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ABSTRACT

This thesis presented the development and application

of an iterative frequency domain solution technique for

nonlinear dynamic structural systems. The scheme, referred

to as the hybrid frequency-time domain approach, combines

the pseudo-force formulation with a mode superposition

analysis. Nonlinearities are evaluated in the time domain,

and the solution is derived in the frequency domain,

implying the use of a theoretically exact numerical

integrator.

In conjunction with the development of the new solution

technique, stability and accuracy analyses of numerical

integrators were surveyed, leading to the presentation of an

alternate analysis scheme in the frequency domain. The time

and frequency domain accuracy and stability analyses were

shown equivalent for the free vibration problem. Extensions

to arbitrary loadings are easily handled in the frequency

domain.

Various case studies of seismically excited systems

demonstrated the developmental considerations for the hybrid

frequency-time domain scheme. The results indicated that

the new solution scheme can accurately reproduce the

response. The scheme was particularly attractive when

numerical integration considerations severely restricted the

time step size for a direct time integration analysis.
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CHAPTER 1

INTRODUCTION

Considerable advances in the analytical capability of

engineers, achieved during the last two decades with the

introduction of the digital computer, have reduced the time

allocated to tedious calculations and provided the tools

necessary to analyze highly complex problems, previously

relegated to the status of academic interest. This

increased capability has encouraged the extension of

structures into more severe environments and simultaneously

resulted in less conservative designs approaching the

ultimate member capacities.

The analysis of these structures by traditional linear

elastic techniques is adequate when the design loads are

easily predicted and the possibility of failure poses no

threats to life. Many situations, however, involve

uncertain load conditions and extreme consequences to the

ecosystem in the event of failure. Nuclear reactor

containment systems, aircraft, buildings, and offshore
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drilling platforms are but a few examples. The load may be

an earthquake, tornado, hurricane, or even a flock of birds.

The probabilistic nature of the system prompts questions

related to the design level (should the structure be

designed for the 100 year or 1000 year earthquake?), the

behavior of individual structural members (how accurate is

the material model?), the construction quality (do we

actually construct the structure we specify?), and 'the

response of the entire system (do our analytical tools

accurately reproduce the structural response?).

Design philosophies have transformed as the analytical

capabilities have expanded. Simple enlargements in member

sizes as the load level increases, although allowing the

continued use of a linear elastic analysis, cannot always be

justified due to significant cost increases and possible

technological limitations, as exemplified by the increased

weight of aircraft structures requiring larger engines.

These considerations have engendered the development of

design codes consisting of two design levels. The first

level, often referred to as the strength level design,

requires the structure to remain linear elastic for a load

level expected once during the structure's life. The second

level, referred to as the ductility level design, accounts

for the probabilistic nature of the structure and loading

and provides a measure of the inherent structural safety. A

load level corresponding to a situation with an extremely

small probability of occurrence is specified, and the
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structure must be designed to withstand this load without

any loss of lives and minimal impact on the environment.

The ductility level design stipulates a load level much

higher than that of the strength level, and hence the

designer often prefers to exploit the energy absorbing

properties of the structure to withstand this load by

allowing the structural members to yield and buckle, in

other words, become inelastic, rather than redesigning the

structure to remain linear elastic and incurring the

increased structural cost.

As a result, the computational capability for nonlinear

continuum mechanics problems has been developed, expanded,

and refined to estimate the nonlinear transient response of

structural systems subjected to impact and longer term loads

including both kinematic and material nonlinearities.

Numerous computer codes are available for general purpose

and extremely specialized applications. Additional

contributions to the time domain solution technique in terms

of numerical integrators and equilibrium iterators and

alternate schemes such as the incremental and pseudo-force

formulations and the development of more realistic material

models continuously induce revisions in this numerical

solution library.

The ability to reproduce the actual response of

particular structural systems is indeed amazing. The

computational cost for conducting a nonlinear analysis,
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however, is often prohibitive and limits the analyst to a

few extensive large scale analyses if not highly simplified

renditions of the original structure. Parameter studies,

the underlying foundation by which engineers develop a

"feel" for the structural behavior, are usually out of the

question. Even super computers on the market today cannot

handle all nonlinear problems. The apparent inefficiency of

the, direct time integration approach for particular problems

may stem from numerical stability and accuracy constraints

that have no relation to the actual physical behavior of the

system, but unnecessarily increase the solution cost. Even

when the time integration approach is fairly efficient,

various limitations such as the inability to handle

frequency dependent stiffness and damping terms prevent the

actual system from being modelled properly.

The purpose of this research study, consequently, has

been to develop and examine the feasibility of an alternate

iterative frequency domain solution technique for nonlinear

dynamic structural problems that can produce results with

any desired level of accuracy. Applications are oriented

toward the nonlinear transient response of seismically

excited systems.

This proposed solution scheme, called the hybrid

frequency-time domain analysis approach, consists of an

iterative solution in the frequency domain with

nonlinearities being evaluated in the time domain combined
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with a mode superposition approach and updating of the

nonlinear modes. A frequency domain solution in essence

implies the use of a theoretically exact numerical

integrator, and the mode superposition approach allows a

significant reduction in the problem size. Both kinematic

and material nonlinearities are considered.

The thesis first presents the theoretical formulation

followed by a review of current solution techniques and a

description of the new solution scheme, and concludes with

case studies.

Chapter 2 establishes the foundation of nonlinear

continuum mechanics. A brief review of tensor analysis is

presented and then the various stress and strain measures

are derived from fundamental kinematic definitions. The

chapter proceeds on to the energy equations and develops the

displacement-based finite element form of the governing

equations. A condensed discussion on the constitutive

relations concludes the chapter.

In Chapter 3 the different forms of the equations of

motion are defined. Assumptions in deriving and limitations

in using each form are emphasized. The chapter then

discusses various "exact" solution methods, including some

recent proposals such as nonlinear mode superposition.

Components of the standard direct time integration solution

technique are examined in detail.
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Numerical integration schemes forming the basis of time

integration approaches are studied in Chapter 4 to identify

problems associated with numerical integrators, and hence to

provide an incentive to use the theoretically exact

numerical integrator of a frequency domain analysis.

Accuracy and stability analyses are presented in their

standard time domain form, and then an alternate formulation

in the frequency domain is discussed. The chapter concludes

with case studies of nonlinear analyses.

Chapter 5 presents the hybrid frequency-time domain

analysis scheme. The chapter begins with a review of the

frequency domain analysis and a mathematical presentation of

Fourier series and transforms and tcheir numerical

implementation. The second part of the chapter describes

the hybrid frequency-time domain scheme -and examines in

detail numerical considerations associated with its

development. A discussion of its distinguishing features

and suitability concludes the chapter.

The actual application of the hybrid frequency-time

domain analysis to seismically excited structural systems is

presented in Chapter 6. Each study lists pertinent

numerical parameters, allowing a reasonable comparison

between the direct time integration and proposed approach.

Results are presented in response history form.
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Chapter 7 summarizes the research project and provides

conclusions related to the new solution scheme.
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CHAPTER 2

NONLINEAR CONTINUUM MECHANICS

This chapter establishes the foundation for analyzing

nonlinear dynamic structural problems. The various stress

and strain measures and the formulation of the governing

equations are presented in their most general form, allowing

all kinematic nonlinearities in terms of finite strains and

rotations and material nonlinearities consisting of path and

time dependent behavior. A rigorous mathematical

development is followed to ensure that the governing

equations are consistent with the theoretical basis. Tensor

analysis is applied throughout the presentation to elegantly

transform complex abstract definitions into practical

equations while maintaining the generality of their

application.

The governing equations are derived in a rigorous form

to admit all nonlinearities. As a consequence of

maintaining mathematical rigor, the presentation may at

times appear wordy and pedantic, but a full appreciation of
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the generality of nonlinear analyses ca-n be attained only by

understanding the subtle qualities of their underlying

principles. Nonlinear analyses are not simple extensions of

linear analyses obtained by "adding" a couple more

structural matrices to the governing equations of motion.

Accepting finite strains and rotations engenders a host of

definitions for stress and strain quantities, in turn

entailing constitutive relations consistent with the

selected definitions. The ultimate purpose of conducting

nonlinear analyses is to reproduce the actual observed

behavior, and consequently any mathematical inconsistency

defeats this premise. This chapter follows the outline of

classical texts on continuum mechanics such as those by

Sedov, Flugge, Malvern, and Prager (25,44,67,73,74) and the

more recent report by Rodal and Witmer (72) and text by

Bathe (6).

2.1 REVIEW OF TENSOR ANALYSIS

The physical laws governing the deformation of

continuous media must be independent of the frame of

reference since the properties of the media itself are

reference frame independent. The kinematics of deformable

media, however, are frame dependent being defined either in

the reference configuration or the current deformed

configuration. These properties of possessing reference

independent governing laws and reference dependent

geometrical descriptions are satisfied by tensors and tensor
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equations which are invariant quantities, but whose

components are frame dependent. Zero order tensors are

scalars and first order tensors, vectors. Stress and strain

measures introduced later are second order tensors while the

elastic modulus is a fourth order tensor. The following

presentation is limited to three-dimensional Euclidean

space. In reference frames accelerating relative to each

other the invariance of the physical laws is satisfied only

by the use of tensors in four-dimensional space-time.

Two frames of reference are necessary in continuum

mechanics, the current (deformed) configuration and the

reference configuration, also defined as the initial

(undeformed) configuration. The basis vectors spanning the

tensor space can be defined in a rectangular Cartesian

coordinate system or more generally in a curvilinear

coordinate system.

The notation used here is similar to that of Rodal and

Witmer (72). Scalars are denoted by simple letters;

vectors, by underlined letters; and second order tensors,

by doubly underlined letters. Vector components are

identified by their corresponding letter with a single index

while tensors are also identified by their same simple

letter with double indices. The indices are lower case when

the tensor is defined in the reference configuration and

upper case when defined in the current configuration. The

selection of upper or lower case letters for a rectangular
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Cartesian system is arbitrary since the basis remains

independent of the configuration. Tensor components in a

Cartesian coordinate system are identified by a circumflex

sign ("'") on top of the kernel letter.

2.1.1 Scalars and Vectors

A scalar can be defined as a quantity consisting of a

single component that is invariant under a coordinate

transformation.

Vectors consist of more than one component and can be

represented as

n

v = v1 b + =T vb.=vb. (2.1)
- -1 -n'--a-1 --1

k=1

where the b form a basis for r and the v are the

contravariant components. The RHS (right hand side) of the

third equality in Eq. 2.1 is written in indicial notation

where a summation is implied over any repeated index.

Notice that in an n-dimensional space gn there exists an

infinite number of bases b such that each b consists of a

set of n linearly independent vectors b. . The b. need not

be orthonormal or even orthogonal.

The vector v can also be written in terms of its

covariant components v with respect to the basis b as

v = v b (2.2)
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Some general definitions and equalities of vectors are

presented next. Given two vectors u and v where

u =u b. V = vib. (2.3)

we have

u-v = u'vib .b = u Ab.. (2.4)
-- -i-j 13

where the operation id Eq. 2.4 is defined as the dot or

scalar product of u and v and

b = b. b. a b.. (2.5)
ij -1 3 31

Dual (or reciprocal) base vectors b are defined such that

b -b1 = 61 (2.6)
-k- k

where 6) is the Kronecker delta defined by
k

1 f1, r=s (2.7)

k {0, r#s

For the special case of an orthonormal set of basis vectors,

the dual basis is identical to the given basis.

Taking the dot product of Eq. 2.1 with bi and Eq. 2.2

with b and using the equality in Eq. 2.6, we obtain the
-i

vector components

vk = v-b
vk "k

(2.8)

v = v-b
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ij i. j
The fundamental tensor components g j, g , g , g.

are defined as

g. b.b. g b - -b b.-bj (2.9)

Using Eqs. 2.1, 2.2, 2.8, and 2.9 the following relations

between the contravariant and covariant components of v can

be established:

v.. = v gb. .b . = g
-j -i ij

= v.b21-b. = v.g' = v..
J- -i J 3 - J2i

(2.10)

V = v-b = v b -b' = v g'

Sb.-b vg =v.6.
- - J. J J

The first and third lines of Eq. 2.10 represent the process

of lowering and raising indices. This process can also be

applied to the basis vectors as follows:

bi = ga b b. = g. .b (2.11)
- -1 - Ji-

Notice that Eq. 2.11 holds for any arbitrary vectors b and

b . In particular, if bi = jg and b = g., we have

J g = g. (2.12)

Therefore,

j j k ji
i zi ik A 9 11

jl k
= 9ik .51

jl9 6 k (2.13)
NikS

= gikkj
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In other words

[ gi] = [g ~1] 
(2.14)

where [ ] represents a matrix. From Eqs. 2.1, 2.2, 2.9,

and 2.13 we then have

vv b = v g g b

= V i. bJ-g..b bj (2.15)

= v-g. bk'b = ii*1 = 1-v

Similarly we can show that

1 = g bb = g'jb.b. (2.16)

where the unit tensor 1 is defined as the fundamental tensor

or metric tensor.

The partial derivatives of a vector with respect to

spatial coordinates are derived next. When a vector is

differentiated in Euclidean space with respect to a scalar

variable, another vector expressed in terms of the original

basis vectors is obtained. The derivatives of the covariant

and contravariant bases are therefore{ s
3- = s s

n m n

(2.17)

am n s



38

where the { S} are defined as the Christoffel symbols of
m n

the second kind given as

= _. = 0.5g s(mP + )mn -s sc n n m p (2.18)

Notice that in a Cartesian coordinate system the basis

vectors are constant, and hence { s} = 0. The cov.ariant
m n

derivative of a covariant vector component v can be derived

as follows:

s J 13(l

= g- . k

3 (2.19)
5vi 

k i
a3 j k3 J)

i= - - -v

Therefore,

avi k
v = -- j vk . . (2.20)

Similarly, the covariant derivatives of a contravariant

vector component v. can be derived, with the final

expression given as

v . = + vk (2. 21)
,J J k
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Also by differentiating Eq. 2.6 with respect to Ej and

letting bi g, we obtain

i ,

-\ _(2.22)

We can also show that

m m m
S 3 - ni ns (2.23)

= ,--- = -*--g = -g .1(.3

3En 3s

2.1.2 Second-Order Tensors

A second-order tensor is defined as a linear vector

function, which given one vector, assigns another vector (a

linear vector function F has the property that F(au+bv) =

aF(u)+bF(v) for arbitrary vectors u and v and scalars a and

b). In other words

u = T-v (2.24)

Since the vectors u and v can be expanded in terms of either

their covariant, u. and v., or their contravariant
1 J

components, ui and vi , the components of T can be expressed

in four forms

u.= T vi

ui ij V
u = Tv.

j (2.25)

u = T.jv.

u = T !vi
-J
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Notice that T'J is not necessarily equal to Ti:.
1. -.J

Any second-order tensor T can be represented by a

dyadic. A dyadic is a linear combination of dyads where a

dyad is the open product of two vectors u and v. A similar

expansion is- possible for higher order tensors by using

polyadics and polyads. In mathematical notation

T = Trsb b =T brbs = Tr.b bs = T'sbrb (2.26)
-r-s rs- - .sr- r.--s

The process of raising and lowering indices is

identical to that shown for vectors. From Eq. 2.26 we have

T rsb b - T. .b b = 0 (2.27)
-r-s 13-- =

which implies

Trsb b - T..b irbjsb b = 0 (2.28)
r-s ij -r-s =

Therefore,

(Trs - T..b bjs)b b 0 (2.29)
(T 13 rb r-s =0

Taking the dot product of both sides of Eq. 2.29 first

with bt and then with bs, we obtain

T r = birbjsT.. (2.30a)
iJ
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and similarly

T rs= b.i b.i T i
rs irjs

Tr. = birb. T-3 (2. 30b)
.S 3js i.

T s = b. bisT'
r. ir

The components T.. of the tensor T are derived by using

Eqs. 2.1, 2.7, 2.24, and 2.25. By applying the dot product

of b to both sides of Eq. 2.24, we obtain

-i~

b..u = u. = b (T.b v k)
-i- i -i=-k

= (b..T-b )vk (2.31)
-i =k

Comparing Eq. 2.31 with 2.25 we conclude that

T =b.-T-b
ik -i =-k (2.32a)

and similarly

Tik = b kT-bk

Tk = b.T.bk
1-~~ (2. 32b)

T * = b 'T-b
.k - =-k
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The transpose S of a tensor T is defined such that for

any vector v

T-v = v-S (2.33)

In other words,

T T

(2.34)

S t T

In the particular case that

T-v = v-T

T is a symmetric tensor, and T is skew symmetric when

T-v = -v-T

(2.35)

(2.36)

The tensor (or operational)

tensors is defined by

ij mn
= T San 4S n

= T iSmng .k

J-

= T

=T..

product of two second order

(2.37)

S . n

Sjn i n
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Notice that the tensor product of any second or higher order

tensor with 1 produces the original tensor, and consequently

1 is often referred to as the "unit" tensor.

Two scalar products of second order tensors are defined

by

T:S = (T j g. ):(S gk 1
S-J k-

kk= T JS (g.-gk 1( *g
kl -1 -j -

= T'jS 6k d1
kl i j

= T'jS = T S = T':S.j = T-.dSl:
ii 13 -J 1. 1- -j

and similarly

T--S = T S.. = T = T'S' = T'.Sj'
- - Ji iJ -J.J 1. -1

Finally,

obtained.

derivatives of second order tensors

Since T = T rsg g , we have
-r -s

(2. 38a)

(2. 38b)

