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Abstract

In this thesis, we construct hybrid linear models in which the chiral anomaly of a

gauged linear sigma model is canceled by the classical anomaly of a gauged WZW

model. Semi-classically, this corresponds to fibering the WZW model over the naive

target space of the sigma model. When the gauge group is abelian, we recover known

non-Kahler compactifications; non-abelian models describe novel quasi-geometric flux

vacua of the heterotic string.
Second, we also investigate sigma models that break worldvolume Lorentz invari-

ance. Specifically, we calculate the one loop beta function for a target space metric

whose worldvolume scales space and time differently, with dynamical exponent z - 2.

We find, as in the isotropic case, the beta function is proportional to the Ricci curva-

ture so that conformal invariance demands Ricci-flatness. We extend this analysis to

the case where space and time derivatives come with different target space metrics. We

also speculate about coupling the theory to gravity.
Finally, we continue the investigation of the recently discovered holographic corre-

spondence between Reissner-Nordstrom black holes in AdS 4 and fermion correlation

functions describing Non Fermi Liquids. We numerically study the effects of adding

magnetic and electric dipole couplings for the fermions in the bulk. In general, the low

energy physics is controlled by an emergent AdS 2 conformal dimension. We find that

adding the dipole couplings changes the attainable dimensions. We also find that these

couplings can drastically change the locations of fermi surfaces in momentum space.

Thesis Supervisor: John McGreevy
Title: Assistant Professor
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Chapter 1

Introduction: A Brief Tour of String

Theory From Worldsheet to Target

Space To Applications

It is worth asking: "What is the use of string theory?" It has long been known that the

theory provides a consistent way to quantize gravity without the usual field theory di-

vergences. It was once thought and hoped that the unique vacuum of the theory would

be found, that this vacuum would contain the Standard Model and we would have a

unified theory of gravity and the other forces. Since, it has been realized that there

are, unfortunately, a very large number of vacua, making it very difficult to locate the

"one" that is our universe. Some of the sections of this thesis will involve investigating

some of these possible vacua.

Many have given up hope of locating the one, true, vacuum in this extensive land-

scape. All is not lost, however; string theory teaches us rather general things about the

quantization of gravity and the nature of spacetime. However, it might be worth asking

whether or not string theory has any other uses.

It is a beautiful fact that, indeed, the answer seems to be "yes." As we will review,

through gauge gravity duality, string theory can provide theoretical tools for strongly
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coupled quantum systems without gravity, like Yang-Mills theory. In addition, there

is recent evidence that such dualities can help us understand strongly coupled con-

densed matter phenomena that have resisted theoretical attack. In this way, string

theory should be viewed as a tool that not only might give us information about the

one "true" vacuum, but also as a calculational tool for strongly coupled systems. Only

time will tell what other uses this mysterious theory will acquire in the future.

In this chapter we give a brief, whirlwind tour of string theory and gauge gravity

duality. This tour is by no means intended to be complete or historical, but rather,

to adequately motivate the projects discussed in subsequent chapters. The exposition

here will follow parts of [1, 2] [3], [4] and [5] .

1.1 The Bosonic String

1.1.1 The Polyakov Action

Bosonic string theory is defined by a two dimensional quantum field theory of scalars,

X"(o 1 , U2 ), P = 1,.. .D. Here ori and or2 are the coordinates on the two dimensional

spacetime (a 1 is Euclidean time). We regard this spacetime as the worldsheet E that

a string sweeps out as it evolves in time. The X1 can be regarded as coordinates on a

different spacetime, called the target space, X. In this way the fields are an embedding

of the worldsheet into the target space

X1 :E-+X (1.1)

For now, we do not know much about the target space X. Consistency of the 2d

quantum field theory will eventually fix its dimension. The (Polyakov) action of the

14



bosonic string is just these scalars coupled to 2d gravity

S =SP + Sx

4 Jra' d2 . a X + d2 . fgR (1.2)

for some coupling A. a = {1, 2} runs over the worldsheet coordinates. a' is a dimen-

sionful quantity which sets the string tension/scale of the interactions. 2-d gravity is

"trivial" in the sense that the variation of Sx is zero-it is a purely topological term. In

fact, the term that multiplies A is just the Euler number, x, of the worldsheet (for sim-

plicity, we work with closed strings, ignoring possible boundary terms). This action

has a large set of symmetries. By construction, it has two dimensional diffeomorphism

invariance under which we can change coordinates to o'(r) with fields transforming

as

X'11(J', o'2 = Xt(l, o-2)

9ap ggudl(0 o- = (gab1, o-2) (1.3)
8u0a Ourb c 12

In addition this theory, in two dimensions only, possesses a local Weyl symmetry under

which the coordinates do not change, but by which we can "blow up" the metric by a

local factor

X'P(oo-2) = X"(U1 ,(o2 )

gIs(uio2) = e2w(-1,o2) gab(ol, 2 ) (1.4)

for any function w.

1.1.2 Interactions as Sums Over Worldsheets

So far, as a quantum field theory, the Polyakov action (1.2) looks completely free-

where are the string interactions? Actually, they are already contained in (1.2). To

15



define the quantum theory, we must look at the path integral

Z [dX dg] e-s

e-Ax [dX dg] e-SP (1.5)

where we sum over all scalar and metric configurations. We should also include a sum

over distinct worldsheet topologies. This sum over topologies is the string interactions.

For example, if we are interested in the string propagator, the first topology we must

include is the free closed string-the cylinder worldsheet. We know that this prop-

agator must get corrected quantum mechanically by interactions. These corrections

correspond to worldsheets that are asymptotically cylindrical, but whose topology is

distinct from the cylinder. Said differently, the corrections are just cylinders with han-

dles added. The first correction, a worldsheet with one handle, correspond to a string

that splits and then rejoins. The addition of each handle adds a genus to the worldsheet

and decreases the Euler number by 2. Therefore the path integral is weighted by an

extra factor of eA. Our experience with Feynman diagrams tells us to associate this

diagram with two factors of a closed string coupling gc. We have learned that

ge ~ e(1.6)

Of course, it should be mentioned (though it will not be elaborated upon), that

the reason string theory is a promising grand unified theory is that this model of in-

teractions yields all amplitudes finite in perturbation theory and cures the usual UV

divergences associated with quantizing gravity as a quantum field theory.

Therefore, in some sense, the problem of string theory has been reduced to doing

a path integral in a two dimensional quantum field theory (1.5).
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1.1.3 Gauge Fixing and 2d Conformal Field Theory

Before evaluating, (1.5), we must gauge fix the Diff x Weyl symmetry; these local

symmetries introduce a large number of redundancies in the path integral. To do so,

one must follow the Fadeev-Popov procedure and add ghosts. Heuristically, a two

dimensional metric gab has three local degrees of freedom, while the two dimensional

diffeomorphism group has two degrees of freedom and the Weyl group one. Therefore,

Diff x Weyl is just enough local symmetry to gauge gravity away and set gab = 6ab.

Using this freedom, the gauge fixed action in "conformal coordinates," z - a + iou,

is (ignoring ghosts and the topological contribution)

Sp = 21, Jd2z X X, (1.7)

with a -/Oz and a /82. There is still actually an infinity of unfixed Diff x Weyl

under which the metric remains unchanged. We can make holomorphic coordinate

changes

z= f(z)

f' = f [(z)]*(.8

as long as we also make a compensating Weyl transformation e2" = |4f 12. In this

gauge fixed form, (1.7) is the Lagrangian of the two dimensional free boson conformal

field theory, while (1.8) are the associated infinite dimensional local conformal trans-

formations. Therefore the study of the Polyakov action after gauge fixing has led us to

the study of a two dimensional conformal field theory.

1.1.4 The Weyl Anomaly and the Critical Dimension

Of course, in order for (1.5) to be well defined, the gauge symmetry, Diff x Weyl,

cannot be quantum mechanically anomalous. After gauge fixing, this means that there
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cannot be an anomaly in the conformal symmetry. Typically, however, there is such an

anomaly, called the Weyl anomaly, which is proportional to the central charge of the

CFT,
c

(Ta) = R (1.9)
12

where R is the scalar curvature of the worldsheet. Thus, in order for gauge group

of string theory to be anomaly free, we must have c = 0. Actually, the full CFT of

string theory is a sum of the ghost CFT used to gauge fix (which we have ignored

until now) and the CFT of the D free bosons X". Given a careful treatment, one finds

that cG = -26 and cx = D. We thus must have that D = 26, i.e. in order for

bosonic string theory to be consistent, it must be formulated in a target space with 26

dimensions. This is sometimes called the critical dimension of bosonic string theory.

1.1.5 General Backgrounds and Non Linear Sigma Models

When one properly quantizes (1.2), one finds that the lowest energy states are a scalar

with negative mass (the tachyon), a massless symmetric tensor (the graviton), a mass-

less antisymmetric tensor (the B field), and a massless scalar mode (the dilaton). The

tachyon signals an instability; this will be ignored in this discussion because we're

really just warming up for superstring theory, which is tachyon free.

The action we've been considering (1.2) is an action formulated inflat target space,

meaning that there is no target space diffeomorphism invariance X" -+ X"' (X), only

a global Lorentz invariance. Said differently, the X's are contracted with r not

some general curved metric G,, (X). Why not reconsider an action with some general

curved G,1,(X)? This corresponds to considering strings in some coherent state vac-

uum of gravitons. While we're at it, we might as well consider strings in a coherent

state background of the other massless fields

S = 1 O yg [(gabG,,,(X) +iEaB,,(X)) OaXObX" + a'Rb(X)] (1.10)
47ra'
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In addition to the worldsheet gauge symmetries (Diff x Weyl), this action has new

global symmetries. One of these is target space diffeomorphisms, under which G and

B transform as two tensors, while @1 transforms as a scalar. There is also a new gauge

symmetry, B,, - B1,, + a8,v(X) - 8,((X), under which S changes by a total

derivative.

Actions on curved target spaces such as (1.10) are called non linear sigma models

(NLSM's) and will play an important role in the rest of this thesis.

We again must require that the Weyl anomaly vanish. In this curved background,

careful calculation reveals the Weyl anomaly to be

(Tag _ aXabX" - 2itzBVab OaXpabXv - 2*4R (1.11)

Where the O's are the # functions for the couplings in the two dimensional NLSM

(1.10)

# = a'R + 2a'V V,( - aHpw HVAw + O(a'2 )

t;_= - VwHcv + a'V'(H, + 0(a'2 )

#* = D - 26 _/ iV 2D + a'VAVw - HuxH1"A + O(a' 2) (1.12)
6 2 24

where H,,, = 8BpV + aBy, + BuB, 1 is the gauge invariant field strength. Note

that such a perturbative expansion only makes sense if a'i/2R < 1 where RC1 is

the radius of curvature of the target space. That is, the target space is weakly curved

compared to the string scale. Thus, for conformal invariance to hold, we must have,

order by order in worldsheet perturbation theory 0,L = = = 0. At lowest order

in the dilaton # function, this again requires D = 26. Remarkably, in the absence of

matter, D = H = 0, the first equation of (1.12) gives us Einstein's equations on the

target space, Rp, = 0. We will see in the next section that in the presence of matter,

the vanishing of the # functions can also be understood as being derived from some

covariant gravity + matter action in 26 dimensions. We will reproduce this classic
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computation that 1GI ~ R,, (for <b = H = 0) in Chapter 3.

1.1.6 The Low Energy Effective Action

The conformal invariance equations to lowest order, (1.12) can be derived as the clas-

sical equations of motion of an action

1 f '2~F 1
S_1 2 = d26 x (-G)i/2e- R - H,,AHf" + 48,<bot<D (1.13)

2 r2 12

known as the low energy effective action. A classical Einstein-Hilbert action is re-

gained by making a field redefinition on G. This action, as a quantum theory, also

correctly reproduces string scattering amplitudes to lowest order in a'. Comparing the

amplitudes to (1.13) can be used to derive the Newton's constant t in terms of g. and

a .

1.1.7 Anisotropy on the Worldvolume?

The emergence of Einstein's equations is a triumph of string theory. It is worth ask-

ing how much we can tweak the worldvolume theory without doing violence to this

beautiful result. To this end, in Chapter 3 we consider NLSM's that explicitly break

Lorentz invariance on the worldvolume. While seemingly crazy, there has been great

recent success in importing anisotropic ideas from condensed matter theory into parti-

cle physics. For example, Horava has recently written down ([6], [7]) a naively renor-

malizable theory of gravity in four dimensions that treats space and time anisotropi-

cally.

The NLSM's that we consider are of the form

S = Jdt d20- [G,(X)8 tXfItXv - aG,,(X)(AX" + IPaXpaaX",)(AXv + Fvbx~apb X)

(1.14)

with flat worldvolume metric and A = 8aa. These models retain diffeomorphism
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symmetry in the target space and also have an anisotropic conformal symmetry on the

worldsheet under which t --+ AVt and x -+ Ax (this is called the z = 2 anisotropic con-

formal symmetry with t --+ At being the more general case). Note that this symmetry

holds only in three dimensions, which is the reason for considering a worldvolume

of membranes instead of strings. We examine this anisotropic conformal symmetry

at the one loop quantum level by computing the # function for G,, We find, quite

remarkably, that at one loop

#, ~., R, (1.15)

once again. So while isotropy is broken on the worldvolume, target space diffeomor-

phism invariance still holds. Of course, this is not yet a fully dynamical theory of

membranes (notice that we did not include worldvolume gravity). In Chapter 3 we

also write down a classical theory of this NLSM anisotropically coupled to Horava

gravity. Unfortunately, we are unable to say much about the membrane theory at the

quantum level because unlike in the worldsheet case, we can not fully gauge gravity

away.

1.1.8 Compactification

Returning to Lorentz invariant string theories, we observe a universe that is locally

4d Minkowski space, M4, and presumably non-compact. This means that the extra

dimensions required by string theory must be "curled up" into a compact manifold

represented by some curved, Ricci flat, non linear sigma model. M4 is represented by

the free CFT of four bosons with c = 4. Therefore, the extra dimensions must be some

NLSM that flows to a c = 22 CFT. In fact, we can be much more general and replace

the "extra dimensions" by any c = 22 2d CFT, even if it has no "geometric" interpre-

tation as an NLSM. c = 22 is necessary so that we can non-anomalously couple things

to worldsheet gravity. The requirement that this more general CFT be "compact" just

means that the CFT should have a discrete spectrum. This attitude frees us from the

shackles of thinking of the "extra dimensions" as geometric objects and will be an

21



important motivation for the material in Chapter 2.

1.2 The Superstring

While the bosonic string is an interesting system, it suffers from the tachyon insta-

bility. Even if we could somehow ignore this, it has only bosonic excitations-a phe-

nomenological problem; the universe has fermions. It turns out that we will get space-

time fermions by adding 2d fermions to the worldsheet CFT. In the following sections

we show how to do this, whilst maintaining supersymmetry between the bosonic and

fermionic operators. This development of the superstring proceeds in parallel with the

previous section.

1.2.1 Type II Strings and (1, 1) Superconformal Invariance

The starting point for the bosonic string was scalars coupled to two dimensional grav-

ity. The superstring is just the bosonic string plus supersymmetry, and so its start-

ing point is scalars and fermions coupled to 2d supergravity (SUGRA) (the relevant

amount of supersymmetry here will be non-chiral (1, 1), we consider the chiral (0, 1)

in a subsequent section). We do not write out the full SUGRA action here, though

once again there is a Diff x Weyl symmetry that we can use to gauge fix the graviton

and the gravitino. One is again left with a CFT-this time of free bosons and fermions.

In fact, one is left with a superconformal field theory; a CFT that satisfies the enlarged

(1, 1) superconformal algebra (a joining of the conformal symmetry with SUSY). The

gauge fixed action is

S= +Jd2 z (IX aX +@?ot0 + 98tl (2.16)
47r a/

with p = 1 ... D. The equations of motion imply that b is a function of z only, i.e. it

is holomorphic while is antiholomorphic-these are left and right moving Majorana-

Weyl spinors. Each spinor contributes 1/2 to the right/left CFT central charge. There-
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fore the total central charge of this SCFT is cx = D + D/2. However, we must

also carefully analyze the ghosts needed to gauge fix SUGRA away. As it turns out,

these ghosts are the superconformal completion of the bosonic ghost CFT with central

charge is CG = 15. Therefore, the vanishing of the Weyl anomaly implies that D = 10,

the critical dimension of superstring theory.

