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Abstract

This M.Eng. thesis introduces a distributed real-time task scheduler that is designed
and implemented to replace the role of a lock server for a cloud service that manages
data centers that contain virtual machines. A round-robin scheduling algorithm
is proposed that orders tasks based on their needs of locks, serializing tasks that
conflict in their lock use. Tasks are required to obtain all locks before execution. The
distributed part of the scheduler is based on Zookeeper, an open-source data service
for distributed applications. The scheduler includes a failover scheme that relies on
task states stored on Zookeeper. The design is highly available—the scheduler will
keep scheduling tasks as long as at least one instance is running. Experimental results
show that the scheduler cuts down overall task completion time by approximately a
half compared to a lock server on both benchmarks used.
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Chapter 1

Introduction

In a non-distributed program where multiple threads run on a single machine, access to

shared data (reads or updates) are commonly protected by in-memory locks. Similarly,

for a distributed system where processes coordinate over the network, access to shared

data also needs to be properly synchronized to protect against data corruption or

inconsistent system states. Shared data in a distributed system usually refers to data

stored in a storage device or cache that is accessed by multiple processes, such as

a shared database or distributed in-memory cache. The common approach to data

synchronization in distributed systems is to use a lock server that all processes go

through to acquire locks that protect the corresponding data before performing reads

or updates on the data. Lock servers usually implement a primary-backup scheme to

ensure availability.

In this thesis, the idea of using a task scheduler instead of a lock server is explored

for synchronizing operations of a multi-server application that serves remote client

requests to perform operations such as powering on a virtual machine or adding a new

host in the cloud. This multi-server application is called the virtual infrastructure

management system (VIMS).
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1.1 Motivation

The thesis idea was formed in the process of developing a new prototype of the

distributed VIMS. The new prototype is a multi-server application where operations

such as creating or removing a new virtual machine, powering on or off an existing

virtual machine, shutting down a host machine, moving a virtual machine to a different

host, etc., are performed by client sending the appropriate remote procedure calls

to one of the server instances. VIMS used to be a single-machine design that uses

in-memory locks, which does not scale well. As the hierarchical locking scheme grew

in complexity, deadlock problems became more popular and concurrency suffered from

inappropriate choices of locking levels. A task scheduler was proposed in order to

eliminate deadlocks and improve concurrency. This thesis explored this proposal.

1.1.1 Synchronization on Data Access Is Needed

Two client calls to the API service can conflict if they affect the same virtual infras-

tructure components. As a simple example, two powering calls for the same virtual

machine (VirtualMachine.powerOn and VirtualMachine.powerOff) cannot be exe-

cuted at the same time. The states of the virtual components need to be protected

from concurrent modifications.

1.1.2 Limitations on Using Locks

A single-machine system can use in-memory locks to protect data or states that are

accessed by multiple threads. Similarly, for a distributed system where multiple

machines coordinate over the network, shared states can be protected by a commonly

accessible lock server. Servers acquire and release locks in the same fashion; the only

difference is that the communication happens over the network, not in local memory.

VIMS used to be a single-machine design and uses hierarchical in-memory locks

that roughly correspond to the organization of the cloud infrastructure. I.e. top-level

locks protect the whole infrastructure (or data center); each level below it protects a

subcomponent contained by its parent-level components. For example, data center
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contains clusters, which contain hosts. So locks for a cluster is one level below data

center locks, and host locks are one level below cluster locks. Threads are required to

acquire locks in order, from the highest-level locks to the lowest-level locks.

As the system grows more complex over the years, the hierarchical locking scheme

has begun to show its limitations:

• The complexity of the locking hierarchy grows and deadlock problems become

more prominent and also harder to identify.

• Many operations end up requiring top-level locks. The system loses some

concurrency and task throughput is affected.

We tried to avoid those limitations when designing the data synchronization

mechanism for the new prototype, and a lock server seems likely to have the same

problem as the in-memory locks did. What is desired is a simplified lock acquisition

procedure that makes deadlocks harder to happen and easier to identify, and improved

task throughput.

This thesis explores a task scheduling approach instead of a lock server approach.

Task scheduling requires all resources (or locks) be specified before task execution,

which eliminates the possibility of having deadlocks in task execution code because

tasks are not acquiring locks in the middle any more. It also has more control over

when to start the tasks’ execution, which could be leveraged to improve throughput.

On the other hand, in order to use a task scheduler, tasks need to have well-defined

resource requirements before they start execution. This can be cumbersome because

tasks may need to resolve resource IDs before execution, possibly by querying the

VIMS database. For example, a VirtualMachine.powerOn operation needs lock on

the host that runs the virtual machine, and to obtain the host ID, one needs to query

the database for the virtual-machine-to-host mapping. Table 1.1 summarizes the

differences between the task scheduling approach and the locking approach.
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Task Scheduling Locking

Eliminate deadlocks Deadlocks are possible and may become
tricky in a complex locking scheme

Tasks acquire all required resources
as an atomic operation. Tasks do
not block once dispatched from
scheduler.

Tasks acquire locks one by one. They may
block in the middle of execution holding
locks to wait for other locks, which may
hinder performance.

Tasks’ resource requirements need
to be fully specified before execu-
tion.

Tasks can specify locks during execution
time.

Table 1.1: Comparison of Task Scheduling and Locking Approach

1.2 Distributed VIMS Architecture

This section introduces the system internals of the distributed VIMS that the scheduler

is designed for.

Distributed VIMS is a new prototype that was being developed at the time the

thesis was made. The overall functionality is realized by a collaboration of different

services (figure 1-1):

API Service Receives remote procedure calls from clients and executes them. Most

remote procedure calls received by the API service are operations to be performed

on one or more virtual infrastructure components, such as VirtualMachine

.powerOn for powering on virtual machines, and Host.destroy for excluding

the host from the cloud. Those operations are forwarded to the appropriate

host machine(s). Changes to the components’ states are written to database

(managed by the inventory service. The database itself is not shown on graph).

Inventory Service Manages the database that stores information about all virtual

machines, hosts and other virtual components in the cloud. All database reads

and writes are made through the inventory service.

Collector Service Listens to updates from all host machines and updates the

database accordingly.
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Figure 1-1: Software Architecture for Distributed VIMS

Coordinator Service Remembers IP addresses and other useful information for

service discovery. Services register themselves with the coordinator at startup

and retrieves information about other services through it.

Every service can have multiple instances running in parallel. The API service

instances are identical. Client can choose any instance to send their remote procedure

calls. Client knows about the services’ existence through the coordinator.
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1.2.1 Task Scheduler for Distributed VIMS

Task scheduler is a module that the API service communicates with to obtain required

resources before executing each task (figure 1-1, above the API service instances).

Once the task scheduler dispatches the task, it can be executed by the API service

without worrying about getting locks to protect data access. The resources will be

held by the task until its execution finishes.

1.3 Outline of Rest of Thesis

The rest of the thesis is organized as follows: Chapter 2 gives a brief survey on

task scheduling algorithms and identifies the similarities and differences between the

scheduling problems that these algorithms solve and the specific scheduling problem in

VIMS. Chapter 3 describes the proposed scheduling algorithm used for task scheduling

in VIMS. Chapter 4 describes the system design and implementation of the task

scheduler in VIMS, distributed using Zookeeper as the data service and implementing

a multi-instance failover scheme. Chapter 5 shows experimental results from tests

that evaluate the scheduler’s performance with respect to its scheduling efficiency,

availability (as a function of crash rate) and scalability (the scheduler system overhead).

Chapter 6 concludes the thesis by summarizing the contributions and listing future

work recommendations.
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Chapter 2

Related Work

Before introducing the task scheduler, it is helpful to define a few scheduling-related

terms. A brief survey of basic offline and online scheduling algorithms is then provided.

Finally, the characteristics of the scheduling problem for VIMS are defined in the

same set of terminologies.

2.1 Terminology

Terminologies used in defining the scheduling problem are provided below.

Offline Scheduling: Also called static scheduling. Tasks’ arrival times are know in

advance. Scheduler computes a schedule offline before the tasks come.

Online Scheduling: Also called dynamic or real-time scheduling. Task arrival times

are unknown and unpredictable. Scheduler only knows about the tasks when

they arrive.

Preemption: Refers to the ability of suspending tasks and resuming them later

possibly on a different machine [9].

Precedence Constraints: Specify tasks’ predecessor relationships in a directed

acyclic graph. Tasks cannot start before their predecessors finish [9].
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Conflicting Tasks: Specify conflicting tasks in an undirected graph. Neighboring

tasks cannot run at the same time [13]. (Unlike precedence constraints, the

order of their executions does not matter.)

Clairvoyant/Nonclairvoyant: Clairvoyant scheduling means that the tasks’ execu-

tion times are known to the scheduler, otherwise it is nonclairvoyant scheduling

[12].

Competitive Ratio: A scheduling algorithm is σ-competitive if for each input in-

stance the objective value of the schedule produced is at most σ times larger

than the optimal objective value [13, 12].

Makespan: The maximum task completion time among all tasks executed.

Release Time: Time when task is queued at scheduler.

Completion Time: Time when task finishes execution.

Flow Time: Time spent between release and completion, representing the response

time of the server.

