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Abstract

Observations of gravitational systems agree well with the predictions of general rel-
ativity (GR); however, to date we have only tested gravity in the weak-field limit.
In the next few years, observational advances may make it possible for us to observe
motion in the strong field for the first time. This thesis is concerned with two probes
of strong-field gravity: whether the spacetime of a black hole has the structure pre-
dicted by GR, and the effect of spin-curvature coupling on orbital motion in the large
mass-ratio limit.

The first two-thirds of this thesis develop a formalism for determining whether
a candidate black hole is described by the Kerr metric, as predicted by GR for all
black holes in vacuum. In the first chapter, we describe how to construct a “bumpy
black hole,” an object whose spacetime is almost, but not quite, the Kerr metric.
We define perturbations to the mass and spin moments and relate the changes in the
moments to changes in the orbital frequencies using canonical perturbation theory.
In the second chapter, we extend the bumpy black hole formalism to include black
holes in non-GR theories of gravity, which leads to additional functional degrees of
freedom.

The final chapter investigates the effects of spin-curvature coupling. For a small
body with spin moving around a massive black hole, the spin of the small body couples
to the background curvature, and its trajectory deviates from a geodesic. To date,
there has been relatively little work that considers this effect except in the special
cases of aligned spins and circular, equatorial orbits. We compute the perturbation
to the trajectory and the spin precession due to spin-curvature coupling for generic
orbits of Kerr and arbitrary initial spin orientations.

Thesis Supervisor: Scott A. Hughes
Title: Associate Professor

3



4



Acknowledgments

I’d like to begin by thanking my advisor, Scott Hughes, for all of his support and

guidance over the years. I’d also like to thank Nico Yunes who has been a valuable

collaborator and mentor. Thank you to my committee members Eddie Farhi and

Saul Rappaport for their helpful comments and suggestions.

I’ve been lucky to have some made some wonderful friends over the last few years.

I’d like to thank my academic siblings, the other students in Scott’s group: Ryan

Lang, Pranesh Sundararajan, Leo Stein, Stephen O’Sullivan, Uchupol Ruangsri, and

Bogdan Stoica. Thanks to my fellow astrograds, especially Ben Cain, Kat Deck,

Robyn Sanderson Grier, Scott Hertel, Adrien Liu, Mike Matejek, Leslie Rogers, Nick

Smith-Lefebvre, Chris Williams, and Phil Zukin. You made graduate school a lot

more fun.

During my time at MIT, the Women in Physics group has been a wonderful social

outlet and source of advice. In particular, I’d like to thank Bonna Newman and

Shelby Kimmel. Thanks also to my fellow bartenders at the Muddy Charles Pub and

our manager Mike Grenier.

I started my physics career at Carleton College, where I was fortunate to have

some wonderful mentors and friends. I’d like to thank my undergraduate advisors

Nelson Christensen and Joel Weisberg, who introduced me to the joys and frustrations

of physics research. I’d also like to thank Mara Morgenstern Orescanin and Alex

Petroff, with whom I’ve enjoyed many hours of conversation and commiseration.

Hans Bantilan has been a colleague and good friend for almost eight years, and I’m

looking forward to many more.

I could not have done any of this without the love and support of my family.

Thank you to my parents, Deborah and Robert Vigeland, who have done so much to

make sure I got a great education. When you bought that picture book about black

holes, you probably didn’t think that someday I would write a Ph.D. thesis about

them. Thanks to my wonderful siblings, Karen, Christine, and John, who are always

a source of support, advice, and fun. I’d also like to thank my grandparents, Jane

5



and Kenneth Browne, for their love and encouragement.

Finally, I’d like to thank Jonathan Malmaud, who makes everything a little better.

I’m so lucky to have you in my life.

The research in this thesis was supported by NSF Grants No. PHY-0449884 and

No. PHY-1068720, and by NASA Grants No. NNG05G105G and No. NNX08AL42G.

During my first year of graduate school, I was supported by a Whiteman Fellowship

thanks to the generosity of Dr. George Elbaum.

6



Contents

1 Introduction 15

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.2 Astrophysics of black holes . . . . . . . . . . . . . . . . . . . . . . . . 17

1.3 Motion in black hole spacetimes . . . . . . . . . . . . . . . . . . . . . 18

1.3.1 Equations of motion . . . . . . . . . . . . . . . . . . . . . . . 19

1.3.2 Constants of the motion and separability . . . . . . . . . . . . 20

1.3.3 Orbital frequencies . . . . . . . . . . . . . . . . . . . . . . . . 26

1.4 Outline of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2 Bumpy black holes 31

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.1.1 Motivation: Precision tests of the black hole hypothesis . . . . 31

2.1.2 Bumpy black holes: Previous work . . . . . . . . . . . . . . . 34

2.1.3 This analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.1.4 Organization and overview . . . . . . . . . . . . . . . . . . . . 38

2.2 Computing the Geroch-Hansen moments . . . . . . . . . . . . . . . . 40

2.3 Bumpy black hole spacetimes . . . . . . . . . . . . . . . . . . . . . . 44

2.3.1 Bumpy Schwarzschild . . . . . . . . . . . . . . . . . . . . . . . 45

2.3.2 Bumpy Kerr . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.4 Motion in bumpy black hole spacetimes . . . . . . . . . . . . . . . . . 52

2.5 Perturbations to the mass moments: Schwarzschild background . . . 55

2.5.1 l = 2 mass perturbation . . . . . . . . . . . . . . . . . . . . . 57

2.5.2 l = 3 mass perturbation . . . . . . . . . . . . . . . . . . . . . 59

7



2.5.3 l = 4 mass perturbation . . . . . . . . . . . . . . . . . . . . . 61

2.6 Perturbations to the mass moments: Kerr background . . . . . . . . . 63

2.6.1 l = 2 mass perturbation . . . . . . . . . . . . . . . . . . . . . 64

2.6.2 l = 3 mass perturbation . . . . . . . . . . . . . . . . . . . . . 67

2.7 Perturbations to the spin moments: Schwarzschild background . . . . 68

2.7.1 l = 1 spin perturbation (linearized Kerr) . . . . . . . . . . . . 68

2.7.2 l = 2 spin perturbation . . . . . . . . . . . . . . . . . . . . . . 69

2.7.3 l = 3 spin perturbation . . . . . . . . . . . . . . . . . . . . . . 70

2.8 Perturbations to the spin moments: Kerr background . . . . . . . . . 71

2.8.1 l = 2 spin perturbation . . . . . . . . . . . . . . . . . . . . . . 72

2.8.2 l = 3 spin perturbation . . . . . . . . . . . . . . . . . . . . . . 73

2.9 Summary and future work . . . . . . . . . . . . . . . . . . . . . . . . 75

3 Bumpy black holes in alternative theories of gravity 79

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.2 Generalized bumpy Kerr formalism . . . . . . . . . . . . . . . . . . . 83

3.2.1 From standard to generalized bumpy black holes . . . . . . . . 84

3.2.2 Existence conditions for the Carter constant . . . . . . . . . . 86

3.3 Deformed Kerr formalism . . . . . . . . . . . . . . . . . . . . . . . . 90

3.3.1 Deformed Kerr geometry . . . . . . . . . . . . . . . . . . . . . 90

3.3.2 Existence conditions for the Carter constant . . . . . . . . . . 93

3.4 Relating parameterizations . . . . . . . . . . . . . . . . . . . . . . . . 96

3.4.1 To each other . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

3.4.2 To alternative theories . . . . . . . . . . . . . . . . . . . . . . 99

3.5 Motion in alternative theories of gravity . . . . . . . . . . . . . . . . 102

3.6 Summary and future work . . . . . . . . . . . . . . . . . . . . . . . . 106

4 Spin-curvature coupling 109

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.2 Derivation of the Papapetrou equations . . . . . . . . . . . . . . . . . 113

4.2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

8



4.2.2 Motion of a single-pole body . . . . . . . . . . . . . . . . . . . 115

4.2.3 Motion of a pole-dipole body . . . . . . . . . . . . . . . . . . 117

4.3 Results: Orbits in Schwarzschild . . . . . . . . . . . . . . . . . . . . . 121

4.3.1 Case 1: Initial spin ~S0 = µ2 θ̂ . . . . . . . . . . . . . . . . . . 123

4.3.2 Case 2: Initial spin ~S0 = µ2 φ̂ . . . . . . . . . . . . . . . . . . 125

4.4 Results: Orbits in Kerr . . . . . . . . . . . . . . . . . . . . . . . . . . 126

4.4.1 Case 1: Equatorial orbit, initial spin ~S0 = µ2 θ̂ . . . . . . . . . 129

4.4.2 Case 2: Inclined orbit, initial spin ~S0 = µ2 θ̂ . . . . . . . . . . 130

4.4.3 Case 3: Inclined orbit, initial spin ~S0 = µ2 φ̂ . . . . . . . . . . 132

4.5 Summary and future work . . . . . . . . . . . . . . . . . . . . . . . . 134

A Averaging functions along black hole orbits 137

B Newtonian precession frequencies 139

B.1 Quadrupole shift (l = 2) . . . . . . . . . . . . . . . . . . . . . . . . . 141

B.2 Octupole shift (l = 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

B.3 Hexadecapole shift (l = 4) . . . . . . . . . . . . . . . . . . . . . . . . 143

C Definitions of the modified gravity bumpy Kerr metrics 145

9



10



List of Figures

2-1 Shifts to black hole orbital frequencies due to an l = 2 bump. The

shifts δΩr,θ,φ are normalized by the bumpiness parameter B2, and are

scaled by p7/2; this is because in the Newtonian limit, δΩr,θ,φ ∝ p−7/2.

The Newtonian result (dashed lines) describes the exact calculations

(solid lines) well in the large p limit, however, the Newtonian result

substantially underestimates the shifts in the strong field. Notice that

the radial frequency shift changes sign in the strong field, typically at

p ∼ (10 − 13)M , depending slightly on parameters. This behavior is

starkly different from the weak field limit. . . . . . . . . . . . . . . . 58

2-2 Shifts to black hole orbital frequencies due to an l = 4 bump. The

shifts δΩr,θ,φ are normalized by the bumpiness parameter B4 and are

scaled by p11/2, which sets the scaling in the Newtonian limit. As

in the l = 2 case (Fig. 2-1), exact results and the Newtonian limit

coincide at large p, but there are significant differences in the strong

field. The functional behavior of the radial frequency shift can be

especially complicated in this case. . . . . . . . . . . . . . . . . . . . 62

11



2-3 Shifts to Kerr black hole orbital frequencies for an l = 2 bump. As

with the Schwarzschild results presented in Fig. 2-1, the shifts δΩr,θ,φ

are normalized by the bumpiness B2 and scaled by p7/2. Rather than

examining a variety of orbital geometries, we here examine a few black

hole spins, showing results for a = 0.1M , a = 0.5M , and a = 0.9M .

Qualitatively, the results are very similar to what we find for the

Schwarzschild case. The major difference is that the last stable or-

bit is located at smaller p, so that these orbits can get deeper into the

strong field. The overall impact of the bumps is greater in these cases

which reach deeper into the strong field. . . . . . . . . . . . . . . . . 66

4-1 Comparison between the trajectory of a body with mass µ = 10−5M

and initial spin vector ~S0 = µ2 θ̂ and a geodesic. The background

geodesic is an equatorial orbit around a Schwarzschild black hole with

orbital parameters p = 10 M and e = 0.3. The spin of the small

body produces a phase difference between the geodesic and perturbed

trajectories, which causes ∆r to grow. There is also an accumulated

phase difference in the φ coordinate. . . . . . . . . . . . . . . . . . . 124

4-2 Comparison between the spin force and the conservative part of the

gravitational self-force for an equatorial orbit around a Schwarzschild

black hole with orbital parameters p = 10M and e = 0.3. The initial

spin vector is ~S0 = µ2 θ̂. The spin force is smaller than the grav-

itational self-force by about an order of magnitude, indicating that

influence of the spin of the small body is not negligible compared to

the gravitational self-force. . . . . . . . . . . . . . . . . . . . . . . . . 124

12



4-3 Evolution of the spin vector along an equatorial orbit around a Schwarzschild

black hole with orbital parameters p = 10M and e = 0.3. The initial

spin vector is ~S0 = µ2 φ̂. The spin precession is described by the spin

angles α and β, defined in Eq. (4.77) and (4.78), and the magnitude of

the spatial part of the spin vector, defined in Eq. (4.79). The angles

α = π/2 and β describe a spin vector rotating in the equatorial plane. 126

4-4 Comparison between the trajectory of a body with mass µ = 10−5M

and initial spin vector ~S0 = µ2 φ̂ and a geodesic. The background

geodesic is an equatorial orbit around a Schwarzschild black hole with

orbital parameters p = 10M and e = 0.3. The spin of the small body

causes the orbit to oscillate around the equatorial plane by an amount

∆θ. There are also slight differences in the r and φ motions. . . . . . 127

4-5 Comparison between the trajectory of a body with mass µ = 10−5M

and initial spin vector ~S0 = µ2 θ̂ and a geodesic. The background

geodesic is an equatorial orbit around a Kerr black hole with spin

a = 0.5M and orbital parameters p = 10 M and e = 0.3. The spin

of the small body produces a phase difference between the geodesic

and perturbed trajectories, which causes ∆r to grow. There is also an

accumulated phase difference in the φ coordinate. . . . . . . . . . . . 129

4-6 Evolution of the spin vector along an equatorial orbit around a Kerr

black hole of spin a = 0.5M with orbital parameters p = 10M , e =

0.3, and θmin = π/3. The initial spin vector is ~S0 = µ2 θ̂. The spin

angles α and β describe the orientation of the spin vector, as defined in

Eq. (4.77) and (4.78), respectively. The quantity |Si| is the magnitude

of the spatial part of the spin vector [Eq. (4.79)]. . . . . . . . . . . . 130

13



4-7 Comparison between the trajectory of a body with mass µ = 10−5M

and initial spin vector ~S0 = µ2 θ̂ and a geodesic. The background

geodesic is an inclined orbit around a Kerr black hole with spin a =

0.5M and orbital parameters p = 10M , e = 0.3, and θmin = π/3. The

spin of the small body perturbs the motion. There is an accumulated

phase difference between the trajectory and the background geodesic

in the r, θ, and φ coordinates. . . . . . . . . . . . . . . . . . . . . . . 131

4-8 Evolution of the spin vector along an equatorial orbit around a Kerr

black hole of spin a = 0.5M with orbital parameters p = 10M , e = 0.3,

and θmin = π/3. The initial spin vector is ~S0 = µ2 φ̂. The spin

precession is described by the spin angles α and β, defined in Eq. (4.77)

and (4.78), and the magnitude of the spatial part of the spin vector,

defined in Eq. (4.79). . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

4-9 Comparison between the trajectory of a body with mass µ = 10−5M

and initial spin vector ~S0 = µ2 φ̂ and a geodesic. The background

geodesic is an orbit around a Kerr black hole with orbital parameters

p = 10M , e = 0.3, and θmin = π/3. The spin of the small body causes

the orbit to oscillate around the equatorial plane by an amount ∆θ.

There are also perturbations to the r and φ coordinates, but there is

no accumulated phase difference in r or φ. . . . . . . . . . . . . . . . 133

14



Chapter 1

Introduction

1.1 Motivation

Massive black holes (MBHs) with masses ∼ 106 − 109 M� are ubiquitous in the

local Universe; they lie at the center of nearly every nearby galaxy [55] and power

active galactic nuclei. Gravitational wave (GW) observations of binary coalescences

involving MBHs, made possible by future space-based GW detectors, will let us study

their origin, growth mechanism, and populations, as well as provide a way to study

strong-field gravity. Extreme mass-ratio inspirals (EMRIs), in which a small compact

object of ∼ 1− 100M� falls into a MBH of ∼ 106 M�, are a particularly interesting

source of low-frequency GWs. As the small body slowly falls into the MBH, it probes

the structure of the surrounding spacetime and the information is encoded into the

emitted GWs. A space-based GW detector would be able to observe the emitted

waves in the milliHertz band for a timescale of years, during which time the small

body would be very near the horizon of the MBH [83]. Observing these GWs would let

us make very precise maps of the spacetime surrounding the MBH in the strong-field

regime.

Additionally, advances in electromagnetic observations of MBHs are making it

possible to study orbital dynamics in the strong-field. Numerous efforts are underway

to study the region around the radio source Sgr A*, which is associated with the MBH

at the center of our galaxy. Observations of stars orbiting the central object allow
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the measurement of its mass, and recent work has shown that as we probe deeper, we

may be able to measure the spacetime’s quadrupole moment [60]. The discovery of

a pulsar in orbit around Sgr A* would allow us to map the spacetime very precisely

through pulsar timing [57]. There has also been work done to image the accretion

disk very close to the horizon of the MBH using very long baseline interferometry

(VLBI) [30, 18]. Another promising source is the X-ray emission of the accretion disk

around a candidate black hole. Steiner et al. measured the spin of the microquasar

XTE J 1550-564 using two methods: modeling the thermal continuum spectrum of

the accretion disk and modeling the broad red wing of the Fe Kα line [89]. As these

observational techniques improve, we will be able to make precision measurements of

the spacetime around black holes. To prepare for these advances, it is crucial that we

understand how to test the structure of black hole spacetimes and how to model the

orbital dynamics in these systems.

Another motivation for studying the evolution of EMRIs is the fact that the large

mass ratio of the two bodies significantly simplifies the equations of motion, allowing

us to perform the calculations analytically or quasi-analytically. To leading order, an

EMRI can be modeled as a small body moving on a geodesic around the large body.

Higher order effects perturb the orbit of the small body away from a geodesic and

cause the orbit to decay. Once we have analytic models for the motion of an EMRI,

we can compare those results to numerical simulations and extrapolate to smaller

mass ratios to give us insight into the dynamics of generic binaries [100, 9].

In this thesis, we present projects concerned with two aspects of the strong-field

gravity of MBHs. In the first aspect, we develop a formalism for testing whether the

spacetime of the MBH is described by the Kerr metric, as predicted by GR. There

are several reasons why the spacetime might be described by a non-Kerr metric. The

presence of matter, such as a companion object or an accretion disk, would perturb

the spacetime away from Kerr. The object might not be a black hole but instead

be a compact object composed of an exotic form of matter. Also, some alternate

theories of gravity predict rotating black hole solutions that differ from Kerr, such as

dynamical Chern-Simons extensions to GR [101]. The second aspect we consider is
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the effect of the spin of the small body on its trajectory. If the small body has spin,

as all known astrophysical bodies do, its spin couples to the background spacetime

and the small body no longer moves along a geodesic [68, 29].

This introductory chapter presents a brief discussion of background material rele-

vant to the rest of the thesis. In Sec. 1.2 we discuss the astrophysics of massive black

holes. In Sec. 1.3, we review properties of geodesics of the Kerr metric, which in GR

describes all black hole spacetimes in vacuum. Section 1.4 gives an outline of the

projects discussed in this thesis.

Throughout this thesis, we work in geometrized (“theorist”) units for which G =

c = 1. In this system, mass, distance, and time are all measured in the same units; a

useful conversion factor is 1 M� = 4.92 × 10−6 s = 1.48 km. Following the notation

of Misner, Thorne, and Wheeler [62], when writing tensors we use Greek indices to

indicate a spacetime index (µ = 0, 1, 2, 3, with µ = 0 indicating the time dimension),

and a Latin letter to indicate a spatial index (i = 1, 2, 3). Parenthesis and brack-

ets around indices stand for symmetrization and antisymmetrization, respectively,

i.e. A(µν) = (Aµν + Aνµ)/2 and A[µν] = (Aµν − Aνµ)/2.

1.2 Astrophysics of black holes

Although we cannot make direct electromagnetic observations of black holes, we can

observe them indirectly by looking at matter around the black hole. There is solid

observational evidence for black holes between ∼ 5− 25M� [66]. One example is the

compact object in the X-ray binary Cyg X-1. Observations show that the mass of

the compact object is ∼ 15− 25M�, which is much greater than the maximum mass

of a neutron star [104]. Models of stellar evolution predict that stellar-mass black

holes with masses ∼ 3 − 100 M� are the end state of massive stars [45]. In some

models, after a neutron star forms in a supernova, it accretes matter until it exceeds

the maximum mass of a neutron star and collapses into a black hole. In other models,

a black hole is formed directly during the collapse of the progenitor.

There is also evidence that the universe contains many MBHs with masses ∼
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105−107M� and supermassive black holes (SMBHs) with masses ∼ 107−109M�. The

radio source Sgr A* located at the galactic center is believed to be a MBH. By looking

at the orbits of stars near the galactic center, we find that the mass of the central

object is ∼ 4×106M�, with the mass constrained to lie within a very small region (<

10−6 pc3) [37]. Observations of other galaxies suggest all galaxies with central bulges

contain MBHs or SMBHs [55, 58]. Quasars, which are powered by accretion onto

SMBHs, have been observed out to a redshift of z ∼ 7 [63]. The formation mechanism

for MBHs and SMBHs is not well-understood; they form through a combination of

accretion of gas and mergers of smaller black holes, but the masses of these seed black

holes are not known. They may form from black holes with masses ∼ 100 M� that

formed as remnants of Population III stars at a redshift & 20, or from black holes

with masses ∼ 105 M� that formed at 10 . z . 15 from dynamical instabilities in

massive gaseous protogalactic discs [84]. The mergers of these seed black holes are

likely triggered by mergers of the black holes’ host galaxies.

Intermediate-mass black holes (IMBHs) are defined to have masses∼ 102−104M�;

however, there is not as much evidence for the existence of black holes within this

mass range. Some ultra-luminous X-ray sources (ULXs) may be accreting IMBHs

[24]. Black holes in this mass range may be formed by stellar collisions in globular

collisions [73].

1.3 Motion in black hole spacetimes

Since this thesis is concerned with orbital dynamics in black hole spacetimes, in this

section we review some basic material on the Kerr solution and its geodesics. More

information can be found in a GR textbook, such as [62], and in Schmidt’s paper on

Kerr dynamics [82]. The most general stationary, axisymmetric black hole solution1

in GR is the Kerr metric, which in Boyer-Lindquist coordinates (t, r, θ, φ) takes the

1We ignore the astrophysically uninteresting case of a black hole with charge. Charged as-
trophysical objects should neutralize quickly due to the ubiquity of plasma in most astrophysical
environments.
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form

ds2 ≡ gµνdx
µdxν

= −
(

1− 2Mr

Σ

)
dt2 − 4aMr sin2 θ

Σ
dt dφ+

Σ

∆
dr2 + Σ dθ2

+
sin2 θ

Σ

[
(r2 + a2)2 − a2∆ sin2 θ

]
dφ2 , (1.1)

where we have introduced the quantities

Σ ≡ r2 + a2 cos2 θ , (1.2a)

∆ ≡ r2 − 2Mr + a2 . (1.2b)

This spacetime describes a black hole with mass M and spin angular momentum

|S| = aM , where a is the Kerr spin parameter with units of length. In the a = 0

limit, this reduces to the Schwarzschild solution:

ds2 = −
(

1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2 dθ2 + r2 sin2 θ dφ2 , (1.3)

which describes a non-rotating black hole with mass M .

1.3.1 Equations of motion

Now that we have defined the background spacetime, we can compute the equations

of motion for a test particle of mass m moving on a background worldline xµ = zµ(λ),

where λ is an affine parameter. One way to derive these equations is via the action

for a non-spinning test-particle (see e.g. [70])

S = −m
∫
γ

dλ
√
−gαβ(z)żαżβ , (1.4)

where żµ = dzµ/dλ is the tangent to zµ.

The contribution of this action to the field equations can be obtained by varying

it with respect to the metric tensor. Doing so, we obtain the stress-energy for the
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test-particle:

Tαβ(xµ) = m

∫
dτ√
−g

uαuβδ(4)[x− z(τ)] , (1.5)

where the proper time τ is related to λ by dτ = dλ
√
−gαβ(z)żαżβ, uµ = dzµ/dτ is the

particle’s four-velocity, normalized via gµνu
µuν = −1 and δ(4) is the four-dimensional

Dirac density, defined via
∫
d4x
√
−g δ(4)(x) = 1. The divergence of this stress-energy

tensor must vanish in GR, which implies that test-particles follow geodesics:

D

dτ

dzα

dτ
= 0 , (1.6)

where D/dτ is a covariant derivative. The divergence of the stress-energy tensor van-

ishes due to local energy-momentum conservation and the equivalence principle [62].

We have assumed here that the particle is non-spinning, so that geodesic motion is

simply described by Eq. (1.6); otherwise other terms would arise in the action that

would lead to spin-dependent modifications. We will discuss spin effects in Chapter 4.

1.3.2 Constants of the motion and separability

The geodesic equations as written in Eq. (1.6) are in second-order form, but they can

be simplified to first-order form if there exist at least three constants of the motion

plus a normalization condition on the four-momentum. As first recognized by Carter

[22], this is the case for geodesics in the Kerr spacetime. To derive this, we look for

Killing vectors ξα and Killing tensors ξαβ that satisfy Killing’s equation:

∇(µKν1···νn) = 0 . (1.7)

The Kerr metric possesses two Killing vectors and one Killing tensor. The Killing

vectors, tα = (1, 0, 0, 0) and φα = (0, 0, 0, 1), are associated with the stationarity and

axisymmetry of the metric, respectively. In addition, the Kerr metric also possesses

the Killing tensor:

ξαβ = ∆ k(αlβ) + r2 gαβ , (1.8)
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where ∆ ≡ r2 − 2Mr + a2 as defined in Eq. (1.2), and kα and lα are principal null

directions:

kα =

(
r2 + a2

∆
, 1, 0,

a

∆

)
, (1.9a)

lα =

(
r2 + a2

∆
,−1, 0,

a

∆

)
. (1.9b)

Note that although there is a geometric interpretation for the Killing vectors tα and

φα, there is no simple geometric interpretation for the Killing tensor ξαβ.

Contracting these Killing vectors and tensors allows us to define three constants

of the motion, the energy E, the z-component of the angular momentum Lz, and the

“Carter constant” C:

E ≡ −tαpα , (1.10)

Lz ≡ φαpα , (1.11)

C ≡ ξαβp
αpβ . (1.12)

It is conventional to define another version of the Carter constant,

Q ≡ C − (Lz − aE)2 . (1.13)

For a nonrotating black hole, the Carter constant Q has a simple physical interpreta-

tion: Q + L2
z = |~L|, where ~L is the total orbital angular momentum. This is not the

case for a rotating black hole; because the spacetime is not spherically symmetric, we

cannot really define the total angular momentum.

With these three constants of the motion [either (E,Lz, C) or (E,Lz, Q)] and the

normalization condition on the four-momentum, pαpα = −m2, we can separate the
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geodesic equations and write them in first-order form:

m2Σ2

(
dr

dτ

)2

=
[
(r2 + a2)E − aLz

]2 −∆
[
m2r2 + (Lz − aE)2 +Q

]
≡ R(r) , (1.14)

m2Σ2

(
dθ

dτ

)2

= Q− cot2 θL2
z − a2 cos2 θ(m2 − E2)

≡ Θ(θ) , (1.15)

mΣ

(
dφ

dτ

)
= csc2 θ Lz + aE

(
r2 + a2

∆
− 1

)
− a2Lz

∆

≡ Φ(r, θ) , (1.16)

mΣ

(
dt

dτ

)
= E

[
(r2 + a2)2

∆
− a2 sin2 θ

]
+ aLz

(
1− r2 + a2

∆

)
≡ T (r, θ) , (1.17)

where the coordinate τ measures proper time along the test body’s worldline.

Given a choice of the constants E, Lz, and Q and a set of initial conditions,

Eqs. (1.14) – (1.17) completely describe the geodesic motion of a test body near a

Kerr black hole. Implementing Eqs. (1.14) and (1.15) in a numerical integrator can

present some problems, however, since the r and θ motion have turning points where

dr/dτ and dθ/dτ pass through zero and switch sign. To account for this behavior,

it is convenient to reparameterize these motions using angles ψ and χ for the radial

and polar motion, respectively, which smoothly vary from 0 to 2π.

Consider first the radial motion. We parametrize r as

r =
pM

1 + e cosψ
. (1.18)

where p is the semi-latus rectum, e is the eccentricity, and ψ is the true anomoly. The

turning points occur at ψ = 0 (periapsis) and ψ = π (apoapsis). The function R(r)
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[Eq. (1.14)] is quartic in r and therefore has four roots:

R(r) = (E2 −m2)r4 + 2Mr3 − [a2(m2 − E2) + L2
z +Q]r2

+2M [Q+ (Lz − aE)2]r − a2Q (1.19)

= (m2 − E2)(r1 − r)(r − r2)(r − r3)(r − r4) . (1.20)

We define the roots so that r1 ≥ r2 ≥ r3 ≥ r4. Then r1 and r2 correspond to apoapsis

and periapsis, respectively:

r1 =
pM

1− e
, (1.21a)

r2 =
pM

1 + e
. (1.21b)

Similarly, we can map the roots r3 and r4 to parameters p3 and p4:

r3 =
p3M

1− e
, (1.22a)

r4 =
p4M

1 + e
. (1.22b)

The roots p3 and p4 have no physical meaning. Now the equation of motion of ψ

takes a simple form:

dψ

dτ
=

M
√
m2 − E2

1− e2

1

Σ
[(p− p3)− e(p+ p3 cosψ)]1/2

× [(p− p4) + e(p− p4 cosψ)]1/2 . (1.23)

This equation has no turning points, so it is easy to numerically integrate; the angle

ψ simply accumulates secularly.