can be

3 T T ks ak rk _k

-- gs + T - g + T ~

rs + T r + T r

rs ks r rk s
~~~s+ + T + T p r

prs = p Tk k rx s

(2.39)
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Therefore,

Trs T rs Tks k r}Trk s

Trs 3T a -ks r Trk s P1 (2..40)

3T r 
.

r. .S+ Tk. r- Tr.
.s' p9 -T.s k p . k s p

such that

- = Trs' rs' rs =s' Trs (2.41)

2.2 KINEMATICS

Describing a continuum's motion and its location with

respect to a reference frame is referred to as kinematics.

Measures of motion include the velocity of particles in the

medium and the deformation of the continuum, expressed in

terms of strain.

For problems related to solid continua it is often

convenient to follow particles in the continuum and describe

their motion with respect to a reference configuration.

This approach is called the Lagrangian (or material)

formulation in contrast to the Eulerian formulation where we

consider the motion of particles through a stationary

control volume. The Eulerian approach is more appropriate

for fluid flow problems. If the reference configuration
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corresponds to that at time t=0 (initial, undeformed

configuration), a total Lagrangian formulation is being

used, while if the reference configuration is that of the

most recently considered configuration, then an updated

Lagrangian formulation is being used.

The advantages of describing the kinematics of a

deformable medium with tensors now become evident, since

tensor components are coordinate system dependent and yet,

easily transferred from one frame of reference to another.

In the reference configuration all terms will be

denoted by lower case letters and in the current

configuration, upper case letters. For a rectangular

Cartesian coordinate system, or inertial system, the

reference coordinates will be defined by x. while the

current coordinates, by X . The base vectors are

i = i = i = iP. A convected body-fixed (intrinsic)
-I - .-i -

coordinate system deforming in common with the continuum

will also be used. The curvilinear coordinates for such a

system are given by i with base vectors g in the reference

configuration and G in the current configuration.
-I

2.2.1 Displacement, Deformation Gradients and Tensors

A particle's location in the deformed and undeformed

configurations is given by the position vectors r and R,

defined from the origin of the Cartesian system X , as shown

in Fig. 2.1. Therefore
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Reference Configuration

1l

r

Deformed
Configuration

R

Xi*
-1 t-1

3'13

Fig. 2.1 Notation for Reference and Deformed Curvilinear
Coordinate Systems Moving in a Cartesian Coordinate
System

x i
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r = x1i R=X1 i~

Also

dr = dx.i. = d . =dE .

i I
dR = dXi = dE G = dg.G

As a result, the basis vectors can be expressed as

ar ax.
g= =--4i.

1 1 1g -J

3R 3X.
G -

-L 3 i-

Since g and G are vectors, all equations from section 2.1

are applicable.

The displacement vector u is defined next as

u = R - r

In terms of basis vectors we have

u = u u g= UG = U G=

(2.45)

(2.46)

The velocity vector v is the time derivative of u such that

V [--- - at .
= (R-r) = R

- i i I I
V =V. = V .VIG V GI

P&1 -

(2.42)

(2.43)

(2.44)

and

(2.47)

(2.48)
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Using Eqs. 2.19, 2.47, and 2.48 the time derivative of

the deformed basis vector is derived as follows:-

0J
39 RI 3 3

G - V ,G-Iig 1 1 'I--J

-I - 35 B(2.49)

= V,

J'III

II
Furthermore, by differentiating the equality G -G = 6 with

respect to time, the time derivative of the contravariant

basis vectors is given as

.I J I J
G =-V G ,-V5 G (2.50)

The deformation gradient F is a tensor associating with

each vector dr at r a vector dR at R. In mathematical

symbols

dR = F-dr drF T (2.51)

By definition the rectangular Cartesian components of F are

given by --. The same result can be derived by expanding
3x.

Eq. 2.51 as follows:

dR = F-dr = (F i i )(dxk4k) (2.52)

= F dx i
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Using Eq. 2.42 we then have

dX i = F dx.i.
I-i -IJ 3-1~

implying

aX
F =a
Ij 3x

Furthermore, by using the equivalent of Eq.

Cartesian coordinate system, we can show that

F + 3x

Also

T

implying

F = i

2.45 in a

(2.55)

(2. 56)

(2.57)

The components of F in a convected system are derived by

expanding Eq. 2.56

GJ = . (F -=

From Eqs. 2.44 and 2.45 we have

(2.58)

GI -&j = (R - r) =

(2. 53)

(2.54)

(2. 59)
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Using Eq. 2.34, Eq. 2.59 is transformed as follows:

i iG - U.* =u
:-I j = it j ,jli

Therefore,

Gq =&j+u oj=(g + u )

j i i iu
= . + i = (I +3 ,J 1 3 ,J i

Comparing Eqs. 2.58 and 2.61 we conclude

F =g +u

(2.62)

F '. = 6. + u .

and similarly

Fi =g i +u i,

(2. 63)

F = jj +u.
i. 1 1,

We next examine the spatial deformation gradient tensor

-1 with the properties

-1 -liT
dr F -dR dR-(f )

(2. 64)

F 1 - = (E- 1)T

(2.60)

(2.61)
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By a similar procedure as before it can be shown that

-x.
(T? 2

iJ

(2. 65)

ij ax.
3

In terms of convected coordinates

(F~1) G

(F =
iJ gij

(2.66)

(F~l)i* = 6
.J j

-1 .J KJ

(F ): = gikG

and

(F ) = G
U J

(F~1 ) = G - UI

(2.67)

(F~ )0 =6 - U

I. i I,

The right Cauchy-Green deformation tensor C is defined

as

(2. 68)C= = U-U = FT-F

ax
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and the left Cauchy-Green deformation tensor B as

B = V = V.V = F.FT (2. 69)

where U and V are defined by applying the polar

decomposition theorem to F such that

F = R-U = V-R (2.70)

R is an orthogonal tensor defined as the rotation tensor and

U and V are symmetric, positive definite tensors defined,

respectively, as the right and left stretch tensors.

Therefore, the application of F to dr can be viewed as a

stretching of dr by U and then R applying a rigid rotation

to obtain dR (similarly defined for V). From Eqs. 2.68,

2.69, and 2.70 it is evident that

B = R-C-RT (2.71)

Using the previously derived results for the components of

F, we have

T A A A A X X

C = (FiK ) F = FKi F Kj

k uk k uk
= ( + )(k + -) (2.72)

ax. j 3x.
31 3A . 4u

i x 3x, 3x. 3x
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In convected coordinates we can also show

C = (F) TFk. = F Fk. = G

(g ) k+u k
j + uk,i j+ (2.73)

k
=g . + u. + u + u .u

13 i,j j,i. ,j k,i

and

C = g + u i + u j + u k 9j uk9

(2.74)

S 91 i k9 9kCjg+ u, +k, uk

2.2.2 Strain Tensors

Using the definitions of deformation gradients and

tensors given in section 2.2.1, various measures of strain

will now be established. For large deformation and rotation

problems a unique measure of strain no longer exists, and

therefore strain measures should be selected such that they

are numerically easy to implement and compatible with the

various constitutive relations. These strain measures

should also display no variation under rigid body motions.

In the special case of small strain problems, all

definitions should reduce to the same form. Many of the

common strain measures are defined in terms of squared
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length, which is intrinsically appealing since Euclidian

distance is generally measured in terms of squared values.

We first define the Green-Lagrange strain tensor y a

= 0.5(C - (2.7

From our previous definitions we then have

Y = 0.5(U - 1) = 0.5(FT F - 1)

Also by noting that

(dS)2 - (ds)2 = dR-dR - dr-dr

= dr.G-dr - dr-l-dr (2.

= dr(G - 1)-dr

s

5)

76)

77)

and comparing this result with Eq. 2.75, we deduce that

(dS)2 - (ds)2

dr-Y-dr =
-= - 2 (2.78)

The components of the Green-Lagrange strain tensor are given

as follows:

Y.. = 0.5(C j
1J13

- 6..) = 0.5( -6..) k _
13 3x.i 3x. 1Jl J~j

(2.79)
3a. 3u 3 k Da k

10.5(7 + 1 k
J la1x
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j = 0.5(C i-gj )=0.5(G -i-gij ) =0.5(u. .+u. .+u .u )
ij. =0 5 ijIJ ijG , J,1 , k i

= 0.5(C. .- )=0.5(gikG - )=0.5(u .+u. +uk .u )G3jKJ j.)0,J~ *+, +u k, (2.79)

_jiji V iljk ii )
S= 0.5(C -g )=0.5(g g GLK-g )=0.5(u i+u +u k juk,

In contrast to the Green-Lagrange strain tensor given

in terms of derivatives of displacements with respect to

reference coordinates, the Almansi tensor is defined by

derivatives of displacements with respect to current

coordinates. Therefore, the Almansi tensor e is given as

e= 0.5(1 - B~)

= 0.5(j - ( 2 -1) (2.80)

= 0.5(1 - (E~1)T-

Using a similar process as before, it can be shown that

2 2
e = (dS) - (ds)

dR..dR =2

e9

e

e

e

3x 3xk iU 3Uj 3k
= ) - 5 - - -- ---

= 0 - -xJ - +3 3Y 3x1

= 0.5(G1I - gj ) = 0.5(U + U - U JUK,I

0.5(6- G IKgk) = 0.5(u + U - UK $fK,

= 0.5(G - G ILG gk) = 0.5(U + U - U UK

(2.81)

(2.82)

and
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Other strain measures in terms of linear length or

logarithmic length also exist, but we shall limit ourselves

to the most commonly used Green-Lagrange and Almansi strain

tensors.

The time derivatives of strain are required for

rate-type constitutive equations. The rate of deformation

tensor D is defined as

D = U (t) = V (t) (2.83)
=t t

where the U and V are the stretch tensors defined previously

and the subscript t refers to the configuration at time t.

An alternate definition of the deformation tensors in

covariant component form is given as follows:

2DidE d - (dS - ds2) = (dS2) (2.84)

where D = y. = e1 - Therefore from Eq. 2.79 and Eq.
IJ iJ I

2.49

D ... = 0.5(G - g..) = 0.5G
Ii ij ii ij Ii

=0 .5(G :G)
-I -J

= 0.5(G 'G + 6 -G )
_IJ - -J (2. 85a)

G(G -V + V L'G G)
-I K,J- LI- -J

= 0.5(V9 + V )
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Similarly we can show that

D = 0.5(V + V )

9 9
D = 0.5(V + V ) (2.85b)

,J J,

3V I V I
D = 05(---+ -_-
IJ X3  3X

We now look at the material rate of the Almansi strain

tensor in terms of its covariant components

= (e G I )

I J -I J(2.86)
G G + e G + e G (

.
Therefore does not vanish for rigid body motions since G

contains rigid body components.

However, for the Green-Lagrange strain, can be

expanded such that

.y j . i j
~= (iY) ig-& (2.87)

and therefore Y is a more appropriate measure for rate-type

problems since it vanishes for rigid motions. We now derive

the relation between D and

i= ik ik L ik
ig = ikjg = Dg = GKLD g

+ 2y,)DL 9ik

(gkl + 2y )D g (2.88)

(6 + 2y i)D
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Similar expressions can be found for the other component

types.

2.3 STRESS TENSORS

The traction vector T is defined as the surface force

per unit area

dP
T = d(2.89)

where dP is the force exerted across the differential

surface with area dA and outward normal N.

Beginning with this definition of the traction vector,

various stress tensors can be defined. The Cauchy stress

tensor a is defined by

T = N' (2.90)

Consequently, a is defined in the deformed space, and

IJ i -IJ IJ

(2.91)
I. J JI
I. G =I' GG
. J;I- I--Ji

Using Eqs. 2.89-2.91, we then have

dP = N-adA = N G -a JKG G dA

(2.92)

IK
=Nya GdA
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Similarly dP can be expressed in terms of the undeformed

configuration by using Nanson's relation

p n.dA = pN dA (2.93)

where p = dm/dV is the mass density in the present

configuration; p0 = dm/dV0 is the mass density in the

reference configuration; dm, the mass of the body with

volume dV in the deformed configuration; and n., the

covariant components of the unit normal to the differential

surface area dA0 . Using Eq. 2.93 with 2.92, the following

is derived

IK 0 IK
dP = N a G dA = a GdA (2.94)

-K p i -K 0 2.4

The Kirchhoff stress tensor r is next defined in terms

of the Cauchy stress tensor as

p0
0 (2.95)

Therefore,

p
T= - N -T

P 0 (2.96)

and

IKdP = nT I G dA
- 0K (2o7(2. 97)
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A traction vector t with respect to

configuration dA0 can be defined such that

the undeformed

dP

0 (2. 98)
IK

=n T Gi -K

Finally the 2nd Piola-Kirchhoff stress tensor S is

defined by

t = n.(S-FT) (2.99)

It can be shown that the contravariant components S j of the

2nd Piola-Kirchhoff stress are equal to the contravariant

components of the Kirchhoff stress

sij= J (2.100)

Therefore,

T GKJ lj (2.101)

or

.= Sg1G = s1 (6 + 2 Y)
- '19 +

(2.102)
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In general, the following relations between the various

stress tensors can be derived:

T = a = F-S-FT = R.U.S.U.RT (2.103)

S = 0 F-l. a.(F-1)T =--U-1.RT.a.R.U-1 (2.104)

S = F 1 -r- (F-1)T = U-1 RT.-R-U- 1  (2.105)

P T P T
P - - - - - - (2.106)
0 0

The use of different stress tensors allows an efficient

numerical solution of the governing equations of motion.

Some stress tensors are more compatible with the

constitutive relations (2nd Piola-Kirchhoff stress tensor)

while other stress tensors (Cauchy) give a "true" physical

value of the stress.

In addition to the stress tensors, the rates of stress

tensors must be defined such that incremental or rate

dependent constitutive relations can be employed. The total

rate of the traction vector less the rigid body rate gives

the rate of the traction vector corresponding to pure

deformation

T-(-T-W) (2.107)

where W is the spin tensor

W = (t) (2.108)
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Therefore,

T - (-T.W) = (N.a) + (N.a).W

= N-a + N-a + N-(cT-W)

(2.109)
= N-(a + o-W - W-a)

= Nc

where a is the Jaumann (co-rotational) rate of the Cauchy

stress

a = _ + a-W - W-2 (2.110)

Notice that for rigid body rotations = -T-W, and therefore

a = 0, implying that the Jaumann rate properly accounts for

rigid body rotations. Furthermore, can be expanded and

the following obtained:

= a G G + D a + aD + W- a - C-WJ 
(2.111)

and therefore

* --IJ
r = G a*25 D' + D-* T (2.112)

Notice that a = 0 for rigid body rotations since D = 0 for

a rigid body motion. Similarly

a= c yG G + D-- r D
.= =--I-- (2.113)
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We can also find the Jaumann rate of the Kirchhoff stress

tensor

0 Po P 0

= p = p - -

p + 0 (2.114)

= 1) a + p ' 1.

which can be reduced to

-~ =+ (trD)a + (tr D)T (2.115)

2.4 ENERGY EQUATIONS

The governing equations of dynamic structural systems

are developed in this section using a variational approach.

Beginning with a body in equilibrium subjected to body

forces and external surface tractions and satisfying the

prescribed displacement boundary conditions, we employ the

principle of virtual work which states that the external

virtual work, 6W , must equal the internal virtual work,
e

SW.. Therefore, a set of compatible, infinitesimal virtual

displacements 6u, satisfying the essential boundary

conditions, are imposed on the body and we obtain

SW. = SW*i *e (2.116)
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The internal virtual work W can be expressed in

different forms depending on the specified definitions of

stress and strain. In terms of the Cauchy stress we have

w= j: dt dV (2.117)

and in component form

W= t I dt dVf

= Vt a D dt dV = vft

Equation 2.117 can also be

configuration

a D dt dV

a D dt dV

expressed in the reference

W. cy:D -0dV dt
1 fj = =p 0

Using Eq. 2.95, the internal virtual work can be

expressed in terms of the Kirchhoff stress tensor T as

, =t fV :D dV dt (2.120)

Similarly, we can represent the internal virtual work in

terms of the 2nd Piola-Kirchhoff stress

(2.121)ff dV dt 0.5S:6dV dt
i t-V9 - -

(2. 118)

(2.119)
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Notice that all the scalar products ": denote internal

strain power per unit volume, and therefore from Eqs.

2.119, 2.120, and 2.121 it is evident that a and P are

energetically conjugate variables with respect to the

current volume V while T and D, S and , and S and C are

energetically conjugate variables with respect to the

reference volume V .

The components of W in terms of the other

energetically conjugate variables can now be given as

W= t IJ DIJdVdt =jT D dV dt
0 0 (2.122)

t I D i'dV dt = ft JV TID JdV dt
0

for the conjugate variables t and D and

t Vf i i dV dt =S d dV

-Jfv dd = f'.S d .dVo
0 0(2.123)

f Vf SJ dV dt f S d YdV 0

0 V0  -j

=ff~ siJ dVoat = fvf 0ij~
=t V od0 S dY Y 0 Ya

for the conjugate variables S and x 0.5 C. Since

D = ; and T S ,we also have

W =t V ijdV dt = dy. dV

t V a1 edV dt = fT a de dV(

f. J J O ~ dV dt = JVJ.T dy.dV
t 0 0 Y1j i
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= t fV -T e1 dV0dt =JV A T de dV0

= A Si D 1 dV 0 dt 
(2.124)

0

t V 1 IJ

= 4f VoS UJdVodt = JfejS' de1gdV0

6W. can now be derived using the equations presented above
1

for the various expressions of W . For example, if the

conjugate variables S and f are used, we have

6Vi = Q:6: dV0

o 0(2.125)

=S' Sy dV0
i0

Notice that in Eq. 2.125 all terms are defined with respect

to the reference configuration (2nd Piola-Kirchhoff stress,

Green-Lagrange strain, reference volume V ), and <therefore

Eq. 2.125 applies to the total Lagrangian formulation.

The corresponding external virtual work is given as

6 W e= P B- du dV + t- u dA0
o 0 (2.126)

= p B 6u.dV + t 6u.dA0
o 0

where B is the body force vector and t the external surface

traction vector. A corresponds to the surface where the

traction vector is applied. Since B contains all body

forces, using D'Alembert's principle we have

~ +1 (2.127)

or

B = -u + f (2.128)



67

where u is the acceleration vector (inertia term) and f

contains all other body forces such as the gravitational and

magnetic forces. Therefore, in the undeformed configuration

and using the conjugate variables S and , we have

V f :61 dV 0 V p (f - *).Su dV 0 + t.Su dA (2.129)

Taking the variation of Eqs. 2.76 and 2.79 we obtain

= 0.5(f '6F + 6E F) (2.130)

and

Sy.. = 0-5 6 k+ uk )uk+ (. + uk )u (2.131).3[ 1 +u 1)sukJ kj +uk k9 i]

Notice that since the variational principle was used to

derive the energy equation, Eq. 2.129 contains the

equilibrium equations and also the boundary conditions. In

particular using Gauss's theorem it can be shown 'that

[Sjk(6 i + uk , + p = p0 2.132)

for the components of the equilibrium equation and

t = n.Sjk i + u ) (2.133)
3k ,k

for the components of the nonessential boundary conditions

(prescribed surface tractions) referred to the reference

configuration.
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2.5 DISPLACEMENT-BASED FINITE ELEMENT FORMULATION OF THE
GOVERNING EQUATIONS

The governing equations of motion are solved

effectively using the finite element method (FEM) in

conjunction with

finite element

by an assemblage

has a finite num

element behavior

other words, the

are the generaliz

at any point

substituting the

expression for t

functions. In eq

the digital computer. The basis of the

method consists of idealizing the continuum

of finite elements. Each finite element

ber of nodes, with each node describing the

by the use of interpolation functions. In

coefficients of the interpolation functions

ed nodal responses, and hence the response

in the finite element is obtained by

geometric coordinates of the point into the

he response given in terms of interpolation

uation form we have

2t) = b )J {q.(t)J 
(2.134)

= Loi( J) {qm(t)}I

where the 4(Ei) are displacement interpolation functions

and the q 's are the element nodal generalized displacements

of element m. (L J symbolizes a row vector and { }, a

column vector). (d represents the convected coordinates of

any point in the element.



Using Eq. 2.134 we have

6u( t) = L j {6mt)}

1 (E,t) =)$ (Ed) { (t)

We can now express various kinematic quantities in terms of

interpolation functions. For example,

Green-Lagrange strain in Eq. 2.79 is given as

y.= 0.5(u. + u + u u

or

y ( ,t) = 0.5 p ( k +4 j(Qk)j {q(t)}

+ 0.5Lqm(t)]{$i' } jj {qm(t)}

-D {qm} + 0.5Lq {D } D1 {q

where we used the differential gradient operators

LD j = 0.5 $9 +

LDliJ = ,J

69

and

(2. 135)

the

(2.136)

the

(2.137)

(2.138)

(2. 139)
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We also have

6y . = LD .J{qm} + LSqmJ{Dl }D {q.} (2.140)

The entire continuum is described by the set of finite

elements, and the principle of virtual work applies to the

summation of the finite elements

n n

(6W. = ( 6 ) (2.141)

m=1 Mi m =1 em

where (6W )m is the internal virtual work of element m given

by Eq. 2.125 and (6W, ) is the external virtual work given

by Eq. 2.129 (for the total Lagrangian formulation).

Substituting Eqs. 2.134 to 2.140 into Eq. 2.141 we

obtain the finite element formulation of the energy equation

(total Lagrangian form) given as follows:

n

T Lsqm f(V ) {D }S dV0 + J(v){D li} LDjJ S dV{m}

(V) o 'i o (A ) * i}t dAo (2.142)

+ (v p 0 {p }L+JdV0 {{} ) = 0
o m

where subscript s indicates that the interpolation function

i corresponds to the surface.
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2.6 CONSTITUTIVE RELATIONS

This last section examines the relation between the

stress and strain tensors, in other words the constitutive

relations. The presentation will be as brief and general as

possible since the development of constitutive relations is

highly problem dependent and poses significant areas of

research currently in progress.

The theory of plasticity considers the problem of

evaluating the plastic portion of the strain tensor. We

assume that a plastic strain tensor y . exists such that

e + p
y = y + Y (2.143)

where yj. is the elastic strain tensor obtained from the

stress tensor S using conventional linear elastic

stress-strain relations

Si = E Y (2.144)

Notice that Eijkl is the fourth order elastic modulus tensor

relating the Green-Lagrange strain with the 2nd

Piola-Kirchhoff stress tensor. Corresponding elastic

modulus tensor are available for the other stress and strain

measures.
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Two different plasticity theories are available for

deriving the plastic strain tensor. The deformation theory

of plasticity assumes that there exists a one-to-one

relation between the stress and strain tensors.

= f(Si) (2.145)

Because a one-to-one relation is assumed, this theory

applies only to simple loading cases such as proportional

loading. The incremental (flow) theory of plasticity,

rather than using total strains, considers incremental

strains dy , dye , and dy . and assumes a relation

between the incremental stresses and strains, and in

particular, considers the stress and strain rates

dy. = f(S. dS . ... ) (2.146)
ij 13 1

Plasticity theory consists of two basic ingredients:

the flow rule and the strain hardening rule. The flow rule

describes the plastic flow as a function of the stress and

previous load history. Stated differently, the flow rule

provides the direction of the strain rate produced by a

given stress history. The strain hardening rule supplies

the magnitude of the plastic flow. In general, we can

define a surface inside the three-dimensional principal

stress space where for stress combinations within the

surface, the continuum remains elastic and for combinations

outside, plastic flow occurs. This surface is called the
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yield surface. Consequently, the hardening rule describes

the evolution of the yield surface as plastic flow occurs.

We shall not examine the details of deriving the flow

rule given various assumptions on the relation between

stress and strain nor shall we examine the numerous strain

hardening rules available, which are applicable to

particular material types. It suffices to mention, that the

field of constitutive relations is under considerable

investigation. Finally, note that the constitutive

relations may, in general, be of the form

f(P,1) (2.147)

In other words, the constitutive law may relate the Jaumann

stress rate and the rate of deformation. Comparing Eq.

2.147 with Eq. 2.144, it is evident that Eq. 2.144 only

applies to small strain problems since Eijkl is constant.

Furthermore, we may use a constitutive relation between the

Cauchy stress tensor a and D, but in most cases Eq. 2.147

is more appropriate since thermodynamic principles are often

employed to derive the constitutive relations, with the

resulting expressions being less complicated in terms of the

Kirchhoff stresses T.
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CHAPTER 3

GOVERNING EQUATIONS OF MOTION AND THEIR NUMERICAL SOLUTION

Structural -dynamic problems are represented

mathematically by second order ordinary differential

equations with initial conditions. The solution of these

initial value problems for continuous systems is usually

unavailable in closed form, and hence approximate solutions

are derived numerically by spatial and temporal

discretization of the continuous system. Finite elements

are commonly used for the spatial discretization while

finite difference methods are employed for the temporal

discretization.

This chapter develops the governing equations of motion

by expanding the energy equations of section 2.4. After

deriving the exact governing equations, the equations are

rearranged to be compatible with three different solution

formulations: pure unconventional; pseudo-force; and

tangent stiffness. A rigorous development is pursued and

all assumptions are stated throughout the presentation to

emphasize the limitations and applicability of each form of
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the governing equations.

Following the derivation of the governing equations of

motion, current popular numerical solution techniques such

as direct time integration using explicit or implicit

numerical integrators applied directly to the governing

equations and alternate methods such as mode superposition

techniques adapted to nonlinear problems are examined. The

presentation emphasizes the accuracy properties of the

various approaches and discusses techniques for obtaining

reliable solutions.

3.1 EQUATIONS OF MOTION

Problems in structural dynamics can be categorized into

steady state or transient response. This study considers

the class of transient response problems where the response

varies with time and is not periodic. Transient response

problems can be further subdivided into wave propagation and

structural type problems. In wave propagation problems the

response is governed by the propagation of stress waves

through the structure. Consequently, the response persists

for a short duration and is characterized by an excitation

of all modes in the structure. Examples include pile

driving and blast type problems. Structural type problems

exhibit a response on a more global scale such as the

elongation and bending of structural members and usually
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arise from long term, limited frequency content loadings

represented by wind, wave, and seismic excitations, and

consequently only the lowest structural modes contribute to

the response.

The exact governing equation is viewed from three

different perspectives in this section. Each form can be

used equally well for structural response problems.

Preference among the different approaches depends on the

number of degrees of freedom and the allowable time

increment compared to the number of numerical calculations

per time step.

3.1.1 Exact Formulation

Beginning with the finite element form of the energy

equation given by Eq. 2.142 and using the following

substitutions

M mj dV9 (3.1)

I f(om { D } S dV9 (3.2)

h= fV) { D }L D -J SidV (3.3)

S= J m { f idV + { ,}st dA (3.4)

we obtain

n

m= L6 m + ~ -- f) = 0 
(3.5)
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Equation 3.5 is then rewritten in terms of global nodal

generalized displacements {q*} by transferring the local

displacements to the global displ-acements using the

following relation:

(3.6)

where J is the transformation matrix from the local to the

global coordinate reference frame. Therefore,

n

L + * + h*j* - f*) = 0
m=l

where it can be shown that

M* = JT J

T

h = JT hJ

= Tg

(3.7)

(3.8)

(3. 9)

(3.10)

(3.11)

Next we group together the linear and nonlinear

contributions that are functions of the response and let

-p + (3.12)

and similarly

* = JT T + JTh (3.13)
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Therefore, we obtain

n

L (m + i f 0 (3.14)

and

n

L 6 (*j* + i* f*) = 0. (3.15)

We now define

n

M = m* (3.16)
J=1

n

1 = 1* (3.17)

3=
1

n

F = f* (3.18)
3=1

Equation 3.15 can then be rewritten as

[ q* J j* + I - F) = 0 (3.19)

Since L 61J contains independent and arbitrary components,

Eq. 3.19 becomes

* -I + F (3.20)

Equation 3.20 represents the exact form of the

governing equations of motion. No assumptions have been

made concerning the nature of loading or the response and in
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particular, the constitutive relations. Rodal and Witmer

(72) refer to Eq. 3.20 as the "unconventional" formulation;

this form of the equation of motion applies to finite strain

as well as to infinitesimal or "small" strain problems,

and represents a compact and efficient numerical form.

Other formulations which assume infinitesimal strains are

called "conventional" formulations. The following three

sections present alternate forms of the exact equations that

are compatible with specific solution schemes.

3.1.2 Pure Unconventional Formulation

The pure unconventional form of the governing equation

refers to solving Eq. 3.20 directly with either explicit

or implicit numerical integration operators. Observe that

the mass matrix M is the only structural matrix on the LHS

(left hand side) of Eq. 3.20. The only unknown term on the

RHS is the vector I. When using explicit integrators,

however, the numerical equations of motion are defined in

terms of the previous time step, in other words, at a time

when M, I, and F are known. As a result, all terms on the

RHS of Eq. 3.20 are known and q* is the only unknown in the

entire equation.

A solution by an explicit integrator, therefore, is

quite economical. The only matrix inversion involves the

mass matrix (undamped problem). When given in a lumped mass

form, the inverse of M is easily obtained by evaluating the

reciprocals of its diagonal terms. Even if M is in a
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consistent mass form, the inversion is executed only once at

the beginning of the analysis (assuming that M is

independent of time).

In general, the use of explicit operators with the pure

unconventional formulation is economical and produces

accurate and reliable results for small systems. Extensions

to large systems also produce accurate results, but at a

high computational cost due to the extremely small time

increment required to ensure stability. The severe

stability problems of explicit integrators thus limit the

solution of Eq. 3.20 to problems where extremely small time

increments are necessary not only to ensure stability but

also accuracy, as exemplified by wave propagation problems,

and to small structural response problems where the load

duration is short. If the response must be evaluated over

a "long" period of time, the computing burden may become

excessive, therefore requiring other types of solution

procedures and operators such as implicit schemes.

3.1.3 Pseudo-Force Formulation

The governing equation for the pseudo-force formulation

is obtained by adding Kq* to both sides of Eq. 3.20, where

K is the initial linear elastic stiffness matrix

(3.21)Ms* + Kj* = -I + F + Kg*
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where

n n

K = *= J D.}Eijkl LD jdV 0 J 22)
LI (V ) i3 kl o-

m=1 m=1 0 m

and Eijkl is given in Eq. 2.144. Equation 3.21 can be

simplified further by grouping all response terms together

FNL = K* -I (3.23)

Therefore,

q* + K = F + FNL (3.24)

Notice that in Eq. 3.24 no assumptions have been made

concerning the constitutive relations. As a result, Eq.

3.24 applies to finite as well as infinitesimal strain

problems and is referred to as the modified unconventional

form. Another form, the conventional pseudo-force form,

assumes that Eq. 2.144 is valid when evaluating I, and

therefore is restricted to infinitesimal strain problems.

This conventional form, in addition to being more restricted

than the unconventional form, requires many more computation

steps and a larger storage. Furthermore, the calculations

may often be numerically ill-conditioned, requiring extended

precision.

By adding Kq* to both sides of Eq. 3.20, stability and

convergence problems are reduced considerably and a more

convenient form is produced, appropriate for approximate
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extrapolative -schemes that predict FNL or iterative schemes

that solve for new q* until FNL converges. Explicit and

implicit integrators are equally compatible with Eq. 3.24.

Notice that the structural matrices on the LHS are

factorized only once since they remain independent of time,

and hence this solution approach is fairly economical. Its

reliability, however, is questionable since the amount of

error is unknown when using a force extrapolation approach

with an implicit operator; the solution accuracy can be

verified only by repeating the analysis with smaller time

increments, thus reducing the technique's efficiency.

However, Eq. 3.24 can also be solved iteratively to

convergence within each time step by using various available

iterative techniques with transient implicit operators

(72,78).
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3.1.4 Incremental Response Formulation

The incremental formulation for the equations of motion

is derived by subtracting the exact form for the

governing equations at time t-At from those at time t to

obtain

_MAI*= -AI +AF (3. 25)

where

Al* =1* -11tat

-t -t- At

AF = t - F

(3. 26)

(3.27)

(3.28)

AI is then approximated by a Taylor series expansion to the

first order

AI = (31/33*)Ag* (3.29)

to yield the tangent stiffness form of the incremental

equations of motion given as

(3.30)
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where the tangent stiffness Kt is defined by

K = .I/3D* (3.31)

and f represents the residual force due to approximating

the derivative of AI by a finite difference expansion.

We shall next evaluate K t. From Eqs. 3.2, 3.3, and

3.12 we have at the local level

(V)m{ D } S dV + (v{ D }L D {q,} S dV (3. 32)

Then from Eq. 3.31 we have

k = ai/3g

j(V)m{ D .} bS 1 / aykI L akl/ 3 i dv0 (3.33)

+ fV0)M{ D } D 1 ]S idV 0

+ fV){ D }L D1 j{q} [3Si/Ykl] L'ykl/_Sj dV0

Also from Eq. 2.14Q we have

aykl/ =L Dkl J + (1/2) q j{D k [cD 1

(3.34)

+ (1/2) [q J{DC 1  Dck

Finally at the local level we have

(V = .0[Sm } 3 / [Ykl LDkl dV

+ (1/2) (V ) {D } 3S/ Dykl LqitD ck LDc 1 jdV

(3.35)

+ (1/2) {D } S / 3Yk q {Dc, }LDekJ dvo
o M

+ {D }LD 1j S 'dV
o m
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+ {(v D } LD' {q } S i/ Dy Dklj dV (

+ (1/2) (V{) D . JD1 j{ q } / [q {D ] Ddv

+(1/2) {D(V ) {D1 1 LDJ{q} [js. /Dyk qJ{Dc1 } LDckJdvOo m

On a global scale

t. J k (3.36)

and

n

t= (3.37)
M=1

Recalling Eq. 3.30, notice that the equation of motion

is not solved exactly due to the residual force term given

as

f = tag* -AF (3.38)

Various equilibrium iteration schemes must, therefore, be

used in conjunction with the numerical integrators to

minimize f in Eq. 3.30. In particular, Eq. 3.30 is first
-u1

solved for A4 0 , q0o, and Aqo where the superscript o refers

to the zeroth iteration. Next a correction Aq is evaluated

such that Eq. 3.38 is satisfied. The new Aq 1 = q 0+Aq 1 is

then used to evaluate a new AF and the above process is

repeated until fu satisfies some convergence criterion. We

note in general that, depending on the solution scheme, Kt

may be reevaluated and refactorized a significant number of

times throughout the analysis, therefore aggravating the

computational cost considerably.
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3.2 SOLUTION METHODS

This section discusses methods for obtaining numerical

solutions to the governing equations of motion given by Eqs.

3.20, 3.24, and 3.30. The accuracy and stability

characteristics of numerical integration operators are

briefly discussed, and techniques for solving Eq. 3.38

(equilibrium iteration) are examined. Alternate techniques

for deriving time history solutions are also considered.

The presentation is limited to solution techniques capable

theoretically of providing the "exact" response by varying

the parameters governing the solution process (e.g., time

increment size and convergence tolerance). These

techniques, consequently, produce solutions deviating from

the actual observed behavior only because of limitations in

the structural modelling and constitutive relations.

3.2.1 Direct Time Integration Analyses

An accurate solution of the governing equations of

motion is customarily arrived at by direct time integration

techniques. The adjective direct refers to manipulating the

entire geometric structural matrices, opposed to working

with generalized matrices (mode superposition analysis), and

the time integration pertains to temporal integration of the

governing equations to derive the response.
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Time integration techniques involve either explicit or

implicit operators. Explicit methods operate on the

equations of motion at time t-At (i.e., at the time for

which the solution is already known) while implicit methods

consider the equation of motion at time t. In terms of the

tangent stiffness form of the governing equations, for

explicit methods we consider

MIg*(t-at) + K tAg*(t-at) = &F(t-At) + f (t-At) (3.39)

and for implicit methods,

Mjak*(t) + Kta*(t) = &F(t) + f (t) (3.40)

Explicit integration operators include the central

difference predictor methods and the Runge-Kutta type

operators. Implicit operators include the Newmark (50),

Wilson-e (10,87), Houbolt backward-difference (35), Park

stiffly-stable (59), and the Hilber a-method (33,34).

All numerical operators in general assume some

variation of the response during the time increment, and

then given the response at the previous time step, the

response at the current time step is calculated. As a

result, dynamic equilibrium is satisfied only at discrete

time steps tn'
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The two main considerations in selecting a numerical

integrator are the stability and accuracy characteristics.

Instability is defined as a divergence of the solution, and

accuracy refers to numerical damping, frequency dispersion,

truncation error, and the effect of spurious roots for

multistep methods (60). A detailed examination of numerical

integration is given in Chapter 4, and it suffices now to

say that explicit methods are conditionally stable (unstable

for a time step greater than a critical time step) while

implicit methods are unconditionally stable for linear

elastic problems. The extension to nonlinear problems may

induce conditional stability in the implicit schemes

depending on how the equations of motion are formulated and

solved. In terms of accuracy, both implicit and explicit

schemes have accuracy parameters that vary as a function of

At/T where At is the time increment and T, a natural

structural period.

Accounting for the stability and accuracy limitations

of the integration operators, we now consider how the,,

governing differential equations are transformed into

algebraic equations. All integration operators express the

response at time t in terms of previous or future responses.

For example, the central difference method assumes

