembly

There is an asymmetry in that blocks can be non-rectangular in shape whereas the

assembly must be rectangular. This is necessary to ensure a small set of topological

operations. This asymmetry can be patched by using fake blocks at the missing corners of
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the assembly. (See Figure 2-25.) Operations on the assembly (including the fake blocks)

are unchanged except that there must be some built-in precautionary mechanisms to

prevent unintended displacement of a fake block from its corner.

@ More Accurate Placement

One of the drawbacks of the topological model is that it may be hard to position the blocks

accurately. This can be partially rectified by placing fake blocks in the assembly to assist

in positioning the real blocks (at their desired locations). The price is increase

complication in channel topology. Recall that in Topologize some of the blocks may have

to be displaced to ensure that the channels formed do not intersect the blocks. (See Figure

2-9.) This problem can also be solved using fake blocks. (See Figure 2-26)

Topolog ize

Input blocks Blocks are not moved

Figure 2-26: Using fake block to augment Topologize

2.7.1.2 External Constraints

Recall that in constructing a CPG for the assembly, the edges on the CPG correspond to

two kinds of constraints: topological constraints and block constraints. It is possible to

introduce a third kind of constraint, namely, the external constraint. This is a directed

constraint be between any two channels of the same orientation (horizontal or vertical) as

long as it does not result in a cycle in the CPG when combined with other constraints.
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2.7.1.3 A More Efficient Geometrize

The algorithm for Geometrize in Section 2.6 requires the CPG's to be constructed each

time it is executed. A more efficient alternative is to reuse the same CPG's. This is simplified

by the one-to-one correspondence between channels in the assembly and nodes in the CPG's.

For each operation that affects the channels or the blocks it should also modify the CPG's

accordingly and mark the affected nodes. When an update on geometry is needed,

Geometrize needs to compute only the positions of those nodes affected. This is done by

propagating the changes along the edges as far as necessary. On the average, this algorithm

is faster than the earlier algorithm. The price is additional complexities in implementing the

topological operations. Nevertheless, Geometrize must still update the incidence counts of

all the nodes each time it is called. With the proper data structures this update can be done in

O (number of nodes) computations.

2.7.2 Layout Model Conclusion

This topological model, when coupled with a powerful set of topological operations with

tracking and backtracking capabilities, is a versatile model for the layout problem. In the

next chapter, the use of the operations and the power of the tracking and backtracking

capabilities will be discussed.
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Chapter 3

Placement Heuristics

The goal of this chapter is to show the power of the topological layout model. Heuristics for the

placement problem are described. They are intended to suggest, not limit, possibilities. These

heuristics have not been tested extensively; their effectiveness is best determined by

empirical verifications.

3.1 Problem Statement for Placement

Given a collection of blocks, some of which have variable dimensions. Place them on a

plane and specify their dimensions so that no blocks overlap and all their interconnections

can be routed. The objective is to minimize the layout area and the interconnection length.

The positioning of the blocks is called placement; specifying their dimensions, shape

determination; and connecting the interconnections, routing. In this thesis, placement

includes both placing the blocks and specifying their dimensions. Routing is discussed in the

next chapter.

3.2 Placement Overview

In the hierarchical layout method, placement is usually classified into bottom-up and top-

down. Bottom-up placement combines sub-blocks into a block, and blocks into a super-block. It

proceeds from a lower to a higher level, with the dimensions of all combining sub-blocks

known at each level. For top-down placement, the situation is reversed. Blocks are placed

within a super-block, whose dimensions have been determined earlier. Since these blocks

have not been constructed yet, their shapes can only be approximated from known
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information about their interiors. These approximated shapes become constraints for placing

and shaping the internal sub-blocks, propagating the shape constraints downwards. Both

cases presume an underlying hierarchy, which is either given as part of the input or derived

from it. In the former, the hierarchy usually corresponds to the hierarchy of the logic design,

and in the latter, the hierarchy is usually derived from the interconnections between the

blocks.

A large layout problem is often divided into many smaller sub-problems - divide-and-

conquer. This subdivision may or may not involve a hierarchy. One technique is

floorplanning. Floorplanning partitions the layout surface into regions and assigns blocks to

them. Blocks in the same regions are placed independently of the other blocks, reducing the

size of the problem. This technique is often used in top-down placement though it can also be

used for bottom-up placement.

Placement is also classified into initial placement and placement improvement. Initial

placement refers to adding blocks to a given seed placement or an empty assembly. Initial

placement can be random (arbitrarily placing the blocks) or constructive (adding one block at

a time to the assembly). Placement improvement refers to improving on a given placement.

The needs for placement improvement decreases with the quality of initial placement, and is

superfluous if the initial placement is optimum.

An underlying assumption is that there is a cost function (or figure of merits) that

evaluates how good a placement is. All the search techniques in this chapter are designed to

optimize the placement by minimizing the cost function.
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3.3 Review of Search Techniques

Heuristic search is based on one of the oldest and most often used problem solving

techniques - trial and error. In solving optimization problems, its effectiveness is between

that of trial and error and that of algorithms that give the optimum answer. Neither

guarantees getting the optimum answer in a short time; the more time that is available the

more likely it is to get a better solution. Heuristic search is often used when there is no known

algorithm for finding the optimum solution in a reasonable amount of time. This is the

philosophy in heuristic search - try the best and hope it is acceptable.

This section describes a number of search heuristics. The most basic is the local search, a

common technique used in the past. The remaining heuristics are just extensions of local

search. First, some basic terminology is introduced.

3.3.1 Basic Search Concepts

In a search problem, the following will be assumed to be given: F, the search space (the set

of all feasible solutions) and c, the cost function which maps the search space into the real line

or the integers. Elements of F will be referred to as points or solutions, and the cost of a

solution, s, will be denoted by c(s).

To formalize search, the notion of neighborhood is introduced. Intuitively, the

neighborhood of a point s E F is a set of points close to s, and is denoted by N(s). The points in

N(s) are called neighbors of s. A better neighbor of s is any t E N(s) such that c(t) < c(s).

To generate these neighbors, a perturbator is used. This is the neighborhood function, N,

which generates a list of neighbors of s in arbitrary order. The size of this list will be denoted

by ||N(s)||. (See [5] for a more thorough treatment on local search and neighborhood.)

Remarks:

* One way to represent a neighbor of a point is by the sequence of operations needed to go

from the point to the neighbor.
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* For any two distinct points, a and b, the following properties are assumed:

T If a is a neighbor of b then b is a neighbor of a.

@ There exists a sequence of points from a to b such that consecutive points in the

sequence are neighbors.

This sequence is called a path, and a step in the path corresponds to going from one

point in the path to the next. There may be more than one path from a to b. (See

Figure 3-1.) The length of the path is the number of steps needed to traverse the path.

length = 13

b

a length = 10

A neighborhood

Figure 3-1: Paths between two points in a search space

* A distinction should be made between evaluating and estimating the cost associated with

a neighbor. Unless the evaluation is incremental, to evaluate the cost of a neighbor

requires visiting the neighbor, applying the cost function, recording the cost, and then

using the undo capability to return to the previous point. The undo and redo capabilities

are essential here. A lot of computations are reduced if the cost associated with a neighbor

can be evaluated incrementally. An example of this is to use an estimator which predicts

the change in cost, based on the path between the two points. It is hard to find a good

estimator.
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3.3.2 Local Search

PROCEDURE LocalSearch[s]

1. t - s; -- initialize tto starting position, s

2. WHILE Improve[t] # "no" DO
t +-- Improve[t];
ENDLOOP;

3. RETURN[t];

END LocalSearch

Figure 3-2: Local search algorithm

The idea behind local search is this: start from an initial solution, s, improve on s by going

to its first better neighbor. Repeat until a point with no better neighbor is reached. (See

Figure 3-2.) The procedure for finding a better neighbor is shown in Figure 3-3. Figure 3-4

depicts a conceptual view of this search technique.