1.2.2 Excitations of the Type II String

For closed strings, we have a choice of boundary conditions for @/M, 0" as we go 27r

around the string. If the fermion comes back to itself, these are Ramond (R) boundary

conditions; if they return with a minus sign, Neveau-Schwartz (NS). Having set the

boundary conditions, we can use the mode expansions of 0A, OP and X1 to construct

the Hilbert spaces of both the left handed and right handed CFTs. Let's for a moment

just focus on the left handed CFT. When one quantizes the NS Hilbert space, one dis-

covers that the lowest lying mode is a tachyon with negative mass (have no fear, this

tachyon will soon be projected out of the spectrum). The next excited state is obtained

by applying the lowest mode operator of 4"' to this vacuum. It is massless and a space-

time vector (it transforms in the 8 v of the spacetime little group, SO(8)). All other

excited modes are massive. Note that since the vacuum is a spacetime (target space)

boson, all excitations are also spacetime bosons (there is ample opportunity for con-

fusion between worldsheet/target space). Now, the mode expansion for the Ramond

sector 0A has a zero mode which does not annihilate the vacuum. Instead, these zero

modes form a representation of the spacetime Clifford algebra on the vacuum. Indeed,

the Ramond vacuum state is a 10d Dirac spinor. This representation is reducible to

two Weyl spinors, the 8 and 8' of SO(8). These vacua are massless while all higher

excitations in the R sector are massive.

One now can define a worldsheet fermion operator, F, eigenvalues ±1, which

grades whether or not states are worldsheet fermions or bosons. For consistency with

the ghost CFT, the NS vacuum needs to have F = 1, while its first excitation has F =
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-1. In the R sector, the 8 has F = 1 while the 8' has F = -1. It is entirely consistent

to consider F = ±1 separately as conformal field theories. Thus, we seemingly have a

large number of choices as to which states to include in our string theory. Not only do

we have the choice of NS or R on both sides, but also whether we include F = ± 1 on

the left and F = ±1 on the right. As it turns out, there are only two consistent choices

for closed strings, type IIB and IIA.

Type IIB

The JIB theory is defined by keeping the R and NS sectors on both sides, but keeping

only F = F 1. Thus, we end up with SO(8) representations

(8, + 8) x (8, + 8) = [0] + [2] + (2) + [0] + [2] + [4]+ + (8')2 + (56)2 (2.17)

NS-NS R-R NS-R/R-NS

The brackets represent antisymmetric representations of SO(8) while the (2) is the

traceless, symmetric representation. The NS-NS sector has bosonic excitations that are

very much like the bosonic string-a dilaton, a B field and a metric. The RR sector has

new bosonic excitations (fermion x fermion=boson), differential forms C0, C2, and

C4 corresponding to gauge invariant field strengths F1, F3 , F5 , where F5 is self dual.

The NS-R and NS-R sector have fermions 8"s and 56's (fermion x boson=fermion),

known as the dilatinos and gravitinos. This resulting theory actually has spacetime

supersymmetry with 32 supercharges, two spinors of the same chirality. The dilatinos

and gravitions are the supersymmetric partners of the NS-NS and R-R bosons. Notice

that this theory is spacetime chiral-it does not contain a right handed spinor for every

left handed spinor. Actually, the SUSY is enough to fix the low energy effective field
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theory uniquely; it is type IIB supergravity in ten dimensions with (bosonic) action

SIIB SNS + SR + SCS

SNS 102 do (G)1/2e-2 R + 48t<OMb - IH 3 |2

SR - J d 10x (-G)1/2 (|F12 + + 2 5 2

ScS = 4 A H3 A F (2.18)

with H3 = dB 2 as usual and F 3 - F3 -C 0 AH 3 and F 5 - F - jC 2 A H3 + IB 2 A F3.

Type IIA

The IIA theory also keeps both R and NS sectors on both sides, but keeps F =1 on

the left hand side and F = 1 for the NS sector and F = -1 for the R sector on the

right. We get

(8v + 8) x (8v + 8') [0] + [2] + (2) + [1] + [3]+,8 + 8'+ 56 + 56' (2.19)

NS-NS R-R NS-R/R-NS

Again the NS-NS sector has the same excitations, while the R-R sector now has forms

C1 and C3 corresponding to even rank field strengths F2, F4. This theory, too, is space-

time supersymmetric with 32 supercharges, but here there are two spinors of opposite

chiralities and the theory is nonchiral. The NS-R/R-NS sector are again dilatinos and

gravitinos and are the supersymmetric completion of the other sectors. Again, the

SUSY fixes the low energy effective action to be that of type IIA supergravity, with
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bosonic action

S11A = SNS + SR + SCS

SNS I d0( 1/2 ±- 4Q p<D - IH 3 l
2 r,2 Jf 2

SR = - Jd1Ox (-G)1 / 2 (|F 2 |2 p4 12

ScS = - JB 2 A F4 A F4  (2.20)
4r2

with F4 = dC 3 - C1 A F3.

1.2.3 The Heterotic String

The heterotic string, is, in some sense, a joining (or heterosis) of the bosonic and

type II strings. In everything up until now, we have put the same CFT or SCFT on

the left and on the right-the theories are non-chiral on the worldsheet. The heterotic

string changes this and takes the ghosts/constrains on the left side from the bosonic

string and the ghosts/constrains on the right side from the type II string. Therefore,

for vanishing of the Weyl anomaly, we need a c = 26 matter CFT on the left and a

a = 15 CFT on the right. The heterotic string keeps the ten bosons, X"(z, f) (which

we still interpret as target space coordinates) and ten right moving fermions '"().

This choice preserves the right handed portion of the SUSY/SCFT algebra and so the

heterotic string will typically have only (0, 1) superconformal symmetry. This sector

is a (c, ) = (10, 15) theory and so we must supplement it with a c = 16 CFT. The

easiest way is to add 32 free left moving fermions AA, A = 1. . .32. This sector

has a global SO(32) symmetry and so the naive global symmetry of this model is

SO(8)sin x SO(32). We still interpret the SO(8) as the spacetime Lorentz symmetry,

while the SO(32) will turn out to be a spacetime gauge symmetry. On both left moving

and right moving fermions, we must investigate the R and NS vacua and decide which

F and F to project.
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1.2.4 Excitations of the Heterotic String

We will keep both NS and R states on both sides of the heterotic string and keep only

states with F = F = 1. The analysis of the right moving R and NS sectors proceeds

as in the previous section. Because of the different gauge fixing/constraints on the

left, however, the analysis of the NS and R vacua are different. The R vacuum turns

out to be massive, and so we will forget about it. The NS ground state is a tachyon

and has F = 1, but since closed string states must have left and right states with the

same mass, it gets projected out. The first excited state gets projected out because

F = -1. There are two states at the next level which are massless. One is obtained by

applying a raising operator from XP and is an SO(8) vector. The other is obtained by

applying two raising operators from AA and is an antisymmetric tensor of SO(32), the

adjoint representation. All other states are massive. Labeling both SO(8) and SO(32)

quantum numbers, the vector is an (8V, 1) while the antisymmetric tensor is a (1, 496).

Tensoring this with the right handed CFT, we get

[(8,, 1) + (1,496)] x (8v + 8) = (1, 1) + (28, 1) + (35, 1) + (56, 1) + (8', 1)

Type I SUGRA multiplet

+ (8V, 496) + (8, 496)

Type I gauge multiplet
(2.21)

As indicated, this theory is supersymmetric and has the massless content of type I

SUGRA (a theory with one chiral supercharge) coupled to an SO(32) gauge multiplet.

A different choice of projection on F actually gives type I SUGRA coupled to the

larger gauge symmetry, E8 x E8 . The low energy effective action is thus fixed to be

that of type I supergravity, (bosonic action shown only, as usual)

Shet = d'%oc (-G)1 /2 -2 (R + 4 < b - |&342 - 2iTr (|F2 |2)

(2.22)
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!2where F 2 is the gauge field strength and 13- dB 2 - 9w 3 and w3 is the Chern-Simons

form of the gauge field.

1.2.5 Heterotic Calabi-Yau Compactifications

We will briefly discuss the standard heterotic Calabi-Yau compactification. We assume

spacetime to be of the form M4 x M where now M is some six dimensional, compact

manifold and search for solutions to the low energy effective theory, Type I SUGRA.

Compactification will, in general, break the supersymmetries, but we wish to preserve

N =1 SUSY in four dimensions. The reason for this is two fold-a little evidence

and a lot of wishful thinking has led us to believe that there might be TeV scale super-

symmetry. Also, the SUGRA equations of motion will automatically be satisfied if we

can solve the simpler first order BPS equations. We should also impose the Bianchi

identity

d5 3 = - [tr(R 2 A R 2 ) - Tr(F2 A F2)] (2.23)
4

Without details, for SUSY to hold we must have 6(fermions) = 0 where 6 indicates a

SUSY transformation on the gravitino, the dilatino and the gaugino. It is still terribly

difficult to make progress with these equations and so we focus on a particular simple

class of backgrounds with H = 0 (sometimes called "torsion free") and <D = 0. Doing

a thorough analysis of the SUSY equations, one finds that M is required to be Ricci

flat, and also that there must exist a covariantly constant spinor on M (which in turn,

means that M is a manifold of SU(3) holonomy). With this covariantly constant

spinor in hand, one can then construct an integrable complex structure, a Kahler form

and a nowhere vanishing holomorphic top form. This implies that M should be a

complex, Kahler manifold with vanishing first Chem class, also known as a Calabi-

Yau 3-fold (3 is the number of complex dimensions). Yau's theorem tells us that such

manifolds admit Ricci flat metrics (for each Kahler class), and so there exist solutions

to the SUGRA equations. Unfortunately, there are no known 3d CY metrics in closed

form. Nevertheless, the fact that we know that M is topologically CY gives valuable
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information about the low energy theory. It should be mentioned that (2.23) is a very

hard equation to solve, even for H = 0. One usually takes a "trivial" solution, where

the spin connection is embedded in the gauge connection. For solutions with nonzero

dH this equation has resisted a solution in SUGRA until very recently. We will have

more to say about this in Chapter 2.

1.2.6 CY's From the Worldsheet Perspective

The previous section discussed compactification from a supergravity/target space per-

spective, but a proper discussion of compactification should take a worldsheet view.

From this perspective the "compact dimensions" are interpreted as some a = 9 CFT,

for example a (0, 2) NLSM on a target space M. This NLSM is a theory of the compact

bosons and their right moving superpartners, which transform as target space tangent

vectors. The action (taking a flat dilaton background) for such an NLSM is (now la-

beling the compact dimensions i, j = 1, ... 6),

S= 2 d 2 Z [Gij(X)OXMXJ) + Bi5(X)DX3X]1 + iGj(X)bD2p
27ra'

(2.24)

where 0' are the right moving fermions and Do = &@ + aXikikk is the pullback to

the worldsheet of the target space covariant derivative. (0, 2) SUSY requires that G be

hermitian and Kahler. Actually, vanishing of the U(1)R anomaly for the fermions (the

U(1)R symmetry is part of the (0, 2) algebra) requires that the first Chern class of M

vanishes, i.e. that the manifold is topologically Calabi-Yau. Again, one can calculate

the # function for G perturbatively and one finds again that at lowest order we must

have O3 = R-g = 0, i.e. to lowest order in a' the metric is the CY metric. This is the

same requirement from the supergravity analysis, but here we see that the metric will

be corrected at higher order in worldsheet perturbation theory. The fact that we have

(0, 2) SUSY means that we can do whatever we want with the left moving fermions,

as long as their CFT has the correct central charge. We can keep them free or we can
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fiber them over the right moving NLSM in some non-trivial way (this involves adding a

covariant derivative term to (2.24) with left moving fermions in some general bundle).

Again, we should remember not to take such an unenlightened, purely geometric

view of compactification. Any SCFT's with the correct symmetries and central charges

will do.

1.2.7 Constructing Worldsheet Theories With Non-Trivial H

In Chapter 2 we will review (0, 2) gauged linear sigma models (GLSMs), 2d gauge

theories that are thought to flow to (0, 2) NLSMs (which themselves are thought to

flow to (0, 2) SCFTs). It will turn out that these gauge theories will have a moduli

space of vacua that is precisely M, the target space of the low energy NLSM. In order

for the GLSM to be consistent and nonanomalous we will again find the requirement

that M be a CY manifold.

This, of course, suggests how to make non CY's with H flux-make the GLSM

anomalous. In particular we will introduce a quantum gauge anomaly. One might

think that this would be disastrous but we add another theory, a classically anomalous

gauged WZW model, so that the total gauge anomaly vanishes. The effect will be to

fiber the WZW model over the gauge theory moduli space and to create a total space

with non-vanishing dfI that automatically satisfies (2.23). In the case where the WZW

model is a theory of two free, periodic bosons, the vacua we find will reduce to the

recently discovered T 2 fibrations over K3 discovered by Fu and Yau ([8, 9]).

1.3 Gauge Gravity Duality and Condensed Matter Physics

1.3.1 Basics of the Correspondence

The holographic principle, gauge gravity duality, or the generalized AdS/CFT conjec-

ture (it goes by many names) is the following remarkable statement-some strongly

coupled quantum theories are secretly theories of gravity (perhaps coupled to matter)
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in some number of extra dimensions. The quickest most heuristic argument for this

statement goes as follows: gravity is weird. More specifically, GR theorems from the

1970's have taught us that black holes carry entropy associated with the area of their

horizons. This, surprisingly, leads to the conclusion that the maximum entropy of some

volume, V, is the entropy of the largest black hole that can fit (think not, just throw

some more stuff in and increase the entropy until you form a black hole). Therefore,

the entropy of V scales like the area that bounds it, A, which is very strange. We are

used to working with local quantum field theories which have degrees of freedom at

each point in spacetime. Since the maximum entropy is the log of the number of de-

grees of freedom, entropy should scale like V, not A. This suggests that gravity has

the same number of degrees of freedom as some local quantum field theory in one less

dimension. Since we have a pretty good idea of what weakly coupled quantum field

theories look like (and since they do not, generally, look like gravity in one dimension

more), the corresponding local QFT should be strongly coupled. Indeed, this sort of

reasoning would lead one to conjecture that inside every theory of gravity there is a

strongly coupled field theory in extra dimensions. In fact, this is the strongest version

of the conjecture. Though this conjecture is incredibly broad, many specific examples

have been investigated.

What is this extra dimension from the view of the strongly coupled QFT? Our ex-

perience with field theory tells us that we should regard observables as a function of

the scale at which we observe them, p. We also know that operators and correlators de-

pend on y through their renormalization group equations (RGEs), which, remarkably,

are local in p. This suggests that it is not very crazy to associate the extra gravitational

dimension with the energy scale p of the field theory, and that the equations of mo-

tion in the gravitational theory (sometimes called the bulk) somehow encode the RGE

equations of the field theory (called the boundary).

The utility of this conjecture is remarkable. Many of the outstanding problems in

theoretical physics stem from our lack of good theoretical tools for strongly coupled

quantum systems. Though we can write down the Lagrangian for Quantum Chromo-

31



dynamics (QCD), a through understanding of hadrons and nuclei remains frustratingly

elusive because of strong coupling that sets in at p - AQCD. Similarly, we can not

even effectively solve for electrons in a metal because of strong coupling! Typical

electron interaction energies are much larger then free electron energies (such as the

width of the conduction band), and so we can't treat the interactions as a small per-

turbation. It is very fortunate that there is often a weakly coupled description that is

basically a free Fermi gas: Fermi liquid theory. However, when the material is not a

fermi liquid, there are few good theoretical tools.

One might ask what good the conjecture is if we have replaced the strong coupling

problem with the problem of solving a gravitational theory, another great, unsolved

challenge of theoretical physics. The answer is that sometimes we get lucky and the

theories of gravity corresponding to the local QFTs are classical. Classical theories

of gravity are "easy." As we will see, calculating a quantity for the strongly coupled

quantum theory will reduce in the gravity theory to something relatively simple, like

solving a wave equation. Of course, this will be a wave equation on some classical

curved background, which we can do by hand in only a few circumstances, but we will

often be able to make some analytical statements and make even more progress using

a laptop computer.

1.3.2 A = 4 Super Yang Mills and AdS/CFT

We briefly review the most studied example of the correspondence: N = 4 SU(N)

Super Yang Mills (a theory similar to QCD) and gravity on the space AdS5 x S1. What

follows is not a proof, but rather the standard decoupling argument of plausibility.

Consider type IIB string theory on a flat, ten dimensional Minkowski background

along with N coincident D3 branes. We have not discussed D-branes, but they are

extended objects which source RR flux (here F5) on which open strings end. So we

have closed strings in the bulk and open strings constrained to end on the D-branes.

Looking at the low energy effective theory, the closed strings give us the usual type IIB
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supergravity (2.18) while it turns out that the low energy excitations of the open string

are a four dimensional, K = 4 (the maximum SUSY in four dimensions) U(N) super

Yang Mills theory living on the branes. At low energies, these two sectors decouple,

giving the SYM theory and type IIB SUGRA on flat space.