U(t) = (1/At 2)(u(t+At) - 2u(t) + u(t-At)) (3.41)

A(t) = (1/2At)(u(t+At) - u(t-At)) (3.42)
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This integration operator is most often used in conjunction

with the pure unconventional form of the equations of

motion, Eq. 3.20, at time t-At to give

M(l/At )(u(t) - 2 u(t-At) + u(t-2At)) = -I(t-At) + F(t-At) (3.43)

and

(1/At 2)Mu(t)= -I(t-at) + F(t-At) + (1/At 2)M(2u(t-At)-u(t-2At))

(3.44)

Notice that the only unknown is u(t) on the LHS.

We now consider the Newmark integration technique

applied to the tangent stiffness form of the incremental

equations of motion, Eq. 3.30. The Newmark method assumes

n (t) = 6_(t-At) + (l-6)u(t-At) + 6u(t )] At (3.45)

u(t) = u(t-At) + 1(t-At)at + (0.5-a)Ui(t-At) + a-(t) At2 (3.46)

where a and 6 are integration parameters. Substituting

Eqs. 3.45 and 3.46 into Eq. 3.30 at time t we obtain

_MA(t) + Kt An(t-At) + AA(t-At)At + [(0.5-a)6A(t-At) (3.47)

+ a!(t) At2 = AF(t) + f (t)
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After many manipulations, Eq. 3.47 is rewritten in a form

with all known quantities on the RHS and the only unknown,

the incremental displacement at time t, on the LHS

((l/a t )M + K )aS(t) =AF(t) + M((/at2),q t(3.48)

+ (1/aat)Acj(t-At) + ((1/2a)-l'<(t-At)) + f

or

K Aq(t) AFff + AF(t) (3.49)

where the effective stiffness matrix K and effective load

vector AF are given as

K = (l/Ct)2 M+ K (3.50)
-eff t

AF ff= 2nd term in brackets on RHS of Eq. 3.48

The approximate equality in Eq. 3.49 is due to the omission

of f . Equation 3.49 can now be solved easily as in a
-u

static analysis by employing techniques such as a Gauss

decomposition of K and then back substitution to obtain
-ef f

Aq(t). Notice that in Eq. 3.44, we have K = At 2M. As a
_-eff 

A

result, Eq. 3.49 represents the algebraic form of the

equations of motion for all numerical integration operators.
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The pseudo-force and tangent stiffness forms of the

equations of motion introduce additional considerations

since in the pseudo-force form, Eq.

of the response at time t, implying

is present on the RHS, while in the

Eq. 3.30, f is also an unkno

function of the response at time

residual force due to obtaining K

series expansion of I). Equati

therefore, in conjunction with a

FNL(t) from FNL at previous time

3.24, F is a function

that an unknown variable

tangent stiffness form,

wn variable since it is a

t (f.u represents the

by truncating the Taylor

on 3.24 must be used,

technique that estimates

steps by extrapolation

methods, and Eq. 3.30 must be combined with a iterative

technique to minimize f
-u

The force vector FNL is estimated by a Taylor series

expansion

NL NL t} 2
F (t) = F Ct-&t) + AtF (t-At) + 0(lh )(3.51)

Then using, for example,

approximation, we obtain

a backward difference

F (t-At) = (1/at) (FNL (t -At) - F (t- 2 At))

Substituting Eq. 3.52 in Eq. 3.51, we have

(3. 52)

F NL(t) = 2F NL(t-at) - F NL(t- 2At) (3.53)
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and substituting Eq. 3.53 into Eq. 3.30 at time t, we

arrive at

1(t) + Kg(t) = F(t) + 2F NL(t-At) - FNL (t-2Lt) (3.54)

Notice that Eq. 3.54 is approximate since jNL was replaced

by a truncated Taylor series using a finite difference

equation.

For the tangent stiffness formulation, the unknown

variable is f . To minimize the error in this case, we

solve for a correction displacement Aq satisfying

K, A(t) = f (t)i1 (static analysis) (3.55)
-t_ -u

Then the updated response Aqi is given as

i = -1 ~i (3.56)

The residual force vector is reevaluated next using Eq.

3.38 (notice that AF is a function of Aq ). The procedure

to minimize f , referred to as equilibrium iteration,
-u

therefore consists of solving Eqs. 3.55, 3.56, and 3.38

until some convergence criterion is satisfied, whereupon the

solution proceeds to the next time step. In Eq. 3.55, if

Ki is reevaluated after each iteration, we are using a
-t

Newton iteration scheme. It is apparent that the

reevaluation and refactorization of K is computationally
-t

expensive, and may render the tangent stiffness approach
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highly inefficient compared to the pseudo-force and pure

unconventional approaches. However, the K need not be
-t

constantly reevaluated. The following pages examine in more

detail the different equilibrium iteration techniques

available.

Numerous schemes have been developed for efficiently

minimizing f in Eq. 3.38 and obtaining accurate

estimates of Atq in Eq. 3.55. In general the main

obstacles to the techniques' efficiency are due to

reestablishing the Jacobian (K) in Eq. 3.55 and

numerically solving the equation to find a better

approximation to Aq. We shall investigate the Newton,

modified Newton, and quasi-Newton methods.

In Newton's method, K in Eq. 3.55 is updated and
-t

refactorized after each iteration. This technique produces

highly accurate results and converges quadratically once an

approximation has been found in the neighborhood of the

solution and if I' is continuous (21). However, each

iteration consists of reforming the tangent stiffness matrix

corresponding to the new configuration and then deriving the

inverse or factorizing the stiffness matrix to solve Eq.

3.55. Evaluating the new stiffness matrix requires O(n 2 )

operations while the numerical decomposition to find the

approximation requires O(n 3 ) operations. Such calculations

for large systems can easily produce an economically

intractable problem, thus necessitating the use of more

effective techniques.
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As a result, Newton's method has been modified such

that the tangent stiffness matrix is not reevaluated after

each iteration but rather at preselected intervals or when

the solution begins to diverge. This technique, the

modified Newton's method, significantly reduces the cost of

reforming the stiffness matrix and implementing the

numerical decomposition. Simply stated Eq. 3.55 is

rewritten as

KAq (t) = fut) (3. 570)

where T<t is a previous time step or iterative cycle when

equilibrium was satisfied.

Since the tangent stiffness matrix is not reevaluated

after each iterative cycle or even during each time step,

the convergence properties of the modified Newton method are

less than quadratic. In the case where T = t-At (update

once during each time step), the modified Newton's method

converges linearly. Greater convergence efficiency is

obviously attained by reevaluating the stiffness matrix more

often, but this process simultaneously reduces the

technique's economic effectiveness. The analyst

consequently must have a good "feel" for the degree of

nonlinearity present in the problem to judiciously choose an

efficient updating interval.
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In the limit, T=0 and the evaluation and decomposition

of the stiffness matrix is performed only once at time 0.

This approach is referred to as the "initial stress" method.

For highly nonlinear problems the solution may converge very

slowly or even diverge, especially for stiffening systems,

and consequently acceleration schemes such as the Aitken

acceleration (2) are combined with the modified Newton

technique, where the Aitken acceleration imposes the

following correction:

+q(t A~ t a A~C)(3. 8)

and a is the acceleration coefficient matrix given as

(t) /(t A (t) (3.59)

Due to the inefficiency of Newton's method and the

poor convergence quality of the modified Newton method, a

third scheme, the quasi-Newton method, has been investigated

and recently applied to structural problems (7,21,22,29,45).

Historically speaking, the quasi-Newton method was

first introduced by Davidon in 1959 and popularized by

Fletcher and Powell in 1963 (21). In 1965 Broyden

generalized the technique and applied it to the optimization

of nonlinear systems of equations. Mathies and Strang in

1979 proposed its application to nonlinear continuum

mechanics problems.
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The conceptual framework underlying the quasi-Newton

method is fairly simple. Rather than reevaluate the tangent

stiffness matrix and derive its inverse or factorize it at

each time step, the quasi-Newton method calculates a secant

-1
approximation to K . The computational cost after the first

-t

iteration is therefore due only to the evaluation of the

secant approximation, yielding a number of operations of

O(n 2). The quasi-Newton equation is given as follows:

G (t))d _1 = f1 - f 1  (3.60)

where G' is an approximation to Kt and d equals

q (t)-q (t). The Jacobian G' is in essence obtained from

_1 using a multi-dimensional generalization of the secant

method given as

z- i-2

z z ' ~ - i i-2 Z(z ) (3. 61)
z Z z(z - z(z )- ~

Various rank one updates were initially presented, with

the following form:

i-1 - G d )rT
i i-1 + - - r (3.62)

G =G + .
ST 

-d i1

where r is an arbitrary vector such that rTd=O and y =

f i-f 1(29).
-u -u
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In Broyden's rank one update, r=d and

G i-1 +
-B =- +

i-i T
(i-1 -Ci-1 di-1 i d-1T

( - G' 1 d )d'

iT i-1id d

Similarly Davidon has suggested an update with r=y -G ld

such that

G =G +

i1- I-1i1 i- I- i-1iI-i T
- d ) (~ - G d )

i-i GI-1 i-1 T i-1
(jy - G d ) d

Notice that G is unsymmetric and G is not necessarily
--B -D

positive definite.

Rank two updates have been proposed which in addition

to being symmetric, are also positive definite. By insuring

positive definiteness, the algorithm has a greater guarantee

of numerical stability. The most popular rank two updates

are the Davidon-Fletcher-Powell (DFP) given as

T
i-1 i i i-1~

G F i -d 1 - G (I -d lT 1 1 )

"M i-T di-1 i-lTd -

+ Ii
+ v- Tv:J d

(3. 65)

and the Broyden-Fletcher-Goldfarb-Shanno (BFGS) given as

i-1 i-1
i i-i x x

G =G +-BFGS - i-lT i-

T Ti-1 i-1 I-1 i
1 C y y G

S~ iT i-1 i-i

(3.63)

(3. 64)

(3. 66)

T
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In

updates

matrix.

actual practice, the quasi-Newton scheme produces

to the flexibility matrix rather than the stiffness

Using the property

(A + arv)~ = A~1 - xz T (3. 67)

where x=A~1r, z=ATv, a=(l+avTA~lr1, we can derive the

inverse rank one update as

i- -1 (d
=G + :

1-1 i-l -1
- G

T
i-1 i-1

i-1 i-i
y )

and similarly for rank two updates. In particular

i-1 1-1 T

(T - )G
i-1 i-1

T T
i- i- d i-1 i-1
T d d d

. T .. Td (3. 69)
1-1 i-i i-1 i-1

The procedure for implementing the quasi-Newton method

is as follows:

1. Evaluate di = -(G*)~f
I -u

2. Set qi+l(t) = qi(t) + d'

3. Compute fi+l(t), and therefore y f i+1 (t) --u -u

f (t)
-u

4. Derive new Gi+1

5. Check convergence criteria

6. Repeat steps 1-5 until convergence is attained

T

(3. 68)

-BFGS
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To further accelerate the convergence rate, various

line search schemes have been proposed. Rather than setting

i+1 i+ d (3.70)

a line search is performed in the direction d to obtain an

optimal scalar multiplier S such that

.T|
d 1 i i = 0 (3.71)

Then

1+1 ±
+ i + d (3.72)

Although the line search should reduce the required number

of iterations, the process of determining # is expensive.

Bathe and Cimento (7) state that the convergence rate is

satisfactory without the line search scheme when

i d(f 3.73)

with n=0.5.

Numerous papers discuss the convergence properties of

the quasi-Newton method (22). In general, if various

conditions are satisfied by the Jacobian in the neighborhood

of the solution, it can be shown that local convergence

occurs, either linearly or superlinearly. Superlinear

convergence occurs when

i+1 - C* (t) - 3* (3.74)
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where q is the exact solution and the sequence {a.}

converges to zero. The reader is referred to the references

for further details.

Finally, it should be noted that in particular cases,

the convergence using a quasi-Newton scheme may become

extremely slow. After each iteration, the condition number

of the new matrix is evaluated and if found larger than a

set tolerance, the update is not implemented (otherwise the

matrix becomes singular). In such cases of significant

nonlinearities, the Newton method can be used for n

iterations until the residual is less than a certain

tolerance, and then the quasi-Newton scheme can be

reimplemented.

With regard to all iteration schemes, Bathe (7)

recommends the modified Newton combined with the Aitken

acceleration for mildly nonlinear problems. However, if

significant nonlinearities exist, then the less cost

effective BFGS technique should be used. In general,

dynamic analyses will not exhibit sudden changes in the

response since the inertia terms tend to act as

smootherners, inducing less iterations, and therefore the

BFGS may still be economical.

Notice that -the equilibrium iteration methods can also

be combined with the force extrapolation scheme of the

pseudo-force method. By doing so, approximations in the

force extrapolation are offset by the iteration techniques.
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A physical feel -of how each equilibrium iteration

method operates is grasped readily by considering a SDOF

system. Both the Newton and modified Newton methods employ

the tangent stiffness, the difference between the two being

how often the tangent stiffness is reevaluated. The

quasi-Newton method actually uses the secant flexibility,

but can be interpreted as an updating scheme that produces

the exact secant stiffness by adding terms to a previous

secant stiffness. These three approaches for SDOF systems

are shown in Fig. 3.1.

All iteration techniques require some definition of

convergence. Briefly stated, the convergence criteria may

be defined in terms of displacement, force, or energy

residuals such that convergence occurs when

IW (t) - w 1 (t) 2 < E (3.75)

Il W ~_ (t) 2

or we can use

-(0) 2  - 11 (t)12 < (3.76)

11i-1 (t) 12

where W is the defined converging quantity, E is the

convergence tolerance, and the subscript 2 refers to the

Euclidean norm. Since it can be easily shown that

Qxyj-jyJJ<jJx-y , Eq. 3.75 is usually a more stringent

criterion than Eq. 3.76. When W represents the

displacement residual, the convergence requirements are

fairly modest and may even give a false sense of
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convergence. Force criteria are more stringent since the

stresses are derived from strains, which are the derivatives

of displacements. Energy and force criteria are often used

for stiffening structures while displacement and energy

forms are used for softening structures (7).

As a general comment on the three types of solution

formulations, the pure unconventional form combined with an

explicit integrator exhibits the worst stability but good

accuracy. In terms of implicit integrators, the tangent

stiffness formulation demonstrates extremely good

convergence and stability properties, while the pseudo-force

method is also stable, but does not converge in all cases.

However, because the pure unconventional and pseudo-force

methods never involve any updating of the stiffness matrix,

both approaches are fairly efficient, with the pure

unconventional form being more efficient for small systems

and pseudo-force form for large systems. The tangent

stiffness formulation is extremely uneconomical when used in

conjunction with the Newton method. Recent studies,

however, indicate that the tangent stiffness method combined

with a quasi-Newton iterator becomes highly attractive for

problems with significant nonlinearities (78).

3.2.2 Nonlinear Modal Analysis in the Time Domain

The excessive cost for performing some nonlinear

analyses, particularly when parameter studies are conducted,

has prompted various researchers to adapt modal analysis

techniques to the solution of nonlinear problems
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(3,8,30,48,49,51,52,53,75,80). Some approaches have

produced relatively good results economically while others

have yielded marginal results at a cost comparable to time

integration methods. This section identifies the major

issues associated with adapting linear modal analysis

techniques to nonlinear continuum mechanics problems.

The linear mode superposition technique gains its

attractiveness mainly because complicated structures can be

analyzed with a relatively small number of degrees of

freedom. Given a large system whose geometry is fairly

complex, but behavior is relatively simple, a typical direct

time integration technique requires large structural

matrices to model the structural geometry, even though the

response can be derived by a linear combination of a small

number of basis vectors -- more commonly referred to as mode

shapes and derived from the following linear eigenvalue

problem:

SMAO (3.77)

where K and M are the structural stiffness and mass

matrices; (, the matrix of mode shapes or eigenvectors;

and A, the diagonal matrix containing the eigenvalues.

From a mathematical point of view the displacement

vector q is defined as a linear combination of the

eigenvectors . In other words

(3.78)
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where y are the linear combination coefficients, referred to

in engineering jargon as the generalized coordinates. If

the matrices K and M are of size m, then there exist m

eigenvectors and therefore m generalized coordinates. In

most cases the response q can be represented by a reduced

set of n eigenvectors, where n<m. By using only n

eigenvectors to represent q, q is transferred from the

vector space [m to a reduced vector space n

This concept of representing the response by a reduced

vector space when applied to the equations of motion

produces a smaller dynamic problem. More specifically,

substitute q by its generalized coordinate representation Oy

and then pre-multiply all matrices by OT to obtain a new set

of equations given as

v + r; + Av (3.79)

T L= T D
where _ = C c A= F

T
with respect to M such that T M

that A is diagonal. F is als

criterion is satisfied (KM~1 C

Eq. 3.79 represents a set of n

can be solved independently

analytical solution procedures

freedom) systems. Even when

uncoupling or uncoupling does

results when n(<m since the

, and + has been normalized

= I. Notice from Eq. 3.77

o diagonal when the Fawzy

is symmetric). Consequently,

uncoupled equations which

using various numerical and

for SDOF (single degree of

advantage is not take of the

not occur, economy still

matrix sizes and computer
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storage requirements are reduced. The final solution after

solving for y is q= jD.

To insure that the solution is economical, n should be

much smaller than m. However, if n is too small, the

response q cannot be represented adequately by the selected

n eigenvectors D, and the analysis must be performed again

with a larger n. Especially when the local structural

response is desired, such as in fatigue analyses where the

stresses must be determined accurately, or when the

excitation varies considerably over the structure or

contains very high frequency components, a large number of

mode shapes must be employed, and the modal analysis

approach may no longer be attractive (85).

In essence a Rayleigh-Ritz type analysis is performed

when mode superposition is applied to nonlinear problems.

Since the stiffness, damping, and mass matrices may in

general change with time, the eigenvectors derived from the

initial conditions no longer represent all deformed shapes,

but may be considered the selected Ritz vectors. As a

result it would be expected that the initial mode shapes may

still adequately reproduce the actual nonlinear response if

no significant changes occur in the structural matrices.

Otherwise updates to the initial shapes or an alternate

method for selecting shapes should be implemented. In any

event, if the response is adequately represented, a

significant economy results from the reduction in the matrix
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sizes and the possibility of using larger time steps.

The major consideration in performing a nonlinear modal

analysis and obtaining accurate results is selecting the

appropriate basis vectors. In general the basis vectors

should be linearly independent and span a substantial

portion of the solution space, be easily and economically

generated, and remain good representations of the response

over long time periods (52). The first requirement ensures

convergence of the Rayleigh-Ritz solution while the others

enable economically derived and accurate answers.

Four methods currently described in the literature will

be presented in the following paragraphs. The simplest

method employs only the linear eigenvalues throughout the

analysis (8,48,75). Although the linear basis vectors are

adequate for mildly nonlinear problems, variations tend to

become unacceptable for problems with significant geometric

nonlinearities. Problems with highly localized nonlinear

material behavior are also poorly reproduced. In general

the number of eigenvalues adequately reproducing the linear

response are also sufficient for the nonlinear analysis of

stiffening structures, but may be inadequate for softening

structures since in such cases the structural period

increases, requiring more eigenvalues (8).



108

A similar modification of the first method employs

linear basis vectors combined with basis vectors derived

from the eigenvalue problem of the structure in some of its

deformed nonlinear configurations (49,52). Using these

vectors as the initial basis vectors, the analysis is

performed with no updating. This method provides

significant economies, but the selection of the nonlinear

basis vectors without knowing the expected structural

response requires considerable judgement on the part of the

analyst.

The third method is a slight modification of the linear

basis vector approach and uses linear updates to the initial

vectors (3). Whenever the force residual f becomes greater

than a certain tolerance, the basis vectors necessary to

reduce the residual f are generated and then normalized
-u

with respect to the current set of basis vectors. Although

this method yields more accurate results than the first

method, it is expensive to perform since the entire

stiffness matrix must be regenerated and the eigenvalue

problem solved throughout the analysis.

The last method involves deriving the initial linear

eigenvectors and then carrying out the analysis by updating

whenever the residual f becomes excessive (51). Although

similar to the third method, this method is more economical

since the complete eigenvalue problem is never solved, but

rather the super-variational approach generates
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approximations to the current basis vectors from the

previous vectors (84). As a result the response can

theoretically always be represented adequately.

Briefly stated the super-variational approach first

updates the eigenvalues using the following algorithm:

2(k) (k-1) T (k-1) (3.80)

where k is the iteration number; i, the mode number;

K(q ), the stiffness matrix at this step; and 4., the

normalized basis vector. A correction factor a. is then

defined as follows:

(k-1) T 2(k) (k-1)

a i (k) (K( Q) -o M)$
2(k) 2(k)

Wj 1

Finally the updated eigenvectors are derived using the

following expression:

[i 
n

(k) = C(k) (-1) a (k) (3.82)

where n is the number of basis vectors and c (k) is a
i

normalizing factor. Various studies using the

super-variational approach indicate a quadratic convergence

(51).

In general the mode superposition technique is

economical in linear analyses when n<<m, but the solution

may not be feasible for nonlinear problems when modal

updates must be implemented. Even if no updates are
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required, the response must be constantly transferred from

the generalized coordinates to the natural coordinates to

reevaluate the nonlinear terms in the pseudo-force approach

and, when necessary, to reform the stiffness matrix, thus

further reducing the solution efficiency.

3.2.3 Nonlinear Modal Analysis in the Frequency Domain

Although the use of a nonlinear modal analysis

technique in the time domain may be more economical than the

direct time integration solution, a numerical integrator is

still used, and therefore accuracy and instability problems

are present and may invalidate the results. This section

addresses a nonlinear modal analysis method in the frequency

domain, subsequently referred to as the hybrid

frequency-time domain (HFT) technique.

Obtaining the solution in the frequency domain has the

advantage of using a theoretically exact numerical

integrator given in terms of the transfer function H (H

approaches the exact form in the limit as the frequency

spectrum range is extended to o and the frequency increment

tends to zero). Moreover, the analytical form of H can be

modified such that it equals 0 for values above a specified

frequency. In other words, an infinite artificial damping

can be imposed at the higher frequencies.
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In general the proposed hybrid frequency-time domain

scheme employs the pseudo-force equations of motion in

generalized form

- +NL
(3.83)

where the ~ denotes a generalized matrix.

function H is therefore

The transfer

2- . _)
H(W) = (-W 11 + iW~C + K (3.84)

where w is the circular frequency. The solution procedure

consists of obtaining the response Y(w) in the frequency

domain, transferring Y(w) to the time domain to evaluate

FNL, transferring FNL to the frequency domain, and iterating

back and forth until the solution converges. Chapter 5

examines the computational efficiency and accuracy

characteristics of the HFT method and describes in detail

the mechanics of implementing an HFT analysis.
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CHAPTER 4

ANALYSIS OF NUMERICAL INTEGRATION METHODS

The energy equations derived in Ch. 2 represent

mathematically the dynamic nonlinear behavior of a

continuum. These second order nonlinear ordinary

differential equations pose an initial value problem whose

analytical solution exists only for the most basic problems.

Structural dynamic problems, consequently, are solved

numerically by a spatial discretization using finite

elements and a temporal discretization employing finite

difference methods. More recent approaches include temporal

discretization by finite elements (26,28,56,95) and spatial

discretization by a spectral approach combining a series

solution with transform methods (31). This chapter examines

popular numerical integration techniques and their ability

to produce precise solutions. Stability and accuracy are

analyzed with standard time domain schemes, and an alternate

approach in the frequency domain is presented. The practice

of selecting an appropriate time increment is reviewed, and

the chapter concludes with a summary of case studies and the



113

implications of extending accuracy and stability

considerations to nonlinear analyses.

4.1 STABILITY AND ACCURACY ANALYSIS OF NUMERICAL INTEGRATION

SCHEMES

Stability of a numerical integrator implies that the

solution remains bounded as it progresses in time. Applying

numerical integrators inherently involves approximating the

differential equations by an algebraic system, whose errors

and assumptions may lead to instability. The second feature

is accuracy. Accurate solutions are attained by employing

small time increments, but economic considerations dictate

the use of large time increments. A compromise between

these conflicting requirements is achieved by investigating

the accuracy parameters as functions of the time increment

to natural period ratio.

Although it is often convenient to examine stability

and accuracy separately, it is stressed that the fundamental

purpose of analyzing numerical integrators is to determine

if the numerical solution converges. The necessary

requisites for convergence are' a stable and accurate

solution, and consequently these two characteristics by

themselves have no significance. Furthermore, stability can

be considered a prerequisite for accuracy since accurate

results are unattainable for an unstable solution, while the

converse statement is untrue. The following discussion will

emphasize the interrelation between stability and accuracy.
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The solution of linear systems converges when the Lax

equivalence theorem is satisfied (71). This theorem states

simply that stability is a necessary and sufficient

condition for convergence when the finite difference

approximation of the governing equation is consistent.

Convergence of the numerical integrator means that the

numerical solution approaches the exact solution as the time

increment tends to zero. Consistency implies that the finite

difference approximation approaches the exact differential

equation as the time increment becomes infinitesimal (the

rate that the error decreases is defined as the order of

accuracy). Stated differently, all terms must be

approximated to the same time increment truncation error.

We now examine stability by considering the governing

equation of motion for a linear problem

M' + C; + Kq - F (4-1)

with initial conditions _1(0) and 4(0). If C satisfies the

Fawzy criterion (KM 1 C is symmetric), the eigenvalue problem

produces classical normal modes, and Eq. 4.1 can be

rewritten in generalized (normal-mode) form

14y + Cy + Xy = F (4.2)

where each term is defined as in Eqs. 3.78 and 3.79 and all

structural matrices are diagonal. As a result of Eq. 4.2,

stability can be examined by considering separately the

independent equations of each mode

m.y. + c.y. + k y = F. (4.3)
171 i ili 1
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The subscript i and tilda (~) are omitted in the subsequent

development.

The free vibration solution to Eq.

analytically as

7 s 
(0) + y(o)(t

y(t) = e-gt sinMDt + y(0)cosDDj
WD

4.3 is given

(4.4)

where

= Ik/m

= c/2wm

D l 2 05 5

natural frequency

damping ratio

damped frequency

For an arbitrary forcing function F(t) the exact solution is

given by Duhamel's integral

t

y(t) = (1/m D)fF(T)e-W(t-T) sinwD (t-T)dT

+ damped free vibration (Eq. 4.4)

(4.6)

or

y(t) = C (t) sinwD + C2(t)c + damped free vibration (4,7)

wheret
e

C (t) =(1/mW F(T) - cosw TdTr
1 D fo t V D

e.
e

C (W =-(1/MW F F() s inj- -r
2 D o0 i~

(4.5)

(4.8)
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To facillate the evaluation of accuracy and stability

characteristics, Eq. 4.7 is rewritten in terms of discrete

time increments At using state vectors z. The discrete form

of the exact solution can then be compared with the discrete

solution obtained with a numerical integrator. Considering

the undamped case E=0 and assuming a linear load variation

between successive time steps, Eq. 4.7 therefore becomes

z(t+At) = Az(t) + Lf(t) (4.9)

with state vectdrs

z(t) - [ y(t), Aty(t) ]
(4. 10)

f(t) - [ F(t), F(t+At) ]T

A is defined as the amplification matrix and L, the load

operator. In the general case of the underdamped problem,

the amplification matrix is given as follows:

_D os 2 D in D -U . -
A = e + e sinD(

-FsinQ D cos D
(4.11)

c Q. 1 0

27 -0.5

where

Tl = -WAt

The corresponding expression for the load operator is quite

involved. For the undamped problem, however, we have

sin if /QI

L = (1/k) - (1/k)A (4.12)

-co s - 1 1



117

In the free vibration problem the state vector for the load

is zero and we have

z(t+At) = Az(t) (4.13)

Equation 4.2 is solved numerically with the approximate

response at time nAt being denoted by d , v , and a for the
n n n

displacement, velocity, and acceleration, respectively. The

recurrence relation given by Eq. 4.9 becomes

z = Az + Lf (4.14)
-n+l --n --n

with initial conditions

d = q(O)

v = q(O) (4.15)

a = (F -cv - kd )/m
o o o 0

Equation 4.14 can also be written in terms of the initial

conditions to give

n+1

n+1 + n+l-i
z =A z e+ A Lf. (4.16)
-n+1 -0 .416

Notice that the actual form of A and L in Eq. 4.14 depends

on the selected integration operator. In particular, the

difference between the exact amplification matrix and load

operator of Eqs. 4.11 and 4.12 and those of Eq. 4.14

provides a means of analyzing the stability and accuracy

characteristics of the chosen operator. This difference can

be construed as an error, and the propagation of the error
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as n tends to infinity furnishes a measure of stability.

In a stability analysis it suffices to examine the

solution behavior for the homogeneous form of Eq. 4.16

z - Anz (4.17)
-n - -0

In other words, the finite difference approximate response

of the non-forced system with nonzero initial conditions is

examined to assess the stability and error features of the

predicted response.

Assuming the eigenvectors of A are distinct, we apply

a similarity transformation to A and obtain

A = (4.18)

where c contains the eigenvectors of A and A is a diagonal

matrix consisting of the eigenvalues X of A. Therefore,

a n -1 (4.19)

Notice in general that the state vectors corresponding

to the numerical integrator are of order three such that

z = (dn, Atvn, At 2an)T (4. 20)

Therefore, A is a 3x3 matrix, and the eigenvalues of A are

derived from its characteristic equation

det (A - XI) = -3 + 2A 2 - A2 X + A3 0 (4.21)
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where

I = identity matrix

Ai- half the trace of A

A 2 = sum of the principal minors of A

A 3 = determinant of A

Using Eqs. 4.17 and 4.19 we have

d= cn + c2 n + c3 n (4.22)

where the c. are constants derived from the initial

conditions.

In the following discussion, stability will be defined

by An being bounded as n tends to infinity. Therefore, the

spectral radius p =max{X.} must be less than or equal to
S 1

one for An to be bounded. Notice that since p depends on

0 , A is given in terms of O=WAt. If a finite Oc exists

such that the numerical integrator is stable for O<Q<Qc, the

integration scheme is conditionally stable, and if the

integrator is stable for all G, the scheme is

unconditionally stable.

The above stability definition can be depicted visually

by plotting the complex eigenvalues X onto the complex X

plane. For a given time increment At, we can evaluate the

corresponding i and if they all fall within the unit circle

XI=l, the scheme is stable. An alternate procedure is to

let X=(1+z)/(1-z) and substitute this expression into Eq.

4.21. Physical stability is then defined as the left half
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of the complex 0 plane with the imaginary axis corresponding

to undamped systems. Notice that implicit schemes are

stable outside of their stability boundary, described by Eq.

4.21, while explicit schemes are stable inside their

stability boundary.

We next examine accuracy characteristics of the

numerical integrators. Assuming that the finite difference

approximation satisfies consistency and stability occurs for

an QB >0 with 0<2<2 , the Lax theorem ensures convergence.

As a consequence, it can be shown mathematically that Eq.

4.21 has two complex conjugate roots X1 and X2 and a

spurious root X 3 such that IX 3 1<1X1 21<1 and

X12 = A + iB = e - D (4.23)

where

ID = Atan (B/A)

- 2 2 -
S= -ln (A + B )/22D

- -D( 2 )0.50 =Q0(1i- E -0.
(4.24)

W D D D/At

o = /At

i =

Notice that the tilda ()denotes approximate quantities.

Equation 4.22 can then be rewritten as (33)

d =e- (snc cosw tn + c'sinw tn) + c3 X~ .25

n D
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For two root (A 3 =0) integration schemes (the Newmark

method is included in this category), we can compare

directly the numerical solution (Eq. 4.25) with the exact

solution of Eq. 4.4. The numerical solution is exact only

when G = E and D=w D. Discrepancies between the two

equations are characterized by the algorithmic damping ratio

i and the relative period error (dispersion) (T-T)/T where

T=2Tr/w and T-2rI7/. Other equivalent accuracy parameters for

numerical dissipation include the amplitude decay

AD=l-d n /d and logarithmic decrement I =ti(d n/d n )

where nD21T/ w At.

An equivalent approach to analyze accuracy for two root

schemes would be to rewrite Eq. 4.22 as (23,59,60,62)

d = ce (a+ib)FDnAt + c2e(a-ib)FODnAt (4.26a)

where wD is the damped natural frequency of Eq. 4.3 and a

and b are the numerical damping and phase shift parameters.

In particular,

a =
(4.26b)

b = D D

From Eq. 4.26b it is evident that the exact solution occurs

when a=-(1-E2 )-o-5 and b=1 and also that instability occurs

when a>O or b is imaginary. Notice once again that a and

b are functions of D*
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4.2 SURVEY OF INTEGRATION SCHEMES

Integration schemes are classified into two basic

categories: imp-licit and explicit. The explicit methods

express the response in terms of the previous response, and

hence are referred to as predictor methods, while implicit

methods define the current response in terms of other

current response quantities, and thus are called corrector

methods (for example, the velocity and acceleration at time

t may be defined as functions of the displacement at time

t). As shown in previous sections, explicit methods involve

minimal computational expense per time step, but require

small time steps to eliminate instability, while the

converse statement holds for implicit methods. The

stability and accuracy characteristics of the explicit

central difference (3 point) and implicit Newmark, Wilson-O,

Houbolt, Park, and Hilber schemes applied to linear problems

are examined in this section.

Although the discussion limits itself to the more

popular integration methods, it should be noted that new

schemes are under constant development (11) with some having

general applicability and others limited to specific

problems. Recent developments include the implicit-explicit

methods applied to systems with regions of high rigidity

coupled with regions of high flexibility, such as in

fluid-structure problems (13,14,15,36,37,41,61,63).

Semi-implicit methods combining the stability and accuracy
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characteristics of implicit methods and the non-matrix

factorizing property of explicit methods are also under

consideration (58,64,83). These new integration schemes,

nevertheless, are subject to the same basic stability and

accuracy questions.

Using the procedure outlined in section 4.1, the

spectral radius Ps of the amplification matrix A can be

derived as a function of U, and the results plotted onto

the complex U-plane. Figure 4.1 depicts the spectral radius

as a function of At/T, and Fig. 4.2 shows the stability

regions for various schemes. Notice that 2 in Fig. 4.2 is

equivalent to our w, the exact undamped natural frequency.

Accuracy is analyzed next, yielding results such as Fig. 4.3

for Eq. 4.25 (T is the same as our T, the algorithmic

damping ratio, and T, the period elongation defined by

Eq. A.16) and Fig. 4.4 for Eq. 4.26. Similar accuracy

plots can be derived for other physical damping ratios.

Figures 4.1-4.4 offer insight into the rationale behind

selecting an appropriate integration scheme. The central