!PROCEDURE Improve[t]

1. FOR n E N(t) DO
IF c(n) < c(t) THEN RETURN[n];
ENDLOOP;

2. RETURN["no"]; -- No Improvement

END Improve;

Figure 3-3: Improve routine
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NZ\/I Io/I optimum

Figure 3-4: Conceptual view of local search

3.3.3 Steepest Descent

This is an attempt to do something better than local search. Instead of going to the first

better neighbor steepest descent chooses the best better neighbor. The algorithm is the same as

local search (Figure 3-2) except that Improve (Figure 3-4) is replaced by BestImprove (

Figure 3-5). Whether it actually gives a better final solution than local search remains to be

PROCEDURE Bestlmprove[t]

1. b +-- t; -- initialize best neighbor

2. FOR n E N(t) DO
S IF c(n) < c(b) THEN b -n;
ENDLOOP;

3. IF c(b) < c (t)
THEN RETURN[b]
ELSE RETURN["no"I;

END BestImprove;

Figure 3-5: BestImprove routine

seen. When compared to steepest descent, local search saves a lot of time because it accepts
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the first improvement in cost, whereas steepest descent always evaluates the entire

neighborhood.

3.3.4 Look-ahead Search

Like other greedy heuristics, local search and steepest descent are easily trapped by local

minimums. This problem can be mitigated by increasing the depth of the search. One way of

doing this is to use a more complicated neighborhood function to generate neighborhoods

containing more points. Another approach is to use the same neighborhood function but more

frequently - instead of just looking at the neighbors of a point, look at the neighbors of its

neighbors, and so on. (Unless extra processing is taken, some points will be considered more

than once.) The latter approach is the idea behind look-ahead search.

Look-ahead search has the same structure as local search with the Improve routine

replaced by LookaheadImprove. (See Figure 3-6.) It always chooses the first better

PROCEDURE Looka head Improve[t]

1. FOR n E N(t) DO
IF cd(n) < c(t) THEN RETURN[n];
ENDLOOP;

2. RETURN["no"]; -- No Improvement

END LookaheadImprove;

Figure 3-6: LookaheadImprove routine

neighbor, except that the look-ahead cost function, ce is used in place of the immediate cost

function to evaluate the neighbors. ce is characterized by the parameter, C, the number of

steps look-ahead. (e R 1, and c1 is same as the immediate cost function, c.)

The idea in look-ahead evaluation is that a point, t, is evaluated by computing the

minimum cost over all points that can be reached from t in no more than (f - 1) steps. (See

Figure 3-7.) Hence, to compute ce(s) approximately ||N(s)||(e - 1) points have to be evaluated
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PROCEDURE cl[t]

1. IF I = 1 THEN RETURN[c(t)]; -- immediate cost

2. a +- c(t); - initialize look-ahead cost

3. FOR n E N(t) DO
IF c- 1)(n) < a THEN a +- c- 1)(n);
ENDLOOP;

4. RETURN[a];

END cl;

Figure 3-7: Look -ahead cost function

(assuming every point has approximately N(s) neighbors).

Extensions:

a Instead of going to the first better neighbor, a variation is to choose the best better

neighbor (analogous to steepest descent).

@ One major problem with the above look-ahead evaluation is that often ||N(s)|I is very large,

so e has to be small to keep the computations manageable. A patch is to introduce a new

parameter, b, to bound the breadth of the evaluation. This is the bounded look-ahead cost

function, Ceb, where b 2 1. It only looks beyond the b neighbors with the smallest

immediate costs. (See Figure 3-8.) The assumption in the bounded look-ahead cost

function is that the immediate costs of a point and of its neighbors are correlated. To

compute Ceb of a point, approximately b( - 1) points are evaluated.

The bounded look-ahead evaluation is an example of using pruning to reduce the size

of a problem. The advantage of pruning is the possibility of increasing the depth of the

search, and the price paid is the possibility of pruning away some good solutions. In

bounded look-ahead evaluation there is a tradeoff between b and f, the search can be

further generalized by allowing b and f to vary during the search.
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PROCEDURE Clb[t]

1. IF I = 1 THEN RETURN[c(t)]; -- immediate cost

2. a <- c(t); -- initialize bounded look-ahead cost

3. B <- (b points in N(t) with the smallest immediate cost)

4. FOR n E B DO
IF c ( - 1)b(n) < a THEN a +- C -1n);
ENDLOOP;

5. RETURN[a];

END c'b;
Figure 3-8: Bounded look-ahead cost function

3 The look-ahead search is highly conservative. It makes only one step towards an

improvement though the cost evaluation traverses further. A variation is to move more

steps towards the improvement.

3.3.5 Multi-path Search

A major shortcoming of the search heuristics described earlier is that they only give one

solution. (Multiple solutions are desirable because the cost function may not capture every

aspect of the placement problem.) Each of these searches basically traverses a linear path

until it is trapped by a local optimum. The results obtained depend strongly on the starting

points used. One way of getting many solutions is to repeat the search using different starting

positions. The more trials, the more likely it is to obtain better solutions. Another approach is

the multi-path search.

Previous searches can choose only one branch to explore further (e.g., the first in local

search and the best in steepest descent). The choice may be bad. In a multi-path search,

multiple branches are explored systematically (e.g., breadth-first or depth-first). A depth-first

version is described in Figure 3-9.
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PROCEDURE MultipathSearch[s]

1. B +- (first b better neighbors of s); -ordered Iist of branches to explore

2. IF B= 0
THEN K +- K + s; -- add local optimal to K, the "collector"

-- K only retains the k best local optimums
ELSE FORn E BDO

Multi pathSearch[n]; -- search branches depth-first
ENDLOOP;

END MultipathSearch

Figure 3-9: Multi-path search (depth-first)

The search is characterized by b, the branch factor, and k, the number of solutions kept. The

first b better neighbors are explored further, they are recursively explored in a depth-first

manner. When a local optimum is found, it is added to the collector, K, which only retains k

solutions with the least costs. (Note that B is a local variable of the MultipathSearch

procedure in Figure 3-9, whereas K is a global variable that has been initialized to the empty

set before starting the search.)

Only local optimums are collected because they cannot be readily improved. (Also see

adaptation of this search technique to initial placement in Section 3.4.3.) Figure 3-10 depicts

a conceptual view of this search.

Extensions:

o Again analogous to steepest descent, the best b better neighbors can be explored instead of

exploring the first b better neighbors.

@ Look-ahead cost function or bounded look-ahead cost function can be used in place of the

immediate cost function.

3 In collecting the solutions, a check may be added to ensure that the solutions retained are

significantly different (e.g., check that the costs are different).
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Search tree is traversed depth-f irst, then left to right

Figure 3-10: Conceptual view of multi-path search (depth-first)

@) One common problem with multi-path search is that the size of the search tree grows

exponentially; the search may not terminate by itself in any reasonable amount of time.

There are two remedies: abort the search prematurely and keep what has been collected,

or use pruning. Pruning, if properly incorporated, is preferred to aborting the search. The

latter can be viewed as a special kind of pruning.

8This search technique can be improved by combining depth-first with breadth-first in the

search. A breadth-first search explores all points on the same level before exploring the

next level (some pruning may be needed). The problem with breadth-first search is that if

the good solutions lie far from the initial position it will take a very long time for the

search to reach there. Whereas if a depth-first search makes a bad choice at the beginning

of the search then it will take a long time to rectify the situation.
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3.3.6 Summary on Search Heuristics

Four search techniques have been described, and many variations on them have been

suggested. These searches may be used at a micro level (e.g., to shape a block) or at a macro

level (e.g., to add many blocks to an assembly). The undo and redo capabilities of the layout

model are essential for implementing these search techniques or any other complicated

searches that need tracking and backtracking. These capabilities also make the keeping of

many solutions feasible. (A search technique that is not discussed here is the simulated

annealing. See [21 for an overview.)

3.4 Placement

This section describes the application of the search techniques in Section 3.3 to the

following placement problems: shape determination, floorplanning, initial placement, and

placement improvement. Only a high-level and sketchy discussion is presented, since the

purpose of this section is to show how the search techniques are used.

3.4.1 Shape Determination

This is part of the top-down design process. The goal of shape determination is to specify

the dimensions of the soft blocks. Soft blocks are those blocks whose dimensions may be

changed. They correspond to those circuit components that have not been designed yet. The

dimensions of these blocks then become constraints for designing (placing and shaping) their

constituent sub-blocks. These constraints may become input to a program or used by a circuit

designer. When there are conflicts in them, a few iterations of top-down and bottom-up design

are needed before the conflicts are resolved.

The basic operation on the layout model used in shape determination is SetBlockShape.

