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Bolt and Tieman (2008) suggested that profit function non-concavities may 

account for the prevalence of skewed pricing by two-sided platform businesses.  

In the Rochet-Tirole (2003) model, however non-concavity is not necessary for 

highly skewed pricing.  Ubiquitous high pass-through rates are sufficient but 

implausible.  In the Armstrong (2006) model, non-concavity is neither necessary 

nor sufficient for skewed pricing.  In both models, non-concavity is associated 

with strong indirect network effects; in the Armstrong (2006) model such effects 

are also associated with dynamic instability.  It seems most plausible that the 

prevalence of skewed platform pricing reflects the prevalence of substantial 

differences between side-specific demand functions. 

Two-sided platform businesses (often labeled two-sided markets) commonly set price at or 

below marginal cost to one of the groups they serve, and some groups may even pay a zero price 

even though positive costs are incurred to serve them – see, e.g., Evans (2003) or Evans and 

Schmalensee (2007) for lists of examples. Thus Suarez and Cusumano (2009, p. 84) speak in 

generic terms of “the subsidy side” and “the money side” of such businesses.  It is thus a bit 

surprising that the usual first-order conditions for profit maximization in standard models of 

multi-sided platforms do not immediately reveal why such highly skewed pricing should be the 

norm.   

 A recent paper by Bolt and Tieman (2008) shows that the second-order conditions for a 

maximum are violated in the Rochet-Tirole (2003) two-sided platform model if the demands of 

the two sides have constant elasticities.2

                                                 
1 Massachusetts Institute of Technology.  I am indebted to two anonymous referees, the editor, and, especially, Glen 
Weyl for extremely valuable comments on earlier versions of this paper.  Of course, only I can be blamed for 
shortcomings that remain. 

  In this example, the first-order conditions identify a 

saddle-point of the profit function, not a maximum, and profits are maximized at a corner 

2 See Hermalin and Katz (2004) for a closely related result. 
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solution.  Bolt and Tieman suggest that this outcome may be general, so that the prevalence of 

highly skewed pricing in multi-sided platforms could be explained by the prevalence of such 

non-concave profit functions.3

 This note investigates the plausibility of that intriguing suggestion in the canonical two-

sided platform models of Rochet and Tirole (2003) (Section 1) and Armstrong (2006) (Section 2) 

and, in the process, explores the association between non-concavity and strong indirect network 

effects in these models.

   

4

1. The Rochet-Tirole (2003) Model 

  Section 3 summarizes our main results and conclusions: it seems more 

likely that pervasive highly skewed pricing by platform reflects generally substantial differences 

between demand functions on the two sides of the business rather than pervasive profit function 

non-concavities.    

 In this model, the monopoly’s objective function can be written as 

(1)   ( ) ( )1 2 1 2 1 1 2 2( , ) ( ) ,P P P P C D P D PΠ = + −  

where the Pi are the per-transaction prices charged to each of the two participating groups, C is 

the constant marginal cost of executing a transaction, and the Di are (partial) demand functions.  

This model may be most directly relevant to payment cards, with the volume of transactions 

proportional to the product of the number of merchants accepting a particular card brand and the 

number of consumers carrying cards of that brand and the participation decisions of merchants 

and consumers assumed to depend only on the per-transaction prices they face.5

 Assume that both demand functions in (1) exhibit declining marginal revenue.  Then, 

using subscripts to indicate partial derivatives of the profit function, it is straightforward to show 

that for i = 1,2, Πii < 0 so that the point at which Πi = 0 maximizes Π with respect to Pi, treating 

Pj, j ≠ i, as constant.  We can then define the functions 

 