difference method tends to be the favorite among explicit

schemes. Park (60) demonstrates that the central difference

method displays better stability and requires less

computational cost than the predictor-corrector schemes,

high-order Taylor series, and 4th-order Runge-Kutta scheme.

Krieg (40) states that the central difference method has the



124

p 1. ABBREVIATIONS:
S R

R: orooosed p-method

N P (p-0. 8)

A: Hilber's. a-method
(a--0.1111)

A

0.9 N: Newmark's algorithm

(y-0.6111, 3-0.3086)

w: Wilson's algorithm
(0-1.4)

P: Park's algorithm

H: Houbolt's algorithm
0.8

H W W

0.01 0.1 1 At/ T 10 100

Fig. 4. 1 Spectral radii of the amplification matrix A as a function of AI/T (no physical damping)
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largest critical time step of all explicit second order

schemes, and furthermore that all explicit second order

schemes are conditionally stable. In particular, Fig. 4.2

denotes the stability region of the central difference

method to range from -21 to 21. As a result, for the

undamped free vibration problem (imaginary axis) we have

wAt<2, implying for the critical time step

At < 2/w = T/7 (4.27)
cr-

Notice from Fig. 4.4 that the central difference scheme

exhibits a period compression.

The selection of a "best" implicit scheme is subject to

interpretation. From Fig. 4.3 it appears that the recent

scheme of Hilber (33) and that of Bazzi and Anderheggen (11)

demonstrate good algorithmic damping and low relative period

errors. Moreover, these two schemes have the capability to

control the numerical dissipation by a nonphysical external

parameter ( a or p ). The Newmark method (a=0. 2 5 , 6 =0.5,

trapezoidal rule), however, is also unconditionally stable

and imposes no error in the specified physical damping, as

shown in Fig. 4.4a.

As a consequence, it is emphasized that the choice of

an appropriate numerical integrator also depends on the type

of problem under consideration. If the spatial structural

modelling is accurate up to the highest modes and it is

expected that the loading will excite practically all modes,
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then an "exact" numerical integrator is preferred. Most

structural problems, however, consist of a numerical model

that adequately represents the geometric structural shape

and many of the lowest structural modes, but has no physical

significance for the highest modes. Although the loading may

excite only the lowest modes, the use of an approximate

numerical integrator may induce numerical resonance leading

to amplification of the physically insignificant high

frequency response. This class of problems, consequently,

is solved preferably by numerical integrators that damp out

the high frequency response and remain stable at these

frequencies, displaying no errors in the high frequency

contribution.

4.3 LINEAR SYSTEMS THEORY APPROACH FOR ACCURACY AND

STABILITY ANALYSES

The accuracy and stability analysis scheme presented in

section 4.2 is usually applied to the homogeneous free

vibration problem. Extensions to arbitrary load histories

are often quite cumbersome, if not impossible. Accuracy,

however, varies with the load history since the load vector

is also expanded by the finite difference approximation, and

hence the effect of the load vector should also be included

in an accuracy analysis. Extending the accuracy analysis

to a general load vector is possible by conducting numerical

experiments, but this procedure is limited to a few simple

load histories since the analytical solution for most

problems cannot be derived in closed form. Furthermore,
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the algorithmic damping ratio should be viewed as a quantity

that varies as a function of the structural and excitation

frequencies. This section presents an alternate approach

by examining accuracy using linear systems theory. The

basic procedure consists of comparing the exact frequency

response function (often referred to as the transfer

function) with the approximate frequency response function

corresponding to the numerical integration scheme.

Advantages of the linear systems theory approach

include the ability to examine the algorithmic damping as a

function of the excitation frequency and how the finite

difference expansion of the load vector affects the solution

accuracy.

The procedure will now be described in detail.

Consider the numerical approximation of the governing

differential equation given by Eq. 4.3.

m j + cqn + kq = F (4.28)
n n n

All numerical integrators expand the response in terms of

other response quantities, and in general we have

k

n = (4.29)

k

4n=Ea _~q
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where a and 6 are constants. Substituting Eq.

Eq. 4.28 we obtain

k k k

M a tq. + c 6 q + kq = ZY F,

4.29 in

(4.'30)

where the y are constants. Equation 4.30 is transferred to

the frequency domain using the discrete-time Fourier

transform, and in particular at any frequency 0 the

corresponding equation is obtained by the following

substitutions:

F
n

F n-1

F -2

> e Q(Q)

> e~ Q(2)

-2 e Q-2 Q

' 0
-> e F(G)

> e , F(Q)

-1i2 QF (Q)

(4.31)

(4. 32)

yielding

k k

m .eiG(n-i)Q(_) + c 6. e-iGn-iQ( )
i=; 1 k i=01

+ke0 Q(2) y i(n-i)F()
i=0 i

Finally, the approximate transfer function corresponding to

the numerical integrator is given by

H(Q) = Q(P.)/F(Q) (4.33)

The analytical form for the exact transfer function He (W) in

Eq. 4.28 is given by

H (Q) = (-w 2m + iWc + k)~1 (4.34)
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Measures of the period elongation and numerical dissipation

can be derived by comparing Eqs. 4.33 and 4.34. In this

particular development, the period elongation is derived by

considering the shift of the resonant frequency of the

approximate with respect to the exact transfer function. An

algorithmic damping ratio is obtained by comparing the

imaginary parts of Eqs. 4.33 and 4.34.

This frequency domain accuracy analysis was applied to

the central difference (CD), Newmark (trapezoidal rule, N),

Houbolt (H), and Park (P) integration schemes. The detailed

calculations for the Park method are provided in Appendix A.

The approximate transfer functions are as follows:

iCD) = (2a 1 (cosG - 1) + 12a 2sin2 + a3 ) C4. 35)

HN(g) = (1 + cos) /((4aI + a 3 )cosQ + i4a 2 sinQ - 4a + a 3 ) (4-36)

-iQ
HHG2 ) = (2a1 + lla 2/

3 + a 3 + (-5a-6a2)e (4.37)

-i20 -i30 -1
+ (4a1+3a3 )e + (-a 1 - 2a2/3)e )

H(0) = (25a /9 + 10a2/ 3 + a3 + (-50a /6 - 5(42 (.38)

+(115al/12 + 2a 2 )e-i2Q + (-50a1 /9 - a2/3)e-i3Q

+ lla 1/6e~i4s - a1 e -i5/3 + a1e-i60/36)~

where
Q = Wat

W = natural frequency (4. 39)

a, = 1/47T2

2 nAtina

a = At2 a
3 ni

= viscous damping ratio
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The exact transfer function is given as

H (2) = 2 + i2a 2Q +a3 )
1  (4.40)

Notice that Eqs. 4.35 to 4.40 have been nondimensionalized

by multiplying the usual transfer function

H(w) = (-w2m + iwc + k) (4.41)

by -m . Also the load frequency W has been
At 2

nondimensionalized to 2 = wAt.

Comparing Eq. 4.35 with 4.40, it is evident that the

period compression in the central difference method is due

to the difference between the terms corresponding to al

( 2(cos Q-1) cf. -Q2). Also, the central difference

scheme exhibits an algorithmic damping less than the

specified damping because the approximate transfer function

has imaginary term 2a 2 sinO while the exact has 2a 2 Q-

Similar statements apply to the Newmark method. Notice in

particular that the specified viscous damping is not

algebraically associated with any real term, and conversely

that the ai and a 3 terms are not associated with any

imaginary terms. Since a2 =0 for F-0, the central difference

and Newmark schemes impose no numerical dissipation when

viscous damping is not specified.

The corresponding transfer functions for the Houbolt

and Park schemes, Eqs. 4.37 and 4.38, indicate that the

viscous damping is associated with real terms and therefore

directly induces period elongation and the terms
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corresponding to al and a 3 directly induce numerical

dissipation by affecting the imaginary components, contrary

to the central difference and Newmark schemes.

Plots of the transfer functions are given in Figs. 4.5

to 4.12. The eight figures consist of four sets of two with

the first set being the central difference; second,

Newmark; third, Houbolt; and fourth, Park. The first

figure of each set corresponds to a specified viscous

damping ratio =0.05 and the second, g=0.10. Figures a

and b of each figure give the amplitude and phase plots for

At/T =0.05, and Figs. c and d give similar plots for

At/T =0.20. These plots are discrete representations of

Eqs. 4.35-4.38 and Eq. 4.40. As a result, the maxima of

each transfer function could not be captured exactly

when plotted. Numerically obtained values for the

maxima and the corresponding resonant frequency are provided

in Table 4.1. In all plots the inverted hat "v"

corresponds to the approximate transfer function and the

solid line to the exact transfer function.

Notice that the central difference method provides the

best estimate of the

distortion). Its use,

it is an explicit in

to demonstrate the

artificial damping of

Houbolt is the worst of

Newmark, Houbolt, and

resonant frequency (least frequency

however, is restricted because

tegrator. The Newmark method tends

least frequency distortion and

the implicit methods, while the

those considered. In general, the

Park methods deamplify the response
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for frequencies greater than the resonant frequency and

amplify for those less as shown in Figs. 4.7 a,c to Figs.

4.12 a,c. The central difference method depicts a reverse

trend. Although these plots portray the Newmark method as a

more accurate integrator than the Park method, it should be

remembered that these results are limited to linear

analyses. Extensions to nonlinear analyses are presented

in section 4.5.

As mentioned previously, it is also possible to derive

plots of the period elongation (or bias, Eq. A.16) and

algorithmic damping T versus At/T . Such plots are given

in Figs. 4.13-4.16 for specified damping ratios of 0.00,

0.02, 0.05, and 0.10. Notice that the central difference

method exhibits no artificial damping when E=0. However,

when a nonzero viscous damping is specified, the central

difference method produces a negative artificial damping.

In summary we note that the linear systems theory

accuracy analysis scheme provides an elegant means of

examining period elongation and numerical dissipation.

Contrary to the conventional time domain method where the

algorithmic damping ratio and period elongation correspond

to the resonant frequency, this approach gives insight

as to how the response is deamplified or amplified

throughout the entire frequency spectrum. Furthermore, the

effect of expanding the load by a finite difference

approximation is also included. Finally, notice that the
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plots given here correspond to the transfer functions by

themselves. Consequently, these accuracy plots apply to the

impulsive free vibration problem (the Fourier pair of H(w)

is h(t) where h(t) is the impulse response function). The

analysis can be extended to more general loadings by

transferring the load to the frequency domain, multiplying

by the transfer function, and then comparing He(w)F(w) with

H(w)F(w). In essence, the frequency domain representation

of the load represents a weighting function, which when

multiplied by the approximate transfer function, amplifies

or deamplifies the inaccuracies in the approximate transfer

function at each frequency.

Stability can also be investigated by using the

z-transform in place of the Fourier transform (57). The

z-transform X(z) of a sequence x(n) is given by

X(z) = x(n) z-n (4.42)
n=- o

where z is a complex variable. Stability is then defined by

the region of convergence of the z-transform or those

sequences of z for which the z-transform converges. In

particular, the region of convergence cannot contain any

poles, and a stable right-sided sequence (defined only for

n>0) therefore has no poles located outside the unit

circle. An illustrative stability analysis of the central

difference method is given in Appendix B.
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4.4 RELATION BETWEEN TIME AND FREQUENCY DOMAIN STABILITY
ANALYSES

Time and frequency domain analyses are equivalent forms

for analyzing the same problem. The alternate frequency

domain analysis presented in section 4.3 should therefore be

equivalent to the time domain analysis given in section 4.1,

assuming that we are considering the free vibration problem

in both cases. The conventional stability and accuracy

analyses were restricted to the free vibration problem, and

hence the following discussion is limited to this particular

problem.

The stability analysis in the time domain begins with

Eq. 4.22, corresponding to the homogeneous governing

equation. Stability is ensured when the spectral radius is

less than or equal to one. Let us now transfer Eq. 4.22 to

the frequency domain using the z-transform, defined by Eq.

4.42. The response Q(z) is given by

Q(z)= dz-n = C z-n + c2  X z -n

n=0 n=0 n=0
CO

+ c3 n -n

n=0 (443)

z z z z
c +c z assuming > 1

1 z-X 2 z-X2 3 z-.3

z{c 1 (z-X 2 ) (z-X 3 ) + c 2 (z-X 1 ) (z-X 3 ) + c3 (z-X 1 ) (z-X 2

(z-X 1 ) (z-X2) (z-X3

For the free vibration problem, the excitation F can be

regarded as an impulse, implying that

F(z) = 1 (4-44)
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The transfer function H(z) is defined as

H(z) = Q(z)/F(z) (4.45)

H(z) is the z-transform of the unit impulse response

function h(n). Since h(n) is a right-sided sequence, the

region of convergence of H(z) is the exterior of the unit

circle centered in the z-plane, implying that all poles of

H(z) must be located inside or on the unit circle to ensure

stability. From Eq. 4.43, the poles of H(z) are located at

Xi, X2, and X3. As mentioned previously, stability in the

time domain implies that the spectral radius is less than or

equal to one. Therefore, the equivalent stability

definition in the frequency domain is that all poles of H(z)

lie within or on the unit circle in the z-plane. Notice

in general that F need not be an impulse, and therefore the

poles of Q(z)=H(z)F(z) may differ from the poles of Q(z)=

H(z)-l. In particular, a situation where both the

denominator (transfer function) and numerator (load vector)

equal zero may occur, and therefore it is mathematically

possible for the finite difference expanded load vector to

affect the system stability.

A similar argument can be presented for the accuracy

analysis. Equation 4.4 corresponds to the exact free

vibration response, and Eq. 4.25, the numerically

integrated response. The impulse response function h by

itself gives the free vibration response. Therefore, Eqs.

4.4 and 4.25 can be considered the exact and approximate

impulse response functions. Rather than comparing the two
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in the time domain to obtain estimates of the artificial

damping and frequency distortion, we transfer both equations

to the frequency domain and compare the properties of their

transfer functions H. Notice that the presentation in

section 4.3 was limited to the Fourier transform H(w), and

therefore corresponds to the behavior on the unit circle in

the z-plane.

4.5 EXTENSION OF ACCURACY AND STABILITY ANALYSES TO

NONLINEAR PROBLEMS

The amplification matrix A depends on the system

properties, and consequently the stability and accuracy

analysis of section 4.2 must be modified for nonlinear

problems characterized by time dependent structural

matrices. This section examines an analytical approach to

nonlinear problems and also surveys the results of numerical

experiments.

4.5.1 Analytical Approach

The stability of nonlinear problems is governed by the

interaction of the numerical integrator with the approximate

formulation of the governing equations of motion.

Unconditionally stable integration schemes may become

unstable for nonlinear analyses. Park (59,60,62) extends

the stability analysis to nonlinear systems by accounting

for the change in stiffness with time and then examining

local instability (instability occurring in a small sequence
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of time steps). His approach considers two cases: problems

where the nonlinearities are evaluated exactly and those

where a pseudo-force or tangent modulus approximation is

involved.

The exact evaluation of the nonlinearities is discussed

first. For a linear undamped system the equation describing

the stability region of the trapezoidal rule, shown in

Fig. 4.2, is given as (see ref. 60 for details)

-2 2
2 W At
z + = 0 (4.46)

4

When nonlinearities are included, the characteristic

polynomial is derived in the same fashion as for Eq. 4.46,

but for the numerically expanded governing equation where we

assume that w varies with time. In particular, the

stability equation for the trapezoidal rule becomes (60)

4z2 + (At 2) ( - )z + (Lt 2/2)( ( +wn-1= 0 (4.47)n nn n-

where W is the natural frequency at time t . Notice from
nn

Eq. 4.47 that if W < E at time t (a softening system), the
n n-1 n

coefficient of z is negative, and consequently the

trapezoidal rule produces local instability. Also, if En

equals n-l Eq. 4.46 is obtained. On the other hand, if

S> (a hardening system), the trapezoidal rule retains

local stability.
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The corresponding equation for the Houbolt method is

(60)

3 2 -2 2 3
12z + 4z +w At (z + 1) =0 (4.48)

and the Park method (60),

256z6 + 576z5 + 516z4 + 216z3 + 9W 2t 2(z + 1) = 0 (4.49)
n

Notice from Eqs. 4.48 and 4.49 that the Houbolt and Park

methods are unconditionally stable when no pseudo-force or

tangent m'odulus approximations are involved since the

coefficients containing Wn always remain positive.

Furthermore, the corresponding linear stability equations

differ from the nonlinear equations only because W now

varies with time. A time dependent structural stiffness,

therefore, only affects the accuracy.

Comparing Eq. 4.47 with Eqs. 4.48 and 4.49, it is

apparent that the instability of the trapezoidal rule arises

from the admission of past-step derivatives wn-l'

Park (60) considers next the instability of numerical

integrators used in conjunction with the approximate

pseudo-force and tangent stiffness methods, that are based

on finite difference extrapolations and differentiations of

the external and internal force vectors. These finite

difference approximations linearize the governing equations

of motion, and as a result introduce errors in terms of past

step derivatives. It is expected, consequently, that

combining the Houbolt and Park methods containing no past
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derivatives with solution approximations that introduce past

derivatives produces a system that may be unstable.

This suspicion is indeed confirmed by examining the

stability equations derived for the pseudo-force approach.

The stability equations in terms of X are given as follows

(60):

Trapezoidal Rule:

4X4 - 8 X2 + -At + 2(1 + + (461- 62 + 1) 2

] (4.50)
+ 2(6i 7 6 2 )-21 

(

Houbolt Method:

(2X3 - 5X2 + 4X - 1) + w2 (X3 + 26 1 X 2X) = 0 (4.51)

Park Method:

(13- 152 +16X -1)2 + 36 2At2 (6 +2 5 _ 4) = (4. 52)

where

@f(q n-1-i)
6= (1/w 2 )

(4.53)

f(q) = -j 2 qn + FNL

Notice that Eqs. 4.50-4.52 contain past step derivatives in

terms of the . , and therefore all methods exhibit a

conditionally stable behavior.
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Figure 4.17 depicts the stability regions plotted on

the S. plane for two different wAt values. Regions I and

III correspond to hardening and softening systems,

respectively, while the other regions refer to the combined

case. In particular, observe that the stability region

(area inside the diagrams) in quadrant I contracts more

rapidly than that for quadrant III as wAt is increased,

indicating that stiffening effects (for example, geometric

nonlinearities) govern more severely the time increment than

softening effects (for example, plastic material behavior).
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4.5.2 Numerical Experiments

The extension of the analytical stability approach to

nonlinear problems provides valuable insight into how the

numerical integrators interact with the solution formulation

and identifies the inclusion of past derivatives as a source

of error propagation. Nonlinear problems, however, admit

other sources of instability such as the material model,

equilibrium iterator, and pseudo-force derivation. The

current state of research, consequently, assesses

instability more readily by conducting numerical

experiments. This section presents a summary of these

numerical experiments.

Stricklin in 1971 (81) analyzed a shell of revolution

subjected to a step pressure loading. Only kinematic

nonlinearities were included, and the numerical solution was

derived by the 4th order Runge-Kutta, Newmark (a =0.25,

6 =0.5), and Houbolt schemes applied to a conventional

pseudo-force formulation of the equations of motion with

linear load extrapolation. A quadratic load extrapolation

scheme was also implemented, but produced numerical

difficulties. The results indicated that the Houbolt method

was more stable and accurate than the Newmark scheme and the

Runge-Kutta method required extremely small time steps for

acceptable errors.
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Wu and Witmer in 1972 (93) examined structural problems

with kinematic and material (elastic-plastic) nonlinearities

using the 3-point central difference, Newmark (trapezoidal),

and Houbolt methods. A conventional pseudo-force

formulation was employed for the implicit schemes while both

conventional and unconventional formulations were used for

the explicit scheme. The pseudo-forces were extrapolated

linearly. Based on their results, the Houbolt scheme again

produced accurate results at a larger time increment than

the Newmark method. Furthermore, the central difference

method exhibited a smaller critical time increment for

nonlinear problems compared to that for linear problems.

Also in 1972 Weeks (86) studied both the pseudo-force

formulation with linear load extrapolation and the tangent

stiffness formulation with Newton equilibrium iteration.

The central difference, Newmark (trapezoidal), and Houbolt

methods were applied to a SDOF system subjected to a

rectangular load history and a cantilevered rod excited by

an impulsive load. Only kinematic nonlinearities were

included. In the pseudo-force formulation the Newmark

method became unstable for large time increments while the

Houbolt method remained stable. Both the Houbolt and

Newmark methods remained stable at time increments small

enough to reproduce the solution when using the tangent

stiffness formulation, but the Houbolt method exhibited

considerable damping. Weeks concluded that the Newmark

method with load extrapolation and small time increments
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produced the most accurate results at minimal computational

cost.

McNamara analyzed in 1974 (46) the central difference,

Newmark (trapezoidal), Houbolt, and Wilson-O (9=1.5)

operators combined with the tangent stiffness formulation

using a modified Newton iteration scheme (stiffness

reformulated after each time step). A beam clamped at both

ends subjected to a point step load and the same beam with

an impulsive load were considered. The first case consisted

only of kinematic nonlinearities while the second case also

included material nonlinearities (elastic-plastic model).

In both cases the Houbolt method was the best scheme. For

the step load case the Houbolt method produced stable

results for all time steps considered while the Newmark and

Wilson-e methods became unstable at a time increment 1/5th

of the largest considered and the central difference, at a

time increment 1/30th of the largest. The Newmark method

was the most unstable scheme for the impulsive load problem.

Park developed in 1975 (60) a stiffly stable scheme by

combining the Gear two-step and three-step methods. The

scheme was compared with the Houbolt method using a

conventional pseudo-force formulation with linear load

extrapolation applied to a simply supported cylinder under a

uniform external impulse and also a shallow spherical cap

clamped at the edges and subjected to a step load at its

apex. Kinematic and material (elastic-plastic)
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nonlinearities were considered for the first problem while

only kinematic linearities were admitted in the second case.

The results indicated the Park method produced an accurate

displacement response for a larger time increment.

Additional studies (59) employed the tangent stiffness

formulation with modified Newton iteration (reformulate

stiffness at each time step). The Newmark (trapezoidal),

Houbolt, and Park methods were applied to a softening spring

and then to a cubically hardening spring problem. The Park

scheme produced stable results in both cases and provided

the most accurate displacement response. The Houbolt method

also gave stable results in both problems, but exhibited a

significant damping and a greater period elongation.

Finally, the Newmark method began to display global

instabilities for At/T>1/4 in the hardening case and

At/T>1/6 in the softening case.

Adeli, Gere, and Weaver in 1978 (1) conducted a

comprehensive study of popular explicit schemes in addition

to the implicit schemes. The explicit central difference,

trapezoidal rule with two cycle iteration, and the 4th order

Runge-Kutta and the implicit Newmark (trapezoidal), Houbolt,

and Park schemes were combined with the tangent stiffness

formulation of the equation of motion and a modified Newton

iteration method. A plane stress problem consisting of a

plate uniformly loaded in its plane at the mid-line with two

edges free and the other two clamped was examined. A

bilinear material model was employed and kinematic
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nonlinearities were included. The final results in terms of

computational efficiency and accuracy indicated the central

difference method to be the best of the explicit methods,

while the 4th order Runge-Kutta and trapezoidal rule with

two-cycle iteration were next and demonstrated similar

effectiveness. Both the central difference and trapezoidal

rule with two-cycle iteration exhibited instability at large

time increments, and the Runge-Kutta scheme displayed

excessive numerical damping. The Park method was deemed the

best of the implicit schemes, with the Newmark being next,

and the Houbolt, last. Comparing the central difference and

Park methods, both schemes were of comparable competence for

problems without kinematic nonlinearities. The inclusion of

nonlinearities, however, rendered the Park method as more

effective, particularly when the number of degrees of

freedom was increased.

Recently in 1981 Steigmann (78) concluded a study using

the tangent stiffness formulation combined with the

quasi-Newton iteration schemes. Analyses employing the

unconventional pseudo-force approach were also conducted.

The base case was derived using the central difference

method. The Newmark (trapezoidal), Houbolt, and Park

methods were applied to a doubly clamped beam subjected to

an impulsive load at a central region of the span. Kinematic

nonlinearities were included, and elastic-perfectly plastic,

elastic-strain hardening, and elastic - strain hardening

- strain rate dependent material models were employed.
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Results of the study indicated that for the quasi-Newton

schemes, the DFP method was most appropriate for strain rate

independent behavior and the BFGS was most effective for

rate dependent material models. The Houbolt and Park

schemes were unconditionally stable when using the tangent

stiffness - equilibrium iteration approach. For small and

moderate time step sizes (up to 30 times the time increment

required for the central difference scheme) the Newmark

method was most effective for strain rate independent

material, while for large time increments (50-100 times the

central difference time increment) the Park and Houbolt

methods were preferred. The Park method tended to

estimate the transient displacement response accurately

while the Houbolt method better reproduced the peak

transient strain response. In general, for the tangent

stiffness - quasi-Newton iteration approach applied to

strain rate dependent material, the Houbolt method combined

with the BFGS iterator was best and the Newmark/BFGS

combination was next best. Furthermore, the Park method

gave the best results when using a pseudo-force linear-

extrapolation non-iterative procedure.

4.6 SELECTING A TIME INCREMENT

The procedure for selecting an appropriate time step is

reviewed in this section. Different criteria are applied

depending on whether a wave propagation or structural type

problem is under consideration. Any problem must consider



165

the type of numerical integrator, the accuracy

characteristics of the integrator, the mathematical model of

the structure, and the frequency content of the excitation.

The extension to nonlinear analyses entails additional

considerations such as the formulation of the equations of

motion, pseudo-force extrapolation procedure, equilibrium

iteration technique, and material modelling.

In wave propagation problems practically all structural

frequencies are excited, and consequently the structural

model must be selected such that it accurately captures the

propagation of stress waves through the structure. The time

step size for such a problem is based on the smallest

geometric element size, or analagously the highest

structural frequency embedded in the mathematical model of

the structure. Using this as the governing criterion,

explicit integration schemes are employed since the small

time increment chosen for accuracy requirements inevitably

satisfies the stability requirement. Implicit schemes may

also be used for solving wave propagation problems, but

their property of unconditional stability is no longer

an advantage, and therefore their higher computational cost

excludes them from consideration.

The critical time increment for a linear undamped

problem using the central difference method is

(4.54)At = 2/wcr max
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where W is the highest linear-system structural
max

frequency. In nonlinear analyses, however, the structural

frequencies change with time, and w in Eq. 4.54 must be
max

regarded as the largest instantaneous frequency of the

system for instantaneous stability. Witmer (92) recommends

as a convenient rule-of-thumb the following critical time

increment for nonlinear analyses of structures with large

deflections and material nonlinearities:

At r = 0.8 x (2/w ) (4.55)
cr max

Other explicit schemes require smaller time steps than that

of the central difference method.

Structural dynamic problems are characterized by only

the lowest modes being excited. The structural model in

such cases usually provides an appropriate geometric

reproduction of the structure. This approach to modelling

the structure, however, may include areas of localized high

stiffness or small mass. Although the loading may not

excite these localized areas, the structural frequencies

corresponding to extremely stiff or light members are very

high. Explicit integrators, consequently, are rarely used

for extremely large structural dynamic problems since the

time increment is governed by the highest frequency, even

though only the lowest modes contribute to the response.

Furthermore, the highest modes usually have no physical
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resemblance to the actual structure.

Structural dynamic problems, therefore, often employ

implicit integration schemes combined with a pseudo-force or

tangent stiffness formulation. Bathe recommends the

following procedure for selecting a time increment (6):

1. Transform the load history to the frequency domain

and evaluate its highest frequency w max

2. Define w - 4wc max

3. Assuming that for W/w<0. 2 5 the response is static

( w is the loading frequency and w, the structural

frequency), the dynamic response can be obtained using

a At based on w
C

4. Discretize the structure such that it adequately

captures all frequencies up to wc

5. Select a time increment satisfying

at = c -
C

where c1 has a minimum value of 1/20 and is based upon

the accuracy plots given in Fig. 4.3.

From section 4.5 we note that c, is also a function of

the solution formulation and the equilibrium iteration

scheme. Furthermore, complex path dependent material

behavior may restrict the time step size. In nonlinear

modal analyses the w would correspond to the highest mode

employed.
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CHAPTER 5

FOURIER TRANSFORMS AND THE HYBRID

FREQUENCY-TIME DOMAIN ANALYSIS SCHEME

Nonlinear structural dynamic problems are often solved

by direct time integration techniques combined with

equilibrium iteration schemes. This approach has generated

an impressive algorithm for selecting time increments,

equilibrium iterators, numerical integrators, convergence

criteria, convergence accelerators, and divergence

detectors, providing solutions whose accuracy is limited

only by simplifications in the material modelling,

structural discretization, and the theoretical basis. The

computational cost for producing accurate results, however,

may be excessive and preclude the execution of a

considerable number of analyses. As a result, applications

requiring extensive parameter studies to evaluate the effect

of modelling uncertainties usually resort to other solution



169

techniques such as the response spectra or equivalent static

load approaches. Although these schemes are remarkably

efficient, and indeed may provide a good estimate of the

structural behavior, they involve simplifications in the

material modelling and numerous assumptions on the actual

behavior, and hence detailed direct time integration

analyses must be conducted initially to ascertain the extent

of the error in the results.

This chapter presents an alternate hybrid

frequency-time (HFT) domain approach for solving nonlinear

problems. Unlike the case of the direct time integration

scheme, the hybrid frequency-time domain method provides an

accurate timewise solution without false damping or

frequency distortion and, hence, is limited in accuracy only

by modelling considerations. The scheme combines a mode

superposition analysis with a theoretically "exact"

numerical integrator, allowing the selection of time steps

not constrained by numerical integration considerations.

Furthermore, the solution in the frequency domain offers

the analyst the option of examining response quantities in

their energy spectrum form, and also frequency dependent

stiffness and damping values can be selected, as is

appropriate for soil-structure interaction problems. The

chapter begins with a review of the standard frequency

domain solution scheme and its numerical implementation

and then concludes with a description of the HFT method.
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5.1 FREQUENCY DOMAIN ANALYSIS

A solution scheme in the frequency domain applies

strictly to linear time-invariant systems. The linear

governing equation of motion for a SDOF system is given as

m'<(t) + c4(t) + kq(t) = f(t) (5.1)

whose solution in the frequency domain is easily grasped

conceptually by letting

f (t) = f(ow) e
i t (5..2)

and defining a transfer function H(w) such that

q(t) = H(w)f(t) = H(w)f(o) e (5.3)

Substituting Eq. 5.3 into Eq. 5.1 we obtain

- 2mH()F(w) eiWt + icH(w)f() eiWt + kH()f()eio

= () iWt

implying

(-W2m + ioc + k)H(w) = 1

(5.4)

(5. 5)

There fore

H(w) = (-2 m + iwc + k) ~6 (5.6)
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In general for MDOF systems we have

H() = 2 -1
H~) (-W M + iWC +K

The procedure,

force history to

Fourier transform;

force history by

the product back to

transform to obtain

The following

basis for the

analytical approach

time is presented

therefore, consists of transferring the

the frequency domain by evaluating its

multiplying the Fourier transform of the

the transfer function; and transferring

the time domain using an inverse Fourier

the response history.

subsections examine the mathematical

frequency domain solution scheme. An

producing the response continuously in

first, and then a numerical approach

providing the response at discrete times is described.

5.1.1 Continuous Fourier Series and Transforms

In the continuous time approach the forcing function f

is expressed in terms of its Fourier series

2mTt 2m t

f(t) = a /2 + (amcos + b msin )

o m=1 T T
(5.8)

where t is the current time; T, the period of the forcing

function; and a and bm are constants. The coefficient ammm
2mrt

is evaluated by multiplying Eq. 5.8 by cos T and then

integrating from -T/2 to T/2 with respect to t. Using the

orthogonality relations of the cosine and sine functions we

(5.7)
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obtain

T/2 2nr t
a. (2/T) f(t) cos - dt,

1-T/2 ~ T
n = 0,1,2, ---

and similarly

JT/2 2nrt
bi = (2/T) f(t) sin - dt,

-T/2 T

n = 1,2,3, ---

Convergence of Eq. 5.8 is guaranteed when f and f' are

piecewise continuous for -T/2<t<T/2 and f is periodic with

period T. The Fourier series converges to f(t) at its

points of continuity and to (f(t +)+f(t'))/2 at its

discontinuities. Note that the above conditions for

convergence are sufficient, but not necessary.

Equation 5.8 can also be rewritten in terms of complex

exponentials by using the following identities

Cos 2rmt 0.5(ei2rmt/T+ e-i2rmt/T)
T

sin 2inmt = 0 .5 (ei2nmt/T e
T

(5.11)
i2lmt/T)

Hence,

fw e = c ei2nt/T

n= - oo

wher e

(5.12)

cn = 0.5(an - ib n),

= (1/T) f(t)e
T/2

n = 0, +1, +2, ...

(5.13)

(5. 9)

(5. 10)

-i27rnt /T dt
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Equation 5.12 will be referred to later when the

discrete time approach is examined. The remainder of this

discussion considers Fourier transforms that apply to

aperiodic functions.

The Fourier transform F(w) of a function f(t) is

derived by extending T to infinity in Eq. 5.12, resulting in

F(w) =ff(t) e-i2Wt/T dt (5.14)

and the inverse Fourier transform by

f(t) =(l/21r)f F(w) ei2lt/T dw (5.15)

Equations 5.14 and 5.15 imply that f(t) and F(w) are a

Fourier transform pair. The existence of F(w) is assured

when

fIf(t) Idt < -o (5.16)

Once again, Eq. 5.16 is a sufficient, but not a necessary

condition.

The Fourier transform of impulse functions also exists

if we use the theory of distributions (17). For such

applications the Dirac delta function 6 is defined by

00, t = t0

0 0, otherwise

(5. 17)

6(t-t 0 ) dt = 1
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Extending these concepts to structural problems, the

solution of 'a dynamic system is given analytically in the