The shapes of soft blocks can only be estimated; the more information known about these

blocks, the better is the estimation. The area of a soft block may be approximated based on

estimation of the total area of its sub-blocks plus the area taken up by their interconnections.
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Five types of constraints are suggested to model the shape determination problem. Each

of them models the varying degrees of softness of a block. (See Figure 3-11.) In all cases the

total area of the block remains unchanged and the resultant shape must be CQ1. These

constraints are listed below:

o x-continuous and y-continuous - constant total area.

The shape may vary continuously along both horizontal and vertical directions.

0 x-continuous and y-discrete - constant total length of horizontal stripes.

The shape can only vary continuously in the horizontal direction; the vertical dimensions

must take discrete values.

@ x-discrete and y-continuous - constant total length of vertical stripes.

The shape can only vary continuously in vertical direction; the horizontal dimensions

must take discrete values.

4 x-discrete and y-discrete - Tile Model. Constant total number of tiles.

Both horizontal and vertical dimensions can only take discrete values.

5 Rigid type - all dimensions are fixed.

These are the hard blocks and their shapes cannot be changed.

Extensions on these types include union type where the shapes must be one of the union of

several other types, and functional type which can take arbitrary user-defined constraints and

includes all others as special cases.

When a block is added to an assembly, shape determination may be used to match the

shape of the block to the site where it is added. This involves searching for a good site to match

a chosen block shape and finding a good shape to match a chosen site. The generalized slacks

may be a good hint for the matchings. (See Figure 3-12.)

After all the blocks are placed, shape determination may be used to improve the geometry

of the placement. The shapes of the soft blocks are perturbed to reduce the placement cost.

Any search heuristics in Section 3.3 are directly applicable.
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(a) x-continuous and y-continuous

(b) x-continuous and y-discrete

(c) x-discrete and y-continuous

(d) x-discrete and y-discrete - Tile Model

(e) Rigid type - shape is fixed

Figure 3-11: Five types of shape constraints
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vCH.-

Two different shapes are formed based on the generalized slack

Generalized slack of vCH

- ---- Pseudo-channel

Figure 3-12: Using generalized slack as hints for shape determination

Remarks:

( There is another complication in shape determination. To model the fact that some

components are used more than once in a circuit, the notion of class is used. All blocks in

the same class must have the same shape (though they may be oriented with respect to

each other); changing the shape of any block in a class affects the shapes of all other

blocks in the class.

@ Because the blocks are soft, it is not clear where the positions of their pins are. This makes

the computation of net length difficult

3 When compared to rectangular blocks, CQl have many more degrees of freedom in

shaping them. This not only means more potential for doing things better, but also for
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doing them worse. Additional structures may be needed to exploit the interactions between

different types of blocks (e.g., hard & hard, soft & hard, and soft & soft), different classes of

blocks, and different block orientations.

3.4.2 Floorplanning

The objective is to generate a floorplan of the layout. It may be used to impose a hierarchy

on the layout or divide the problem into smaller sub-problems. The basic topological operation

needed is a special case of SplitHole to split a rectangular hole into two rectangular holes.

The topological model is especially suitable for floorplanning since the topological holes tile

the whole layout surface of the assembly.

To generate a hierarchy, a min-cut algorithm is used. (See Figure 3-13.) This algorithm

partitions a set of blocks into two sets of roughly equal sizes and minimizes the the cut count

between the partitions. The cut count is the number of interconnection nets that connect some

blocks between the two partitions. This min-cut algorithm is carried out recursively on the

partitions until they are of the desired sizes. The result is a min-cut tree.

In a min-cut tree, each non-leaf node has two children. It is possible to generate a

floorplan from the min-cut tree by applying a SplitHole operation for each non-leaf node in

the min-cut tree. (See Figure 3-14.) Given a min-cut tree, there are many ways to generate a

floorplan, since for each non-leaf node in the tree there are four ways of splitting the hole

corresponding to the node. (See Figure 3-15.) Horizontal and vertical splittings are usually

alternated to give a more natural looking floorplan.

Remarks:

T The algorithm in Figure 3-13 uses a local search to improve the cut counts; other search

techniques may also be used.

@ A more elaborate way of computing cut count is to consider the interconnections from

blocks in other partitions. For example, when computing the cut count between blocks D
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PROCEDURE Mincut[S]

1. A <- (firsthalf of the blocks in S); -- arbitrarily assign half of StoA

2. B +-- S - A; -- assign remaining blocks to B

3. cutCount +- (cut count of A and B);

4. improve +- TRUE;

5. UNTIL improve = FALSE DO
improve <-- FALSE;
P <-- (A x B); -- All possible pairing of blocks inAand blocks in B
FOR each (a, b) E P DO BEGIN

move a to B and move b to A; -- swap (a, b)
IF (cut count of A and B) < cutCount

THEN -- found an improvement
cutCount +- cut count of A and B;
improve +--TRUE;
EXITLOOP; -- exit inner loop

ELSE
move a to A and move b to B; -- undoswap

ENDLOOP;
ENDLOOP;

6. RETURN[A, B]; -- return the partitions

END Mincut;

Figure 3-13: Min-cut algorithm

and E in Figure 3-14, the more elaborate computation takes into considerations the nets

between blocks A and E, and B and E (because from the topology, blocks A and B are to

the left of block E). For this to work the min-cut algorithm must be executed in parallel

with the floorplanning process. Search techniques in Section 3.3 may be used to decide

which one of the four ways of splitting a topological hole should be used.

3 There is no inherent reason why the min-cut tree must be a binary tree, though the ease

in computing cut count is a factor. Generalization to non-binary min-cut tree and

correspondingly producing non-binary splittings is possible. Another generalization is to

allow non-rectangular holes in the floorplan.
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Note: The area of a topological hole is equal to the area of the blocks in its partition

Figure 3-14: Generating a floorplan from a min-cut tree

A B

B

A B

A

A

B A

B

Figure 3-15: Four different ways of splitting a topological hole

@ More complicated cut count computation can be incorporated to handle nets that connect

more than two blocks.
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3.4.3 Initial Placement

The goal of initial placement is to add blocks to an assembly containing zero (empty

assembly) or more (seed placement) placed blocks. Initial placement can be random or

constructive. A random initial placement is a quick attempt at getting a placement. The

responsibility of arriving at a good placement is left to the placement improvement phase.

A random initial placement can be constructed by randomly placing the blocks in the

assembly without using the cost function or by using a program to generates valid placements

from interpreting sequences of random numbers.

Constructive placement adds blocks to the assembly one at a time. Three approaches are

suggested:

( One approach adds a small number of blocks, randomly to the assembly and applies the

search techniques in Section 3.3 to improve the results. When a local optimum is reached,

more blocks are added. This is similar to doing small scale placement improvements.

@ A more natural approach involves modifying the notion of neighborhood. Search

techniques in Section 3.3 are used, but each step now corresponds to adding one block to'

the assembly and the search terminates when all blocks are added. Only points with the

same number of steps away from the initial point can be compared. The algorithm first

orders the blocks. (This is the order in which the blocks are to be placed.) A multi-path

look-ahead search is used to choose the best b next steps. (The notion of better

neighborhood is not applicable because a point cannot be compared with its neighbors.

But the notion of the best next steps is well defined.) Since at each stage, there may be a

large number of possible next steps, the bounded look-ahead cost function is used. In

addition, a combination of depth-first and breadth-first search is used.

3 Another approach is to use floorplanning to partition the layout surface until each region

contains one block; this becomes the initial placement. Placement improvement is needed

to improve the cost. This approach is proposed in [4].
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3.4.4 Placement Improvement

This is the final phase of placement before routing the interconnections. The basic idea of

placement improvement is to perturb the given placement to get a better result. The ease of

finding an improvement decreases with the quality of the initial placement. For minor

perturbations, some of the topological operations that can be used are: FlipT, OrientBlock ,

BreakCross and FormCross (see Figure 3-16), and so on, using the slacks of the channels as

hints for choosing the proper operations. More major perturbations would be to reposition

blocks using SwapBlocks, or selectively remove some blocks using Shrink and apply the

initial placement heuristic to add them back to the assembly. The geometry can also be

improved using shape determination. One comforting fact about placement improvement is

that the worst it can do is to do no better.

K
ER~

FormCross BreakCross

Figure 3-16: Using BreakCross and FormCross for placement improvement

3.4.5 Other Placement Issues

Some issues ignored in the earlier discussions are placement of the input and output ports

and external constraints on the shape of the assembly. In bottom-up placement, the ports are

placed along the boundary of the assembly after placing the blocks. In addition, there is

usually no constraint on the shape of the assembly, except that the cost function may prohibit
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large layout area or unnatural looking assembly shape. In top-down placement, the ports

have been placed and the shape of the assembly is determined from higher-level constraints.