2.2 Scheduling Algorithms

A few basic algorithms are mentioned for offline and online scheduling. Online

scheduling can be further divided into clairvoyant and nonclairvoyant scheduling.

2.2.1 Offline Scheduling

Offline scheduling algorithms mostly concern finding an optimal schedule given tasks’

execution time, arrival time, precedence constraints, etc. Hu’s algorithm [5] and

Coffman-Graham Algorithm [3] produce optimal schedules for tasks with precedence

constraints and equal execution times for minimizing makespan. The smallest-

processing-time (SPT) algorithm schedules task with the smallest execution time

first and is optimal for minimizing total completion time (sum of all task completion
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times) [9]. Hodgson-Moore algorithm [11] produces optimal schedules for tasks with

deadlines and minimizes the number of late tasks (tasks that missed their deadlines)

when a single machine is used.

2.2.2 Online Scheduling

Some basic clairvoyant algorithms are1:

• Shortest-remaining-processing-time (SRPT): Task with the shortest remaining

execution time is run first, preempting current running tasks if necessary. The

rule is optimal for average flow time on a single machine and provides the

best-known approximation for parallel machines [1].

• First-in-first-out (FIFO): Task with the earliest release time runs first. It is

optimal for minimizing maximum flow time on a single machine.

Some basic nonclairvoyant algorithms are2:

• Round-robin (RR): Each task runs for an equal amount of time in a circular

fashion.

• Shortest-elapsed-time-first (SETF): Task that has been executed for the shortest

amount of time is run first.

• Vertex coloring: This algorithm is for scheduling conflicting tasks with integral

release times and either equal execution times or preemption. At any time it

finds a coloring that uses the smallest number of colors on the available tasks’

conflict graph (neighboring tasks cannot have the same color). It then dispatches

tasks colored with one of the colors. It achieves a competitive ratio of 2 for

minimizing makespan [13].

1The list is a subset of standard algorithms for online-time clairvoyant model in [12].
2The list is partially taken from standard algorithms for online-time nonclairvoyant model in [12].
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2.2.3 Transaction Scheduling

Task scheduling has been studied in the context of database systems as transaction

scheduling and concurrency control. Database transactions need to obtain shared

locks on data reads and exclusive locks on data writes. Some of the concurrency

control and locking protocols proposed are:

• Two phase locking (2PL): The most basic concurrency control protocol for

synchronizing database transactions. A transactions only acquires locks in the

expanding phase and only releases locks in the shrinking phase [2]. A transaction

blocks if another transaction is holding the lock it needs.

• Tree protocol: Assuming data is organized into a rooted tree, a transaction can

lock an entity in the tree only if its parent entity is locked by the transaction. A

transaction can only lock an entity once. It can unlock an entity at any time.

The protocol only allows exclusive locks [15].

• Protocols on directed acyclic graphs: A number of protocols have been proposed

for data organized into a directed acyclic graph (DAG) [7, 14]. These methods

restrict the order in which entities can be locked based on the structure of the

DAG. They usually need to lock more entities than what is absolutely necessary

(more than 2PL) [4].

2.3 Characteristics of Scheduling in VIMS

The characteristics of the scheduling problem for VIMS are listed below. Tasks in

VIMS are remote procedure calls from clients with resource requirements, where

each resource requirement protects the states of an infrastructure component such

as a virtual machine, a host or a data center. Tasks’ resource requirements are fully

specified before execution.

• Online: Tasks are initiated from clients to the API service. Client requests are

mostly aperiodic and aperiodic. The tasks’ arrival times are unpredictable.
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• Nonclairvoyant: The tasks’ execution times are unknown. It is difficult to predict

task execution times; they vary with operation types, operation targets and the

load of the server machines.

• No Preemption: The API service does not support suspending and resuming

ongoing tasks. But tasks can be aborted by the API service if they cannot be

completed due to machine failures, network connection problems, etc. (Task

information are stored in the VIMS database and will be properly updated in

the case of an abortion by the API service. The scheduler will know that the

task is aborted from a task tracker that reads tasks’ status from the database.)

• No Hard Deadlines: Tasks do not have a deadline that they have to conform to.

In fact, no deadlines (hard or soft) are specified for tasks in VIMS.

• Conflicting Tasks: Tasks conflict with each other if their resource requirements

conflict.

• Non-uniform Machines: In VIMS, most tasks are first processed on the VIMS

server, and then directed to the specific host machines that the task is targeted

at. For example, a VirtualMachine.powerOn task is pre-processed by the API

service, then forwarded to the hosting server of the virtual machine to perform

the actual power on operation. Thus the task executions are typically spread

out into host machines in the cloud. This is different from most of the online

scheduling algorithms mentioned. They assume that tasks can run on any

machine if there are multiples of them.

The scheduling problem in VIMS has some different characteristics from a pure

online nonclairvoyant scheduling problem. The 2PL protocol mentioned in transaction

scheduling is a possible way of allocating resources to tasks, but it does not take

advantage of the predeclared resources and blocks just like in-memory locks. The tree

protocol also does not take advantage of the predeclared resources and it is only for

exclusive resources. The tree and the DAG protocols also assume a certain kind of

resource organization representing resource granting restrictions (such as not granting
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a resource unless parent is granted), which does not necessarily correspond to the

resource organization in VIMS. VIMS does not have such set of restrictions or rules on

lock acquisition. The next chapter describes the algorithm that is used for scheduling

in VIMS.
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Chapter 3

The Scheduling Algorithm

This chapter describes the scheduling algorithm used by the scheduler for distributed

VIMS.

3.1 Definitions

This section defines a few terms with respect to their specific meanings in VIMS.

Task A task refers to the operation requested by a remote procedure call from client,

such as VirtualMachine.powerOn.

Resource A resource is a piece of data that can be read or written by more than one

task. In VIMS, each virtual infrastructure component such as a virtual machine

and a host is a resource. Resources can be divided into finer granularity and

thus allow more concurrency.

Ownership Tasks specify resource requirements. A task can request shared (read-

only) or exclusive (read/write) ownership of a resource. Multiple tasks can share

a resource, while only one task can exclusively own the resource at a time.

Task Scheduling Given tasks with resource requirements, in real time dispatch tasks

in an order that does not conflict in resource utilization.
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3.2 Algorithm

The scheduling algorithm takes on a round-robin approach: Tasks are ordered by

release time and their resource requirements are checked in a round-robin fashion. The

ones whose resource requirements can be satisfied according to the current resource

availability are scheduled. If there are multiple such tasks with conflicting requirements,

the first one that the scheduler tries will be scheduled.

Figure 3-1 shows the pseudo code for the scheduling algorithm. The scheduler

keeps a global record of the current resources’ availability and checks each pending

task’s resource requirement against this record. If all the required resources for a task

are available (i.e. the resource is not in use or is shared if the task requires shared

ownership only), the resources are allocated to the task and the task is dispatched. If

any of the required resources cannot be allocated to the task, the resources’ availability

is not changed (all previous resources allocated to the task will be reverted).

3.2.1 An Example

We provide an example of scheduling four tasks using the algorithm. The resource

requirements of the four tasks are shown in table 3.1. Names such as cluster-1, host-1

and vm-2 are resource IDs. Resource requirements are specified with resource ID

followed by the requested ownership. For example, dc-1:S means the task requires

shared ownership of resource dc-1. In a real setting, the resource requirements are

manually specified for each API method served by the API service (as part of the

specification of the API) using a descriptive language, which is then parsed by the

API service. Resource IDs are obtained possibly by querying the database through

the inventory service. For example, to obtain the IDs of the host, the cluster and the

data center (dc) that contain the virtual machine, the API service needs to query

the database for virtual-machine-to-host, host-to-cluster, and cluster-to-data-center

mappings.

Resource requirements of the four tasks can be shown in a conflicting tasks graph,

where neighboring tasks cannot be run at the same time. (For definition of conflicting
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1 List<Task> ta sk s ; // array o f pending t a s k s
2
3 // resource a v a i l a b i l i t y , maps resource id to resource
4 Map<Str ing , Resource> r e s o u r c e s ;
5
6 void schedu le ( ) { // main s chedu l i n g loop
7 for ( Task task : ta sk s ) {
8 i f ( t rySchedule ( task ) ) { // succeed
9 d i spatch ( task ) ;

10 ta sk s . remove ( task ) ;
11 }
12 }
13 }
14
15 boolean t rySchedule ( Task task ) {
16 // Resources are so r t ed to avoid dead lock
17 List<Resource> r equ i r ed = task . getSortedResources ( ) ;
18
19 List<Resource> occupied = new List<Resource >() ;
20
21 // Acquire re source s ∗ in order ∗ to avoid dead lock
22 for ( Resource reqr : r equ i r ed ) {
23 Resource r = r e s o u r c e s . get ( r eqr . id ) ;
24
25 i f ( r . ownership ( ) . isEmpty ( ) | |
26 reqr . ownership ( ) . i sShared ( ) && r . ownership ( ) . i sShared ( ) ) {
27 // Modify resource a v a i l a b i l i t y to i n d i c a t e t a s k owns resource
28 // wi th proper ownership r i g h t .
29 r . occupy ( task , r e s ou r c e . ownership ( ) ) ;
30 occupied . add ( r ) ;
31 } else {
32 // Fai led , r e v e r t a l l p rev ious occupied re source s
33 for ( Resource r : occupied ) {
34 r . f r e e ( task ) ;
35 }
36 return fa l se ;
37 }
38 }
39
40 return true ; // succeed
41 }

Figure 3-1: Scheduling Algorithm Pseudo Code
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Task ID Operation Resource Requirement

T1 vm-1.powerOn dc-1:S, cluster-1:S, host-1:S, vm-1:E

T2 vm-2.powerOn dc-1:S, cluster-1:S, host-2:S, vm-2:E

T3 cluster-1.destroy dc-1:S, cluster-1:E

T4 host-1.destroy dc-1:S, cluster-1:S, host-1:E

Table 3.1: Resource Requirement of Example Tasks

tasks, see section 2.1, 2.3.) Figure 3-2 shows that task T3 conflicts with all the other

tasks because the resource cluster-1:E conflicts with all the other tasks’ resource

cluster-1:S, and T1 conflicts with T4 because they require host-1:S and host-1:E

respectively. If we perform a vertex coloring on the graph such that no two nodes

sharing the same edge have the same color, the graph can have three colors with T1

and T2 sharing the same color.