Now we turn our attention to the θ motion. We begin by defining z ≡ cos θ, and

then we introduce the parameter χ by setting z = z− cosχ. The turning points of

the θ motion map to z−, which we identify by2 z− ≡ cos θmin. Then Eq. (1.15) can

2Another common choice is to let z = cos2 θ = z− cos2 χ.
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be written

Θ(z) = Q− z2

1− z2
L2
z − a2z2(m2 − E2) (1.24)

=
a2(m2 − E2)(z2

+ − z2)(z2
− − z2)

1− z2
. (1.25)

Like the roots r3 and r4 of the radial potential, the root z+ has no physical meaning.

The geodesic equation for χ is given by

dχ

dτ
=

√
a2(m2 − E2)(z+ − z)

r2 + a2z
, (1.26)

This equation of motion for χ has no turning points; like the angle ψ we introduced

to describe the radial motion, the angle χ accumulates secularly.

We can relate the constants of the motion E, Lz, and Q to the orbital parameters

p, e, and θmin by looking at the turning points of the r and θ motion. Our derivation

here follows the approach of Schmidt in Appendix B of [82]. First we look at the θ

motion, described in Eq. (1.24). The θ potential has a turning point at θ = θmin, i.e.,

Θ(z−) = 0, which gives us an expression for Q in terms of E, Lz, and θmin:

Q = L2
z cot2 θmin + a2(m2 − E2) cos2 θmin . (1.27)

Now we turn to the radial motion. Substituting the expression for Q into the

radial potential, Eq. (1.19), allows us to write R(r) as a polynomial in E and Lz:

R(r) = f(r)E2 − 2g(r)ELz − h(r)L2
z − d(r) , (1.28)

where

f(r) = r4 + a2(r2 + 2Mr + cos2 θmin∆) , (1.29a)

g(r) = 2aMr , (1.29b)

h(r) =
r2 − 2Mr + a2 cos2 θmin

sin2 θmin

(1.29c)

d(r) = m2(r2 + a2 cos2 θmin)∆ . (1.29d)
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When we evaluate Eq. (1.28) at the radial turning points, we obtain two equations

that are quadratic in E and Lz:

f1E
2 − 2g1ELz − h1L

2
z − d1 = 0 , (1.30a)

f2E
2 − 2g2ELz − h2L

2
z − d2 = 0 , (1.30b)

where we have defined the following coefficients:

(f1, g1, h1, d1) = (f(r1), g(r1), h(r1), d(r1)) , (1.31a)

(f2, g2, h2, d2) = (f(r2), g(r2), h(r2), d(r2)) . (1.31b)

Solving these equations for E and Lz yields

E2 =
κρ+ 2ε± 2

√
σ(σε2 + ρεκ− ηκ2)

ρ2 + 4ησ
, (1.32)

L2
z =

ερ2 + 4εησ − ηκρ− 2ηεσ ± 2η
√
σ (σε2 + ρεκ− ηκ2)

σ(ρ2 + 4ησ)
, (1.33)

where the coefficients κ, ε, ρ, η, and σ are defined by

κ = d1h2 − d2h1 , (1.34a)

ε = d1g2 − d2g1 , (1.34b)

ρ = f1h2 − f2h1 , (1.34c)

η = f1g2 − f2g1 , (1.34d)

σ = g1h2 − g2h1 . (1.34e)

In the limit of small a and large p, the constants E, Lz, and Q are given by

E = m

[
1− 1− e2

2p
+

3

8

(1− e2)2

p2
− a

M

(1− e2)2 sin θmin

p5/2

]
, (1.35)

Lz = mMp1/2 sin θmin

[
1 +

3 + e2

2p
− a

M

(3 + e2) sin θmin

p3/2

]
, (1.36)

Q = m2M2p cos2 θmin

[
1 +

3 + e2

p
− a

M

2(3 + e2) sin θmin

p3/2

]
. (1.37)
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1.3.3 Orbital frequencies

Now we turn our attention to the orbital frequencies. Our discussion here closely

follows that given by Schmidt [82], which uses Hamilton-Jacobi methods to compute

black hole orbital frequencies. Separating the motion not only identifies the constants

of the motion but also the action variables

Jr ≡
1

2π

∮
pr dr =

1

π

∫ ra

rp

√
R(r)

∆
dr , (1.38)

Jθ ≡
1

2π

∮
pθ dθ =

2

π

∫ π/2

θmin

√
Θ(θ) dθ , (1.39)

Jφ ≡
1

2π

∮
pφ dφ = Lz . (1.40)

It is also useful to define

Jt ≡ −E . (1.41)

This is a slight abuse of the notation since geodesic motion is not cyclic in t and hence

we cannot define Jt as a closed integral over time, but is convenient for reasons we

will illustrate shortly.

The Hamiltonian for test-body motion is

H ≡ 1

2
gαβp

αpβ . (1.42)

At least formally, we can rewrite the Hamiltonian in Eq. (1.42) in terms of the action

variables Jµ. Let H(aa) be the Hamiltonian written in terms of the action variables.

According to Hamilton-Jacobi theory, the orbital frequencies are the derivatives of

H(aa) with respect to the action variables:

mωi =
∂H(aa)

∂Ji
. (1.43)

For black hole orbits, we cannot explicitly rewrite the Hamiltonian; however, we can

use the chain rule to write Eq. (1.43) in terms of quantities we can compute. Following
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Ref. [82] (modifying its notation slightly), we put

Pβ
.
= (H, E, Lz, Q) . (1.44)

We define the matrices A and B, whose components are

Aαβ =
∂Pα
∂Jβ

, (1.45a)

Bαβ =
∂Jα
∂Pβ

. (1.45b)

By the chain rule, these matrices have an inverse relationship:

AαβBβγ = δα
γ . (1.46)

The components of the matrix A are directly related to the frequencies we wish to

compute. In particular, since P0 is just the invariant Hamiltonian, mωi = ∂P0/∂Ji ≡

A0
i. However, the components of the matrix B are written in a way that is fairly

easy to work out. We exploit this to write mωi = (B−1)0
i
, from which we find

mωr =
∂Jθ/∂Q

(∂Jr/∂H)(∂Jθ/∂Q)− (∂Jr/∂Q)(∂Jθ/∂H)
, (1.47)

mωθ =
−∂Jr/∂Q

(∂Jr/∂H)(∂Jθ/∂Q)− (∂Jr/∂Q)(∂Jθ/∂H)
, (1.48)

mωφ =
(∂Jr/∂Q)(∂Jθ/∂Lz)− (∂Jr/∂Lz)(∂Jθ/∂Q)

(∂Jr/∂H)(∂Jθ/∂Q)− (∂Jr/∂Q)(∂Jθ/∂H)
. (1.49)

The frequencies ωr,θ,φ are conjugate to the orbit’s proper time; they would be

measured by an observer who rides on the orbit itself. For our purposes, it will be

more useful to convert to frequencies conjugate to the Boyer-Lindquist coordinate

time, describing measurements made by a distant observer. The quantity3

Γ ≡ 1

m

∂H(aa)

∂Jt
= − 1

m

∂H(aa)

∂E
(1.50)

3Here we have adjusted notation from Schmidt slightly.
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performs this conversion; the frequencies Ωr,θ,φ = ωr,θ,φ/Γ are of observational rele-

vance. Going back to Eqs. (1.45) and (1.46), we find mΓ = (B−1)0
0
, or

mΓ =
(∂Jr/∂E)(∂Jθ/∂Q)− (∂Jr/∂Q)(∂Jθ/∂E)

(∂Jr/∂H)(∂Jθ/∂Q)− (∂Jr/∂Q)(∂Jθ/∂H)
. (1.51)

For a circular, equatorial orbit, the orbital frequency Ωφ takes a simple form:

Ωφ =
M1/2

r3/2 + aM1/2
. (1.52)

This is the equivalent to Kepler’s law for the Kerr metric.

It is useful to have weak-field (p � M) forms of these frequencies. When we

expand to first order in a, and then expand in 1/p, the orbital frequencies become

Ωr = ωK
[
1− 3(1− e2)

p
+

a

M

3(1− e2) sin θmin

p3/2

]
, (1.53a)

Ωθ = ωK
[
1 +

3e2

p
− a

M

3(1 + e2) sin θmin

p3/2

]
, (1.53b)

Ωφ = ωK
[
1 +

3e2

p
+

a

M

2− 3(1 + e2) sin θmin

p3/2

]
, (1.53c)

where ωK is the Kepler frequency,

ωK =
1

M

(
1− e2

p

)3/2

. (1.54)

1.4 Outline of this thesis

This thesis is organized as follows. In Chapter 2, based on [93] and [92], we lay

out the bumpy black hole formalism, which provides a model-independent way of

testing whether a black hole candidate is described by the Kerr metric as predicted

by GR. In this chapter, we describe how to generate spacetimes whose mass and spin

moments differ from the Kerr metric by introducing two additional functional degrees

of freedom. We find that a perturbation function that falls off like r−(l+1) in the weak-

field changes the multipole moments of order l and higher while leaving lower-order
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moments unchanged. This enables us to use the bumpy black hole formalism to define

spacetimes that are identical to the Kerr spacetime up to some arbitrary order L but

which differ from Kerr for l ≥ L. We also show how these perturbations change the

orbital frequencies using canonical perturbation theory.

In Chapter 3, based on [94], we extend the bumpy black hole formalism to include

black holes in alternate theories of gravity. In alternate theories of gravity, we can no

longer make the assumption that the spacetime is vacuum, i.e., that Tµν = 0. When

we remove this restriction, the perturbations are described by four functions instead

of two. We discuss ways of parametrizing these functions for spacetimes that also ad-

mit an approximate second-order Killing tensor. This restriction is not necessary, but

it is convenient since it allows us to write the equations of motion in first-order form.

We then map these perturbation functions to known black hole solutions in alterna-

tive theories of gravity, specifically dynamical Chern-Simons gravity and dynamical,

quadratic gravity.

Chapter 4 examines another aspect of strong-field gravity, the impact of spin-

curvature coupling on orbital dynamics. A small body with spin does not follow

a geodesic; instead its motion is described by the Papapetrou equation [68], which

includes a force arising from the small body’s spin coupling to the background curva-

ture. To date, this effect has not been studied in great detail. Previous work taking

into account the spin of the small body has been limited to an analysis of circular,

equatorial orbits with the spin of the small body parallel or nearly parallel to the

spin of the background object. In this chapter we compute the trajectory and the

spin precession for generic orbits around Kerr black holes with arbitrary initial spin

orientations. We also compare the magnitude of the spin force to the gravitational

self-force, as calculated by Barack and Sago [7], since both the spin force and the

gravitational self-force scale as µ2, where µ is the mass of the small body. We find

that the spin force is smaller than the gravitational self-force by about an order of

magnitude, indicating that the impact of spin-curvature coupling is not significantly

smaller than the impact of the gravitational self-force. In order to accurately model

the GW emission to first order in the mass of the small body, we need to take into

29



account both of these effects.
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Chapter 2

Bumpy black holes

This chapter is based on Physical Review D 81, 024030 (2010), which was written in

collaboration with Scott A. Hughes, and Physical Review D 82, 104041 (2010).

2.1 Introduction

2.1.1 Motivation: Precision tests of the black hole hypothesis

Though observations of gravitational systems agree well with the predictions of gen-

eral relativity (GR), so far the most detailed and quantitative tests have been done

in the weak field. (“Weak field” means that the dimensionless Newtonian poten-

tial φ ≡ GM/rc2 � 1, where M is a characteristic mass scale and r a charac-

teristic distance.) This is largely because many of the most precise tests are done

in our solar system (e.g., [11]). Even the celebrated tests which use binary neu-

tron stars (e.g., [56]) are essentially weak-field: for those systems, M ∼ severalM�,

orbital separation ∼ severalR�, so φ ∼ a few ×GM�/R�c2 ∼ a few × 10−6.

This situation is on the verge of changing. Observational technology is taking us

to a regime where we either are or soon will be probing motion in strong gravity,

with φ & 0.1. Examples of measurements being made now include radio studies of

accretion flows near the putative black hole in our galactic center [30] and X-ray

studies of hot accretion that allow precise measurements of accretion disk geometries
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[78, 64]. Future measurements include the possible discovery of a black hole-pulsar

system, perhaps with the Square Kilometer Array [85], and gravitational-wave (GW)

observations of small bodies spiraling into massive black holes due to the backreaction

of GW emission [2].

For weak-field studies, a well-developed paradigm for testing gravity has been

developed. The parameterized post-Newtonian (PPN) expansion [62, 96] quantifies

various measurable aspects of relativistic gravity. For example, the PPN parameter

γ (whose value is 1 in GR) quantifies the amount of spatial curvature produced by a

unit of rest mass. Other PPN parameters quantify a theory’s nonlinearity, the degree

to which it incorporates preferred frames, and the possible violation of conservation

laws. See Ref. [96], Chap. 4 for a detailed discussion. Unfortunately, no similar

framework exists for strong-field studies. If we hope to use observations as tools for

testing the nature of strong gravity objects and strong-field gravity, we need to rectify

this.

Black holes are a particularly interesting tool for studying strong-field gravity.

Aside from having the strongest accessible gravitational fields of any object in the

Universe1, within GR they have an amazingly simple spacetime structure: the “no-

hair” theorems [48, 23, 79, 74, 75] guarantee that the exterior spacetime of any black

hole is completely described by only two numbers, its mass M and spin parameter a.

Any deviation from that simplicity points to a failure either in our understanding of

gravity or in the nature of ultracompact objects.

A useful way to describe black hole spacetimes is in terms of multipole moments.

In many areas of physics, multipolar expansions are used as tools for describing the

shape of a distribution of matter or energy, or for describing the behavior of a poten-

tial function. Multipole moments are most commonly used to describe fields whose

governing equations are linear, since the functions describing the angular behavior

1More accurately, they have the largest potential φ ∼ GM/Rc2. One may also categorize weak
or strong gravity using spacetime curvature or tides; arguably this is a more fundamental measure
for assessing whether GR is likely to be accurate or not. From this perspective, black holes are
actually not such “strong gravity” objects; indeed, the tidal field just outside a 108M� black hole’s
event horizon is not much different from the tidal field at the surface of the Earth. See Ref. [78] for
further discussion of this point.
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are typically eigenfunctions of the angular piece of the governing differential oper-

ator. For example, the Newtonian gravitational potential Φ arising from a matter

distribution ρ must satisfy Poisson’s equation:

∇2Φ =

 4πGρ (interior),

0 (exterior).
(2.1)

In the exterior region, we can write Φ as a sum over multipolar contributions:

Φ(r, θ, φ) = −G
∑
lm

MlmYlm(θ, φ)

rl+1
. (2.2)

The coefficients Mlm are mass multipole moments. By matching the expansion of Φ

on the boundary to a similar expansion for the interior, they can be shown to describe

the angular distribution of the mass of the source. (Throughout this chapter, we will

restrict ourselves to axisymmetric spacetimes, for which the axial index m must be

zero; we ignore it in what follows.)

Geroch [36] and Hansen [42] developed an analogous multipolar description for

spacetimes of isolated, stationary, axisymmetric objects in GR in terms of scalar

multipoles. Their definition applies to spacetimes that are asymptotically flat; for

such spacetimes there is a well-defined “large r” limit in which multipoles can be

defined in a way that roughly accords with our usual intuition. When one computes

the Geroch-Hansen moments of a source, one finds that its spacetime is described

by a family of mass moments Ml, very similar to those appearing in our Newtonian

expansions in Eq. (2.2), as well as a family of current moments Sl. For a fluid

body, the current moments describe how the matter flow is distributed through the

compact body, much as magnetic moments describe how electric current is distributed

through an electromagnetic source. These moments can be conveniently combined in

the complex moment

Ml = Ml + iSl . (2.3)
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For a generic source, the momentsMl are unconstrained.2 As we show in Sec. 2.2,

for a Kerr black hole the moments take a particularly simple form:

Ml = M(ia)l , (2.4)

where Ml is the lth moment, M is the total mass of the black hole, and a is its

spin parameter defined by a = |~S|/M . (We neglect the astrophysically uninteresting

possibility of a black hole with macroscopic charge.) This is a statement of the “no-

hair” theorem: the spacetime of a Kerr black hole is completely described by its mass

and spin [48, 23, 79].

Testing the hypothesis that an object is a Kerr black hole can thus be framed

as a null experiment. First, measure the putative black hole spacetime’s multipoles.

Using the moments M0 and S1, determine the parameters M and a. If the spacetime

is Kerr, all moments for l ≥ 2 must be given by Eq. (2.4). The null hypothesis is

that any deviation from those Kerr moments is zero. Failure of the null hypothesis

means the black hole candidate is not a Kerr black hole, and may indicate a failure

of strong-field GR.

2.1.2 Bumpy black holes: Previous work

The sharply constrained nature of the Kerr multipoles in Eq. (2.4) suggests that this

relation may be useful as a test of black hole spacetimes: if the spacetime is Kerr,

then knowledge of only two moments is needed to determine all of the others. Ryan

[80] was the first to build a scheme to test this idea, constructing spacetimes in which

all of the moments were arbitrary. This scheme was sufficient to prove the principle

of the idea, but did not work well for building spacetimes that are good deep into

the strong field. Collins and Hughes [25] noted that, if GR correctly describes black

hole candidates, then testing their nature amounts to trying to falsify the hypothesis

that they are Kerr black holes. They suggested formulating black hole tests as a null

2If we assume the spacetime is reflection symmetric, then only the even mass moments and odd
spin moments can be nonzero. In this chapter, we do not restrict ourselves to reflection symmetric
spacetimes.
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experiment by examining spacetimes for which

Ml = M(ia)l + δMl , (2.5)

and using measurements to test whether δMl = 0, as it should if they are Kerr black

holes.

To this end, Collins and Hughes [25] introduced the bumpy black hole: a space-

time that deviates in a small, controllable manner from the exact black holes of GR.

By construction, the bumpy black hole includes “normal” black holes as a limit. This

is central to testing the black hole hypothesis by a null experiment. Spacetimes of

other proposed massive, compact objects (for example, boson stars [26, 81]) typically

do not include black holes as a limiting case. This limits their utility if black hole can-

didates are, in fact, GR’s black holes. Measurements of black holes using observables

formulated in a bumpy black hole spacetime should simply measure the spacetime’s

“bumpiness” (defined more precisely below) to be zero.

Though a useful starting point, the bumpy black holes developed in Ref. [25]

had three major shortcomings. First, the changes to the spacetime that were intro-

duced to modify its mass multipole moments were not smooth. The worked example

presented in Ref. [25] is interpreted as a Schwarzschild black hole perturbed by an

infinitesimally thin ring of positive mass around its equator and by a pair of negative

mass infinitesimal points near its poles. Though this changes the spacetime’s mass

quadrupole moment (the desired outcome of this construction), it gives the spacetime

a pathological strong-field structure. This is reflected in the fact that non-equatorial

strong-field orbits are ill-behaved in this construction [77]. Also, Ref. [25] only con-

sidered perturbations to the mass moments and left the spin moments unchanged. In

order to construct the most general bumpy black holes, we must be able to perturb

both the mass and the spin moments.

Finally, Ref. [25] only examined bumpy Schwarzschild black holes. Glampedakis

and Babak [38] rectified this deficiency with their introduction of a “quasi-Kerr”

spacetime. Their construction uses the exterior Hartle-Thorne metric [43, 44] de-
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scribing the exterior of any slowly rotating, axisymmetric, stationary body. It in-

cludes the Kerr metric to O(a2) as a special case. Identifying the influence of the

mass quadrupole moment in the Hartle-Thorne form of the Kerr metric, they then

introduce a modification to the full Kerr spacetime that changes the black hole’s mass

quadrupole moment from its canonical value.

2.1.3 This analysis

The goal of this work is to introduce smooth perturbations to both the mass and spin

moments, and to extend the bumpy black hole concept to include spinning black holes.

Dealing with the non-smooth nature of the bumps is, as we show in Secs. 2.3, 2.5,

and 2.6, quite straightforward. It simply requires introducing perturbations to the

black hole background that are smooth rather than discontinuous. In essence, rather

than having bumps that correspond to infinitesimal points and rings, the bumps we

use here are smeared into pure multipoles.

Extending Ref. [25] to spinning black holes is more of a challenge. Given that

Ref. [38] already introduced a bumpy-black-hole-like spacetime that encompasses

spacetimes with angular momentum, one might wonder why another construction

is needed. A key motivation is that we would like to be able to make an arbitrary

modification to a black hole’s moments. Although showing that a black hole candi-

date has a non-Kerr value for the mass quadrupole moment would be sufficient to

falsify its black hole nature (at least within the framework of GR), one can imag-

ine scenarios in which the first L moments of a black hole candidate agree with the

Kerr value, but things differ for l > L. For example, Yunes et al. have shown that

in Chern-Simons modifications to GR, slowly rotating black hole solutions have the

multipolar structure of Kerr for l < 4, but differ for l ≥ 4 [101, 87]. There are many

ways in which black hole candidates might differ from the black holes of GR; we need

to develop a toolkit sufficiently robust that it can encompass these many potential

points of departure.

Our technique for making bumpy Kerr holes is based on the Newman-Janis al-

gorithm [65]. This algorithm transforms a Schwarzschild spacetime into Kerr by
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“rotating” the spacetime in a complex configuration space3. In this chapter, we con-

struct bumpy Kerr black holes by applying the Newman-Janis algorithm to bumpy

Schwarzschild black holes. The outcome of this procedure is a spacetime whose mass

moments are deformed relative to Kerr. When the bumpiness is set equal to zero, we

recover the Kerr metric.

Once one has constructed a bumpy black hole spacetime, one then needs to show

how its bumps are encoded in observables. The most detailed quantitative tests will

come from orbits near black hole candidates. As such, it is critical to know how orbital

frequencies change as a function of a spacetime’s bumpiness. More generally, we are

faced with the problem of understanding motion in general stationary axisymmetric

vacuum spacetimes. Brink [14] has recently published a very detailed analysis of

this problem, with a focus on understanding whether and for which situations the

spacetimes admit integrable motion. She has found evidence that geodesic motion in

such spacetimes may, in many cases, be integrable. If so, the problem of mapping

general spacetimes (not just “nearly black hole” spacetimes) may be tractable. Gair,

Li, and Mandel [35] have similarly examined orbital characteristics in the Manko-

Novikov spacetime [59], which has a particular tunable non-Kerr structure. They

show how orbits change in such spacetimes, and how its bumpiness colors observable

characteristics.

For this analysis, we confine ourselves to the simpler problem of motion in bumpy

black hole spacetimes, addressing this challenge in Secs. 2.5 and 2.6 using canonical

perturbation theory. As is now well known (and was shown rather spectacularly by

Schmidt [82]), Hamilton-Jacobi methods let us write down closed-form expressions

for the three orbital frequencies (Ωr, Ωθ, Ωφ) which completely characterize the be-

havior of bound Kerr black hole orbits. Since bumpy black hole spacetimes differ

only perturbatively from black hole spacetimes, canonical perturbation theory lets us

characterize how a spacetime’s bumps shift those frequencies, and thus are encoded

in observables. Similar techniques were used by Glampedakis and Babak [38] to see

3This complex “rotation” is made most clear by framing the discussion using the Ernst poten-
tial [33]. Transforming from Schwarzschild to Kerr corresponds to adding an imaginary part to a
particular potential.
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how frequencies are shifted in a quasi-Kerr metric, and were also used by Hinderer

and Flanagan [46] in a two-timescale analysis of inspiral into Kerr black holes.

2.1.4 Organization and overview

The organization of this chapter is as follows. We begin in Sec. 2.2 by reviewing in

detail how Geroch-Hansen moments are calculated, and we demonstrate the procedure

on the Kerr spacetime. Sec. 2.3 is an overview of bumpy spacetimes. We start with

the axially symmetric and stationary Weyl line element. We review the Einstein

field equations in this representation, introduce the Schwarzschild limit, and describe

first order perturbations. The spacetime’s bumpiness is set by choosing potential

functions ψ1 and σ1 which control how the spacetime deviates from the black hole

limit. Specifically, the function ψ1 describes the mass perturbations while σ1 describes

the spin perturbations. We initially leave these functions arbitrary except for the

requirement that they be small enough that we can only consider first-order terms.

Later, we discuss specific choices for ψ1 and σ1. Following our discussion of bumpy

Schwarzschild spacetimes, we show how to use the Newman-Janis algorithm to build

bumpy Kerr black holes.

We discuss geodesic motion in these spacetimes in Sec. 2.4, where we show how

to calculate the orbital frequencies of bumpy black holes using canonical perturba-

tion theory. Canonical perturbation theory requires averaging a bump’s shift to an

orbit’s Hamiltonian. This averaging was developed in Ref. [32] and is summarized in

Appendix A.

In Secs. 2.5 – 2.8, we focus on specific choices for the perturbation functions and

compute the resulting changes in the orbital frequencies and multipole moments. We

consider mass perturbations on a Schwarzschild and Kerr background in Secs. 2.5

and 2.6, respectively. We take σ1 = 0 and ψ1 to be a pure multipole in the Weyl

sector, construct the spacetime, and numerically compute the shifts in Ωr, Ωθ, and

Ωφ. Detailed results are given for l = 2, l = 3, and l = 4, and some examples of

the frequency shifts we find are shown in Figs. 2-1 (l = 2, Schwarzschild), 2-2 (l = 4,

Schwarzschild) and 2-3 (l = 2, Kerr). There is no reason in principle to stop there,
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though the results quickly become repetitive.

A few results are worth highlighting. First, we find that in the weak field, the

exact numerical results for frequency shifts correctly reproduce the Newtonian limit,

which we derive in Appendix B. In the strong field, the frequency shifts are signifi-

cantly greater. The shift to the radial frequency is particularly interesting: it tends

to oscillate, shifting between an enhancement and a decrement as orbits move into

the strong field. This behavior appears to be a robust signature of non-Kerr multi-

pole structure in black hole strong fields. Interestingly, it turns out that black hole

spin does not have a very strong impact on the bumpiness-induced shifts to orbital

frequencies. Spin’s main effect is to change the location of the last stable orbit. For

large spin, orbits reach deeper into the strong field, amplifying the bumps’ impact on

orbital frequencies. Aside from the change to the last stable orbits, the impact of a

particular multipolar bump looks largely the same across all spin values.

We also compute the changes to the Geroch-Hansen moments δMl. Our goal is to

demonstrate that our choice for ψ1 maps in a natural way to the spacetime’s Geroch-

Hansen moments. For example, a bump which is built from an l = 2 spherical

harmonic changes the even Geroch-Hansen moments above the l = 2 moment. In

principle, one could construct a change to a single Geroch-Hansen mass moment by

including multiple appropriately weighted spherical harmonic terms in the bumpy

black hole spacetime.

We then turn our attention to spin perturbations in Secs. 2.7 and 2.8, for which

ψ1 = 0. We show that the spin perturbations map to changes in the Geroch-Hansen

moments similarly to the mass moment perturbations; if we add an order l spin

moment perturbation, which we define in Secs. 2.7 and 2.8, we leave the spin moments

unchanged up to order l.

Finally, we summarize our analysis and suggest some directions for future work in

Sec. 2.9. We do not discuss in this analysis the issue of measurability. Turning these

foundations for mapping the multipole moment structure of black holes into a practi-

cal measurement program (for instance, via gravitational-wave measurements, timing

of a black hole-pulsar binary, or precision mapping in radio or x-rays of accretion
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flows) will take a substantial effort.

In this chapter, when we discuss bumpy black holes, we will always use a “hat”

accent to denote quantities which are calculated in the pure black hole background

spacetimes. For example, we write the orbital frequencies as Ω = Ω̂ + δΩ, where Ω̂ is

the frequency of an orbit in the black hole background and δΩ denotes the shift due

to the black hole’s bumps.

2.2 Computing the Geroch-Hansen moments

We begin our analysis by showing how to compute the Geroch-Hansen moments for

the spacetime of a compact object. As an important example, we demonstrate the

procedure on the Kerr metric, which in Boyer-Linquist coordinates is given by

ds2 = −
(

1− 2Mr

Σ

)
dt2 − 4aMr sin2 θ

Σ
dt dφ+

Σ

∆
dr2 + Σ dθ2

+
[
(r2 + a2)2 − a2∆ sin2 θ

] sin2 θ

Σ
dφ2 , (2.6)

where ∆ ≡ r2 − 2Mr + a2 and Σ ≡ r2 + a2 cos2 θ.

In order to compute the Geroch-Hansen moments, the spacetime must have a

timelike Killing vector and be asymptotically flat. Let the spacetime’s Killing tensor

be Kα, and let the manifold V be the 3-surface orthogonal to this vector. The metric

on V can be written

hij = λgij +KiKj , (2.7)

where λ = −KαKα is the norm of Kα. To calculate the moments, we perform a

conformal transformation to map infinity onto a point Λ. The space is asymptotically

flat if it can be conformally mapped to a 3-space Ṽ which satisfies [36]

(i) Ṽ = V ∪ Λ, where Λ is a single point;

(ii) h̃ij = Ω2hij is the conformal metric;

(iii) Ω|Λ = 0, D̃iΩ
∣∣∣
Λ

= 0, D̃iD̃jΩ
∣∣∣
Λ

= 2h̃ij;
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where Ω is the conformal factor and D̃i is the derivative operator associated with h̃ij.