                                                 
3 Bolt and Tieman (2008) define highly skewed pricing as arising when all potential participants on one side of the 
market actually participate.  Here I use what I think is a more generally useful definition: one price is at the lower 
bound of the set of feasible prices – typically either zero or marginal cost.  Few would disagree that pricing by 
network broadcast television is highly skewed, for instance, since all revenue comes from advertisers, even though 
some potential viewers don’t in fact watch television. 
4 Rochet and Tirole (2006) present a more general model that includes both these models as special cases and in 
which both access and intereractions may be priced.  See Weyl (2010) for an extensive analysis of that model. 
5 See, for instance, Schmalensee (2002). 
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(2) ( )( )ˆ ( ) arg max ( , ) arg max , 1,2, .
i i

i j i j i i i jP P
P P P P D P P P C i j i ≡ Π = + − = ≠   

These yield a natural summary measure of the strength of indirect network effects in this model, 

based on the geometric mean sensitivity of the optimal prices each side to the price on the other 

side: 

(3)   ( )2
121 2

2 1 11 22

ˆ ˆ
.P

dP dPT dP dP
   Π≡ =   Π Π  

 

But TP < 1 is one of the second-order conditions for a stationary point of Π, a point at which the 

first-order conditions are satisfied, to be a local maximum.  Thus, if the demand functions exhibit 

declining marginal revenue, a necessary and sufficient condition for concavity of the profit 

function is that average indirect network effects, as measured by TP, not be too strong. 

 To be more precise, it is easy to show that the second derivatives of the profit function (1)  

can be written as follows, where primes indicate derivatives of the demand functions: 

(4a)   1 2 (1/ ) 0, 1, 2,ii iMD D i andρ′ ′Π = − < =  

(4b)   12 21 1 2 0,MD D where′ ′Π = Π = − <  

(4c)  2 2
1 2( ), ( ) / [2( ) ], 1, 2.i i i i iM P P C and D D D D iρ ′ ′ ′′≡ + − = − =     

That is, iρ is the pass-through rate on side i, the amount by which a monopolist with constant 

marginal cost and facing demand curve Di would optimally increase price in response to a small 

unit increase in marginal cost (Weyl and Fabinger (2009)).   

 A close look at equation (2) makes it clear why pass-through rates determine the strength 

of the indirect network effects in this model: an exogenous increase in Pj affects the optimal 

value of Pi, i ≠ j, exactly as an equivalent decrease in unit cost, C.   It follows immediately from 

(4) that 1 2 ,PT ρ ρ=  and we have immediately 

Proposition 1 (Weyl (2009, 2010): If both demand functions in the Rochet-Tirole 

(2003) model exhibit declining marginal revenue, a necessary and sufficient 
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condition for a stationary point of (1) to be a local maximum is 1 2 1.ρ ρ <   If 

1 2 1,ρ ρ ≥  the stationary point is a saddlepoint. 

If the profit function (1) has a unique stationary point at which TP ≥ 1, the maximum of Π  must 

occur on the boundary of the feasible set.  

 For log-linear demand curves, 1,ρ >  while for linear demand curves 1/ 2.ρ =   Most 

economists seem to think that pass-through rates below one are more common than pass-through 

rates above one, though Weyl and Fabinger (2009) argue that there is not much evidence 

supporting that belief.  Proposition 1 indicates that pass-through rates above one must 

nonetheless be pervasive if saddle-points are to be the norm in situations well-modeled by the 

Rochet-Tirole (2003) model.  But this does not seem plausible.  If one imagines pass-through 

rates being determined by independent draws from a uniform distribution over [0, 2], for 

instance, so that the average rate is above most economists’ expectations, the probability that the 

product of two such draws will exceed unity is only about 0.40.  While it is true that evidence on 

pass-through rates is scarce, it does not seem plausible that the pervasiveness of skewed pricing 

in two-sided markets is explained by the unusually frequent occurrence of pass-through rates 

above unity in those markets. 