Figure 3-2: Conflicting Tasks Graph

Figure 3-3 shows the timeline for changes in resource availability and the four

tasks’ lifetime from release to completion.

All four tasks are queued at startup time t0. Suppose they are added to the

pending task queue in the order of T1–T4. Scheduler checks resources availability for

each task in the queue from the first one to the last, and then starts from the first

one again.

Task T1 and T2 obtain ownerships to their required resources first and start

execution at time t1. This prevents task T3 and T4 from obtaining resources at the

same time. At time t2, task T1 finishes execution and the occupied resources are freed.

This allows T4’s resource requirements to be satisfied and task T4 starts running. At

time t3, task T2 finishes execution while T4 is still running. At time t4, task T3’s

resource requirements is satisfied after T4 frees up resource cluster-1.
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Figure 3-3: Task Scheduling Example
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Chapter 4

System Design and

Implementation

As a component in distributed VIMS, like other services, the scheduler must have

high availability, i.e. one instance failure should not stop the scheduling service and

failed scheduler instances should be able to restore their states.

This chapter describes the design and implementation of the distributed sched-

uler module for VIMS. The distributed scheduler’s Zookeeper-based data services,

Zookeeper-based scheduling algorithm, task lifetime within the scheduler, and the

failover mechanism for high availability are explained in detail.

4.1 Architecture

The scheduler service is a multiple-instance service with a shared data service

(Zookeeper) where tasks and resource availability information are kept. The multiples

instances are identical, API service can send tasks to any instance.

Figure 4-1 shows the scheduler module and services that it interacts with in the

VIMS system.

Task and Resource are data objects that each contains an unique ID. Task includes

in addition a list of Resource representing its resource requirement. It can also include

additional information that may not be used by the scheduler, such as client connection
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Figure 4-1: Scheduler System Architecture

information used by API service for sending task results back to clients. Resource

contains an Ownership that can be either shared or exclusive, specifying whether the

resource is currently shared or exclusively owned when it is occupied by some task(s).

Scheduler receives incoming tasks from the API service and sends back dispatch

calls to it when tasks are ready to run. The steps taken after API service receives a

remote API call are as follows:

1. API service constructs a Task object, including the required resources’ IDs and

requested ownerships;

2. API service informs scheduler about the new task;

3. Scheduler adds the task to the task queue;

4. When the scheduler has successfully acquired resources for the task, it informs

API service to dispatch the task. Task tracker starts tracking the task’s execution

status;

5. API service executes the task that reads and/or modifies system states;

6. Scheduler is informed when the task finishes execution by task tracker. It then

releases resources occupied by the task.
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Task tracker tracks tasks’ execution status when they start. Scheduler relies on

task tracker to figure out when the task’s occupied resources can be freed.

Scheduler uses Zookeeper as the shared data service that stores the task queue

and the resource availability information. All scheduler instances work on the same

shared task queue and resource availability data through Zookeeper.

4.2 Zookeeper-based Data Structures

Zookeeper is an open-source coordination service that is suitable for maintaining

small pieces of data such as configuration and naming information for distributed

applications. The service can be served from multiple Zookeeper servers that form

a quorum. The servers agree with each other by running an algorithm similar to

Paxos that dynamically selects a leader. The service will keep running as long as the

majority of servers in the quorum are alive [6]. Clients to Zookeeper (in our case, the

scheduler instances) can connect to any server for reads and updates .

In Zookeeper, data is organized into a tree of nodes. Each node has a name, an

absolute path from the root and stores data with it. Figure 4-2 shows the organization

of the node tree used as the task queue and resource availability records.

There are three type specifiers for a node that Zookeeper defines which can be set

at creation time:

Ephemeral Ephemeral nodes exist during the active life time of the client session

that created it. They will be removed if the client disconnects from Zookeeper.

Permanent Opposite to ephemeral nodes, permanent nodes will not be automatically

deleted. They will exist until some client requests a deletion.

Sequential When created, sequential nodes’ names will be appended with an integer,

which is a monotonically increasing counter that counts the number of children

under the created node’s parent. Each sequential node created under the same

parent will be assigned a unique value that indicates their order of creation.
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Figure 4-2: Data Organization of the Task Queue and Resource Availability Records
in Zookeeper

The next two subsections describe the data organization of the task queue and the

resource availability records and how they are used by the scheduler in detail.

4.2.1 Task Queue

The task queue consists of a root node with path /task and a number of child nodes

under it, each representing a task (figure 4-2 top). Task nodes are created as sequential

nodes by the scheduler instance that receives the task from the API service. The Task

object is serialized into a string and stored at the task node. The integer appended to

the nodes’ names is used to determine the order of the tasks. Tasks that are created

earlier (i.e. have a smaller integer value) will be checked earlier against resource

availabilities.

Scheduler instances take tasks from the queue and create a busy node under the

task node they are taking. It always takes the task with the smallest integer value that

does not already have a busy node. When a task is taken by a scheduler instance, it

adds the task to its local queue, which it loops through to check resource requirements
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against the resource tree (described in the next subsection 4.2.2).

The purpose of creating a busy node instead of deleting the task node from the

shared queue is to remember the tasks in case of instance failure. When the scheduler

instance that holds the task in its local queue crashes or loses network connection, the

busy node will be deleted but not the task node. This enables another instance to take

over the tasks that would have been lost if they were removed from the shared queue

when they are taken by an instance. (For a complete description of the scheduler’s

failover scheme, see section 4.4.)

4.2.2 Resource Tree

The resource tree contains the current resource availability information (figure 4-2

bottom). It has a root node with path /resource. Each resource is a node the

resource tree root, with the resource ID as node name. If the resource is owned by one

or more tasks, node owner will be created under the resource node, with a child node

named either shared or exclusive depending on the ownership type that the task(s)

require. The type node has one or more children that each corresponds to a task,

with the same name as the corresponding task node in the task queue, indicating the

owner the resource. Node owner/shared can have more than one child, while node

owner/exclusive can only have one.

Resource is released by deleting all nodes under the resource node. A task releases

its shared ownership, in the case of multiple sharers, by only removing the leaf node

that corresponds to itself .

4.3 Zookeeper-based Scheduling Algorithm

The Zookeeper-based scheduling algorithm implements the round-robin scheduling

approach as described in chaper 3, but the loops are around local queues at each

scheduler instance, not on the Zookeeper-based global task queue.

The algorithms deal with Zookeeper-based data synchronization properly and can

be run by multiple scheduler instances in parallel, without corrupting the task queue
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or resource tree states. (For example, the case when node owner/shared and node

owner/exclusive both exists, or multiple nodes exist under owner/exclusive will

not happen.) No explicit locks on the resource tree or task queue are used in this

algorithm; synchronization is done by making careful use of Zookeeper’s inherent

consistency guarantees and properties.

Pseudo code of three procedures: taking task from queue, acquiring resources for

a task and releasing resources taken by a task are shown and explained. Zookeeper’s

consistency guarantees are described next, followed by arguments for the correctness

of the algorithms.

Figure 4-3 shows the pseudo code for taking tasks from the task queue. The

procedure sorts the task nodes by the integer assigned at creation time. It then tries

to take the first task in the sorted list (the one with the smallest integer value) by

creating a busy node under the task node (line 12). If the creation is successful, it

has successfully taken the task. If not, it goes on to try the next smallest one.

1 Task grabTask ( ) {
2 // so r t the t a s k names by the i n t e g e r as s i gned by Zookeeper
3 List<Str ing> orderedTaskNames = s o r t B y I n t e g e r S u f f i x (
4 Zookeeper . ge tChi ldren ( ”/ task ” ) ) ;
5 i f ( orderedTaskNames . isEmpty ( ) ) {
6 return null ;
7 }
8 for ( S t r ing node : orderedTaskNames ) {
9 St r ing taskPath = ”/ task /” + node ;

10 try {
11 // crea t e busy node
12 Zookeeper . c r e a t e ( taskPath + ”/busy” ) ;
13 // cons t ruc t Task o b j e c t from s to r ed data
14 Task t = Task . d e s e r i a l i z e ( Zookeeper . getData ( taskPath ) ) ;
15 return t ; // succeed
16 } catch ( NodeExistsException e ) {
17 } catch ( NoNodeException e ) {
18 }
19 }
20 return null ;
21 }

Figure 4-3: Pseudo Code for Taking Tasks from Zookeeper-based Task Queue

Figure 4-4 shows the pseudo code for declaring ownerships of the required resources

for a task. For each resource that the task requires, the procedure first makes sure that
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the resource ID node exists, then checks whether node owner exists. If it does not exist,

the scheduler will try to create it and all the necessary nodes under it (as described

in section 4.2.2): node owner, node owner/exclusive or owner/shared, and a leaf

node with the same name as the task node (line 23–25). If node owner already exists,

the scheduling for the task is unsuccessful, except when an owner/shared node exists

and the current task requires shared ownership. In this case, the scheduler just needs

to create a child node under the node owner/shared (line 29–32).