The conformal metric has the form [4]

ds2 = dr2 + r2dθ2 + r2 sin2 θ e−2β(r,θ)dφ2 . (2.8)

The function β(r, θ) parametrizes the deviation of the conformal metric from spheric-

ity.

In order to construct the spacetime’s Geroch-Hansen moments, we need its Ernst

potential [33] and the conformal factor Ω. We begin with the Ernst potential, which

we build from the norm λ and twist ω of Kα. For the Kerr metric, the norm is given

by

λ = 1− 2Mr

Σ
. (2.9)

The twist is related to the “generalized curl”4 of the timelike Killing vector,

ωα = εαβγδK
β∇γKδ . (2.10)

From the Bianchi identities, we can write the curl as [36]

∇[α ωβ] = −εαβγδKγRδ
νK

ν . (2.11)

For a spacetime that is vacuum in GR, the condition Rµν = 0 implies that∇[a ωb] = 0.

This allows us to write ωα = ∇αω, where the scalar function ω is the twist of Kα. (If

Rµν 6= 0, we cannot construct the Ernst potential. We will discuss this issue in more

detail in Sec. 2.6 and 2.8.) For the Kerr spacetime, we find

ω = −2Ma cos θ

Σ
. (2.12)

4Normally, the curl of a vector is only defined in a 3-dimensional vector space; we follow the lead
of Ref. [34] in generalizing the notion of the curl to higher dimensions.
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We then combine the norm and twist into the complex quantity

ε = λ+ iω (2.13)

= 1− 2Mr

Σ
− i2Ma cos θ

Σ
, (2.14)

where on the second line we have specialized to Kerr. From this, two definitions of

the Ernst potential appear in the literature: Ref. [33] defines it as

Ξ =
1 + ε

1− ε
, (2.15)

while Ref. [34] defines the Ernst potential as

ξ =
1− ε
1 + ε

. (2.16)

These definitions are simply related to one another (ξ = Ξ−1). We find the potential

ξ to be most useful for computing multipoles of bumpy black hole spacetimes, but we

use Ξ to perturb a spacetime’s current multipoles.

Next, we must find the conformal factor Ω. We begin by defining a new radial

coordinate R̄ according to

r = R̄−1

(
1 +MR̄ +

M2 − a2

4
R̄2

)
. (2.17)

The point Λ corresponds to R̄ = 0. The conformal factor is given by

Ω =
R̄2√(

1− M2−a2
4

R̄2
)2 − a2R̄2 sin2 θ

, (2.18)

and the conformal metric is given by

ds2 = dR̄2 + R̄2dθ2 + R̄2 sin2 θ dφ2

[
1−

(
4aR̄ sin θ

4− (M2 − a2)R̄2

)2
]−1

. (2.19)
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This corresponds to β equal to

β =
1

2
ln

[
1−

(
4aR̄ sin θ

4− (M2 − a2)R̄2

)2
]
. (2.20)

As shown by Bäckdahl and Herberthson [4], the multipole moments can be com-

puted from derivatives of a function y, which we now describe. Begin by defining φ̃,

a conformally weighted variant of the Ernst potential ξ,

φ̃ = Ω−1/2ξ , (2.21)

and new cylindrical coordinates z̃ = R̄ cos θ and ρ̃ = R̄ sin θ. We now write the po-

tential φ̃ as a function of these variables, φ̃(z̃, ρ̃), and introduce yet another variation:

φL(R̄) = φ̃(R̄, iR̄) . (2.22)

We need to define a few more functions related to the metric:

βL(R̄) = β(R̄, iR̄) , (2.23)

κL(R̄) = − ln

[
1− R̄

∫ R̄

0

e2βL(R̄′) − 1

R̄′2
dR̄′ − R̄C

]
+ βL(R̄) , (2.24)

where β is defined in Eq. (2.8) and C is the integration constant. We can choose the

gauge so that C = 0. The multipoles are calculated from the function

y(R̄) = e−κL(R̄)/2φL(R̄) , (2.25)

with the lth multipole moment given by

Ml =
2ll!

(2l)!

dly

dρl

∣∣∣∣
ρ=0

, (2.26)
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where ρ(R̄) = R̄eκL(R̄)−βL(R̄). For the Kerr spacetime, the potential φL is given by

φL(R̄) =
M(1 + iaR̄)(
1 + a2R̄2

)3/4
. (2.27)

The functions βL(R̄) and κL(R̄) are given by

βL(R̄) =
1

2
ln
[
1 + a2R̄2

]
, (2.28)

κL(R̄) =
1

2
ln

[
1 + a2R̄2

(1− a2R̄2)2

]
. (2.29)

Then the variable ρ is given by ρ = R̄(1− a2R̄2)−1 and

y(R̄) =
M
√

1− a2R̄2

1− iaR̄
. (2.30)

In this case, the multipoles can be written as

Ml = M(ia)l . (2.31)

2.3 Bumpy black hole spacetimes

We begin with general considerations on the spacetimes we consider. We are inter-

ested in stationary, axisymmetric, asymptotically flat spacetimes, which are described

by the Weyl metric:

ds2 = −e2ψdt2 + e2γ−2ψ(dρ2 + dz2) + e−2ψρ2dφ2 . (2.32)

The nontrivial vacuum Einstein equations for this metric are given by

0 =
∂2ψ

∂ρ2
+

1

ρ

∂ψ

∂ρ
+
∂2ψ

∂z2
, (2.33)

∂γ

∂ρ
= ρ

[(
∂ψ

∂ρ

)2

−
(
∂ψ

∂z

)2
]
, (2.34)

∂γ

∂z
= 2ρ

∂ψ

∂ρ

∂ψ

∂z
. (2.35)
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Equations (2.33) – (2.35) will be our main tools for building bumpy black hole space-

times. We expand ψ and γ as ψ = ψ0 + ψ1 and γ = γ0 + γ1, with ψ1/ψ0 � 1,

and γ1/γ0 � 1. Before specializing to black hole backgrounds, note that Eq. (2.33)

is simply Laplace’s equation. The functions ψ1 can thus very conveniently be taken

to be harmonic functions. This is key to smoothing out the spacetime’s bumps and

curing one of the problems with the bumpy black holes defined in [25].

2.3.1 Bumpy Schwarzschild

We begin by building a bumpy Schwarzschild black hole. The Schwarzschild metric

is recovered from Eq. (2.32) when ψ1 = γ1 = 0 and we set

ψ0 = ln tanh(u/2) , (2.36)

γ0 = −1

2
ln

(
1 +

sin2 v

sinh2 u

)
. (2.37)

The prolate spheroidal coordinates (u, v) are a remapping of the coordinates (ρ, z)

used in Eq. (2.32):

ρ = M sinhu sin v , (2.38a)

z = M coshu cos v . (2.38b)

Expanding the Einstein equations Eqs. (2.33) – (2.35) about the Schwarzschild values

to leading order in ψ1 and γ1, we find the perturbations must satisfy

∇2ψ1 = 0 , (2.39)

∂γ1

∂u
=

2[tan v(∂ψ1/∂u) + tanhu(∂ψ1/∂v)]

sinhu(cothu tan v + tanhu cot v)
, (2.40)

∂γ1

∂v
=

2[tan v(∂ψ1/∂v)− tanhu(∂ψ1/∂u)]

sinhu(cothu tan v + tanhu cot v)
. (2.41)

As discussed in [25], Eqs. (2.40) and (2.41) overdetermine the solution; we choose to

use Eq. (2.41) to calculate γ1.
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We introduce a final set of coordinates, the Schwarzschild coordinates r and θ, by

r = 2M cosh2 u

2
, (2.42a)

θ = v . (2.42b)

The coordinates ρ and z are related to r and θ by

ρ = r sin θ

√
1− 2M

r
, (2.43a)

z = (r −M) cos θ . (2.43b)

Then in Schwarzschild coordinates, the metric is given by

ds2 = − (1 + 2ψ1)

(
1− 2M

r

)
dt2 + (1 + 2γ1 − 2ψ1)

(
1− 2M

r

)−1

dr2

+ (1 + 2γ1 − 2ψ1) r2 dθ2 + (1− 2ψ1) r2 sin2 θ dφ2 . (2.44)

Now we turn our attention to perturbations to the spin moments. When we

defined mass perturbations, we based our definition on the multipolar expansion of

the gravitational potential in Newtonian gravity. We cannot do the same thing for

spin perturbations because in Newtonian gravity, mass currents are not a source of the

gravitational field. Instead, we create perturbations to the spin moments by adding

an imaginary perturbation to the Ernst potential as defined in Eq. (2.15):

Ξ = ΞSchw + iΞ1 , (2.45)

where ΞSchw = r/M − 1 is the Ernst potential for the Schwarzschild spacetime.

For the mass perturbations, we found a natural way of defining order l perturba-

tions when we enforced the vacuum Einstein equations to first order. We want to do

something similar for the perturbations to the spin moments. As shown by Ernst [33],

enforcing the vacuum Einstein equations to first order gives the following constraint
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equation for Ξ1:

∇2

(
∂2Ξ1

∂r2

)
= 0 . (2.46)

As discussed in [33], one class of solutions to this equation includes the linearized

Kerr spacetime, which we discuss in Sec. 2.7.1. We define higher order perturba-

tions by considering another class of solutions to Eq. (2.46). Since (∂2Ξ1/∂r
2) satis-

fies Laplace’s equation, we can define an order l spin perturbation as one for which

(∂2Ξ1/∂r
2) is an order l spherical harmonic. We relate the perturbation to the Ernst

potential to changes in the timelike Killing vector field by inverting Eq. (2.15):

ε = 1− 2M

r
+ i

2M2

r2
Ξ1 . (2.47)

The perturbation leaves the norm of the timelike Killing vector unchanged, but it

changes the twist of the timelike Killing vector, which was formerly zero, to

ω =
2M2

r2
Ξ1 . (2.48)

The metric now has a nonzero gtφ component,

ds2 = −
(

1− 2M

r

)
dt2 + 2σ1 dt dφ+

(
1− 2M

r

)−1

dr2 + r2 dθ2

+r2 sin2 θ dφ2 , (2.49)

where σ1 is related to Ξ1 by

∂

∂r

(
rσ1

r − 2M

)
=

2M2 sin θ

(r − 2M)2

∂Ξ1

∂θ
, (2.50)

∂σ1

∂θ
=

2M2 sin θ

r

(
2Ξ1 − r

∂Ξ1

∂r

)
. (2.51)

Equations (2.50) and (2.51) overdetermine σ1; we will use Eq. (2.50) to calculate σ1
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with the boundary conditions

lim
r→∞

σ1 = 0 , (2.52a)

lim
r→∞

∂σ1

∂r
= 0 . (2.52b)

Combining the metrics in Eq. (2.44) and Eq. (2.49), we obtain the full bumpy

Schwarzschild metric:

ds2 = − (1 + 2ψ1)

(
1− 2M

r

)
dt2 + (1 + 2γ1 − 2ψ1)

(
1− 2M

r

)−1

dr2

+ (1 + 2γ1 − 2ψ1) r2 dθ2 + (1− 2ψ1) r2 sin2 θ dφ2 + 2σ1 dt dφ . (2.53)

We can expand the metric as gαβ ≡ gSchw
αβ + hαβ, where gSchw

αβ is the Schwarzschild

metric, and hαβ is the perturbed metric:

htt = −2ψ1

(
1− 2M

r

)
, (2.54a)

htφ = σ1 , (2.54b)

hrr = 2 (γ1 − ψ1)

(
1− 2M

r

)−1

, (2.54c)

hθθ = 2 (γ1 − ψ1) r2 , (2.54d)

hφφ = −2ψ1r
2 sin2 θ . (2.54e)

All other components of hαβ are related by symmetry or are zero. It is clear that we

recover the normal Schwarzschild black hole in the limit ψ1 → 0, γ1 → 0, σ1 → 0.

As we discuss further in Sec. 2.5 and 2.7, the potentials ψ1 and γ1 perturb the mass

moments while σ1 perturbs the spin moments.

2.3.2 Bumpy Kerr

We now use the Newman-Janis algorithm [65] to transform bumpy Schwarzschild into

bumpy Kerr. We begin with the bumpy Schwarzschild metric from Eq. (2.53), and

48



we use Eq. (2.42) to write the metric in prolate spheroidal coordinates:

ds2 = −(1 + 2ψ1) tanh2(u/2)dt2 + 2σ1 dt dφ

+(1 + 2γ1 − 2ψ1)4M2 cosh4(u/2)(du2 + dv2)

+(1− 2ψ1)4M2 cosh4(u/2) sin2 v dφ2 . (2.55)

We decompose the metric in terms of a complex null tetrad with legs lµ, nν , mν :

gµν = −lµnν − lνnµ +mµm̄ν +mνm̄µ , (2.56)

where an overbar denotes complex conjugate, and the legs are given by

lµ = (1− ψ1) coth2(u/2) δµt + (1 + ψ1 − γ1)
1

M
cschu δµu

−σ1
1

M2
csch2u csc2 v δµφ , (2.57a)

nµ =
1

2

[
(1− ψ1) δµt − (1 + ψ1 − γ1)

1

M
cschu tanh2(u/2) δµu

−σ1
1

M2
csch2u tanh2(u/2) csc2 v δµφ

]
, (2.57b)

mµ =
1

2
√

2M
(1 + ψ1) sech2(u/2)

[
(1− γ1) δµv + i csc v δµφ

]
. (2.57c)

We use the Kronecker delta δµν to indicate components.

Next, following the key step of the Newman-Janis algorithm, we allow the coor-
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dinate u to be complex, and rewrite lµ, nµ, and mµ as

lµ = (1− ψ1)
2

tanh2(u/2) + tanh2(ū/2)
δµt

+(1 + ψ1 − γ1)
1

M
√

coshu cosh ū− 1
δµu

−σ1
csc2 v

M2(coshu cosh ū− 1)
δµφ , (2.58a)

nµ =
1

2
(1− ψ1) δµt − (1 + ψ1 − γ1)

tanh2(u/2) + tanh2(ū/2)

4M
√

coshu cosh ū− 1
δµu

−σ1
csc2 v

8M2
sech2(u/2)sech2(ū/2) δµφ , (2.58b)

mµ =
1

2
√

2M
(1 + ψ1) sech2(ū/2)

[
(1− γ1) δµv + i csc v δµφ

]
. (2.58c)

Notice that we recover the original tetrad when we force u = ū. Further discussion

of this seemingly ad hoc procedure (and an explanation of how it uniquely generates

the Kerr spacetime) is given in Ref. [31].

Next, we change coordinates. We rewrite the tetrad using coordinates (U, r, θ, φ)

given by

U = t− 2M cosh2(u/2)− 2M ln
[
sinh2(u/2)

]
− ia cos θ , (2.59a)

r = 2M cosh2(u/2) + ia cos θ , (2.59b)

θ = v . (2.59c)

The axial coordinate φ is the same in both coordinate systems. At this point, a is
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just a parameter. The result of this transformation is

lµ = (γ1 − 2ψ1)

(
1− 2Mr

Σ

)−1

δµU + (1 + ψ1 − γ1)δµr

−σ1
csc2 θ

Σ− 2Mr
δµφ , (2.60a)

nµ =

(
1− 1

2
γ1

)
δµU −

1

2
(1 + ψ1 − γ1)

(
1− 2Mr

Σ

)
δµr

−σ1
csc2 θ

2Σ
δµφ , (2.60b)

mµ =
(1 + ψ1 − γ1)√
2(r + ia cos θ)

[
ia sin θ (δµU − δ

µ
r ) + δµθ + γ1i csc θ δµφ

]
. (2.60c)

Making one additional coordinate transformation,

dU = dt− r2 + a2

∆
dr , (2.61a)

dφ = dφ′ − a

∆
dr , (2.61b)

leads to the bumpy Kerr black hole metric in Boyer-Lindquist coordinates:

ds2 = −
[
(1 + 2ψ1)

(
1− 2Mr

Σ

)
+

4aMr

Σ2
σ1(r, θ)

]
dt2

−γ1
4a2Mr sin2 θ

∆Σ
dt dr −

{
(1 + 2ψ1 − γ1)

4aMr sin2 θ

Σ

+4σ1

[
(r2 + a2)2Mr

Σ2
+

∆

Σ
− ∆

2Σ− 4Mr

]}
dt dφ

+(1 + 2γ1 − 2ψ1)
Σ

∆
dr2 + 2γ1

[
1 +

2Mr(r2 + a2)

∆Σ

]
a sin2 θ dr dφ

+(1 + 2γ1 − 2ψ1)Σ dθ2 +
[
(r2 + a2)2 − a2∆ sin2 θ

+(γ1 − ψ1)
8a2M2r2 sin2 θ

Σ− 2Mr
− 2ψ1

Σ2∆

Σ− 2Mr

+
4aMr

Σ− 2Mr
σ1

(
∆ +

2Mr(r2 + a2)

Σ

)]
sin2 θ

Σ
dφ2 , (2.62)

where we have dropped the prime on φ. Notice that Eq. (2.62) reduces to the Kerr

metric when ψ1 → 0, γ1 → 0, σ1 → 0, and it reduces to the bumpy Schwarschild

metric [Eq. (2.53)] for a → 0. The parameter a is seen to be the spin angular

momentum of the black hole, |~S|/M . Writing the bumpy Kerr metric in the form
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gαβ = gKerr
αβ + hαβ, where gKerr

αβ is the Kerr metric, we read out of Eq. (2.62)

htt = −2

(
1− 2Mr

Σ

)
ψ1 −

4aMr

Σ2
σ1 , (2.63a)

htr = −γ1
2a2Mr sin2 θ

∆Σ
, (2.63b)

htφ = (γ1 − 2ψ1)
2aMr sin2 θ

Σ

+σ1

[
4Mr(r2 + a2)

Σ2
+

2∆

Σ
− ∆

Σ− 2Mr

]
, (2.63c)

hrr = 2 (γ1 − ψ1)
Σ

∆
, (2.63d)

hrφ = γ1a sin2 θ

[
1 +

2Mr(r2 + a2)

∆Σ

]
, (2.63e)

hθθ = 2 (γ1 − ψ1) Σ , (2.63f)

hφφ =
sin2 θ

Σ

{
(γ1 − ψ1)

8a2M2r2 sin2 θ

Σ− 2Mr
− 2ψ1Σ∆

(
1− 2Mr

Σ

)−1

+σ1
4aMr

Σ− 2Mr

[
∆ +

2Mr(r2 + a2)

Σ

]}
. (2.63g)

All other components are related by symmetry or are zero. By inspection, we see

that hαβ → 0 as ψ1 → 0, γ1 → 0, σ1 → 0.

Before moving on, we summarize our procedure. To build a bumpy black hole

spacetime, we first select functions ψ1 (for mass bumps) and σ1 (for spin bumps) which

satisfy the necessary constraint equations [Eq. (2.33) for mass bumps; Eqs. (2.46),

(2.50), and (2.51) for spin bumps]. We use Eqs. (2.40) and (2.41) to find the function

γ1 that corresponds to the background spacetime and our chosen ψ1. Finally, we apply

the Newman-Janis algorithm to “rotate” the spacetime to nonzero a. The resulting

metric is given by Eq. (2.62).

2.4 Motion in bumpy black hole spacetimes

We now discuss motion in these spacetimes. We focus on the frequencies associated

with oscillations in the radial coordinate r, the polar angle θ, and rotations in φ

about the symmetry axis. These frequencies are typically the direct observables of
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black hole orbits; it is from measuring these frequencies and their evolution that one

can hope to constrain the properties of black hole candidates.

For motion in a bumpy black hole space-time, the Hamiltonian H remains con-

served with value −m2/2, but its functional form is shifted:

H =
1

2
gαβpαpβ = −m

2

2

= Ĥ +H1 , (2.64)

where Ĥ is the original (non-bumpy) Hamiltonian and H1 describes the influence of

the spacetime’s bumpiness. To first order in the perturbation,

H1 = −1

2
bµνp

µpν = −m
2

2
bµν

dxµ

dτ

dxν

dτ
. (2.65)

For a bumpy spacetime, the motion is no longer separable (except for the special

case of equatorial motion) and the techniques used in Sec. 1.3.3 for computing orbital

frequencies do not work. However, since the spacetime is “close to” the exact black

hole spacetime in a well-defined sense, the motion is likewise “close to” the integrable

motion. We can thus take advantage of canonical perturbation theory as described

in, for example, Goldstein [39], to calculate how the spacetime’s bumps change the

frequencies.

The shifts to the frequencies can be found by averaging H1:

mδωi =
∂〈H1〉
∂Ĵi

, (2.66a)

mδΓ =
∂〈H1〉
∂Ĵ0

. (2.66b)

Notice that the derivatives are taken with respect to the action variables of the back-

ground motion; the averaging, which we denote with angular brackets, is likewise

done with respect to orbits in the background. Then the observable frequencies are

given by

Ωi ≡ Ω̂i + δΩi =
ω̂i + δωi

Γ̂ + δΓ
(2.67)
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or
δΩi

Ωi
=
δωi

ω̂i
− δΓ

Γ̂
. (2.68)

The averaging used in Eq. (2.66) is described in detail in Appendix A. This pro-

cedure uses the fact that the r and θ portions of the background motion can be

separated, and thus can be averaged independently. As described in Appendix A,

〈H1〉 is given by

〈H1〉 =
1

Υt(2π)2

∫ 2π

0

dwr
∫ 2π

0

dwθH1

[
r(wr), θ(wθ)

]
T
[
r(wr), θ(wθ)

]
, (2.69)

where T (r, θ) is defined in Eq. (1.17); wr,θ are the angles associated with the separated

r and θ motions, as defined in Eq. (A.8); and Υt is the averaged value of the function

T (r, θ), as defined in Eq. (A.9). The perturbed Hamiltonian H1 can be expanded as

H1 = −m
2

2

[
btt

(
dt

dτ

)2

+ brr

(
dr

dτ

)2

+ bθθ

(
dθ

dτ

)2

+ bφφ

(
dφ

dτ

)2

+2btr
dt

dτ

dr

dτ
+ 2brφ

dr

dτ

dφ

dτ
+ 2btφ

dt

dτ

dφ

dτ

]
= −m

2

2

[
btt

(
dt

dτ

)2

+ brr

(
dr

dτ

)2

+ bθθ

(
dθ

dτ

)2

+ bφφ

(
dφ

dτ

)2

+2btφ
dt

dτ

dφ

dτ

]
= − 1

2Σ2

[
bttT (r, θ)2 + brrR(r) + bθθΘ(θ) + bφφΦ(r, θ)2

+2btφT (r, θ)Φ(r, θ)] , (2.70)

where R(r), Θ(θ), T (r, θ), and Φ(r, θ) are defined in Eqs. (1.14) – (1.17). In going

from the first line to the second, we use the fact that terms linear in dr/dτ average

to zero because the radial motion switches sign after half a cycle.

In computing this average, we end up with 〈H1〉 as a function of p, e, and θmin.

We likewise compute the actions Jµ using these parameters, and then compute the

shifts to the frequencies and Γ using the chain rule. To set up this calculation, we
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define an array bβ which contains all the system’s physical parameters:

bβ
.
= (m, p, e, θmin) . (2.71)

Next, we define the matrix J , the Jacobian of the actions with respect to these

parameters:

(J )α
β =

∂Jα
∂bβ

. (2.72)

Then

δωi =
∂〈H1〉
∂bα

(J −1)α
i
, (2.73a)

δΓ =
∂〈H1〉
∂bα

(J −1)α
0
, (2.73b)

where J −1 is the matrix inverse of the Jacobian J .

2.5 Perturbations to the mass moments: Schwarzschild

background

We now examine the spacetimes and orbits of bumpy Schwarzschild black holes

for specific choices of ψ1 with σ1 = 0. Because ψ1 satisfies the Laplace equation

[Eq. (2.39)], we can take it to be a pure multipole in Weyl coordinates (ρ, z) [i.e., in

the coordinates of Eq. (2.32)]. As we show in this section and the next, this smooths

out the bumps and cures the strong-field pathologies associated with orbits in the

perturbations used in [25].

Note that a pure multipole in the Weyl sector will not correspond to a pure Geroch-

Hansen moment of the black hole. For example, taking ψ1 to be proportional to an

l = 2 spherical harmonic does not change only M2 Geroch-Hansen moment [Eq. (2.5)].

However, as we show below, taking ψ1 to be proportional to a spherical harmonic Yl0

does not change any of the Geroch-Hansen moments lower than Ml. Furthermore,

since the equations governing ψ1 and γ1 are linear in these fields, one can choose ψ1
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to be a combination of multipoles such that the resulting spacetime puts its “bump”

into a single Geroch-Hansen moment. In this way, one can arbitrarily adjust the

Geroch-Hansen moments of a spacetime, provided the adjustments are small.

In order to calculate the Geroch-Hansen moments of the bumpy Schwarzschild

spacetime, we need to construct the Ernst potential. The norm and twist of the

timelike Killing vector field, to first order in the perturbation, are given by

λ = (1 + 2ψ1)

(
1− 2M

r

)
, (2.74)

ω = 0 . (2.75)

Then the Ernst potential is

ξ =
M

r −M
−

[
1−

(
M

r −M

)2
]
ψ1 . (2.76)

Notice that ψ1 only changes the real part of the Ernst potential. This means the

perturbation only changes the mass moments and leaves the spin moments unchanged.

The conformal factor becomes

Ω = R̄2

(
1− M2

4
R̄2

)−1

(1− γ1) , (2.77)

and the conformal metric is

ds2 = dR̄2 + R̄2dθ2 + (1− 2γ1) R̄2 sin2 θ dφ2 , (2.78)

where R̄ has the same definition as for an unperturbed Schwarzschild spacetime,

r = R̄−1

(
1 +MR̄ +

M2R̄2

4

)
. (2.79)

Now we are ready to consider specific choices of ψ1 and γ1.
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2.5.1 l = 2 mass perturbation

We begin by considering an l = 2 perturbation in the Weyl sector. The perturbation

ψ1 which satisfies Eq. (2.39) and has an l = 2 spherical harmonic form is

ψl=2
1 (ρ, z) = B2M

3 Y20(θWeyl)

(ρ2 + z2)3/2
=
B2M

3

4

√
5

π

[
3 cos2 θWeyl − 1

(ρ2 + z2)3/2

]
, (2.80)

where cos θWeyl = z/
√
ρ2 + z2. The dimensionless constant B2 sets the magnitude

of the bumpiness. Since we are treating the bumpiness as a perturbation, B2 � 1.

Transforming to Schwarzschild coordinates by Eq. (2.43), we find

ψl=2
1 (r, θ) =

B2M
3

4

√
5

π

1

d(r, θ)3

[
3(r −M)2 cos2 θ

d(r, θ)2
− 1

]
, (2.81)

where

d(r, θ) ≡ (r2 − 2Mr +M2 cos2 θ)1/2 . (2.82)

As a useful aside, the mapping from (ρ, z) to (r, θ) implies that any Weyl sector ψ1

can be transformed into Schwarzschild coordinates by putting

ρ2 + z2 → d(r, θ) , (2.83a)

cos θWeyl →
(r −M) cos θ

d(r, θ)
. (2.83b)

Integrating the constraint [Eq. (2.41)] and imposing the condition γ1(r → ∞) = 0

gives

γl=2
1 (r, θ) = B2

√
5

π

[
(r −M)

2

c20(r) + c22(r) cos2 θ

d(r, θ)5
− 1

]
, (2.84)

where

c20(r) = 2(r −M)4 − 5M2(r −M)2 + 3M4 , (2.85a)

c22(r) = 5M2(r −M)2 − 3M4 . (2.85b)

Figure 2-1 shows the impact of an l = 2 bump on orbital frequencies as a function
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Figure 2-1: Shifts to black hole orbital frequencies due to an l = 2 bump. The shifts
δΩr,θ,φ are normalized by the bumpiness parameter B2, and are scaled by p7/2; this is
because in the Newtonian limit, δΩr,θ,φ ∝ p−7/2. The Newtonian result (dashed lines)
describes the exact calculations (solid lines) well in the large p limit, however, the
Newtonian result substantially underestimates the shifts in the strong field. Notice
that the radial frequency shift changes sign in the strong field, typically at p ∼
(10 − 13)M , depending slightly on parameters. This behavior is starkly different
from the weak field limit.

of p for a few choices of e and θm. We show the three shifts δΩr,θ,φ, normalized by the

bumpiness B2 and rescaled by the asympotic weak-field dependence δΩr,θ,φ
l=2 ∝ p−7/2,

which we derive in Appendix B. As we move to the weak field, the numerical results

(solid lines) converge to the weak-field forms (dashed lines). The frequency shifts

generically get substantially larger as we move into the strong field. The bumps

have a very strong influence near the last stable orbit, pLSO = (6 + 2e), although the

behavior is smooth and non-pathological.