The cost function should take all of these factors into consideration.

3.5 Cost Function

This is an important component of the optimization problem, but finding a good cost

function is a hard problem in itself. There are two different views in implementing a good cost

function. One view is that a good cost function should model what an experienced circuit

designer thinks a good placement is. The other view is that it is quite meaningless to talk

about the cost function of a placement without taking routing into consideration; a good cost

function should predict the quality of the layout after all the interconnections are routed. In

the first approach, getting a good cost function is hard because of the difficulties in modeling

the judgment process of an expert in evaluating a placement. In the second approach the

problem is also hard because of the coupling with routing.

This section proposes some factors that a good cost function should incorporate. A possible

cost function is a weighted sum of the following cost components:

X Total layout area

@ User constraints

3 Total net length

The total layout area translates directly into fabrication cost. It is the area of the

assembly (corrected for any missing corners). User constraints could be in the form of bounds

on dimensions, on the ratio between the length and width of the assembly, on the length of

critical nets, and so on. The total net length measures the sum of the interconnection lengths.

Since the interconnections have not been routed, the net length can only be estimated.
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3.5.1 Net Length Estimation

The total net length is the sum of individual net lengths. A common estimate of the net

length is half the perimeter of the rectangle that bounds all pins in the net. (See Figure 3-17.)

h4

h3

V? v3

U a pin in net A length of net A = I x(perimeter of bounding rectangle of net A)

- - - - bounding rectangle of net A

Figure 3-17: Estimating net length

There may be added complications if the pin of a block corresponds to more than one physical

pin. In any case, this is only a rough estimate of the actual length of the routed

interconnections.

The penalty for large net length is the reduction in the speed of the circuit and more

layout area needed by the interconnections. The latter may take up a significant portion of

the layout area.

3.5.2 Channel-width Estimation

One nice property about the topological model is that if all the channel-widths can be

estimated accurately the total layout area can also be estimated accurately. This may be too
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difficult to achieve. A more reasonable objective is that if all the errors in the estimation of

channel-widths cancel out, then the total layout area can still be estimated accurately. That is

assuming that the router is smart enough to increase or decrease the channel-widths

depending on the amount of space needed by the interconnections.

One way to estimate the channel-widths is to first assign default width to all channels and

update the channel-widths as part of the cost function evaluation. This has the advantage of

combining the interconnection and the layout area contributions into a single term. This

approach changes the geometry when the cost function is evaluated. But care must be taken

to ensure that the cost function is bounded and converges quickly. (Repeated applications of

the cost function should not make the layout grow larger and larger, and if the cost oscillates,

the oscillation should have small amplitude and high damping.)

The channel-width may be written as a weighted sums of a number of factors. These

factors in order of increasing complexities are as follows:

( Local pin density.

This counts the number of pins on the edges of the blocks on both sides of the channel.

( Total net length.

This contributes a value that is a function of the total net length to every channel.

( Net and channel overlap.

(For example overlap between the bounding rectangle of net A and channels h2, v2, and

h3 in Figure 3-17.) This is an attempt to do something better by taking into considerations

both the local and the global aspect of the problem.

@ Nearest neighbor routing.

This only routes the nearest neighbors. And is much simpler then routing all the blocks.

The idea behind this is that if the placement is good then only the nearby neighbors have

the most interconnections in common. Allowances can be made for nets that connect to

blocks that are not neighbors.
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@ Global routing of the interconnections.

Assign nets to channels without actually computing the exact positions of the nets. This

gives a fairly accurate estimate of the channel-width but is probably too time consuming

for large placement problems.

S Actual routing of the interconnections.

Although the most accurate, this is too time consuming to be practical for most problems.

There is a tradeoff between the time spent to compute an accurate, but time consuming,

cost and the time spent searching for placement solutions. One compromise is to use a simple

cost function at the beginning and more complicated cost functions later to narrow down the

better solutions.
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3.6 Placement Summary

The search techniques and the placement heuristics described are best thought of as tools

for solving parts of the placement problem. Combining these tools effectively to address the

problem requires more work. Another important aspects in using the search heuristics

effectively is developing good pruning techniques.

Formulating the placement problem as an optimization problem is only one way of

modeling the real problem. Often the optimization model is not a good one because the cost

function neglects some important aspects in the actual problem. This is one of the arguments

for getting multiple solutions and for having an interactive interface to study the solutions

obtained (by playing back the sequence of operations). The interactive interface can also be

used to edit the solutions obtained and fine tune the cost function.

The tracking and backtracking capabilities are essential for implementing the heuristics

suggested here. With its efficient undo and redo capabilities, the model can support any

reasonable placement heuristics but the effectiveness of these heuristics in solving real-life

problems is best determined by empirical studies.
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Chapter 4

Routing Heuristics

This chapter gives a quick overview of the routing heuristics. Refer to [7] for a more thorough

treatment on the subject.

4.1 Problem Statement for Routing

Given the placement topology, the channel-widths, and the interconnections between the

blocks, route the interconnection nets along the channels so that the nets do not intersect the

blocks except to make connections with the blocks. The objective is to minimize the layout

area and the length of the interconnection nets.

An interconnection net can only make connection at specific points of the block. These

points are the pins. A net can be described as a set of pins, and to route a net is to connect up all

the pins.

4.2 Routing Overview

Routing is the final phase of the layout problem. The part of the layout system that is

responsible for this phase of the layout is the router. The output of the router are the final

positions of the blocks and the complete description of routed interconnections.

The router does not change the placement topology of the layout. However, if the channel-

widths are inadequate to route the interconnection nets it may change them and reposition

the blocks. A good router should consider the non-uniformity in the spaces on both sides of the

channels, and should reduce the channel-widths if they have extra spaces.

Routing is divided into global routing and detailed routing. Global routing is executed
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before detailed routing. Global routing is described in Section 4.3, and detailed routing, in

Section 4.4.

4.3 Global Routing

This phase assigns nets to channels and prepares the nets for detailed routing. The

assignment of nets to channels only defines the topology of the nets, but does not specify any

coordinates. The exact positioning of the net is left to the detailed router. Global routing is

also known as loose routing. Figure 4-1 shows two different global routings of a two-pin net.

vI v

66r

v2 -

h15h1

route: v2-h1-v8-h7 route: v2-h4-v4-h5 v7 h7

Figure 4-1: T wo different loose routes of a two-pin net

The global routing phase topologically assigns all the nets to the channels so that the

following objectives can be achieved in the detailed routing phase:

Q The total layout area is minimized.

@ The user constraints are satisfied (e.g., signal nets that are critical to the performance of

the circuit are short).

@ The nets are well distributed to avoid congestion of the nets in some channels.
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The topology of the intersections (between the channels) forms the underlying graph for

global routing. This graph is the Channel Intersection Graph (CIG). The algorithm to route a

two-pin net is equivalent to finding the shortest path between the two pins in the CIG. For a

multi-pin net the global routing of this net is equivalent to finding the minimum Steiner tree

connecting all the pins in the net. Figure 4-2 shows a global route of a three-pin net. The

h7

v v3 v7

v1 - h6 h5

v4

6

h4

route

Figure 4-2: Loose route of a three-pin net

complexity of finding a global route of a net grows quickly with the number of pins in the net.

In addition, the number of different net topologies grows exponentially with the number of

pins. Figure 4-3 shows the four possible topologies for a three-pin net.

Global routing all the nets is much harder than routing individual nets because of the

interactions between the nets. The problem is often formulated as an optimization problem

with a cost function that takes into consideration various factors affecting the routing quality

including the three above. Again, as in the placement problem, search heuristics are used to

find local optimal solutions. Similarly, global routing may be divided into initial routing and

routing improvement.
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Figure 4-3: Four possible topologies of a three-pin net

4.4 Detailed Routing

In this final phase of routing, coordinates are assigned. Net segments are assigned to

tracks on the channels. These segments are then connected up at the intersections. Finally

blocks are positioned. All the geometrical information becomes the final output of layout. The

detailed router does not change the global routing of the nets. Detailed routing is essentially

derived directly from the global routes of the nets.