This system has another description; D3 branes can be viewed as solitonic type II

SUGRA objects, with metric

4

ds 2  f-1/2 (-dt2 + dx ) + f 1/2(dr 2 + r 2 dQ2)

f =1 + R (3.25)

constant dilaton, and five flux F = (1+*)dt dx1 dX2 dx 3 df-. The SUGRA equations

relate R to the ten dimensional Newton constant, which, in turn, can be related to g,

and a', R4 = 47rgs(cv')2 N. There are two types of low energy excitations; at r > R

there are massless modes in an asymptotically flat region-type IIB supergravity. As

r < R, all modes (including string modes) become redshifted to give another sector

of low energy excitations. These two sets of IR excitations completely decouple. The

first set gives flat, type IIB supergravity, while the second gives IIB string theory on

AdS 5 x S5 (the small r limit of (3.25)) with constant dilaton and F flux on the S5.

Since our two descriptions of this system involve a decoupled flat IIB SUGRA

background, it is natural to identify the K = 4, SU(N) SYM and IIB string theory

on AdS 5 x S5 as equivalent (the U(1) of the SYM completely decouples; from the

SUGRA analysis, it lives on the connecting region between the throat and the asymp-

totically flat region). Of course this isn't a proof; one description is valid precisely

when the other one fails. The description in terms of weakly coupled SYM theory is

valid when

92uN ~ gN ~ < 1 (3.26)

whereas the description in terms of a string NLSM is valid when the space is weakly
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curved with respect to the string scale,

R 4
>> 1 (3.27)

(a') 2

In addition, though this correspondence is beautiful, we would also like it to be useful,

that is, we would like to be able to calculate something about strongly coupled SYM

theory using classical gravity (without string corrections). We would like the space to

be weakly curved with respect to the Planck length

- ~ N > 1 (3.28)
1, gse) I)

that is, classical SUGRA computes quantities for Af = 4 SYM in the N -* 00 limit.

It should be said that in practical use, one usually dimensionally reduces on the S5

and thinks of the theory as type IB SUGRA coupled to various matter in AdS 5 . That

one can do this is far from clear (the sphere is the same size as the characteristic length

of AdS), but it turns out that there is a consistent KK reduction.

1.3.3 Other Examples of the Correspondence

Many other examples of the correspondence have been discovered using similar de-

coupling arguments. For example, one can change the gauge group of the N1 = 4

theory by replacing the S5 with an RP 5 . One can orbifold the S5 to break the bound-

ary field theory to M = 2 or replace the S5 with some more general Sasaki-Einstein

space to get M = 1 theories. One can change these theories in additional ways, such

as adding wrapped D5 branes and fractional D3 branes to break the conformal symme-

try and beautifully investigate the running coupling, confinement and chiral symmetry

breaking from the bulk point of view. The former constitute just a very small listing of

known gauge/gravity duals.

In recent years, however, a new attitude has been developing. One constructs some

classical gravity solution in the bulk. If one takes gauge/gravity duality very seriously,
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this should correspond to some boundary field theory. The recent view has been to

postpone identifying what this strongly coupled boundary field theory is and to be

content calculating interesting things about it. After all, we're not really interested in

M = 4 super yang mills or K = 1 klebanov-witten theory-we are interested in QCD;

we want to suss out the qualities that these theories have in common with QCD.

As we will see, the isometries of the gravity solution correspond to the spacetime

symmetries of the boundary field theory. Suppose we are interested in some class of

field theories with a specified spacetime symmetry group. We can study the boundary

theories by constructing bulk gravitational solutions with an identical isometry group.

If we are lucky, our investigations will lead us to results that are universal across a

large range of such theories.

1.3.4 The Dictionary

Though we have discussed gauge/gravity duality as an equivalence of two theories, we

have not specified how the variables of the bulk gravity theory map onto the observ-

ables of the QFT. For concreteness, we review how this matching works for K = 4

super yang mills and AdS 5 x S'. We also briefly review how to calculate two point

functions.

Symmetries

The two theories (IIB on AdS5 x S5 andN = 4 SYM) enjoy all of the same symmetries

(as they should if they are to be the same theory!). For example, they both enjoy a

bosonic SO(4,2) x SO(6) symmetry. The AdS5 metric,

ds2 = i-E(dx)2 R2 (3.29)
jil

is obviously SO(3, 1) invariant. It is also invariant under dilations, x4 -- Ax/', r -+

A-1 r. These actually generate the whole conformal group, SO(4, 2). The SO(6) sym-
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metry is just rotations of the S', its isometry group. In the field theory, the SO(3, 1)

subgroup is the usual Lorentz group while dilations are also symmetries of the SYM

theory (in particular, the dilation symmetry follows at the quantum level from the van-

ishing of the 3 function). These subgroups also get enlarged to the conformal group

in the usual way. The SO(6) is a global R-symmetry which does not commute with

SUSY.

The fermionic symmetries of these theories also match. Type IIB string theory

(and supergravity) in flat space has the maximum number of supercharges allowed,

32. As it turns out, the AdS 5 x S' background does not break any of these. Similarly,

the SYM theory not only has the 16 supercharges from the A = 4 SUSY, but also

16 additional supercharges under the superconformal group, the SUSY completion of

SO(4, 2).

Fields and Operators

In the event that both sides of the duality are known, we can make a definite mapping

between classical fields in the gravity bulk and operators in the boundary. Again, we

will use an example of the mapping for K = 4 SYM.

We can organize operator representations of the superconformal algebra by starting

with operators that are so called "superconformal primaries." We get other operators

in the representation by acting with Q and P of the SUSY algebra on these special

operators. It turns out that they are of the form

0"---"=Tr(Xf' ... X'11) (3.30)

where Xi=1.. 6 are the scalars in the N= 4 gauge multiplet and are vectors under the

SO(6) R-symmetry. On the supergravity side, fields on AdS5 x S5 can be expanded in

spherical harmonics on the S1. Using x as coordinates on AdS5 and y on the S5 (with
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Z y2 = 1), any field <D(x, y) can be expanded as

<D(X, y) = #z(x)Y'(y) (3.31)

with the spherical harmonics Y'(y) = T...i y .. . y%.

The way that the R-symmetry acts in both theories strongly suggests that we iden-

tify fields in AdS5 whose S' spherical harmonic is Til...g yii ... y' with SYM operators

T1 ... Tr(X" . .. X"}). This is enough to organize the whole spectrum of supergravity

perturbations. Since we know which supergravity fields correspond to superconformal

primaries, we can get descendant operators by acting with Q and P. Similarly, we can

get the supergravity perturbations that correspond to these operators by acting with the

corresponding symmetries in AdS 5 x S5 .

Calculating Correlation Functions

We briefly review the GKPW implementation ([10, 11]) of calculating correlation

functions using gauge gravity duality. The prescription is

Se- ) CFT = ZAds[#] (3.32)

On the left hand side, we are calculating an expectation value with some source #0,

where we should think of #o as the field in AdS dual to the operator, 0, of the field

theory. On the right hand side, we should calculate the partition function of the grav-

itational theory evaluated in a background # whose r --+ o boundary value is #o (we

are glossing over the fact that a UV cutoff is usually needed). In terms of the generator

of connected correlation functions,

WCFT = - log e f 0 CFT= log ZAds[#] (3.33)
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For a classical gravity theory, we can evaluate this partition function at its saddle,

WCFT = Sgrav[q3  (3.34)

where Sgrav [#] is the gravity action evaluated at an extremum with the constraint that

# have boundary value 0. Connected correlation functions are found by taking func-

tional derivatives of W, for example, the connected two point function is

62W
(O(x1)O(X2)), 0X)6(2 0= (3.35)

Without going into details here, the steps for calculating, say, a (Euclidean) two point

function are

1. Solve the wave equation in the bulk for # with boundary condition #(bdy) = #0.

For a scalar, this equation is

1
V- m9q5V/ 0 (3.36)

Typically, for Euclidean g, one of the solutions will blow up in the bulk and so

we throw it away. The condition at the boundary is enough to fix the solution

completely (we will have more to say about Lorentzian correlators in Chapter

4).

2. Evaluate this solution, #, on the action.

3. Take two functional derivatives to get (O(Xi)O(x2 ))c.

The form of this two point function will give a relationship between the scaling dimen-

sion v of the operator (the eigenvalue under dilation), and the mass of the field, m. For

scalar fields in AdSd+i, v = f(d/2)2 + m 2 R 2.

For two point functions, we only need to take two functional derivatives before

setting #0 = 0, and so we do not need to know the full form of the bulk action. We
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only need the free action (to know the various masses of the fields, however, we do

need the full bulk theory). For three point functions and higher, the detailed form of the

bulk interactions becomes important. Once known, one can calculate these correlation

functions by solving the wave equation perturbatively in #.

We will have much more to say about the computation of fermion two point func-

tions in Chapter 4.

The Boundary Theory in Different States

The previous discussion concerned computing correlation functions in vacua. Very of-

ten, however, we want to compute correlators in an ensemble with finite temperature or

charge density. Thus, we need to somehow change the bulk geometry correspondingly.

The most naive thing is correct-add a black hole in the AdS geometry. The bound-

ary temperature corresponds to the Hawking temperature of the black hole while the

charge density corresponds to its charge. We will have more to say about this in Chap-

ter 4.

Therefore, the correspondence is not strictly between a spacetime and a field the-

ory. Really, the correspondence is between a field theory and an asymptotic, boundary

metric (and classical dynamics in this geometry). The different classical excitations

of the bulk correspond to evaluating expectation values of the field theory in different

states.

1.3.5 Application to Condensed Matter Systems

In the last few years, there have been numerous examples of bulk gravitational solu-

tions that may be possibly relevant to condensed matter physics. This is encouraging

and exciting because in the laboratory we can create an infinite number of condensed

matter systems, while we are constrained by Mother Nature to be able to observe only

a small number (1) of strongly coupled particle theories. Some recent examples of

the correspondence are the Schrodinger metric solution ([12, 13, 14]), relevant to field
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theories with Schrodinger symmetry such as fermions at the unitarity limit, and also

Lifshitz metrics, which are dual to Lifshitz theories of tricritical points ([15]).

We will focus on another case, first studied in ([16, 17]), the charged black hole in

AdS 4. The finite density of "stuff" breaks the Lorentz symmetry of the boundary the-

ory. In the second of these papers, it was shown that the boundary two point function

for fermions takes the form

G*pO = (Z()@(X2)) = (3.37)
k -vlk- keI +iikspace f

where kf, Vf and Z can only be computed numerically and F ~ w2". The singularity

of Gpp at w = 0 and k = kf signals a fermi surface while finite W and k - kf describe

excitations above this surface. These duality constructions give a whole theoretical

playground of non-fermi liquids. This gives a remarkable handle on a strong coupling

problem that has stalwartly refused analytical attack. In particular, v/ = 1/2 are so

called "strange metals," i.e. high T superconductors. In the holographic picture, this

v has a nice geometric interpretation. The near horizon limit of the AdS 4 black hole is

AdS 2 x R 2. Hence, in the IR, the boundary theory develops a new, two dimensional

conformal symmetry under the AdS 2. At zero temperature,

m 2 +k 2 q2

A 6 12 (3.38)

is related to the scaling dimension, v of 4 under this IR scaling transformation (q, m

are its charge and mass) by A = v - 1/2.

In Chapter 4, we consider one way of expanding this zoo of duals. We take the

above system of fermions minimally coupled to the extremal AdS 4 black hole and add

the lowest dimensional irrelevant operator

o(gm + gef)E9"#F,, (3.39)
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which corresponds to turning on a tree level magnetic and electron dipole moments

for the bulk fermion. In Chapter 4 we examine how this perturbation changes the

boundary field theory. We find that correlators are still described by (3.37), but that

turning on the dipole operator generically changes kf, the location of the fermi surfaces

and also changes v, the scaling dimension of 4 under the AdS 2 conformal symmetry.

We present our numerical results and produce "phase diagrams" of the attainable v

versus m.
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Chapter 2

Heterotic Flux Vacua From Hybrid

Linear Models

2.1 Introduction

As reviewed in Chapter 1, the prevalent paradigm for string compactifications has been

Calabi-Yau manifolds. We know, however, that our universe does not have compact

dimensions that are a Calabi-Yau-CY's typically come with moduli, massless fields

and associated unobserved long range forces. The answer to this has been to turn on

Ramond-Ramond fluxes in type II supergravity to fix these moduli (see, for example

[18]). From the SUGRA point of view, this is all very beautiful, but RR fluxes have

resisted a stringy, worldsheet understanding 1. To avoid these complications, we might

try to quantize pure NS-NS vacua of Type II. Unfortunately, turning on H-flux generi-

cally generates tree-level tadpoles which can only be cancelled by decompactifying or

adding orientifolds and other RR objects, so that doesn't solve the problem.

The difficulties of quantizing RR fluxes can be avoided by working in a heterotic

duality frame, where a tree-level H-flux can be balanced against a 1-loop anomaly via

Considerable progress has been made in quantizing RR backgrounds by Berkovits and collaborators
using the pure spinor and hybrid formalisms (see for example [19]). However, a generally applicable
and computationally effective formalism analogous to the GLSM remains elusive. For now, RR vacua
remain challenging.
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the Green-Schwarz mechanism,

dH = a(trR A R - TrF A F).

Turning on H flux means that we are no longer working with a CY (nor, indeed,

Kahler [20]) manifold. It also means that we are closer to constructing more realistic

vacua-some of the moduli are fixed. For example, in CY's there is an unfixed modulus

corresponding to the overall size, under which g - t2 g and H -> t2 H. If equation

(2.1) is satisfied nontrivially, each side scales differently (R -> t0R) and so this global

conformal mode no longer corresponds to a massless direction. Unfortunately, this

supergravity equation is abrasively non-linear, making the construction of concrete

non-Calabi-Yau solutions exceedingly challenging.

Considerable progress was made on this problem with the identification of a spe-

cial class of non-trivial solutions in [21, 8, 9, 22]. These solutions all take the form

of T2 -fibrations over a base K3, with H-flux along the fibration balancing against

the curvature of the bundle so as to satisfy the Bianchi identity above. While these

vacua have c3 (V) = 0, and thus have zero generations at the semi-classical level, they

provide interesting toy models of non-trivial heterotic flux compactifications.

These solutions are in supergravity, however, and one should be skeptical of the

validity of the solutions because the T 2 radii are stuck at the a' scale. As always, it

would be best to have string worldsheet CFTs corresponding to these flux vacua. One

well known approach for "constructing" such worldsheet CFTs is that of the Gauged

Linear Sigma Model (GLSM [23]). The idea here is to construct a two dimensional,

supersymmetric gauge theory in the UV that flows in the IR to some desired supercon-

formal field theory. Though not all of the details of the IR superconformal field theory

will be known (we will not, for example, be able to compute a CY metric), nonetheless

certain observables of the IR CFT are computable using a weakly coupled gauge the-

ory in the UV. Because we are interested in solutions of the heterotic string, we work

with (0, 2) supersymmetric GLSM's.
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Using the GLSM, the vacua of were [21, 8, 9, 22] realized in [24] by cancelling

a 1-loop gauge anomaly against the classical gauge anomaly of a set of dynamical

axions. The basic idea here is as follows. In a GLSM with gauge group [U(1)]', the

NS-NS B field of the resulting NLSM is given by

m
B =Z "Ha (1.1)

a=1

where Oa are the theta angles of the gauge theory, and Ha are the generators of 2

cohomology of the resulting NLSM target space. Since H = dB = 0, these vacua

have no H flux. However, we would have H flux if we could somehow promote the 0

angles to dynamical axions, all the while maintaining (0, 2) SUSY (naively, equation

(1.1) would lead us to believe that dH = 0 so that the Bianchi identity is trivially

satisfied-this turns out not to be the case as H = dB by itself will turn out to be not a

gauge invariant quantity).

This mechanism is the pullback to the worldsheet of the spacetime Green-Schwarz

effect. The fact that all such models have zero generations follows 2 , in the worldsheet

description, from the existence of a pair of free right-moving fermions (the superpart-

ners of the axions, which are coordinates on the T 2 fiber) whose zero modes ensure that

all spacetime fermions come in non-chiral pairs. For these and other reasons, it would

be interesting to generalize these models beyond the original example of T2 -fibrations

over Kahler manifolds.

The goal of this chapter is to construct one such generalization. To introduce H-

flux, we again pull back spacetime Green-Schwarz anomaly cancellation to a GLSM

for the worldsheet CFT. This time, however, we will not require the worldsheet anomaly

to be abelian. So long as we are careful to keep all possible anomalies cancelled,

making the gauge group non-abelian boils down to replacing the T 2 fiber with some

non-abelian group, G (or, more generally, some coset G/H), a subgroup of which is

identified with the gauge group of the GLSM. More precisely, rather than starting with

2We thank J. Lapan for discussions on this point.
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an anomalous abelian GLSM and canceling the anomaly by coupling the theory to a

scalar axion in a gauge-non-invariant fashion, we now start with an anomalous non-

abelian gauge theory and cancel the anomaly by coupling to a classically-anomalous

gauged WZW model. By suitable choice of coset, we can ensure that there are no free

right-moving fermions to force the spacetime spectrum to be chiral - these vacua do

not, in general, have generation number zero. The result is a hybrid WZW gauged

linear sigma model providing a worldsheet description of a large class of new quasi-

geometric heterotic flux vacua which reduces to the original T2 fibration in the abelian

case.