 On the other hand, highly skewed pricing can easily arise when the profit function is 

concave when demand functions differ substantially.  Suppose, for example, that individual h in 

group i, i =1,2, will participate in the market under consideration if and only if ,h
i iPθ ≥  where 

the h
iθ are uniformly distributed between 0 and Ai > 0.  If the number of potential participants in 

group i is Ni, the two demand functions can be written as 

(5)    ( ) ˆ( ), 1, 2,i i i i i i i iD P N b P b P P i= − ≡ − =  

where bi = Ni/Ai and îP  is the choke price at which demand on side i falls to zero, i = 1,2.   The 

first-order conditions for maximizing expression (1) in this case signal a regular unconstrained 

optimum, but they imply P1 ≤  0 if  and only if 

(6)     1 2
ˆ ˆ2 .P P C≤ −   
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Condition (6) requires substantial differences in demand, but, particularly when marginal cost is 

low, such differences are not implausible for groups as different those linked by two-sided 

platforms in practice.  Consider merchants and shoppers, for instance.  In any case, if condition 

(6) is satisfied and, as is usually the case, negative prices are infeasible, the optimum of (1) will 

involve highly skewed pricing with P1 = 0 and Q1 =N1.  We have thus proven by example 

Proposition 2: Non-concavity is not necessary for highly skewed pricing in the 

Rochet-Tirole (2003) model. 

2. The Armstrong (2006) Model 

 In the Armstrong (2006) model, participation is priced but transactions are not, and 

participation, Q,  is influenced via indirect network effects by participation on the other side, as 

well as the participation price, P.  We can write the demand functions for participation by the 

two sides as 

(7)    ( ), , , {1,2}, .i i i jQ D P Q i j i j= ∈ ≠  

We assume these functions are decreasing in price and non-decreasing in other-side quantity.   

 A natural measure of the (geometric) average strength of indirect network effects in this 

model is 

(8)    1 2

2 1
.D dDS Q dQ

∂  ≡   ∂  
 

This measure, however, is directly related not to the concavity of the profit function in this model 

but to the stability of equilibria in a family of myopic disequilibrium dynamic systems in the in 

the spirit of Rohlfs (1974): 

(9)   ( )sgn sgn , , , {1,2}, .i
i i j i

dQ D P Q Q i j i jdt
   = − ∈ ≠    

 

Proposition 3 (Evans and Schmalensee (2010)):  An equilibrium of (9) is stable if 

and only if S < 1 at that point.  If S ≥ 1, the equilibrium is a saddlepoint.  
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Equilibria of (9) in the interior of the feasible set of quantities that are unstable when prices are 

constant do not seem likely to be observed in practice.6

 It is generally most convenient in this model to solve the demand functions (7) for prices, 

so the profit function can be written as 

  

(10)  ( ) ( ) ( )1 2 1 1 1 2 1 2 2 2 1 2, , , .Q Q Q d Q Q C Q d Q Q CΠ = − + −        

The Ci are the constant side-specific unit costs of participation.  It is useful to recognize that the 

problem of maximizing (10) is formally identical to the problem of maximizing the profit of a 

monopolist selling complements. 

 In general the second-order conditions for this model involve second derivatives of the di 

with respect to other-side quantities and are consequently difficult to interpret.7

(11)    

  Declining 

marginal revenues are no longer sufficient for the Πii to be negative, for instance.  When those 

quantities are negative, however, we can define conditionally optimal quantities as above: 

ˆ ( ) arg max ( , ), 1, 2, .
i

i j i jQ
Q Q Q Q i j i≡ Π = ≠  

With this definition, the third second-order condition for a stationary point of (10) to be at least a 

local optimum becomes a condition on the (geometric) average indirect network effect: 

(12)   ( )2
121 2

2 1 11 22

ˆ ˆ
.Q

dQ dQT dQ dQ
   Π≡ =   Π Π  

 

We have immediately 

Proposition 4: If Π11 < 0 and Π22 < 0 at a stationary point in the Armstrong 

(2006) model, a necessary and sufficient condition for that point to be a local 

maximum is TQ < 1.  If TQ ≥ 1, the stationary point is a saddlepoint. 

As in Proposition 1, if the unique stationary point is a saddlepoint, profit is maximized on the 

boundary of the feasible set.  It is clear that the measures S and TQ of average indirect network 
                                                 
6 Weyl (2010) shows that any pair of non-negative quantities can in general be sustained by what he terms insulating 
tariffs: schedules that make the price to each side conditional on the level of participation on the other side.  (See 
also White and Weyl (2010) for a model of platform competition with insulating tariffs.)  Price schedules of this sort 
does not seem common in practice, however, but, as noted below, prices that rise over time as participation grows 
can accomplish the same objective if (9) holds. 
7 See Theorem 4 in Weyl (2010) and its discussion in the paper’s online appendix. 
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effects are not in general equal, since S involves first derivates only, while TQ involves a variety 

of second derivatives, but it is also clear that they are not unrelated.   