After the global routing phase, a fairly accurate estimate of the channel-widths can be

obtained. Nevertheless, the channel-widths cannot be precisely determined until all the net

segments are assigned to their tracks in the channels. Track assignment is done channel by

channel in a specific linear routing order. If the channel-width is not sufficient to

accommodate all the net segments in the channel, the channel-width is increased to create

more routing tracks. The positions of the blocks and the channels have to be repositioned

using Geometrize. The routing has to be backed up to an appropriate point and restarted. A

few iterations of increasing channel-widths and routing may be needed before all the nets can

be routed.
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To ensure routing completion of all nets and termination of the routing algorithm, the

channels must be routed in the order specified by the channel order constraint graph derived

from the CIG.

4.4.1 Channel Order Constraint Graph

A Channel Order Constraint Graph (COCG) is a directed graph in which every node

corresponds to a channel in the assembly. Each edge in the graph correspond to a routing

order constraint between the two corresponding channels. An edge from one node to another

node indicates that the channel corresponding to the first node must be routed before the

channel corresponding to the second node.

The COCG depends only on the channel topology and is not affected by changing the

channel-widths or repositioning the channels and the blocks.

The basic idea behind an order constraint between two channels is that if changing the

channel-width of one channel affects the track assignment of another channel (e.g., changing

the relative positions of the pins on the sides of the channel) then the first channel must be

routed before the second channel. This gives rise to an edge from the node corresponding to

the first channel to the node corresponding to the second channel.

The COCG for a placement topology may contain cycles, in which case it is an indication

of conflicts in the channel routing order. Special processing is need to resolve these conflicts to

ensure 100% routing completion of the nets and termination of the routing algorithm.

There are four kinds of edges in the COCG, each corresponding to a class of channel

intersections:

I T-order constraint

@ Generalized T-order constraint

3 L-order constraint

@ Generalized L-order constraint

These constraints are discussed below
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4.4.1.1 T-order Constraint

This is the direct consequence of the fact that a channel (expect if it is one of the four

bounding channels) must always be routed before its bounding channels. This is because

changing the width of the channel affects the relative pin positions of its bounding channels.

hCH

tCH

hCH e

T-order constraint

vCH e

hCH -. .

in

t
vCH

net segment

hCH -*

crease width of vCH ,

t
vCH

.routing track

Figure 4-4: T-order constraint

Figure 4-4 shows how increasing the width of vCH increases the number of routing tracks

needed to route the net segments in hCH. Figure 4-5 shows how four T-order constraints may

form a routing order conflict loop.
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Figure 4-5: Channel routing order conflict loop

4.4.1.2 Generalized T-order Constraint

A + -intersection does not impose a routing order between the two intersecting channels

because changing the width of one channel moves blocks on both sides of the other channel by

equal amounts. Thus, the tracking assignment for the second channel is not directly affected.

The +-intersection, however, may interact with T-intersection giving rise to a generalized T-

order constraint.

Figure 4-6 shows how changing the channel-width of h2 moves the position of the T-

intersection between h3 and v1, changing the relative pin positions in v1. This imposes a

routing order constraint between h2 and v1 . In general, any channel, hCH, that intersects v2

but does not intersect v1 results in a generalized T-order constraint from hCH to v1.

4.4.1.3 L-order Constraint

An L-order constraint can be viewed as a symmetric T-order constraint pair since

changing the width of a channel affects the routing of the other channel and vice versa.

Figure 4-7 shows how changing the width of vCH can affect the track assignment of hCH. By

symmetry of the L-intersection, the converse is also true. Thus, corresponding to each interior

L-intersection, an L-order constraint cycle is formed between the nodes corresponding to the
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Figure 4-6: Generalized T-order constraint

two channels in the intersection. (Note that the L-intersections formed by the four bounding

channels do not impose any order constraint.)

4.4.1.4 Generalized L-order Constraints

The presence of interior an L-intersections in the topology not only forms a cyclic

constraints between the two channels but may also affect the channel with an intersection

next to the L-intersection.

Figure 4-8 shows how changing the width of h2 changes the relative positions between the

two blocks to the left and to the right of v2 affecting the relative pin positions in v2. In
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Figure 4-7: L-order constraint

general, any channel, vCH, that intersects h2 next to the L-intersection (vl and h2) with part

of vCH above h2, causes a routing order constraint from h2 to vCH.

4.4.1.5 Routing Order Constraint Summary

In detailed routing, the channels must be routed sequentially. The routing order

constraints are imposed by local channel intersections, forming a COCG. A cycle in the COCG

indicates a conflict in the routing order constraints. The presence of interior L-intersections

increases greatly the complexities of the COCG. Special heuristics must be used to handle

these conflicts to ensure the routing completion of all nets and termination of the routing

algorithm. These heuristics are discussed in Section 4.4.2
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Figure 4-8: Generalized L -order constraint

4.4.2 Resolving Routing Order Conflicts

There are two approaches to handling conflicts in the channel routing order. The first

approach is to restrict the topology so that there are no cycles in the COCG. (See [111 on how

this is done when all the blocks are rectangular.) This restriction may be imposed during the

initial placement phase or the placement improvement phase. In general, this approach

cannot be used if the blocks are convex quadrics. In order to use the space associated with a

missing corner of a block, an interior L-intersection must be formed, resulting in a routing

order conflict loop in the COCG. This approach is not very useful if the blocks are convex

quadrics.

The second approach requires running the detailed router a number of times. The idea in
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this approach is that if all the channel-widths can somehow be known or can be bounded then

the channels can be routed in any order. The only reason there is a routing order is that if a

channel is too narrow, then to ensure that all the net segments in that channel can be routed

the channel-width has to be increased. This change in channel-width may affect the routing of

other channels. So this approach basically selects a set of of channels involved in the routing

order conflicts and keeps increasing the widths of these channels until all nets can be routed.

(Figure 4-9 shows an example on how a routing order conflict is resolved using this approach.)

h2

v2e v1i

v2

h2

hi

v1

Steps:

T Choose C = {v1}.

Estimate width of v1.

3 Route channel in the following order:
h2,v2,hl,andv1.

@ IF v1 is not wide enough to route all the net
segments

THEN increase width of v1 and go to step 3
ELSE done.

Figure 4-9: Resolving channel routing order conflict loop example

The steps are as follows:

( Choose a set of channels, C, that are directly involved in the order constraint conflict.

@ Using information from the global route and previous estimates, estimate the widths of

all the channels in C.

3 Now using the COCG, route the channels as follows:

* Nodes with zero incidence count (no edge pointing at them) are routed first and their

channel-widths are determined exactly from the routing.
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* A node can only be routed if the channel-widths of all its predecessors are either

known (because they have been routed) or were estimated in @.

The set C is chosen to be the smallest possible set of channels such that every loop in the

COCG must contain a node from this set. If more than one such sets exist then the set with the

least number of critical channels is chosen (because increasing the width of a critical channel

increases the layout area directly).

Eventually the router will try to route some channel in C. If during track assignment it is

found that the width of the channel is inadequate for the nets, then the channel-width is

increased, and the routing is backed up to an appropriate point and restarted.

The above algorithm must terminate because only the widths of the channels in C are

estimated and their estimation are increased if found to be inadequate. The increase in

channel-widths of channels in C must terminate because the number tracks needed in any

channel is bounded by the total number of net segments assigned to that channel.

4.5 Routing Summary

Routing has two phases: global routing and detailed routing. Global routing topologically

assigns nets to channels and defines the basic routing topology of the interconnections.

According to the assignments made in global routing, the detailed router positions net

segments in the routing tracks of the channels without changing the global routing. Only

after track assignment can the width of a channel be known exactly.

Routing order constraints arise in detailed routing because of the influence on the number

of tracks required in a channel by the widths of other channels. This routing order is described

by the COCG. The COCG depends only on the topology of the channels, and a cycle in the

COCG indicates a routing order conflict. Routing order conflicts can be handled by iterating

the detailed router and routing the channels in a specific order. 100% routing completion and

termination of the routing algorithm can be assured.
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Chapter 5

Conclusions

This chapter concludes the discussion on the topological approach. Section 5.3 contains

suggestions for future research.

5.1 Conclusion

Phoenix is an extremely powerful research tool for studying the VLSI layout problem, in

particular, the placement problem. The topological model strongly de-couples placement from

routing. The channel-widths can be changed without affecting the placement topology, thus,

guaranteeing 100% routing completion. The tracking and backtracking support for the

topological operations allows the development of extremely complicated placement heuristics

and makes the keeping of multiple solutions feasible. The simplicity in managing the undo

and redo stacks, along with the extensibility of the operations makes the system highly

programmable. The interactive interface of Phoenix and its ability to keep multiple solutions

allows detailed study of search heuristics by replaying the sequence of derivation of the

solutions. This feedback is invaluable for developing more effective placement heuristics and

cost functions.