time domain by Duhamel's integral (18,38)

where

t
q(t) =.J f D) h(t-t) dT

h(t-t) = (1/m~ )e- tTsinD(t-t)

(5.18)

(5.19)

Equation 5.18 is referred to mathematically

convolution integral and can be rewritten as

q(t) = f(t)*h(t)

as the

(5. 20)

Using Eq. 5.14 the response in the frequency domain is

given by

Q(W) = q(t) e-i2nt/T dt (5.21)

Substituting Eq. 5.18 into Eq. 5.21 we obtain

Q(W) =J 001f(T)h(t-T) dT)e-i2Trt/T dt

0 f(T ) h(t-T)e-i2t/T dt dT

J-0 f(T) h(t-T)e-i27(t-T)/T dt e- i27T/T dT

(Co -- 27r-r/T
f(T)H(w) e dT

= Co
=F(w) H(w)

(5.22)
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Therefore, h(t)*f(t) and H( w)F(w) are Fourier transform

pairs and moreover h(t) and H(w) are Fourier transform

pairs. Notice that the convolution in the time domain

corresponds to a simple multiplication in the frequency

domain, and hence, the presentation for Eqs. 5.1-5.7 agrees

with the mathematical formulation.

5.1.2 Fourier Transforms of Discrete Time Series

The actual solution of Eq. 5.1 involves a force

history given at discrete times, and hence the previous

presentation on Fourier series and transforms does not

apply. For discrete time series we must resort to the

discrete-time Fourier transform. The Fourier series and

transforms provide a basis for understanding the discrete

Fourier transform, but it is emphasized that the

discrete-time Fourier transform is not an approximation to

the continuous Fourier transform. Although it is possible

to begin with the continuous Fourier transform when deriving

the discrete-time Fourier transform, the theoretical

foundation of the discrete-time Fourier transform exists

independently of the continuous Fourier transform, and

furthermore the discrete-time Fourier transform produces

exact results for discrete time series.

We begin our discussion of the discrete-time Fourier

transform by defining the discrete time series as a sequence

x where x(n) is the nth term in the sequence. The response

of the linear system represented by Eq. 5.1 is given as
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q(n) = T(f(n)) (5.23)

where T is a linear transformation such that

T [afl(n) + bf2 (n = aT f 1 (n)] + bT f2 (n)] = aql(n) + bq2 (n)

(5.24)

for arbitrary constants a and b. The unit-sample sequence,

6(n), is defined by

1, n = 0
6 (n) =

0, otherwise

If hk(n) is defined as the system response to

have

6(n-k), we

q(n) = T[ f(k)6(n-k)

= f(k)T 6 (n-k)] = k f(k)hk(n)
k=-m =-

(5. 26)

Since we have assumed a linear time invariant system, Eq.

5.26 can be rewritten as

q(n) = f(k)h(n-k)

k=-"0

(5.27)

where Eq. 5.27 is the convolution sum or

q(n) = f(n)*h(n)

(5.25)

(5. 28)
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A stable system is defined by

(5.29)z _ h(k) < 0
k=- 00

The discrete-time Fourier transform of a sequence x(n)

is defined by

(5.30)X(e' i = E x(n)e-in
n=-- 0

and the inverse Fourier transform by

7r

x(n) = (1/2n )f X(e U2) eio 2

The convergence of Eq. 5.30 is guaranteed when

(5.32)z: Ix(n) < 00
n= - 0

Equation 5.27 is represented in the frequency domain using

Eq. 5.30 to obtain

Q(e ) = H(e )F(e ) (5.33)

where

H(e P2) = h(n)e (5.34)

and H(e ') is the frequency response of the system when the

unit-sample response is h(n).

(5.31)
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The development of the discrete-time Fourier transform

has been presented independently of the continuous Fourier

transform. In actual practice, however, the discrete-time

Fourier transform is applied to structural systems that are

excited by a continuous load history and respond

continuously in time. Therefore, the relation between the

discrete response and the continuous response will now be

examined.

Let x a(t) be the continuous history and Xa (i W) its

Fourier transform. Then by Eqs. 5.14 and 5.15 we have

x (t) = (1/27) Xa (iw)eiwtdw (5-. 35)

X (iw) = x (t)e-itdt (5.36)
a a

Also let x(n) be the sequence derived from x a(t) at time

increments At. We now compare Xa (iw ) with X(e ). From

Eq. 5.31 we have

7r

x(n) = (1/27r) X(e 1)e Mn d! (5.37)
-7r

and from Eq. 5.35

00

x(n) = x (not) = (1/2T) X (iw)e iwnlt dw (5.38)

Equation 5.38 is expanded further as follows:

CO (2r+l)r/At iwnAt
x(n) = (1/2T) X f X (iw) e dw

r=-o (2r-1)?r/Ata
00 TT/At 27r iwnAt i27rn (5.39)

(1/2T) I f Xa At d

r=-o -iT/At



179

Tr/At -
= (1/2r) f (I X (iw + i ))eint dw

-w/At r=-o

= (1/2E) 3 (1/At) X (ion + i ) e dt
-7T r=-_-0

From Eqs. 5.37 and 5.39 we conclude that

X(e ) = (1/At) X ( + iE )
a At at

r=-Oo

or

00

X(eiWAt) = (1/At) I
r=-o

xa(iW + i (5.41)

Suppose Xa (i w) has nonzero values for -w < w < w and

is zero elsewhere. Then from Eq. 5.40 or 5.41 we conclude

that if 2n /At is greater than. 2wo,

Xa(iW + i 2r) = 0 (5.42)

for all r # 0. Otherwise, if 27T / At is less than 2 w ,

X(e ') will include spurious overlaps of high and low

frequency components of X a(i w), and x(n) rederived from

X(e ) will be incorrect. This overlapping phenomenom when

the time increment, or equivalently the sampling period, is

too large is called aliasing. The minimum sampling rate

that reproduces the actual history is referred to as the

Nyquist frequency given as

(5.43)fN = 1/2At = w /2 r

where w

history.

is given

Fourier

corresponds to the highest frequency in the time

A schematic representation of the aliasing effect

in Fig. 5.1. Figure 5.la shows the continuous

transform; Fig. 5.1b, the discrete-time Fourier

(5.39)

(5.40)
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(a)

1/T

-2 V 2V SW 4w
nT rIT

(b)

X (e o)

1/T

A,/> A,'>
-2w 2v 4w

aOT nOT

(C)

(a) Fourier transform of a continuous-time signal.
(b) Fourier transform of the discrete-time signal obtained by
periodic sampling. The sampling period is large, so the periodic
repetitions of the continuous-time transform overlap. (c) Same as
(b), but with the sampling period small enough so that the periodic
repetitions of the continuous-time transform do not overlap.

Fig. 5.1 Fourier Transforms of Continuous and
Discrete Time Signals (57)
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transform when the sampling rate is less than the Nyquist

frequency; and Fig. 5.lc, when the sampling rate is

greater than the Nyquist frequency. Notice that the Nyquist

frequency tends to infinity as the bandwidth of the signal

extends to infinity, and hence only bandlimited signals can

be reproduced exactly. For bandlimited signals the

continuous-time signal x (t) is recovered from its discrete
a

values xa (nAt) using the following interpolation formula:

x (t) = x (kAt) sin((r/At)(t-k)) (5.44)
a k-coa (T/At ) (t -kAt )

In summary, discrete-time Fourier transforms provide

exact results for discrete-time series. The application to

continuous-time signals requires that the sampling rate At

be less than one-half the Nyquist frequency

At < (5.45)
N

where fN corresponds to the highest frequency present

in the continuous time signal. Actual applications may

involve fN approaching infinity, and therefore a cutoff

frequency f. must be selected such that negligible energy
0

exists for f>f and At equals 1/2f .
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5.1.3 Discrete Fourier Series and Transforms

The discrete-time Fourier transform presented

previously is based on a discrete time input and a

continuous frequency output. A numerical implementation of

the Fourier transform requires discrete sequences both in

the time and frequency domains. Therefore, the Fourier

series and discrete-time Fourier transform are extended

subsequently to derive the discrete Fourier transform (DFT)

that operates with discrete time and frequency series.

Consider the Fourier series of a periodic sequence x(n)

such that x(n)=x(n+kN) where N is the period and k an

integer. There now exist only- N distinct complex

i(2ff/N)nk
exponentials e as opposed to the infinite number of

exponentials in Eq. 5.12. Therefore,

N-1

x(n) = (1/N) 1 X(k) ei(27/N) nk (5.46)

k=O

Multiplying both sides of Eq. 5.46 by e i(27/N)nr and

summing from n=0 to N-1, we can show that

N-1

X(k) = T x(n) e-i(2 f/N) nk (5.47)
n=0

Notice that in addition to x(n) being periodic, X(k) is also

periodic with period N. By defining W -iC2N /Ne Eqs. 5.46

and 5.47 can be rewritten as

N-1

x(n) = (1/N)T X(k)W-kn (5.48)

k=O N
N-1

X(k) = Z x(n)W kn (5.49)

n=O N



183

Equations 5.48 and 5.49 are the discrete Fourier series

(DFS) of the periodic sequence x(n).

The extension of the discrete Fourier series to

finite-duration sequences produces the discrete Fourier

transform (DFT) given by

N-1

(1/N) jX (k) W-Nkn

k=0

0
N-1

11x(n) W k

n=0 
N

0

0 <n <N-1

otherwise

0 <k <N-1

otherwise

We now examine the linear convolution using the

discrete Fourier transform. Let x 3 (n) be the linear

convolution of two N-point sequences, x (n) and x 2 (n).

Therefore

N-1

(5.52)x 3 (n) = x 1(m) x 2 (n-m)
M=O

Notice that x 3(n) has length 2N-1, and therefore the DFT's

X 1(k) and X 2(k) are computed on the basis of 2N-1 points.

Substituting Eqs. 5.50 and 5.51 for 2N-1 points into Eq.

5.52, we obtain

N-2 
=k

1/(2N-l) (X (k) X 2(k)) W ,N 1

x 3 (n) = O2 k= 0

0 <n <2N-1

otherwise

x(n) =

X(k) =

(5.50)

(5.51)

(5.53)
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In the application of the linear convolution to

structural dynamic problems, where x is the impulse

response function h, x2 the load history f, and x3 the

response q, the convolution must theoretically be evaluated

for an infinite number of points because rather than

evaluating x1  in the time domain and then transferring to

the frequency domain, X1(w) is given directly in its

analytical form in the frequency domain. The actual

application, however, involves a finite number of points

because system damping attenuates the response as it

progresses in time. Therefore, the actual load history of N

points is extended M points by adding zeroes such that the

response at time t=MAt is negligible.

5.1.4 Numerical Evaluation of the Discrete Fourier Transform

The computation of the discrete Fourier transform and

similarly the inverse DFT, is examined next. A direct

evaluation of Eqs. 5.50 and 5.51 requires approximately N

complex multiplications and N(N-1) complex additions or 4N

real multiplications and N(4N-2) real additions. The number

of numerical operations, therefore, increases rapidly as N

increases, and the direct evaluation of the DFT is feasible

only for small values of N.

Numerous approaches have been devised for reducing the

computational effort for the DFT (16,20,54,55,69,77,90,91).

Many of these algorithms gain their efficiency by taking

advantage of the periodicity and symmetry properties of the
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trigonometric functions. In particular

W - Wk(n+N) _ (k+N)n (5. 54)
N N N

and

k(N-n) -kn)* (5.55)
N N

where supercase * in Eq. 5.55 refers to the complex

conjugate.

The most popular algorithm currently available for

increasing the computational efficiency is the fast Fourier

transform (FFT) presented by Cooley and Tukey in 1965 (20).

The basic concept behind the FFT consists of successively

decomposing the sequence x of length N into smaller

sequences until N/2 two-point sequences remain, such that

the final computation only involves a two-point DFT. The

two-point DFT's are then recombined to yield the full DFT of

x(n). Since the final stage computes the DFT of a two-point

sequence, N must be a power of two. The total number of

complex multiplications and additions for the FFT is

approximately Nlog 2 N, obviously a significant decrease from

that for a direct evaluation of the DFT. Notice that the

actual finite duration sequence x(n) may not have a total

number of terms equal to a power of 2. In such cases zeroes

are appended to the end of the record to bring the total

number of points up to a power of two. The DFT of the

extended history provides a finer resolution since the
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number of frequency components have increased while the

sampling rate remains the same.

Various forms of the FFT are available and can

generally be classified into decimation-in-time algorithms,

that rearrange the sequence x(n) into smaller subsequences,

and decimation-in-frequency algorithms, that decompose X(k)

into smaller subsequences. Some algorithms are based on N

not a power of 2. For example N may be a power of 8 or a

prime number (16,69). More recent approaches include the

Winograd fast Fourier transform (90,91) which is more

efficient than the FFT theoretically, but demonstrates less

efficiency in actual applications (47,76). Regardless of

the form of FFT employed, the application of the FFT in

conjunction with the digital computer has rendered the

frequency domain approach a viable alternative to the

traditional time domain schemes for solving linear dynamic

systems.

5.1.5 Frequency Domain Analysis and Nonlinear Systems

Nonlinear systems often display completely unexpected

patterns of behavior. A linear system with frequency w

excited at frequency w will respond harmonically at

frequency W and also contain initial transients with

frequency w that eventually die out in damped systems. A

nonlinear system, however, may respond at other frequencies

w19 w 2 > w 3 , and so forth that persist in time. This section

addresses the analytical solution of Duffing's problem
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(65,79) and provides an introductory background to the

distinguishing features of nonlinear problems. Essential

differences between time domain and frequency domain

solutions are identified, and the underlying motive for

exploiting the frequency domain solution, and in particular

the HFT scheme, is presented.

Duffing's problem consists of the system defined by the

following equation:

3 ft
m + cc + aq + =f(t) (5.56)

where in a structural problem, m corresponds to the mass;

c, the damping; a , the linear stiffness; and f, the

excitation. Nonlinearities are introduced by the addition

of the Sq 3 component. The system can be regarded as a

nonlinear material problem, where the material is an elastic

stiffening type if 6 is greater than zero and elastic

softening if less than zero. In another sense, the Sq 3 term

can be viewed as a geometric type nonlinearity.

Let us first consider the linear problem, 6 = 0. A

solution in the time domain can be obtained analytically

using Duhamel's integral

t

q(t) = 0 h(r)f(t-T) dT (5. 57)

(convolution)= h(t)*f (t)



188

where h is the impulse response function. Notice that we

have assumed a causal system. Equation 5.57 must be

integrated for a few response cycles to obtain the steady

state forced response.

Evaluating Duhamel's integral is often cumbersome, even

numerically, and therefore an alternate solution scheme is

desired. A possible alternative is to substitute into Eq.

5.56 (#=0) the Fourier transforms of q and f (use the

Fourier series for periodic forcing functions)

q(t) = (1/2Tr) J Q(W) ei t dw

(5.58)

f (t) = (1/27) J F(w) eiot dw

to obtain

M C -w2 Q(w)eiot do + c fJ*iQ(o)eiWt dw

(.5. 59)

+ a Q (W) e dWt = f/ F(w) eiot dw

and after simplifying

p0  2 + (~ iot -p iwt
(- m + ic + a)Q(w)e do = f F(M) e dw (5. 60)

or

Q(M) = (-W2m + iWc + a)~1 F(w) (5.61)

= H() F(W)
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where H is the transfer function.

Equation 5.61 corresponds to a frequency domain

solution and implies that rather than evaluating the

convolution in the time domain, we can obtain the same

solution in the frequency domain by a simple algebraic

multiplication of H and F. The conceptual simplicity of

evaluating a solution in the frequency domain provides an

incentive to exploit this approach. A tradeoff exists, of

course, since the Fourier transforms must be evaluated, but

the numerical computation is minimized by using the FFT.

Let us now consider the nonlinear problem, a O. A time

domain solution by Duhamel's integral is no longer

straightforward since the impulse response function depends

on the system frequency which now varies with the response

amplitude. Analytical approximations have been derived

using iteration and perturbation techniques, with any degree

of accuracy attainable. In general, these solution schemes

indicate that the steady state response does not necessarily

consist only of the frequency component w, but may also have

lower (subharmonic) and higher (ultraharmonic) components,

illustrated in Fig. 5.2. This subharmonic and

ultraharmonic behavior implies that a simple transfer

function given by Eq. 5.61 where an input frequency w only

generates an output frequency w , is no longer valid. In

particular, we may have

Q(W1 ) = H(uywo ) F(w ) (5.62)
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Following the same procedure as before, let us transfer

Eq. 5.56 to the frequency domain. All terms remain the

same except for aq 3 . We can show (see Appendix C) that the

Fourier transform pair of q 3 is given by

1Q ( 2 - 2 0 2 ~43) Q4 3) do2 d 3  
(5.63)

The solution of Eq. 5.56 in the frequency domain is now an

iterative process and, moreover, involves the evaluation of

the integral given by Eq. 5.63, contrasted to the simple

multiplication denoted by Eq. 5.61. As a result, we are

once again confronted with the same integration problem

(convolution) posed by the time domain solution of the

linear system.

The proposed solution is to eliminate the integral

evaluation by reverting to a time domain evaluation of the

$q 3 component and solving the remaining system in the

frequency domain. In other words, we introduce the hybrid

frequency-time domain scheme where all nonlinearities are

evaluated in the time domain, and the solution is executed

in the frequency domain with only simple multiplications.

5.2 HYBRID FREQUENCY-TIME DOMAIN ANALYSIS

The standard frequency domain solution scheme presented

in the previous section is limited to linear time invariant

systems. Various extensions to nonlinear analyses have been

proposed recently, with specialized applications to the
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response of offshore structures (5,24,70,82). These

applications derive the structural response to a steady

state excitation, the wave loading, and hence the converged

solution represents the steady state nonlinear behavior,

whe're the nonlinearities are due to the hydrodynamic drag

damping effect. The proposed solution schemes consist of an

iterative process whereby the nonlinearities are evaluated

in the time domain and expressed by load vectors on the RHS

of the equations of motion and the solution is obtained in

the frequency domain. By exploiting the inherent harmonic

basis of the Fourier transform, these schemes avoid the

problem of eliminating the initial transients,

characteristic of time domain solution schemes.

Most nonlinear frequency domain solution schemes are

developed for steady state response problems with response

dependent system matrices while transient response problems

are usually addressed by time integration solution schemes.

Various structural dynamic problems, however, require an

excessively small time increment determined by the accuracy

of the numerical integrator, rather than the material

behavior or actual structural response. Moreover,

soil-structure interaction problems characterized by

frequency dependent stiffness and damping terms are solved

exactly only in the frequency domain. Other structural

problems are tremendously large in size and preclude

conducting any significant parameter studies.
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An alternate solution scheme, the hybrid frequency-time

domain (HFT) method, presented in this section has,

consequently, been developed to evaluate the transient

dynamic response of large scale structural systems. In

contrast to the previously proposed frequency domain

analysis schemes, the HFT method also admits the effect of

initial transients, and hence accounts for the development

of kinematic and material nonlinearities from the initial

linear system to the nonlinear system. The scheme embraces

all nonlinearities and is applicable to both transient and

steady state type problems. This section first describes

the HFT solution scheme, examines associated numerical

considerations, and concludes with a review of its

applicability and limitations.

5.2.1 Formulation of the HFT Approach

The hybrid frequency time domain solution scheme

employs the unconventional pseudo-force approach given by

Eq. 3.24 and rewritten here as

Mj+ Kq = F + F (5.64)

where M and K represent the linear mass and stiffness

NL
matrices; F, the external load vector; F , the force

vector containing all nonlinear terms; and q is redefined

as the global nodal displacement. In conjunction with a

mode superposition approach, Eq. 5.64 is rewritten as Eq.

3.83 in its generalized form including damping
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+ + = + FNL (5.65)

where the tilda (~) denotes generalized matrices and y is

the generalized displacement response. The corresponding

transfer matrix R is

_()= (-w 2M + iWC + K)1 (5.66)

Assuming the eigenproblem has been completed and the

generalized matrices in Eq. 5.65 and transfer matrix H(w)

are available, the basic procedure for conducting the HFT

analysis is as follows:

1. Evaluate Fourier transform of F(t) using the FFT,

and therefore obtain the frequency domain

representation of the force history, F(w).

2. Compute the response in the frequency domain Y(w)

by simply multiplying H(w) and F(w).

3. Transfer Y(w) to the time domain by evaluating its

inverse Fourier transform

4. Derive the geometric response q(t) from the

generalized response y(t), and determine all

nonlinearities. Store the nonlinearities as a force

time history FNL(t).

5. Transfer F NL(t) to the frequency domain using the

FFT

6. The forcing function is now F(W)+FNL(W). Multiply
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the forcing function by H(w) to obtain the new

frequency domain response Y(o).

7. Repeat steps 3-6 until a convergence criterion is

satisfied

The HFT solution scheme is conceptually simple and

easily executed. Furthermore, adapting the HFT scheme to

existing direct time integration computer programs requires

minimal effort. The only program dependent attribute is the

evaluation of the nonlinearities, step 4. Even this aspect

is easily implemented since time integration schemes already

evaluate the nonlinearities during the equilibrium iteration

phase for the incremental formulation and as part of the

load vector for explicit and pseudo-force formulations. An

efficient application of the HFT method producing accurate

results, however, entails numerous additions to the basic

procedure outlined in steps 1-7. These modifications are

addressed in the next subsection.

5.2.2 Numerical Considerations for Applying an HFT Analysis

The development of the HFT solution scheme involves no

ingenious stretches of the mind, nor does its application

require extremely complex and powerful recondite numerical

methods. The HFT method evaluates the nonlinearities in the

same manner as a time integration approach and resorts to

the FFT for acquiring the solution. Despite its simple

formulation, the HFT solution scheme has never been applied

to the practical solution of structural dynamic problems
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(based on a review of the literature) possibly because many

engineers are unacquainted or uncomfortable with the

frequency domain concept and others familiar with the

concept believe the scheme is unfeasible, based on cursory

theoretical considerations.

The HFT method presented here has been developed to

solve nonlinear dynamic structural problems with accurate

results. Modifications and additions to the basic procedure

for achieving a practical solution scheme can be classified

under the categories of efficiency and stability (accuracy).

These changes are examined in the following subsections.

5.2.2.1 Solution Formulation

Steps 1-7 of the solution process can be approached in

two different forms. The first approach, referred to here

as the dual displacement formulation, obtains the linear

response yi from steps 1 and 2, and then iterates from steps

3 through 7 to derive a correction response y 2, which when

added to the linear response produces the nonlinear response

y = Y + y2 (5.67)

The governing equation for the first cycle is

+ 1+ k 1 = (5.68)
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and during the successive iterative cycles

-+ + F NL ~ (5. 69)

This formulation calculates the linear response yi

during the first cycle, and consequently provides the

analyst an estimate of the nonlinear response. Notice that

since the nonlinear correction is evaluated independently of

the linear response, numerical round-off errors are

minimized and, furthermore, the evaluation of the Fourier

transform of the force history FNL may require less points

in the frequency domain than that for F, thus reducing the

computational cost.

The dual displacement formulation possesses favorable

computational accuracy features. However, the solution

converges slowly when the nonlinear response departs

significantly from the linear response, and may even diverge

and become unstable. Furthermore, since the actual load

history is employed only in the first cycle to obtain the

linear response and since F NL is based on Y1 +Y 2, during

succeeding cycles the response correction y 2 may never

approach its true value. In other words, if y differs

appreciably from the actual nonlinear response, then _2

cannot be calculated with any reasonable accuracy to produce

the correct response y. Inaccuracies in y1 may stem from an

insufficient number of modes being included in the mode

superposition analysis, the number of appended zeroes being
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deficient to adequately resolve the histories, or the

selection of an excessive time increment producing a

significant Nyquist frequency component.

Considering the various difficulties of the dual

displacement formulation, the second solution formulation,

referred to here as the total displacement formulation,

operates on the total displacement, and hence solves Eq.

5.65 directly. Since the total displacement formulation

always evaluates the response to the total force history,

- -NL
F+F , this approach is more forgiving in the sense that

initial approximations are corrected during succeeding

iterations. In addition, it will be shown later that the

total displacement formulation may converge faster because a

"better" initial guess to the nonlinear response can be

produced by employing artificial damping. Notice also that

the storage requirements are reduced considerably since only

one response quantity y is stored, rather than both y1 and

5.2.2.2 Zero Minimization Problem

Subsections 5.1.3 a

evaluating the Fourier tr

appended to the end of t

represents the excitation

additional zeroes extend the

contains N terms, a power

radix-2 FFT, increase the

nd 5.1.4 demonstrated that

ansform requires extra zeroes

he sequence x(n), where x(n)

or nonlinear force history. The

sequence x(n) such that it

of two, allowing the use of the

resolution by decreasing the
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frequency increment, and prevent transient effects at the

end of the response history from entering the beginning.

The last item in a physical sense is due to the initial

conditions at the end of the load history creating a damped

free vibration that requires a finite amount of time to

decay to a negligible amplitude. This finite decay time is

provided by the additional zeroes. If an insufficient

number of zeroes is appended, the free vibration will have a

significant amplitude at time t=NAt, and hence the use of

the inverse Fourier transform to reproduce the response

history implies that the final transient conditions will

alter the initial response. This process is shown

schematically in Fig. 5.3.

The actual number of appended zeroes can be derived for

linear systems using an analytical approach. Consider the

free vibration of a SDOF system with viscous damping ratio

(, natural frequency w, and damped natural frequency wD'

Let u and u be the initial conditions. The free vibration
0 0

response is then given as

- 'A + u 05
u(t) = et sinw t + u cosw t) (5.70)

Using Eq. 5.70, it is possible to determine how much the

amplitude decreases in one cycle for a specified damping

ratio. A plot derived with such an approach is shown in

Fig. 5.4. The analyst, therefore, selects an allowable

ratio of the final amplitude to the initial response
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amplitude, obtains from Fig. 5.4 the number of cycles S to

produce such an amplitude attenuation, and calculates the

number of points (zeroes) contained in those cycles, which

equals S/At.

6

5

S 4

0E2
Ze 1

Fig. 5. 4 Damping ratio vs. number of cyclre- 00 .5 1 0.5 20
quired to reduce amplitude by 50
peL (18) 1. DamPing ntio

It is evident that the number of extra zeroes may

become prohibitively large for systems with high fundamental

periods. Furthermore, in nonlinear analyses the system may

soften, causing the structural periods to increase, and

therefore, necessitating the use of even more zeroes. This

large number of zeroes may significantly reduce the

efficiency of the frequency domain solution.

In response to the extra zeroes problem, a zero

minimization technique was developed such that the number of

appended zeroes in the ideal case brought the total number

of points N up to the next smallest power of 2 greater than

the actual load history. More zeroes can obviously be
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appended if the resolution is insufficient, but it is noted

that the proposed zero minimization technique eliminates the

analyst's task of choosing the number of zeroes based on

free vibration considerations.

The procedure for implementing the zero minimization

scheme is as follows:

1. Let N be the number of points representing the

excitation history F(t) and NB the total number of

points used in the frequency domain (N<NB).

2. NB is chosen such that N<NB<2N. In other words, NB

is the smallest power of two greater than N.

3. Using such an NB, evaluate the Fourier transform

F(w) of the load history. This transform is exact for

the given time increment and NB.

4. Multiply F(w) by its transfer function H(c) to

obtain the frequency domain representation of the

response Y(w)

5. Evaluate the inverse Fourier transform of Y(o) to

obtain the response history y(t)

6. y(t) is an incorrect response because the linear

convolution executed with NB produces a significant

free vibration component at t=NBAt that modifies the

beginning of the response.

7. Obtain the correct response by realizing that the

initial conditions Y and y should be zero (or

whatever the analyst specified). Therefore, purge y(t)

of the free vibration component by subtracting out this
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component using Eq. 5.70.

A schematic representation of the zero minimization

technique is given in Fig. 5.5.

Using this technique, the number of total points NB can

be easily reduced by a factor of two to four. The procedure

is theoretically sound since the only difference between the

exact response y and the incorrect response y is the

presence of the free vibration component. y is rederived

from y by imposing the known actual initial conditions on y

(see Appendix D for a mathematical explanation of the zero

minimization technique). This correction implemented

numerically, however, is approximate. Based on economic

considerations y is available, but y is derived from y(t)

using a finite difference approximation. Furthermore, even

if the initial conditions are adjusted to zero by flushing

out the final free vibration, some components of the free

vibration may still be present. Since the damped free

vibration consists numerically of a finite number of

harmonic components, it is possible that some of these

components when combined yield zero initial conditions. A

better approach, therefore, would use the initial conditions

at t=NAt to evaluate the free vibration. In most cases,

however, the probability of some free vibration components

combining such that they produce zero initial conditions at

time t-O is negligible, and the procedure outlined in Fig.

5.5 is acceptable. Notice that the zero minimization

technique applies to both linear and nonlinear analyses,
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with no iterative process involved for the linear analysis.

5.2.2.3 Relaxation

In addition to the zero minimization technique,

relaxation procedures were investigated as a means of

accelerating the convergence process. The relaxation

procedure is defined as follows:

yi = ay + (1-a)yi-1 (5.71)

where the right superscript refers to the iteration cycle

number; a is the acceleration coefficient; y, the response

after applying relaxation; and y, the response before

applying relaxation. For a>l the procedure is, called

over-relaxation; a<l, under-relaxation; and a=1, no

relaxation. In general, when a>l a larger weighting factor

is applied to yi than y ~ and when a<l the reverse

statement holds.

Relaxation was applied to both the displacement and the

pseudo-force histories. In both applications of

over-relaxation the response demonstrated an accelerated

convergence in the early cycles, and moreover the

simultaneous over-relaxation of the response and the

pseudo-force histories accelerated the convergence process

at an even greater rate. During the latter cycles, however,

the response began to diverge and eventually displayed a

significant instability. A similar application of
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under-relaxation demonstrated a slower convergence rate with

no instability.

The inability of the over-relaxation scheme to

accelerate the convergence stems from the HFT approach being

based on the pseudo-force formulation combined with a

frequency domain solution scheme. Since the pseudo-force

vector at time t =nAt is evaluated from the response at time
n

t<tn, the end of the response history is the last to

converge. In other words, the solution correction

progresses forward in time. As a result, the pseudo-force

history after time t , where time tn is the time up to which

the response is correct, resembles the actual pseudo-force

for only a short time interval after t and may differ
n

significantly from the exact pseudo-force history for an

appreciable time after t . The use of an over-relaxation
n

scheme, consequently, amplifies the incorrect pseudo-force

history, producing a response drastically different from the

true response, in turn exacerbating the problem by creating

an even worse approximation to the pseudo-force history for

the next cycle. When no relaxation is used, the iterative

process may still create these significant differences in

the pseudo-force history after time t , but these

differences are not amplified in succeeding cycles, and

hence the solution eventually converges.
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Based on the results of the relaxation study, it

appears that any scheme producing a pseudo-force history

differing significantly from the actual force history and

amplifying these ' differences in latter cycles cannot

accelerate the convergence rate of the HFT solution scheme.

5.2.2.4 Other Acceleration Schemes

Alternate approaches for increasing

efficiency include using other

evaluating the Fourier transform of t

simultaneously or an N-point real

transform, and segmenting the force

method exploits, for example,

transforms, but is probably impractic

FFT will be optimally chosen for

Recent FFT variations include schemes

suited to structural dynamics.

presented by Hall (32) offers greater

the solution

than radix-2 FFT's,

wo N-point real arrays

array by an N/2-point

history. The first

4-point and 8-point

al since a different

each history length.

that are particularly

An improved algorithm

versatility in choosing

the transform size (N = 2M-L, L = 2 or 3), thus reducing the

computation time.

The second approach takes advantage of the FFT

evaluating the Fourier transform of a complex array. In

particular, two real arrays of length N can be rearranged

and stored in a complex array of length N, the Fourier

transform of the complex array is evaluated, and then the

terms of the complex array recombined to obtain the actual

Fourier transforms of the real arrays. The FFT, therefore,
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is executed once for two real arrays. This approach

increases the solution efficiency in some cases, but in the

particular application to structural dynamic problems the

FFT also evalutes the inverse Fourier transform of the

response spectrum Y(w), a complex array, to obtain the

response history y(t), and hence the approach applies only

when transferring the load history to the frequency domain.

In addition, the algebraic rearrangement of the real arrays

and the subsequent recombination of terms in the complex

array may exclude any overall gains in efficiency. The

scheme proposed by Hall, however, is particularly adapted to

problems with real and complex symmetric arrays, requiring

half the computer storage and computation time.

The final efficiency scheme of segmenting the force

history and evaluating the response to each segment

separately is based on the observation that the pseudo-force

history corrects itself in a time progressing manner. The

latter portions of the pseudo-force history are evaluated in

all cycles, but only in the final cycles do they begin to

converge to the exact history. It appears, therefore, that

if the load history were segmented, for example, into two

parts, the initial half would be evaluated first and

convergence would occur in the same number of cycles as if

the entire history were being evaluated. The second half

would be considered next, and convergence may be more rapid

because the first half response is already established.

This approach will be examined again later in relation to
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nonlinear mode updating schemes.

5.2.2.5 Stabilization by Artificial Damping and Incremental

Load Application

Schemes for stabilizing the HFT solution process are

described in this section. The basic procedure presented in

subsection 5.2.1 should work theoretically. Its

application, however, involves numerical approximations such

as evaluating -the velocity at time zero by a finite

difference expansion (used for the zero minimization

process) and extracting the Fourier transform of series that

may actually possess an infinite frequency content. In

particular, the actual displacement in the neighborhood of

time zero may be oscillating to such an extreme degree that

the use of a 4th, 5th, or even tenth order finite difference

approximation will not yield the correct velocity at time

zero, and hence the zero minimization technique works

improperly and the free vibration at the end of the response

contaminates the entire response. This "leakage" results in

the unconverged pseudo-force vector toward the end of the

response history creating an incorrect pseudo-force vector

at the beginning of the previously converged response