The node creation operations for all required resources of a task are performed as

an atomic operation. This is realized by the Zookeeper’s multi operation (line 41).

The multi operation guarantees that either all the operations specified are applied

successfully or none of them is applied [16]. This saves us the effort of having to revert

the changes made to previous successfully occupied resources if the resource allocation

for the task fails in the middle.

Figure 4-5 shows the pseudo code for releasing resources occupied by a task when

it has finished execution. Resources are released by deleting all the nodes under the

resource node, except for shared resources with additional sharers, only the leaf node

that belongs to the task is deleted.

4.3.1 Algorithm Correctness

The correctness of the algorithms relies on a number of Zookeeper consistency guaran-

tees. Zookeeper has the following basic consistency guarantees [18]:

• All Zookeeper operations such as node creation, deletion and the multi operation

(multiple operations grouped in a single transaction, see figure 4-4) are atomic.

I.e. updates either succeed or fail; there are no partial results.

• Updates from a client will be applied in the order that they were sent.

Zookeeper has the following specifications regarding node creation [16]:

• Nodes under the same parent cannot have the same name. Attempt to create a

node that has the same name as an existing node under the same parent will
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1 boolean t rySchedule ( Task task ) {
2 // Zookeeper opera t i ons in t h i s l i s t e i t h e r a l l e xecu te
3 // or none o f them execu t e s
4 List<Op> ops = {} ;
5
6 for ( r e s ou r c e : task . r e s o u r c e s ) {
7 // path to resource id node
8 resourcePath = ”/ r e sou r c e /” + re sou r c e . id ;
9 // path to owner node

10 ownerPath = resourcePath + ”/owner” ;
11 // path to ownership ( shared or e x c l u s i v e ) node
12 ownershipPath = ownerPath + ( r s c . i sShared ( ) ?” shared ” : ” e x c l u s i v e ” ) ;
13 // path to l e a f node ( the t a s k )
14 taskPath = ownershipPath + task . nodeName ;
15
16 // make sure resource id node e x i s t s
17 i f ( ! resourcePath . e x i s t ( ) ) {
18 createNode ( resourcePath ) ;
19 }
20
21 i f ( ! ownerPath . e x i s t ( ) ) {
22 // no owner node , c r ea t e a l l necessary nodes under
23 ops . add (Op. c r e a t e ( ownerPath ) ) ;
24 ops . add (Op. c r e a t e ( ownershipPath ) ) ;
25 ops . add (Op. c r e a t e ( taskPath ) ) ;
26 } else i f ( taskPath e x i s t ) {
27 // a l r eady owns t h i s resource
28 continue ;
29 } else i f ( r e s ou r c e . ownership == shared
30 && ownershipPath . e x i s t ( ) ) {
31 // r e qu i r e s shared ownership on a shared resource
32 ops . add (Op. c r e a t e ( taskPath ) ) ;
33 } else {
34 // cannot own the resource
35 return fa l se ;
36 }
37 }
38
39 // Executes a l l node c r ea t i on s or none o f them
40 try {
41 Zookeeper . mult i ( ops ) ;
42 // a l l node c r ea t i on s succeeded
43 return true ;
44 } catch ( KeeperException e ) {
45 // one or more node c r ea t i on s f a i l ,
46 // none o f the node c r ea t i on s t a k e s e f f e c t
47 // schedu l e f a i l s
48 return fa l se ;
49 }
50 }

Figure 4-4: Pseudo Code for Task Resource Allocation on Zookeeper-based Resource
Tree
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1 void r e l e a s e ( Task task ) {
2 for ( Resource r e s ou r c e : task . r e s o u r c e s ) {
3 // path to owner node
4 ownerPath = ”/ r e sou r c e /” + re sou r c e . id + ”/owner” ;
5 // path to ownership ( shared or e x c l u s i v e ) node
6 ownershipPath = ownerPath + ( r s c . i sShared ( ) ?” shared ” : ” e x c l u s i v e ” ) ;
7 // path to l e a f node ( the t a s k )
8 taskPath = ownershipPath + task . nodeName ;
9

10 i f ( Zookeeper . e x i s t ( taskPath ) ) {
11 Zookeeper . d e l e t e ( taskPath ) ;
12 } else {
13 // resource has been r e l e a s e d f o r t h i s t a s k
14 continue ;
15 }
16
17 i f ( r e s ou r c e . ownership == e x c l u s i v e
18 | | Zookeeper . ge tChi ldren ( ownershipPath ) . isEmpty ( ) ) {
19 try {
20 Zookeeper . d e l e t e ( ownershipPath ) ;
21 } catch ( NotEmptyException e ) {
22 // another t a s k added i t s e l f as a sharer f i r s t
23 continue ;
24 } catch ( NoNodeException e ) {
25 // another t a s k added i t s e l f as a sharer f i r s t
26 }
27 }
28
29 try {
30 Zookeeper . d e l e t e ( ownerPath ) ;
31 } catch ( NoNodeException e ) {
32 // another f i n i s h e d sharer d e l e t e d i t f i r s t
33 }
34 }
35 }

Figure 4-5: Pseudo Code for Releasing Resources on Zookeeper-based Resource Tree
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result in a NodeExists error.

• Nodes cannot be created if its parent node does not exist. Attempt to create a

node whose parent node does not exist will result in a NoNode error.

Based on the above Zookeeper guarantees, the following arguments can be made

for the correctness of the Zookeeper-based scheduling algorithm:

• No tasks can be taken by more than one scheduler.

A task is taken by the scheduler successfully creating the busy node under

it in the task queue. If several schedulers are trying to take the same task,

only one will succeed in creating the busy node and the others will fail and

receive a NodeExists error. The busy node is ephemeral (see section 4.2 for a

description of ephemeral nodes), and will be automatically deleted by Zookeeper

if the scheduler instance that created it loses connection to Zookeeper servers.

Scheduler instances that fail will not be able to continue making changes on

Zookeeper because their client sessions established with the Zookeeper servers

end when the connection is lost (for failure detection see section 4.4.2).

• No conflicting resource ownerships can be created in the resource

tree.

Two resource ownerships conflict if they are for the same resource and at least

one of them is an exclusive ownership.

A task owns a resource by the scheduler successfully creating node owner, or

alternatively, appending a node with the task name to node owner/shared if

the task requires shared ownership.

This can be seen by enumerating the possible outcomes of tasks resource acquisi-

tion while the resource is in the following four possible states: (For the resource

tree nodes organization, see figure 4-2.)

– For resources in shared ownership (i.e. having node owner/shared), tasks

that require exclusive ownership will fail to own the resource. Tasks that

require shared ownership can succeed.
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For tasks that require exclusive ownership, the attempt to create the owner

node will result in a NodeExists error. For tasks that require shared

ownership, it can successfully create a child node under owner/shared1.

– For resources in exclusive ownership (i.e. having node owner/exclusive),

all tasks that require the resource will fail.

For tasks that require exclusive ownership, the attempt to create the

owner node will result in a NodeExists error. For tasks that require shared

ownership, the attempt to create the owner node will result in a NodeExists

error; the attempt to create a child node under owner/shared will result

in a NoNode error.

– For resources that are not in use (i.e. not having the owner node), among

all tasks that require the resource, only one will succeed.

Tasks that require exclusive ownership will try to create the owner node.

Tasks that require shared ownership will either try to create the owner

node or create a child node under owner/shared. Since the owner node

does not exist, the attempt to create a child node under owner/shared will

result in a NoNode error. Only one of the attempts to create the owner

node will succeed.

– For resources that are in a transient state (i.e. having the owner node with

no child nodes. This can occur in the middle of releasing resources), all

tasks that require the resource will fail.

Attempts to create the owner node will result in a NodeExists error. At-

tempts to create a child node under owner/shared will result in a NoNode

error.

Thus the resource tree remains correct in all four possible states with all

possible scheduler ownership declaration actions. The resource tree thus cor-

1Tasks that try to acquire shared ownership by creating the owner node will not succeed and
will get a NodeExists error. It is possible because the scheduler instance may not have seen the
owner/shared node when it last checked the existence of the owner node. I.e. the resource tree
could be changed between when the scheduling procedure last checks (line 21, figure 4-4 ) and when
the node creation operation happens (line 41, figure 4-4)
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rectly reflect the current resource utilizations, no invalid states (such as node

owner/shared and node owner/exclusive both exists, or multiple nodes exist

under owner/exclusive) cannot happen.