5.2 Contributions

This thesis is a systematic and thorough study of the topological approach for addressing

the layout problem. A novel topological model that can handle convex quadrics effectively has

been proposed. A complete and extensible set of topological operations supported by tracking

and backtracking capabilities have been implemented. Powerful heuristics based on the
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tracking and backtracking capabilities have been developed to address both bottom-up and

top-down placement problems.

5.3 Suggestions for Future Work

Many questions remain unanswered; some of them require extensive experimental

studies and some require more research.

5.3.1 Comparing Search Heuristics

Many search techniques, with more extensions and variations, have been proposed in

Section 3.3. Extensive experimental studies are needed to compare their effectiveness in

solving actual layout problems. Some examples are local search with steepest descent, look-

ahead search with cost functions of different look-ahead depth, multi-path search with

repeated linear search (using different initial points), and look-ahead search that moves a

different number of steps towards the best point evaluated.

It is easier to compare the effectiveness of the search heuristics by considering

optimization problems with simple cost functions. An example is the problem of packing a

collection of rigid blocks on a plane as closely as possible, using the area of their bounding

rectangle as the cost function. This problem is not only interesting in itself but may provide

insights into developing more effective search heuristics for the placement problem.

5.3.2 Combining Layout Heuristics

The placement heuristics in Chapter 3 (initial placement, placement improvement,

floorplanning, and shape determination) and the routing heuristics in Chapter 4 (global

routing and detailed routing) are only tools for addressing specific aspects of the layout

problem. The problem of combining these tools effectively remains to be solved.

One way is to use floorplanning and shape determination in a top-down manner to

determine shape constraints for the blocks. The shape constraints are propagated downwards
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until all blocks at that level have already been designed. Initial placement and placement

improvement are then used to place these blocks within the shape constraints, in a bottom-up

fashion. If the shape constraints cannot be satisfied, then the top-down process has to be

backtracked and repeated. A few iterations between bottom-up and top-down may be needed

before the shape constraints can be satisfied at every level, with the blocks compactly placed.

Initially, a simple cost function may be used to obtain many solutions. More elaborate cost

functions are used in later stages to prune the solutions, and the final decisions are left to the

designer.

Many variations on the above are possible. Finding the most effective way of combining

these heuristics to solve layout problems is beyond the scope of this thesis.

5.3.3 Implementing Hierarchical Decomposition

More research and implementation experience are necessary to determine the proper data

and control structures needed to implement a truly hierarchical layout system.

5.3.4 Missing Corners

More research and actual experience are needed to determine how circuit layout

programs and circuit designers can use the missing corners in convex quadrics effectively to

design components of such shapes. The question of using these shapes effectively cannot be

answered until more layout programs and designers use circuit components with these

shapes.

5.3.5 More Complex Shapes

Extending the topological model to shapes more general than convex quadrics is

suggested. An example is to consider C-shapes. One problem is that the channels between the

upper and the lower arms of the C cannot increase in channel-width arbitrarily, unless the

body of the C can be stretched.
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5.3.6 Topological Routing Operations

This work has been confined to the topological operations on the model that affect the

placement topology. An analogous study can be carried out to define and implement first class

operations for global and detailed routing so that complicated search heuristics can also be

developed for the router.

5.3.7 Solving Channel Routing Order Conflicts

One of the unsatisfactory aspects in the routing phase is that in the presence of routing

order conflicts, the detailed router has to be iterated an unknown number of times to route all

the interconnections. The shortcomings in this approach are as follows:

W The detailed router does more than just determining the channel-widths. For example, it

actually routes the net segments when only values for the channel-widths are needed.

@ The heuristics only relax (increase) the channel-widths but they do not contract (decrease)

the width of a channel involved in the order conflict resolution even though the channel-

width may be too wide. This is to ensure that the algorithm terminates. Nevertheless,

there is still no easy way to predict the number of iterations needed before all the channel-

width constraints can be satisfied.

The following suggestions are made to address these shortcomings. They are only

suggestions, more research is needed to determine their feasibility.

T Instead of using the detailed router to determine the channel-widths, the channel-widths

may be determined using a detailed router simulator (e.g., system of constraint equations)

to simulate the detailed router without actually routing any nets. Hopefully, this will give

a faster way of determining the channel-widths. The simulator should also output
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sufficient information (e.g., track assignments) to ensure that the detailed router can

route within the compute channel-widths.

An alternative to the relaxation technique is the contraction technique which starts with

over estimations of channel-widths (for those channels involved in resolving routing order

conflict) and gradually reduce the channel-widths one by one while ensuring that all the

interconnections can be routed, after each contraction. An advantage of using the

contraction technique is that it can be terminated anytime depending on how much

computation time one is willing to pay for a more compact layout.
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Appendix A

Results

The results presented in this appendix are preliminary results obtained during the final week

of my assignment. These results do not reflect the full potential of Phoenix.

A.1 Results Overview

Since the router was not ready by the time I completed the assignment, complete layout

examples could not be obtained. Nevertheless, to test the topological model and the placement

heuristics, the following placement examples were considered:

* Three block-packing examples.

@ Two floorplanning examples.

The rest of the appendix discusses these examples.

A.2 Overview of Block-packing Examples

A.2.1 Block-packing Problem Statement

Given a collection of blocks, place them on a plane without changing their orientation so

that they do not overlap and the area of the rectangle bounding all the blocks is minimized.

A.2.2 Block-packing Heuristics

The blocks are first sorted in a linear order. The blocks are then placed according to their

order using search heuristics.

The search heuristics used is a multi-path search with look-ahead. (See the second

approach to initial placement suggested in Section 3.4.3.) Each step in the search corresponds

to placing one block onto the assembly. The search terminates when all the blocks are placed.
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This search is characterized by the three parameters below:

Q e, the depth (extent) of look-ahead.

@ b, the branch factor of the search, which bounds the breadth of evaluation in the look-

ahead cost function.

@ n, the number of solutions retained during the intermediate stages of the search.

The search is a combination of depth-first and breadth-first. At each stage, the search looks at

solutions f steps ahead with a branch factor of b. The best n of the be solutions evaluated are

collected for further exploration in the next stage. Except for the last stage, the search always

moves f steps per stage and explores the n solutions collected from best to worst (depth-first).

Pruning is not used in the search. The search can be forcibly terminated at any time by

the user. The cost function used is the area of the rectangle bounding all the placed blocks.

A.2.3 Discussion of Block-packing Examples

The examples used are modifications of the examples used to debug the system during the

early stages of the implementation; they are not specifically constructed for the packing

problem. The modifications made are as follows:

Q All channel-widths have been set to zero.

@ Blocks are enlarged slightly so that they fit together into a rectangle without any gaps

inside. (Note: This information is not used in designing the packing heuristics.)

Three examples are tested. The examples are listed below:

@ A nine-block example (page 100 to page 102).

@ Another nine-block example (page 103 to page 106).

0 A twelve-block example (page 107 to page 123).

Remark: The system and the search heuristics have not been optimized yet.
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A.3 Overview of Floorplanning Examples

A.3.1 Floorplanning Problem Statement

Given a collection of blocks and their interconnections, generate a floorplan of the layout

so that each topological hole contains one block and the cut counts among the partitions are

minimized.

A.3.2 Floorplanning Heuristics

The heuristics is basically an implementation of the ideas in Section 3.4.2. The steps are

listed below:

( Generate a binary min-cut tree.

@ Use Grow2 to add a fake square block to the empty assembly.

This block corresponds to the root node in the min-cut tree and has area equal to the total

area of the input blocks.

@ Use SplitHole to split the square block vertically into two new fake blocks of the same

vertical dimensions as the square block.

Each new block corresponds to a child of the root node and has area equal to the total area

of all the blocks assigned to that child.

@ Step @ is repeated recursively on the new blocks, alternating between vertical and

horizontal cuts, until every block in the assembly corresponds to a leaf-node in the min-

cut tree.