Notably, something very similar was done in a pair of beautiful papers by John-

son et. al. [25, 26], who built novel (0, 2) "minimal models" by adding (0, 2)-singlet

left-moving fermions to gauged WZW models so as to cancel the one-loop anomaly

generated by the fermions against the classical anomaly of the WZW model. One of

the mysteries of those models was where, on the moduli space of string vacua, they

arose; one lesson of this line of work is that they arise on the moduli space of non-

Kahler flux-vacua of the heterotic string. A similar strategy was also used in a recent

paper by Distler and Sharpe [27], who built WZW-fibered non-linear sigma models

over Calabi-Yau 3-folds to realize E8 bundles over topological CYs which could not

be otherwise realized via free fermions.

This chapter is organized as follows. In Section 2 we review (0, 2) GLSM's and

in Section 3 gauged WZW models. In Section 4 we couple such WZW models to

anomalous gauged linear sigma models to cancel the gauge anomaly of the GLSM.

In Section 5 we identify the necessary non-anomalous U(1)L and U(1)R symmetries

needed for a computation of the spectrum. In Section 6 we discuss how some of

our models may be obtained by bosonization and fermionization. We then introduce

several explicit examples in Section 7 and conclude in Section 8.
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2.2 Brief Review of (0, 2) Gauged Linear Sigma Models

In this and the next section, we briefly review the superspace multiplets of 2d, (0, 2)

supersymmetry, and also the basics of the Gauged Linear Sigma Model (GLSM). The

material presented here is standard, and can be found in, for example [23], [28], [29].

Supersymmetric actions are most readily constructed using superspace. Super-

space has two bosonic (light cone) coordinates (x+, x-) and also two fermionic coor-

dinates (0+, #+). SUSY transformations act on general superfields A(x, 0) as

Je A(x, 0) = (eQ+ - EQ+)A(x, 0) (2.2)

with the Q operators defined on superspace as

a -

Q+= =- i (2.3)

We can define superderivatives

D+ ' - Oa

- +a
D+ = - + i++ (2.4)

One irreducible representation of (0, 2) supersymmetry is the chiral multiplet, de-

fined by D+<D = 0. It can be expanded in terms of ordinary fields on spacetime as

<b(x, 0) = #(x) + V'260+@+(x) - i0+g+9 +#(x) (2.5)

A fermi multiplet F is defined in exactly the same way, except its lowest component is

a fermionic field (the condition that D+<b = 0 can be relaxed slightly, giving additional

fields, which, in the (2, 2) case are the adjoint scalars of the gauge multiplet-we ignore
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this more general case for now)

F(x, 0) = y_(x) - v 26+F(x) - i*+6+a+-(x) (2.6)

Another multiplet is a real superfield V = Vt. Such multiplets can have a vector as

their lowest component

V_ = A_(x) - 2iO+\_(x) - 2i+LA(x) + 20++D(x) (2.7)

or a scalar

V+ = C + iO+-y+ + iS+ + 6+#+A+ (2.8)

2.2.1 Gauge Theories in Superspace

We can put these ingredients together to form a (0, 2) gauge theory in superspace (also

known as a GLSM) with gauge group G. We start by introducing N chiral multiplets

<Di=1 ...N,)

4ci= 0i + vf_+bj- iO+6+a~oi

transforming in representations Ri of a symmetry group G, together with M fermi

multiplets Fa=1...M,

Pa = Y-a - v/20+Fa - 2g+g+a+7-a

transforming in representations Ra of G. Since Fa is auxiliary, in the absence of cou-

plings with other multiplets, the left-moving fermions are on-shell SUSY singlets. This

is the full matter sector of the GLSM.

We introduce dynamics by gauging G with a (0, 2) vector multiplet, V±. In com-
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ponents,

V_ = A_ - 2iO+\_ - 2i+ A_ + 20+6+D

V+ = C +iB+3++iS++++6+A+ (2.9)

The canonical field strength supermultiplet

Y_ = [ev'5+e V+v+

- (-2A - iD-+) + 2iO+(D + -F+ + ...) + 2iO++(D+A- + ...)2

transforms in the adjoint of G, where (...) denotes terms that will shortly be set to zero

by a choice of gauge. V- =_ + iV_ is the left-moving gauge-covariant superderiva-

tive.

Supergauge transformations are defined using an adjoint-valued chiral gauge pa-

rameter

B = b + V20+0+ - iO+g+0+b, (2.10)

The matter fields transform according to their representations while V± transform as,

V+ -+ V++i(B-B$)-i[V+,B+A]+...

V_ -+ V-+iO_(B-A)+i[V+,B+B]+...

In components, the variation of V+ takes the form,

C -- C-2ilmb-i[C,2Reb]+...

-+ -++v' 2 + - i[y+,2Reb] -v/2[C, #+]+... (2.11)

A+ -- A+ + 2&+Re b - i[A+, 2Reb] + V2[y+,3+] + v'[i+, 3+] - i[C,+21mb] +...,

where the ( ... ) terms involve higher order commutators involving Im b.

As in four dimensions, we can use our super-gauge invariance to fix the non-
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dynamical components of V+ to zero3, leaving V+ in the form,

V+ = 0+6+A+-

This so-called Wess Zumino (WZ) gauge is particularly intuitive, since it makes mani-

fest that the only propagating degrees of freedom in the vector multiplet are the gauge

boson A± and the gaugino, A_ (which resides in V_). Notably, since any gauge trans-

formation with 0+ = 0 and Imb = 0 preserves the WZ condition, WZ gauge-fixing

preserves a residual unfixed gauge symmetry, A+ -+ A+ + D+a, where a = 2Re b.

These are just the usual gauge transformations associated with any gauge theory.

Sadly, the benefits of WZ gauge come at a cost. By fixing some of the components

of vector superfield V to zero, we have destroyed manifest supersymmetry. Explicitly,

under a SUSY transformation with SUSY parameter c, the vector V+ transforms out of

WZ gauge,

V+ --+ i+ A+ - ig+eA+ + 0+6+A+. (2.12)

We can return to WZ gauge by making a further gauge transformation with gauge

parameter,

BWZ= -i (o+ A - O+cA) .(2.13)

It is easy to check that this returns us to WZ gauge. The theory is thus only su-

persymmetric up to a gauge transformation in WZ gauge. As long as our theory is

gauge-invariant, this is a technical detail (we will see, in the sections that follow, that

if there is a possible gauge anomaly this technical point becomes paramount).

2.2.2 Gauge Invariant Actions

We illustrate how to construct gauge invariant (0, 2) actions. For simplicity, we take

G = U(1), but this can (and will be) easily generalized to many U(1)'s and to non-

abelian groups U(N) (we will take U(N) as opposed to SU(N), because we want

3 Specifically, taking b - b iC sets C -* 0, while taking 0+ = -y+ subsequently sets -y+ -> 0.
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there to be a central U(1) for which we can write down a Fayet-Iliopoulos parameter).

Gauge and SUSY invariant kinetic terms for the chiral superfields are

Leh - - i2 Sd20 eQiV+ iV(eQiV+<D) = - 1Dl2 + i+ (2.14)

with V _ -+iV_ and D the usual spacetime covariant derivatives. Similarly, gauge

invariant terms for the fermi multiplets are given by

LS= = J d2 0 pa
2qav, = Z-aO+-a + Fa| 2 (2.15)

We can add in Yukawa interactions and a scalar potential by turning on a superpotential

1 f aja
Li = dO+ AaJ"(<bi) 1 + h.c. =(7 -ad+i + Faja()) + h.c.

A gauge invariant field strength superfield can be obtained (in WZ gauge) as

(2.16)

T _ E [eV+D+e-v+ V-] = -2A- + 2iO+(D

in terms of which an invariant kinetic term is

Lgauge -
1

d2 T =2e

Another invariant term we can write down is

LFI =J dO+ tT + h.c. = -rD + OF+

with t = ir + 0 the complexified Fayet-Iliopoulos parameter.

Fa and D are auxiliary and can be integrated out. After doing so, the scalar poten-
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2e
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tial of the total Lagrangian, Leh + Efm + LJ + Igauge + LFI, is

V(#) = ( Ql4J2 - r + | (2.20)

2.2.3 From GLSM's to NLSM's

Equation (2.20) describes a manifold of SUSY preserving vacua, M, sometimes called

a moduli space. Those modes transverse to the vacuum acquire a mass by the Higgs

mechanism -- ef/. In the e -+ oo limit, these modes decouple and one can show

that the resulting theory is a (0, 2) NLSM on M with some gauge bundle for the left

moving fermions, V. For the case where G = U(1), one can calculate the Kahler

form and B field for the resulting theory, and one finds J = rw and B = Ow, where

w is the generator of 2-cohomolgy for M. We are interested in GLSM's that flow to

(0, 2) superconformal field theories. This means that that the model must have a non-

anomalous right moving U(1)R symmetry and a non-anomalous U(1)L which is used

to implement a chiral GSO projection. In addition, in order for the gauge theory to be

sensible at all, the gauge symmetry itself must be non-anomalous. For (2, 2) GLSM's

this is automatically ensured, since right and left moving fermions necessarily live in

the same gauge representation. For (0, 2) theories this is no longer the case and van-

ishing of the gauge anomaly must be imposed by hand. Following [28] we investigate

these requirements for a class of theories with chiral multiplets V and P and Fermi

Multiplets A' and F with charge assignments as in the below chart.

The condition for vanishing gauge anomaly is

a 2m2 = i + d2  (2.21)
a

In the presence of a superpotential, the requirement that the
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U(1)R and U(1)L are nonanomalous typically require

wi = m (2.22)

Zna =d
a

Geometrically, these conditions, are c2(M) = c2 (V), ci(M) = 0, and ci(V) =

0 respectively in the resulting NLSM. We recognize the second requirement as the

Calabi-Yau condition. We now construct some example moduli spaces.

Example: M = 0(-n) _pn-+

We examine the case where there are n <Di fields each with charge +1, 1 P field with

charge -n, n Ai fields with charge +1 and 1 ' field with charge -n so that the anomaly

conditions are automatically satisfied. For now, we take no superpotential, i.e. J' = 0.

The vanishing of the scalar potential implies

n

2 _ np 2 = r (2.23)

Let us examine the case when r > 1. In this case, not all of the #j's can be zero,

and each fixed value of < p > describes an S 2n- 1 of fixed size. In fact, we need to

mod out by the gauge transformations, and so each fixed value of < p > determines

a S2n- 1 /U(1) = pn-1. However, we still have a complex degree of freedom, and the

total space is a line bundle over pn-l, M = O(-n) _+ pn-1.

Now, let us examine the other scenario, r < 1. In this case, IpI # 0 which gives a

mass to the p field. We can use the gauge freedom to fix the phase of p so that

_ilj - (2.24)
V n

at each point. Therefore it would seem our vacuum manifold is here C". In fact,
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there are a Z, of residual that leave (2.24) unchanged so that the vacuum manifold

is actually the orbifold M = C"/Z,. In each of these cases, all of the left moving

fermions remain masses and so the gauge bundle is just a 0(-n) 0 O(1)n sitting over

M.

At low energies, we expect both of these theories to flow to conformal field theo-

ries on the respective M's. Thus we see an example of what is known as the Calabi-

Yau/Landau Ginzburg correspondence-there is a continuous parameter, r which inter-

polates the two CFT's. In the language of the NLSM's, the C"/Zn CFT is just the

0(-n) -,- P- CFT "continued to negative Kahler class." In general, one can inter-

polate smoothly between topologies (without hitting a singular CFT) although there

are codimension 1 points in the space of (r, 0) where genuine phase transitions occur.

In the gauge theory, these generally correspond to points where the vacuum is in an

unbroken Coulomb phase. In general, the picture looks something like:

possible coulomb
branch singularities

C" /Zn 0(-n) - "-

00

o)(

r __+_0r -- + oc

Figure 2-1: A Continuous Family of Conformal Field Theories

Example: Cutting out CV Hypersurfaces in pn-l

In the r > 1 phase, we can arrange M to be some compact Calabi-Yau hypersurface

sitting inside Ipn-l defined by the equation W(41)) 0 by adding a superpotential of
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the form

Li= d-- ,W(<) + A P I + h.c. (2.25)

Vanishing of the scalar potential now also requires

W(#) = 0
aw

p = 0 (2.26)
0#i

In general, W will be transverse, meaning that ' = 0 has no solution except all

#i = 0. Since this cannot be the case in this phase, the second equation of (2.26)

solution forces p = 0. This collapses the p fiber (and gives a mass to p), while the

first equation of (2.26) cuts out a hypersurface in P".-. By (2.25) gauge invariance

imposes that W is homogenous of degree n which is the condition that a hypersurface

in P"-l be Calabi-Yau. To determine the vector bundle of left moving fermions that

sits over this space, we examine the Yukawa couplings in the Lagrangian and find that

in order for the fermions to be massless, we must have

awZ - yj = 0 (2.27)

This equation determines a map 0(1)' -- O(n), the kernel of which is the bundle

of left moving fermions. In more general models, the left moving fermion bundle is

determined by similar, perhaps more complicated sequences of bundle maps.

In the r < 1 phase, the transversality condition forces all #i = 0 in vacua. p

gets frozen at the expectation value p = f-r/n. The #'s remain massless (as do all

of the left moving fermions y-) and we have a fixed vacuum with a superpotential

that has a degenerate critical point at the origin. Such a theory is known as a Landau-

Ginzburg theory (and perhaps explains better why the phenomenon introduced in the

previous section is known as the Calabi-Yau/Landau Ginzburg correspondence). Actu-

ally, we have a Z, orbifold of this Landau-Ginzburg theory because of the previously
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mentioned residual gauge symmetry.

Further Generalizations

The above examples are just a tip of the iceberg in terms of different moduli spaces

that can be realized by GLSM's. Our choice of superpotential (2.25) was extremely

constrained and by considering different couplings, one can drastically change the

structure of the left moving fermion bundle. By involving <O's with more general gauge

charges, we can engineer hypersurfaces in weighted projected spaces. By including

more "P" type fields, we can construct our Calabi-Yau as a complete intersection

of several hypersurfaces. By including many copies of U(1), the resulting many FI

parameters produce a very rich Calabi-Yau/Landau-Ginzburg phase structure.

Finally, by considering the gauge group U(N), we can construct Calabi-Yau hy-

persurfaces that sit inside of Grassmannians instead of inside projective space. Very

interestingly, Hori and Tong [30] have showed, using some very beautiful strong cou-

pling arguments, that the r < 1 phase of certain U(N) gauge theories is the Pfaffian

Calabi-Yau, which cannot be realized as a complete intersection in a projective space

or a Grassmannian.

2.2.4 The Use of GLSM's

Since the "extra dimensions" of string theory are described by a nonlinear sigma

model, the ultimate goal of this program is to calculate correlation functions of NLSM's.

Calculating these correlation functions directly is difficult to say the least-there are no

known 6-d Calabi-Yau metrics in closed form.

The utility of the GLSM is that it reduces to the NLSM in the e -+ 00 limit.

A fruitful approach might be to calculate correlation functions in the UV using the

GLSM.

This story is not so simple, however, as the GLSM is not under calculational control

for e --+ o; one wants to use a weakly coupled gauge theory instead. Luckily, one
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can construct field theories related to the GLSM (this process is called "twisting" [31])

whose correlation functions are independent of e. One can then use the twisted, weakly

coupled GLSM to compute correlation functions of certain classes of operators in the

desired NLSM ( [23], [32], [33, 34]).

2.3 Gauged WZW Models

Wess-Zumino-Witten (WZW) models are NLSM's on group manifolds. Gauged WZW

models, described in [25] and [26], couple these to gauge fields to realize coset man-

ifolds. A gauged WZW model with (0, 1) supersymmetry contains G-valued scalar

bosons, g(x) c G, together with right handed Majorana-Weyl superpartners, V+, val-

ued in g = TG, the Lie algebra of G. To gauge the WZW model we introduce two

vector fields, AL and AR, gauging HL,R c G, where HL and HR are generated by left

and right multiplication,

g - hLghRj

AL hL dh- 1 + hL AL hL

A R hR dh 1 + hRA R h.