 In order to obtain further insight into the determinants of non-concavity and the relations 

between these two measures of average indirect network effects, it is useful to consider two 

examples.  Suppose first that the Di are log-linear: 

(12)   ( ), , , {1,2}, ,ji
i i j i i jD P Q P Q i j i jδβα −= ∈ ≠  

where the αs, βs, and δs are positive constants.  It is immediate that S = δ1δ2 here.  Then 

straightforward but tedious analysis of first- and second-order conditions yields 

Proposition 5: If demands in the Armstrong (2006) model are given by (12) with  

β1, β2 > 1, then  δi < βi ⇒ Πii < 0 at a stationary point, i = 1,2.  If both these 

conditions are satisfied, then if δ1,δ2 < 1, then TQ < 1 (and S < 1), while if δ1, δ2 ≥ 

1, then TQ ≥ 1 (and S ≥ 1). 

Thus indirect network elasticity on side i must be weaker than the corresponding price elasticity 

in order for Πi = 0 to indicate a conditional maximum of Π rather than a conditional minimum.  

If the profit function is well-behaved in this sense and if both network elasticities are less than 

(greater than or equal to) one, then both TQ and S are less than (greater than or equal to) one. 

 A second, somewhat more tractable example is obtained by assuming that typical 

individual h on side i, i =1,2, participates if and only if  

(13)    { }, , 1, 2 , ,h
i i i jP Q i j i jθ δ≥ − ∈ ≠   

where the δi are positive constants.  Let Ni > 0 be the maximum number of potential participants 

on side i, and assume the h
iθ are uniformly distributed between 0 and αi, with αi > Ci  i = 1,2. 

Under these assumptions the demands for participation are given by 

(14a)      ( ), , , {1,2}, ,i i j i i i i jD P Q N B P G Q i j i j= − + ∈ ≠    where 

(14b)   , , 1, 2.i i i i i i iB N and G N iα δ α= = =    

In this example, S = G1G2. 

 Solving equations (14) for prices yields 
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(15a)   ( ), , , {1, 2}, ,i i i j i i i i jP d Q Q b Q Q i j i jα δ= = − + ∈ ≠    where 

(15b)   1 , 1, 2.i i i ib B N iα= = =  

The firm’s profit function can then be written as 

(16)  ( ) ( )1 1 1 1 1 2 1 2 2 2 2 2 1 2 ,Q b Q Q C Q b Q Q Cα δ α δΠ = − + − + − + −  

Using subscripts to indicate partial differentiation as above, the first-order conditions for 

maximization of Π are 

(17)  ( ) ( ) { }1 2 2 0, , 1, 2 , ,i i i j i iC Q b Q i j i jα δ δΠ = − + + − = ∈ ≠  

and the second-order necessary conditions for (17) to yield a maximum are 

(18a)    2 0, 1,2,ii ib iΠ = − < =    and 

(18b)    ( ) ( )2 2
12 1 2

11 22 1 2

1.
4QT
b b

δ δΠ +
≡ = <
Π Π

 

Condition (18b) says that the arithmetic mean of the cross-quantity effects on price must be less 

than the geometric mean of the own-quantity effects.8

 Proposition 6: The point satisfying (17) maximizes Π if and only if  

  Using (15b) to re-write this condition, we 

can re-write this condition in a form that is easier to compare with S = G1G2 and obtain 

   2 1
1 2

1 2

1 1
2Q

B BT G G
B B

 
= + < 

 
 

If TQ ≥ 1, that point is a saddlepoint, and Π is maximized on the boundary of the 

feasible set.  TQ < 1 is sufficient for S < 1.  It is also necessary for S < 1 if and 

only if the two demand functions are identical. 

Once again, both the concavity of the profit function and stability of the general adjustment 

process are associated with limits on the importance of indirect network effects.   