We calculate the multipole moments for the bumpy Schwarzschild spacetime by

following the procedure laid out in Sec. 2.2. The changes to the few multipole mo-
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ments are listed below:

δM0 = 0 , (2.86a)

δM1 = 0 , (2.86b)

δM2 = −1

2
B2M

3

√
5

π
, (2.86c)

δM3 = 0 , (2.86d)

δM4 =
4

7
B2M

5

√
5

π
, (2.86e)

δM5 = 0 , (2.86f)

δM6 = −19

66
B2M

7

√
5

π
. (2.86g)

An l = 2 mass perturbation in the Weyl sector changes only the even Geroch-Hansen

mass moments with l ≥ 2. The bumpiness parameter B2 controls the magnitude of

the perturbations.

2.5.2 l = 3 mass perturbation

Next, consider an l = 3 perturbation. In Weyl coordinates, we put

ψl=3
1 (ρ, z) = B3M

4Y30(θWeyl)

(ρ2 + z2)2
; (2.87)

in Schwarzschild coordinates, this becomes

ψl=3
1 (r, θ) =

B3M
4

4

1

d(r, θ)4

√
7

π

[
5(r −M)3 cos3 θ

d(r, θ)3
− 3(r −M) cos θ

d(r, θ)

]
. (2.88)

From the constraint equation [Eq. (2.41)] and the condition γ1(r →∞) = 0, we find

γl=3
1 (r, θ) =

B3M
5

2

√
7

π
cos θ

×
[
c30(r) + c32(r) cos2 θ + c34(r) cos4 θ + c36(r) cos6 θ

d(r, θ)7

]
, (2.89)
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where

c30(r) = −3r(r − 2M) , (2.90a)

c32(r) = 10r(r − 2M) + 2M2 , (2.90b)

c34(r) = −7r(r − 2M) , (2.90c)

c36(r) = −2M2 . (2.90d)

Notice that ψl=3
1 and γl=3

1 are proportional to cos θ; their contribution to the

averaged Hamiltonian 〈H1〉 is zero, and there is no secular shift to orbital frequencies

from l = 3 bumps. This is identical to the result in Newtonian gravity, as discussed

in Appendix B, and holds for all odd values of l. There will be non-secular shifts to

the motion which cannot be described by our orbit-averaged approach. These shifts

would be apparent in a direct (time-domain) evolution of the geodesics of spacetimes

with odd l bumps. It would be a useful exercise to examine these effects and ascertain

under which conditions odd l spacetime bumps could, in principle, have an observable

impact.

The changes to the first few multipole moments from this perturbation are listed

below:

δM0 = 0 , (2.91a)

δM1 = 0 , (2.91b)

δM2 = 0 , (2.91c)

δM3 = −1

2
B3M

4

√
7

π
, (2.91d)

δM4 = 0 , (2.91e)

δM5 =
2

3
B3M

6

√
7

π
(2.91f)

δM6 = 0 . (2.91g)

An l = 3 mass perturbation in the Weyl sector changes only the odd Geroch-Hansen

mass moments with l ≥ 3 by an amount proportional to B3.

60



2.5.3 l = 4 mass perturbation

We conclude our discussion of Schwarzschild bumps with l = 4:

ψl=4
1 (ρ, z) = B4M

5Y40(θWeyl)

(ρ2 + z2)5
, (2.92)

from which we obtain

ψl=4
1 (r, θ) =

B4M
5

16

1

d(r, θ)5

√
9

π

×
[

35(r −M)4 cos4 θ

d(r, θ)4
− 30(r −M)2 cos2 θ

d(r, θ)2
+ 3

]
. (2.93)

Solving for γ1 as before, we find

γl=4
1 (r, θ) = B4

√
9

π

[
(r −M)

8

c40(r) + c42(r) cos2 θ + c44(r) cos4 θ

d(r, θ)9
− 1

]
, (2.94)

where

c40(r) = 8(r −M)8 − 36M2(r −M)6 + 63M4(r −M)4

−50M6(r −M)2 + 15M8 , (2.95a)

c42(r) = 36M2(r −M)6 − 126M4(r −M)4 + 120M6(r −M)2

−30M8 , (2.95b)

c44(r) = 63M4(r −M)4 − 70M6(r −M)2 + 15M8 . (2.95c)

Figure 2-2 presents the shifts in the orbital frequencies due to an l = 4 bump for

the same orbital parameters as are shown in Fig. 2-1. The shifts are normalized by the

bumpiness B4 and rescaled by the weak-field form δΩr,θ,φ
l=4 ∝ p−11/2. The qualitative

behavior is largely the same as for the quadrupole bump. In particular, we see once

again that there are no strong-field pathologies in the orbit shifts, and that the degree

of shift due to spacetime bumps is especially strong near the last stable orbit. The

strong-field radial oscillations in δΩr are even more pronounced than they were in

the l = 2 case. This appears to be a robust signature of non-Kerr multipoles in the
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Figure 2-2: Shifts to black hole orbital frequencies due to an l = 4 bump. The shifts
δΩr,θ,φ are normalized by the bumpiness parameter B4 and are scaled by p11/2, which
sets the scaling in the Newtonian limit. As in the l = 2 case (Fig. 2-1), exact results
and the Newtonian limit coincide at large p, but there are significant differences in the
strong field. The functional behavior of the radial frequency shift can be especially
complicated in this case.

strong-field.

The first few changes to the multipole moments from this perturbation are

δM0 = 0 , (2.96a)

δM1 = 0 , (2.96b)

δM2 = 0 , (2.96c)

δM3 = 0 , (2.96d)

δM4 =
2

5
B4M

5

√
9

π
, (2.96e)

δM5 = 0 , (2.96f)

δM6 = − 5

11
B4M

7

√
9

π
. (2.96g)

An l = 4 mass perturbation changes only the even mass moments with l ≥ 4, with

the perturbation proportional to the parameter B4.
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2.6 Perturbations to the mass moments: Kerr back-

ground

Now we repeat this procedure for a bumpy Kerr black hole with perturbed mass

moments. As with the bumpy Schwarzschild case, we need to compute the conformal

factor and the Ernst potential for the spacetime. The conformal factor is

Ω = R̄2

[(
1− M2 − a2

4
R̄2

)2

− a2R̄2 sin2 θ

]−1/2

(1− γ1) . (2.97)

To compute the Ernst potential, we need to compute the norm and the twist of the

timelike Killing vector. The norm is straightforward; it is given by

λ =

(
1− 2Mr

Σ

)
(1 + 2ψ1) . (2.98)

Notice that the portion of the norm proportional to the perturbation falls off as

r−(l+1).

Computing the twist is much trickier. Formally, it does not exist; the construction

detailed in Sec. 2.3.2 for making a bumpy Kerr black hole does not leave the spacetime

vacuum in GR. Consider, for example, the l = 2 perturbation, described in more

detail below. If we compute the Einstein tensor and enforce the Einstein equation

Gµν = 8πTµν , we find that, in the large r limit and to leading order in a, the spacetime

has a stress-energy tensor whose only non-vanishing components are

Tθφ =
3

8π
aB2M

4

√
5

π

(3− 5 cos2 θ) cos θ sin3 θ

r5
. (2.99)

It may be possible to generalize Geroch-Hansen moments to nonvacuum spacetimes,

but that is beyond the scope of this chapter. For our purposes, it is sufficient to

say that for the kinds of perturbations we have considered, the spacetime approaches

vacuum very rapidly in the region where we need to use the twist. In general, since

the stress-energy tensor is constructed from two derivatives of the metric, an order
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l perturbation to the metric produces a non-zero stress-energy tensor which falls off

as r−(l+3). This enables us to define the spacetime’s twist to the order necessary to

define the Geroch-Hansen moments to order l + 1.

We divide the curl into two parts: the gradient of a scalar function ω′ plus some

correction term υα:

ωα = ∇αω
′ + υα . (2.100)

For an order l mass perturbation, the scalar function ω′ is the same as for the unper-

turbed Kerr spacetime:

ω′ = −2aM cos θ

Σ
. (2.101)

The correction term υα falls off as r−(l+3). Since, at large r, the portion of the norm

proportional to the perturbation falls off as r−(l+1), the correction to the curl can be

neglected. We thus treat ω′ as the spacetime’s twist.

2.6.1 l = 2 mass perturbation

We begin with an l = 2 perturbation in the Weyl sector, starting with Eq. (2.80).

Transforming to prolate spheroidal coordinates by Eq. (2.38), ψ1 becomes

ψl=2
1 (u, v) =

B2

4

√
5

π

(
3 cosh2 u cos2 v

sinh2 u sin2 v + cosh2 u cos2 v
− 1

)
×
(
sinh2 u sin2 v + cosh2 u cos2 v

)−3/2
. (2.102)

The corresponding γ1 is

γl=2
1 (u, v) = B2

√
5

π

{
coshu [4− cos 2v + (5 cos 2v − 1) cosh 2u+ cosh 4u]

8
(
sinh2 u sin2 v + cosh2 u cos2 v

)5/2
− 1

}
.

(2.103)

Following the procedure of the Newman-Janis algorithm, we allow u to be complex,

and we replace cosh2 u with coshu cosh ū and sinh2 u with (coshu cosh ū−1). Making
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the coordinate transformation

coshu =
r − ia cos θ

M
− 1 , (2.104a)

v = θ , (2.104b)

puts the perturbation in Boyer-Lindquist coordinates:

ψl=2
1 (r, θ) =

B2M
3

4

√
5

π

1

d(r, θ, a)3

[
3L(r, θ, a)2 cos2 θ

d(r, θ, a)2
− 1

]
, (2.105)

γl=2
1 (r, θ) =

B2

2

√
5

π

{
L(r, θ, a)

[
c20(r, a) + c22(r, a) cos2 θ

+c24(r, a) cos4 θ
]
d(r, θ, a)−5 − 2

}
, (2.106)

where

d(r, θ, a) =
√
r2 − 2Mr + (M2 + a2) cos2 θ , (2.107)

L(r, θ, a) =
√

(r −M)2 + a2 cos2 θ , (2.108)

and

c20(r, a) = 2(r −M)4 − 5M2(r −M)2 + 3M4 , (2.109a)

c22(r, a) = 5M2(r −M)2 − 3M4 + a2
[
4(r −M)2 − 5M2

]
, (2.109b)

c24(r, a) = a2(2a2 + 5M2) . (2.109c)

Note that the result for ψ1 can be found by taking the perturbation in Weyl coordi-

nates [Eq. (2.80)] and substituting

ρ2 + z2 → d(r, θ, a) , (2.110a)

cos θWeyl →
L(r, θ, a)

d(r, θ, a)
cos θ . (2.110b)

This is the Kerr analog to the mapping described in Eq. (2.83).

Figure 2-3 shows how an l = 2 bump changes Kerr orbital frequencies. We focus
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Figure 2-3: Shifts to Kerr black hole orbital frequencies for an l = 2 bump. As with
the Schwarzschild results presented in Fig. 2-1, the shifts δΩr,θ,φ are normalized by
the bumpiness B2 and scaled by p7/2. Rather than examining a variety of orbital
geometries, we here examine a few black hole spins, showing results for a = 0.1M ,
a = 0.5M , and a = 0.9M . Qualitatively, the results are very similar to what we find
for the Schwarzschild case. The major difference is that the last stable orbit is located
at smaller p, so that these orbits can get deeper into the strong field. The overall
impact of the bumps is greater in these cases which reach deeper into the strong field.

here on how black hole spin affects our results, presenting results for a single orbit

geometry (e = 0.3, θm = π/3). The primary impact of black hole spin is to change the

value of p at which orbits become unstable. For large spin, orbits can reach deeper

into the strong field, accumulating larger anomalous shifts to their orbital frequencies.

Aside from this behavior, spin has relatively little effect on the shifts: the three panels

are similar to one another and to the Schwarzschild result (compare left-most panel

of Fig. 2-1).

Now we compute the changes to the multipole moments following the procedure

outlined in the previous sections. The changes to the multipole moments are

δM0 = 0 , (2.111a)

δM1 = 0 , (2.111b)

δM2 = −1

2
B2M

3

√
5

π
, (2.111c)

δM3 = 0 . (2.111d)

The lowest order multipole that is affected is the l = 2 mass moment, and the change
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is the same as for an l = 2 mass perturbation on a Schwarzschild background. The

multipole moments are well-defined up to theM3 moment; the higher order moments

are not well-defined because the stress-energy tensor is nonzero.

2.6.2 l = 3 mass perturbation

For the l = 3 Kerr bump, we begin with Eq. (2.87), then follow the same procedure

to take it to Boyer-Linquist coordinates as described for the l = 2 Kerr bump. The

result is

ψl=3
1 (r, θ) =

B3M
4

4

√
7

π

1

d(r, θ, a)4

×
[

5L(r, θ, a)3 cos3 θ

d(r, θ, a)3
− 3L(r, θ, a) cos θ

d(r, θ, a)

]
, (2.112)

γl=3
1 (r, θ) =

B3M
5

2

√
7

π
cos θ

1

d(r, θ, a)7

[
c30(r, a) + c32(r, a) cos2 θ

+c34(r, a) cos4 θ + c36(r, a) cos6 θ
]
, (2.113)

where

c30(r, a) = −3r(r − 2M) , (2.114a)

c32(r, a) = 10r(r − 2M) + 2M5 − 3a2 , (2.114b)

c34(r, a) = −7r(r − 2M) + 10a2 , (2.114c)

c36(r, a) = −2M2 − 7a2 . (2.114d)

As with the Schwarschild l = 3 bumps, ψl=3
1 and γl=3

1 are proportional to cos θ,

and therefore 〈H1〉 = 0. Thus there is no secular shift to orbital frequencies for l = 3,

or any other odd value of l. We emphasize again that there will be non-secular shifts

to the motion which our orbit-averaged approach misses by construction, and that it

would be worthwhile to investigate their importance in future work.

67



The changes to the multipole moments from this perturbation are

δM0 = 0 , (2.115a)

δM1 = 0 , (2.115b)

δM2 = 0 , (2.115c)

δM3 = −1

2
B3M

4

√
7

π
, (2.115d)

δM4 = 0 . (2.115e)

The perturbation changes the l = 3 mass multipole, and the change is the same as

for an l = 3 mass perturbation on a Schwarzschild background. The lower order

multipoles are unchanged.

2.7 Perturbations to the spin moments: Schwarzschild

background

Now we turn our attention to bumpy Schwarzschild black holes for which ψ1 = γ1 = 0

and σ1 is nonzero. For these spacetimes, the norm of the timelike Killing vector is

unchanged while the twist is perturbed away from zero. Therefore, only the imaginary

part of the Ernst potential depends on σ1, which means that σ1 perturbs the spin

moments while leaving the mass moments unchanged. We consider specific choices of

σ1 below.

2.7.1 l = 1 spin perturbation (linearized Kerr)

One solution for a current perturbation is the linearized Kerr spacetime, i.e., the

Kerr metric expanded to leading order in the spin parameter a. In our notation, this

spacetime is described by Eq. (2.49) with

σ1 = −2aM sin2 θ

r
. (2.116)

68



Here we demonstrate that our framework includes the linearized Kerr spacetime;

however, it requires a modification to the procedure we use to define higher-order

spin perturbations.

To begin, we note that one family of solutions to Eq. (2.46) can be written

Ξ1 = Af0(θ) +Brf1(θ) . (2.117)

Let us choose a solution with B = 0 and f0 = cos θ. We calculate σ1 by enforcing

Eq. (2.51):
∂σ1

∂θ
=

4AM2 sin θ cos θ

r
, (2.118)

which we can easily integrate:

σ1 =
2AM2 sin2 θ

r
. (2.119)

It is simple to verify that this value of σ1 also satisfies Eq. (2.50). Comparing this

solution to the definition of the linearized Kerr spacetime in Eq. (2.116), we relate

the parameter A to the spin parameter according to A = −a/M .

2.7.2 l = 2 spin perturbation

We define an l = 2 spin perturbation by specifying a solution to Eq. (2.46) that has

the form of an l = 2 spherical harmonic:

∂2Ξ1

∂r2
=
S2M

4

√
5

π

1

(ρ2 + z2)3/2

(
3z2

ρ2 + z2
− 1

)
. (2.120)

We can use Eq. (2.43) to rewrite Eq. (2.120) in terms of Schwarzschild coordinates:

∂2Ξ1

∂r2
=
S2M

4

√
5

π

1

d(r, θ)3

[
3(r −M)2 cos2 θ

d(r, θ)
− 1

]
, (2.121)
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where d(r, θ) is defined in Eq. (2.82). Integrating and imposing the boundary condi-

tions in Eq. (2.52) yields

Ξ1(r, θ) =
S2

4

√
5

π

[d(r, θ)2 − (r −M)d(r, θ) +M2 cos2 θ]

Md(r, θ)
. (2.122)

From the perturbation to Ξ, we can calculate the perturbation to the metric σ1:

σ1 =
S2M

2

√
5

π
cos θ

[
2d(r, θ)

r
− r −M
d(r, θ)

−
(

1− 2M

r

)]
. (2.123)

The changes to the first few multipole moments due to this perturbation are:

δM0 = 0 , (2.124a)

δM1 = 0 , (2.124b)

δM2 = i
1

4
S2M

3

√
5

π
, (2.124c)

δM3 = 0 , (2.124d)

δM4 = −i 1

28
S2M

5

√
5

π
, (2.124e)

δM5 = 0 . (2.124f)

An l = 2 spin perturbation changes the even spin moments for l ≥ 2, but it leaves

the odd spin moments and all of the mass moments unchanged.

2.7.3 l = 3 spin perturbation

Consider an l = 3 spin perturbation:

∂2Ξ1

∂r2
=
S3M

2

4

√
7

π

1

(ρ2 + z2)2

[
5z3

(ρ2 + z2)3/2
− 3z

(ρ2 + z2)1/2

]
. (2.125)

Then the perturbation to the Ernst potential Ξ1 is given by

Ξ1 = i
S3

12

√
7

π
cos θ

{
3− (r −M)[3d(r, θ)2 −M2 cos2 θ]

d(r, θ)3

}
. (2.126)
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This corresponds to a perturbation to the metric given by

σ1 =
S3M

6

√
7

π

[(
1− 2M

r

)
r2(2r − 3M)− 3Mr(r − 2M) cos2 θ − 2M3 cos4 θ

d(r, θ)3

−2r −M − 3M cos2 θ

r

]
. (2.127)

The changes to the first few multipole moments are listed below:

δM0 = 0 , (2.128a)

δM1 = 0 , (2.128b)

δM2 = 0 , (2.128c)

δM3 = i
1

12
S3M

4

√
7

π
, (2.128d)

δM4 = 0 , (2.128e)

δM5 = −i 1

36
S3M

6

√
7

π
. (2.128f)

The l = 3 spin perturbation changes only the odd Geroch-Hansen moments for l ≥ 3.

2.8 Perturbations to the spin moments: Kerr back-

ground

Now we consider a bumpy spacetime consisting of a spin perturbation on a Kerr

background. The norm of the timelike Killing vector for this spacetime is

λ = 1− 2Mr

Σ
+

4aMr

Σ2
σ1(r, θ) . (2.129)

However, as in Sec. 2.6, we cannot define the twist because the spacetime is not

vacuum. For example, in the large r limit and expanding in a, the stress-energy

tensor of the Kerr spacetime with an l = 2 spin perturbation, which we define in the
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following section, has nonzero terms

Tθθ = − 39

8π
aS2M

4

√
5

π

cos θ sin2 θ

r5
, (2.130a)

Tφφ = − 27

8π
aS2M

4

√
5

π

cos θ sin4 θ

r5
. (2.130b)

In general, an order l spin perturbation creates nonzero terms in the stress-energy

tensor that fall off like r−(l+3). As in Sec. 2.6, this allows us to define the Geroch-

Hansen moments up to order l + 1. The twist depends on the perturbation, so we

cannot continue the calculation without choosing a particular perturbation. Below

we consider specific choices for the perturbation.

2.8.1 l = 2 spin perturbation

We define an l = 2 spin perturbation with the perturbation potential

σ1(r, θ) = −S2M

2

√
5

π
cos θ

[
M

L(r, θ, a) +M

L(r, θ, a) +M sin2 θ

d(r, θ, a)

+
L(r, θ, a)−M − d(r, θ, a)

L(r, θ, a) +M

]
, (2.131)

where d(r, θ, a) and L(r, θ, a) are defined in Eqs. (2.107) and (2.108), respectively.

Now we need to construct the Ernst potential. The norm of the timelike Killing

vector is given by Eq. (2.129). As discussed in Sec. 2.6, we can write the curl of a

nonvacuum spacetime in the form of Eq. (2.100). We define ω′ by ignoring all terms

of order aS2 in the curl. This yields

ω′ = −2aM cos θ

Σ
− S2M

2

√
5

π

1

r

[
r2 − 2Mr + 2M2 cos2 θ

r d(r, θ)
−
(

1− M

r

)]
. (2.132)
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In this case, υα falls off like r−5, so we are justified in treating ω′ as the twist. The

Ernst potential is

ξ =
M

r −M − ia cos θ
+ i

S2M

4

√
5

π

×
[
r(r − 2M)− (r −M) d(r, θ) + 2M2 cos2 θ

(r −M)2 d(r, θ)

]
. (2.133)

Applying the procedure from the previous sections gives the changes to the multipole

moments:

δM0 = 0 , (2.134a)

δM1 = 0 , (2.134b)

δM2 = i
1

4
S2M

3

√
5

π
, (2.134c)

δM3 = 0 . (2.134d)

The perturbation changes the l = 2 spin moment by the same amount as an l = 2

spin perturbation on a Schwarzschild background, and it leaves lower order moments

unchanged.

2.8.2 l = 3 spin perturbation

We consider an l = 3 spin perturbation:

σ1(r, θ) =
S3M

6

√
7

π

[
L(r, θ, a)−M
L(r, θ, a) +M

s30(r, a) + s32(r, a) cos2 θ + s34(r, a) cos4 θ

d(r, θ, a)3

−2L(r, θ, a)−M(3 cos2 θ − 1)

L(r, θ, a) +M

]
, (2.135)

where

s30(r, a) = 2L(r, θ, a)3 + 3r(r − 2M) + 2M3 , (2.136a)

s32(r, a) = −3M(r(r − 2M)− a2) , (2.136b)

s34(r, a) = −2M3 − 3a2M . (2.136c)
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Now we construct the Ernst potential. The norm of the timelike Killing vector is

given by Eq. (2.129). As discussed in Sec. 2.6, we can write the curl of a nonvacuum

spacetime in the form of Eq. 2.100. We define ω′ by ignoring all terms of order aS3

in the curl. This yields

ω′ = −2aM cos θ

Σ
+
S3M

2

6

√
7

π

cos θ

r2

×
[

(r −M)(3r2 − 6Mr + 2M2 cos2 θ)

d(r, θ)3
− 3

]
. (2.137)

We see that υα falls off like r−6, so we are justified in treating ω′ as the twist. The

Ernst potential is

ξ =
M

r −M − ia cos θ
+ i

S3M
2

12

√
7

π
cos θ

×
{

3r(r − 2M)[d(r, θ)− r +M ] +M2 cos2 θ[3d(r, θ)− 2r + 2M ]

(r −M)2d(r, θ)3

}
.

(2.138)

Applying the procedure from the previous sections gives the multipole moments:

δM0 = 0 , (2.139a)

δM1 = 0 , (2.139b)

δM2 = 0 , (2.139c)

δM3 = i
1

12
S3M

4

√
7

π
, (2.139d)

δM4 = 0 . (2.139e)

As in the case of an l = 3 spin perturbation on a Schwarzschild background, the per-

turbation changes the l = 3 spin moment but leaves lower order moments unchanged.
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2.9 Summary and future work

This analysis significantly extends the bumpy black hole formalism introduced by

Collins and Hughes [25]. We define smooth bumps with well-behaved strong-field

structure, and we extend the formalism to include Kerr black holes. We consider two

kinds of static, axisymmetric perturbations: those that perturb the mass moments

and those that perturb the spin moments. We map these perturbations to changes

in the Geroch-Hansen moments and show that an order l perturbation changes the

Geroch-Hansen moments aboveMl but leaves lower order moments unchanged. This

allows us to build spacetimes whose multipoles agree with those of the Kerr space-

time up to some arbitrary order L but differ for l ≥ L. We also demonstrate how

Hamilton-Jacobi theory can be applied to orbits in bumpy spacetimes to categorize

the anomalous precessions arising from their bumps. In principle, bumpy black holes

can now be used as the foundation for strong-gravity tests with astrophysical data.

It’s worth re-emphasizing why we propose to use bumpy black holes, rather than

using exact solutions which include black holes as a limit (for example, the Manko-

Novikov spacetime [59] used in Ref. [35]). In large part, our choice is a matter of taste.

Our goal is to tweak a black hole’s moments in an arbitrary manner, so that the non-

Kerr nature is entirely under our control. From the standpoint of formulating a null

experiment, it arguably makes no difference whether the Kerr deviation takes one

particular form or another; any falsifiable non-Kerr form is good enough to formulate

the test. To our minds, a nice feature of this approach is that it is agnostic as to the

identify of the compact object. There are several possible reasons why the spacetime

of a candidate black hole might differ from the Kerr metric. The presence of matter,

such as a companion object or an accretion disk, would perturb the spacetime away

from Kerr. The object might not be a black hole but instead be a compact object

composed of an exotic form of matter. Finally, it might indicate a breakdown of GR.

Some alternative theories of gravity predict rotating black hole solutions that differ

from Kerr, such as dynamical Chern-Simons extensions to GR [101].

In this analysis, we defined the perturbations by enforcing the vacuum Einstein
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equations in the Schwarzschild limit. These perturbations are fine for describing some

possible deviations from the Kerr metric, but they are not sufficient to describe all

possible perturbed Kerr spacetimes, particularly those arising from non-GR theories

of gravity. In Chapter 3, we extend the bumpy formalism to include black holes in

alternate theories of gravity. We find that relaxing this condition leads to additional

functional degrees of freedom that describe the perturbations.

The next major step in this program will be to use these foundations to formulate

actual strong-field gravity tests that can be applied to astrophysical data. We imagine

several directions that would be interesting to follow:

• Extreme mass ratio inspiral (EMRI): The capture and inspiral of stellar mass

compact into massive black holes at galaxy centers is one of the original mo-

tivations of this work. Much of the recent literature on testing and mapping

black hole spacetimes has centered on understanding the character of orbits in

non-Kerr black hole candidate spacetimes [13, 14, 3], with an eye on application

to gravitational-wave measurement of EMRIs.

The full analysis of EMRIs in non-Kerr spacetimes is, in principle, quite com-

plicated since their non-Kerr-ness breaks the Petrov Type-D character of Kerr

black holes. As such, it may be quite difficult to accurately compute their radi-

ation emission. It may not be quite so difficult in bumpy black hole spacetimes.

Thanks to the smallness of their non-Kerr character, it may be fruitful to use

a “hybrid” approach in which the short timescale motion is computed in the

bumpy spacetime, but the radiation generation and backreaction is computed

in the Kerr spacetime. Given that our goal is to formulate a null experiment,

this hybrid may be good enough for a useful test, in lieu of solving the entire

radiation reaction problem in non-Kerr spacetimes.

• Black hole-pulsar systems: One of the goals of the planned Square Kilometer

Array (SKA) [85] is the discovery of a black hole-pulsar binary system. If

such a system is discovered, detailed observation over many years should be

able to tease the multipole structure of the black hole from the data. Similar
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observations of neutron star-pulsar binary systems have already allowed us to

make exquisite measurements of neutron star properties and gravitational-wave

emission [88]. The tools developed here may already be adequate for doing this

analysis since such binaries will have a relatively slow inspiral time.

• Accretion flows on black hole candidate: Programs to observe the (presumed)

black hole at the center of our galaxy are maturing very quickly; programs

to study accretion flows onto stellar mass black holes in x-rays are already

quite mature. In our galactic center, the most precise measurements come

from millimeter wavelength radio emission from gas accreting onto this central

object. The precision of these measurements is increasing to the point where

we will soon be able to use them to map the detailed strong-field spacetime

structure of the spacetime near Sagittarius A*. Johannsen and Psaltis showed

that perturbations to the mass quadrupole moment shift the location of the

innermost stable circular orbit (ISCO), which can be observed by looking at

the X-ray emission of the accretion disk surrounding the black hole [50]. They

also showed that these perturbations change the shapes of the image of the

black hole and the bright ring around the black hole shadow [51]. So far, only

the effects of changes to the mass quadrupole moment have been considered.

Although the effects of higher-order moments are probably small, it is important

to measure as many moments as possible to determine if the spacetime satisfies

the no-hair theorem. Just as Johannsen and Psaltis found that perturbations

to the mass quadrupole moment change the shape of the image of the black

hole, perturbations to higher-order mass moments and the spin moments may

also leave a unique observable signature.
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Chapter 3

Bumpy black holes in alternative

theories of gravity

This chapter is based on Physical Review D 83, 104027 (2011), which was written in

collaboration with Nicolás Yunes and Leo C. Stein.

3.1 Introduction

Gravitational waves (GWs) will be powerful tools for learning about source astro-

physics and testing strong field gravity [83, 86]. The Laser Interferometer Space

Antenna (LISA) [10, 28, 27, 76] is expected to be sensitive to roughly a few radians

or better of GW phase in a one-year observation. Such levels of precision are achieved

through matched filtering, where the data are cross-correlated with a family of wave-

form models (see eg. [49]). If a signal is present in the data, this cross-correlation acts

as a filter that selects the member of the waveform family that most closely resembles

the signal.