@ Replace the fake blocks with the corresponding real blocks

A.3.3 Discussion of Floorplanning Examples

Two floorplanning examples are considered. The results are shown in page 125 to page 127.
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A.4 Discussion of Results

The preliminary results from the block-packing examples show that (at least for the three

examples considered) heuristic search can be used to pack about ten or less blocks effectively

and achieve results close to an optimum packing.

After some study (using the interactive interface) on how the results are formed, I

conclude that a reason why no optimum result is obtained is that the neighborhood function

used is incomplete - the function only considers using FormZ and TtoL to compact the

layout but does not try to use FlexKnee. A lesson from this is that the tracking and

backtracking feature can also be used to study the cause of failure.

Another conclusion from the experiments is that having a large set of first class

operations makes the system highly programmable. The implementation of the search

heuristics for the packing problem is slightly more than one textual page of code, and the

implementation of the floorplanning heuristics takes less than 3 page. Not counting the time

spent on implementing the basic structures in the heuristics, I implemented and debugged

the packing heuristics and the floorplanning heuristics in one evening. Moreover, by using a

suitable cost function, the same heuristics can be used for the placement problem. The ease in

programming an automatic layout system opens the way for circuit designers to develope

layout heuristics specifically for their layout problems.
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A.5 Block-packing Results

A.5.1 Block-packing Example One

a Number of blocks = 9.

Z Total Area = 16800 unit2 .

3 Search Parameters:

= 3

b= 8

n 6

@ Time taken ~ 3 minutes. (Search was terminated by the user).

S Pages: 101 to 102.

Figure A-1: Three solutions for Block-packing Example One
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Solution #1 (17600 unit2)

Solution #3 (18000 unit 2)

Solution #9 (18400 unit2)



120 -

100 -

50 -

0 -

0 50 100

1
140

Total Area = 16800 unit2

Figure A-2: Original solution to Block -packing Example One
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A.5.2 Block-packing Example Two

Number of blocks = 9.

Total Area = 38000 unit2.

Search Parameters:

e= 3

b =9

n =5

Time taken - 20 minutes. (Search ran to completion.)

Pages: 103 to 106.

Figure A-3: Two solutions for Block-packing Example Two
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Solution #13 (44000 unit
2 )Solution #9 (44000 unit2)



c4 Cs c4 Cs c4

c2

c2 cz

Figure A-4: Block -packing Example Two: Derivation of Solution #1 (part 1)
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i4

4-

Solution #1 (40300 unit 2)

Figure A-5: Block-packing Example Two: Derivation of Solution #1 (part 2)
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0-
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0

10

50

I

100 150

1

190

Total Area = 38000 unit 2

Figure A-6: Original solution to Block-packing Example Two
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A.5.3 Block-packing Example Three

Q Number of blocks = 12.

@ Total Area = 70400 unit 2 .

G Search Parameters:

1st stage: e= 5, b =30, and n =20.

2nd stage: f= 3,b = 10, andn= 20.

3rd stage: e= 3, b =10, and n =20.

4th stage: e = 2, b = 10, and n = 20.

@ Time taken == 1 hour. (Search was terminated by the user.)

0 Pages: 108 to 123.

0 Remarks:

* This is an example of varying the search parameters at different stages of the search.

" Figures A-9 to A-21 step backward the derivation of solution#7.
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Solution #15 (79200 unit 2)

Solution #8 (78200 unit 2)

CS
C10

c12 c6 c1

Solution #20 (79200 unit 2)

Figure A-7: Four solutions for Block-packing Example Three
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Figure A-8: Block -packing Example Three: Solution #7 (channels only)
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Fe re . Enlarge Reduce Roll;ack GetInput CheckPoint
EefChs ClrChs Geom Name List PaintNet Es!Chs
Undo Redo KepTrk ClrZtks Un l Re l StkSZ ToSoln

Select a solution in [1..20]: 6
Getungsolution... this solution has value 78200..Done
Select a solution in [1..20]: 7
GettingSolution... this solution has value 78200..Done
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Figure A-9: Block -packing Example Three: Solution #7 (initial position)



Lind .pit
Select a solution in [1.20]: 6
GettingSolution... this solution has value 78200..Done
Select a solution in [1..20]: 7
GetungSolution... this solution has value 78200..Done
Undo previous step.....Done

Figure A-10: Block-packing Example Three: Solution #7 (1 step back)
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Select a solution in [l..20]: 7
GettingSolution... this solution has value ?8200..Done
Undo previous step.....Done
Undo previous step.....Done

Figure A-11: Block-packing Example Three: Solution #7 (2 steps back)
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nd Splt
Select a solution in [1..20]: 7
GettingSolution... this solution has value 78200..Done
Undo previous step.....Done
Undo previous step.....Done
Undo previous step.....Done

Figure A-12: Block-packing Example Three: Solution #7 (3 steps back)
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Undo previous step.....Done
Undo previous step.....Done
Undo previous step.....Done
Undo previous step.....Done

Figure A-13: Block-packing Example Three: Solution #7 (4 steps back)
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ind Split
Undo previous
Undo previous
Undo previous
Undo previous
Undo previous

Figure A- 14: Block-packing Example Three: Solution #7 (5 steps back)
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step.....Done
step.....Done
step.....Done
step.....Done
step.....Done



Figure A-15: Block-packing Example Three: Solution #7 (6 steps back)
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EefChs CirChs Geoi Nflame List PaintNet EstChs
Undo Redo KepTrk Clrsts Unl Fel St:Sz ToZoln

Undo previous step ..... Done
Undo previous step.....Done
Undo previous step.....Done
Undo previous step.....Done
Undo previous step.....Done

Figure A-16: Block -packing Example Three: Solution #7 (7 steps back)
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IRefxresh . Enlrge Re-ue RElck G;etIIrput k:
Def!Chs ClrChs Georn Name List PantNet EstChs
Undo Redo KepTrk Clrstks Uni Rel StkSz ToSoln

Undo
Undo
Undo
Undo

previous step.....Done
previous step.....Done
previous step.....Done
previous step.....Done

Figure A-17: Block-packing Example Three: Solution #7 (8 steps back)
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Refreh - Enrge Reduce Rollbak'GetInput 21
DeflChs ClrChs Geom Naue List PaintNet EstChs
Undo Redo KepTrk ClrStks Un1 Re1 Stksz To*oln

Undo
Undo
Undo
Undo
Undo

previous
previous
previous
previous
previous

step.....Done
step.....Done
step.....Done
step.....Done
step.....Done
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Figure A-18: Block-packing Example Three: Solution #7 (9 steps back)



Reiresh . Enlarge Reduce Rck Getlnput
DefXChs ClrCbs Gjeom N5ame List PaintNet EstChs
Undo Redo KepTrk CirZtks Un I Re l StkSz ToSoln

ind S pIt
Undo previous
Undo previous
Undo previous
Undo previous

step.....Done
step.....Done
step.....Done
step.....Done

Figure A-19: Block-packing Example Three: Solution #7 (10 steps back)
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RersR., Enl -g RJuc RollBarok Ge t~rnpu1.t,
DefChs ClrCh.5 Geoit Naine List PaintNet EstChs
Undo Redo KepTrk CIrStks Un1 Re1 Sk:F : Tosoln

ind Spilt
Undo previous
Undo previous
Undo previous
Undo previous
Undo previous

step.....Done
step.....Done
step.....Done
3tep.....Done
step.....Done
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Figure A-20: Block-packing Example Three: Solution #7 (11 steps back)



Figure A-21: Block-packing Example Three: Solution #7 (12 steps back)
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I I

200 220

Total Area = 70400 unit2

Figure A-23: Original solution to Block-packing Example Three
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A.6 Floorplanning Results

( Floorplanning Example One (8 blocks).

Figure A-24 shows how the floorplan is generated.

Z Floorplanning Example Two (92 blocks).

Figure A-25 shows the floorplan. All the blocks are fake.
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IPTopRoot

Replace fake ocks by real ones
----- - ------- 8

Figure A-24: Floorplanning Example One
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Figure A-25: Floorplanning Example Two
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Appendix B

Design and Implementation of Phoenix

This appendix discusses implementation issues. It is intended to help interested readers

duplicate the work.

B.1 Background and Programming Environment

The design and implementation of the topological model and the topological operations

took eight months: I spent 21 months on the paper design, - month learning the programming

environment, and five months on the implementation. During the five months, the

implementation was revised at least ten times, with three major changes to the underlying

data representation of the model. The resultant code for the system was about 250 textual

pages.