The action of the gauged model is

S = - tr [g- +g 8-'g] - itr [4'+D_@)+]

ik tr g18+gA- - A gg- iA g Aig + (AAL A

- ik tr [(g-1 ag)(g1 Ojg)(g 1 k9)] Ig ek (3.28)
12,7ry

where V is a volume bounded by the worldsheet and D-@+ = 8-@+ - i[AR, 0+] is

the covariant derivative of our right-moving fermions, which take values in the algebra
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of the coset G/(HR x HL), i.e.,

V)+ E Lie(G) - Lie(HR) - Lie(HL).

The model actually has (0, 2) supersymmetry if the coset satisfies the following con-

ditions:

" Tc, the Lie algebra of G/(HR x HL), has the decomposition T0 = T+ ( T_ of

conjugate representations. This is the statement that G/(HR x HL) has a local

complex structure.

" [T+, T+] C T+. and [T_, T_] c T_. This is the statement that the Nijenhuis

tensor vanishes and the complex structure is integrable.

" tr(ab) = 0 if a, b E T+ or a, b E T_. This is the statement that there exists a

Hermitian (1, 1) form on G/(HR x HL).

Under these conditions, the model is invariant under the (0, 2) SUSY transformations

og =i1gtR- + ie 2g0+

60 E6IY+(g-1 D~g -z00 - iO/4O+) + z'2 0b+O+

60 E2 1L (g 'D~g - i)O -i?/94-' ) ±+6'V

6AL 0

6Ag = 0 (3.29)

where 1T± is the projection to T± and D±g =Bg - iA±g +igA±. For unitary groups

with g- 1 = gt, consistency of the SUSY transformations requires that e2 = -Ei.

Finally, and crucially for our later purposes, this action is in fact classically anoma-

lous for a general gauging: under a gauge transformation with left/right gauge param-

eters aL, aR, the action shifts by,

6S = (tr[aR F+?'] - tr[aL F+2) (3.30)
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with FR the field strength for AR and FL the field strength for AL .(the primes indicate

that only the dA terms in F appear, i.e. only the "consistent" anomaly contributes).

2.3.1 An Example

Let's examine a simple example, the SU(2)/U(1) WZW model, where the U(1) gen-

erated by o-3/2 has been gauged on the right (i.e. with AR). Since SU(2)/U(1) ~PI

is complex and Hermitian (in fact, Kahler), this model should admit a (0, 2) super-

symmetric extension. As it stands, however, the Lagrangian is not gauge-invariant. To

cancel this classical anomaly, we introduce left handed fermions charged under the AR

gauge symmetry; these chiral fermions generate a quantum anomaly which cancels the

classical anomaly of the gauged WZW model4 . The anomaly cancellation condition is

then
k
- +1 - Q2 = 0,
2

where the k/2 is the coefficient of the classical anomaly of the WZW model (the 1/2

is from the normalization of the generators of SU(2)), the +1 comes from the right

handed Weyl fermion in the WZW model with gauge charge +1, and the -Q2 is the

contribution from the left handed fermion with charge Q.

Significantly, since left-handed fermions are singlets (on-shell) under right-moving

(0, 2) supersymmetry, adding them does not spoil (0, 2) supersymmetry. These models

are known as (0, 2) minimal models [26] and have central charge

3k
c = (3.31)

k + 2

As an application, we can use these minimal models to build realistic heterotic com-

pactifications with c = 9. Condition (3.31) is a very restrictive condition on k - so

restrictive, in fact, that the only way to build a vacuum with the correct central charge

is to take the tensor product of four theories with k = 6 (Q = 2) [26]. Of course, one

4This specific theory has been used in the construction of worldsheet theories that describe four

dimensional heterotic solutions of a black hole of magnetic charge Q, [35].
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may generate more possibilities by taking the tensor product of this model with (2, 2)

WZW models - these are the so called "doped" models of [26].

2.4 Constructing the Hybrids

As reviewed in the last section, we can cancel the quantum anomaly generated by

a set of chiral fermions by coupling in a gauged WZW model, with total anomaly

cancellation imposing a single condition relating the charges of the fermions to the

level of the WZW model. In this section we will study a natural generalization of this

mechanism in which we replace the chiral fermions by a gauged linear sigma model

whose fermion content is anomalous. In this more intricate case, vanishing of the net

anomaly will again reduce to a set of conditions relating the charges of the matter fields

in the gauge theory to the level of the WZW model. Studied semiclassically, the net

effect will be to fiber the WZW model non-trivially over the classical target space of

the sigma model.

Two points need to be kept in focus. First, neither the gauge theory nor the WZW

model is independently invariant under the symmetry we would like to gauge - the

gauge theory suffers from a quantum anomaly and the WZW model is classically

anomalous. It is only the combination of the two which realizes this symmetry ex-

actly and allows us to gauge. Second, both the gauge theory and the gauged WZW are

independently supersymmetric, despite the anomalies. This is obscured when working

in WZ gauge, where the SUSY algebra closes only up to a gauge transformation and

thus does not close in the presence of a gauge anomaly. However, this is a failure of

WZ gauge, not of supersymmetry, and is in any case of no concern so long as we focus

on the non-anomalous combination of gauge theory and gauged WZW model.
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2.4.1 Gauge Anomalies in the GLSM

Since the (0, 2) GLSM contains fermions transforming in chiral representations of

the gauge group, it runs the risk of a chiral anomaly which spoils gauge-invariance.

Without gauge invariance, negative norm states no longer decouple and unitarity is

lost. We must proceed with caution.

In two dimensions the anomaly comes from a diangle diagram with one current

insertion and one external gauge boson. The derivation (see for example [36]) of this

JL

Figure 2-2: An Anomalous Diangle Diagram in 2-d

anomaly proceeds as in four dimensions. In a U(1) gauge theory with N right-handed

fermions of charge Qj and M left-handed fermions of charge qa, the chiral anomaly of

the gauge current, JG, under variation with gauge parameter a, is

8, JG = --A F+-, (4.32)
27

where the anomaly coefficient is given by A = EZ Q2 - Ea q2. For a non-abelian

theory with semi-simple gauge group, this generalizes to5

at J =A rl [aF+-] (4.33)
47

with A again determined by the matter fields and their representations. (Nonabelian

anomalies will be discussed in more detail in section 2.7.)

5The rather annoying factor of 2 between the abelian and non-abelian anomalies derives from dif-
ferent conventional normalizations of the generators.
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In 2-d theories enjoying (2, 2) supersymmetry, this anomaly always vanishes, since

every right handed fermion lives in a supermultiplet with a left-handed partner, so both

transform in the same gauge representation. Said differently, (2, 2) supersymmetry

only allows for matter that is in a non-chiral representation of the gauge group.

In the (0, 2) theories of interest to us, left- and right-chiral fermions live in different

representations (chiral and fermi, respectively) of (0, 2) supersymmetry, and may thus

transform in different representations of the gauge group. We should thus expect a

(0, 2) supersymmetric extension of this anomaly in our theories. For semi-simple Lie

groups, the resultant super anomaly is

+ dO+Tr [BT] + h.c., (4.34)
47rI

where B is the gauge parameter and T the gauge field strength supermultiplet.

Only models whose chiral anomalies vanish make sense. Nevertheless, let us for

the moment soldier on and consider (0, 2) models with non-vanishing chiral anomaly.

This leads to an important subtlety with WZ gauge, where SUSY is only respected

up to a gauge transformation: if the anomalous theory is not invariant under gauge

transformations, the theory in WZ gauge would not appear to be supersymmetric. Ex-

plicitly, suppose we perform a supersymmetry transformation with parameter e, then

apply the WZ-restoring gauge transformation (2.13). The resultant shift in the action

is found by evaluating the anomaly on this gauge variation,

+ J d6+Tr [BwzT]. (4.35)
47r

Where Bwz is the chiral superfield gauge transformation that returns A+ to WZ

gauge. Since this is non-vanishing for general T, supersymmetry appears broken in

WZ gauge. Of course, this is purely an artifact of fixing WZ gauge - if we do not fix

WZ gauge, the action is explicitly SUSY-invariant without any additional gauge trans-

formation. Nonetheless, ensuring that this "WZ anomaly" cancels will be a useful
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check of the gauge-invariance of what follows.

2.4.2 Adding the WZW Theory

In section 2.3, we used the classical anomaly of a gauged WZW model to cancel

the quantum chiral anomaly of a charged Weyl fermion. As we have just seen, the

quantum anomaly of a general GLSM takes the same form as these earlier anomalies.

This suggests a simple way to construct new non-anomalous models by balancing

the classical gauge anomaly of a WZW model against the chiral anomaly of a (0, 2)

GLSM. As we shall see, the total theory can indeed be made non-anomalous and well

defined.

At first glance, there are a number of choices to be made in coupling the GLSM to

the WZW model. Explicitly, the GLSM contains a single dynamical vector, A, trans-

forming non-trivially under supersymmetry. The WZW model, by contrast, boasts two

non-dynamical vectors, AL and AR, which transform trivially under supersymmetry. If

our goal is to play the quantum anomaly of one off the classical anomaly of the other,

they must be coupled to the same vector. We thus must identify A with either AL or

AR. In the WZW model, this means promoting one of AL,R to a dynamical vector

transforming non-trivially under supersymmetry. So: which do we pick?

Supersymmetry guides our choice. In the GLSM in WZ gauge, A+ transforms

trivially under SUSY while A_ transforms non-trivially, with 6A_ = 2iA (2.9).

Meanwhile, the vector couplings in the WZW model take the form (3.28),

- tr g-1D+gAR - A+ +gg- + iAg 1 A g + -(A A +A+A

If we promote AR to a dynamical field with the same SUSY variations as A, the WZW

action will pick up a term proportional to g-1 8+g under SUSY variation. To preserve

SUSY, this must cancel against some other term in the action. Unfortunately, no other

vector coupling in the action has a g-dependent SUSY variation. So AR is out.
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By contrast, if we promote AL to a dynamical field, the variation of the WZW

action, while non-zero due to the AL AL term, is at least independent of g and thus has

a chance of being cancelled by something in the GLSM action. Explicitly, the action

varies by a term proportional to the SUSY parameter, e, the right-chiral boson, A+,

and the level, k, of the WZW model. The component form is easily worked out to be,

6Ifwzw = -+ (Etr[A+I-] + tr[A+A-]) . (4.36)
27r

Worryingly, this does not look like the SUSY variation of any term in the GLSM

action, so we again look stuck.

At this point something beautiful happens. Recall that our GLSM in WZ gauge

is not in fact supersymmetric, but picks up a non-trivial SUSY-variation due to the

anomaly of the WZ-restoring gauge shift. Evaluating this explicitly gives,

6Lgauge = - 21 (eTri[A+IA-] + Tr[A+A-]) (4.37)
47

Note this is just the component form of the supergauge transformation required to

return A+ to WZ gauge after a SUSY transformation

A dO+Tr [BwzT] (4.38)
47r

The A_ part of (4.37) comes from the T in (4.38) while 13+ A+ E Bwz is the

supergauge transformation needed to restore WZ gauge after a SUSY transformation.

Delightfully, the form of the resulting variation precisely matches the SUSY variation

of the WZW model! Thus, requiring that the total variation of the action vanishes then

imposes a single condition relating the level, k, to the anomaly, A, of the GLSM,

k tr[T2 ] = A Tr[T 2), (4.39)

where tr denotes the trace in the WZW model and Tr the trace in the gauge theory,
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which may involve a different normalization (an endless source of spurious factors of

2).

The beauty of this condition is that its satisfaction ensures not just supersymmetry

but also cancellation of the total anomaly. Under a left-gauge variation (3.30) the

WZW model picks up a classical variation,

k6owzw = tr[a F_], (4.40)
47r

while the GLSM picks up the chiral anomaly (4.33), so that the total anomaly is,

6L = Slgauge + 6Lwzw

A k
=- Tr[a F'] - tr[a F' ]. (4.41)

47r 47r

Requiring that the total anomaly vanish thus imposes the same condition as that needed

for manifest supersymmetry.

At this point, we have succesfully cancelled the anomaly of our gauge theory by

coupling in a classically anomalous WZW model. However, several points deserve

further comment. First, we have been cavalier about the role of WZ gauge in the

above. As noted, both the WZW model and the gauge theory are independently super-

symmetric. However, once we fix to WZ gauge in which SUSY is only a symmetry

up to a gauge variation, neither model is manifestly supersymmetric due to the (clas-

sical, quantum) anomaly generated by the gauge transformation needed to restore WZ

gauge. Thus WZ gauge/SUSY invariance really is nothing other than a measure of

anomaly cancellation.

Secondly, while we have discussed in some detail the fate of the vector AL gauging

the left-action, we have not mentioned that of AR gauging the right-action. In particu-

lar, even if we do not promote it to a dynamical vector (which we shan't, as this would

upset both gauge-invariance and supersymmetry), so long as we take HR to be non-

trivial, AR will still couple to an anomalous current. The crucial observation here is
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that we can always include SUSY-singlet left-moving fermions to cancel this anomaly

without altering any of the considerations above. So we have more general models

where we can gauge AR as well.

Finally, as we originally introduced it, our WZW model for the coset G/(HR x HL)

contained right handed fermions living in Lie(G) - Lie(HR) - Lie(HL) and coupled

to the non-dynamical AL. In our hybrid GLSM, however, AL is only non-dynamical

in the deep IR where the gauge coupling runs strong; at finite energy, the vector field

is dynamical and the bosonic field g lives in G/HR. Correspondingly, '+, the right-

handed superpartners of g, begin life valued in Lie(G) - Lie(HR) in the UV, with the

restriction to Lie(G) - Lie(HR) - Lie(HL) in the IR coming from their coupling to

the gauginos. The full theory is supersymmetric iff G/HR is a complex manifold with

Hermitian metric.

2.5 U(1)R and U(1)L Symmetries

The (0, 2) superconformal algebra is determined by the stress tensor, TB, a complex

fermionic supercurrent T F and a purely holomorphic U(1)R current JR. The OPE of

JR with itself determines the right moving central charge,

JR(Z)JR() C
3z2± .

One of the virtues of the GLSM is that we can often identify a candidate conserved

R-current in the UV which flows to purely-right-moving conserved current JR in the

IR. By 't Hooft anomaly matching and asymptotic freedom, we can (in principle) com-

pute the central charge of the strongly-coupled IR theory by computing weak-coupling

OPEs in the UV. A similar story obtains for the left-moving current, JL.

Our goal in this section is to identify conserved U(1)R and U(1)L currents in the

UV which flow to purely right/left-moving conserved currents in the IR. In canonical

(0, 2) GLSMs, it suffices to assign U(1)R charges to the matter fields compatable with
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the superpotential such that the R-current JR is non-anomalous, conserved, and or-

thogonal to all non-anomalous flavor currents. In general, the resulting J+ contains

terms that either flow away in the IR or whose divergence is trivial in Q+ cohomology,

so that the on-shell J- runs to the holomorphic conserved current of the IR supercon-

formal algebra.

For our gauged WZW+GLSM hybrids, identifying the correct R-currents is a little

more subtle. Naively, the thing to do is assign each field a general R-transformation

law, compute the resulting current by varying the action according to this symmetry,

and deduce what the R-transformations must be for the resulting current to transform

as an R-current. Without loss of generality, we can assign g the charge QT(', V)+ the

charge QRT(2 ) and @_ the charge -QRT( 2 ), where T( 2 ) E g specify the embedding

of our U(1) in g, and the Q's are real numbers. We can then try to construct a con-

served R-current by varying the action according to this symmetry. However, due of

the classical non-gauge invariance of the WZW action, the resulting current, JR, is

in general neither gauge invariant nor holomorphic in the IR. To identify a good R-

current, we will need to modify this naive current to preserve gauge invariance (in a

manner very similar to [37]).

For example, let's take an abelian model with G = U(1) x U(1) (with one of

these U(1)'s gauged). The right-moving fermions O+i in the chiral multiplets <Di carry

U(1)R charge q', the left-moving fermions A" in the fermi multiplets l' carry charge

q', the gauginos carry charge +1, the right-moving fermions @/+ in the WZW multiplet

carry charge +1, and the bosons 01-,2 in the WZW model carry shift charge qi. The

corresponding naive currents are,

1 k
-AI AA + q R _A_ - kq00JR = 2e 2  -a 4

k k kqiN
jR = j O~ i+ 00 - ±qo90 2 A+. (5.42)

where N, is the shift gauge charge of 01 (01 -+ 01 + aN). As expected, these currents

are not gauge invariant, nor is it clear that the divergence of JR is Q-trivial. Happily,
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it is easy to identify their (classically) gauge invariant cousins as

= J + kq1NjA
JR 47r

+kqi N1
+R k= RA+. (5.43)jj JR 47r

The q, are then chosen such that, if JG is the gauge current, the leading term in the

JG+JR OPE is equal to that of the JJ - OPE (this is the same as requiring that JR

is gauge invariant quantum mechanically). The leading coefficient of the K- OPE

minus that of the j+tJj will give 2, one third of the central charge of the right moving

SCFT.