Extreme mass-ratio inspirals (EMRIs) are ideal astrophysical sources to perform

precision GW tests of strong field gravity with LISA [2, 83]. These sources consist of a

small compact object that spirals into a massive black hole (MBH) in a generic orbit,

producing millions of radians in GW phase inside LISA’s sensitivity band. These

waves carry detailed information about the spacetime geometry in which the small
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compact object moves, thus serving as a probe to test general relativity (GR).

Tests of strong field gravity cannot rely on waveform families that assume GR is

correct a priori . Instead, such tests must employ more generic waveforms that allow

for GR deviations. Recently, Yunes and Pretorius [102] proposed the parameter-

ized post-Einsteinian (ppE) framework, in which analytic waveforms that represent

comparable mass-ratio coalescences in GR are parametrically deformed. For specific

values of the ppE parameters, one recovers GR waveforms; otherwise they describe

waveforms in non-GR theories. The ppE scheme has been shown to be sufficiently

flexible to map all known alternative theory predictions for comparable mass-ratio

coalescences [102].

PpE deformations of EMRI waveforms have not yet been constructed because of

the complexities associated with the computation of such waveforms. EMRIs are

not amenable to post-Newtonian (PN) approximation schemes [12, 98, 97, 99, 100],

from which many GR templates are analytically constructed. Instead, to build EMRI

waveforms one must solve geodesic-like equations, enhanced with a radiation-reaction

force that induces an inspiral. The solution of these differential equations can only

be found numerically (see eg. [5] for a recent review of the self-force problem).

One can parametrically deform EMRI waveforms by introducing non-GR devia-

tions in the numerical scheme used to build such waveforms. Two main ingredients can

then be modified: the conservative sector, which controls the shape of non-radiative

orbits, and the dissipative sector, which controls the rate of inspiral and the GW

generation mechanism. The conservative sector, to leading order in the mass-ratio,

depends only on the background spacetime metric, the Kerr metric, on which the

small compact object moves like a test-particle.

The goal of this work is to find a parametric deformation of the Kerr metric

that allows for non-GR deviations while retaining a smooth Kerr limit, i.e. as the

deformation parameters go to zero, the deformed Kerr metric reduces smoothly and

exactly to Kerr. This limit then guarantees that the main properties of the Kerr

background survive to the deformation, such as the existence of an event horizon, an

ergosphere, and, in particular, three constants of the motion, such that the geodesic
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equations can be separated into first-order form.

Although motion in alternative theories of gravity need not be geodesic, we will

assume here that the geodesic equations hold to leading order in the mass ratio.

This allows us to focus only on metric deformations that correct the conservative

sector of EMRI waveforms. This assumption is justified for theories that derive from

certain diffeomorphism-covariant Lagrangians [40], as is the case, for example, in

dynamical Chern-Simons (CS) modified gravity [1], in Einstein-Dilaton-Gauss-Bonnet

theory [53, 91, 54, 72, 67], and in dynamical quadratic gravity [21, 61, 103]. We are

not aware of any alternative theory where this is not the case to leading order in the

mass ratio (neglecting spins), although it is not hard to imagine that one may exist.

As discussed in Chapter 2, a framework already exists to parametrically deform

the metric tensor through the construction of “bumpy spacetimes” [25, 93, 92]. These

metrics are deformations of the Kerr metric, where the bumps are required to sat-

isfy the Einstein equations in the a = 0 limit and to first order in the perturbation.

Because of this last condition, bumpy black holes are not sufficiently generic to rep-

resent black holes in certain alternative theories of gravity (e.g. solutions that are

not Ricci flat). A better interpretation is to think of these bumps as representing

exterior matter distributions. The bumpy black hole formalism then allows tests of

whether compact objects are truly described by the vacuum Kerr metric or by some

more general tensor with external matter sources, assuming GR still holds.

In this chapter, we propose two generalizations of the bumpy black hole formalism

to allow for metric deformations that can represent vacuum black hole solutions in

alternative theories. The first approach, the generalized bumpy Kerr (BK) scheme,

takes the standard bumpy metric and relaxes the requirement that the bumps sat-

isfy the Einstein equations. The second approach, the generalized deformed Kerr

(DK) scheme, perturbs the most general stationary, axisymmetric metric in Lewis-

Papapetrou form and transforms it to Boyer-Lindquist coordinates without assuming

the deformations satisfy the Einstein equations. In both cases, the metric is equiva-

lent to the Kerr metric to zeroth order in the deformation parameter, but it deviates

from Kerr at first order through a set of arbitrary functions.
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The metric deformation is then restricted by requiring that the full metric still

possesses three constants of the motion: a conserved energy (associated with time

invariance), a conserved angular momentum component (associated with azimuthal

rotational invariance), and an approximate second-order Killing tensor that leads to

a conserved Carter constant. These conditions restrict the set of arbitrary functions

that parameterize the metric deformations to have a certain functional form. It is

these conditions that select the appropriate “bumps” instead of the imposition of the

Einstein equations.

The restrictions imposed above are not strictly necessary, as there is no guarantee

that black holes in alternative theories of gravity will continue to have three con-

served quantities. However, all black hole solutions in alternative theories of gravity

known to date and that are not pathological (i.e. they are stationary, axisymmetric,

asymptotically flat, and contain no spacetime regions with closed time-like curves

outside the horizon) possess three constants of the motion [19]. Examples include

the slowly-rotating solution found in dynamical CS gravity [101] and the spherically

symmetric solution found in dynamical quadratic gravity [103].

Much effort has gone into finding spacetimes with an exact second-order (or higher-

order) generalized “Carter constant,” thus allowing for the separation of the equations

of motion [13, 14, 15, 16, 17]. That work demonstrates that, for a broad class of

spacetimes, such separation can be done provided that the Carter constant is quartic

in the orbit’s 4-momentum (i.e., the constant is C = ξαβγδp
αpβpγpδ, where ξαβγδ is

a 4th-rank Killing tensor and pα is the 4-momentum). In this analysis, we show

that one can in fact find an approximate Carter constant that is quadratic in the

4-momentum, C = ξαβp
αpβ, for many relevant spacetimes, provided they differ from

Kerr only perturbatively.

Finally, we gain insight on the different proposed parameterizations by studying

certain key limits. First, we show that the BK and DK deformations are related to

each other by a gauge transformation. Second, we show that both the BK and DK

metrics can be exactly mapped to specific non-GR black hole metrics, the dynamical

CS gravity one and the dynamical quadratic one. Third, we study the structure that
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the deformations must take when only deforming frame-dragging or the location of

the event horizon. Finally, we separate the geodesic equations into first-order form

in both the BK and DK metrics, and calculate the modified Kepler law. This modi-

fication corrects the dissipative dynamics through the conversion of radial quantities

to frequency space.

The parameterized metrics (BK and DK) proposed in this chapter lay the founda-

tions for a systematic construction and study of ppE EMRI waveforms. With these

metrics and their associated separated equations of motion, one can now study mod-

ified small compact object trajectories and see how these impact the GW observable.

Numerical implementation and a detailed data analysis study will be presented in a

forthcoming publication.

This chapter is organized as follows. Sec. 3.2 introduces the BK formalism, which

generalizes the bumpy black hole formalism. Sec. 3.3 presents the DK parameterized

metric. Sec. 3.4 compares the parameterizations to each other and to alternative

theory predictions. In Sec. 3.5 we discuss motion in alternative theories of gravity

and derive the first-order form of the geodesic equations. We conclude in Sec. 3.6

by discussing some general properties of the parameterizations and outlining future

work. In this chapter, background quantities are denoted with an overhead hat; for

example, the full metric gµν = ĝµν + εbµν can be decomposed into a background

metric ĝµν plus a small deformation bµν , where ε � 1 is a book-keeping parameter.

The background spacetime is always taken to be the Kerr metric.

3.2 Generalized bumpy Kerr formalism

We here introduce the standard bumpy black hole formalism [25, 93, 92] and generalize

it to the BK framework. The bumps are constrained by requiring that an approximate,

second-order Killing tensor exists. We then rewrite the geodesic equations in first-

order form.

83



3.2.1 From standard to generalized bumpy black holes

Let us first review the basic concepts associated with the bumpy black hole formal-

ism [25, 93, 92]. This framework was initially introduced by Collins and Hughes [25]

to model deformations of the Schwarzschild metric and expanded by Vigeland and

Hughes [93] to describe deformations on a Kerr background. In this formalism, the

metric is expanded perturbatively as

gµν = ĝµν + ε bSBK

µν , (3.1)

where ε is a book-keeping parameter that reminds us that |bSBK
µν |/|gµν | � 1. The

background metric ĝµν is the Kerr solution [Eq. (1.1)], while in the standard bumpy

formalism, the metric functions bSBK
µν are parameterized via

btt = −2

(
1− 2Mr

Σ

)
ψ1 −

4aMr

Σ2
σ1 , (3.2a)

btr = −γ1
2a2Mr sin2 θ

∆Σ
, (3.2b)

btφ = (γ1 − 2ψ1)
2aMr sin2 θ

Σ

+σ1

[
4Mr(r2 + a2)

Σ2
+

2∆

Σ
− ∆

Σ− 2Mr

]
, (3.2c)

brr = 2 (γ1 − ψ1)
Σ

∆
, (3.2d)

brφ = γ1a sin2 θ

[
1 +

2Mr(r2 + a2)

∆Σ

]
, (3.2e)

bθθ = 2 (γ1 − ψ1) Σ , (3.2f)

bφφ =
sin2 θ

Σ

{
(γ1 − ψ1)

8a2M2r2 sin2 θ

Σ− 2Mr
− 2ψ1Σ∆

(
1− 2Mr

Σ

)−1

+σ1
4aMr

Σ− 2Mr

[
∆ +

2Mr(r2 + a2)

Σ

]}
. (3.2g)

where ∆ ≡ r2 − 2Mr + a2 and Σ ≡ r2 + a2 cos2 θ. The bumps are defined by the

perturbation functions ψSBK
1 , γSBK

1 , and σSBK
1 , which are functions of r and θ.

A few comments are due at this point. First, notice that this metric contains only

three arbitrary functions (ψSBK
1 , γSBK

1 , σSBK
1 ), instead of four, as one would expect from
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the most general stationary and axisymmetric metric. This is because of the specific

way Eq. (3.2) is derived, which assumes a Ricci-flat metric in the a = 0 limit. Second,

note that many metric components are non-vanishing: apart from the components

gtt, gtφ, grr, gθθ, and gφφ that are nonzero in the Kerr metric, Eq. (3.2) also has

non-vanishing gtr and grφ components.

The derivation of this spacetime, as discussed in Sec. 2.3, begins with the most

general stationary and spherically symmetric metric in Lewis-Pappapetrou form that

is Ricci-flat. One then perturbs the two arbitrary functions in this metric and maps

it to Schwarschild coordinates. Through the Newman-Janis procedure, one then

performs a complex rotation of the tetrad associated with this metric to transform

it into a deformed Kerr spacetime. At no stage in this procedure is one guaranteed

that the resulting spacetime will still possess a Carter constant or that it will remain

vacuum. In fact, the metric constructed from Eq. (3.2) does not have a Carter

constant, nor does it satisfy the vacuum Einstein equations, leading to a nonzero

effective stress-energy tensor.

Such features make the standard bumpy formalism not ideal for null-tests of GR.

One would prefer to have a framework that is generic enough to allow for non-GR

tests while still possessing a smooth GR limit, such that as the deformations are taken

to zero, one recovers exactly the Kerr metric. This limit implies that the deformed

metric will retain many of the nice properties of the Kerr background, such as the

existence of an event horizon, an ergosphere, and a Carter constant.

This can be achieved by generalizing the bumpy black hole formalism by relax-

atinng the initial assumption that the metric be Ricci-flat prior to the Newman-Janis

procedure. In this section, inspired by [25, 93, 92], we do this by promoting the non-

vanishing components of the metric perturbation, i.e., (bBK
tt , b

BK
tr , b

BK
tφ , b

BK
rr , b

BK
rφ , b

BK
θθ , b

BK
φφ),

to arbitrary functions or r and θ. These functions are restricted only by requiring

that an approximate second-order Killing tensor still exists. This restriction is not

strictly necessary, but it is appealing on several fronts. First, the few analytic non-

GR black hole solutions that are known happen to have a Carter constant, at least

perturbatively as an expansion in the non-Kerr deviation. Second, a Carter constant
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allows for the separation of the equations of motion into first-order form, which then

renders the system easily integrable with already developed numerical techniques.

3.2.2 Existence conditions for the Carter constant

Let us now investigate what conditions must be enforced on the metric perturbation

bBK
αβ so that a Killing tensor ξαβ and its associated Carter constant exist, at least

perturbatively to O(ε). Killing’s equations can be used to infer some fairly general

properties that such a tensor must have. First, this tensor must be non-vanishing in

the same components as the metric perturbation. For the generalized bumpy metric,

this means the components of the Killing tensor ξtθ, ξrθ, and ξθφ) must all vanish.

Furthermore, if we expand the Killing tensor as

ξαβ = ξ̂αβ + ε δξαβ , (3.3)

we then find that δξαβ must have the same parity as ξ̂αβ for the full Killing tensor to

have a definite parity. For the generalized bumpy metric, this means the components

ξtt, ξrr, ξθθ, ξφφ, and ξtφ must be even under reflection: θ → θ − π.

These conditions imply that of the ten independent degrees of freedom in δξαβ,

only seven are truly necessary. With this in mind, we parameterize the Killing tensor

as in Eq. (1.8), namely

ξαβ = ∆ k(αlβ) + r2 gαβ . (3.4)

Notice that ξαβ depends here on the full metric gαβ and on null vectors kα and lα

that are not required to be the Kerr ones or the principal congruences of the full

spacetime: kα 6= k̂α and lα 6= l̂α. We decompose these vectors via

kα = k̂α + ε δkα , (3.5a)

lα = l̂α + ε δlα , (3.5b)

where k̂α and l̂α are the principal null vectors of the Kerr spacetime, given in Eq. (1.9).
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Then we can expand the tensor ξαβ as

ξαβ = ξ̂αβ + ε δξαβ , (3.6)

where ξ̂αβ is the Killing tensor of the Kerr space-time, given in Eq. (1.8), and δξαβ is

given by

δξαβ ≡ ∆
[
δk(αlβ) + δl(αkβ) + 2bBK

δ(αk̂β)l̂
δ
]

+ 3r2bBK

αβ . (3.7)

All lowering and raising of indices is carried out with the background metric. Although

this particular ansatz only allows six independent degrees of freedom (as the vectors

are assumed to be null), we will see it suffices to find a Carter constant.

With this ansatz, the tensor Killing equation [Eq. (1.7)] becomes

∂(µδξαβ) − 2 Γ̂δ(µα δξβ)δ = 2 δΓδ(µα ξ̂β)δ . (3.8)

The system of equations one must solve is truly formidable and in fact overcon-

strained. Equation (3.8) is a set of 20 partial differential equations, while the nor-

malization conditions lαlα = 0 = kαkα add two additional algebraic equations. This

means there are a total of 13 degrees of freedom (seven in bBK
αβ and six in δlα and δkα

after imposing the normalization condition) but 20 partial differential equations to

solve.

In spite of these difficulties, we have solved this system of equations with Maple

and the GrTensorII package1 and found that the perturbation to the null vectors

must satisfy

δkαBK =

(
r2 + a2

∆
δkrBK + δ1, δk

r
BK, 0,

a

∆
δkrBK + δ2

)
, (3.9a)

δlαBK =

(
r2 + a2

∆
δkrBK + δ3, δk

r
BK + δ4, 0,

a

∆
δkrBK + δ5

)
, (3.9b)

where the functions δi ≡ δi(r) are arbitrary functions of r, generated upon solving the

1This is a package which runs within Maple but distinct from packages distributed with Maple.
It is distributed freely from the following address: http://grtensor.org.
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differential system. These functions are fully determined by the metric perturbation,

which is given by

bBK

tt = − a

2M

Σ2∆

P BK
1

∂bBK
tφ

∂r
− a

M

P BK
2

P BK
1

bBK

tφ −
a2 sin2 θ

4M

(Σ− 4Mr)∆2

P BK
1

(
∂δ1

∂r
+
∂δ3

∂r

)
− a

4M
∆2 sin2 θ

P BK
3

P BK
1

(
∂δ2

∂r
+
∂δ5

∂r

)
+

∆

Σ

P BK
4

P BK
1

(δ1 + δ3)

− a

2M

∆

Σ

P BK
5

P BK
1

(δ2 + δ5) +
∆

Σ

(r2 + a2)Σ̄

P BK
1

Θ1 , (3.10a)

bBK

tr =
1

2

(
1− 2Mr

Σ

)
(δ1 − δ3) +

aMr sin2 θ

Σ
(δ2 − δ5)− 1

2
δ4 , (3.10b)

bBK

rr = −Θ1

∆
+

Σ

∆
δ4 , (3.10c)

bBK

rφ =
aMr sin2 θ

Σ
(δ1 − δ3)− sin2 θ

2Σ
(P BK

3 − 2a2Mr sin2 θ)(δ2 − δ5)

+
a

2
sin2 θδ4 , (3.10d)

bBK

θθ = −Θ1 + ΣΘ2 , (3.10e)

bBK

φφ = −(r2 + a2)2

a2
bBK

tt −
2(r2 + a2)

a
bBK

tφ +
∆

a2
Θ1 +

∆2

a2
(δ1 + δ3)

−∆2 sin2 θ

a
(δ2 + δ5) , (3.10f)

∂2bBK
tφ

∂r2
=

(
∂2δ2

∂r2
+
∂2δ5

∂r2

)
P BK

6 +

(
∂2δ1

∂r2
+
∂2δ3

∂r2

)
P BK

7 +

(
∂δ2

∂r
+
∂δ5

∂r

)
P BK

8

P BK
15

+

(
∂δ1

∂r
+
∂δ3

∂r

)
P BK

15

P BK
15

+ (δ2 + δ5)
P BK

10

P BK
15

+ (δ1 + δ3)
P BK

11

P BK
15

+
∂bBK

tφ

∂r

P BK
12

P BK
15

+ bBK

tφ

P BK
13

P BK
15

+ Θ1
P BK

14

P BK
15

, (3.10g)

where ∆ ≡ r2 − 2Mr + a2, Σ ≡ r2 + a2 cos2 θ, and Σ̄ ≡ r2 − a2 cos2 θ. The functions

Θ1,2 ≡ Θ1,2(θ) are functions of θ, and P BK
i are polynomials in r and cos θ, which

are given explicitly in Appendix C [Eqs. (C.1) – (C.15)]. Notice that δkrBK does not

appear in the metric perturbation at all, so we are free to set δkrBK = 0.

With this at hand, given some metric perturbation bBK
αβ that satisfies Eq. (3.10),

one can construct the arbitrary functions δi and Θi and thus build the null directions

of the perturbed spacetime, such that a Killing tensor and a Carter constant exist to

first order. We have verified that the conditions described above satisfy the generic

Killing tensor properties, described at the beginning of this subsection.
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Non-rotating limit

Let us now investigate the nonrotating limit a→ 0. To do so, we expand all arbitrary

functions via

Fi = Fi,0 + aFi,1 +O(a2) , (3.11)

where Fi is any of δi(r) or Θi(θ). We also expand the metric components in a similar

fashion, i.e.

bBK

αβ(r, θ) = bBK

αβ,0(r, θ) + a bBK

αβ,1(r, θ) +O(a2) . (3.12)

The following choices

Θ1,0 = 0 , (3.13a)

Θ2,n = 0 , (3.13b)

δ1,0 =
bBK
rr,0

2
+
bBK
tt,0

2f 2
, (3.13c)

δ2,0 = 0 , (3.13d)

δ2,1 = −r − 4M

2r3f 2
bBK

tt,0 , (3.13e)

δ3,0 = −
bBK
rr,0

2
+
bBK
tt,0

2f 2
, (3.13f)

δ4,0 = f bBK

rr,0 , (3.13g)

δ5,0 = 0 , (3.13h)

δ5,1 = = −r − 4M

2r3f 2
bBK

tt,0 , (3.13i)

(3.13j)

where f ≡ 1− 2M/r, force the metric components to take the form

bBK

tt = bBK

tt,0(r) , (3.14a)

bBK

rr = bBK

rr,0(r) , (3.14b)

where we have set all integration constants to zero. All other components of the

metric vanish to this order. To obtain this result, it is crucial to use the slow-rotation

expansion postulated above, as some of the conditions in Eq. (3.10) have seemingly
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divergent pieces. We see then that in the non-rotating limit, one can always choose

free functions δi and Θi such that the only two independent metric perturbations are

bBK
tt and bBK

rr .

The Killing tensor is then given by Eq. (3.4), with the perturbed null vector

components

δkαBK =

[
bBK
rr,0

2
+
bBK
tt,0

2f 2
, 0, 0,O(a)

]
, (3.15a)

δlαBK =

[
−
bBK
rr,0

2
+
bBK
tt,0

2f 2
, f bBK

rr,0, 0,O(a)

]
, (3.15b)

where we have set δkrBK = 0. Composing the Killing tensor, we find that all O(ε)

terms vanish in the a → 0 limit. This result makes perfect sense, considering that

the Schwarzschild Killing tensor, ξ̂αβ = r2 Ωαβ with Ωαβ ≡ diag(0, 0, r2, r2 sin2 θ), is

also a Killing tensor for the most generic static and spherically symmetric spacetime

with arbitrary gtt and grr components.

3.3 Deformed Kerr formalism

In the previous section, we generalized the bumpy black hole framework at the cost

of introducing a large number of arbitrary functions, later constrained by the require-

ment of the existence of a Carter constant. In this section, we investigate a different

parameterization (DK) that isolates the physically independent degrees of freedom

from the start so as to minimize the introduction of arbitrary functions.

3.3.1 Deformed Kerr geometry

Let us first consider the most general spacetime metric that one can construct for

a stationary and axisymmetric spacetime. In such a geometry, there will exist two

Killing vectors, ta and φa, that represent invariance under a time and azimuthal co-

ordinate transformation. Because these Killing vectors are independent, they will

commute satisfying t[aφb∇ctd] = 0 = t[aφb∇cφd]. Let us further assume the integra-
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bility condition

taRa
[btcφd] = 0 , (3.16a)

φaRa
[btcφd] = 0 . (3.16b)

This condition guarantees that the 2-planes orthogonal to the Killing vectors ta and

φa are integrable. Generic stationary and axisymmetric solutions to modified field

equations do not need to satisfy Eq. (3.16). However, all known analytic solutions in

GR and in alternative theories do happen to satisfy this condition. We will assume

it holds here as well.

Given these conditions, the most general stationary, axisymmetric line element

can be written in Lewis-Papapetrou canonical form, using cylindrical coordinates

(t, ρ, φ, z):

ds2 = −V (dt− w dφ)2 + V −1ρ2dφ2 + Ω2
(
dρ2 + Λ dz2

)
, (3.17)

where (V,w,Ω,Λ) are arbitrary functions of (ρ, z). The Einstein equations restrict

the form of these arbitrary functions: [52]

V̂ =
(r+ + r−)2 − 4M2 + a2

M2−a2 (r+ − r−)2

(r+ + r− + 2M)2 + a2

M2−a2 (r+ − r−)2 , (3.18a)

ŵ =
2aM

(
M + r++r−

2

) (
1− (r+−r−)2

4(M2−a2)

)
1
4

(r+ + r−)2 −M2 + a2 (r+−r−)2

4(M2−a2)

, (3.18b)

Λ̂ = 1 , (3.18c)

Ω̂ = V
(r+ + r−)2 − 4M2 + a2

M2−a2 (r+ − r−)2

4r+r−
, (3.18d)

where r± is defined by

r± =

√
ρ2 +

(
z ±
√
M2 − a2

)2

. (3.19)

One can map from this coordinate system to Boyer-Lindquist coordinates (t, r, θ, φ)
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via the transformation ρ =
√

∆ sin θ and z = (r−M) sin θ to obtain the Kerr metric.

We will not impose Ricci-flatness here, as we wish to model alternative theory

deviations from Kerr. We therefore work directly with Eq. (3.17), keeping (V,w,Ω,Λ)

as arbitrary functions, but transforming this to Boyer-Lindiquist coordinates. Let us

then re-parametrize Ω2 ≡ γ, λ ≡ γΛ, and q ≡ V w, and perturb the metric functions

via

V = V̂ + δV , (3.20a)

q = q̂ + δq , (3.20b)

λ = λ̂+ δλ , (3.20c)

γ = γ̂ + δγ . (3.20d)

The metric then becomes

gµν = ĝµν + bDK

µν , (3.21)

where the perturbation is given by

bDK

tt = −δV , (3.22a)

bDK

tφ = δq , (3.22b)

bDK

rr = δλ cos2 θ + δγ
(r −M)2 sin2 θ

∆
, (3.22c)

bDK

rθ = (r −M) cos θ sin θ (δγ − δλ) , (3.22d)

bDK

θθ = δλ sin2 θ (r −M)2 + δγ cos2 θ∆ , (3.22e)

bDK

φφ =
sin2 θ

Σ− 2Mr

{
4aMr δq −

[(
r2 + a2

)2 − a2 sin2 θ∆
]
δV
}
, (3.22f)

and all other components vanish.

As is clear from the above expressions, the most general perturbation to a station-

ary, axisymmetric metric yields five non-vanishing metric components that depend

still only on four arbitrary functions (δV, δq, δγ, δλ) of the coordinates r and θ. This

is unlike the standard bumpy formalism that introduces six non-vanishing metric
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components that depend on four arbitrary functions (courtesy of the Newman-Janis

algorithm applied to a non-Kerr metric). Furthermore, this analysis shows that two

of the six arbitrary functions introduced in the generalized bumpy scheme of the

previous section must not be independent, as argued earlier.

Following the insight from the previous section, we will henceforth allow these

five metric components (bDK
tt , b

DK
rr , b

DK
rθ , b

DK
θθ , b

DK
φφ ) to be arbitrary functions of r and θ,

although technically there are only four independent degrees of freedom. We do this

because it eases the analytic calculations to come when one investigates which condi-

tions bDK
αβ must satisfy for there to exist an approximate second-order Killing tensor.

Moreover, it allows us to relax the undesirable requirement, implicit in Eq. (3.22),

that when δV 6= 0, then both btt and bφφ must be nonzero in the a→ 0 limit.

3.3.2 Existence conditions for the Carter constant

Let us now follow the same methodology of Sec. 3.2.2 to determine what conditions

the arbitrary functions must satisfy in order for the spacetime to have a second-order

Killing tensor. We begin by parameterizing the Killing tensor as in Eq. (3.4), with

the expansion of the null vectors as in Eq. (3.5) and the replacement of BK → DK

everywhere. With this at hand, the Killing equation acquires the same structure as

Eq. (3.8).

We have solved the Killing equations with Maple and the GrTensorII package

to find that the null vectors must satisfy:

δkαDK =

[
r2 + a2

∆
(δlrDK + γ1) + γ4, δl

r
DK + γ1,−

bDK
rθ

Σ
,

a

∆
(δlrDK + γ1) + γ3

]
, (3.23a)

δlαDK =

[
−r

2 + a2

∆
δlrDK + γ4, δl

r
DK,

bDK
rθ

Σ
,− a

∆
δlrDK + γ3

]
, (3.23b)

where γi ≡ γi(r) are arbitrary functions of radius, and δlrDK and bDK
rθ are arbitrary

functions of both r and θ. As before with δkrBK, we find below that the function δlrDK

does not enter the metric perturbation, so we can set it to zero. The functions γi are
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completely determined by the metric perturbation:

bDK

tt = − a

M

PDK
2

PDK
1

bDK

tφ −
a

2M

Σ2∆

PDK
1

∂bDK
tφ

∂r
− 2a2r(r2 + a2)∆ sin θ cos θ

ΣPDK
1

bDK

rθ

+
(r2 + a2)Σ̄∆

ΣPDK
1

I +
2a2r2∆ sin2 θ

PDK
1

γ1 +
Σ̄(r2 + a2)∆

ΣPDK
1

Θ3

− a

M

∆ sin2 θ

Σ

PDK
3

PDK
1

γ3 +
2∆

Σ

PDK
4

PDK
1

γ4 −
a2

2M

Σ∆2 sin2 θ

PDK
1

dγ1

dr

− a

2M

∆2
[
(r2 + a2)

2 − a2 sin2 θ (r2 − 4Mr + a2)
]

sin2 θ

PDK
1

dγ3

dr

− a2

2M

∆2(Σ− 4Mr) sin2 θ

PDK
1

dγ4

dr
, (3.24a)

bDK

rr = − 1

∆
I − 1

∆
Θ3 , (3.24b)

bDK

φφ = −(r2 + a2)2

a2
bDK

tt +
∆

a2
I − 2(r2 + a2)

a
bDK

tφ +
∆

a2
Θ3

−2∆2 sin2 θ

a
γ3 +

2∆2

a2
γ4 , (3.24c)

∂bDK
θθ

∂r
=

2r

Σ
bDK

θθ +
2a2 sin θ cos θ

Σ
bDK

rθ + 2
∂bDK

rθ

∂θ
+

2r

Σ
I − 2r γ1 +

2r

Σ
Θ3 , (3.24d)

∂2bDK
tφ

∂r2
=

8aM sin θ cos θ

Σ4

PDK
5

PDK
1

bDK

rθ −
4aMr(r2 + a2) sin θ cos θ

Σ3

∂bDK
rθ

∂r

+
2a2 sin2 θ

Σ2

PDK
6

PDK
1

bDK

tφ −
2r

Σ

PDK
7

PDK
1

bDK

tφ +
4aMr sin2 θ

Σ2

PDK
15

PDK
16

I

−4aMr sin2 θ

Σ2

PDK
8

PDK
1

γ1 +
4aMr

Σ2

PDK
9

PDK
1

Θ3 +
2 sin2 θ

Σ2

PDK
10

PDK
1

γ3

−16aM sin2 θ

ρ4

PDK
11

PDK
1

γ4 −
2a

Σ2

PDK
12

PDK
1

dγ1

dr
− 2 sin2 θ

Σ2

PDK
13

PDK
1

dγ3

dr

−2a sin2 θ

Σ2

PDK
14

PDK
1

dγ4

dr
− a∆ sin2 θ

Σ

d2γ1

dr2

−∆ sin2 θ

Σ2

[(
r2 + a2

)2 − a2 sin2 θ
(
r2 − 4Mr + a2

)] d2γ3

dr2

−a∆(Σ− 4Mr) sin2 θ

Σ2

d2γ4

dr2
, (3.24e)

where Σ̄ ≡ r2− a2 cos2 θ, Θr = Θr(θ) is an arbitrary function of polar angle, and PDK
i

are polynomials in r and cos θ, given explicitly in Appendix C [Eqs. (C.16) – (C.30)].
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Notice that many of these relations are integro-differential, as I is defined as

I =

∫
dr

[
2a2 sin θ cos θ

Σ
bDK

rθ + 2r γ1 + Σ
dγ1

dr

]
. (3.25)

Notice also that the component bDK
rθ is free and thus there are here truly only four

independent metric components.