4.4 Availability

This section describes the failure detection and failover scheme in a multiple-instance

scheduler. The scheduler service will keep running as long as Zookeeper has a majority

of servers in the quorum running, and at least one scheduler instance is running.

4.4.1 Task Lifetime

Scheduler keeps task state information at the task node in task queue (figure 4-1) for

use in failover. This section describes the state changes of tasks during its lifetime as

seen by the scheduler.

To the scheduler, the lifetime of a task starts when the API service sends the task

to a scheduler instance. It ends when all resources the task owns are released in the

resource tree. Task goes through four states during its lifetime (figure 4-6):

Figure 4-6: Task States

42



PENDING All tasks start in the PENDING state. This state corresponds to the

period of time when the scheduler is trying to acquire resources for the task but

has not yet succeeded. Task enters PENDING state when it gets in the task

queue, and remains in this state until all its required resources ownerships are

acquired and the scheduler has informed the API service to dispatch the task.

RUNNING Task enters the RUNNING state after the scheduler has informed the

API service to dispatch the task. Task remains in the RUNNING state until the

task tracker indicates that the task has finished execution. The task execution

can succeed, fail or be canceled. In all three cases the task’s execution is

considered done.

DONE Task enters the DONE state after the task tracker indicates that it has

finished execution. It remains in this state until all the resource ownerships it

acquired have been released in the resource tree and its corresponding task node

has been removed from the task queue.

RELEASED Task enters the RELEASED state after the task node has been removed

from the task queue. The task is fully completed at this stage and the relevant

information about the task stored at the task node are deleted when the task

node is deleted.

When state changes, the scheduler instance that took the task will update the

state information stored at the task node.

4.4.2 Failure Detection

Scheduler relies on the property of Zookeeper’s ephemeral node for detecting instance

failures. An ephemeral node will be automatically deleted if the scheduler instance

that created it loses connection to the Zookeeper servers. A busy node is created as

an ephemeral node by the scheduler instance that takes the task. Once a scheduler

instance loses connection with Zookeeper, all busy nodes it has created so far will be

removed and its client session established with Zookeeper ends. Any operation that
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the scheduler instance performs on Zookeeper after the client session ends will fail

and result in a client-session-expired error. If the scheduler instance is restarted later,

it has to establish a new client session with Zookeeper.

When the busy nodes created by the instance disappear after instance failure,

the tasks that were once taken by the failed instance will then be seen as not taken

and will be taken by other scheduler instances. The next section describes how the

left-over tasks that can be at different states in their lifetime are processed.

4.4.3 Failover Scheme

The differences between left-over tasks (tasks that was once taken) and new tasks in

the queue are their states. For a new task that is just added to the queue, the state is

always PENDING, while for a task whose was taken by a failed scheduler instance,

the task may be left in any of the four possible states.

A simple failover scheme that relies on the tasks’ state information stored in

Zookeeper is implemented. After scheduler takes a task from the task queue, it

decides what to do based on the task’s state. Table 4.1 shows a brief summary of

the scheduler’s failover actions. The details of the failover situation for each state are

discussed below.

State Action Caveats

PENDING Normal scheduling procedures
for new tasks

API service needs to deal with dupli-
cate dispatch calls

RUNNING Check task execution status
with task tracker and release
resources when task done

Task execution status has to be avail-
able regardless of scheduler failures.

DONE Release resources for the task None

RELEASED Remove task from task queue None

Table 4.1: Failover Scheduler Actions

Task in PENDING state

There are three possible cases that will result in task left in the PENDING state:
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1. The resource tree has not been updated for the task, i.e. the task has not

acquired its resources yet.2 In this case, the task has no difference from a new

task that has not yet been taken by any scheduler.

2. The resource tree has been updated, but the dispatch call to the API service

has not been sent.

3. The dispatch call has been sent to the API service, but the state at the task

node has not been updated yet.

When scheduler gets a task in the PENDING state, it runs the normal procedures

as if it is a new task, starting from resource acquisition (figure 3-1). The procedure

checks whether resources have been claimed by the task and will succeed if the resource

tree is already properly updated for the task. The dispatch call is then made.

Note that dispatch will be called twice if the left-over task is in case 3. This could

be a problem if there are no checks for duplicate tasks before execution and the task

is not idempotent. The problem should be properly dealt with by the API service

that receives the dispatch calls. In VIMS, tasks are stored in the database when they

are created by the API service, and the tasks’ execution status are updated either by

the API service or by the collector service that listens to updates from hosts (which

include updates to task executions) during its execution process. The API service

checks tasks’ existence before they dispatch the tasks. If the task already exists in the

database, it will not be dispatched again.

Task in RUNNING state

Tasks in RUNNING state are already dispatched. The scheduler just needs to ask

task tracker for the task execution status. Task tracker gets this information either

from API service or directly from the database.

2The resource tree is either updated to reflect all the task’s resource ownership requirements or is
not updated at all for the task. This is guaranteed by the Zookeeper multi operation performed by
the scheduling procedure (section 4.3).
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Task in DONE state

Tasks in DONE state have finished execution and may have already released some or

all of its occupied resources. Scheduler in this case will execute the resource releasing

procedure (figure 4-5). The procedure will ignore resources that are already released.

Task in RELEASED state

Tasks in RELEASE state has released all the resources it occupies and are ready to

be removed from the task queue.
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Chapter 5

Experimental Results

This section evaluates three hypotheses about the scheduler:

1. Scheduling efficiency: Does the scheduler perform better than the lock-based

approach? Does it perform worse than the optimal schedule if the optimal

schedule is known?

2. Availability: Does the running time increase only linearly with crash rate?

3. Scalability: Does the scheduler add only a small overhead to the system?

Four sets of tests were run to evaluate the hypotheses. The first two benchmark

tests compare the overall task completion time of the scheduler with the optimal

schedule (if known) and the completion time of the lock-based approach. The third

test measures how performance degrades with respect to crash rate. And the fourth

test measures how performance is affected by running multiple scheduler instances or

Zookeeper servers.

5.1 Environment

All tests were run on a single computer. Table 5.1 lists the specifications of the

machine used.
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Component Specification

Processor 2.10Ghz Intel Core2 Duo processor (T6500)

RAM 4GB

Disk 5400 RPM SATA

OS Windows 7 64-bit

Table 5.1: Machine Specifications

The VIMS prototype and the scheduler are both developed in Java (version 1.6)

and use Zookeeper Java library version 3.4.3. All tests are run with 512MB JVM

stack size.

5.1.1 Simulating Lock Server

A server that simulates the lock granting behavior was implemented using Zookeeper

for an approximate comparison of the relative efficiency of the lock server and the

scheduler. Instead of obtaining ownerships on all required resources of a task at once

(which is what the scheduler does), the simulated lock server obtains ownerships for

the task’s required resources one by one. It does not revert the ownerships obtained

when a later resource acquisition fails. Tasks’ required resources are sorted by resource

ID before resource acquisition to avoid deadlocks.

Using the simulated lock server, tasks acquire resources one by one, waiting for

new locks while holding old locks, which is similar to using a real lock server. The

differences between them is that using the simulated lock server, tasks still have to

acquire all locks before execution can start, while using a real lock server, tasks are

not required to acquire all locks at the beginning.

5.2 Exclusive-Only Rectangular Benchmark

This benchmark generates tasks that acquire only exclusive ownership and provides a

known optimal schedule that minimizes completion time. (Completion time is defined

as the time it takes for all tasks to finish execution.) The benchmark is used to
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evaluate the scheduler’s scheduling efficiency compared to the optimal schedule and

the simulated lock server.

5.2.1 Benchmark

Task Generation

Tasks are generated with a known optimal schedule that has minimal completion time.

If we construct a 2D space to represent tasks with the horizontal axis representing

time and the vertical axis representing resources, the benchmark is generated by

packing tasks into a rectangle. The benchmark generates tasks that acquire only

exclusive ownership so that the tasks do not overlap, which simplifies the rectangle

filling process. Figure 5-1 shows an example of the generated tasks. In the graph every

colored rectangle represents a task and is labeled with the task’s ID number. The

left edge of a task rectangle marks the start time of the task in the optimal schedule,

and the task rectangle spans the length of its execution time. The width (along the

vertical axis) of the rectangle indicates the resources the task needs. For example, the

yellow area labeled with number 1 represents task 1 which starts at time 0, occupies

resources R1 and R2 and ends at time 3. The task’s queue time is not shown and is a

randomly generated number smaller than the start time. (For tasks with start time 0,

queue time is 0.) There are 5 resources (R1–R5) in the graph. 11 tasks are generated.

The optimal schedule takes 9 time units to execute. The generated schedule is optimal

because all resources are being used at every moment in time.

To generate the example benchmark shown in figure 5-1, the generating procedure

first creates task 1, 2 and 3 that collectively occupies all the resources at the starting

edge (time = 0). Then it takes the maximum length of the three tasks as the length

of the rectangle to be formed. In this case the length of the to-be-formed rectangle is

6. Task 4, 5 and 6 are then generated to fill the rectangle. Now there is a uniform

starting edge at time 6 and the process can repeat to create a new rectangle. In the

graph the second iteration generates task 7–12 that form a rectangle of length 3. All

rectangles span all the resources, i.e. they all have the same width (5 in the example).
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Figure 5-1: Example of Tasks Generated in Rectangular Benchmark
Benchmark parameters: maximum task execution time = 6, number of resources = 5,
number of rectangles = 2.