Since e2 runs strong in the IR, the contributions of the left handed gauginos to J+
flow away in the IR, while the U(1)R charged fermi multiplets develop masses. The

divergence of the remaining part of J+ is then,

0+ JRZ =47 -r+-0 i +A_

kqiN= . (. .&+ F - N A

47

c ... + {Q+, A (5.44)

where in the second line we have used the 0 equation of motion, and in the third we

have used the SUSY algebra (for portions of the moduli space with D = 0). Since this

is Q trivial, we thus expect J+ to flow away completely so that Ji is the holomorphic,

right moving R-current in the deep IR.

For non-abelian G, we expect a similar story - the U(1)R and U(1)L currents will

be a sum of the individual GLSM and WZW currents (for a general WZW model,

these will involve the Lie algebra fermions and the Kac-Moody currents), corrected by

A dependent terms to preserve gauge invariance.

Before moving on, it is useful to emphasize the apparent latitude we have in build-

ing specific examples. Recall that cancellation of the gauge, U(1)R, U(1)L, and mixed
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U(1)R/U(1)L anomalies of a conventional (0, 2) GLSM, plus the requirement that the

low energy central charge is an integer, ensures that the target space is Calabi Yau.

When anomaly cancellation is ensured by fibering a WZW model over a gauge theory,

the ability to assign various U(1) charges to the fibers would seem to free us from the

requirement that the base be CY. Of course, in that case the FI parameter of the GLSM

runs, and a detailed understanding of the IR CFT requires a more nuanced analysis

than the brief discussion above. In the remainder of this note we will focus on the

simplest case, in which the base is a CY; it would be interesting to explore the fate of

more general examples with Ricci-curved bases.

2.6 An Alternate Construction: Bosonization

WZW models were originally discovered [38] as an answer to the question: "What is

the bosonization of an equal number of left and right moving fermions?" For example,

N right and left moving Majorana-Weyl fermions may be bozonized into a k = 1,

O(N) WZW model.

The fibred models discussed above also arise via a combination of bosonization and

fermionization. In these models, however, the fermion spectrum is chiral, so we must

consider the bosonization and fermionionization of chiral systems (see, for example,

[39].) While straightforward, the process is not pretty.

For example, consider the (0, 2) CFT given by the tensor product of a free T 2 sigma

model (at free-fermion radius) and a non-anomalous abelian GLSM with target space

K3. The basic strategy is to fermionize the free left-chiral bosons in the T 2 multiplet

(this gives a set of free left-moving Weyl fermions) while bosonizing a pair of gauged

left-moving fermions in the GLSM (this gives a set of left-gauged chiral bosons which,

together with the original free right-chiral bosons, form a left-gauged U(1) x U(1)

WZW model at k = 2 [38, 40]). The resulting model is thus the original GLSM

coupled to a left-gauged WZW model and free fermions - ie, the T 2 is now fibred over

the base, while the fermions are trivial lines. By construction, the contribution to the
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quantum gauge anomaly of the original left-handed fermions is now generated by the

classical anomaly of the gauged WZW model. This is just the left-gauged WZW-fibred

GLSM discussed above.

More generally, we can start with a simple (0, 2) GLSM with gauge group GGLSM

and target space X and tensor on a WZW model for Gwzw (perhaps with additional

right-gauging by some HR C Gwzw). Now bosonize some subset of charged left-

moving fermions in the GLSM whose contribution to the anomaly lies in GAnom C

GGLSM n Gwzw and fermionize the left-chiral bosons of the WZW model such that

the final left- and right-chiral bosons form a Gwzw/(GAnom x HR) WZW model,

with the dualized left-moving fermions uncharged under the vector of the GLSM. The

quantum anomaly of the fermions is again replaced by the classical anomaly of the

WZW model, and the WZW model is now nontrivially fibered over the base GLSM.

The result is a hybrid model of precisely the form discussed in this paper. Note, too,

that this duality has a more familiar name - it is nothing other than a Narain T-duality

of the heterotic string on X x (Gwzw/HR) [41].

2.7 Some Examples

We now present some basic examples of WZW models fibered over gauged linear

sigma models. For simplicity, we will mostly take the base space to be a non-compact

projective space or Grassmannian. As usual [23], superpotentials can be turned on to

cut out a hypersurface/intersection and compactify the target.

2.7.1 U(1) x U(1) - K3

Consider a U(1) GLSM for K3 decorated by some vector bundle, V -+ K3, such that

the gauge anomaly A = c2 (TK3 ) - C2 (V) is non-zero. As we have seen, we can cancel

this anomaly by tensoring in a WZW model with suitable left-U(1) action gauged.

The simplest such WZW-fiber we can add while preserving (0, 2) supersymmetry is
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the G = U(1) x U(1) ~T 2 WZW model. To cancel the anomaly, we gauge this WZW

model by a left-acting U(1),

eiaN1 0
HL = U(1) = 0 e jaN2 (7.45)

The bosonic fiber Lagrangian then takes the form,

k
Lfiber = (a+018-0j - 2NA+a-O1 + (N, + N22)A+A_)

k4,xk D+01D_Oj - NiOiF+-)

where we have chosen bosonic coordinates g = (eiel, e i2) E G such that DO, -

O,- NA, and we have integrated by parts in the second equality. The abelian anomaly

is canceled by requiring k(N + N22) = A. In terms of the complexified coordinates

0 = 01 + i 2 and X = ( i@0), the SUSY transformations of the WZW fields

become,

60 = ve x

6x = -i (9+0 -(N 1 + iN 2)A+). (7.46)

This is nothing but a the torsion linear sigma model of [24], a worldsheet description

of heterotic flux vacua first explored in [21, 8, 9, 22] whose semi-classical geometry

is a non-Kahler T 2 -fibration T 2 -+ X -A> K3 decorated by a vector bundle Vx =

7gr*VK3 supported by gauge invariant NS-NS 3-form flux H on the total space X, H =

kN'(di + NiA) A F.

The realization of these earlier abelian linear models as special cases of WZW-

fibrations clarifies a number of features obscured in the earlier presentation. First, it is

now clear why these models arise via bosonization and fermionization - indeed, that

is how the original WZW construction arose. Secondly, and importantly, the WZW
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presentation makes precise one of the suggestive features of the original linear models

- namely, the gauge action on the bosonic coordinates on the fiber is chiral, with only

the left-action gauged. This plays an important role in the study of "small-radius"

phases of the worldsheet theory [42].

Before moving on to a non-abelian example, it is perhaps useful to give a concrete

example of a model in which all of the anomalies are explicitly cancelled. We take

a particularly simple example - a T 2 fibration over a K3 formed by the quartic in

p3. The field content is five chiral multiplets, <i=1., P, and five fermi multiplets,

Aa=1, 2,3 ,4 and F, and one WZW multplet (0, @b) which forms a k = 1, U(1) x U(1),

WZW model. The various charge assignments are given in the figure (note that the

figure excludes the gaugino which is charged +1 under U(1)R and is neutral under

U(1)L).

To make the target space compact, we also add a

superpotential of the form (similar, but more gen-

eral than (2.25),

SJ dO+ (F W(#) + P AJa(#)) (7.47)

where W(#) is a quartic polynomial which cuts

out a K3 in P3 . The ja's are cubic and quartic

polynomials that ensure transversality and set p =

0 in the r > 1 phase.

Figure 2-3: Charges
Thus, in the usual way, the D terms and F

terms conspire to give a K3 over which the T2 is

fibered. Notice that the [U(1)R]2 current computation gives the correct central charge

c = 9. The model also comes equipped with a gauge bundle, V, from the Fermi
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<Dj 1 0 0

P -4 1 1

Ai,2  1 0 -1

A 3,4  0 0 -1

F -4 1 0

01 1 0 -1

02 1 0 -1

0 1 0



multiplets, which, similar to (2.27) are determined by the kernel of the bundle map

0(1)2 D 02 " 0(4) (7.48)

This was one of the many models studied in [24].

2.7.2 Another Abelian Anomaly: SU(2) x U(1) -+ [O(-2) --+ P]

Consider a U(1) GLSM including two chiral multiplets, <Pi, of charge +1, one chiral

multiplet, P, of charge -2, and one Fermi multiplet, F, of charge -2. The classical

higgs branch of this theory is the familiar 0(-2) -+ P1. Quantum mechanically, this

model has a chiral anomaly, so we need to couple in a WZW model.

Instead of adding a U(1) x U(1) WZW model, let's try fibering over our target

a non-abelian WZW model for some group manifold, G, with a U(1) C G gauged

so as to cancel the abelian anomaly of the GLSM. A particularly simple choice is

G = SU(2) x U(1). Since SU(2) x U(1) is hyperkahler [43], the WZW model

admits (0, 2) supersymmetry. In particular, the Lie algebra splits as T± under three

inequivalent complex structures. For example, under one of them

Ti= {a(1 t ior) + b(T-o, + ioy)}. (7.49)

To cancel the anomaly of the GLSM, we gauge the left-action of the U(1) factor in

WZW model by

AL = NA (7.50)

where A is the vector in the GLSM and N is a parameter. Anomaly cancellation then

fixes k = 2 and N = 1. A simple computation confirms that this model is completely

non-anomalous. The central charge (over three) of WZW model is [44] 2 = 2 k+1 -

3/2. The naive central charge of this model is thus = 2 + 3/2 = 7/2. That this naive
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counting is indeed correct can be seen by flowing to the Landau-Ginzburg point in the

moduli space, r -+ -oo. As discussed in [42], the correct description of the theory

here is an asymmetric orbifold of a C2 theory tensored with an SU(2) x U(1) WZW

theory. Since orbifolding by a finite group does not change the central charge [45], the

central charge is just the sum of the central charges of the two theories.

2.7.3 Examples With Non-Abelian GLSMs

Let's now start with a U(Nc) gauge theory of the form studied in

Field Gauge [30]. These models include NR chiral multiplets <Di transforming in

Di l the fundamental, Np chiral multiplets P, in the det -q representa-

Pa -q ,  tion, NA Fermi multiplets, Am , in the fundamental and Nr Fermi

Am  L multiplets, P, in the det-ds representation. In addition, we add NE

FS -d, chiral multiplets, E, in the adjoint representation. The field content

E" adj. is summarized in Figure 2.

Figure 2-4: The classical target space is given by the vanishing locus of the

U(Nc) D term,

NR Ny

D a = e2 _al qIc 12ja - roa a, b = 1 ... Ne,

(7.51)

modulo the gauge group, as usual. On the Higgs branch, where p' = 0, the manifold

defined by D = 0 is the space of Ne planes in CNR, also known as the Grassmannian

G(N, NR). This can be seen as follows-the condition

# #i = roa (7.52)
i= 1

defines a set of Ne orthogonal vectors in CNR. Applying a U(Nc) transformation

will rotate these vectors, but will not change the Nc plane that they span. Therefore

modding out by the gauge transformations gives G(N, NR). In the non-anomalous
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models of [30] , a superpotential restricts the vacuum manifold to be some Calabi-

Yau hypersurface of G(N, NR). For our purposes, the non-compact ambient variety

suffices, so we will dispense with the superpotential.

To study the anomaly structure of the theory, it is useful to treat the trace and

traceless parts of the gauge group separately. For gauge transformations in the SU(N),

_ NR - NL - 2N + 2NON
&j 4 Tr(aF'4) . (7.53)

47r

Note that for SU(Nc), TrAdjoift(TaTb) = 2NcTr(TaTb) so that the factors of Nc in

(7.53) come from the gauginos and from the E fields. For gauge transformations in the

central U(1), on the other hand,

0 Pjt = I(NR - NL + NcE q 2- Nce d 2) Tr(aF' _). (7.54)
a s

To cancel these anomalies, we again tensor in and gauge a suitable WZW model. If

the non-abelian anomaly is non-trivial, however, the WZW model must also be non-

abelian. Let's look at a couple of simple examples.

Non-Abelian Example #1: SU(2) x U(1) -+ [eaO(-qa) -+ G(2, NR)]

As in a previous example, we start with a SU(2) x U(1) WZW model, but this time

gauge the entire symmetry group (which we identify with the gauge group of the non-

abelian GLSM),

AL = NOT 0 A0 + TaAa (7.55)

where a = 1, 2, 3 runs over the SU(2) generators and 0 denotes the central U(1) in

both the WZW model and the GLSM. The anomaly is cancelled by requiring

kN2 = N, - NL + 2 q - 2 d
a S

k = NR-NL-4±4N.. (7.56)
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Non-Abelian Example #2: ([U(1)2 ]k' x [SU(2)/U(1)lk) --+ [oO(-qa) --> G(2, NR)]

We present a second way of fibering a WZW model over a non-abelian gauge theory-

one that utilizes both left and right gauging of the WZW model. Starting with a GLSM

of the same form as in the previous example, we now cancel the anomaly by fibering

a right-gauged [SU(2)/U(1),ight] 0[U(1)2] WZW model.

As above, a U(1) subgroup.of the WZW model is left-gauged by the central U(1)

of the GLSM, with two integers, {N 1, N2}, specifying the embedding of U(1) in

U(1) 2 such that the abelian anomaly is cancelled. The full SU(2) of the second WZW

model is also left-gauged by the SU(2) vector of the GLSM, canceling the non-abelian

anomaly. Finally, to cancel the anomaly of HR - U(1), we also add a left-moving

fermion with charged Q under the auxiliary U(1),ight gauge symmetry of the WZW

model. The full anomaly cancellation conditions are thus

k'(N,2+ N22) = NR- NL + 2 q-2 ds

k = NR- NL - 4 + 4N,

k = 2(Q2 - 1). (7.57)

k and k' refer to the possibly different levels of the tensored WZW models.

2.8 Conclusions

We have shown that anomalies in (0, 2) gauged linear sigma models may be can-

celled by tensoring them with a suitably gauged WZW model. The resulting gauged

WZW+GLSM is manifestly N1 = 2 supersymmetric and is expected to flow to a

non-linear sigma model with NS-NS flux when the mixed gauge-R-anomaly is also

vanishing. Along the way we identified a candidate R-current which is in the same Q-

cohomology class as the R-current of the twisted SCFT, and is thus expected to flow to

the superconformal R-current of the IR SCFT. We also found that these WZW models
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reduce, in the abelian case, to the "torsion linear sigma models" of [24]; the more gen-

eral non-abelian case thus provides a natural generalization of these quasi-geometric

heterotic flux vacua.

It is straightforward (if tedious) to integrate out the massive vector and matter fields

along the semi-classical Higgs branch to construct a one-loop approximation to the

geometry and flux of the sigma model to which the gauge theory flows. (We must

work at one-loop rather than tree level due to the anomaly.) As in the abelian case

studied in detail in [24], the result is again a non-Kahler metric with flux specified by

the WZW-fibration and satisfying the Bianchi identity. Moreover, one should be able

to construct the analogues of twisted versions of these models and to say something

about the low energy fixed point correlation functions using a combination of gauge

theory and exact conformal field theory techniques.

Another interesting approach [42], is to flow to a Landau-Ginzberg point of the

GLSM, e.g. at r -* -oc, where the partition function of the full theory reduces to an

orbifold of the product of the LG partition function with the WZW partition function.

Viewed as a symmetry in either the LG or the WZW theory individually, the orbifold

group is anomalous; when the partition functions are taken together, the anomaly can-

cels. This orbifold CFT is interesting in itself, and its spectrum has recently been

computed ([46]). This is the exact conformal field theory avatar of gauge anomaly

cancellation in the UV GLSM/WZW hybrid.
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Chapter 3

Anisotropic Sigma Models in Three

Dimensions

3.1 Introduction

As reviewed in Chapter 1, there has recently been very productive cross fertilization

between condensed matter physics and high energy particle physics. For instance,

methods in gauge/gravity duality have been developed for field theory duals that may

be relevant to condensed matter systems (see for example [12], [13], [14], [16, 17]).

These field theory duals break Lorentz invariance and scale space and time anisotropi-

cally. In terms of inverse spatial length, the space dimensions scale as [] -1, while

time scales as [t] = -z, where z is known as the dynamical exponent.

Conversely, techniques in condensed matter theory have affected how we think

of high energy theories of physics. Recenetly, Horava wrote down a power counting

renormalizable theory of gravity which scales space and time differently ([6], [7]).

There has been much interest in this "Horava-Lifshitz gravity," as a model for our own

cosmology (see, for example [47, 48, 49]). In [6], the z = 2 theory was coupled to

Lifshitz scalars to describe a possible quantum theory of membranes (with flat target

space metric).
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Motivated by this, we explore the one loop quantum properties of z = 2 Lif-

shitz scalars with non-trivial target space metric. We are interested in the one loop

requirements for conformal symmetry; since the scalars must be dimensionless, z = 2

requires that "space-time," be 2 + 1 dimensional, i.e. a theory of membranes.