Any metric perturbation bDK
αβ that satisfies Eq. (3.24) will possess a Carter constant.

If given a specific non-Kerr metric, one can then use these equations to reconstruct

the γi and Θ2 functions to automatically obtain the perturbative second-order Killing

tensor associated with this spacetime.

Non-rotating limit

Let us now take the non-rotating limit, i.e. a → 0, of the DK Carter conditions. As

before, we expand all arbitrary functions as in Eqs. (3.11) and (3.12). Imposing the

constraints

Θ3,0 = 0 , (3.26a)

γ1,0 = −bDK

rr,0f , (3.26b)

γ3,0 = 0 , (3.26c)

γ3,1 =
bDK
rr,0

2r2
− r − 4M

2r3f 2
bDK

tt,0 , (3.26d)

γ4,0 =
bDK
tt,0

2f 2
+
bDK
rr,0

2
, (3.26e)

where f ≡ 1− 2M/r, forces the metric components to take the form

bDK

tt = bDK

tt,0 , (3.27a)

bDK

rr = bDK

rr,0 , (3.27b)

bDK

φφ = 0 . (3.27c)

All other pieces of O(a0) in the remaining metric components can be set to zero

by setting (bDK
rθ , b

DK
θθ , b

DK
tφ ) to zero. With these choices, the differential conditions are
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automatically satisfied, where we have set all integration constants to zero. The

Killing tensor is then given by Eq. (3.4), with the perturbed null vector components

δkαDK =

[
−
bDK
rr,0

2
+
bDK
tt,0

2f 2
,−bDK

rr,0f, 0,O(a)

]
, (3.28a)

δlαDK =

[
bDK
rr,0

2
+
bDK
tt,0

2f 2
, 0, 0,O(a)

]
, (3.28b)

where here we have set δlrDK = 0. As before, the Killing tensor reduces exactly to that

of the Schwarzschild spacetime.

3.4 Relating parameterizations

3.4.1 To each other

In the previous sections, we proposed two different parameterizations of deformed

spacetimes suitable for modeling alternative theory predictions. These parameteri-

zations are related via a gauge transformation. Under a general diffeomorphism, the

metric transforms according to bDK
µν → bDK′

µν ≡ bDK
µν + ∇(µξν), where we parameterize

the generating vectors as

ξ = [ξ0(r), ξ1(r, θ), ξ2(r, θ), ξ3(r)] . (3.29)

The question is whether a generating vector exists that could take a generic bDK
µν metric

perturbation to one of bBK
µν form. The DK parameterization has an (r, θ) component

that is absent in the BK one, while the BK one has (t, r) and (r, φ) components that

are absent in the DK parameterization.

Let us assume that we have a certain metric in DK form. The first task is to

remove the (r, θ) component, i.e. to find a diffeomorphism such that bDK′

rθ = 0. This

can be achieved by requiring that

bDK

rθ +
1

2
Σ

[
1

∆

∂ξ1

∂θ
+
∂ξ2

∂r

]
= 0 , (3.30)
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whose solution is

ξ1 = F1(r)−∆

∫ (
∂ξ2

∂r
+

2bDK
rθ

Σ

)
dθ , (3.31)

where F1(r) is a free integration function and ξ2(r, θ) is free.

The generating vector of Eq. (3.29) with the condition in Eq. (3.31) not only

guarantees that bDK′

rθ = 0, but also ensures that the only non-vanishing components of

the gauge-transformed metrics are the gtt, gtr, gtφ, grr, grφ, gθθ and gφφ components,

exactly the same nonzero components as in the BK metric. The new components are

bDK′

tt = bDK

tt −
MΣ̄

Σ2
ξ1 +

2a2Mr sin θ cos θ

Σ2
ξ2 , (3.32a)

bDK′

tr = −1

2

(
1− 2Mr

Σ

)
dξ0

dr
− aMr sin2 θ

Σ

dξ3

dr
, (3.32b)

bDK′

tφ = bDK

tφ +
aMΣ̄ sin2 θ

Σ2
ξ1 −

2aMr(r2 + a2) cos θ sin θ

Σ2
ξ2 , (3.32c)

bDK′

rr = bDK

rr +
a2r

∆2
ξ1 −

a2 sin θ cos θ

∆
ξ2 +

Σ

∆

∂ξ1

∂r
, (3.32d)

bDK′

rφ = −sin2 θ

2Σ

{
2aMr

dξ0

dr
+
[(
r2 + a2

)2
+ a2∆ sin2 θ

] dξ3

dr

}
, (3.32e)

bDK′

θθ = bDK

θθ + r ξ1 − a2 sin θ cos θ ξ2 + Σ
∂ξ2

∂θ
, (3.32f)

bDK′

φφ = bDK

φφ +
sin2 θ

Σ2

[
r5 − a2Mr2 + a2 cos2 θ

(
2r3 + 2rM2 + ∆M

)
+ a4 cos4 θ(r −M)

]
ξ1 + sin θ cos θ

[
∆ +

2Mr(r2 + a2)2

Σ2

]
ξ2 , (3.32g)

where Σ̄ ≡ r2 − a2 cos2 θ and ξ1 is given by Eq. (3.31).

The above result can be simplified somewhat by setting ξ2 = 0 and F1(r) = 0 in

Eq. (3.31). Notice that gtr and grφ are not modified by these vector components. The
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modified components then become

bDK′

tt = bDK

tt −
MΣ̄

Σ2
ξ1 , (3.33a)

bDK′

tφ = bDK

tφ +
aMΣ̄ sin2 θ

Σ2
ξ1 , (3.33b)

bDK′

rr = bDK

rr +
a2r

∆2
ξ1 +

Σ

∆

∂ξ1

∂r
, (3.33c)

bDK′

θθ = bDK

θθ + r ξ1 , (3.33d)

bDK′

φφ = bDK

φφ +
sin2 θ

Σ2

{
r5 − a2Mr2 + a2 cos2 θ

[
2r
(
r2 +M2

)
+ ∆M

]
+ a4 cos4 θ(r −M)

}
ξ1 . (3.33e)

We have therefore found a generic diffeomorphism that maps a DK metric to one

that has the same nonzero components as a BK metric. Notice that ξ0 and ξ3 only

enter to generate the gtr and grφ components. If we know the form of the components

that we are trying to map to, then we could solve for these two vector components.

For example, let us assume that bBK
tr and bBK

rφ are given and we wish to find ξ0,3 such

that bDK′
tr = bBK

tr and bDK′

rφ = bBK
rφ . This implies

0 = bBK

tr +
1

2

(
1− 2Mr

Σ

)
dξ0

dr
− aMr sin2 θ

Σ

dξ3

dr
, (3.34a)

0 = bBK

rφ +
sin2 θ

2Σ

{
2aMr

dξ0

dr
+
[(
r2 + a2

)2
+ a2∆ sin2 θ

] dξ3

dr

}
. (3.34b)

Let us, for one moment, allow ξ0,3 to be arbitrary functions of (r, θ). The solution to

the above system is then

ξ0 = F2(θ) +
2

∆

∫
dr

Σ

[
bBK

tr cos2 θ
(
2a2Mr − a2r2 − a4

)
− bBK

tr

(
2a2Mr + a2r2 + a4

)
− 2aMr bBK

rφ

]
, (3.35a)

ξ3 = F3(θ) +
2

∆

∫
dr

[
bBK

rφ

(
1− 2Mr

Σ

)
− 2aMr sin2 θ

Σ
bBK

tr

]
. (3.35b)

But of course, to avoid introducing other spurious components to the DK′ metric,

such as bDK
tθ , we must require that ξ0,3 be functions of r only. This implies that the

integrands must be themselves also functions of r only. Setting the integrands equal
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to F2(r) and F3(r), we find the conditions

bBK

tr =

(
1− 2Mr

Σ

)
F2(r) +

2aMr sin2 θ

Σ
F3(r) , (3.36a)

bBK

rφ =
2aMr sin2 θ

Σ
F2(r)− [Σ2 + a4 (Σ + 2Mr)] sin2 θ

Σ
F3(r) . (3.36b)

Provided that bBK
tr and bBK

rφ components can be written in the above form, the gener-

ating function becomes

ξ0 = −2

∫
F2(r)dr , (3.37a)

ξ3 = −2

∫
F3(r)dr . (3.37b)

3.4.2 To alternative theories

Dynamical Chern-Simons modified gravity

The BK and DK parameterizations can also be mapped to known alternative theory

black hole metrics. In dynamical CS gravity [1], one can employ the slow-rotation

approximation, where one assumes the black hole’s spin angular momentum is small,

|S|/M2 � 1, and the small-coupling approximation, where one assumes the theory’s

corrections are small deformations away from GR to find an analytical black hole

solution. Yunes and Pretorius [101] found that this solution is simply gµν = ĝµν + bCS
µν ,

where ĝµν is the Kerr metric (expanded in the slow-rotation limit), while the only

non-vanishing component of the deformation tensor in Boyer-Lindquist coordinates

is

bCS

tφ =
5

8
ζCS

a

M

M5

r4
sin2 θ

(
1 +

12M

7r
+

27M2

10r2

)
, (3.38)

where a is the Kerr spin parameter, M is the black hole mass and ζCS is a dimensionless

constant that depends on the CS couplings and is assumed to be small.

Such a non-GR black hole solution can be mapped to the generalized bumpy

parameterization of Eqs. (3.1) and (3.10) via δ2 = δgCS
φ = δ5, and all other δi and Θi
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vanish. The quantity δgCS
φ is given by [87]

δgCS

φ = −ζCSaM
4 70r2 + 120Mr + 189M2

112r8(1− 2M/r)
. (3.39)

With these choices, the null vectors become

kα =

(
r2 + a2

∆
, 1, 0,

a

∆
+ δgCS

φ

)
, (3.40a)

lα =

(
r2 + a2

∆
,−1, 0,

a

∆
+ δgCS

φ

)
, (3.40b)

which agrees with Eq. (35) of [87]. Moreover, with these choices all the metric com-

ponents vanish except for gtφ, which must be equal to Eq. (3.38) for the differential

constraint in Eq. (3.10) to be satisfied.

Similarly, we can map it to the DK parameterization of Eqs. (3.21) and (3.22) via

γ3 = δgCS
φ , and all other arbitrary functions vanish. We have checked that Eq. (3.38)

satisfies the differential constraint found in Sec. 3.3.

Dynamical, Quadratic Gravity

We can similarly map the BK and DK parameterizations to the black hole solution

found in dynamical quadratic gravity [103]. Treating GR corrections as small de-

formations (i.e. working in the small-coupling limit), Yunes and Stein [103] found

that the unique non-spinning black hole solution is gµν = ĝµν + bQG
µν , where ĝµν is the

Schwarzschild metric, while bQG
µν in Schwarzschild coordinates is given by [103]

bQG

tt = −ζQG

3

M3

r3

(
1 +

26M

r
+

66

5

M2

r2
+

96

5

M3

r3
− 80M4

r4

)
, (3.41a)

bQG

rr = −ζQG

f 2

M2

r2

(
1 +

M

r
+

52

3

M2

r2
+

2M3

r3
+

16

5

M4

r4
− 368

3

M5

r5

)
, (3.41b)

where M is the mass of the Schwarzschild black hole and ζQG is a dimensionless

constant that depends on the couplings of the theory and is assumed to be small

For a spherically symmetic background, one can easily show that the Schwarzschild

Killing tensor (i.e., one whose only non-vanishing components are ξθθ = r4 and ξφφ =
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r4 sin2 θ) satisfies the Killing equation regardless of the functional form of the gtt and

grr components of the metric. This means that the perturbed vectors δkα and δlα

must adjust so that the above is true. We find that the following vector components

do just that:

δkt =
ζQGM

2r4

2fr6

(
1 +

8

3

M

r
+

14M2

r2
+

128

5

M3

r3
+

48M4

r4

)
, (3.42a)

δkr =
ζQGM

2r4

fr6

(
1 +

M

r
+

52

3

M2

r2
+

2M3

r3
+

16

5

M4

r4
− 368

3

M5

r5

)
, (3.42b)

δlt = −ζQGM
2r4

2f 2r6

(
1 +

4

3

M

r
+

26M2

r2
+

32

5

M3

r3
+

48

5

M4

r4

−448

3

M5

r5

)
, (3.42c)

and all other components vanish. It must be the case that perturbed null vectors

exist to reduce the Killing tensor to its Schwarzschild counterpart; as we have shown

in Sec. 3.2.2 and 3.3.2 that in the nonrotating limit both the BK and DK parameter-

izations allow for generic gtt and grr deformations.

Arbitrary perturbations: perturbation to γ3, perturbations to γ1 and γ4

We can understand the functions that parametrize the metric perturbation by con-

sidering perturbations where we allow only a few of the parametrizing functions to be

nonzero. Consider a perturbation in the deformed Kerr parametrization of Eqs. (3.21)

and (3.22) described by γ1 = γ4 = Θ3 = 0 and brθ = bθθ = 0. In the small a limit, the

only nonzero component of the metric is the (t, φ) component:

btφ = −f
[
r2 sin2 θ γ3(r) + C

]
, (3.43)

where f ≡ 1 − 2M/r and C is a constant. Now consider a perturbation in the DK

parametrization whose only nonzero parameters are γ1 and γ4. In the small a limit,
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this produces perturbations to the metric given by

btt = f γ1(r) + 2f 2 γ4(r) , (3.44a)

brr = −f−1 γ1(r) , (3.44b)

bφφ = f 2 sin2 θ

[
r4

2M

dγ1

dr
+ 2r2γ4(r) +

r3(r − 4M)

2M

dγ4

dr

]
. (3.44c)

We see that in the DK parameterization γ3 controls modifications to frame-dragging

(and thus the ergosphere), while γ1 and γ4 control modifications to the location of

the event-horizon and the innermost-stable circular orbit.

3.5 Motion in alternative theories of gravity

Now we turn our attention to motion in the BK and DK spacetimes. The derivation

of the equations of motion in Sec. 1.3 is fairly general. In particular, this derivation

is independent of the metric used; in no place did we use that the spacetime was

Kerr. We required the divergence of the test particle stress-energy tensor vanishes;

this condition is always true in GR, because of a combination of local stress-energy

conservation and the equivalence principle.

One might wonder whether the divergence-free condition of the stress-energy ten-

sor holds in more general theories. In any metric GR deformation, the field equations

will take the form

Gαβ +Hαβ = Tαβ + THαβ , (3.45)

where Gαβ is the Einstein tensor, Hαβ is a tensorial deformation of the Einstein

equations, and THαβ is a possible stress-energy modification, associated with additional

fields. The divergence of this equation then leads to

∇αHαβ = ∇αTαβ +∇αTHαβ , (3.46)

since the Bianchi identities force the divergence of the Einstein tensor to vanish. The

Bianchi identities hold in alternative theories, as this is a geometric constraint and
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not one that derives from the action. We see then that the divergence of the matter

stress-energy tensor vanishes independently provided

∇αHαβ = ∇αTHαβ . (3.47)

Whether this condition is satisfied depends somewhat on the theory of interest.

Theories that include additional degrees of freedom that couple both to the geometry

and have their own dynamics usually satisfy Eq. (3.47). This is because additional

equations of motion arise upon variation of the action with respect to these additional

degrees of freedom, and these additional equations reduce to Eq. (3.47). Such is the

case, for example, in dynamical CS modified gravity [87]. If no additional degrees

of freedom are introduced, whether Eq. (3.47) is satisfied depends on whether the

divergence of the new tensor Hαβ vanishes, which need not in general be the case.

Recently, it was shown that the equations of motion are geodesic to leading order in

the mass-ratio for any classical field theory that satisfies the following constraints [40]:

• It derives from a diffeomorphism-covariant Lagrangian, ensuring a Bianchi iden-

tity;

• It leads to second-order field equations.

The second condition seems somewhat too stringent, as we know of examples where

third-order field equations still lead to geodesic motion, i.e. dynamical CS gravity [87].

Therefore, it seems reasonable to assume that this condition could be relaxed in the

future. Based on this, we take the viewpoint that the equations of motion are geodesic

even in the class of alternative theories we consider here.

The geodesic equations can be rewritten in first-order form provided that three

constants of the motion exist. In Sec. 3.2.2, we showed that provided the generalized

bumpy functions satisfy certain conditions, then an approximate, second-order Killing

tensor and a conserved Carter constant exist. Furthermore, it is easy to see that the

metric in Eqs. (3.1) and (3.2) remains stationary and axisymmetric, since the metric

components bBK
tt , bBK

tr , bBK
tφ , bBK

rr , bBK
rφ , bBK

θθ , and bBK
φφ are functions of only r and θ.
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The constants of the motion are

E = Ê + ε (bµνt
µûν + ĝµνt

µδuν) , (3.48)

L = L̂+ ε (bµνφ
µûν + ĝµνφ

µδuν) , (3.49)

C = Ĉ + ε
[
δξµν û

µûν + 2ξ̂µν û
(µδuν)

]
, (3.50)

while the normalization condition becomes

0 = bµν û
µûν + 2ĝµν û

µδuν , (3.51)

since by definition, −1 = ĝµν û
µûν . In these equations, ûµ = ( ˙̂t, ˙̂r,

˙̂
θ,

˙̂
φ) is the Kerr

four-velocity, while δuµ is a perturbation.

Equations (3.48) – (3.51) can be decoupled once we make a choice for (E,L,Q).

This choice affects whether the turning points in the orbit are kept the same as in

GR or whether the constants of the motion are kept the same. Here we choose the

latter by setting E = Ê, L = L̂ and C = Ĉ, which then implies that δuµ must be

such that all terms in parenthesis in Eqs. (3.48) – (3.50) vanish. Using this condition

and Eq. (3.51), we then find that

Σ2

(
dr

dτ

)2

= R(r) + δR(r, θ) , (3.52)

Σ2

(
dθ

dτ

)2

= Θ(θ) + δΘ(r, θ) , (3.53)

Σ

(
dφ

dτ

)
= Φ(r, θ) + δΦ(r, θ) , (3.54)

Σ

(
dt

dτ

)
= T (r, θ) + δT (r, θ) , (3.55)

where R(r), Θ(θ), Φ(r, θ), and T (r, θ) are defined in Eqs. (1.14) – (1.17). The per-
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turbations to the potential functions δT (r, θ), δR(r, θ), δΘ(r, θ), and δΦ(r, θ) are

δT (r, θ) =

[
(r2 + a2)2

∆
− a2 sin2 θ

]
btαû

α +
2aMr

∆
bφαû

α , (3.56)

δΦ(r, θ) =
2aMr

∆
btαû

α − Σ− 2Mr

∆ sin2 θ
bφαû

α , (3.57)

δR(r, θ) = ∆
[
A(r, θ) r2 +B(r, θ)

]
, (3.58)

δΘ(r, θ) = A(r, θ) a2 cos2 θ −B(r, θ) , (3.59)

where the functions A(r, θ) and B(r, θ) are proportional to the perturbation:

A(r, θ) = 2
[
bαt

ˆ̇t+ bαφ
ˆ̇φ
]
ûα − bαβûαûβ , (3.60a)

B(r, θ) = 2
[(
ξ̂tt

ˆ̇t+ ξ̂tφ
ˆ̇φ
)
δṫ+

(
ξ̂tφ

ˆ̇t+ ξ̂φφ
ˆ̇φ
)
δφ̇
]

+ δξαβû
αûβ . (3.60b)

As before, we have dropped the superscript BK here. Interestingly, notice that the

perturbation automatically couples the (r, θ) sector, so that the first-order equations

are not necessarily separable. One can choose, however, the γi functions in such a

way so that the equations remain separable, as will be shown elsewhere.

The perturbations to the potential functions result in changes to the orbital fre-

quencies. In particular, for circular, equatorial orbits, the orbital frequency becomes

Ωφ = Ω̂φ − (rM)1/2(r − 3M) + 2aM

r5/4 (r3/2 + aM1/2)
2 δT (r)

+

[
r1/2(r − 3M) + 2aM1/2

]1/2
r5/4 (r3/2 + aM1/2)

δΦ(r) , (3.61)

where Ω̂φ is given in Eq. (1.52), δT and δΦ are given by Eq. (3.56) and (3.57), and

we have used that E = Ê and L = L̂. In the far field limit (M/r � 1), this becomes

Ω ∼ Ω̂ +
1

r2
δΦ , (3.62)

where for simplicity, we have assumed that δΦ and δT are both of order unity. Given

any particular metric perturbation, one can easily recalculate such a correction to
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Kepler’s law from Eq. (3.61). Clearly, a modification of this type in the Kepler

relation modifies the dissipative dynamics when converting quantities that depend on

the orbital frequency to radius and vice-versa.

3.6 Summary and future work

The detection of GWs from EMRIs should allow for the detailed mapping of the space-

time metric on which the small compact objects move. Such a mapping allows for

null tests of GR, as one would in principle be able to constrain deviations of the back-

ground spacetime from the Kerr metric. To carry out such tests, however, one requires

a parameterization of the metric tensor that can handle model-independent, non-GR

deviations. We have constructed two such parameterizations: one as a generalization

of the bumpy black hole formalism (the BK scheme) and one as a generalized defor-

mation of the Kerr metric (the DK scheme). The former promotes the non-vanishing

components of the metric perturbation that contain bumps to arbitrary functions of

radius and polar angle. The latter takes the most general stationary, axisymmetric

line element without assuming Ricci-flatness and constructs a generic metric defor-

mation from it. In both cases, we constrained the arbitrary functions they introduce

by requiring that the spacetime has an approximate second-order Killing tensor.

These schemes differ from each other in the metric components that are assumed

not to vanish. We have found a gauge transformation, however, that relates them.

That is, we have shown that a generating vector exists such that the BK metric

can be mapped to the DK one. We have also mapped both parameterizations to

known analytical non-GR solutions, thus automatically finding their respective Killing

tensors and Carter constants.

The perturbative nature of our approach puts some limitation on the generality

of the deformation. Throughout this chapter, we restricted the metric deformation

to be a small deviation away from the GR solution. But due to the structure of the

perturbation, there can be regions in spacetime where this deformation dominates

over the GR background. For example, the full metric tensor might lose Lorentzian
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signature if the metric perturbation dominates over the Kerr background and it pos-

sesses a certain definite sign, i.e., the metric will no longer have det(g) < 0. Clearly,

such regions are unphysical, and the coupling constants that control the magnitude of

the perturbation should be adjusted appropriately to ensure that if they exist, they

are hidden inside the horizon.

We should emphasize that we were guided by two principles in the construction

of the parameterized schemes proposed here. First, we wanted to ensure that the

parameterizations would easily map to known analytic solutions. Second, we wished

to retain a smooth Kerr limit, such that when the deformation parameters are taken

to zero, the deformed metric goes smoothly to Kerr. This in turn guaranteed that

certain properties of the Kerr background were retained, such as the existence of a

horizon. We additionally required that the metric tensors allowed a second-order

perturbative Killing tensor, so that there exists a perturbative Carter constant. This

latter requirement is not strictly necessary to perform null tests, as one could build

GWs from the evolution of the full second-order equations of motion without rewriting

them in first-order form.

An interesting avenue of future research would be to investigate the Petrov type [69]

of the BK and DK metrics. Brink has shown that GR spacetimes that admit a Carter

constant must also be of Type D [15]. In alternative theories of gravity, however, a

formal mathematical proof of the previous statement is lacking. We have here found

Ricci-curved metrics that admit a Carter constant. One could now attempt to prove

that the perturbative Carter existence conditions found in this chapter also automat-

ically imply that the spacetime is approximately Petrov Type D. This is a purely

mathematical result that is beyond the scope of this chapter.

An interesting physical question that could now be answered with either the DK or

BK frameworks is whether LISA could place interesting constraints on non-GR Kerr

deformations. To answer this question, one would have to evolve geodesics in either

the BK or DK framework and construct the associated GWs. One could then use a

Fisher analysis to determine how well the deviation from Kerr could be measured or

constrained by LISA. We will investigate this problem in a forthcoming publication.
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Chapter 4

Spin-curvature coupling

The work in this chapter will be submitted to Physical Review D for publication at a

future date and was done in collaboration with Scott A. Hughes.

4.1 Introduction

Extreme mass-ratio inspirals (EMRIs), in which a small compact object of ∼ 1 −

100 M� falls into a massive black hole (MBH) of ∼ 106 M�, are a particularly inter-

esting source of low-frequency GWs. As the small body spirals slowly into the MBH,

it probes the structure of the surrounding spacetime and the information is encoded

into the emitted GWs. Another motivation for studying the evolution of EMRIs is

the fact that the large mass ratio of the two bodies allows us to do many of the

calculations analytically or quasi-analytically instead of relying entirely on numerical

simulations. These analytic (or semi-analytic) results can help us gain insight into the

orbital dynamics of more general systems. For example, we can use results from black

hole perturbation theory to extend the ability of the effective one-body approach to

accurately model the dynamics of coalescing binary systems [100, 9].

To zeroth order in the mass ratio, the small body moves on a geodesic of the

background spacetime, which is curved because of the presence of the large body, i.e.,

Dpα

dτ
= 0 , (4.1)
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where the derivative operator D/dτ is a covariant derivative along the small body’s

trajectory. Higher order effects perturb the orbit of the small body away from a

geodesic:
Dpα

dτ
= Fα , (4.2)

where the force Fα can arise from a number of physical effects. One interesting

example is the gravitational self-force Fα
sf , which comes from the fact that the small

body also curves spacetime. This can be broken into two contributions: Fα
sf = Fα

diss +

Fα
cons, where the dissipative portion Fα

diss is time-reversal asymmetric and describes

the loss of energy and angular momentum due to the emission of GWs, and the

conservative portion Fα
cons is time-reversal symmetric and describes a shift to the

gravitational field due to the curvature of the small body. Many groups have put

considerable effort into computing the gravitational self-force; see Ref. [71] for a very

detailed overview and discussion of the self-force problem in general relativity, and

Refs. [7, 95] for examples of recent progress in the field. They have found that for a

small body of mass µ, the gravitational self-force scales as µ2.

Other forces arise when we consider that the small body is not a point mass, but

instead has internal structure. In particular, if the small body has spin (as all known

astrophysical bodies do), the spin of the small body couples to the curvature of the

background spacetime, modifying the trajectory of the smaller body according to the

Papapetrou equations [68, 29]:

Dpα

dτ
= −1

2
SλµuνRα

νλµ , (4.3)

DSµν

dτ
= pµuν − pνuµ . (4.4)

The vector uµ ≡ dxµ/dτ is the particle’s four-velocity, and pµ is the particle’s four-

momentum. For a spinning body, pµ and uµ are not exactly parallel to one another,

although they are parallel at leading order in the small body’s spin:

pα = µ uα +O(s2) . (4.5)
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We discuss these points further in Sec. 4.2, where we derive these equations. The

tensors Sαβ describes the spin of the small body:

Sαβ = 2

∫
Σ

(x[α − z[α) T β]γ dΣγ , (4.6)

where Σ is an arbitrary spacelike hypersurface. The tensor Rα
νλµ is the Riemann

curvature tensor of the spacetime, and it describes how nearby trajectories diverge

from one another due to gravitational tidal effects. If the small body is nonspinning,

Eq. (4.3) reduces to the geodesic equation [Eq. (4.1)]; otherwise the right-hand side

of Eq. (4.3) acts like a force acting on the small body. For a small body of mass µ

and dimensionless spin s, the spin force scales as µ2s, which is the same scaling with

µ as the gravitational self-force. This suggests that if we include the gravitational

self-force we also need to take into account the spin force.