Benchmark Parameters

The following parameters can be set to generate task sets that have different number

of tasks and resources:

Maximum Task Execution Time: The longest running time of a task (which does

not include queue time when task is waiting for resources). The benchmark

generator assigns each task a random value between 1 and this number to be

its running time (except for those tasks that are constrained by the rectangle

boundaries).

Number of Resources: Defines the width of the rectangle. The benchmark genera-

tor assigns each task a random number between 1 and this number (possibly

decreased to fulfill the rectangle requirement) to be the task’s required number

of resources.

Number of Rectangles: The number of rectangles to be generated. A larger number

of rectangles imply more tasks and longer total execution time.
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5.2.2 Procedure

The benchmark was tested on both the scheduler and the simulated lock server. A

task simulator releases each task’s at their precomputed queue time and keeps track

of tasks’ execution times after tasks are dispatched.

Table 5.2 lists values of the parameters set in the tests, the independent variables

chosen and the dependent variables that are measured.

Benchmark Parameters

Maximum task execution time (sec-
onds)

20

Number of resources 100

Number of rectangles 1–10

Variables

Design Optimal, Scheduler, Lock

Number of tasks Varies for each generation and depends on
the benchmark parameters set

Measures

Completion time (seconds) Time spent for all tasks to finish execution

Table 5.2: Experimental Setup for Rectangular Benchmark Tests

Test 1: Comparing Three Designs

The benchmark test sets are generated with number of rectangles set to 1, 2 and 3,

each generating 3 task sets. Each task set runs on both the scheduler and the simulate

lock server.

Test 2: Comparing Scheduler to Optimal

The benchmark test sets are generated with number of rectangles set to 1, 3, 5, 7 and

10, each case generating 3 task sets. Each task set runs only on the scheduler.
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5.2.3 Results

Test 1: Comparing Three Designs

Analysis of variance showed a significant main effect for type of design (optimal,

scheduler or lock) on completion time (F2,17 = 13.38, p = 0.0003). Multiple comparison

analysis confirmed that the lock-based approach has longer completion time than the

other two. (For details, see appendix A, section A.1.)

Figure 5-2 plots the completion time of all three designs as a function of the number

of tasks. The nine data points can be viewed as in three groups, each corresponds to

a different number of rectangles generated.

Figure 5-2: Completion Time for Different Designs by Number of Tasks (Rectangular
Benchmark). All data points in the data set are shown.

Figure 5-3 shows the ratio of scheduler’s and lock-based approach’s completion time

to optimal.1 Completion time of scheduler is on average 2.10 times longer than optimal

(mean = 2.0975, stderr = 0.2528). Completion time of the lock-based approach is on

1Linear fitting of the scheduler to optimal ratio is not a good fit (r2 is small). The linear fittings
are simply to provide a convenient visual aid for understanding how the ratios change with the
number of tasks.
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average 4.32 times longer than optimal (mean = 4.3197, stderr = 0.5492). The plot

shows roughly that the lock to optimal ratio increases more rapidly than the scheduler

to optimal ratio. (It is unclear how the scheduler to optimal ratio grows, more...)

Figure 5-3: Completion Time Ratio of Scheduler and Lock Designs over Optimal
(Rectangular Benchmark)

Test 2: Comparing Scheduler to Optimal

Analysis of variance showed a significant main effect for type of designs (scheduler

or optimal) (F1,15 = 40.24, p = 1.3 × 10−5) and number of tasks (F13,15 = 8.90,

p = 7.5× 10−5) on completion time. Multiple comparison analysis confirmed that the

scheduler has longer completion time than optimal, which is expected. (For details,

see appendix A, section A.2.)

Figure 5-4 plots the completion time of optimal design and the scheduler as a

function of number of tasks. Completion time of the scheduler is on average 2.09 times

longer than optimal (mean = 2.0914, stderr = 0.0311).
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Figure 5-4: Completion Time for Optimal and Scheduler Design by Number of Tasks
(Rectangular Benchmark). All data points in the data set are shown.

In summary, the test results suggest that scheduler performs better than simulated

lock server in terms of minimizing completion time. It performs worse than optimal

approximately with a factor of two on the rectangular benchmark.

5.3 Shared-Exclusive Hierarchical Benchmark

This benchmark tests the scheduling efficiency of the scheduler on a different kind of

task sets. The tasks generated in this benchmark require both shared and exclusive

ownerships. No optimal schedule is provided.
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5.3.1 Benchmark

Task Generation

To generate tasks in this benchmark, resources are viewed as if they are organized in a

tree (figure 5-5). Tasks randomly choose a resource (other than the root) and include

in its resource requirement this resource’s exclusive ownership and all its ancestors’

shared ownership. A task can require more than one exclusive resources, in which

case all of the ancestors of all the exclusive resources are also included in the task’s

resource requirement list, requiring shared ownership.

Figure 5-5: Example Task Resource Requirement in the Hierarchical Benchmark
Benchmark Parameters: Number of levels = 3, branching factor = 2, maximum
number of exclusive ownerships = 2.

Figure 5-5 shows an example of a task’s resource requirement. The task requires

exclusive ownership on resource R2 and R4 respectively. As a result, it also requires

shared ownership on R4’s ancestor, R1 and R0, and R2’s ancestor, R0. The task’s

complete resource requirement is [R0:S, R1:S, R2:E, R4:E].

This benchmark was designed to resemble the resource organization in VIMS-

managed virtual infrastructure. Virtual components in a virtual infrastructure are

organized in a hierarchy. In a typical setup, at the top level there are data centers,

which contain clusters. Clusters then contain hosts, which then contain virtual

machines. API calls that API service receives usually requires exclusive lock on the

specific virtual component that the operation is directed to and shared locks on

all its containing components. The exclusive lock is to make sure that while this
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operation is making changes, no other operations can make changes on the same

component at the same time. The shared locks on containers are used to allow

operations on other components in the containers, while protecting the operation

from disruptive changes on the container itself that will affect components it contains.

For example, a VirtualMachine.powerOn request needs exclusive lock on the virtual

machine itself and shared locks on the host, cluster and data center that contains

it. This allows powerOn operations on other virtual machines to run in parallel, but

protects the operation from running in parallel with container-exclusive operations

such as Host.shutdown.

For this benchmark, the simulated lock server acquires resources in the same order

as their indexes in the tree. (See numbers on the tree nodes in figure 5-5.) This is

also meant to imitate the behavior of acquiring locks from the highest to the lowest in

the locking hierarchy.

Benchmark Parameters

The benchmark generates different task sets depending on the following parameters:

Number of Levels: Specifies the depth of the resource tree hierarchy.

Branching Factor: Specifies the number of children for each node in the hierarchy.

The resource tree is a complete tree; each node except leaf nodes has the same

number of children specified by the branching factor.

Maximum Number of Exclusive Ownerships: The maximum number of exclu-

sive ownerships a task can acquire. For each task a random number between 1

and this number is used.

Maximum Task Execution Time: The longest running time of a task. For each

task a random number between 1 and this number is used.

All tasks are queued at startup time.
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5.3.2 Procedure

Table 5.3 shows values of parameters set in the tests, the independent variables chosen

and the dependent variables that were measured. The number of levels and number

of exclusive ownerships were chosen as an attempt to match the real setting in a

VIMS-managed virtual infrastructure. But the branching factor in a real setting could

be much larger than 10. (In particular, a typical cluster usually contains many more

than 10 hosts.) 10 was chosen to accommodate to the hardware limitations of the

testing machine. 3 tests were ran for each combination of type of design and number

of tasks.

Benchmark Parameters

Number of levels 4

Branching factor 10

Maximum number of exclusive
ownerships

5

Maximum task execution time 20

Variables

Design Scheduler, Lock

Number of tasks 100, 300, 500, 700, 1000

Measures

Completion time (seconds) Time spent for all tasks to finish execution

Table 5.3: Experimental Setup for Hierarchical Benchmark Tests

5.3.3 Results

Analysis of variance showed significant main effects for type of design (lock or scheduler)

(F1,24 = 32.31, p < 1 × 10−5) and number of tasks (F4,24 = 29.58, p < 1 × 10−8)

on completion time. Multiple comparison analysis confirmed that the lock-based

approach has longer completion time than the scheduler. (For details, see appendix A,

section A.3, table A.5, A.6.)

Figure 5-6 plots the completion time of the scheduler and the lock-based approach

as a function of number of tasks.
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Figure 5-6: Completion Time for Scheduler and Lock Design by Number of Tasks
(Hierarchical Benchmark)

Figure 5-7: Completion Time Ratio of Scheduler to Lock-based Approach by Number
of Tasks (Hierarchical Benchmark)
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Figure 5-7 shows the completion time ratio of the lock-based approach to the

scheduler. Completion time of the lock-based approach is on average 1.6 times longer

than the scheduler (mean = 1.6135, stderr = 0.1017). Analysis of variance showed a

significant main effect for number of tasks on the ratio (F4,10 = 11.07, p = 0.0011).

Multiple comparison analysis showed a general trend of increasing ratio when the

number of tasks increases. (For details, see appendix A, section A.3, table A.7, A.8.)