history, eventually causing the entire solution to

destabilize. The second numerical approximation of using

the discrete Fourier transform occurs when an excessively

large time increment is selected such that a component

with significant magnitude exists at the corresponding
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Nyquist frequency, producing aliasing. This aliasing may

cause an improper transform of the pseudo-force history, and

eventually contribute to an unconverging solution.

Furthermore, the use of a digital computer with finite

word length and, hence, the presence of truncation error and

upper and lower limits on number sizes may prevent the

solution process from converging. This divergence may only

be numerical in the sense that the analytical iterative

solution process would also induce large numbers during the

solution process, but these numbers would remain finite.

Due to the inherent numerical nature of the HFT

solution scheme, stabilization schemes were developed that

do not necessarily accelerate the convergence process, but

prevent divergence when used properly. The first

stabilization scheme employs artificial viscous damping.

Stated mathematically, a damping matrix (force) is added to

both sides of the equation of motion as follows:

- ~NL -v
f+(C+ C+ + Ky= F + F + F (5.72)

where C is the artificial viscous damping matrix and F is

the artificial viscous damping force equal to C v-y. Notice

that both ~NL and F are unknowns on the RHS of Eq. 5.72.

In general, Cv is not given explicitly, since the HFT scheme

is based on a mode superposition approach, but rather it is

expressed in terms of artificial viscous damping ratios

V such that 4 T C is equal to 2E v w
v -- v
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In addition, artificial hysteretic damping may be used.

The concept of hysteretic damping is only defined

theoretically in the frequency domain, and hence Eq. 5.72

is examined in the frequency domain. The stiffness now

becomes k+kh where k is the generalized stiffness (L Kj) and

k is the hysteretic term given by 12 k where i= V1- and
hh

Eh is the artificial hysteretic damping ratio. The

hysteretic damping force fh(w) equals 12EhkY(w) where Y(w)

is the displacement response in the frequency domain.

Equation 5.72 in the frequency domain for one mode becomes

NL v h
Y + (c + 2Ew)Y + k(1+ i2E )Y = f + f + f + f (5.73)

where Y is the generalized response; c equals T ; and

other terms are as defined previously.

The choice of using Ev or Eh or both depends on the

actual damping dominating the structural response.

Artificial hysteretic damping tends to be more appropriate

for structural dynamic type problems since such problems

usually exhibit a frequency independent energy dissipation

in the material behavior. A viscous type damping may be

more appealing conceptually since it is well defined in the

time domain. Notice that the zero minimization technique,

in other words, the use of Eq. 5.70 is still valid. This

equivalent application for both types of damping is easily

demonstrated by deriving the corresponding transfer

functions for the undamped problem. We have
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H (w) = (-W2 + iw2 + W ) (5.74)

for artificial viscous damping and

Hh ( W [2+(1 + i2 ~ (5.75)

for artificial hysteretic damping. Therefore, when Ev h'

Hv(w) equals Hh(w) for o=t. In turn, Yv (W) equals Yh (W) if

F(w)=l. This situation corresponds to the free vibration

problem (the Fourier transform pair of H(w) is h(t), the

impulse response function), and hence Eq. 5.70 still

applies.

Artificial damping as a stabilization method simply

stabilizes the solution by preventing excessive vibration

amplitudes during the iterative process. The damping matrix

on the LHS of the governing equation is balanced by the

damping force on the RHS, implying that the approach is

theoretically sound. As mentioned previously, if the

initial iterative cycles produce poor approximations to the

actual response, the succeeding cycles may be subjected to

pseudo-force histories differing significantly from the

actual history, resulting in a numerical divergence.

Artificial damping alleviates this problem by providing the

analyst a means of attenuating considerably the initial

response and the consequent pseudo-force history. The

result is a pseudo-force history containing small incorrect

amplitudes until the solution converges. Furthermore, since

the HFT scheme evaluates the pseudo-force history only to

the end of the loading, the artificial damping approach aids
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the zero minimization technique by damping out the free

vibration at the end of the loading. Notice that when only

hysteretic damping is present, the initial cycle will

produce the damped linear response where the damping is

provided by, for example,.artificial hysteretic damping. As

the iterative cycle progresses, the actual hysteretic

NL
damping is manifested in the pseudo-force vector F such

NL
that by the last iteration, F contains all hysteretic

h
damping contributions and F is zero.

The actual implementation of the artificial damping

concept involves numerical approximations. As shown by Eq.

v
5.73, f depends on the velocity y. However, y is never

actually evaluated in the solution process and must be

approximated from y (y(t) can be obtained from Y(w) by

evaluating 'the inverse Fourier transform of iwY(w), but an

additional cost of applying the FFT is incurred). A finite

difference scheme, therefore, approximates y(t) from y(t),

and the problems mentioned previously are present again.

Furthermore, c (w)=i2E wwY(w) depends on the frequency w
v v

in the frequency spectrum. As a result, if during the

iterative process incorrect significant pseudo-force

components are evaluated at large w, a large high frequency

component in the response may be generated, in turn creating

a larger high frequency viscous damping force, and possibly

producing instability before the solution converges. The

use of artificial viscous damping should, consequently, be

applied carefully.
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Artificial hysteretic damping demonstrates a better

numerical behavior since the damping is directly

proportional to Y(w) and also independent of the frequency

W . The two problems associated with artificial viscous

damping are avoided. Its implementation, however, is not

straightforward since the hysteretic damping force cannot be

evaluated in the time domain. This disadvantage would pose

no problems if the zero minimization technique were not

employed, since in such a case the hysteretic damping force

would be obtained easily in the frequency domain by

multiplying the response Y(w) by 12Eh* In conjunction with

the zero minimization technique, however, Y(o) contains

incorrect free vibration components that are removed in the

time domain. The hysteretic damping force for the

succeeding cycle, therefore, can be evaluated only by

transferring the corrected response y(t) back to the

frequency domain and then multiplying by 12E h. This process

involves two applications of the FFT, one to transfer the

force vector f(t)+f NL(t) to the frequency domain and the

other to transfer y(t). The apparent inefficiences of using

artificial hysteretic damping are avoided by realizing that

both y(t) and f(t)+f NL(t) are real histories, and hence only

one FFT need be implemented if advantage is taken of a

complex array storing, for example, y(t) as its real part

and f(t)+fNL(t) as its imaginary part. The actual procedure

for transferring two real arrays simultaneously is given in

the references (17).
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Case studies demonstrating the behavior of the solution

when artificial damping was included were conducted and are

discussed in Ch. 6.

Another stabilization method is the incremental load

application approach. Rather than loading the structure

immediately with the actual load history, the load is scaled

down and applied incrementally. This stabilization

technique is based on the same concept of artificial damping

where the incorrect response during the initial cycles is

diminished considerably such that the resulting pseudo-force

history does not generate an excessive incorrect response in

the course of succeeding cycles. The procedure resembles

the solution of nonlinear static problems, and indeed is

identical if the frequency domain solution is regarded from

the perspective of a complex stiffness approach

k c(w)Y(w) f(w) + f (W) + f (W) + fh (Wo) (.5.76)

where 2 -2
k = -W + io2w(E + Ev) + w (1 + i2E ) (5.77)

5.2.2.6 Nonlinear Mode Updating in the Frequency Domain

The numerical considerations given up to this point

concern the solution of the independent SDOF problems. This

subsection discusses the problem in its entirety, or more

specifically, the development of nonlinear mode updating

schemes in the frequency domain. In general, the problem

consists of evaluating modal updates to the linear structure
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as it becomes nonlinear and applying these new mode shapes

to the geometric structural matrices to obtain the

generalized matrices.

Beginning with the second problem, suppose that n

linear mode shapes, where n is less than the total number of

degrees of freedom, are used in the first few iterative

cycles. The solution process is stopped, and m nonlinear

mode shapes orthogonal to the original n mode shapes are

obtained. The eigenvector matrix i is given as

T T
linear n shapes

(5.78)

nonlinear m shapes

These mode shapes are then applied to the original governing

equation of motion to obtain the generalized equation of

motion. The generalized structural matrices, however, are

only partially diagonal. Although the linear mode shapes J1

were derived from the eigenproblem using the linear

stiffness matrix

-2
( - = (5.79)

implying that

T - 1=0 (5.80)
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or

T 2 (5.81)
lK = = diagonal matrix

the nonlinear mode shapes Inl were derived from

eigenproblems using nonlinear stiffness matrices

(K -2 = (5.82)

and hence Tul Kn is not necessarily a diagonal matrix.

Since the generalized structural matrices are no longer

diagonal, the transfer matrix H, given by Eq. 5.66, cannot

be evaluated simply by computing the reciprocals of the

diagonal terms in H~1.

One possibility for circumventing the nondiagonal H-1

problem is to obtain H directly by evaluating [H-1 ]1. This

approach, however, is extremely costly since the matrix

inversion must be executed for all frequencies in the

spectrum (10,000 times if the excitation has 10,000 time

steps) and, moreover, entails additional storage

requirements since the off-diagonal terms of H must be

stored in addition to the diagonal terms.

The impracticality of the first approach suggests an

alternate iterative scheme for managing the off-diagonal

terms in the transfer matrix. Rather than employing H in

the solution process, an approximate diagonal transfer

matrix is used. This approach transfers all off-diagonal
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terms in the generalized matrices to the RHS of the

equations of motion. The remaining diagonal terms are used

to evaluate the approximate H 1 , and hence H is easily

obtained from H~ by computing the reciprocals of the

diagonal terms. This procedure obviously engenders an

iterative solution scheme, but does not pose any new

problems since the solution process is already iterative.

The governing equations of motion for the system is now

u u O ~ ~NL v ~0D

Myf + (C + C _+ K=F + F + F + F (5.83)

where the superscript s refers to a generalized matrix

containing only its diagonal terms and F0D is the

off-diagonal force vector

~OD = + (5.84)

where the superscript ' denotes a generalized matrix

containing only off-diagonal terms. Therefore

C=C + C

U = + (5.85)C G+ C
V -V

A final approach is to use only the nonlinear mode

shapes. In other words, new eigenvectors are evaluated from

a nonlinear stiffness matrix K and only these eigenvectors

are employed in the succeeding iterations. The equation of
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motion is

~ -NL (5.86)

where all generalized structural matrices are diagonal

because the mode shapes i were derived from Knl. Notice

that the pseudo-force vector FNL is now derived by

evaluating the difference between K 1 q and I, the actual

member forces. This last approach is suitable when the

nonlinear response is fairly uniform such that Knl

represents the stiffness during a significant portion of the

history. The eigenproblem, however, may be more expensive

computationally than the other approaches because an entire

new set of eigenvectors must be derived. Applications of

these schemes are presented in Chapter 6.

With various approaches available for handling

non-diagonal transfer matrices, we now proceed to the first

problem of updating the mode shapes. Nonlinear mode

updating schemes in the frequency domain, in contrast to the

nonlinear mode updating schemes discussed in section 3.2.2,

cannot proceed in time and be implemented whenever the

nonlinearities begin to change substantially. The very

nature of a frequency domain solution implies that the

solution at all time steps is obtained simultaneously, and

hence all mode shapes must be selected before the solution

commences. Updating is possible only after an iterative

cycle. Furthermore, the stiffness matrix K is never
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evaluated, and only the pseudo-force history is extracted.

These considerations significantly restrict the means for

updating the mode shapes.

Of the updating schemes presented in section 3.2.2, the

second approach involving mode shapes selected from the

eigenproblem of an imposed deformed shape appears the most

promising. The HFT scheme due to its iterative process

offers the additional advantage of providing insight to the

nonlinear response. This updating approach adapted to the

HFT would be as follows:

1. Iterate the first few cycles with the linear mode

shapes

2. Stop the Analysis

3. Derive an equivalent static load distribution from

the pseudo-force histories

4. Apply this static load distribution to the

structure and thus, obtain a tangent stiffness matrix

K
-t

5. Evaluate the first few eigenpairs corresponding to

K
-t

6. Gram-Schmidt orthogonalize these nonlinear

eigenvectors with respect to the previous eigenvectors

7. Restart the analysis using the new basis vectors

8. Repeat steps 2-7 until the solution demonstrates

acceptable convergence
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The procedure as described appears fairly

straightforward. Step 3, however, involves considerable

insight on the part of the analyst. For simple pseudo-force

histories, such as those exhibiting one peak occurring at

the same time for all members, the equivalent static load

distribution is easily selected. Most analyses, however,

involve extremely complicated pseudo-force histories

differing for all members, and the selection of a static

load distribution, or even a set of distributions, that

adequately recreates the nonlinear deformed structure

requires considerable judgement and, more importantly, luck.

A second updating approach involving less luck and

insight and demanding minimal preparation time was

subsequently developed. This scheme exploits the

pseudo-force history from a more rational and systematic

perspective. In particular, since the pseudo-force history

is derived from the member forces, obtained from the current

stress-strain states, the exact tangent and secant stiffness

histories are available indirectly, permitting the

evaluation of the exact global tangent and secant structural

stiffness matrices. An HFT solution scheme, however,

employs one set of eigenvectors during each iterative cycle,

thus requiring a method for selecting a structural stiffness

or stiffnesses characterizing most of the response history.

Only one stiffness matrix and its set of eigenvectors can be

used if an exact diagonal transfer matrix approach is

chosen. If the approach of transferring off-diagonal terms
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to the RHS of the governing equation is selected, a host of

eigenvectors corresponding to different stiffnesses may be

used, but again only one stiffness matrix can be used in the

evaluation of H.

In either case, the second updating scheme is valid and

is given as follows:

1. Obtain Esec for each member from the stress-strain

pairs evaluated during the generation of the

pseudo-force histories

2. During the process of ddriving E sec, store Z'E sec

and EE 2  where the summation is over time
sec

3. After the entire pseudo-force history is evaluated,

obtain a least squares approximation of Esec for each

degree of freedom using the results from step 2

4. Reconstruct the secant stiffness matrix Knl

corresponding to the E secs of step 3

5. Evaluate m eigenvectors D of Knl

6. Use e directly in the next iteration (exact

diagonal matrix transfer function) or Gram-Schmidt

orthogonalize cn with respect to the previous set of

eigenvectors and proceed with the analysis

(off-diagonal term transfer approach)

This updating scheme can be executed without stopping

the analysis, and hence requires no participation from the

analyst during the solution process. The updating

efficiency can be increased by implementing the process only
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after every i cycles. Furthermore, least squares fitted

secant stiffness matrices can be evaluated for specified

intervals of the history, eigenvectors corresponding to each

secant stiffness matrix are then derived, and the

eigenvectors are recombined. This approach produces a total

eigenvector matrix consisting of eigenvectors representing

the dominant behavior of different portions of the response

history.

The actual implementation of both modal updating

schemes is discussed in Chapter 6.

Regardless of the mode updating scheme, a substantial

portion of the solution cost for large systems may be

contributed by the eigenvalue problem. Although an

eigenvalue analysis is usually conducted initially for both

time integration and frequency domain solutions to determine

structural properties such as the lowest periods and mode

shapes, an additional cost is incurred in the HFT analysis

as the mode shapes are updated. An efficient eigensolver is

therefore essential.

The subspace interation technique is often employed for

large structural systems (9). With respect to the HFT mode

updating schemes, the subspace iteration approach also

appears attractive since the previous mode shapes can be

used as the initial shapes in determining the updated

shapes. A more efficient eigensolver has been investigated

recently by Wilson, et. al. (88,89). The scheme is
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particularly suited to problems where the excitation can be

decomposed into a spatial vector multiplied by a temporal

vector, such as in seismic excitation problems. Rather than

evaluating the exact eigenvectors of the system, the new

scheme generates orthogonal Ritz vectors, which are then

used in the succeeding mode superposition analysis. The

generated Ritz vectors only correspond to those shapes

actually participating in the response, as opposed to

eigenvectors which may not participate in the response if

their shape is orthogonal to the loading, even though their

natural frequency may be near dominating load frequencies.

Studies by Wilson, et. al., indicate that generating the

Ritz vectors involves one-tenth the effort to generate the-

exact eigenvectors. Furthermore, computation times for mode

superposition analyses were less when using Ritz vectors,

because a smaller basis could produce a more accurate

response.

In conjunction with the second mode updating scheme, we

now reexamine the segmenting method introduced in section

5.2.2.4. The segmenting scheme was motivated from the

pseudo-force history correcting itself in time. The

incentive here is to model portions of the response history

by different K and D such that an exact diagonal
-nl -nl

transfer function approach is maintained and the Knl

produces a good representation of its portion of the

response. An overlap-add or overlap-save (17) method would

appropriately link the response of the different segments.
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In particular, K1 may be used for time t to t and Knl for

time t to t . The procedure is shown schematically in Fig.

5.6.

5.2.2.7 Selecting a Time Increment

As the final part of the numerical considerations

section, we discuss a procedure for selecting an appropriate,

time increment. A first guess is obtained from the external

load history by choosing the time increment At such that at

the Nyquist frequency fN, the load component has negligible

magnitude. This time increment is then compared with the

period Tn corresponding to the highest mode used in the

analysis. If AtCTn /2, a larger time increment may be

appropriate. Time increment At1 , however, may be too large

for problems with path-dependent material behavior. A

smaller time increment, therefore, must be chosen such that

the material response is adequately followed. The time

selection procedure is outlined as follows:

1. Obtain Fourier transform of load history

2. Let Wmax be highest frequency in load spectrum

3. Choose At 1 .1/2fn /wmax

4. Compare Ati with the period of the highest

structural mode Tn

5. If At is significantly smaller than T n/2, a larger

time increment may be appropriate, and the external

load history should have its higher frequency

components set to zero if a larger At is chosen. Also,
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Fig. 5.6 Segmented History Analysis
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if the material behavior is path dependent and

demonstrates considerable changes for consecutive time

steps, a smaller time increment may be necessary

Notice that the pseudo-force history was never

considered when selecting a time increment. This approach

is theoretically consistent with steps 1, 2, and 3 since in

a linear analysis a response will never be generated with

higher frequency components than the input (load history).

In other words, since Y(w)=H(w)F(w), if F(W) has highest

frequency w 0, Y(w) also has a highest frequency component at

W . In a nonlinear analysis, however, ultraharmonic

components corresponding to multiples of the external load

frequency can be generated (65,79). These ultraharmonic

components in the HFT analysis will originate from the

pseudo-force history, and hence steps 4 and 5 should be

exercised carefully.

5.2.3 Qualitative Evaluation of the HFT Solution Scheme

Any new analytical technique adapted for solving

practical engineering problems must offer considerable

advantages over accepted solution techniques. The salient

.characteristics of the HFT solution scheme are accentuated

in this section to provide the analyst a basis for

evaluating its applicability to the solution of nonlinear

dynamic structural problems.
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By combining the nonlinear mode superposition technique

with a frequency domain solution, the HFT solution approach

exploits the economics offered by a reduced vector space and

the accuracy of a theoretically exact numerical integrator.

The mode superposition approach easily accommodates

structural dynamic problems, but precludes the practical

solution of wave propagation problems where all modes are

excited. Potential applications, therefore, include the

transient response to seismic excitations, intense wave

loadings, and wind forces. Applications to wave propagation

type problems are excluded. Extensions to steady state

problems such as the response to wave spectrums are

partially restricted in the sense that the global nonlinear

response behavior can be evaluated, but localized effects

such as fatigue degradation may require a substantial number

of modes, producing an inefficient solution (85).

The frequency domain solution employs a transfer

function that behaves as an exact numerical integrator if

the Nyquist frequency is properly chosen and the

resolution is sufficient to capture the peaks in the

frequency spectrum. Numerical accuracy problems of

period elongation and artificial damping, consequently, are

eliminated, and the appropriate time increment of an HFT

approach is often 5-10 times larger than the time increment

of a direct time integration approach.
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Furthermore, the solution in the frequency domain

presents the response in terms of generalized displacement

(or velocity and acceleration) and pseudo-force spectra,

and hence offers a quantitative measure of the modes

dominating the response and readily portrays the transition

from a linear to a nonlinear response. The accuracy of the

solution is more easily examined by comparing the response

spectra of consecutive cycles.

The HFT solution approach also allows an updating of

the solution parameters after each iteration. Particular

examples include changing the time increment, modifying the

number of frequency components (total number of points in

the frequency domain), and reselecting the mode shapes. By

examining the response spectra, the analyst can ascertain

if the component at the Nyquist frequency has an appreciable

magnitude and evaluate the contribution of each mode to the

response, and subsequently choose a larger time increment or

eliminate the non-participating modes. As a final check for

verifying the solution accuracy, during the last iteration

the time increment can be decreased, more modes can be

added, and the number of zeroes extended, and then the

resulting response compared with the response at the

previous iteration.

This attribute of updating the solution parameters,

however, originates from the frequency domain approach

storing the entire response history, and hence implies that
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the HFT scheme demands a substantial storage space. The HFT

storage requirements are easily deduced by examining its

computer program flow chart, presented in Fig. 5.7 for the

total displacement formulation. Notice that two main loops

are embedded inside the iterative loop 100. The first loop

over the response history operates in the time domain and

evaluates the total force history. The second loop

contained in subroutine RESPON is over the number of

generalized degrees of freedom and evaluates the generalized

response. Two complex arrays TRANSF and CA are required.

TRANSF stores the transfer functions for all modes and

frequency components and CA is used in the application of

the FFT. Therefore, TRANSF has size NMODE*(NB/2+1) and CA,

size NB where NMODE is the number of modes and NB the number

of points in the frequency domain (TRANSF can be eliminated

if the transfer function is reevaluated each time it is

used).

Since the response loop succeeds the force evaluation

loop, the generalized force vector must be stored for all

degrees of freedom and the entire history. The iterative

loop requires this sequence because the frequency domain

approach entails transferring the entire history.

Furthermore, an alternate procedure evaluating the

generalized total force history and then response for one

mode and repeating the process for the next mode cannot be

implemented since the generalized force is derived from the

entire geometric force, and hence the entire geometric force
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history must be acquired before evaluating the generalized

forces of each mode. The result is an array GPF storing the

generalized force history of all included modes. GPF has

size NMODE*NP where NP is the number of points in the load

history.

The HFT storage requirements, therefore, are determined

mainly by CA, TRANSF, and GPF, amounting to a minimum

storage size of NB+NMODE*(NB/2+1)+NMODE*NP. For a typical

problem with 50 modes and 8000 time steps (NP), implying

NB=8192, the required storage space is 613,042. If TRANSF

is not stored but recalculated each time, the storage space

becomes NB+NMODE*NP, or 408,192 for our particular problem.

The storage requirements, consequently, are relatively large

compared to those of typical direct time integration

programs.

With these considerations in mind, the analyst can

judiciously select an appropriate solution scheme for

nonlinear problems. The HFT approach, however, does not

possess the extensive background of established direct time

integration studies that can provide valuable insight when

implementing the solution process. Considerable studies on

a variety of problems are necessary before the HFT scheme

can be employed with confidence.
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CHAPTER 6

SAMPLE STUDIES

Chapter 2 of this thesis presented the theoretical

foundation for nonlinear continuum mechanics, while Chapters

3, 4, and 5 discussed the actual numerical implementation of

the solution techniques. The process of obtaining a

solution numerically from well established theoretical

formulations has become possible only during the last two

decades with the introduction of the digital computer. Even

then, although the problem may be well formulated

theoretically and numerically, the actual nonlinear solution

process often involves a trial and error learning period

consisting of a multitude of unforeseen and often

unpredictable "bugs" stemming from numerical limitations

such as finite length numbers and discrete modelling or even

theoretical restrictions such as the existence and

uniqueness of the solution.
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The development considerations for the hybrid

frequency-time domain solution scheme described in Chapter 5

are illustrated in this chapter by a collection of sample

studies. Efficiency and stability characteristics are

demonstrated first by SDOF system studies, and then

additional refinements are examined in MDOF system examples.

Particular emphasis is placed on the formulation of the

solution scheme- zero minimization, acceleration by

relaxation, stabilization by artificial damping, and

nonlinear mode updating. Most sample studies display

several development ideas. The studies are not presented in

chronological order, but rather in a sequence emphasizing

the evolution of the HFT scheme as it is applied to more

complex problems.

6.1 FEASIBILITY STUDY, SDOF SYSTEM

This section discusses studies conducted during the

initial development of the HFT scheme to ascertain its

ability to reproduce the nonlinear response of SDOF systems.

The SDOF structure had a period of 1.72 seconds and 5%

viscous damping. Both an elastic-perfectly plastic and a

tubular brace material model (39,43,66,94), shown in Fig.

6.1, were employed. Although the tubular brace model in a

SDOF does not represent any realistic structure, this model

was used to demonstrate the convergence capabilities of the

HFT scheme for a complex material model containing buckling

and a degrading stiffness. Two acceleration histories were
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employed -- a two second single cycle sine wave with

amplitude 10 and a 5 second history extracted from the SN

component of the March 1977 Bucarest earthquake with peak

acceleration scaled to 0.25 g, shown in Fig. 6.2.

P E

CB

A

Fig. 6.1 Tubular Brace Model

The first SDOF study consisted of the elastic-perfectly

plastic material model and single cycle sine wave

excitation. The direct time integration results were

obtained with the Newmark integration method, a=0.25 and

6 =0.50, using a time increment of 0.1 seconds and combined

with the Newton equilibrium iteration scheme. An identical

time increment was specified in the HFT analysis. No zero

minimization or artificial damping was employed. 512 points

were required in the frequency domain to eliminate transient

effects (20 to represent the load and an additional 492
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appended zeroes). A dual displacement formulation was used

in all HFT analyses.

The results for the linear case are given in Fig. 6.3.

Figure 6.4 shows the time domain and hybrid frequency-time

domain results for a yield stress of 5 ksi, corresponding to

a yield displacement of 1.39 inches. After five iterations

the responses are almost identical.

To identify critical problem areas associated with the

hybrid frequency-time domain analysis, the study was

extended to an extreme case where the yield stress was 2

ksi, corresponding to a yield displacement of 0.56 inches.

Figure 6.5 presents the results for this case. A

substantial amount of yielding occurred, compared to the 5

ksi yield stress case. The frequency domain response, even

after ten iterations, is inaccurate, particularly after

t=1.5 seconds. In fact, when Figs. 6.6 and 6.7 are perused

carefully, we notice that the solution diverges. These

results in the frequency domain were obtained by evaluating

the pseudo-force history for a time interval of 6 seconds,

or 4 seconds after the loading terminated.

Given the poor results obtained for the 2 ksi case, an

additional study with the pseudo-force calculated only to

the end of the loading was conducted. Figure 6.8 shows the

response up to two seconds using direct time integration and

the response obtained in the frequency domain after one and

ten iterations. Notice that the HFT analysis converges when
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the free vibration part is neglected (after time 2 seconds).

This apparent anomaly where the response in the

frequency domain converges only when the free vibration part

is neglected can be explained by observing Figs. 6.9, 6.10,

and 6.11. . Figure 6.9 depicts the pseudo-force history

during the first iteration. Notice how closely the

pseudo-force history resembles the linear elastic response

shown in Fig. 6.3. The plateaus in Fig. 6.9 correspond to

elastic stress reversals from plastic yielding and the

sloped portions correspond to plastic yielding regions. The

flat portion

initial linea

explanation

Figures 6.10

successive i

pseudo-force

identical to

pseudo-force

the linear

exciting the

from 0 to 0.5

r elastic

of how

and 6.11

terations

histories

that o

histories

response

structure

seconds corresponds to the

response (refer to Fig. 6.12 for an

the pseudo-force history is obtained).

show the pseudo-force histories for

All three figures depict periodic

with periods of vibration almost

f the structure. In other words, the

, which are imposing corrections upon

to obtain the nonlinear response, are

at periods close to its fundamental

period during the free vibration stage, and consequently

cause the structure to approach resonance, yielding

displacement corrections that are extremely large. The

hybrid frequency-time domain analysis is therefore limited

to the excited portion of the response and cannot reproduce

the free vibration response for an elastic-perfectly plastic

system whenever the free vibration stage consists of
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inelastic deformations.

The next study considered the same structure with a

yield stress of 36 ksi subjected to 5 seconds of the

Bucarest earthquake (peak acceleration of 0.25 g ) beginning

at time 6 seconds and ending at 11 seconds, with a time

increment of 0.01 seconds. A string of approximately 7700

zeroes was added to the end of the excitation to ensure that

all transient effects were eliminated and that a sufficient

number of harmonics represented the loading and response.

Figure 6.13 shows the displacement response for the

direct time integration and HFT analyses. After eleven

iterations using 2 1 3 points in the frequency domain, the

residual of the nonlinear displacement (Y2) is 4.24x10~4

inches such that no differences can be visually observed

between the two figures. The HFT analysis required 90

seconds of CPU time while the time domain analysis using

equilibrium iteration at each time step required only 5

seconds.

It is quite evident that the hybrid frequency-time

domain technique provides accurate results during the

loading stage and even during the free vibration stage after

the loading terminates if the free vibrations oscillate

within the elastic regime, which is usually the case.

However, the expended CPU time is much larger, and

consequently the study was extended to optimize the solution

scheme. Further analyses determined the minimum number of



249

15

- Time Integration

10 - .- ...-- Frequency Domain,

10 iterations, N = 12

5

o 0

_ 10--J-15 -

-2
0 1 2 3 4 5 6

TIME (SEC)
Elastic-Plastic Resonse to the Bucarest Earthquake (Fy = 36 ksi)Fig . 6. 13



250

trailing zeroes required in the loading and the number of

iterations at which the responses were sufficiently similar.

The results are given in Table 6.1. As can be seen from the

tabulated results, a minimum of 212 points are required. A

residual displacement of 157 after six iterations produces

the best results at minimal cost (CPU time of 26 seconds).

The corresponding displacement plot is shown in Fig. 6.14.

Notice that the displacement response is practically

identical to that given in Fig. 6.13, except for

discrepancies toward the end of the analysis. Figure 6.15

depicts the displacement response for a residual of 342

inches after 5 iterations. Although the maximum response

corresponding to the last time step is extremely large, the

response at time 2.9 seconds is approximately 18" which

compares well with the exact response. This large error in

response toward the end of the history characterizes the

forward progressing corrective behavior of the HFT solution

scheme.

As a final study of this section, the HFT solution

scheme was applied to a SDOF system composed of the tubular

brace material model and subjected to the same Bucarest

earthquake history. The time integration results are shown

in Fig. 6.16. Using 212 points in the HFT scheme the

response after three iterations, shown in Fig. 6.17,

diverges. With 213 points the response after 12 and 15

iterations are shown in Figs. 6.18 and 6.19, respectively.

Response values and computation times are listed in Table
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Solution
Scheme

Time
Integration
(nonlinear)

HFT

No. of
Points

Iterations Residual Maximum
Displacement

(inches)

________ I I T

8192

8192

4096

4096

4096

4096

4096

2048

11

6

11

8

7

6

5

11

.0004

163

1

10

20

157

342

4132

17-64

17-64

17.64

17-64

17-72

17.74

17.53

54.97*

34.73

time increment = 0.01 seconds for all analyses

* occurred during last time step

Table 6.1 Computation Times for Elastic-Perfectly Plastic

SDOF Model

CPU
Time
(sec)

5

90

52

42

33

29

26

23

22
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6.2.

These studies demonstrate that the hybrid

frequency-time domain solution scheme is capable of

reproducing the response for SDOF systems subjected to

complex load histories and represented by complicated

material models. The solution scheme as presented, however,