So far, the effect of the spin of the small body on the orbital trajectory has not

been studied in great detail. Previous work taking into account the spin of the small

body has relied on simplified waveforms (for example, “kludge” waveforms that use

post-Newtonian approximation extended beyond its region of validity) [6, 8] or been

limited to an analysis of circular, equatorial orbits with the spin of the small body

parallel or nearly parallel to the spin of the large black hole [8, 20, 41, 47]. These

studies have shown that including spin effects can change the GW phase by several

to several tens of radians in one year of observations. This is enough of a phase

difference that GW measurements that do not take into account spin effects are likely

to be biased by some (currently unknown) systematic offset.

As a first step to building waveforms that incorporate the spin of the small body,

in this chapter we compute the spin force along a geodesic for generic orbits and

spin orientations. Our approach is to treat the effect of the spin of the small body

perturbatively; i.e., we identify the spin tensor as order s, and we expand the four-

momentum as pµ = pµgeod + ∆pµ, where pµgeod is a geodesic trajectory and ∆pµ is of
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order s. Then the equation of motion of ∆pµ is given by

D(∆pα)

dτ
= − 1

2µ
SλµpνgeodR

α
νλµ +O(s2)

≡ Fα
spin , (4.7)

DSαβ

dτ
= O(s2) , (4.8)

where we have defined the spin force as the right-hand side of Eq. (4.7). Notice

that the spin force is purely conservative and does not dissipate energy or angular

momentum. As mentioned in Eq. (4.5), pα and uα are parallel to linear order in s,

so in Eq. (4.7) we can treat them as parallel. Since we are treating the effect of the

spin perturbatively, Eqs. (4.7) and (4.8) are evaluated along the geodesic trajectory.

We also need to choose a spin supplementary condition; we choose to let

Sαβuα = 0 , (4.9)

which fixes the small body’s center of mass. We can relate the spin tensor to the spin

vector according to

Sαβ = εαβµνuµSµ . (4.10)

Defining the spin vector in this way means that the spin tensor automatically satisfies

the spin supplementary condition in Eq. (4.9). Then the evolution equation for Sα is

simply
DSα

dτ
= O(s2) ; (4.11)

i.e., the spin vector is parallel-transported along the orbit to linear order in the spin.

This chapter is organized as follows. In Sec. 4.2 we derive the Papapetrou equa-

tions following the approach of Papapetrou [68]. In Sec. 4.3 we compute the evo-

lution of the spin vector and the change in the orbital trajectory for orbits in the

Schwarzschild spacetime, and we compare the magnitudes of the gravitational self-

force and the conservative portion of the spin force. We find that the effect of the

spin, although not as large as the gravitational self-force, is not negligible compared
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to the self-force. In Sec. 4.4 we discuss spin evolution and the change in the or-

bital trajectory for generic orbits in the Kerr spacetime. Section 4.5 summarizes our

analysis and discusses future work.

4.2 Derivation of the Papapetrou equations

4.2.1 Overview

Here we derive the equations of motion for a spinning body. Our approach is based

upon the approach of Papapetrou [68]. We begin with the dynamical equation

∇νT
µν = 0 , (4.12)

where T µν is the stress-energy tensor of the particle. Expanding the covariant deriva-

tive gives

∂νT
µν + Γµνλ T

νλ + Γννλ T
µλ = 0 . (4.13)

The Christoffel symbol Γννλ can be written as

Γννλ =
1√
|g|
∂λ
√
|g| , (4.14)

where g ≡ det (gµν). We can use this to rewrite Eq. (4.13) as

∂νT
µν + Γµνλ T νλ = 0 , (4.15)

where T µν is defined by

T µν ≡
√
|g| T µν . (4.16)

The next step is to define a single-pole and pole-dipole body in terms of T µν .

Let Xα denote the position of the body and xα be some coordinate in spacetime. We

define δxα as

δxα ≡ xα −Xα , (4.17)
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A single-pole body is one for which

∫
T µν dV 6= 0 (4.18)

for some values of µ and ν, and

∫
δxρ1 · · · δxρnT µν dV = 0 (4.19)

for n ≥ 1. In these integrals, dV indicates an integral over the three-dimensional

space with constant t. A pole-dipole body is one for which

∫
T µν dV 6= 0 , (4.20a)∫

δxρT µν dV 6= 0 , (4.20b)

for some values of µ, ν, and ρ, and

∫
δxρ1 · · · δxρnT µν dV = 0 (4.21)

for n ≥ 2.

Now we are ready to derive the equations of motion. The derivation proceeds

as follows. We take the dynamical equation ∇νT
µν = 0 and its derivatives, and

we integrate these relationships over a spatial volume. We expand the Christoffel

symbols in the covariant derivative, i.e.,

Γ = Γ0 + δx ∂Γ +
1

2
δx2 ∂2Γ + . . . , (4.22)

where Γ0, ∂Γ, and ∂2Γ are all evaluated at the position of the orbiting body. When

we insert this into the dynamical equation and its derivatives, we end up with terms

that look like
∫

T dV ,
∫

T δx dV ,
∫

T δx2 dV , and so on. If the body is a pure

monopole, then we can set all terms involving integrals of T and factors of δx to

zero, and we recover the geodesic equation. If the body has a nonzero dipole, then
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we must keep terms that look like
∫

T δx dV , and the equations of motion include

additional terms that couple the body’s spin to derivatives of the Christoffel symbols.

4.2.2 Motion of a single-pole body

We start with the case of a single-pole body, which we show moves along a geodesic.

Once we have this simpler result, it will be easier to understand the more complicated

motion of a pole-dipole body. We use the dynamical equation given in Eq. (4.15),

and the expression

∂γ
(
xαT βγ

)
= T αβ − xαΓβµνT

µν , (4.23)

which follows directly from Eq. (4.15). Integrating Eqs. (4.15) and (4.23) over a

three-dimensional volume of constant t gives

d

dt

∫
T µ0 dV = −

∫
ΓµνλT

νλ dV , (4.24)

d

dt

∫
xαT β0 dV =

∫
T αβ dV −

∫
xαΓβνλT

νλ dV . (4.25)

Since the size of the body is small, we can expand the Christoffel symbols as

Γαµν = Γαµν |X + ∂σΓαµν |X δx
σ + . . . , (4.26)

where the subscript X indicates that we evaluate the quantity at the location of the

body Xα. Substituting this expansion into Eq. (4.24), and using the fact that this is

a single-pole body to eliminate integrals containing δxσT µν , we get

d

dt

∫
T µ0 dV = −Γµνλ

∫
T νλ dV . (4.27)

(For the sake of brevity, we have dropped the subscript X.) Equation (4.25) becomes

d

dt

(
Xα

∫
T β0 dV

)
=

∫
T αβ dV −Xα Γβνλ

∫
T νλ dV . (4.28)
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We can simplify this further using Eq. (4.27):

dXα

dt

∫
T β0 dV =

∫
T αβ dV . (4.29)

We introduce the quantity Mαβ according to

Mαβ = u0

∫
T αβ dV , (4.30)

where u0 ≡ dt/dτ and τ is the proper time. Substituting Eq. (4.30) into Eqs. (4.27)

and (4.29) gives

d

dτ

(
Mα0

u0

)
= −ΓαµνM

µν , (4.31)

Mαβ =
uα

u0
Mβ0 , (4.32)

where uα ≡ dXα/dτ . If we plug β = 0 into Eq. (4.32), we get

Mα0 =
uα

u0
M00 . (4.33)

Substituting Eq. (4.33) into Eq. (4.32) allows us to write Mαβ as

Mαβ = muαuβ , (4.34)

where the parameter m is defined as

m ≡ M00

(u0)2
. (4.35)

Plugging Eq. (4.34) into Eq. (4.31) gives the equation of motion,

d

dτ
(muα) + Γαµν mu

µuν = 0 . (4.36)

Notice the τ derivative contains both uα and m. We can separate it by multiplying
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Eq. (4.36) by uα. Some mathematical manipulation reveals that

dm

dτ
= 0 ; (4.37)

as we might have expected, m is the body’s rest mass. This lets us write the equation

of motion as
duα

dτ
+ Γαµν u

µuν = 0 , (4.38)

which we recognize as the geodesic equation.

4.2.3 Motion of a pole-dipole body

Now we consider the motion of a pole-dipole body. As for a single-pole body, we

begin with Eqs. (4.15) and (4.23). We also consider the expression

∂δ
(
xαxβT γδ

)
= xαT βγ + xβT αγ − xαxβ ΓγµνT

µν , (4.39)

which follows from Eq. (4.15). We integrate these equations over a three-dimensional

volume of constant t to obtain Eqs. (4.24), (4.25), and

d

dt

∫
xαxβT γ0 dV =

∫
xαT βγ dV +

∫
xβT αγ dV −

∫
xαxβΓγµνT

µν dV . (4.40)

As before, we expand the Christoffel symbols around Xα as described in Eq. (4.26).

However, because the body is a pole-dipole, we cannot eliminate integrals contain-

ing δxσ T µν . For a pole-dipole body, we keep those terms and eliminate integrals

containing δxσδxρ T µν . Then Eq. (4.24) becomes

d

dt

∫
T α0 dV = −Γαµν

∫
T µν dV − ∂σΓαµν

∫
δxσT µν dV . (4.41)
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Expanding the Christoffel symbols and using the relationship in Eq. (4.41) allows us

to write Eq. (4.25) as

d

dt

∫
δxαT β0 dV +

dXα

dt

∫
T β0 dV =

∫
T αβ dV − Γβµν

∫
δxαT µν dV . (4.42)

Finally, we expand the Christoffel symbols and use Eqs. (4.41) and (4.42) to write

Eq. (4.40) as

dXα

dt

∫
δxβT γ0 dV +

dXβ

dt

∫
δxαT γ0 dV =

∫
δxαT βγ dV +

∫
δxβT αγ dV . (4.43)

We introduce the following definitions:

Mλµν = −u0

∫
δxλT µν dV , (4.44)

Sαβ = − 1

u0

(
Mαβ0 −Mβα0

)
. (4.45)

Notice that the definition of Mλµν implies that M0µν = 0 since we are integrating

over a surface of constant t so δx0 = 0. We use these definitions of Mλµν and Sαβ and

the definition of Mαβ given in Eq. (4.30) to rewrite Eqs. (4.41), (4.42), and (4.50). It

is simple to show that Eq. (4.50) becomes

u0
(
Mαβ0 +Mβα0

)
= uαMβγ0 + uβMαγ0 . (4.46)

We use this relationship to relate Mλµν to uα and Sµν :

Mαβγ = −1

2

(
Sαβ uγ + Sαγ uβ

)
+

1

2

uα

u0

(
S0β uγ + S0γ uβ

)
. (4.47)

Now we look at Eq. (4.42). Substituting the definitions for Mλµν and Mαβ into

Eq. (4.42) gives

Mαβ =
uα

u0
Mβ0 − d

dτ

(
Mαβ0

u0

)
− Γβµν M

αµν . (4.48)

From the definition of Mαβ in Eq. (4.34), we know that Mαβ is symmetric under the
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exchange of the indices α and β, i.e., Mαβ = Mβα. Enforcing this condition gives

dSαβ

dτ
= −u

α

u0
Mβ0 +

uβ

u0
Mα0 − Γαµν M

βµν + Γβµν M
αµν . (4.49)

With a bit more manipulation, we can rewrite Eq. (4.49) as

dSαβ

dτ
+
uα

u0

dSβ0

dτ
− uβ

u0

dSα0

dτ
= Mαµν

(
Γβµν −

uβ

u0
Γ0

µν

)
−Mβµν

(
Γαµν −

uα

u0
Γ0

µν

)
. (4.50)

Substituting the definition of Mαβγ from Eq. (4.47) allows us to write Eq. (4.50) in

terms of covariant derivatives of Sαβ:

DSαβ

dτ
+
uα

u0

DSβ0

dτ
− uβ

u0

DSα0

dτ
= 0 . (4.51)

Multiplying Eq. (4.51) by uβ gives1

1

u0

DSα0

dτ
+ uβ

DSαβ

dτ
+ uβ

uα

u0

DSβ0

dτ
= 0 . (4.52)

Finally, we substitute this expression into Eq. (4.51) and get

DSαβ

dτ
− uαuµ

DSβµ

dτ
+ uβuµ

DSαµ

dτ
= 0 . (4.53)

Equation (4.53) describes the evolution of the spin tensor Sαβ. We put this in the

same form as Eq. (4.4) further below after defining the four-momentum for a spinning

body.

Finally, we look at Eq. (4.41). It is simple to show that when we use Mαβ and

Mαβγ, Eq. (4.41) becomes

d

dτ

(
Mα0

u0

)
= −Γαµν M

µν + ∂σΓαµν M
σµν . (4.54)

1Our result here differs from Papapetrou’s. In his paper, the metric has signature (+,−,−,−),
so uαuα = 1. In this thesis we use metric signature (−,+,+,+), so uαuα = −1.
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We can use the definitions of Sαβ and Mαβ given in Eqs (4.45) and (4.48), respectively,

to write Mα0 as

Mα0 + Γαµν S
µ0 uν =

uα

u0

(
M00 + Γ0

µν S
µ0 uν

)
+
DSα0

dτ
. (4.55)

We introduce the quantity m defined by

m = − 1

u0

(
Mα0 + Γαµν S

µ0uν
)
uα . (4.56)

Multiplying Eq. (4.55) by uα/u
0 lets us write m as

m =
1

(u0)2

(
M00 + Γ0

µν S
µ0 uν

)
− uα
u0

DSα0

dτ
. (4.57)

Then, when we combine Eqs. (4.52), (4.55), and (4.57) we get

1

u0
Mα0 = muα − Γαµν S

µ0u
ν

u0
− uβ

DSαβ

dτ
. (4.58)

We insert this expression for Mα0 into Eq. (4.54), and with some mathematical ma-

nipulation we get the equation of motion for the body,

D

dτ

(
muα − uβ

DSαβ

dτ

)
+

1

2
SµνuσRα

νσµ = 0 , (4.59)

where Rα
νσµ is the Riemann curvature tensor,

Rα
νσµ = ∂µΓανσ − ∂νΓαµσ + ΓαµρΓ

ρ
νσ − ΓανρΓ

ρ
µσ . (4.60)

The form of Eq. (4.59) inspires us to define the momentum pα as

pα = muα − uβ
DSαβ

dτ
. (4.61)

Notice that for a spinning body, the body’s momentum pα is no longer parallel to its
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four-velocity uα. Then the equation of motion of the body is given by

Dpα

dτ
= −1

2
SµνuσRα

νσµ . (4.62)

Inserting the definition of the momentum vector given in Eq. (4.61) into Eq. (4.53)

allows us to write the evolution of the spin as

DSαβ

dτ
= pαuβ − pβuα . (4.63)

Equations (4.59) and (4.63) are in the same form as the equations of motion we gave

in the introduction [Eqs. (4.3) and (4.4)]. Notice that the right-hand side of Eq. (4.63)

is O(s2), and so by the definition of pα in Eq. (4.61), pα and uα are parallel to order

O(s), as we stated in Eq. (4.5).

For further discussion of this derivation, including a discussion of the transforma-

tion properties of Mαβγ, Mµν , and Sαβ, see Papapetrou’s 1951 paper [68]. It is also

worth noting that we can use this technique to define the equations of motion for

bodies with higher-order multipoles (see, e.g., [90]). For the purposes of this thesis,

there is no need to go beyond the equations of motion of a pole-dipole body.

4.3 Results: Orbits in Schwarzschild

For the Schwarzschild spacetime, we can always choose our coordinates so the back-

ground orbit lies in the equatorial plane. Then the spin force reduces to

F t
spin = −3M

rf

dr

dτ

dφ

dτ
Sθ , (4.64)

F r
spin = −3Mf

r

dt

dτ

dφ

dτ
Sθ , (4.65)

F θ
spin =

3M

r3

dφ

dτ

(
dr

dτ
St − dt

dτ
Sr
)
, (4.66)

F φ
spin = 0 , (4.67)
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where f ≡ 1−2M/r. The component F t is related to the work done over a cycle while

F r describes a change to the normal gravitational force. Notice that F t averages to

zero over an orbit; on average, the spin force conserves energy.

The evolution of the spin vector is given by

dSt

dτ
= − M

r2f

(
dr

dτ
St +

dt

dτ
Sr
)
, (4.68)

dSr

dτ
= −Mf

r2

dt

dτ
St +

M

r2f

dr

dτ
Sr + rf

dφ

dτ
Sφ , (4.69)

dSθ

dτ
= −1

r

dr

dτ
Sθ , (4.70)

dSφ

dτ
= −1

r

(
dφ

dτ
Sr +

dr

dτ
Sφ
)
. (4.71)

Notice that Eqs. (4.68), (4.69), and (4.71) are coupled while Eq. (4.70) is independent

of the others. The components St, Sr, and Sφ precess, but the component Sθ, which

is perpendicular to the orbital plane, does not. The component Sθ can be calculated

analytically by solving Eq. (4.70):

Sθ =
cθ

r
, (4.72)

where cθ is a constant. The factor of 1/r arises because we are using Boyer-Lindquist

coordinates (t, r, θ, φ) which are not orthonormal. It is simple to transform to or-

thonormal coordinates for the Schwarzschild metric; vector components in orthonor-

mal coordinates are related to the components in Boyer-Lindquist coordinates by

S t̂ =

(
1− 2M

r

)1/2

St , (4.73a)

S r̂ =

(
1− 2M

r

)−1/2

Sr , (4.73b)

S θ̂ = r Sθ , (4.73c)

Sφ̂ = r sin θ Sφ . (4.73d)

Applying this transformation, we see that the θ̂-component of the spin vector is
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constant,

S θ̂ = cθ . (4.74)

The components St, Sr, and Sφ must be calculated by numerically solving Eqs. (4.68),

(4.69), and (4.71). From the evolution equations, we see that the magnitude of the

spin vector |~S| ≡
√
SαSα remains constant along the orbit. We use this fact to limit

our attention to the spatial components of the spin vector since we can solve for St

from |~S| and the spatial components.

4.3.1 Case 1: Initial spin ~S0 = µ2 θ̂

We begin by considering the case where the spin vector is perpendicular to the orbital

plane, i.e., S θ̂ is the only nonzero component of the spin vector. We define the constant

cθ in Eq. (4.74) by choosing the magnitude of the spin vector to be |~S| = µ2; this sets

cθ = µ2. For this spin orientation, the only nonzero components of the spin force are

F t and F r.

Figure 4-1 compares the trajectory of a body with mass µ = 10−5M and initial

spin vector ~S0 = µ2 θ̂ and a geodesic. The background geodesic is an equatorial orbit

around a Schwarzschild black hole with orbital parameters p = 10M and e = 0.3. The

spin of the small body causes a decrease in the radial period, which leads to a phase

difference between the radial trajectory and the background geodesic. Since F θ = 0

for this configuration, the orbit remains equatorial. There is also an accumulated

phase difference in the φ coordinate; for the case of a black hole of mass 10 M�

orbiting a MBH of mass 106 M�, this amounts to ∆φ ∼ 1 rad/yr.

Since both the spin force and the gravitational self-force scale like µ2, it is in-

teresting to see how they compare to one another. In Fig. 4-2 we compare the spin

force to the conservative contribution of the gravitational self-force [7]. For this set of

orbital parameters, the spin force is about an order of magnitude smaller, indicating

that the effect of the spin force is small compared to the effect of the gravitational

self-force but not negligible.
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Figure 4-1: Comparison between the trajectory of a body with mass µ = 10−5M
and initial spin vector ~S0 = µ2 θ̂ and a geodesic. The background geodesic is an
equatorial orbit around a Schwarzschild black hole with orbital parameters p = 10M
and e = 0.3. The spin of the small body produces a phase difference between the
geodesic and perturbed trajectories, which causes ∆r to grow. There is also an
accumulated phase difference in the φ coordinate.
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Figure 4-2: Comparison between the spin force and the conservative part of the
gravitational self-force for an equatorial orbit around a Schwarzschild black hole with
orbital parameters p = 10M and e = 0.3. The initial spin vector is ~S0 = µ2 θ̂. The
spin force is smaller than the gravitational self-force by about an order of magnitude,
indicating that influence of the spin of the small body is not negligible compared to
the gravitational self-force.
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4.3.2 Case 2: Initial spin ~S0 = µ2 φ̂

Now we consider a case where the spin vector precesses. Let the initial condition of

the spin vector be

~S0 = µ2 φ̂ . (4.75)

This choice sets the magnitude of the spin vector to be |~S| = µ2, as in the previous

case. We describe the precession of the spin vector as follows. First we transform the

spin vector from orthonormal coordinates (r̂, θ̂, φ̂) to Cartesian coordinates (x, y, z)

using a rotation matrix:
Sx

Sy

Sz

 =


sin θ cosφ cos θ cosφ − sinφ

sin θ sinφ cos θ sinφ cosφ

cos θ sin θ 0




S r̂

S θ̂

Sφ̂

 . (4.76)

Then we describe the spin vector in terms of the angles α, the angle between the spin

vector and the z-axis, and β, the angle between the spin vector and the x-axis:

tanα =

√
S2
x + S2

y

Sz
, (4.77)

tan β =
Sy
Sx

. (4.78)

We also introduce the magnitude of the spatial portion of the spin vector |Si|,

|Si| =
√
S2
x + S2

y + S2
z . (4.79)

Figure 4-3 plots the evolution of the angles α and β and the magnitude |Si| for an

equatorial orbit with orbital parameters p = 10M , e = 0.3. The component S θ̂

remains zero along the orbit, which corresponds to α = π/2. The variation in the

angle β corresponds to a spin vector rotating in the equatorial plane. The oscillations

in |Si| are due to variations in the small body’s orbiting speed around the black hole,

and are similar to the effects of Thomas precession, which describes the change in a

body’s angular momentum under a Lorentz transformation. Note that although the
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magnitude of the three-vector Si varies, the magnitude of the four-vector Sα remains

constant.
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Figure 4-3: Evolution of the spin vector along an equatorial orbit around a
Schwarzschild black hole with orbital parameters p = 10M and e = 0.3. The ini-
tial spin vector is ~S0 = µ2 φ̂. The spin precession is described by the spin angles α
and β, defined in Eq. (4.77) and (4.78), and the magnitude of the spatial part of the
spin vector, defined in Eq. (4.79). The angles α = π/2 and β describe a spin vector
rotating in the equatorial plane.

For this configuration, the only nonzero component of the spin force is F θ. We do

not compare the spin force with the magnitude of the gravitational self-force because

by symmetry, the θ-component of the gravitational self-force is exactly zero. The fact

that F θ is nonzero means that the spin of the small body causes the orbit to oscillate

around the equatorial plane. Figure 4-4 shows the difference between the trajectory

of a body with mass µ = 10−5M and the background geodesic that is equatorial with

orbital parameters p = 10M and e = 0.3. The primary effect of the small body’s

spinis to make the orbit to oscillate around the equatorial plane by an amount ∆θ.

There are also small changes to the r and φ motions.

4.4 Results: Orbits in Kerr

Orbits in the Kerr spacetime are much more complicated than in Schwarzschild.

Unlike in the Schwarzschild case, we cannot map every orbit to an equatorial orbit

via a coordinate transformation. In general, both the r and θ motions are periodic,

and they are described by coupled differential equations.
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Figure 4-4: Comparison between the trajectory of a body with mass µ = 10−5M
and initial spin vector ~S0 = µ2 φ̂ and a geodesic. The background geodesic is an
equatorial orbit around a Schwarzschild black hole with orbital parameters p = 10M
and e = 0.3. The spin of the small body causes the orbit to oscillate around the
equatorial plane by an amount ∆θ. There are also slight differences in the r and φ
motions.
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Additionally, in order to describe the spin vector as in Sec. 4.3, we need to be

able to describe the spin vector in orthonormal coordinates (t̂, r̂, θ̂, φ̂), which is more

complicated than in the Schwarzschild case since the Kerr metric is not diagonal. We

introduce an orthonormal basis,

vt̂ =

√
∆

Σ

(
dt+ a sin2 θ dφ

)
, (4.80a)

vt̂ =

√
Σ

∆
dr , (4.80b)

vθ̂ =
√

Σ dθ , (4.80c)

vφ̂ =
sin θ√

Σ

[
a dt+

(
r2 + a2

)
dφ
]
, (4.80d)

where ∆ ≡ r2 − 2Mr + a2 and Σ ≡ r2 + a2 cos2 θ, as given in Eq. (1.2). The

spin components in this orthonormal basis are related to the components in Boyer-

Lindquest coordinates by

S t̂ =

√
∆

Σ
St +

a sin θ√
Σ

Sφ , (4.81a)

S r̂ =

√
Σ

∆
Sr , (4.81b)

S θ̂ =
√

Σ Sθ , (4.81c)

Sφ̂ = a sin2 θ

√
∆

Σ
St +

(r2 + a2) sin θ√
Σ

Sφ . (4.81d)

Then we relate the spin components in coordinates (t̂, r̂, θ̂, φ̂) to Cartesian coordinates

(x, y, z) as given in Eq. (4.76), and we define the spin angles α and β as in Eqs. (4.77)

and (4.78) and the magnitude of the spatial portion of the spin vector |Si| as in

Eq. (4.79). Note that this rotation to Cartesian coordinates is not strictly correct

since the Kerr spacetime is not spherically symmetric; however, it is sufficient to

describe the precession of the spin vector.

Now we are ready to compute the effect of spin on Kerr orbits. Below we com-

pute the spin vector and trajectory for several different initial spin orientations and

background geodesics.
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4.4.1 Case 1: Equatorial orbit, initial spin ~S0 = µ2 θ̂

We begin by considering the case where the background geodesic is an equatorial

orbit, and the initial spin vector is aligned with the spin of the MBH. We choose to

let ~S0 = µ2 θ̂ so the magnitude of the spin vector is |~S| = µ2. Since the spin of the

orbiting body, the spin of the MBH, and the orbital angular momentum are all aligned,

the spin remains constant along the orbit. We show the deviation of the trajectory

from the background geodesic in Fig. 4-5, where the background spacetime is the

Kerr metric with spin a = 0.5M , the mass of the orbiting body is µ = 10−5M , and

the background geodesic has orbital parameters p = 10M and e = 0.3. These results

are very similar to what we found for an equatorial orbit around a Schwarzschild

black hole with the same orbital parameters. The spin of the orbiting body produces

a phase difference between the small body’s r and φ motion and the background

geodesic. The θ-component of the spin force is zero, so the trajectory remains in the

equatorial plane.
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Figure 4-5: Comparison between the trajectory of a body with mass µ = 10−5M
and initial spin vector ~S0 = µ2 θ̂ and a geodesic. The background geodesic is an
equatorial orbit around a Kerr black hole with spin a = 0.5M and orbital parameters
p = 10 M and e = 0.3. The spin of the small body produces a phase difference
between the geodesic and perturbed trajectories, which causes ∆r to grow. There is
also an accumulated phase difference in the φ coordinate.
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4.4.2 Case 2: Inclined orbit, initial spin ~S0 = µ2 θ̂

Now we consider the motion of a small body with initial spin vector ~S0 = µ2 θ̂

along on inclined orbit. We choose a background geodesic around a Kerr black hole

with a = 0.5M and orbital parameters p = 10M , e = 0.3, and θmin = π/3. Since the

orbital angular momentum and spin of the small body are not aligned, the spin vector

precesses along the orbit. We plot the evolution of the spin vector in Fig. 4-6. The

spin angles α and β, defined in Eq. (4.77) and (4.78), respectively, describe precession

of the spin vector. As the small body orbits the black hole, the spin of the small body

slowly rotates in the equatorial plane. The component aligned with the spin of the

black hole remains nearly constant, with small, rapid oscillations around the average

value. We plot the change in the trajectory due to the spin of the small body for

an orbiting body with mass µ = 10−5M in Fig. 4-7. For this configuration, the new

r and θ motions are out of phase with the background geodesic. There is also an

accumulated phase difference in the φ direction.
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Figure 4-6: Evolution of the spin vector along an equatorial orbit around a Kerr black
hole of spin a = 0.5M with orbital parameters p = 10M , e = 0.3, and θmin = π/3.

The initial spin vector is ~S0 = µ2 θ̂. The spin angles α and β describe the orientation
of the spin vector, as defined in Eq. (4.77) and (4.78), respectively. The quantity |Si|
is the magnitude of the spatial part of the spin vector [Eq. (4.79)].
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Figure 4-7: Comparison between the trajectory of a body with mass µ = 10−5M and
initial spin vector ~S0 = µ2 θ̂ and a geodesic. The background geodesic is an inclined
orbit around a Kerr black hole with spin a = 0.5M and orbital parameters p = 10M ,
e = 0.3, and θmin = π/3. The spin of the small body perturbs the motion. There is
an accumulated phase difference between the trajectory and the background geodesic
in the r, θ, and φ coordinates.
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4.4.3 Case 3: Inclined orbit, initial spin ~S0 = µ2 φ̂

We conclude with the case where the initial spin vector has the form ~S0 = µ2 φ̂

and magnitude |~S| = µ2. We look at a background geodesic of a Kerr black hole

with spin a = 0.5M and orbital parameters µ = 10−5M , p = 10M , e = 0.3, and

θmin = π/3. Figure 4-8 plots the evolution of the spin vector, and Fig. 4-8 shows

the deviation of the trajectory from the background geodesic. For this configuration,

the spin rotates more rapidly in the equatorial plane than for the configuration in

Sec. 4.4.2. The initial spin vector lies in the equatorial plane, and as the small body

orbits, the spin oscillates rapidly around the equatorial plane. We plot the change

in the trajectory in Fig. 4-9. The results are similar to what we found in Sec. 4.3.2

for a particle with initial spin vector ~S0 = µ2 φ̂ around a Schwarzschild black hole.