In summary, the results suggest that for the hierarchical benchmark, the simulated

lock server again takes longer than the scheduler. And this difference tends to grow

larger as the number of tasks increase.

5.4 Multiple-Instance Availability

The previous two benchmarks were run using one scheduler instance. This test ran

multiple scheduler instances on a trivial benchmark and measures how completion

time varies when instance crashes.

5.4.1 Benchmark

All tasks have the same resource requirement: shared ownership of all resources. In this

way tasks do not conflict in resource usage. This excludes the influence of scheduling

efficiency, and allows us to focus on the performance variations caused by instance

crashes and restarts.

All tasks are queued at startup time. Task execution time is constant and the

same for all tasks.

5.4.2 Procedure

Table 5.4 shows the setup of the test. 3 tests were run for each crash rate. All scheduler

instances were run on the same machine.

Crash rate in this test refers to the number of crashes per second. For example,

a crash rate of 0.1 means crashing once per 10 seconds. In this test in particular,
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Benchmark Parameters

Task Execution Time (seconds) 10

Number of Resources 10

Number of Schedulers 3

Number of Tasks 5000

Variables

Crash Rate (second−1) 0, 0.05, 0.08, 0.1, 0.2, 0.4, 0.6, 0.8, 1

Measures

Completion time (seconds) Time spent for all tasks to finish execution

Table 5.4: Experimental Setup for Multiple-Instance Availability Test

it means that one scheduler instance (chosen in a round-robin fashion among the 3

instances) is killed and immediately restarted every 10 seconds. When an instance

is killed, its left-over tasks will be taken by other instances. When it restarts, it can

start taking new tasks or tasks left over by other failed instances.

All tasks are queued at startup time.

5.4.3 Results

Analysis of variance showed a significant main effect for crash rate on completion time

(F8,21 = 22.9, p < 1× 10−7). Multiple comparison analysis showed a general trend of

increasing completion time as crash rate increases, which is expected. (For details, see

appendix A, section A.4.)

Figure 5-8 shows completion time as a function of crash rate. Linear regression

analysis showed that completion time grows linearly with crash rate with r2 above 0.8.

If we denote completion time without crash (i.e. crash rate c = 0) as t0, and

assuming that each scheduler instance’s crash and restart takes constant time tc,

completion time t at crash rate c is

t = t0 + tc × (t0 × c)

, which is a linear relationship between crash rate c and completion time t. If we plug
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Figure 5-8: Completion Time by Crash Rate

in the values obtained from linear regression (t = 85.03× c+ 96.50), we get a rough

approximation of the crash-restart time tc = 881ms (t0 = 96.50s).

5.5 Multiple-Instance Scalability

In the following experiments, the same trivial benchmark (described in section 5.4.1)

was used to run with varying number of scheduler instances and Zookeeper servers, in

order to test how completion time is affected by those factors. Because all instances

were run on the same machine, we are in fact measuring the scheduler and the

Zookeeper server’s overhead.

5.5.1 Procedure

Table 5.5 shows the experiment setup. All combinations of ZK and NS were run.

NT=100 was run with all three different NRs; NT=1000 was run with NR=1 and 10;

NT=10,000 was run with NR=1.

All scheduler and Zookeeper server instances were run on the same machine.
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Benchmark Parameters

Task Execution Time (seconds) 10

Variables

Number of Zookeeper Servers (ZK) 1, 3, 5

Number of Schedulers (NS) 1, 3, 5

Number of Tasks (NT) 100, 1000, 10000

Number of Resources (NR) 1, 10, 100

Measures

Completion time (seconds) Time spent for all tasks to finish execution

Table 5.5: Experimental Setup for Multiple-Instance Tests

5.5.2 Results

Analysis of variance showed significant main effect for number of Zookeeper servers

(F2,153 = 24.87, p < 1 × 10−9), number of tasks (F2,153 = 313.13, p < 1 × 10−54)

and number of resources (F2,153 = 3.77, p = 0.0253) on completion time. Multiple

comparison analysis showed that completion time increases with increasing number

of Zookeeper servers, tasks and resources respectively. (For details, see appendix A,

section A.5.)

Figure 5-9 plots completion time as a function of number of tasks for different

numbers of Zookeeper servers. Completion time increases roughly linearly with the

number of tasks. More Zookeeper servers will lead to longer completion time (steeper

slopes in the graph).

There are two reasons that increasing the number of Zookeeper servers adds a

noticeable overhead:

1. All Zookeeper updates, including node creation and deletion, need to go through

the leader in the server quorum and then propagate to all servers [6]. As the

number of servers increases, updates to Zookeeper may take longer.

2. Because all servers are run on one machine with two processors (for machine

specifications see table 5.1), more than two server processes share computing

power, and each process will take longer to respond.
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Figure 5-9: Completion Time by Number of Tasks for Different Numbers of Zookeeper
Servers

Figure 5-10 plots completion time as a function of the number of tasks for different

number of schedulers. Variations on completion time for different numbers of schedulers

are not distinct according to the data points because of their overlapping error bars.

This shows that scheduler’s overhead is not large, which is expected because instances

are lightweight.
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Figure 5-10: Completion Time by Number of Tasks for Different Numbers of Schedulers
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Chapter 6

Conclusion

This chapter first summarizes contributions made in this thesis, and then suggests

some future work.

6.1 Contributions

This thesis proposed a design and implementation of a distributed real-time scheduler

for the virtual infrastructure management system (VIMS) that replaced the need of

a lock server. A round-robin scheduling algorithm that orders tasks based on their

needs of locks was proposed.

A distributed design of the scheduler based on the proposed algorithm was made

that relies on Zookeeper as the scheduler instances’ shared central data service that

maintains the global task queue and resource availability tree. A set of Zookeeper-

based scheduling procedures were implemented by making careful use of Zookeeper’s

internal consistency guarantees to ensure correctness of the shared data, while keeping

as much concurrency on data structure accesses as possible. The scheduler design was

also made highly available by implementing a simple failover scheme that relies on

persisted task states on Zookeeper.

The scheduler’s efficiency with respect to task completion time was tested and

compared with optimal schedule and lock server. The scheduler is shown to have

significantly shorter completion time than the simulated lock server (the scheduler takes
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about one half of lock server’s completion time), and its completion time is about two

times of the optimal completion time on both the exclusive-only rectangular benchmark

and the shared-exclusive hierarchical benchmark. The scheduler’s availability was

tested against varying crash rates. Experimental results have shown that the scheduler

survives crashes well and its performance degrades roughly linearly with increasing

crash rates. The system overhead was also tested by starting multiple scheduler

instances and Zookeeper servers. The results suggest that the scheduler is actually

lightweight—performances under different numbers of scheduler instances don’t show

much difference.

6.2 Future Work

This section mentions future work, some of which are about new features that could

be useful to add, others are related to improving the current design.

6.2.1 Task Starvation

The current design of the scheduler does not make special efforts to keep fairness

among tasks. Starvation is a potential problem in the current design, i.e. some tasks

may have to wait for a long time without getting its required resources. For example,

if the task requires a large number of resources, while many small tasks only require

a few, the scheduler may keep succeeding in getting resources for the smaller tasks

and ignoring the task that requires many more resources because its requirement is

hard to satisfy. To solve this problem, some form of a timeout mechanism may be

implemented so that a task that is waiting for too long needs to have the priority of

getting resources.

6.2.2 Task Priority

The current design of the scheduler does not have a notion of task priorities. Task

priority may be desired if some tasks are important and should be dispatched as soon
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as possible. It may also be useful for solving the starvation problem, by assigning

starved tasks higher priorities.

6.2.3 Asynchronous Zookeeper Operations

The current scheduler makes Zookeeper operations through synchronous calls, i.e. the

call will only return when the operation is carried out on Zookeeper servers. Zookeeper

has another set of asynchronous calls that use callbacks when operations finish

execution. For asynchronous calls the initial call from scheduler returns immediately

without waiting for a reply. Various performance tests have shown that Zookeeper

asynchronous operations have significantly larger throughput than synchronous calls [6,

8, 17]. For example, creating a thousand nodes on Zookeeper by making asynchronous

calls finishes much faster than using synchronous calls. It may improve performance if

the scheduler can use asynchronous calls for interacting with Zookeeper.

6.2.4 Resource Granularity

We have described that one virtual component is a resource, but the resources

could be further divided up if it allows more concurrency. For example, task

VirtualMachine.powerOn could be run in parallel with VirtualMachine.rename,

even though they are both performed on the same virtual component.

6.2.5 Estimating Task Execution Time

Several algorithms mentioned in chapter 2 requires to know the tasks’ execution time.

The scheduler can potentially perform more sophisticated scheduling algorithms if it

has some idea about the running time of the tasks. VIMS does not currently provide

estimations of tasks’ execution time because it depends on many factors including the

target component’s current load, memory, CPU and disk usages. But it is not entirely

impossible to estimate the tasks’ execution time. If the scheduler’s efficiency can be

greatly improved with known task execution times, it might be worthwhile to make

these estimations.
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6.2.6 A Priori Task Resource Requirements Feasibility

The scheduler requires a priori knowledge of tasks’ resource needs before task execution.

Resource requirements are currently specified by a descriptive language as part of

the API specifications, and resource IDs are dynamically resolved by the API service

querying the database. Further evaluations need to be done to identify the cases in

which this is not readily achievable. If some task cannot know what resource it needs

until it has run part of its procedure, then a priori knowledge may not be attainable.