is extremely inefficient, and the succeeding discussion

considers possible means of improving the efficiency.

The two cases where the excitation consisted of the

Bucarest earthquake readily illustrate the computation cost

contributed by the appended zeroes. Although only 500

points are necessary to model the 5 second load history, a

solution in the frequency domain required an additional 3596

and 7692 zeroes for the elastic-perfectly plastic and

tubular brace models, respectively. Tables 6.1 and 6.2

indicate that the computation time doubles for each

additional factor of two. As a consequence of this

inefficiency stemming from the appended zeroes, a zero

minimization technique was developed, as described in

Chapter 5.

Applying the zero minimization scheme to the

elastic-perfectly plastic SDOF system subjected to the

Bucarest earthquake yielded the results displayed in Table

6.3. Notice in general that the number of required points

has been reduced by a factor of 4 (optimum case has 1024

points - 500 for the load history and 524 zeroes). The
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Solution
Scheme

Time
Integration
(nonlinear)

HFT

No. of
Points

8192

8192

4096

Iterations Residual

+

- 15

12

30

16

206

1. 8x105

Maximum
Displacement

(inches)

11.2

11.2

33.0*

2.3x10

time increment = 0.01 seconds for all analyses

* occurred during last time step

Table 6.2 Computation Times for Tubular Brace SDOF Model

CPU
Time
(sec)

6

115

95

105
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Solution
Scheme

Time
Integration
(nonlinear)

Time
Integration
(linear)

HFT

No. of
Points

512

1024

1024

1024

2048

2048

Iterations |Residual

10

6

8

10

6

7

5795

202

80

100

41

15

Maximum
Displacement

(inches)

20.75

17.64

234

18.53

18.86

17.40

17.62

17.50

time increment = 0.01 seconds for all analyses

Table 6.3 Computation Times for Elastic-Perfectly Plastic
SDOF Model Using the Zero Minimization Technique

CPU
Time
(sec)

5

6

11

10

13

15

16

17



258

response after 10 iterations using 1024 points is shown in

Fig. 6.20.

A simple relaxation scheme was also investigated as a

means of accelerating the convergence. Details of the

procedure were given in Chapter 5. Results of the study

indicated that the system was highly sensitive to any form

of over-relaxation or under-relaxation, usually producing a

slower convergence rate, if not divergence. Table 6.4 shows

typical convergence characteristics for the

elastic-perfectly plastic SDOF system subjected to the

Bucarest earthquake. Tabulated results are for acceleration

coefficients of 1.0, 1.10, 1.01, and 0.99.

This section demonstrated the feasibility of the HFT

scheme applied to SDOF systems. Accurate results are

derivable and although the efficiency may be less than that

of direct time integration analyses, even when using the

zero minimization scheme, it is noted that a mode

superposition approach can not be applied to SDOF systems

and that the use of a possibly smaller time increment in the

HFT analysis was not exploited.

6.2 SDOF SOIL AMPLIFICATION PROBLEM

This study applied the HFT scheme to a soil

amplification problem analyzed by Constantopoulos in 1973

(19). The problem exhibited a fairly complex response with

significant nonlinearities and, moreover, had no viscous
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Accel
Coeff

Al

I

260

eration Iteration Residual

icient
pha

.00 497
2 758
3 777
4 627
5 460
6 202
7 115

8 79
9 138

10 100

1.10 1 399
2 1360
3 2868
4 5421
5 8101
6 13261
7 23395
8 37698
9 70330

10 142800

1.01 1 640
2 1039
3 985
4 952
5 986
6 1223
7 1466

,8 1528
9 2022

10 2256

0.99 1 382
2 706
3 993
4 821
5 852
6 742
7 500
8 621
9 457

10 290

Table 6.4 Residual Displacements When Using

Relaxation Schemes
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damping. These two aspects posed convergence problems for

the basic HFT scheme used in section 6.1.

The soil amplification problem in general consists of

determining the surface response to a seismic excitation

applied at the base of a soil deposit. In this example the

soil was represented by a SDOF system with a period of

0.25 s. A Ramberg-Osgood material model (u =0.001,

f =1.264, a=0.05, r=2) characterized the soil behavior. The

relationship governing the Ramberg-Osgood model is

u-un f -f. ~ r
u _ - u f + a ( 6 .1 )

cu cf cf
yy-

where the u's correspond to displacements and f's to forces,

producing the load-deflection curve shown in Fig. 6.21.

The excitation was the first ten seconds of the N69W

component of the Taft record of the 1952 Kern county

earthquake, with peak acceleration scaled to 0.01 g, shown

in Fig. 6.22. No viscous damping was specified. Relevant

structural parameters are provided in Fig. 6.23.

The extension of the frequency domain analysis to

problems with no damping is theoretically inconsistent since

an undamped problem exhibits a periodic response which does

not decay with time. Assuming that all significant loading

frequencies do not correspond to the natural structural

frequencies or that the discretized frequency spectrum

avoids these singularities, a resonance effect will not

develop, and it is possible to evaluate numerically the
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response with the standard frequency domain approach. In a

nonlinear analysis, however, the natural frequencies will

shift, and a previously stable problem will become

intractable if the pseudo-force histories begin to

contribute loads at the natural frequencies. This resonance

problem is particularly acute for seismic analyses where the

energy spectrum may contain a significant range of

frequencies.

As a result,, preliminary runs using the solution scheme

in section 6.1 produced a diverging solution. Although this

problem contains hysteretic damping provided by the soil

model, initial iterations using the same approach as in

section 6.1 progress without any damping. The hysteretic

damping appears during the latter cycles of the solution

process in the form of pseudo-force load vectors. As a

consequence, artificial viscous damping was employed in the

subsequent soil amplification studies to act as a buffer to

extremes in the converging response. In essence, the

artificial damping approximates the actual hysteretic

damping effect upon the response.

Furthermore, preliminary studies indicated that the

linear response (no viscous damping) differed significantly

from the actual nonlinear response. The formulation of the

governing equations of motion was consequently modified such

that rather than evaluating the linear response to the

earthquake and then iterating with the resulting
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pseudo-forces to obtain a correction displacement term which

when added to the linear response gave the actual response,

all iterations included the earthquake loading, and the

actual response was evaluated directly (total displacement

formulation).

In the time integration analyses time increments of

0.01 s and 0.005 s were used. The results for At=0.01 s

differed slightly from those for At=0.005. s, and it was

concluded that At=0.01 s was adequate. Notice that since

the soil model contains hysteretic damping, no numerical

artificial damping should be imposed on the response.

Consequently, the Newmark method with a=0. 2 5 and 6=0.50 (no

artificial damping) was used in conjunction with a Newton

equilibrium iteration scheme. In addition a displacement

tolerance of 10~8 and iteration limit of 15 was specified in

the equilibrium iteration.

For the HFT analysis a time increment of 0.01 seconds

was selected. The peaks of the response could not be

captured for At=0.02 s and no further information would be

obtained for At<0.01s since the Nyquist frequency

corresponds to 50 Hz for the given earthquake history.

Based on preliminary studies, an artificial viscous damping

ratio of 0.50 was selected since the response would

eventually diverge during the iterative process for an

artificial damping ratio less than 0.25.
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Figure 6.24 depicts the results using a time

integration analysis, and Figs. 6.25, 6.26, and 6.27 show

the response after 20, 60, and 75 iterations. The response

converges between 60 and 75 iterations. Comparing the

efficiencies of the methods, 47 s CPU time were required for

the direct time integration analyses while 172 s CPU time

were required for 75 iterations using the HFT analysis. It

should be mentioned that artificial damping was included not

simply because no viscous damping was specified, but also

because the problem was highly nonlinear, causing

convergence difficulties for the HFT analysis. Even with a

specified ordinary viscous damping ratio of 5%, as in the

previous SDOF study, the solution would diverge by the 10th

iterative cycle.

The use of artificial damping and the total

displacement formulation were demonstrated in this study.

Both schemes stabilized the solution process by producing a

better initial estimate of the nonlinear response and

preventing excessive inaccuracies in the pseudo-force

history during the iterative process. The HFT scheme once

again proved less efficient than a direct time integration

analysis.
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6.3 TEN DOF SHEAR BEAM STRUCTURE

The response of a ten degree of freedom shear beam type

structure described by elastic-perfectly plastic material

models was examined in this study. The fundamental period

was 3.65 seconds and the 10th period, 0.28 seconds. A

seismic excitation represented by a single cycle sine wave

of duration two seconds was used as the loading. To induce

a localized nonlinear behavior and participation of higher

modes in the structure, a yield stress of 100 ksi was

specified for each member, except at level four where the

yield stress was 1 ksi. Rayleigh damping was employed by

specifying a damping ratio of 5% for the 1st and 4th

frequencies. Relevant structural parameters are given in

Fig. 6.28.

The Newmark integration method with a=0.25 and 6=0.50

and the Newton equilibrium iteration scheme were used for

the direct time integration case. The governing equations

of motion were solved in an incremental form. A time

increment of 0.02 seconds was specified..

In the hybrid frequency-time domain analysis a time

increment of 0.1 seconds was specified. 64 points were

used. Notice that in the optimum case we would use only 32

points. However, for this particular problem, 32 points in

the frequency domain were insufficient to adequately resolve

the shape of the displacement response and pseudo-force

histories. No artificial damping was employed, and the dual
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displacement formulation was used.

The problem of nonlinear mode updating in the frequency

domain and the consequent problem of handling the

off-diagonal terms in the new generalized structural

matrices were first addressed in this study. Linear and

nonlinear mode shapes were used simultaneously, and hence

all off-diagonal terms were managed by transferring them to

the RHS of the equations of motion. Mode updating was

implemented with the first scheme outlined in section

5.2.2.6.

An HFT analysis with all ten linear modes was conducted

first to determine the convergence behavior of this

particular problem. As can be seen from the response

histories of dof's 1 and 10, shown in Figs. 6.29 and 6.30,

the solution converges within 20 iterations. The response

histories after the first iteration correspond to the linear

response (dual displacement formulation). Notice that the

10th degree of freedom converges quickly because its

nonlinear response resembles its linear response. Figure

6.31 depicts the corresponding deflected shapes of the

converged solution from time t=1.0 s to t=1.5 s. From Fig.

6.31 it is apparent that the nonlinearities are concentrated

in element 4 (from the base), resulting in a fairly simple

pseudo-force distribution existing only at nodes 3 and 4.

The first proposed mode updating scheme, consequently, is

readily adapted to this problem.
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The second portion of this study implemented the mode

updating scheme by iterating the first five cycles with

first 5 linear mode shapes. After these cycles, the

analysis was stopped and the pseudo-force histories were

examined. An equivalent static load distribution was

derived, applied to the original structure, and then the

tangent stiffness matrix was obtained. From the tangent

stiffness matrix, the first nonlinear mode shape was

evaluated. The ten linear mode shapes are given in Fig.

6.32 and first nonlinear shape, in Fig. 6.33. The first

nonlinear mode shape was then Gram-Schmidt orthogonalized

with respect to the first 5 linear mode shapes to obtain the

nonlinear mode shape shown in Fig. 6.34. The analysis was

restarted using the first 5 linear mode shapes and the first

nonlinear Gram-Schmidt orthogonalized mode shape (a total of

6 modes). The corresponding response histories are provided

in Figs. 6.35 and 6.36 for dof's 1 and 10 and the

converging deflected shape from time t=1.0 s to t=1.5 s is

given in Fig. 6.37. It is apparent that this mode updating

procedure is effective for this problem. Furthermore, Fig.

6.38 demonstrates that the response obtained with the

first five linear modes using time integration is

inadequate to properly represent the nonlinear response. As

a measure of the efficiency of the HFT analysis, the

expended CPU times are listed in Table 6.5.

the
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Solution
Scheme

Time
Integration

Linear

nonlinear

HFT

Time

0.02

0.02

0.1

0.1

0.1

0.1

No. of
Modes

all

all

10L

5L+4NL

5L+2NL

5L+INL

CPU Time
(sec)

11.9

15.1

23.4

18.3*

16.4*

15.2*

All HFT CPU times are for 20 iterations

L - linear mode
NL - nonlinear mode

* nonlinear solution time

Table 6.5 Computation Times for 10 DOF Shear Beam Model
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This section demonstrated the feasibility of the first

mode updating scheme used in conjunction with the

transference of the off-diagonal terms to the RHS of the

equation of motion. The HFT scheme in this context

demonstrated sufficient accuracy and an efficiency

comparable to that of a direct time integration analysis.

The study, however, was limited to a fairly simple response,

producing no stability problems.

6.4 MDOF SOIL AMPLIFICATION STUDY

Another soil amplification problem was considered in

this study, but with a refined soil model consisting of a

closely coupled 9 degree of freedom lumped mass structural

model and a stiffness profile varying with the square root

of the depth. The fundamental structural period T, was

0.357 s and T9 , 0.031 s. No viscous damping was specified,

and the Taft earthquake scaled to 0.05 g was used. Relevant

structural properties are provided in Fig. 6.39.

The direct time integration analyses were conducted

using the Newmark integration method (a-0.
2 5 , 6-0.50) and

Newton equilibrium iteration scheme with a residual force

tolerance of 0.00001 and iteration limit of 15. Preliminary

studies indicated that a time step size of 0.005 s was

adequate. The linear and nonlinear displacement responses

at the soil surface are given in Figs. 6.40 and 6.41.
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Compared to the MDOF problem discussed in section 6.3,

this problem exhibited a complex nonlinear response with

significant deviations from the linear response. As a

result, it offered an opportunity to examine the stabilizing

behavior provided by the artificial viscous damping and to

apply the second mode updating scheme (least squares secant

stiffness approach).

The total displacement formulation was used in the HFT

analysis with a time increment of 0.01 s. Although an

artificial viscous damping ratio of 0.50 was adequate for

obtaining the first five seconds of the response, a damping

ratio of 0.75 was necessary for the entire history of 10

seconds because the solution eventually diverged for a

damping ratio of 0.50. The results after 5, 10, and 20

iterations are given in Figs. 6.42, 6.43, and 6.44. Notice

that the response appears to converge after 5 and 10

iterations, but after 20 iterations a low frequency

component introduces a slow drift in the solution and with

further iterations, significant high frequency components

begin to modify the response to the extent that the proper

response shape is maintained, but the amplitudes grow

without bound.

Further diagnostic studies indicated that the

artificial viscous damping force contributed the significant

high frequency response while the pseudo-force vector

contributed the low frequency drift. Any static drift in
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the solution can be attributed to the pseudo-force vector

FNL since the other loading terms consisting of the

earthquake excitation and the artificial damping force

(which is derived from the velocity of the response equal to

iw Y(w) in the frequency domain) had no zero frequency

components. It is postulated that when the HFT solution

initially gives poor estimates of the correct response,

then, since a viscous type artificial damping 2E vm is used,

the artificial damping force for the higher modes (w large)

continues to increase with each iteration until it dominates

the response, producing an incorrect pseudo-force (low

frequency drift) which further aggravates the inaccuracies

in the artificial damping force for the succeeding cycle.

As a result of the unstable convergence properties

introduced by the artificial viscous damping, an artificial

hysteretic damping was considered next. By its very

definition the hysteretic type damping appears more suitable

for this problem since in essence all damping is contributed

by the soil model.

Before executing the entire HFT analysis, preliminary

studies were conducted to determine an appropriate time

increment. Figure 6.45 depicts the results obtained after

10 iterations with At=0.01 s, and Fig. 6.46, the

corresponding results with At=0.05 s. In both cases the

artificial hysteretic damping ratio equalled 0.75. A time

increment of 0.05 s appeared acceptable and was used in
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succeeding analyses. 256 points were used in the frequency

domain (200,for the 10 second earthquake and 56 appended

zeroes).

The RFT results using all nine linear modes are shown

in Fig. 6.47 for 50 iterations and Fig. 6.48 for 80

iterations, by which time the solution history had converged

to its final shape for the specified solution parameters.

Notice that the results after 50 and 80 iterations are

fairly similar up to time 5 seconds. This convergence

behavior indicates that the final iterations correct the

latter portion of the response, implying that the initial

portion converges first and corrects in a time progressing

form.

As a comparison of the efficiency of the two solution

schemes, the direct time integration analysis required 650 s

and the HFT analysis, 540 s.

The next portion of this study implemented the second

mode updating scheme, described in Chapter 5. Initial

studies were conducted with a time increment of 0.05 s to

determine the minimum number of linear modes necessary to

adequately reproduce the response. Figure 6.49 shows the

response after ten iterations using all 9 linear modes.

Figure 6.50 shows the corresponding response using 5 linear

modes, and Fig. 6.51, 1 linear mode. One linear mode

adequately reproduces the response, although the peak

amplitudes are slightly smaller.
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Realizing that the fundamental mode was acceptable in

this particular problem, the mode updating scheme was

applied in the following form:

1. Iterate the first ten cycles with one linear mode.

2. Stop the analysis. Apply a least squares fit to

the stress-strain diagram of each member to obtain nine

new secant stiffnesses, k sec'

3. Establish the corresponding structural secant

stiffness Ksec and evaluate the nonlinear

eigenvector (s).

4. Restart the analysis with the fundamental nonlinear

eigenvector (one nonlinear mode).

5. Iterate for another 40 cycles.

The response after 50 iterations (first 10 with one

linear mode and next 40 with one nonlinear mode) using a

time increment of 0.05 s is shown in Fig. 6.52. For

comparison purposes an additional analysis was conducted

with one linear mode during all iterations and a time

increment of 0.05 s, yielding the response after 50

iterations shown in Fig. 6.53a and 80 iterations, Fig.

6.53b. Comparing Figs. 6.52 and 6.53 with Fig. 6.48 it is

apparent that the response converged faster with only one

nonlinear mode (50 iterations for one nonlinear mode and 80

iterations for one linear mode). Finally, Fig. 6.54 shows

the additional accuracy gained by using one linear mode and

a time increment of 0.02 s.
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The faster rate of convergence when using one nonlinear

mode, as opposed to one linear mode, stems from K better

representing the overall structural behavior than K1 , and

hence providing closer initial estimates to the nonlinear

response. The fundamental mode of K sec has period 0.466 s

compared to that of K1 with 0.357 s, indicating that isec

portrays a softer, nonlinear structure. A representative

force-displacement diagram, from which the k sec'S are

derived, is shown in Fig. 6.55.

The computation times for the various analyses are

provided in Table 6.6. Notice that the HFT scheme displays

significant reductions in computational cost compared to the

direct time integration analyses. This efficiency

originates from the use of a time increment ten times larger

than that of the direct time integration analysis combined

with a nonlinear mode superposition scheme.

This section introduced the artificial hysteretic

damping concept to stabilize an otherwise intractable

problem and the least squares secant stiffness mode updating

scheme to increase the analysis efficiency. The hysteretic

artificial damping proved better adapted to this problem

than the artificial viscous damping, and, furthermore, had a

negligible effect on the computational cost. The second

mode updating scheme was easily implemented and actually

accelerated the convergence of the iterative process.

Compared to the first mode updating scheme, this method
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Solution
Scheme

Time
Integration'

HFT

Time
Increment

0.005

0.05

0.05

0.05

0.02

No. and Type
of Modes Used

Direct

9 linear

1 linear

*

1 linear

Iterative
Cycles

80

80

50

80

CPU Time
(sec)

650

544

133

100

315

* 1 linear, first ten iterations
1 nonlinear, next 40 iterations

Table 6.6 Computation Times for MDOF Soil

Amplification Study
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demanded less participation from the user while producing

more accurate results. The scheme could be developed as a

self contained updating approach, similar to the equilibrium

iterators in current use.

6.5 CROSS-BRACED TUBULAR OFFSHORE STRUCTURE

The HFT scheme was extended in this study to

two-dimensional models of offshore steel jacket structures

subjected to seismic excitations. This study differed from

previous studies in that all degrees of freedom were not

loaded externally. In particular, the excitation was

limited to a horizontal ground motion, implying that the

vertical and rotational degrees of freedom had no external

load. As a consequence, the study provided an opportunity

to examine the convergence accuracy of degrees of freedom

where the loading may be dominated by the pseudo-force

rather than the external force. Furthermore, this study

represented a culminating point for applying the fully

developed HFT scheme.

6.5.1 Single-Bay Offshore Structure

The first portion of this study consisted of

determining the general convergence behavior of the HFT

scheme when applied to an offshore structure problem, and

hence initial analyses were limited to a single-bay offshore

structure, shown in Fig. 6.56, with fundamental period of

0.41 s. A stiff platform deck was modelled by a large
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linear elastic horizontal beam at the deck level. Vertical

leg members were assumed to remain linear elastic and

modelled by linear elastic tubular beam elements.

Foundation effects were neglected by specifying a fixed base

for both legs. The diagonal cross braces were modelled

using the tubular brace model shown in Fig. 6.1, with

specified fixed-fixed end conditions. The surrounding sea

water was simulated by the added mass effect with an inertia

coefficient CM- 2 .0. The excitation consisted of the first 5

seconds of the Taft earthquake scaled to 3.5 g, to induce a

reasonable nonlinear response level. Six degrees of freedom

were present -- two sets of horizontal, vertical, and

rotational at the top nodes. Rayleigh damping was employed

by specifying a damping ratio of 0.05 at the fundamental

mode and 0.50 at the highest mode. The highest three modes

correspond to deformations of the stiff deck beam, and hence

do not participate significantly in the response.

Preliminary analyses indicated that the direct time

integration approach required a time increment of 0.02 s

when using the Newmark integrator (a=0.25, 6 =0.50) and

modified Newton iteration scheme. The linear response for

lateral degree of -freedom 4 is shown in Fig. 6.57 and

nonlinear response, Fig. 6.58.

As a direct comparison of the time integration and HFT

analysis schemes, the HFT solution was also implemented with

a time increment of 0.02 s using all 6 linear modes and an
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artificial hysteretic damping ratio of 0.5. Acceptable

displacement responses were attained after 30 iterative

cycles. Figures 6.59, 6.60, and 6.61 depict the response of

degree of freedom 4 after 5, 15, and 30 iterations.

Additional analyses were conducted with

steps and

solution.

iterations

damping rat

6.63 shows

fundamental

increment

were run wi

6.65 show

increment

respectivel

essentially

iterations

response hi

number of modes to determine the

other time

optimum HFT

Figure 6.62 shows the response after 30

using 6 linear modes, an artificial hysteretic

io of 0.35, and time increment of 0.05 s. Figure

the corresponding response when using only the

mode. These analyses indicated that a time

of 0.05 s was too coarse, and subsequent analyses

th a time increment of 0.02 s. Figures 6.64 and

the response using three linear modes and a time

of 0.02 s after 25 and 30 iterations,

y. Notice that the HFT solution scheme has

converged by the 25th iteration, with additional

producing minor changes in the end of the

story. As expected, the lowest three modes

reproduce the response exactly.

A more stringent evaluation of the accuracy of the RFT

solution is available in Table 6.7, listing the maximum

responses and times of occurrence. The maximum

displacements all agree within reasonable accuracy ranging

from less than 1% error for the horizontal and rotational

degrees of freedom up to 5% error for the vertical degrees
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Time
(sec)

Maximum Time
Velocity (sec)

I. t

3

3

3

3

3

3

.86

.38

.84

.86

.84

.84

7

0

-0

7

0
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.019

.152

.601

.019

3.76

4.26

4.28

3.76
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Accel.

-58.10

-23.00

0.785

-58.23

-25.45

0.785

a. Direct Time Integration Results

Maximum
Displ.

Maximum
Velocity

I t

7.215

-0.860

0.034

7.215

1.177

0.034

Maximum
Accel 

Solution Scheme Results, 30 Iterations

Table 6.7 Maximum Response Values for Single-Bay
Offshore Structure

DOF Maximum
Displ.

Time
(sec)

1

2

3

4

5

6

0.838

-0.027

-0.001

0.838

-0.030

-0.001

3

4

4

3

3

4

.82

.94

.94

.82

.98

.94

Time
(sec)

Time
(sec)

DOF

1

2

3

4

5

6

Time
(sec)

0.

-0.

-0.

0.

-0.

-0.

837

028

001

837

031

001

3.86

3.38
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3.86
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3.82

3.

4.

4.

3.
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-31
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-1
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38
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38

3

4

4

3

4

4

84
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84

98
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of freedom. The maximum velocities and accelerations

exhibit a larger error, particularly for those degrees of

freedom associated with no external load. Errors in the

lateral degree of freedom velocities are approximately 1%

and accelerations, 10%. Comparisons of other degrees of

freedom indicate a larger error with times of occurrence

differing appreciably in some cases. Although the maximum

velocities and accelerations were not reproduced as well, it

is noted that the HFT solution scheme derives the velocities

and accelerations indirectly by applying a finite difference

expansion to the converged displacement response, possibly

producing inaccurate values for the final time step and

resulting in a false impression of the maximum response.

Based on these analyses, the optimum HFT solution

scheme consisted of using three linear modes, a time

increment of 0.02 s, and artificial hysteretic damping ratio

of 0.35. Thirty iterations were required for an acceptable

displacement convergence.

The efficiency of the optimum HFT scheme compared to

the direct time integration analysis is detailed in Table

6.8, listing the expended CPU times. The optimum HFT

solution is four times more expensive than the time

integration solution. Notice that when the time increment

is decreased from 0.05 s to 0.02 s, the computation time

increases by a factor of 2.1 (140/66). Decreasing the

number of modes from six to three decreases the computation
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Solution
Scheme

Time No. of
Increment Modes

Time
Integration

linear

nonlinear

HFT

0.02

0.02

0.02

0.05

0.05

0.02

6

6

6

6

1

3

No. of Hysteretic
Iterations Damping

30

30

30

30

0.5

0.35

0.35

0.35

Table 6.8 Computation Times for Single-Bay
Offshore Structure

CPU
Time
(sec)

15

22

140

66

32

100
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time by a factor of 1.4 (140/100). As a consequence, the

main contributor to the computation time in this particular

problem is the pseudo-force history evaluation, aggravated

by the complexity of the tubular brace material model.

The first portion of this study demonstrated the

ability of the HFT scheme to reproduce the nonlinear

response of a hypothetical offshore structure. Efficiency

considerations, however, would prevent its use for such a

small problem whose critical time increment was governed by

the material model evaluation, rather than numerical

integration considerations.

6.5.2 Two-Bay Offshore Structure Subjected to Taft

Earthquake

The successfull, albeit expensive, application of the

HFT scheme to the solution of a single-bay offshore

structure subjected to a seismic excitation prompted an

extension to a more realistic model of the so-called

Southern California structure investigated in other studies

(12,27,42). The structure consists of two bays, each with a

height of 60', and is situated in a water depth of 100'.

The analysis was limited to a two-dimensional lumped mass

frame model with material nonlinearities only (MNO).

Pertinent structural parameters are given in Fig. 6.66.

The vertical legs were modelled by linear elastic tubular

beam elements. The deck was replaced by a heavy horizontal

linear elastic beam element. All diagonal braces were
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modelled with the tubular brace material model, fixed-fixed

end conditions. The surrounding sea water was simulated by

the added mass effect with inertia coefficient CM=2 .0.

Entrained water was included for members below the water

surface. Foundation conditions were simplified by

specifying pinned ends for the appropriate leg members. All

together there were 14 degrees of freedom. Damping was

Rayleigh type with a damping ratio of 5% at modes one and

four. An eigenvalue analysis gave the following structural

periods:

T1=1.16s, T 2 =0.27s, T 3 -0.24s, T 4 =0.'15s, ... , T 1 4 -0.0001s

The direct time integration analyses were conducted

with the Newmark integrator (a=0.25, 6 =0.50), modified

Newton equilibrium iterator, and incremental formulation.

The time increment was 0.01 s for both the time integration

and HFT analyses. To reduce the computational cost of the

HFT analysis, only the first mode was included, implying

that at best the lateral response would be adequately

captured. No artificial damping or mode updating was

admitted.

Ten seconds of the Taft earthquake were used as~ the

input excitation. Based on API guidelines (4) the strength

level earthquake for Southern California has an approximate

magnitude of 0.25 g, and consequently the Taft earthquake

was scaled to the ductility level magnitude of 0.50 g.
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Results for the direct time integration analyses are

presented in Fig. 6.67, the linear response, and Fig.

6.68, the nonlinear response. Both figures correspond to

lateral degree of freedom 12 (deck level). The close

similarity between the linear and nonlinear responses

indicates that the HFT solution should converge rapidly if

the fundamental mode can adequately capture the lateral

response. Indeed, the HFT scheme converged within three

iterations and more than adequately reproduced the nonlinear

response of dof 12, shown in Fig. 6.69. The actual

computational cost of the HFT scheme was 1/3 that of the

direct time integration analysis.

This study established the HFT solution scheme's

attractiveness when the shape of the nonlinear response

history only differs in its magnitude from the linear

response history. Convergence is rapid for such cases and

artificial hysteretic damping need not be imposed.

6.5.3 Two-Bay Offshore Structure Subjected to El Centro

Earthquake

This portion of the study examined the response of a

two-bay structure with more significant nonlinearities. The

first 5 seconds of the SE component of the May 1940 El

Centro earthquake, shown in Fig. 6.70, were used as the

excitation. The earthquake was scaled to 3.0 g to induce an

appreciable difference between the linear and nonlinear

response. Structural modelling was the same as before,
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except the base was now specified as fixed-fixed. The

structural periods are as follows'

T =l.lls, T =0.27s, T =0.24s, . T =0.003s
1 2 3 12

Rayleigh damping was included by specifying a dampi'ng ratio

of 5% for modes one and seven. Relevant structural

parameters are provided in Fig. 6.71. It is noted that the

first seven modes correspond to reasonable physical

deformations while the highest five modes correspond to

deformations of the very stiff horizontal deck beam.

Direct time integration analyses were conducted using

the trapezoidal rule numerical integrator combined with a

modified Newton iteration scheme (stiffness updating after

each time step). The time increment was 0.02 s. Figures

6.72 and 6.73 depict the linear and nonlinear displacement

response for lateral degree of freedom 10 at the deck level.

Based on preliminary studies, the critical time

increment for the HFT analyses was also 0.02 s, and an

artificial hysteretic damping ratio of 0.5 was necessary to

prevent instabilities. In the first HFT analysis, seven

linear modes were used throughout the iterative process to

examine how efficiently the HFT scheme could reproduce the

exact nonlinear response. However, the solution was

terminated after 45 iterations because of the excessive

computational cost. Figure 6.74 depicts the response after

45 iterations using the seven lowest modes (other modes do

not participate in the response). Notice that the response
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after time 3.0 s has not yet converged adequately as seen by

comparing the response in Fig. 6.73 with that in Fig. 6.74.

As a result of the slow convergence of the HFT scheme

using seven modes, a new solution algorithm was developed to

accelerate the convergence process. The algorithm consists

simply of using one mode for the first ten iterations and

then adding more linear modes for successive iterations.

Using this approach, the first ten iterations employing the

fundamental linear mode produced the response shown in Fig.

6.75. The next twelve iterations included the lowest three

linear modes, giving the response depicted in Fig. 6.76.

Notice that the response obtained with one mode for 10

iterations and then three modes for the next 12 iterations

produced better results than when using seven modes for 45

iterations. Furthermore, even the response after ten

iterations using one linear mode is a fairly good estimate

of the actual nonlinear response. The HFT response, of

course, has yet to converge, possibly requiring additional

modes. Computation times for the various analyses are

tabulated in Table 6.9.

This last portion of the offshore structure study

demonstrated that employing all significant modes in an UFT

analysis during all iterations may result in an extremely

inefficient solution process. An alternate solution

algorithm was implemented whereby only a few modes were used

during the initial iterative cycles to obtain a good

estimate of the dominating nonlinear response, and then
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Solution
Scheme

T i me

Time
Integration

linear

nonlinear

HFT

No. of
Points

250

250

256

256

Iterations

45

10+12

Modes

all

all

7 linear

*

time increment = 0.02 seconds for all analyses

* 1 linear for first 10 iterations

3 linear for next 12 iterations

Table 6.9 Computation Times for Two-Bay Offshore

Structure Subjected to El Centro Earthquake

CPU
Time
(sec)

25

62

350

83
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additional modes were added during successive cycles to

provide a finer refinement of the response. The proposed

algorithm proved more efficient and produced better results.

6.6 EXTREMELY SOFT SDOF SYSTEM

This section describes a study where the nonlinear

response was characterized by a stiffness much softer than

the linear stiffness. The actual response history contained

one portion dominated by the linear stiffness and another,

by the nonlinear stiffness. Although the HFT scheme could

not produce a converged solution using the techniques of the

other studies, the sources of the divergence suggest an

alternate scheme for implementing the HFT solution.

The study examined the behavior of SDOF systems with

extremely low yield levels. Elastic-perfectly plastic

material models were employed with a yield displacement of

0.001, producing plastic behavior almost immediately after

introducing the load. The excitation consisted of 5 seconds

of the Taft earthquake.

The time integration results, shown in Fig. 6.77, were

obtained using the trapezoidal rule and Newton equilibrium

iteration with a time increment of 0.005 s.

In the HFT analysis a time increment of 0.01 s was