Phoenix is written in Cedar [1], a highly interactive programming environment designed

for building experimental systems, and runs on a Dorado [31, a single-user workstation

having the processing power comparable to an IBM 370/168 processor.

B.2 Interactive Interface Overview

The user interface of Phoenix is built from a number of existing graphics packages. The

resultant interface is highly interactive and inputs are accepted from the users through the

keyboard and the mouse. The interface has three parts:

C A message window

Z A main display window

3 An input-output window
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At the top of the screen (see Figure B-1), is the message window which displays error

messages to the user. Beneath the message window is the main display window. It has a

caption at the top and buttons below the caption. When the buttons are clicked (using the

mouse) the corresponding operations are executed. The region beneath the buttons displays a

view of the system. This view can be scrolled vertically or horizontally, magnified, and

reduced.

The input-output window outputs messages from the system and accepts textual input

from the user, it automatically keeps a log of the session.

Five figures are included to illustrate the user interface:

I Figure B-1 shows four placed blocks.

0 Figure B-2 shows the four blocks after Topologize.

3 Figure B-3 shows the four blocks after Geometrize.

@ Figure B-4 shows the effect of reshaping the block c2 on the geometry.

S Figure B-5 shows only the channels; the display of blocks have been suppressed.
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IInput Error. Please try asain

Refresh ((( >>> Enlarge Reduce RollBack Getlnput Editp5 OpsExtza Stkps
Def-Chs ClrChs Geom ChkPt ChkSf Name List PaintNet EstChs
SetCo MovCo SwapCo FlipT SpawnCo SetCoShp
BrkX FomX RemZ FomZ LtoT TtoL FlxKne ExtKne Grw Grwl Shr Rot Mrr Ornt ClrCr

*ind Spit
c3 0 0
Moving Component c3.....Done
DefiningChannels.....Done
Geometrizing.....Done
Destroying Channels.....Done
Move Component: <comp> <byX, byY: INT>
cZ 30 40
Moving Component cZ.....Done
Move Component: <comp> <byX, byY: INT>
c3 -40 SO
Moving Component c3.....Done
SetComponent: <comp> <atX, atY: INT + 0 <active: BOOL + TRUE>
c4 10 -100
Setting Componet c4.....Done

Figure B-1: View of four blocks
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Refresh (( >)> Ernarge Reduce RollBack GetInput Editcps QpsExtra StkOps
DefChs CIrChs Geom ChkPt ChkSlf Name List PaintNet EstChs
SetCo MovCo SwapCo FlipT SpawnCo SetCoShp
BrkX FomX RemZ FomZ LtoT TtoL FlxKne ExtKne Grw Grw1 Shr Rot Mrr Ornt ClrCr

Figure B-2: View of the four blocks after Topologize
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Refresh >C )> Enlarge Reduce RollBack Geunput Eitps OpsPxtra
DefChs ClrChs Geom ChkPt ChkSlf Name List PamtNet EstChs
SetCo MovCo SwapCo FlipT SpawnCo SetCoShp
BrkX FomX RemZ FomZ LtoT TtoL FlxKne ExtKne Grw Grw I Shr

Figure B-3: View of the four blocks after Geometrize
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Figure B-4: View of the four blocks after reshaping the block c2
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Figure B-5: View of only the channels
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B.3 Implementation Discussions

B.3.1 Design Principles

Besides using a highly modular design methodology, I found the following principles

useful in choosing a proper data structure for the system:

( Avoid Redundancy.

Keep in the system the minimal number of structures needed to achieve a certain

efficiency. This is because the more information that is kept in the system, the harder it is

to update the system, increasing the difficulty of implementing the topological operations.

Exploit the symmetry of the problem.

An example is to use the same representation for both horizontal and vertical channels

and differentiating the two kinds of channels by a label. Negative and positive are used,

instead of left or bottom and right or top, to reference the two channel ends. This allows

horizontal and vertical channels to be treated uniformly.

Another use of symmetry is as follows. To identify the four principal directions, south,

east, north, and west are used; and to identify the four corner directions, southwest,

southeast, northeast, and northwest are used. These values are used consistently

throughout the system, such as specifying a topological operation and referencing the

corner of a block. Moreover, symmetry operators (such as rotation and reflection) and

transformation operators (for resolving a corner direction into two principal directions or

converting a principal direction into negative or positive) are defined for the values. This

technique reduces a lot of complexities in implementing the topological operations and

enables a more concise implementation.

Use cyclic pointer pairs to piece parts together.

A large piece of structure can be partitioned into sub-parts without compromising

efficiency by linking the sub-parts with cyclic pointer pairs, if necessary.
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B.3.2 Data Structure

One of the most difficult tasks in implementing Phoenix was in building the proper data

structure to represent the interdependency between the channels and the blocks. This section

describes the data structures used to represent the interdependency.

B.3.2.1 Channel

The boundary information (intersections and surrounding blocks) of a channel is

represented as follows:

o For each end of the channel, a pointer to the bounding intersection is kept.

@ For each side of the channel, a list of pointers to the side intersections interspersed with

pointers to the side blocks is kept. To access the list quickly, pointers to the beginning and

to the end of the list are kept. Alternatively, a doubly linked list can be used instead of a

linear list.

B.3.2.2 Intersection

The intersection of a channel has the following:

D A label to indicate the kind of intersection.

@ A pointer to its owner: the channel.

@ A pointer to its dual: the corresponding intersection in the intersecting channel.

For every intersection of a channel the following are true:

* The owner of its dual is the pointer to the intersection channel.

" The dual of its dual is the pointer to itself.

B.3.2.3 Block

A block is represented by its bounding rectangle minus the rectangles corresponding to

the missing corners. For each edge of the block a pointer to the corresponding channel is kept.
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B.3.2.4 Data Structure Summary

Choosing the right data structure is difficult and requires experimentation before a

suitable representation can be found. So it is important to keep the implementation modular

to limit the effect of changes. Design principles in Section B.3.1 can be used to reduce the

complexity of the task.

B.3.3 Implementing Tracking and Backtracking

The tracking and backtracking in Phoenix is implemented by a redo stack and an undo

stack. Both stacks always contain the same number of frames. Each stack frame contains a

pointer to a record that contains the arguments of a topological operation and a tag

identifying the operations. The undo (or redo) is effected by a small interpreter that

discriminates the tag in the record and applies the operation, identified by the tag, to the

arguments in the record.

B.3.4 Implementing First Class Operations

First class operations is implemented using three levels of abstraction:

® Bottom-level operations.

These operations interface to the underlying data structures like pointers, channels and

intersections. Some examples of operations in this level are operations to create and

destroy channels, operations to create and destroy intersections, and operations to

manipulate intersections.

@ Intermediate-level operations.

The operations in this level actually do most of the work in the top-level operations. At

this level, the functional inverse of an operation is also its actual inverse. Operations at

this level are not suitable for use by a client program because the interface to these

operations requires a lot of extra information not needed to specify the topological

operations. An example is the operation that implements BreakCross, this operation
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does not automatically create a new channel but requires a new channel as part of the

input. The new channel is created by another intermediate-level operation.

@ Top-level operations.

These are the first class operations. Operations in this level can be thought of as being

encapsulations of operations at the intermediate level to provide a more convenient

interface for the client. Besides the specific arguments needed, all these operations have

the following in their function specifications:

" A boolean argument indicating whether the input arguments should be verified

before executing the operation. The default value is true but is set to false when the

operation is used to construct another composite operation that involves some invalid

intermediate topologies.

* A boolean argument indicating whether the redo and the undo stacks should be

pushed. Again the default is true but is set to false when the operation is used to

construct a composite operation.

* Returns a pointer to the redo argument record and a pointer to the undo argument

record. These are the pointers pushed onto the redo and undo stacks respectively. A

composite operation is represented by a list of pointers.

B.3.5 Debugging Aids

Besides the interactive graphical interface, the two debugging aids below were extremely

helpful:

( An operation that verifies the consistency in the internal state of the system.

This operation is useful for detecting and localizing system bugs that are not visible

immediately.

@ An executable debugging log.

Debugging sessions are recorded and added to the debugging log file. After each revision

of the system, the log file is executed to check if new bugs are introduced by the revision.
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B.3.6 Implementation Summary

Major changes are inevitable in building a system like Phoenix. Design principles are

used to manage implementation complexity. These principles can be summarized as follows:

D Choose the simplest solution.

@ Exploit the symmetry in the problem.

0 Divide and conquer.
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