  To see if non-concavity of the profit function is necessary for highly skewed pricing, let 

us assume concavity and solve (14) for both quantities as functions of both prices, to obtain 

(19)   , , {1,2}, .
1

i i j i i i j j
i

N G N B P G B P
Q i j i j

S
+ − −

= ∈ ≠
−

 

                                                 
8 For an interpretation of this condition in terms of profits with and without two-sidedness, see the discussion of 
Proposition 4 in the online appendix to Weyl (2010). 
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 If the profit function is concave, Proposition 4 implies S < 1, so these demand functions are 

well-behaved.  Suppose, to avoid clutter, that C1 = C2 = 0.  Then there is highly skewed pricing 

with concavity if (a) TQ < 1 and (b) Π1 ≤ 0 when Π2 = 0 and P1 = 0, as long as the solution is 

within the feasible set.  The second condition can be written as 

(20)   ( ) ( )1 2 2 1 2 2 1 2 1 2 2 12 0.N B G G B G B N G B G B− − + − ≤    

It is immediate (and not surprising) that G2 > 0 is necessary for this condition to be satisfied.  

Substituting the optimal value of P2 when P1 = 0 then establishes that Q1 ≤ N1 if and only if D1 = 

0, which in turn implies Q1 = N1.  It is then easy to find numerical values that satisfy (18b) and 

(20) with D1 = 0.  One example is N1 = N2 = 100, B1 = 20, B2 = 10, and G2 = 0.8.  Thus non-

concavity is not necessary for highly skewed pricing in this example. 

 To see whether non-concavity is sufficient for highly skewed pricing in this example, 

suppose demand and cost functions on the two sides are identical and TQ > 1.  Dropping 

subscripts on cost and demand parameters, if Q1 = Q2 = Q, equation (16) becomes 

(21)    ( ) ( )2 .Q C Q bα δΠ = − + −    

Since TQ > 1 implies δ > b, this expression is convex in Q and profits are either maximized at Q 

= 0 or Q = N.  If 

(17)    ( ) ( ) 0,a C N bδ− + − >  

the maximum occurs at Q = N.  It is straightforward to show that if (17) is satisfied and if, say, 

Q2 = N, then profits are maximized by setting Q1 = N also.  Thus even though the profit function 

is maximized on the boundary of the feasible set of quantities, pricing is symmetric, not skewed: 

(18)    * *
1 2 ( ).P P N bα δ= = + −  

We have thus completed the proof by example of  

Proposition 7: Non-concavity is neither necessary nor sufficient for highly 

skewed pricing in the Armstrong (2006) model. 

 When the profit function is non-concave and the demand functions are identical in this 

example, S > 1 and interior equilibria of dynamic processes satisfying (9) are unstable.  But this 

is not an interior equilibrium.  Again in the spirit of Rohlfs (1974), as long as  

(19)    { }, , 1, 2 , ,i i j iP Q bQ i j i jα δ< + − ∈ ≠  



 

10 
 

Di > Qi, i = 1,2, and, by (9), both quantities are increasing.  Once the point Q1 = Q2 = N, is 

reached, it can be maintained by setting prices just below the level given by (18), so that all 

participants have strictly positive surplus. 

3. Conclusions 

 In the Rochet-Tirole (2003) model, Section 1 showed by example that non-concavity is 

not necessary for highly skewed pricing.  Such pricing can arise from substantial differences in 

the demand functions on the two sides of the market.  Moreover, I argued that it is unlikely that 

satisfaction of the pass-through conditions for non-concavity is ubiquitous in platform markets.   

 In the more complex model of Armstrong (2006), Section 2 showed that strong network 

effects are associated both with non-concave profit functions and with instability of a broad class 

of disequilibrium adjustment processes.  In this model, non-concavity was shown by example to 

be neither necessary nor sufficient for highly skewed pricing. 

 In short, the analysis here strongly suggests that highly skewed pricing by two-sided 

platforms is not prevalent because profit is generally maximized at corner solutions for these 

businesses, but rather because the demand characteristics of the two groups involved generally 

differ substantially.  
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