specified and an artificial hysteretic damping ratio of 0.75

was employed. The response after 10 and 30 iterations using

the linear mode and stiffness is shown in Figs. 6.78 and
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6.79. These figures indicate that the response is fairly

accurate up to time 3.5 seconds, whereupon it begins to

diverge and displays an oscillatory behavior not present in

the time integration results. This divergence is attributed

to the HFT solution scheme being based on a pseudo-force

approach. The pseudo-force history converges to its exact

form in a forward time progressing fashion, and hence may

exhibit significant differences from its converged form

during the iterative process. Previous case studies were

stabilized during the iterative process by including

artificial damping. This particular example appears to be

stabilized insufficiently, probably because of the extremely

low yield stress, implying significant pseudo-force

amplitudes.

A nonlinear mode updating scheme was considered next as

a means of stabilizing the problem. The procedure consisted

of iterating 5 cycles with the linear mode, updating the

stiffness, iterating another 5 cycles with the new secant

stiffness, repeating this process for a total of 20

iterations. The initial linear stiffness had a value of

1264, and the secant stiffness after iterations 5, 10, and

15 was 206, 26, and 15, respectively. Figure 6.80 shows the

response after 20 iterations using this procedure. Notice

that the nonlinear response after time 2.8 seconds is

represented fairly well. The response before time 2.8

seconds, however, is incorrect and displays an oscillatory

behavior. This result contrasts directly with the previous
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results obtained with the linear stiffness.

As a means of diagnosing the source of the poor

results, the pseudo-force histories corresponding to

iterations 4, 5, 6, and 50 of an updated stiffness case with

ksec = 15 were plotted and are given in Figs. 6.81 to 6.84.

Similarly, the response after iterations 3, 4, 5, 49, and 50

are provided in Figs. 6.85 to 6.89. Notice that the

pseudo-force history after time 3.0 seconds appears to

converge while that before tends to oscillate and, moreover,

varies significantly between consecutive iterative cycles.

A similar remark applies to the response history. In

particular, the response before time 3.0 seconds appears 900

out of phase for consecutive cycles, even for the 49th and

50th iterations.

Based on these results it is concluded that the HFT

solution scheme exhibits convergence problems when the

stiffness employed during the iterative process differs

significantly from the actual nonlinear stiffness. These

convergence problems originate from excessively large

pseudo-forces that may be correct theoretically, but induce

large inaccuracies during the iterative process. The large

pseudo-forces can stem from an excessively large stiffness

on the left hand side of the equation of motion combined

with a very soft material model or an excessively soft

stiffness on the LHS combined with a reasonably stiff

material behavior. This problem is amplified
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unrealistically in a SDOF problem -because it is not possible

to create a stiffness matrix representing the stiff and soft

portions of the structure with a SDOF model.

These conclusions suggest a solution scheme where the

excitation is sectioned in time and the response for each

section is determined with a different K sec. For example,

in the problem of the very soft structure, k, would be used

for the interval before 3.0 s and k sec=15 for the interval

after. An overlap-save or overlap-add method would then

link the two response histories together. In general, the

entire history would be analyzed during the first few

iterative cycles and then the solution process stopped and

the pseudo-force histories examined to determine how the

excitation history should be sectioned. This segmenting

procedure, however, may involve a substantial participation

on the part of the analyst, and decrease the attractiveness

of implementing the HFT solution scheme.

The following section examines a similar SDOF problem

where the initial stiffness does not govern the actual

nonlinear response. In contrast to the problem of this

section, the following problem displays rapid convergence.

6.7 BILINEAR ELASTIC SDOF SYSTEM

The HFT scheme was applied to a bilinear elastic SDOF

system with period 0.063 s. Relevant problem attributes are

shown in Fig. 6.90. The loading consisted of two
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sinusoidal waves; the first had amplitude 50 and period

4.2 s and the second had amplitude 100 and period 1260 s.

The dynamic response was generated mainly by the low period

component. The bilinear elastic material model had first

slope k1 =10,000 and second slope k 2 =10.

All time integration responses were obtained with the

central difference numerical integrator, and therefore the

critical time increment for the linear analysis was

At - T /i = 0.063/t = 0.020 s (6.2)
cr n

The analysis time interval was determined by the high period

component (T-1260 s). To ensure that the maximum response

was captured, the minimum interval of analysis was therefore

1260 s (one cycle). A time increment of 0.02 s was also

used in the nonlinear time integration analysis and proved

adequate. The linear and bilinear dynamic responses are

shown in Figs. 6.91 and 6.93. Similarly, Fig. 6.92 shows

the bilinear static response, obtained by increasing the

periods of the load history. The significant differences

between the bilinear static and dynamic responses indicate

that a dynamic time integration analysis is essential in

this study.

The HFT solution scheme was conducted with no

artificial damping. Rather than using the linear stiffness

k1 on the LHS of the governing equations, the second

stiffness k2 was employed. The time increment was
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determined by the low period component of the excitation,

and hence the time increment was 1 second. Results for the

HFT scheme are given in Fig. 6.94. The response converged

by the third iteration. Notice that the HFT scheme has

accurately captured the maximum response and envelops the

general outline of the time integration response history.

Deviations between the time integration and HFT results can

be attributed to the coarser plotting increment for the HFT

response and the inability to capture higher nonlinearly

induced, frequency components due to the larger time

increment.

This study demonstrated the advantages of the HFT

scheme when applied to problems with long excitation

intervals. The response was not captured exactly, but the

peak values and general oscillatory behavior were well

reproduced. Computation time for the HFT scheme was more

than a factor of two less that that for the time integration

analysis. Rapid convergence was attained by using the

nonlinear stiffness (k 2 ) that was more representative of the

actual behavior. Notice that further efficiencies would be

gained in MDOF implicit time integration analyses, since

such problems require a significant amount of time to

reformulate and refactorize the stiffness matrix.

Finally, the HFT scheme was more efficient in this

problem because the time increment was fifty times larger

than that of the time integration analysis. In general, the
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time increment for a time integration analysis is determined

by the free vibration problem, in other words, the physical

properties of the structural system. Explicit methods

impose considerable stability constraints on the allowable

time increment while implicit methods, although not as

demanding, also place accuracy constraints. In frequency

domain solutions, however, the time increment is based on

the load or response history. Stated differently, the time

increment is selected such that the Nyquist frequency is

greater than the highest frequency in the load and response

histories. As a result, the time increment for a frequency

domain analysis can usually be five to ten times greater

than that for a time domain analysis.
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6.8 SUMMARY OF STUDIES

The studies presented in sections 6.1-6.4 illustrated

the dev-elopment of the HFT solution scheme while the final

three studies, sections 6.5-6.7, examined the scheme in its

fully developed form and suggested alternate approaches for

accelerating and ensuring convergence. Table 6.10

summarizes the highlights of each study. The description,

material model, and excitation columns are self explanatory.

For the first four studies, the last column identifies the

introduction of a new attribute of the RFT scheme, while for

the last three studies, the attributes column lists the

purpose of each study.

In general the studies indicated that the HFT scheme

can handle many strain rate independent material models --

elastic-perfectly plastic, tubular brace, Ramberg-Osgood,

and bilinear elastic. Three earthquake records (Bucarest,

El Centro, and Taft), a single cycle sine wave, and a dual

frequency component harmonic loading were used.

The highly nonlinear studies (studies 2, 4, 5, 6, 7 of

Table 6.10) were stabilized by including artificial viscous

or hysteretic damping. Without the artificial damping, the

response usually diverged by the tenth iteration. A viscous

type artificial damping proved adequate for the SDOF soil

system. However, its use in the MDOF soil problem resulted

in a low frequency drift appearing by the 20th iteration and

a high frequency contamination by the 30th cycle. As a



Description Material
Model

Excitation

1 4 I

General SDOF, QL

SDOF Soil, HN

MDOF Shear
Beam, QL

1

2

3

4

5

6

7

HN

HN

Bilinear SDOF
HN

Elastic-Plastic

Tubular

Ramberg-Osgood

Elastic-Plastic

Ramberg-Osgood

Tubular

Elastic-Plastic

Bilinear Elastic

Single Cycle
Sine

Bucarest EQ

Taft EQ

Single Cycle
Sine

Taft EQ

Taft EQ

El Centro EQ

Taft EQ

Harmonic
(2 components)

Zero Minimizat.ion, Relaxation,
Dual Displacement

Total Displacement,
Artificial Viscous Damping

Mode Updating Scheme 1

Artificial Hysteretic Damping,
Mode Updating Scheme 2

Culminating Study

Using a Segmenting
Scheme

Selecting a Time
Increment

QL - quasi-linear
HN - highly nonlinear response

Table 6.10 Summary of Studies

Study

MDOF Soil,

Offshore
Structure,
QL and HN

Soft SDOF,

t.n

Attributes
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result, subsequent studies employed an artificial hysteretic

type damping that produced no convergence problems.

Although the artificial damping stabilized all studies, it

also decelerated the convergence rate in some cases by

excessively attenuating the converging response history.

Artificial damping ratios ranged from 0.35 to 0.75.

Schemes to accelerate the convergence rate were also

examined. Study 1 employed relaxation schemes applied to

the entire converging nonlinear response history. Results

indicated that under-relaxation decelerated the convergence

while over-relaxation accelerated the convergence in initial

cycles, but eventually produced a diverging solution. The

inability to accelerate the convergence by relaxation was

attributed to the forward time converging behavior of the

RFT scheme. In other words, since the nonlinearities are

evaluated in the time domain, the response toward the end of

the history usually cannot converge until the prior response

has converged. As a result, relaxation applied to the

entire history may accelerate the convergence toward the

beginning of the response history, but may also aggravate

the inaccuracies in the pseudo-force toward the end of the

history.

The forward time progressing behavior of the HFT scheme

suggested a segmented approach outlined in study 6. Rather

than evaluate the response to the entire force history, the

excitation would be sectioned in time and the response to
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each section obtained separately in a forward time

progressing fashion. This segmented approach allows

different structural matrices to model each portion of the

response history and may possibly alleviate the divergence

problems associated with the relaxation schemes.

In addition to these acceleration schemes, efficiency

was increased by employing the zero minimization technique.

The number of points in the frequency spectrum was easily

reduced by a factor of four. Study 5 also presented a

technique for minimizing the iterations by employing only a

few dominant modes in the initial iterative cycles and later

adding more modes to increase the accuracy of the results.

Study 7 employed the nonlinear stiffness on the LHS of the

governing equations, and hence accelerated the convergence

by creating a system corresponding to the dominating

nonlinear response.

The MDOF studies (studies 3 and 4) entailed an

additional efficiency consideration in terms of the

nonlinear mode updating schemes. Study 3 demonstrated that

for a system with spatially concentrated nonlinearities and

simple temporal pseudo-force distribution, the first mode

updating scheme (static load distribution approach) was

appropriate. Significantly nonlinear problems, exemplified

by study 4, however were more conducive to the second mode

updating approach (least squares secant stiffness). This

approach produced a nonlinear stiffness and mode shape more
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appropriate to the nonlinear response, resulting in -an

accelerated convergence.

In general for all studies, the HFT scheme was capable

of producing accurate results. Efficiency varied with the

nature of the loading, complexity of the response, and

behavior of the material model. The HFT approach proved

higher efficiency in problems where the time increment was

governed more by numerical integration restrictions (studies

3, 4, 7) than material modelling considerations (studies 2

and 5). Furthermore, study 7 demonstrated the advantages of

the frequency domain approach when the loading and response

are of significantly higher period than that of the

structure.
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CHAPTER 7

SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

This thesis presented an overview of the solution of

nonlinear dynamic structural systems and introduced a new

solution scheme, the hybrid frequency-time domain analysis

approach. The principal objectives and primary topics

investigated are summarized in section 7.1, while the main

accomplishments of this study are discussed concisely in

section 7.2. Section 7.3 concludes the chapter with

suggestions for further research to expand and adapt the

newly developed solution scheme.

7.1 RESEARCH SUMMARY

Initial chapters of this thesis were devoted to a

review of nonlinear continuum mechanics and the numerical

solution of nonlinear systems. An overview of numerical

integration schemes and their related frequency distortion

and artificial damping errors lead to the presentation of a

linear systems theory stability and accuracy analysis

technique. The alternate technique substitutes the
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numerical integrators into the governing equation of motion

and transfers the resulting approximate equation to the

frequency domain by using Fourier transform concepts.

Accuracy is then easily and elegantly analyzed by deriving

the approximate transfer function, defined as the response

divided by the force, and comparing it with the exact

theoretical transfer function.

The background on numerical integration provided an

incentive to examine solution techniques in the frequency

domain, where in essence an exact numerical integrator is

employed to derive the solution. In particular, an

iterative frequency domain solution scheme, referred to as

the hybrid frequency-time domain analysis approach, was

developed to analyze nonlinear transient response problems.

The HFT scheme gains its economy by combining the mode

superposition approach with a frequency domain solution.

Nonlinearities are evaluated in the time domain, and

transferred to the RHS of the equations of motion as a

pseudo-force vector. The total external plus nonlinear

force vector is then transferred to the frequency domain

using the FFT. Multiplying the force spectrum by the

transfer function, evaluated from the structural matrices on

the LHS of the governing equations, the frequency domain

response is obtained and transferred back to the time domain

using the inverse FFT to provide an updated pseudo-force

history. During the iterative process, simple changes in

the solution parameters such as the frequency discretization
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increment and number of frequencies and mode shapes allow

the solution accuracy to be easily monitored. Any level of

accuracy can be obtained, although a higher accuracy level

usually implies less efficiency.

Research considerations were limited mainly to

developing the RFT solution scheme applied to seismically

excited systems. Actual applications to large scale systems

were not implemented. Rather, a scientific approach

examining small systems whereby numerical problems could be

easily and economically identified was followed. Techniques

for eliminating these problems were proposed, and a general

framework for implementing the HFT scheme was developed.

Of the numerous developmental studies conducted, seven

were presented that emphasized the steps necessary to

transform the HFT scheme from its conceptual basis to its

actual numerical application. The studies consisted of a

general SDOF system, a soil amplification problem using SDOF

and MDOF models, a 10 degree of freedom elastic-perfectly

plastic shear beam model, a set of steel jacket offshore

structures, a hypothetical extremely soft SDOF system, and a

bilinear elastic SDOF problem. All studies demonstrated

various accuracy and efficiency problems.
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7.2 CONCLUSIONS: PRINCIPAL RESULTS OF THE PRESENT STUDY

Conclusive comments regarding the linear systems theory

stability and accuracy analysis approach are as follows:

1. Standard frequency distortion parameters can be

derived by comparing the resonant frequencies of the

exact and approximate transfer functions. Similarly,

artificial damping parameters can be evaluated by

comparing the imaginar.y components of the exact and

approximate transfer functions.

2. Amplitude amplification information for the entire

frequency spectrum is obtained, providing a measure of

how accurately the numerical integrator reproduces the

response for each individual frequency component.

3. Extensions to stability analyses are possible by

using the z-transform.

4. The effect of the finite difference expanded load

vector upon the accuracy and stability characteristics

is easily evaluated by transferring the finite

difference expanded load vector to the frequency domain

and then multiplying by the approximate transfer

function.

5. The conventional stability and accuracy analysis

and the linear systems theory approach are equivalent

for the free vibration problem.
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Results of the HFT case studies were summarized in

Chapter 6. Based on these studies, the following

conclusions regarding the HFT solution scheme were deduced:

1. The HFT scheme derives the solution in the

frequency domain, and hence uses a theoretically exact

numeri-cal integrator represented by the transfer

function H. The integrator is exact in a theoretical

sense because an analytical expression exists for the

continuous frequency spectrum. From a numerical

perspective, however, the transfer function is exact

only at discrete frequencies. Resolution

considerations, therefore, become important,

particularly at peaks in the spectrum. Furthermore,

the time increment must be selected properly such that

the component at the Nyquist frequency is negligible.

2. Due to the transfer function being a theoretically

exact numerical integrator, the time increment

selection is not restricted by numerical integration

stability and accuracy considerations, but rather by

the dominating frequencies in the response or loading.

When numerical integration considerations are the only

restrictions on the time increment in a time domain

analysis, the time increment for an HFT analysis can be

five to ten times larger.

3. The HFT scheme displays a forward time progressing

convergence behavior, attributed to the solution scheme

being based on the pseudo-force formulation. Since the
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pseudo-force history is evaluated in the time domain,

the latter portion of the response history usually

cannot converge until the initial portion has

converged.

4. Highly nonlinear problems were stabilized by adding

artificial damping. Viscous type artificial damping

was adequate for the SDOF soil model, but produced

solution inaccuracies for the MDOF' soil model.

Subsequent studies employed a hysteretic type

artificial damping that displayed no accuracy problems.

Artificial damping ratios ranged from 0.35 to 0.75.

5. The zero minimization scheme optimized the solution

efficiency by reducing the number of points in the

frequency spectrum by at least a factor of four

(compared to the number of points required in a

conventional frequency domain solution without the zero

minimization technique).

6. Relaxation techniques applied to the entire

converging response history produced a diverging

solution because of the forward time progressing

converging nature of the HFT scheme.

7. The total displacement formulation is more

attractive than the dual displacement formulation

because initial inaccuracies in the solution history

are easily corrected in later cycles and a possibly

better initial guess of the nonlinear response can be

derived in the first cycle by employing artificial
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damping.

8. The first nonlinear mode updating scheme (static

load distribution) proved adequate for a quasi-linear

MDOF problem. The second updating technique (least

squares secant stiffness) is more compatible with

systems exhibiting significant nonlinearities. The

scheme can be developed as a self contained algorithm,

requiring minimal participation from the analyst.

Furthermore, the only additional computational cost is

derived from the eigenvalue problem, since the

operations for evaluating the secant stiffness matrix

must also be executed when evaluating the pseudo-force

history.

9. If only the peak response or a general outline of

the response history is desired, then a significantly

lower number of iterations is required for the HFT

analysis.

10. The linear stiffness need not be used to evaluate

the transfer function H. Rather a nonlinear stiffness

better representing the actual response should be

employed, such that the pseudo-forces are small and the

convergence rate rapid.

The HFT scheme is particularly suited to the following

systems:

1. A few linear or nonlinear modes dominate the

response.

2. The nonlinear response does not deviate
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significantly from the linear response.

3. The time increment in a time domain analysis is

severely restricted by numerical integration accuracy

and stability considerations.

4. The forcing function has a dominant period

significantly higher than that of the lowest structural

periods.

5. Frequency dependent stiffness and damping must be

used, such as in soil-structure interaction problems.

6. The response must be viewed in terms of frequency

spectrums, rather than time histories.

7. The excitation history is of long duration and is

dominated by low frequency components.

Examples when the HFT technique is inefficient or

inapplicable are as follows:

1. Excitation is an impulsive type load that excites

almost all structural modes.

2. The loading has a significant spatial variation.

3. Material model evaluation considerations restrict

the time step size, such as for strain rate dependent

material models.

4. Each segment of the response history is dominated

by a different nonlinear stiffness matrix. In other

words, the structural properties continuously change at

a rapid rate as the excitation is applied.

5. A response history with a high level of accuracy is

desired.
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7.3 RECOMMENDATIONS FOR FUTURE RESEARCH

Based on the experience gained from this study, the

following topics are recommended for future investigation to

explore and expand the applicability and effectiveness of

the HFT scheme:

1. Apply to problems with severe nonlinear material

behavior, as well as rate dependent behavior.

2. Compare the convergence properties of the HFT

approach with time integration schemes consisting of

other finite difference operators combined with

quasi-Newton iterators such as the Davidon, BFGS, and

DFP.

3. Consider the solution of large systems as well as

soil-structure interaction problems with frequency

dependent stiffness and damping.

4. Develop the segmented analysis procedure for

improved efficiency. Evaluate the effect of relaxation

when applied to the segmented histories. Consider

using different time increments and stiffness matrices

for each segment.

5. As an alternative to the segmented analysis

approach, consider evaluating the pseudo-force history

for only certain portions of the response, but still

obtaining the entire response simultaneously. Once the

pseudo-force history has converged for a certain time

interval, store the history and proceed forward to the

next time interval. This approach alleviates
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instabilities due to inaccuracies in the pseudo-force

history and also improves the efficiency by minimizing

the pseudo-force history evaluation.

6. Consider using finite impulse response (FIR)

differentiators (68) to obtain more accurate estimates

of the initial velocity for use in the zero

minimization technique and also to derive better

velocity and acceleration response histories.
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APPENDIX A

ALTERNATE ACCURACY ANALYSIS OF THE PARK

STIFFLY-STABLE METHOD

This appendix examines the accuracy analysis of the Park

stiffly-stable method (59) using a linear systems theory

approach. Rather than analyzing accuracy with a standard

time domain approach, the equation of motion is transferred

to the frequency domain, and then the exact and approximate

corresponding transfer functions are compared to extract

frequency distortion and artificial damping characteristics.

Consider the expressions for the velocity in terms of

the displacement and acceleration in terms of the velocity.

n+ = (lou +1 - 15u + 6u - u n)/6At (Al)
n+ n1 n n-i n-2

U n+l= (106 + - 15 + 6ni - )/6&t (A2)

The acceleration is rewritten in terms of displacements by

substituting Eq. Al into Eq. A2.

Sn+= (2 10u n+ - 300u + 3 4 5u n- - 200u 2 + 66u 3

- 12u 4 + u )/36At2

n-i An-5

Substituting Eqs. Al and A3 into the governing equation of
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motion

in+1 +2 n++-2Un+l Ew1 n+1 + WU n+1 (A4)

we obtain the numerical integration form of the equation of

motion

(10Oun+1 - 300un + 345u n-1 - 200u n-2 + 66un-3 - 12un-4

+ u n-5) /36At2 + 2E(10u n+ - 15u + 6un-1 - un-2) /6At

-2
+ W un+l n+1

Equation A5 is simplified by collecting similar terms to

yield

25 10 -2 -50 5_ +[ 115 +2 u

9AtL +3+t U n+1+ 6&t 2 ~At 2 At _n-1

+ - un- 2 + 6t 2 un-3
~ 3 1
-3AtZ -n-4 (A6)

+ 1
36t4 -n-5

Equation A6 is transferred to the frequency domain using the

discrete-time Fourier transform

=O

Un = (1/21 ) f00U(e iQ)eiMn dQ (A7)

resulting in its frequency domain equivalent for

(A5)

fn+1

Sn+1

any
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frequency

25 10 2 -50 5_ \-jQ + ( 115 + 2 2 e-22

9&tZ + 3 t+ ) + ( 6Atz A 1t 12Ztl At

-50 -w -3jQ 11 -4jQ 1 -5j 2
+ 9 e + 6At2 e -

9At 2  3Lt ,t&2

1 e-6j U(2) = F(Q) (A+3 6At z

The transfer function is defined as

H()= U(Q) /F(G) (A

Therefore,

H(2) =(25a/9 + 10b/3 + c + (-50a/6 - 5b)e

+ (115a/12 + 2b)e-2jQ + (-50a/9 - b/3)e-3jo (A1

+ lla/6 e~-4 i - a/3 e-5j + a/36 e-61j

where

-2--2
a =1/(2Lt 2) b = oac = W (Al

8)

L)

H(2) is multiplied

nondimensionalized form.

by 4Tr2 /At 2
to obtain its

The constants a, b, and c are now

redefined as

a = 1/(47r 2

b = E(At/T )/27 (A12)

C = (At/T2n

Plots of the nondimensionalized Park transfer function are

shown in Fig. 4.11 for 5% physical damping and Fig. 4.12 for

10% physical damping.

0)
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Frequency distortion and artificial damping effects are

estimated next. The peak of H(Q) occurs at the frequency

? such that IH(Q)1' = 0 where

p

H(Q) = - (A + B cos2 + Ccos2Q + Dcos3Q +lla/6 cos4Q

-a/3 cos50 + a/36 cos62)2 + (-BsinQ - Csin22

- Dsin3Q-lla/6 sin
4Q+ a/3 sin5Q- a/36 sin6Q)2] -1.5

-[(A + Bcoso + Ccos22 + Dcos3Q +lla/6 cos4Q

- a/3 cos50 + a/36 cos6Q)-(-Bsin2 - 2Csin2Q

- 3Dsin3Q - 22a/3 sin4O + 5a/3 sin5Q -a/6 sin6Q )

+ (-BsinQ - Csin2Q - Dsin3Q - lla/6 sin4Q

+a/3 sin5Q - a/36sin6O)*(-BcosQ - 2Ccos2O

- 3Dcos3Q -22a/3 cos4Q + 5a/3 cos5Q

- a/6 cos62)I (A13)
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and

A = 25a/9 + lOb/3 + c

B = -50a/6 - 5b

(A14)

C = 115a/12 + 2b

D = -50a/9 - b/3

The peak of the exact

e

The period elongation

transfer function is located at

ont /1-T = 217 ---At -T
n

is therefore given as

(A15)

T = P (A16)

p

Similarly, the artificial damping ratio is obtained by

equating the imaginary terms in H(Q) with the imaginary

terms in the exact transfer function and then solving for

.- In particular, from Eq. 4.40 the terms corresponding

to the imaginary component of the exact transfer function

are given as follows:

2a Q= .A - Q
2 T Tr

n
(A17)

The terms corresponding to the imaginary component of the

Park transfer function are

-BsinE2-Csin2Q-Dsin3E-(lla/6) sin4E+(a/3) sin5-

-(a/36) sin6&l
(A18)
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Equating A17 and A18 and solving for

algorithmic damping ratio

yields the

-BsinG -Csin2_2p-Dsin3Gg-lla/6 sin4 P+a/3 sin5Q -a/36 sin6Q,

(At/T )(.e /IT)
n e

(A19)

where

(A20)

and T and f are the nondimensionalized resonant
p e

frequencies for the Park and exact transfer functions,

respectively. Using the procedure above, plots of the

period elongation and algorithmic damping ratio versus Q

were derived and are shown in Figs. 4.13-4.16.

iT = WAt
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APPENDIX B

ALTERNATE STABILITY ANALYSIS OF THE CENTRAL

DIFFERENCE METHOD USING THE Z-TRANSFORM CONCEPT

The stability characteristics of the central difference

method are examined in the following using the z-transform

concept. The presentation is limited to the undamped

problem

+2u = f (B1)

Substituting the central difference approximation for

the acceleration into Eq. B1, we obtain the equation of

motion given in terms of the numerical integrator

un+l - 2un + un-1 + -2 = f (B2)
2n nlAt2

or equivalently

-2 2 2
un+l 2At -2)u +un-1 =At n (B3)

Equation B3 is transferred to the frequency domain using the

z-transform

X(z) = x(n)z-n (B4)
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where z is a complex variable, to obtain

z + (w At - 2) + z U(z) =At2F(z) CB 5)

The transfer function H(z) is then given as

2 -2 2 - +H(z) = U(z)/F(z) = At /(z+(w At - 2) + z )

(B 6)
= At 2 z/(z 2 + (W2At 2 - 2)z + 1)

We next evaluate the stability properties of the

central difference method by examining the poles of H(z).

For a right-sided sequence of a causal system, the region of

convergence is defined outside the unit circle, and

therefore such a system is unstable when a pole is located

outside the unit circle.

The roots of the numerator are given by

z = (-(Er2At 2 - 2) + /r.At 4 
- 4 2At2 + 4 - 4 )/2.

(B7)

= (-(w At - 2) + wat At - 4 )/2.
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Consider three cases:

1. WAt 2 = 4

From Eq. B7 we have

z = -(4 - 2)/2 = -1 (B8)

Since both poles are located at z -1, the system is

stable.

2. WAt 2 > 4

Implies

-2At - 2)/2 < -1 (B9)

and

o6t w2At - 4 /2. >0 (B10)

Therefore, one value of z is always less than -1 and

the other, between -1 and 0. The system is unstable

because of the pole located outside of the unit circle.

3. -At 2 < 4

From Eq. B7

- 2 2-2 2z < -(w At - 2)1/2. + wTt j 4 t /2.(B )(B11)
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The modulus of z is evaluated next

2 -4 4 -2 2
z < G At - ka2 t + 4)/4.

+ w2At 2 2 ) 4 At )/4. 1.
(B12)

Therefore, the pole is always located on or inside the

unit circle, and the system is stable.

The critical time increment is determined from case 2

and given as follows:

-2 2
w At =4 (B13)

Implying

Atcr = 2/ w= Tnl (4(B14)
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APPENDIX C

FOURIER TRANSFORM PAIR OF x3

The Fourier transform pair of x 3 is evaluated in this

appendix. Let us first begin with x 2 . We define

A() f X(w - 2 X(w 2) dw2  (C1)

The inverse Fourier transform of A is given by

(1/2) f Aeiwitd = (1/21T)ffX(W1 - W2)X(w2)dw2eiwi
tdwi

-00 - CO- 00

= (1/27)Jo X(w 2)f X(wi - W2 )eiCw1 - w2)tdwieiw2tdo 2

= fo X(w2)x(t)eiw2tdw2
by definition of x(t)

= 21x(t)x(t) = 2iTx 2

which shows that the Fourier transform of x2 is A/2r.

Now consider

B() =f00 X(Wi - W2) X(W2 - W3) X(W3 ) dw2dw3-00 -CO

The inverse Fourier transform of B is

(C2)

(.C3)
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(1/2T) \1 Be dw = (1/2Tr)f f/f'X(wi-w2 ) X(w 2 -w 3 ) X(w 3 )
-CO O- 0- 00~

dw2 dw 3 e iitdw

= (1/2)f/* fc X(w2-w 3)X(w 3)f X(wi-w2)ei(w-w2)t
-00 -00-0

dwieiw2tdw2 dw 3

= /*jj* X(w 2-w 3)X(w 3)x(t)eio2tdw2 dwo
-00 -CO

= 21Tx(t)f X(w 3)(1/27T)fc X(w2-w 3)ei(w2-w3)

dw2eiw3td

= 2nx(t)2 f X(w 3)eiw3tdw 3

= 472 X(t)3 (C4)

Therefore, the Fourier transform of x3 is B/47T2 .
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APPENDIX D

ZERO MINIMIZATION TECHNIQUE

A solution in the frequency domain involves the use of

the discrete Fourier transform concept, and therefore

evaluates the response to a periodic load function. In

transient response problems, however, we seek the solution

to an aperiodic force history. A numerical gimmick,

consequently, is necessary to obtain an apparent aperiodic

response when using the frequency domain approach. The

usual procedure is to append additional zeroes to the end of

the load history and create a new history of sufficient

length such that the free vibration effects at the end of

the actual load history are negligible by the end of the

extended history (history with appended zeroes). This

approach, however, may render the frequency domain technique

unfeasible, particularly when very low physical damping is

specified or the natural structural period is large.

An alternate approach, referred to as the zero

mimimization technique, was consequently developed. This

technique eliminates the use of zeroes by subtracting the

analytical solution of the free vibration problem from the

incorrect response obtained with an insufficient number of

zeroes. The procedure consists of conducting the analysis

with N points (N is the next power of 2 greater than the
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number of points in the actual load history for a radix-2

FFT), obtaining an incorrect solution, and then correcting

the solution by subtracting out the free vibration response.

Actual applications of the procedure reduced the number of

points in the frequency spectrum by a factor of at least two

to four, and hence increased the solution efficiency

considerably. Additional details of the technique are

available in section 5.2.2.2. The mathematical basis of the

zero minimization technique is presented in the following

paragraphs.

The proof that the zero minimization technique is

mathematically sound is based on the periodic nature of the

Fourier transform concept. Let us first consider a solution

derived in the time domain using the convolution concept

(Duhamel's integral). The exact solution is obtained by

evaluating the linear convolution, which in essence implies

folding the impulse response function h about the time zero

axis, shifting h to the right to time t, and then

integrating the product of h(t-T) and q(T) to yield the

response at time t (32). The linear convolution concept is

illustrated conceptually in Fig. D.l.

Consider next a solution obtained in the frequency

domain. A solution in the frequency domain strictly implies

that we are concerned with a periodic system since we employ

the discrete Fourier transform. As a result, the equivalent

solution in the time domain corresponds to a periodic rather
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p(r)

r

h(-r)

h(-r)

r

h(t -r)

t r

p(r)-h(t-r)j I )( ' )= r) h - r) dT

Fig, D. 1 Convolution with continuous functions (32)
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than a linear convolution. In other words, the forcing

function is periodic, and therefore the response is also

periodic. However, the solution corresponding to only one

cycle of the forcing function must be obtained.

The usual approach to derive the correct solution

involves adding additional zeroes to the end of the forcing

function, thus creating an apparent aperiodic system.

Stated differently, assume the load history has N points and

the impulse response function has duration M points. Then,

if M zeroes are added to the end of the load history, the

correct response is calculated because the response from one

cycle does not contaminate the response for another cycle.

This approach, as mentioned previously, may be inefficient

in particular problems, especially when a significant number

of transforms must be evaluated.

Let us now examine the basis of the zero minimization

technique. Consider Fig. D.1 again, except in this case

redrawn for a periodic convolution, shown in Fig. D.2. If

the load history has N points and convolution, M points, but

we use N+K, less than N+M, points in the frequency domain

solution, we are in essence evaluating the response by

integrating the product shown in Fig. D.2e. As a result,

an incorrect response is obtained for the beginning of the

history (M-K points) where the error is due to contamination

by a free vibration component from the previous cycle. The

correct response, therefore, is easily extracted from the
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a. - N l'K N K N4

h(T)

b. M W

h(-T)

C.

h(t-Tr)
h (t

d.~ \.t

p(T) h(t-T)

e.

integrand giving integrand for correct response

additional free
vibration response

Fig. D.2 Zero Minimization Technique Viewed in
the Time Domain
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incorrect response by subtracting out the free vibration

component. Of course, the free vibration component is not

extracted by once again evaluating the convolution, but

rather by imposing the known initial conditions upon the

incorrect response. Notice that the free vibration

component could arise from more than one previous cycle (M

very large), and the technique would still be valid. In the

limit we could have K equal to zero.