The perturbations to the trajectory in the r, θ, and φ directions average to zero

over long times, indicating that there is no accumulated phase difference between the

trajectory and the background geodesic. However, the spin of the small body does

produce instantaneous perturbations to the trajectory.
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Figure 4-8: Evolution of the spin vector along an equatorial orbit around a Kerr black
hole of spin a = 0.5M with orbital parameters p = 10M , e = 0.3, and θmin = π/3.

The initial spin vector is ~S0 = µ2 φ̂. The spin precession is described by the spin
angles α and β, defined in Eq. (4.77) and (4.78), and the magnitude of the spatial
part of the spin vector, defined in Eq. (4.79).
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Figure 4-9: Comparison between the trajectory of a body with mass µ = 10−5M and
initial spin vector ~S0 = µ2 φ̂ and a geodesic. The background geodesic is an orbit
around a Kerr black hole with orbital parameters p = 10M , e = 0.3, and θmin = π/3.
The spin of the small body causes the orbit to oscillate around the equatorial plane
by an amount ∆θ. There are also perturbations to the r and φ coordinates, but there
is no accumulated phase difference in r or φ.
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4.5 Summary and future work

This chapter presents a first analysis of the effect of spin-curvature coupling on the

motion of a small body orbiting a massive black hole. We begin by deriving the

equation of motion for the small body and the spin evolution equation in Sec. 4.2,

following the approach of Papapetrou [68]. We show that the equations of motion

follow from the dynamical equation ∇µT
µν = 0 and the definition of a pole-dipole

particle. We compute the effects of the spin of the small body in Secs. 4.3 and 4.4. We

begin by considering orbits in the Schwarzschild spacetime in Sec. 4.3. We compute

the change in the trajectory and evolution of the spin vector for different initial

values of the spin vector. We also compare the spin force to the conservative part of

the gravitational self-force, as calculated by Barack and Sago [7]. We find that the

magnitude of the spin force is within about an order of magnitude of the gravitation

self-force, indicating that the effect of the spin force is not negligible compared to

the gravitational self-force. In Sec. 4.4 we calculate the change in the trajectory and

evolution of the spin vector for orbits in the Kerr spacetime.

Now that we have laid the groundwork for describing the motion of spinning

particles in the Kerr spacetime, it would be interesting to look for observational

effects of the spin force. Spin effects could have an effect on the motion of a pulsar

around a MBH. There are currently efforts underway to find a pulsar orbiting the

galactic center with the goal of using pulsar timing to map the spacetime around Sgr

A* [57]. Spin-curvature coupling will also change the GWs emitted by an EMRI.

Since the detection of low-frequency GWs relies upon having very accurate waveform

models for matched filtering, it would be interesting to see how much the spin of the

small body affects the waveform.

Since we can expand any function evaluated along a Kerr geodesic in harmonics of

the orbital frequencies Ωr, Ωθ, and Ωφ (cf. Ref. [32]), we can simplify our calculations

by working in the frequency domain. Furthermore, the results we obtained in the time

domain show that the spin precession and spin force vary smoothly in a harmonic

fashion, indicating that they can be described well by a Fourier expansion. This would

134



speed up calculations since instead of having to do a full numerical evolution of the

trajectory, we would only need to perform a few numerical integrals to determine

the Fourier coefficients. Also, having a description of the spin force in the frequency

domain would allow us to use existing frequency-domain codes to compute the GW

emission. We are currently in the process of calculating the spin force in the frequency

domain.
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Appendix A

Averaging functions along black

hole orbits

In this appendix, we describe how to average functions along geodesics of Kerr using

a technique developed by Drasco and Hughes [32]. A key element of this technique

is the separation of the r and θ motion by introducing a new time coordinate. In

Boyer-Lindquist coordinates, the r and θ equations of motion [Eqs. (1.14) and (1.15)]

remain coupled due to the factors of Σ ≡ r2 + a2 cos2 θ that appear on the left-hand

side of these equations. We can eliminate the residual coupling between r and θ

by parametrizing the orbits in terms of the time coordinate λ, which is defined by

dλ = dτ/Σ. Then the equations of motion become

(
dr

dλ

)2

= R(r) , (A.1)(
dθ

dλ

)2

= Θ(θ) , (A.2)

dφ

dλ
= Φ(r, θ) , (A.3)

dt

dλ
= T (r, θ) , (A.4)

where R(r), Θ(θ), Φ(r, θ), and T (r, θ) are defined in Eqs. (1.14) – (1.17).

Since this choice explicitly separates the r and θ motion, we can construct r(λ)
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and θ(λ) simply by integrating Eq. (A.1) and (A.2), respectively. The r and θ periods

are given by

Λr = 2

∫ ra

rp

dr√
R(r)

, (A.5)

Λθ = 4

∫ π/2

θmin

dθ√
Θ(θ)

. (A.6)

The conjugate frequencies are

Υr,θ = 2π/Λr,θ , (A.7)

and the corresponding angles are defined as

wr,θ = Υr,θλ . (A.8)

We use this parametrization of the r and θ motion to define Υt, the averaged value

of the function T (r, θ),

Υt =
1

(2π)2

∫ 2π

0

dwr
∫ 2π

0

dwθ T [r(wr), θ(wθ)] . (A.9)

The long-time average of any black hole orbit functional f(r, θ) is given by

〈f〉 ≡ lim
T→∞

1

2T

∫ T

−T
f [r(t), θ(t)] dt

=
1

(2π)2Υt

∫ 2π

0

dwr
∫ 2π

0

dwθf
[
r(wr), θ(wθ)

]
T
[
r(wr), θ(wθ)

]
. (A.10)

This is the procedure we use to compute 〈H1〉 in Sec. 2.4.
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Appendix B

Newtonian precession frequencies

For weak-field orbits, we expect that the bumpy black hole frequency shifts in Sec. 2.4

[Eqs. (2.66) – (2.68)] are described well using Newtonian gravity. In this appendix,

we compute the Newtonian frequency shifts; in Secs. 2.5 and 2.6, we show that the

frequency shifts limit to the results we develop here for weak-field orbits.

As in the relativistic calculation in Sec. 1.3.3, we compute frequency shifts due

to multipolar “bumps” by examining the variation of a perturbed Hamiltonian with

respect to the action variables:

m δΩi =
∂〈H1〉
∂Ji

. (B.1)

(Note that in Newtonian gravity, there is no distinction between coordinate time and

proper time.) The actions are defined by Eqs. (1.38) – (1.40). For a body of mass m

orbiting a mass M , in Newtonian gravity the action variables are

Jr = Mm
√
p

(
1√

1− e2
− 1

)
, (B.2)

Jθ = Mm
√
p (1− sin θmin) , (B.3)

Jφ = Mm
√
p sin θmin . (B.4)
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We define the perturbation to the Hamiltonian as

HNewt
1 = m δVl(r, θ) =

mBlM
l+1

rl+1
Yl0(cos θ) . (B.5)

To perform the averaging, first we reparameterize the radial and angular motion in a

manner similar to the parametrization we use for black hole orbits:

r =
pM

1 + e cosψ
, (B.6)

cos θ = cos θmin cos (ψ − ψ0) . (B.7)

Notice that the radial and angular motions vary in phase with one another in the

Newtonian limit. The angle ψ0 is an offset phase between these motions. The equation

of motion for ψ is
dψ

dt
=

(1 + e cosψ)2

p3/2M
. (B.8)

The averaged Hamiltonian is given by

〈HNewt
1 〉 =

m

TK

∫ TK

0

δVl [r(t), θ(t)] dt

=
m

TK

∫ 2π

0

(
dψ

dt

)−1

δVl [r(ψ), cos θ(ψ)] dψ , (B.9)

where TK is the Keplerian orbital period,

TK = 2πM

(
p

1− e2

)3/2

. (B.10)

We can put the orbital period in a more familiar form if we replace the semilatus

rectum p with the semi-major axis a = pM/(1− e2):

TK = 2πM
( a
M

)3/2

. (B.11)

Using these results, we now compute the effects of l = 2, 3, and 4 perturbations in

Newtonian gravity.
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B.1 Quadrupole shift (l = 2)

The quadrupole bump is given by the potential

δV l=2 =
B2M

3

4r3

√
5

π

(
3 cos2 θ − 1

)
, (B.12)

for which we find

〈H1〉 =
mB2

8p3

√
5

π

(
1− e2

)3/2 (
1− 3 sin2 θmin

)
. (B.13)

Varying this averaged Hamiltonian with respect to Jr,θ,φ, we find

δΩr = ωK
3B2

8p2

√
5

π

√
1− e2

(
3 sin2 θmin − 1

)
, (B.14)

δΩθ = ωK
3B2

8p2

√
5

π

[
sin2 θmin

(
5 + 3

√
1− e2

)
−
√

1− e2 − 1
]
, (B.15)

δΩφ = ωK
3B2

8p2

√
5

π

[
sin2 θmin

(
5 + 3

√
1− e2

)
−
√

1− e2 − 1

−2 sin θmin] . (B.16)

These frequencies are written using the Kepler frequency ωK = 2π/TK .

Equations (B.14) – (B.16) reproduce well-known results for motion in a spherical

potential augmented by a quadrupole perturbation. To facilitate comparison with

the literature, it is useful to change our description of the orientation of the orbital

plane from θmin, the minimum angle θ reaches over an orbit, to the inclination angle

ι = π/2− θmin. We then construct the precession frequencies

Ωapsis = δΩθ − δΩr = ωK
3B2

8p2

√
5

π

(
5 cos2 ι− 1

)
, (B.17)

Ωplane = δΩφ − δΩθ = −ωK 3B2

4p2

√
5

π
cos ι ; (B.18)

Ωapsis describes the frequency of the orbit’s apsidal precession within its orbital plane,

and Ωplane the frequency at which the orbital plane precesses around the symmetry
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axis. These frequencies reproduce expressions that can be found in the literature; cf.

Sec. 12.3C of Ref. [39]. The precession of the orbit’s periastron, which is due to a

beat between the azimuthal and radial motions, is given by

Ωperi = δΩφ − δΩr = ωK
3B2

8p2

√
5

π

(
5 cos2 ι− 2 cos ι− 1

)
. (B.19)

In the equatorial limit (ι = 0), this result agrees with Eq. (A4) of [25] if we identify

their parameter Q with B2M
3
√

5/4π.

B.2 Octupole shift (l = 3)

The octupole bump is given by the potential

δV l=3 =
B3M

4

4r4

√
7

π

(
5 cos3 θ − 3 cos θ

)
, (B.20)

leading to

〈H1〉 =
3mB3e

16p4

√
7

π

(
1− e2

)3/2
cos θmin

(
5 cos2 θmin − 4

)
cosψ0 . (B.21)

The value of 〈H1〉 is proportional to cosψ0, and so it depends on the phase offset of

the radial and angular motions. Over very long timescales, this dependence averages

out due to precession effects; however, on timescales that are not long enough for ψ0

to vary over its full range, there is a residual impact. For black hole orbits, the r

and θ motions do not vary in phase with one another, and so this averaging is much

stronger, and we can treat 〈H1〉 = 0. Therefore, on average there is no influence

from the l = 3 perturbation, nor from any odd l multipolar bump; however, the

instantaneous impact of odd l bumps is non-zero.
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B.3 Hexadecapole shift (l = 4)

Finally, for the hexadecapole bump, we have

δV l=4 =
B4M

5

16r5

√
9

π

(
35 cos4 θ − 30 cos2 θ + 3

)
, (B.22)

leading to

〈H1〉 =
3mB4

256p5

√
9

π

(
1− e2

)3/2 [
8(2 + 3e2)− 20 cos2 θmin(4 + 3e2

+6e2 cos2 ψ0) + 35 cos4 θmin(2 + e2 + 4e2 cos2 ψ0)
]
. (B.23)

We focus on the secular (long-time average) precessions, and average this over ψ0,

leaving

〈H1〉 =
3mB4

256p5

√
9

π

(
1− e2

)3/2
(2 + 3e2)

(
8− 40 cos2 θmin + 35 cos4 θmin

)
. (B.24)

The precession frequencies which arise from this are

δΩr = −ωK
45B4

256p4

√
9

π
e2
√

1− e2
(
8− 40 cos2 θmin + 35 cos4 θmin

)
, (B.25)

δΩθ = −ωK
15B4

256p4

√
9

π

{
8
[
8 + 3e2

(
3 +
√

1− e2
)]

−4 cos2 θmin

[
62 + e2

(
63 + 30

√
1− e2

)]
+7 cos4 θmin

[
28 + 3e2

(
9 + 5

√
1− e2

)]}
, (B.26)

δΩφ = ωK
15B4

256p4

√
9

π

{
−8
[
8 + 3e2

(
3 +
√

1− e2
)]

+4 cos2 θmin

[
62 + e2

(
63 + 30

√
1− e2

)]
−7 cos4 θmin

[
28 + 3e2

(
9 + 5

√
1− e2

)]
+4
(
4− 7 cos2 θmin

) (
2 + 3e2

)
sin θmin

}
. (B.27)

’
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Appendix C

Definitions of the modified gravity

bumpy Kerr metrics

Here we provide explicit expressions for the polynomials appearing in the conditions

that guarantee the existence of a Carter constant in Chapter 3. The polynomials that

appear in the Carter conditions for the bumpy Kerr metric [Eq. (3.10)] are

P BK

1 = r6 + 5a2r4 + 2a4r2 − 2a2 cos2 θ(2r4 + a2r2 + a4)

−a4 cos4 θ(r2 − a2) , (C.1)

P BK

2 = r4M + a2r2(r + 2M)− a2 cos2 θ[r2(r + 2M)− a2(r − 2M)]

−a4 cos4 θ(r −M) , (C.2)

P BK

3 = r[r3 + a2(r + 4M)] + a2 cos2 θ(r2 − 4Mr + a2) , (C.3)

P BK

4 = r3[r2(r − 2M) + a2(3r − 4M)]− 2r2a2 cos2 θ(r2 − 2Mr − a2)

−a4 cos4 θ(3r2 − 2Mr + a2) , (C.4)

P BK

5 = r3(r − 2M)[r2(r + 2M) + a2(r + 4M)]

−r3 cos2 θ[r4 − 4M2r2 − a2(r2 − 6Mr + 16M2)− 2a4]

−a2 cos4 θ[2r3(r2 − 2Mr + 4M2) + a2r(r2 + 4Mr − 4M2)

−a4(r − 2M)]− a4 cos6 θ(r − 2M)∆ , (C.5)

P BK

6 = −∆ sin2 θ(Σ∆− 2MrΣ + 4Mra2 + 4Mr3)

2Σ2
, (C.6)
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P BK

7 = −a∆ sin2 θ(Σ− 4Mr)

2Σ2
, (C.7)

P BK

8 = − sin2 θ(8r11 − 4r7Σ2 + 16M2r9 + 2r9Σ− 44a6MΣ∆− 8a10M

−68a4Mr4Σ + 128a4M2r3Σ− 56a6M2rΣ− 12a4r5Σ− 16a6r3Σ

−6a8rΣ− 36a2Mr6Σ + 40a2Mr4Σ2 + 32a2r9 − 3r5Σ3 − 8Mr10

−20a2M2rΣ3 − 16a2Mr8 − 16a2M2r7 − 48a6M2r3 + 16a6Mr4

−56a2M2r3Σ2 + 64a2M2r5Σ + 72a4M2rΣ2 − 32M2r7Σ

−4Mr8Σ− 12a4r3Σ2 − 12a2r5Σ2 − 4Mr6Σ2 − 4a6rΣ2

−44a6MΣ2 + 12Mr4Σ3 − 8M2r3Σ3 + 24M2r5Σ2 + 2a2r3Σ3

+5a4rΣ3 + 12a4MΣ3) , (C.8)

P BK

9 = a sin2 θ(−16M2r5Σ + 8M2r3Σ2 − 4Mr4Σ2 − 20Mr6Σ

−32a2M2r5 + 24Mr8 − 24a4r5 − 8a8M − 8r9 + 56a2Mr6

+40a4Mr4 − 24a2r7 − 8a6r3 + 8a6M∆ + 16a6M2r − 12a4MΣ2

+28a6MΣ− 36a4MΣ∆ + 12a2MΣ2∆− 48a4M2r3 + 8a2M2rΣ2

−3a2rΣ3 + 16M2r7 + 2a2MΣ3 + 18a2r5Σ + 6r7Σ + 18a4r3Σ

+6a6rΣ + r3Σ3 + 48a2M2r3Σ− 40a4M2rΣ− 48a2Mr4Σ) , (C.9)

P BK

10 = sin2 θ(−12a4MrΣ2 − 48a2r8 + 6a2r4Σ2 − 48a4r6 + 16a6M2∆

+32a6M3r + 8a6Σ∆− 8a2M2Σ3 − 16r10 − 16M2r8

+6a2MrΣ3 + 24a4r4Σ + 32Mr9 − 32a2Mr3Σ2 − 8a8Σ

+8a6M2Σ + 40M2r6Σ + 16a6MrΣ− 32a2Mr5Σ + 8r8Σ

−16a8M2 + 96a2M2r4Σ− 16a6r4 + 32a4Mr5 − 80a2M2r6

−48a4M2r4 + 16a4Mr3Σ + 24a2r6Σ− 6Mr3Σ3 + 3r4Σ3

+2r6Σ2 + 5a4Σ3 + 64a2Mr7 + 24Mr5Σ2 − 24M2r4Σ2

−48Mr7Σ− 24a6M2Σ sin2 θ − 6a2Σ3∆ + 6a4Σ2∆− 4a6Σ2) , (C.10)

P BK

11 = −8aM sin2 θ(r3Σ2 − 5r5Σ + 4r7 − 3arΣ2 + 6a2r3Σ + a2MΣ2

+a2MΣ∆ + 2a2M2rΣ− 3a4MΣ− 8a2Mr4 + 3a4rΣ− 2Mr6

−4a4r3 + 3Mr4Σ + 2a4M∆ + 4a4M2r − 2a6M) , (C.11)
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P BK

12 = −2r(−28a2Σ∆− 56a2MrΣ + 18a4Σ + Σ3 + 2Σ2∆ + 4MrΣ2

+4a2Σ2 − 18r4Σ + 16r6 + 32a2r4 + 16a4∆ + 32a4Mr − 16a6) , (C.12)

P BK

13 = 2a2 sin2 θ(8a2Σδ + 16a2MrΣ− 8a4Σ− Σ3 − 6Σ2∆− 12MrΣ2

+8a2Σ2 + 24r4Σ− 16r6 − 16a2r4) , (C.13)

P BK

14 = 4aMr sin2 θ(4r4 − Σ∆ + 2MrΣ− 4a2Σ + 4a2r2) , (C.14)

P BK

15 = Σ2(4r6 + 2a2Σ2 − 4a2Σ∆− 8a2MrΣ + 2a4Σ + 8a2r4 − Σ2∆

−2MrΣ2 − 2r4Σ + 4a4∆ + 8a4Mr − 4a6) . (C.15)

The polynomial functions that appear in the Carter conditions for the deformed Kerr

metric [Eq. (3.24)] are

PDK

1 = r2(r4 + 5a2r2 + 2a4)− 2a2 cos2 θ(2r4 + a2r2 + a4)

−a4 cos4 θ(r2 − a2) , (C.16)

PDK

2 = r2(r2M + a2r + 2a2M)− a2 cos2 θ[r2(r + 2M)− a2(r − 2M)]

−a4 cos4 θ(r −M) , (C.17)

PDK

3 = r3(r − 2M)[r2(r + 2M) + a2(r + 4M)]

+2r3a2 cos2 θ(r2 − 2Mr + 4M2 + a2) + a4 cos4 θ(r − 2M)∆ , (C.18)

PDK

4 = r3[r2(r − 2M) + a2(3r − 4M)]− 2r2a2 cos2 θ(r2 − 2Mr − a2)

−a4 cos4 θ(3r2 − 2Mr + a2) , (C.19)

PDK

5 = r4(r6 + 3a2r4 + 8a4r2 + 2a6)− 3a4r4 cos2 θ(3r2 − a2)

+a4 cos4 θ(5r6 − 3a2r4 + 6a4r2 + 2a6)

+a6 cos6 θ(2r4 − 3a2r2 − a4) , (C.20)

PDK

6 = r4(r2 − 6a2) + 3r2a2 cos2 θ(3r2 + 4a2)− a4 cos2 θ(9r2 − 2a2)

−a6 cos6 θ , (C.21)

PDK

7 = r6 + 10a2r4 + 6a4r2 − a2 cos2 θ(11r4 + 16a2r2 + 10a4)

+a4 cos4 θ(5r2 + 6a2) + a6 cos6 θ , (C.22)

PDK

8 = r2(3r2 − a2)− a2 cos2 θ(r2 − 3a2) , (C.23)

147



PDK

9 = r2(3r4 + 5a2r2 − 2a4)− 2a2 cos2 θ(r2 + a2)(2r2 − 3a2)

+a4 cos4 θ(r2 − 3a2) , (C.24)

PDK

10 = r2(3r2 − a2)− 3 cos2 θ(r4 − a4) + a2 cos4 θ(r2 − 3a2) , (C.25)

PDK

11 = −r4(3r6 − 2Mr5 + 24a2r4 − 18a2Mr3 − 8a2M2r2 + 19a4r2

−24a4Mr + 48a4M2 + 6a6) + a2 cos2 θ(21r8 − 18Mr7

−8M2r6 + 18a2r6 − 42a2Mr5 + 72a2M2r4 + 33a4r4

−32a4Mr3 + 24a4M2r2 + 12a6r2 − 16a6M2)

+a4 cos4 θ(11r6 + 6Mr5 − 24M2r4 − 12a2r4 + 22a2Mr3

−24a2M2r2 + 3a4r2 − 24a4Mr + 24a4M2 + 2a6)

+a6 cos6 θ(3r4 − 6Mr3 − 6a2r2 + 18a2Mr − 8a2M2 − a4) , (C.26)

PDK

12 = r3(r3M + 3a2r2 − 6a2Mr − a4)− a2 cos2 θ(3r5 − 3Mr4

−3a2Mr2 − 3a4r + 2a4M) + a4 cos4 θ(r3 − 3a2r + a2M) , (C.27)

PDK

13 = r3(r6 + 9a2r4 − 10a2Mr3 + 6a4r2 − 8a4Mr + 2a6)

− cos2 θ r(r8 + 18a2r6 − 22a2Mr5 + 15a4r4 − 26a4Mr3

+20a6r2 − 12a6Mr + 6a8) + a2 cos4 θ(9r7 − 12Mr6 + 6a2r5

−22a2Mr4 + 27a4r3 − 18a4Mr2 + 6a6r + 4a6M)

+a4 cos6 θ(3r5 + 4Mr4 − 10a2r3 + 6a2Mr2 + 3a4r − 6a4M)

+a6 cos8 θ(r3 − 3a2r + 2a2M) , (C.28)

PDK

14 = r3(3r8 + 4Mr7 + 22a2r6 − 30a2Mr5 + 8a2M2r4 + 29a4r4

−14a4Mr3 + 12a6r2 − 12a6Mr − 16a6M2 + 2a8)

−a2 cos2 θ(15r9 − 24Mr8 + 8M2r7 + 10a2Mr6 + 21a4r5

−34a4Mr4 − 32a4M2r3 + 24a6r3 + 12a6Mr2 − 32a6M2r

+6a8r + 8a8M)− a4 cos4 θ(13r7 − 32Mr6 + 6a2r5 + 14a2Mr4

+8a2M2r3 − 3a4r3 − 42a4Mr2 + 48a4M2r + 4a6r − 16a6M)

−a6 cos6 θ(3r5 − 12Mr4 + 8M2r3 − 2a2r3 + 18a2Mr2

−16a2M2r − 5a4r + 6a4M) , (C.29)
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PDK

15 = r3(r6 − 8M2r4 + 9a2r4 − 22a2Mr3 + 6a4r2 − 4a4Mr

+16a4M2 + 2a6)− a2 cos2 θ(9r7 − 28Mr6 + 9a2r5 − 18a2Mr4

+16a2M2r3 + 16a2M2r3 + 18a4r3 − 36a4Mr2 + 6a6r − 8a6M)

−a4 cos4 θ[3r4 − 4Mr3 + r2(8M2 − 9a2) + 18a2Mr − 16a2M2]

−a6 cos6 θ(r3 − 3a2r + 2a2M) . (C.30)
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[4] T. Bäckdahl and M. Herberthson. Explicit multipole moments of stationary ax-
isymmetric spacetimes. Classical and Quantum Gravity, 22:3585–3594, Septem-
ber 2005.

[5] L. Barack. TOPICAL REVIEW: Gravitational self-force in extreme mass-ratio
inspirals. Classical and Quantum Gravity, 26(21):213001, November 2009.

[6] L. Barack and C. Cutler. LISA capture sources: Approximate waveforms,
signal-to-noise ratios, and parameter estimation accuracy. Physical Review D,
69:082005, Apr 2004.

[7] L. Barack and N. Sago. Gravitational self-force on a particle in eccentric orbit
around a Schwarzschild black hole. Physical Review D, 81(8):084021, April
2010.

[8] E. Barausse and A. Buonanno. Improved effective-one-body hamiltonian for
spinning black-hole binaries. Physical Review D, 81:084024, Apr 2010.

[9] E. Barausse, A. Buonanno, S. A. Hughes, G. Khanna, S. O’Sullivan, and Y. Pan.
Modeling multipolar gravitational-wave emission from small mass-ratio mergers.
Physical Review D, 85(2):024046, January 2012.

[10] P. Bender et al. Laser Interferometer Space Antenna for the Detection and
Observation of Gravitational Waves: An International Project in the Field of
Fundamental Physics in Space. LISA Pre-Phase A Report, Max-Planck-Institut
für Quantenoptik, Garching, July 1998. MPQ 233.

151



[11] B. Bertotti, L. Iess, and P. Tortora. A test of general relativity using radio links
with the Cassini spacecraft. Nature, 425:374–376, September 2003.

[12] L. Blanchet. Gravitational Radiation from Post-Newtonian Sources and Inspi-
ralling Compact Binaries. Living Reviews in Relativity, 9:4, June 2006.

[13] J. Brink. Spacetime encodings. I. A spacetime reconstruction problem. Physical
Review D, 78(10):102001, November 2008.

[14] J. Brink. Spacetime encodings. II. Pictures of integrability. Physical Review D,
78(10):102002, November 2008.

[15] J. Brink. Spacetime encodings. III. Second order Killing tensors. Physical
Review D, 81(2):022001, January 2010.

[16] J. Brink. Spacetime encodings. IV. The relationship between Weyl curvature
and Killing tensors in stationary axisymmetric vacuum spacetimes. Physical
Review D, 81(2):022002, January 2010.

[17] J. Brink. Formal solution of the fourth order Killing equations for stationary
axisymmetric vacuum spacetimes. Physical Review D, 84(10):104015, November
2011.

[18] A. E. Broderick, V. L. Fish, S. S. Doeleman, and A. Loeb. Estimating the
Parameters of Sagittarius A*’s Accretion Flow Via Millimeter VLBI. The As-
trophysical Journal, 697:45–54, May 2009.

[19] D. A. Brown, J. Brink, H. Fang, J. R. Gair, C. Li, G. Lovelace, I. Man-
del, and K. S. Thorne. Prospects for Detection of Gravitational Waves from
Intermediate-Mass-Ratio Inspirals. Physical Review Letters, 99(20):201102,
November 2007.

[20] L. M. Burko. Orbital evolution of a test particle around a black hole. II. Compar-
ison of contributions of spin-orbit coupling and the self-force. Physical Review
D, 69(4):044011, February 2004.

[21] B. A. Campbell, N. Kaloper, and K. A. Olive. Classical hair for Kerr-Newman
black holes in string gravity. Physics Letters B, 285:199–205, July 1992.

[22] B. Carter. Global Structure of the Kerr Family of Gravitational Fields. Physical
Review, 174:1559–1571, October 1968.

[23] B. Carter. Axisymmetric Black Hole Has Only Two Degrees of Freedom. Phys-
ical Review Letters, 26:331–333, February 1971.

[24] E. J. M. Colbert and M. C. Miller. Observational Evidence for Intermediate-
Mass Black Holes in Ultra-Luminous X-Ray Sources. In M. Novello, S. Perez
Bergliaffa, and R. Ruffini, editor, The Tenth Marcel Grossmann Meeting. On re-
cent developments in theoretical and experimental general relativity, gravitation
and relativistic field theories, page 530, February 2005.

152



[25] N. A. Collins and S. Hughes. Towards a formalism for mapping the spacetimes
of massive compact objects: Bumpy black holes. Physical Review D, 69:124022,
2004.

[26] M. Colpi, S. L. Shapiro, and I. Wasserman. Boson stars - Gravitational equi-
libria of self-interacting scalar fields. Physical Review Letters, 57:2485–2488,
November 1986.

[27] K. Danzmann. LISA - An ESA cornerstone mission for the detection and ob-
servation of gravitational waves. Advances in Space Research, 32:1233–1242,
October 2003.
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