For example, a migration of virtual machines from one host to another where the

destination host is dynamically determined based on host server loads might not know

the destination host until it has run the load inspection procedure.

One potential solution may be to explore the possibility of splitting the tasks

whose resources cannot be resolved up front into subtasks that can acquire resources

separately. A later subtask may use the results from the previous subtasks for resolving

its own resource needs. Another potential way to deal with this is to change the

scheduling algorithm so that it allows tasks to acquire additional resources after they

have been dispatched.
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Appendix A

Statistical Tests

A.1 Rectangular Benchmark Test 1

Table A.1: Rectangular Benchmark Test 1: Two-way Anova on Completion Time

Source Sum Sq. d.f. Mean Sq. F Prob>F

Mode 1.0740e+005 2 5.3700e+004 13.3776 3.2364e-004

Number of Tasks 9.5858e+004 7 1.3694e+004 3.4114 0.0183

Error 6.8241e+004 17 4.0142e+003

Total 2.7150e+005 26

Table A.2: Rectangular Benchmark Test 1: Tukey HSD for Mode on Completion Time
95% confidence interval

Group1 Group2 Diff. Mean Lower Upper

Optimal Scheduler -40.9539 -117.5734 35.6656

Optimal Lock -149.4812 -226.1008 -72.8617

Scheduler Lock -108.5273 -31.9078
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A.2 Rectangular Benchmark Test 2

Table A.3: Rectangular Benchmark Test 2: Two-way Anova on Completion Time

Source Sum Sq. d.f. Mean Sq. F Prob>F

Mode 9.0794e+004 1 9.0794e+004 40.2450 1.3178e-005

Number of Tasks 2.6096e+005 13 2.0074e+004 8.8980 7.6390e-005

Error 3.3841e+004 15 2.2560e+003

Total 3.8560e+005 29

Table A.4: Rectangular Benchmark Test 2: Tukey HSD for Mode on Completion Time
95% confidence interval

Group1 Group2 Diff. Mean Lower Upper

Optimal Scheduler -110.0269 -146.9942 -73.0596
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A.3 Hierarchical Benchmark Test

Table A.5: Hierarchical Benchmark Test: Two-way Anova on Completion Time

Source Sum Sq. d.f. Mean Sq. F Prob>F

Mode 1.1500e+005 1 1.1500e+005 32.3118 7.4404e-006

Number of Tasks 4.2107e+005 4 1.0527e+005 29.5784 5.8082e-009

Error 8.5415e+004 24 3.5589e+003

Total 6.2148e+005 29

Table A.6: Hierarchical Benchmark Test: Tukey HSD for Mode on Completion Time
95% confidence interval

Group1 Group2 Diff. Mean Lower Upper

Scheduler Lock -123.8255 -168.7847 -78.8664

Table A.7: Hierarchical Benchmark Test: One-way Anova on Lock/Scheduler Ratio

Source Sum Sq. d.f. Mean Sq. F Prob>F

Number of Tasks 1.7717 4 0.4429 11.0696 0.0011

Error 0.4001 10 0.0400

Total 2.1718 14
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Table A.8: Hierarchical Benchmark Test: Tukey HSD for Number of Tasks (NT) on
Lock/Scheduler Ratio
95% confidence interval

Group1 Group2 Lower Diff. Mean Upper

NT=100 NT=200 -0.6316 -0.0941 0.4434

NT=100 NT=300 -1.0592 -0.5217 0.0159

NT=100 NT=400 -1.2352 -0.6977 -0.1602

NT=100 NT=500 -1.4294 -0.8919 -0.3544

NT=200 NT=300 -0.9651 -0.4276 0.1100

NT=200 NT=400 -1.1411 -0.6036 -0.0661

NT=200 NT=500 -1.3353 -0.7978 -0.2603

NT=300 NT=400 -0.7136 -0.1761 0.3615

NT=300 NT=500 -0.9078 -0.3703 0.1673

NT=400 NT=500 -0.7317 -0.1942 0.3433
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A.4 Multiple-Instance Availability Test

Table A.9: Multiple-Instance Availability Test: One-way Anova for Crash Rate on
Completion Time

Source Sum Sq. d.f. Mean Sq. F Prob>F

Mode 2.8355e+004 8 3.5444e+003 22.8998 1.0214e-008

Error 3.2504e+003 21 154.7789

Total 3.1606e+004 29
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Table A.10: Multiple-Instance Availability Test: Tukey HSD for Crash Rate (CR) on
Completion Time
95% confidence interval

Group1 Group2 Diff. Mean Lower Upper

CR=0 CR=0.05 -40.0135 -5.0337 29.9462

CR=0 CR=0.08 -45.8992 -10.9193 24.0605

CR=0 CR=0.1 -59.8097 -27.0891 5.6316

CR=0 CR=0.2 -54.7175 -19.7377 15.2422

CR=0 CR=0.4 -76.9660 -44.2453 -11.5247

CR=0 CR=0.6 -95.7329 -60.7530 -25.7731

CR=0 CR=0.8 -87.7799 -52.8000 -17.8201

CR=0 CR=1 -131.3937 -98.6731 -65.9524

CR=0.05 CR=0.08 -40.8655 -5.8857 29.0942

CR=0.05 CR=0.1 -54.7761 -22.0554 10.6652

CR=0.05 CR=0.2 -49.6839 -14.7040 20.2759

CR=0.05 CR=0.4 -71.9323 -39.2117 -6.4910

CR=0.05 CR=0.6 -90.6992 -55.7193 -20.7395

CR=0.05 CR=0.8 -82.7462 -47.7663 -12.7865

CR=0.08 CR=1 -126.3601 -93.6394 -60.9188

CR=0.08 CR=0.1 -48.8904 -16.1697 16.5509

CR=0.08 CR=0.2 -43.7982 -8.8183 26.1615

CR=0.08 CR=0.4 -66.0467 -33.3260 -0.6053

CR=0.08 CR=0.6 -84.8135 -49.8337 -14.8538

CR=0.08 CR=0.8 -76.8605 -41.8807 -6.9008

CR=0.08 CR=1 -120.4744 -87.7537 -55.0331
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Group1 Group2 Diff. Mean Lower Upper

CR=0.1 CR=0.2 -25.3692 7.3514 40.0721

CR=0.1 CR=0.4 -47.4497 -17.1563 13.1372

CR=0.1 CR=0.5 -66.3846 -33.6639 -0.9433

CR=0.1 CR=0.8 -58.4316 -25.7109 7.0097

CR=0.1 CR=1 -101.8774 -71.5840 -41.2906

CR=0.2 CR=0.4 -57.2283 -24.5077 8.2130

CR=0.2 CR=0.6 -75.9952 -41.0153 -6.0355

CR=0.2 CR=0.8 -68.0422 -33.0623 1.9175

CR=0.2 CR=1 -111.6561 -78.9354 -46.2148

CR=0.4 CR=0.6 -49.2283 -16.5077 16.2130

CR=0.4 CR=0.8 -41.2753 -8.5547 24.1660

CR=0.4 CR=1 -84.7212 -54.4277 -24.1343

CR=0.6 CR=0.8 -27.0269 7.9530 42.9329

CR=0.6 CR=1 -70.6407 -37.9201 -5.1994

CR=0.8 CR=1 -78.5937 -45.8731 -13.1524
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A.5 Multiple-Instance Scalability Test

Table A.11: Multiple-Instance Test: Four-way Anova on Completion Time

Source Sum Sq. d.f. Mean Sq. F Prob>F

Number of Zookeeper
Servers

4.9022e+004 2 2.4511e+004 24.8669 4.4571e-010

Number of Schedulers 571.8491 2 285.9245 0.2901 0.7486

Number of Tasks 6.1730e+005 2 3.0865e+005 313.1312 8.2242e-055

Number of Resources 7.4233e+003 2 3.7116e+003 3.7655 0.0253

Error 1.5081e+005 153 985.6844

Total 9.2520e+005 161

Table A.12: Multiple-Instance Test: Tukey HSD for Number of Zookeeper Servers
(ZK) on Completion Time
95% confidence interval

Group1 Group2 Lower Diff. Mean Upper

ZK=1 ZK=3 -30.2935 -16.1327 -1.9719

ZK=1 ZK=5 -56.3815 -42.2207 -28.0598

ZK=3 ZK=5 -40.2488 -26.0880 -11.9271

Table A.13: Multiple-Instance Test: Tukey HSD for Number of Tasks (NT) on
Completion Time
95% confidence interval

Group1 Group2 Lower Diff. Mean Upper

NT=100 NT=1,000 -39.2911 -25.1303 -10.9695

NT=100 NT=10,000 -213.9097 -195.1767 -176.4437

NT=1,000 NT=10,000 -188.7794 -170.0464 -151.3134
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Table A.14: Multiple-Instance Test: Tukey HSD for Number of Resources (NR) on
Completion Time
95% confidence interval

Group1 Group2 Lower Diff. Mean Upper

NR=1 NR=10 -23.8031 -9.6422 4.5186

NR=1 NR=100 -40.0752 -21.3421 -2.6091

NR=10 NR=100 -30.4330 -11.6999 7.0331
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