For a theory of strings, the relevant nonlinear sigma model (NLSM) action is

S[X] = Jd2o-GV(X) aaXp8aXv (1.1)

This action has a geometric global symmetry that corresponds to target space (space-

time) diffeomorphisms; the &X's transform as tangent vectors and G, transforms as

a spacetime metric.

For a theory of membranes with z = 2 anisotropic scaling, the requirement that

there be no dimensionful parameters suggests a sigma model of the form

S[X] = dtd2a [Gyv(X)atXMatX" - aGgv(X)AXIAXv] (1.2)

where ae is a dimensionless constant, A =a8la8, and a = {o1 , U2} runs over spatial

indices. This action, however, no longer has the geometric global symmetry-AXP

does not transform as a target space vector. Since we are ultimately interested in a

theory whose target space gives something like our own, diffeomorphism invariant

spacetime, we'd like to restore this symmetry. The appropriate way to do this at the

classical level is to covariantize the action as

S[X] = dt d2a [Gv(X) OtX"atXv - aGy,(X)(AXL +1 PaXaOaX")(AX"+F"v98X"86X3

(1.3)

where G,, transforms as a metric and 1710 as a connection. There is also another

possibility, adding the operator

-BGy (X)(86X"+IX aX X"(aaabX + a X"+± 8aX"bX,) (1.4)
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Indeed, these three operators could have come with entirely different 2-tensors, say

F,, GJIV, Hi-t.

The structure of the paper is as follows-in Section 2 we briefly review the back-

ground field method and in Section 3 we review how to compute the beta function

for the case of a Lorentz invariant worldsheet. We recover the famous condition for

conformal invariance in two dimensions, #,, ~ = 0. In Section 4 we apply

similar technology to the anisotropic membrane with identical target space metrics for

all three operators and recover the same condition for conformal invariance. Thus the

physics, while anisotropic in the worldvolume, recovers isotropy in the target space (at

least at one loop). In Section 5 we relax the condition that the metrics be the same and

take F,, G,, as different metrics for the time and space part of the Lagrangian (we

leave the fully general case where there are three different metrics, and I is a general

tangent bundle connection, to future work). Finally, in Section 6 we close with some

comments about coupling the theory to worldvolume gravity going towards a fully

dynamical anisotropic theory of membranes.

3.2 The Background Field Method

In this paper, we'll use the background field method for computations. We provide

here a brief review; for a comprehensive introduction, see for example [50] and [51].

Suppose we define two generating functionals

Z[J] Dr exp [iiS[7r] + iJ - 7r] (2.5)

and

Z [J, X] Dir exp [iS[ + X] +i J - ,7r] (2.6)

(where the - between J and 7r is shorthand for spacetime integration). We define the

generating functionals of connected graphs as W[J] -i ln Z[J] and W[J, X]
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-i In Z[J, X], and their Legendre transforms, the effective actions as

r[-]i = W[J] - J . 2(2.7)

and

r[, X] = W[J, X] - J . - (2.8)

with t = T and i = As usual, these effective actions are computed by summing

all one particle irreducible (iPI) Feynman diagrams.

The main result of the background field method is

F[k = 0, X] = F[X] (2.9)

P[r, X] can be thought of as all 1PI graphs computed with the action shifted by a

background classical field, X. Since, at the end of the calculation we set r = 0, we

need only compute graphs with external insertions of the background field.

This is not the only advantage of the background field method. We will be inter-

ested in actions that have a global diffeomorphism invariance, such as

S[X] = Id2. G1 (X) &aX pOaXt (2.10)

If one were to make a direct attack on this action, one would expand G,,(X) in normal

coordinates G,,(X) ~~ r,(XO) +... so that a propagator for X can be defined. In

doing so, we would explicitly break the diffeomorphism symmetry; there would be

no guarantee that the one loop quantum corrections to the effective action would be

geometric and covariant. If, instead, we use the action of a background classical field

plus a quantum correction S[Xo + 7], we will see that we can define a propagator for 7

whilst maintaing diffeomorphism symmetry in X0 . Therefore the one loop corrections

to the effective action will be covariant with respect to Xo.

82



3.3 The Isotropic Case

3.3.1 Classical Geometry

We briefly review how the background field calculation works when there is worldvol-

ume Lorentz invariance. We follow a calculation very similar to that in [52] and [53].

The action is

S[X] = J d2 -G,(X) &aXpaaXv (3.11)

with a = {o, 0-2 }. There is a global symmetry

X/ -+ X"(X)

GLV(X) -> G'X(X') ,X ,G , (X') (3.12)

corresponding to to target space diffeomorphisms. The action is invariant because

_v aX" transforms like a target space vector.

The first step in the background field method is to calculate S[Y = Xo + r].

However, because 7r is the difference between two nearby coordinates, X0 and Y, it

is not covariant. We'd like to write 7r in terms of covariant objects, such as a vector

tangent to the geodesic that connects Xo and Xo+7r. If A"(t) is this geodesic, (AP(0) =

X0,, A"(1) = Xo" +7r"),

AP + P ,AA = 0 (3.13)

Writing A"(O) = ql, we can Taylor expand A(t). One can use the equation (3.13) to

write the higher derivative terms in the expansion in terms of T1. The result is

1 1
A"(t) = X0" + rjpt - -Fp,' "T1t 2 _ I sa t .. . (3.14)

2 v3! 1o

where F1 3 is the naive covariant derivative on F which runs over lower indices only (it

is not actually covariant, but is determined using the same rules as covariant derivatives
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on lower index tensors). Therefore

Xo" + 7rP = XO" +q rf - IFA rfrfa - IFP U67fr/ + .' . 3.5
0 2 Vol VIq 3! +* (3.15)

We can view equation (3.15) as defining a coordinate transformation at the point

Xo + 7W to new coordinates ri/. However, equation (3.14) is valid in every coordi-

nate system. We are led to the discovery that in the 71P coordinates, known as normal

coordinates, all F's and symmetrized "covariant derivatives" of F vanish. We will bar

expressions in this special coordinate system. Non-covariant expressions can easily be

made covariant in these coordinates. For example, It is easy to show that

OVFPI (R"I + Ri ) (3.16)

because the double F terms vanish. The utility of normal coordinates is that one can

Taylor expand a tensor in normal coordinates and then complete the expansion to build

covariant objects. Since both sides then involve tensor expressions, the expansion will

be generally covariant and true in all coordinates. For example, for a symmetric 2-

tensor

1 - a
TPV (XO + ir) =TPV(XO) + &YT'V77( + -0& &\T -q +

II1
Ti , + VO1o + -(VUV,\T,, + aO.I7>,\T6V + O&LCTP~)tJI'fn7 + .

2P
11--1- - 1i1

Ti, + Vujv7' + 2-(V0.VATpv~ + 3 RE otT6, + 3 R6.TvTcI')r7 17 +

(3.17)

Since both sides are covariant, the Taylor expansion holds regardless of coordinate

system. Applying (3.17) to the metric immediately gives

G,1(Xo + Gr) =Gy(Xo) + -RpXuv(Xo)nr,/A + ... (3.18)
3
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We can now expand the rest of (3.11) in normal coordinates

1
Ba(Xo" + r") = OaXo" + (9rf - I1aX"BvFAyriArf +... (3.19)

2

where .. . are higher derivatives of the Christoffel symbols. Covariantizing this expres-

sion,
1

Ba(Xog + 7r") = BaXo" + Va7" + IR%0,8aX"?7rf + ... (3.20)

where ... are terms that involve higher derivatives of the curvature tensor and Val" =

&a97P + o&aX17rf', the pullback to the worldsheet of the target space covariant deriva-

tive. Doing the entire expansion, one finds, covariantly,

L(Xo + ir) = L(Xo) + 2G ,Varf8"4aXo" + G,,Varf Va?7v
4

+ R PnOr? Arf ag aXo + 4RAUVrJArf0Va' (9aX0"

13

+ R, Arf Varf Varf + O(R 2 , VR) (3.21)
3

By choosing Xo to be a solution to the classical equations of motion, the term linear in

rq vanishes.

3.3.2 One Loop Beta Function

To do computations with Lagrangian (3.21), we should switch to an orthonormal frame

so that we can invert the kinetic term for r. This gives

L(Xo + 7r) = L(Xo) + ValiVr
4

+ RyijVTIr&aX oaX" + iRjikvrTIrkVal] 0aXo"

+ -R0jkik IVariiVa +O(R 2 ) + O(VR) (3.22)
3

with r/ = e'(Xo) rf, and e (Xo) is a vielbein, and all i, j indices have been vielbein

rotated. Since we're summing over vacuum bubbles with external field insertions, the
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Figure 3-1: Diagram Contributing to the One Loop Beta Function

only contributions at leading order in R to the one loop beta function are vertices with

two q's. The 89&ar84r term gives a propagator

(.3
~ sj (3.23)

The contribution of the third term in (3.22) is (see Figure 3-1)

~RjyjaX"a a Xo" ~ r RyLVoaX"0 X0 1n -fln (I A',

where p is an IR cutoff and A is a UV cutoff. We take y to be the same as the renor-

malization energy scale. The beauty of the background field method is that the effec-

tive action must be completely invariant under target space diffeomorphisms and local

Lorentz transformations. For example, one might worry that we have not considered

all diagrams with two 77 vertices. The Vagt Vali contains, in addition to the kinetic

term for q, contributions to the action of the form

(3.25)

and

~NJ (Wp)'(o,),ik kaaXp "Xo" (3.26)

(3.24)

Since these expressions are not covariant (there are no Bw's around to make them so),
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+
(w)i(w,)ik r7k4aX0"a"X0

Baryi(Wp)i"X 0 =-o

Figure 3-2: Schematic Cancellation of Non-Covariant Terms

their contributions to the effective action must cancel. One can see schematically how

this works in Figure 3-2.

Thus, the effective potential to this order (when the appropriate factors of 27r are

included) is

F[Xo] = BaXoaB"Xo"(GA, + 1R, ln

Cancelling the divergence at the renormalization point requires

1
GPV = G'" +I -R,, inAV 27r A

a Galt = AVG,"-=
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and so

A
(3.28)

1IR,, v (3.29)

Bar;*(,)jp/8XI-L



3.4 The Anisotropic NLSM

3.4.1 Classical Geometry

As discussed in the introduction, the appropriate action for a z = 2 anisotropic nonlin-

ear sigma model with target space diffeomorphism symmetry is

S[X] = dt da [Gt, OtXAtX" - aG,(AX" + 3a OaXPoaX")( -X" + ",Q8bX"Xo )

- 3Gv(Oa8bX" + r,,aaXp8bX"a)(OaabX" + Fv&aX"8bX,3 )] (4.30)

(We shall not here address the case when F is not the metric connection; later we

will address the case when the space and time parts of the Lagangians have different

metrics.) a, b, c, ... now denote spatial indices and a, 3 are dimensionless coupling

constants. Written more geometrically in terms of v/' -aaX" and vt' - tXl' the

Lagrangian is

= G111v1'v" - a(Dva VP)Gpv (Dvb" ) - 13(D avz"')G,1v(D aV11) (4.31)

Alternatively, we will also find it useful to decompose the Lagrangian into time and

space parts with

L= (Lh'""+ LCi'1")Gy,

L2t" = atxpatxv

' (8086X'1+ oaX'8b )gabcacdXv + POcXXBdXO)(4.32)

and

gabcd - aoab6cd + o6 ac6 bd (4.33)
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Again, we can expand the Lagrangian around a background classical field. For exam-

ple, we encounter expressions of the following type in normal coordinates

AXp + r aaXpaaXa7 = AXt + &aarl - 2(ae1,)BaXaarn - G(ArI, )AX,7A

1
+ (&eF~9rf)(BaXo& + &arf - 2 aaXo"BvF~er/Nl)

1
X (BaXo + 0a0' - 0aXIv"Brogr/qf)2

(the other term, with slightly modified worldvolume index contractions has a similar

expansion).

After covariantizing and rotating to an orthonormal frame, we find at O(r/2 ) and

0(R) (this is all that matters for the one loop # function calculation),

(Xo + ,r)

(4.34)

= {(X 0 ) + L Lin. + VtrliVti - gabcd (aibr| )(c~dri)

+ (L20"(Xo) + Lo'(Xo))Rpigjirl

- 4 gabcd(abX0t + rp ,aXa98X0T)acX" Rygeijv(Vd?7)Q i

+ 2gabea(eX"8adXO" Ryigv(Sa~bTi?7

(4.35)

Again Luj. = 0 if we expand around a classical background.

3.4.2 One Loop Beta Function

The terms quadratic in r/1 in (4.35) imply a propagator (after Wick rotation, see e.g.,

[54], [55], [56])
6ij

W2 + (a + /3)p4 (4.36)
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The terms in the second line combine to give a contribution to renormalize the tree

level Lagrangian as

d2p dw
(4.37)

To determine the integral, we use Schwinger parameters

I

d2p dw
w 2 + (a + 3)p4

- d, dw d2Pe-,>2e_,(a+

2 d

2 /(a +0#) 7

1 In

f(a+3)

A
-L (4.38)

where p, A are again IR and UV cutoffs. So the contribution to the effective action of

these terms is

Rlu~ a R 1-3 (LO111 (Xo) + Lo'V"(Xo)) In
A
-P (4.39)

The contributions of the third line of (4.35) is

4 d2pdw pd
w 2 + (a + O) 4p

(4.40)

by rotational symmetry of the spatial dimensions (there are additional terms coming

from the connection coefficients in V, however, these are higher order in R).

90

~ -R, (L t'" (Xo) + LS'1"(o))



The contribution of the fourth line in (4.35) is

J d2 pdw PPb
ftgabcdXpI Iw 2 + (a + O)p

(a + -)RvaX0aaX" d- dp dw p3e-(O-YPeaW2

(a + 2)R 3

(a~ +0 R[aX0X0 dy -2

(~-+ R1OXo"XOA (4.41)
(a + X)

with A a UV cutoff. In the second line we have used the rotational symmetry of the

spatial dimensions. We have generated a relevant operator which vanishes at R = 0.

We note with curiosity that taking / = -2a also makes the operator vanish. It would

be nice if there were some underlying symmetry at 3 = -2a that ruled this operator

out at higher order in perturbation theory, but we can find none. Presumably this

operator gets generated at higher loops even away from # = -2a. However, when we

couple the NLSM to anisotropic gravity, we will argue that there is a symmetry which

forbids this operator at different values of a, #.

As in the isotropic case, all contributions to Feynman diagrams from spin connec-

tion coefficients hidden in the V's in equation (4.35) are zero. The lowest dimensional

covariant operator that they might generate is Tr(F2 ), where F is the curvature of the

spin connection. This operator occurs at the next order in the curvature expansion.

Thus all operators get renormalized with coefficient RIL, and hence the beta func-

tion is the expected 01, ~ R,, and the one loop conformal point is again at R,,,, = 0.

At one loop, Einstein's equations are required in the target space.
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3.5 Extension to the Case of Two Metrics

We now take different metrics for the time and space parts of the Lagrangian, e.g.

-= L,PvFpv + LIs"Giv

with L"'", ao'" as before. To do the background field expansion of this Lagrangian,

we find it easiest to expand in normal coordinates and to use the connection of the

space metric G. (This choice is calculationally much easier, as it simplifies the more

complicated space sector. If one were to look at the NLSM with three different metrics,

this complication would be unavoidable.) Since everything is completely covariant, no

target space physics can ultimately depend on this choice. The covariant background

field expansion becomes, after rotation with G's vielbein,

L(XO + 7r) = L(XO) +Lin. + Vti VtFij - gabed(VaVrnVcVdqi)
1

+ Lo'I"(Xo)(RGijjtFEv + !ViVjFpvl ii + Lo'"(XO)R,,sjr/yr7

- 4gabcdaoabX0 + 8 aXabXoocX"Ryijv(Vd ar)ri

+ 2aXo"Rjijj(VaVbr/01

+ 28tXO1(VjFpj)(V7rq)r/s

+ . .. (5.42)

The persistence of Fi in the quadratic terms for r gives a strange propagator and we

find it difficult to make sense of the necessary Wick rotation. Instead, we expand F

perturbatively around G, F- ~ Go, + EH,, with c small and calculate everything

to first order in c. The propagator is as before, and evtr/iVtr/Hij is treated as a two

point interaction. Thus, in addition to the integrals of the previous section, there is

always an additional diagram with an insertion of this operator. Again, the fourth line

of (5.42) does not contribute at this order, nor does the fifth line (at least when we

expand F perturbatively, as it would need two insertions to renormalize the metric).
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Schematically, the operator connected to L'JI'"(Xo) gets renormalized as

~0 V (X)(Ry G (H oR"T +HvaR"' ±VH+V 2H yv+R - ,H"'+Rung H"T )) ln

(5.43)

where indices are raised and lowered on H by G. The last two terms of (5.43) come

from two point diagrams with an insertion of EVg7iVtqiHij. Similarly L''v(Xo) gets

renormalized as

~Ls'" (Xo) (Rt - - (R Ho" + Rurg H"r)) ln -- (5.44)
02 p-or

The relevant operator again gets generated, this time with coefficient

~J (a + 2 )(R,, -(Rprav H"' + Rrag H')) aaXol&aX0" A (5.45)
2 2

which we can again make vanish by taking 3 = -2a. Note that equations (5.43) and

(5.44) imply

G ea
)1 ~ Rp - -( Ryre HO" + R1,Ho")

1
0 I - I(HpR'',+ HvR"TP+V 2HyL) (5.46)

3.6 Coupling the Model to Worldvolume Gravity

So far, we've just been investigating the one loop properties of 2 + 1 nonlinear sigma

models with anisotropic worldvolume scaling. In [6], Horava wrote down a putative

2+1 theory of membranes coupled to anisotropic, Horava-Lifshitz gravity. His theory,

however, had flat target space metric. We now wish to write down a Lagrangian which

generalizes this to curved target space.

Let us briefly review Horava-Lifshitz gravity in 2 + 1 dimensions. The degrees of

freedom are a two dimensional metric, gab and N, and N , which are analogous to the
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lapse and shift vectors in the ADM decomposition of General Relativity [57]. That is,

one can think of building a three dimensional metric out of these variables as

ds2 = -N 2dt2 + gab(dx - Nadt)(dXb - Nbdt) (6.47)

In, 2 + 1 dimensions, the Lagrangian for gravity is

Lgravity = 2 -2N (dab - VaN - VbNa)Gabed (cd - VeNd - VdNc) (6.48)

with r the Newton's constant, V the metric connection with respect to gab, and Gabcd

the "metric on the space of metrics,"

1
G abca _ ,acgbd + gbegaad _ A ao ca

2
(6.49)

A is a dimensionless coupling constant

anisotropic global conformal symmetry

of the theory. This free field action has an

t' = A2t

X = Ax

gab(t, X')

N'(t', x')

Na(t', X')

= gab(t,X)

= N(t, x)

= A - Na(t, x) (6.50)

For generic values of A, the Lagrangian (6.62) breaks the full 3D diffeomorphism of

metric (6.47) to so called "foliation preserving diffeomorphisms," that is, transforma-

tions of the form x' = f(t, x), t' = h(t). Under this symmetry, the fields transform
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dh

dt' OxId

= dt axa t'x)

OXC gxid

= xa Oxb g'(t', x')

OXic axid

+ 8t axa g9( X')

(6.51)

In 2 + 1 dimensions, for A = 1, the action also has a local Weyl symmetry

= exp(2w(t, x))g(t, x)

= exp(2w(t, x))N(t, x)

= exp(2w(t, x))Na(t, x)

Indeed, the global part of this weyl symmetry holds for any A. The anisotropic con-

formal symmetry (6.50) is a subgroup of (fDiff) x (global Weyl). For everything

subsequent we impose the local version of the Weyl symmetry, A = 1/2.

3.6.1 Coupling In The Scalars

We can supplement the gravity action in a way that continues to respect fDiff (for

simplicity of exposition, we set all three target space metrics equal to G,,),

= Gtv(8X - NaaaXp)(81X" - Nb X")
Lscalar N -OXL N-NaX1

- abNaabX -Tab~eX " + FPa ,aX PobX"

x G1Vgabcd

X [aeadX - fcda15X* + r c X
(6.53)

now with

gabcd [agab cd + ,ggacgbd] (6.54)
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N(t,x)

Na(t, x)

gab(t, x)

g'(t, x)

N'(t, x)

N'(t, x) (6.52)



IF is the metric connection of the worldvolume metric, g. For gab = 6 ab, N = 1

and Na = 0, this action reduces to the previously discussed anisotropic NLSM. The

local Weyl symmetry, under which the scalars are uncharged, continues to hold only if

13 = 0, and so we take this to be the case. Note that this Weyl symmetry rules out the

generator of the relevant operator that turned up in the NLSM, (4.41) whose covariant

form, Njggab&iX1L&bX" is Weyl non-invariant.

As in string theory, it is worth asking how much of this worldvolume gravity we can

gauge away using the fDiff x Weyl symmetry. gab(t, x) has three degrees of freedom,

whereas the Weyl transformation and the 2d diffeomorphsms also have three degrees

of freedom, which is enough to set gab = 6 ab. There are residual gauge transformations

which do not change this gauge fixing condition. In holomorphic coordinates, gzf =

1/2, gzz = g22 = 0. Under a holomorphic transformation combined with a Weyl

transformation, z' = f(t, z), z' = f(t, 2), the diagonal components remain zero and

g'(t', z', P')z = exp(2w(t, z, ) '(t, gz (6.55)

So an unfixed gauge symmetry is a holomorphic coordinate transformation (which can

now depend on t!) combined with a Weyl transformation of the form exp(2w(t, z, 2)) =

af (t,z) 2. Actually the unfixed gauge symmetry is larger, because we have not fixed

time reparametrizations, t' = h(t). Under the total remaining unfixed gauge symmetry,
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the fields N and Na transform as

h(t)

Z' = f(t, z)

' f(t,2)

= af(t z) (dh\
az dt)

N(t,z,f)N'z',' 2')

N'1,(t'7 ,',Y)

N' , (t', z', Y')

/dh\= (7

dhy
dt

Of (t,) N (t,z,2)

IOf (tz) N2(t, z, f)
az

1&f(t,2)1
2 at
1 af (t, z)
2 at

Indeed, the above ungauged fixed symmetry for h(t) = A2t and f(t, z) = Az is just

the global anisotropic conformal symmetry. In conformal coordinates, the gauged

fixed action is

L = 16 ONz6N2
rx2N

+ G""(tX - 2Nz6X" - 2NgOX )(atX" - 2NzX" - 2N 2 aX")
N

- 4aN (86XI +1 aXPX"] Gt, (aWX" + r1OaXCX6] (6.57)

The reader can check that the above action is indeed invariant under (6.56).

3.6.2 A Nambu Goto Form?

We briefly comment on another possible anisotropic membrane action-one that is not

based on the sigma model and more closely resembles the Nambu Goto action for

strings. A natural starting point- for the Nambu Goto action in this case would be

something like

S = d2o-dt \/ V6 (6.58)
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This is certainly invariant under foliation preserving diffeomorphisms. G is the pull-

back to the membrane of the target space metric, while N is the pullback to the world-

sheet of the lapse function, namely

Gab = aX'bXp

N -(01X981X, - 81X &a X abatXabXv) (6.59)

However, this doesn't respect the anisotropic scaling. Instead, we replace d with a

different metric, a metric on two tensors instead of on vectors

F(ab)(cd) -(aabX - aOeX) (8 OAXA - F c8f X,) (6.60)

One can think of F as a 4 x 4 matrix where each column represents a pair of indices.

Then the following action respects foliation preserving diffeomorphisms and scales

anisotropically

S = d2o- dt N(det F) 8 (6.61)

Note, that there is also the option of adding the "action for gravity" i.e., adding

1 / ~a cd
E gravuty = (Gab - VaNb - V Na)Gae(Ged -

2 r2N
VeNd - VadNc)

Na =tX"0aXm

Gabcd =1 (Gacbd+ dbcad) - Aabdcdl
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3.7 Conclusions

We have constructed the analog of the bosonic NLSM for z = 2 anisotropic worldvol-

umes. We have also calculated the one loop beta function and shown that, incredibly,

anisotropy does not change the fact that the target space is forced to be Ricci flat at one

loop. We have also shown how to couple this model to worldvolume gravity towards

constructing a new, anisotropic theory of membranes.

To properly continue this work, one would need to quantize the theory in the pres-

ence of the remaining worldvolume gravity, find the physical modes, carefully gauge

fix the Weyl symmetry using ghosts, calculate the critical dimension and calculate the

beta functions in the presence of worldvolume gravity, with the most general back-

grounds. We leave this work to future research.

While this work was in preparation, a related analysis was of sigma models was

done in [58]. Though many calculations are similar, the philosophy and motivation of

these authors differ-they work in four dimensions and retain Lorentz invariance.
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Chapter 4

Fermi Surfaces and Bulk Dipole

Couplings

4.1 Introduction

As described in Chapter 1, the fermionic two point functions of a theory dual to an

extremal AdS 4 black hole describes excitations above a fermi surface,

G \(#X1)@(z2))/ k_ - -- w - h 2eY(kf)W 2AQ,(k) (11
kspace Vf

with k = k - kf, and constants hi, Vf, y(kf), A,(kf). A,(kf) is related to the scal-

ing dimension, v1, of the k 1h mode of 7P under a low frequency, near horizon AdS 2

symmetry by A,(kf) = va(kf) - 1/2. In this way, the emergent conformal symmetry

controls IR properties like dispersion relations and widths.

In this chapter, we consider the existence and location of boundary fermi surfaces

in the presence of an additional dimension 5 operator

(gm + ge F)E"@F,, (1.2)

corresponding to magnetic and electric dipole moments for the bulk fermions (F is the
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highest rank Clifford algebra element). Our motivation for this addition is several-fold.

First, we would like to investigate the robustness of the previous discoveries. These

relied on the canonical dirac action and were insensitive to higher order interactions.

However, there exist a large class of higher dimensional quadratic operators that can

possibly change these conclusions. This work on dipole couplings is the first attempt

to investigate the effects of such operators. Do these higher dimension operators in

the bulk drastically alter the existence of fermi surfaces in the boundary? We will

find that they do not, but rather the main effects of the dipole couplings are to change

the IR AdS 2 scaling dimensions and to change the locations of fermi surfaces in k

space (which we will find numerically). As such, we have constructed a much larger

parameter space of Non-Fermi liquids for study.

Related to this, we feel that the effects of general higher dimension operators in the

bulk deserve further investigation. It is unclear how to interpret bulk Wilsonian RG

flow as a boundary effect and we hope that the sustained study of such operators can

give us a better understanding of such flow. The dipole moment operators are a natural

starting point; they are generic in the sense that they arise from dimensional reduction

on a larger space. 1

Finally, it is useful to investigate generic Green's functions in the boundary that

cannot be diagonalized for all k. All previous numerical investigations involved such

diagonalizable Green's functions. In the bulk, this corresponds to ability to block

diagonalize the Dirac equation. For ge # 0, this is no longer the case and we are led to

a much more general consideration of 2 x 2 boundary Green's functions.
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4.2 Calculating Real Time Spinor Correlation Func-

tions

In chapter 1 we outlined how to calculate two point functions for scalars: solve the

wave equation with boundary condition # -+ 0, evaluate the action with this solution,

and take two functional derivatives. The wave equation is a second order differential

equation and so this #o boundary condition does not completely fix the solution; we

also need to declare boundary conditions at the (black hole or Poincare) horizon. In

Euclidean signature, one linear combination of solutions typically blows up at the hori-

zon and so we fix the solution by requiring regularity. This is not true, however, for

real-time correlators, which are typically oscillatory at the horizon. These advanced or

retarded real-time correlators can be obtained by the appropriate analytic continuation

of the Euclidean ones. We will be interested in the retarded functions; these charac-

terize a system's response to small perturbations. The correct analytic continuation

for the retarded function corresponds to choosing the in-going wave solution at the

horizon [60].

Actually, there is an easier way to compute retarded two point functions than the

one reviewed in the introduction (for a review, see [4]) . At the boundary, a scalar

behaves as

#(r, k) --+ rd-vo(k)(1 + 0 + r1vl(k)(1+ O ) (2.3)

where v = V(d/2) 2 + m 2 R2 is the CFT scaling dimension of the corresponding op-

erator, 0. The 1-point function in the presence of the source #o is given by a sort of

functional Hamilton-Jacobi equation

(O(k)) - 6Srav - lim r-d+lH(r, k)] (2.4)
600 (k) ~ (k) r-oo finite
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with

I(r, k) = gray (2.5)

The factor of rd+" is needed because we are actually using a UV cutoff and calculat-

ing quantities at r = 1/c with c small. We keep only finite terms; the infinite pieces

are UV divergent contact terms that can be removed by proper holographic renormal-

ization. In terms of (2.3),

(O(k)) = (2v - d)#1 (2.6)

Linear response theory relates the change in operator vacuum expectation values in the

presence of a source #o to #o and the retarded Green's function,

(0(k)) q5 0 (k)GR(k) (2.7)

giving

GR(k) = (2v - d) (2.8)
0

Therefore, we can read off the two point function from UV data given appropriate

boundary conditions at the horizon.

In this chapter, we will follow [60] and use a procedure very similar to the above

to calculate spinor correlation functions. For the remainder of the chapter, we will be

interested in gauge-gravity duals with a four dimensional bulk. The free spinor action

S = Jd ~gi(/FmDmub - m@bo) (2.9)

results in the curved space Dirac equation

FmDub - mo = 0 (2.10)

with DM = Om + (1/4)0abMPaA. w is the spin connection and M runs over spacetime

indices while a, b run over tangent bundle (vielbein) indices. Fm's are related to the
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usual Clifford algebra matrices by a factor of the vielbein, FM = eMa F. Following

the scalar case we require (in a way that will shortly become more clear) X - o at

the boundary and set

exp[- 00 + OXol
\x ._ -I )QFT

- e Sgrav[o,xo]

The most naive application of the GKPW prescription immediately runs into two con-

fusions

1. V' is a Dirac spinor in 4 dimensions with 4 components and Xo is a Dirac spinor

in 3 dimensions with 2 components. Our X - xo limit does not really make

sense.

2. The Dirac equation is first order. If we fix all of 4 at the boundary, the solution

will not, in general, be regular in the interior.

The solution to both of these apparent problems is the same-at the boundary we should

only fix half of the components of 4, which will correspond to the source Xo. The other

components of 4 will be fixed by requiring regularity at the horizon.

Thus, we need to decide which components correspond to the source. Once again,

we will associate to the source those components which are largest at the boundary.

More specifically, let's work in a basis of gamma matrices with

1 0)

0 -1
y A

0 ) (2.12)

where 4'+, 4- are the chirality eigenvectors of F', and 7y" are boundary gamma ma-

trices. This choice makes clear that 0+, 0- transform as boundary spinors. Near the
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boundary, the Dirac equation gives

-+ A(k)r- 3/ 2 +m(1 + O (1) + B(k)r- 5 / 2-m(1 + O )

C(k)r-5 /2+m(1 + + D(k)r-3/ 2-m(1+ 0 (2.13)

where A, B, C, D are two component spinors and A, C and B, D are locally related.

For now, we focus on m ;> 0 (for m < 0 we can just switch A --+ D, B +-+ C). At the

boundary, the A(k) term is dominant, and so we set the boundary conditions as

A(k) = Xo or lim r3 /2-m + = Xo (2.14)
r-00o

Analogously to (2.4), we set

O(k))= - lim rm- 3/ 2H+(r, k) (2.15)

Examining (2.13), this gives

II+ = -V i (O(k)) = D (2.16)

If D(k) and A(k) are related by a matrix S(k), D = SA (we should solve the Dirac

equation with linearly independent boundary conditions until we can determine all of

S), then again linear response theory tells us how to compute the Euclidean correlator,

GE(k) =-(00t = S(k)fy7 (2.17)

Again, we get the retarded Green's function by choosing ingoing boundary conditions

at the horizon and by analytically continuing -y',

GR(k) = (OOt) = iS(k)-yt (2.18)
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Actually, for 0 < m < 1/2, all terms in 0± are normalizable and it is consistent

to treat D as the source and A as the response. This is the so-called alternative quan-

tization of [61]. The boundary CFT in alternative quantization differs from that in the

usual one by turning on OtO in the CFT lagrangian.

We can calculate v,, the CFT scaling dimension of the boundary operator 0 using

the following heuristic. Evaluating the boundary CFT at cutoff r ~ 1/e, there is a term

in the boundary action

d3X go(x, -)O(x,- E Sbdy (2.19)/~i~ 1 1 (.9

where -y is the induced metric on the boundary. In terms of some finite renormalized

operator,

1o(X, ) e3/2-m Oren. ) (2.20)

To make Sbdy finite, this suggests that we define O(x, E) 3/2+mOren. (X) and thus

v = 3/2 + m for spinors in three dimensions. For alternative quantization, the same

reasoning leads to v = 3/2 - m.

4.3 Fermion Two Point Functions at Finite Density

In the next three sections, we review the work of [17]. We are interested in studying

2-point functions of fermionic operators in a 2 + 1 dimensional boundary with a finite

U(1) charge density. For simplicity, we work at zero temperature.

In the bulk, this ensemble corresponds to studying a black hole in AdS 4 charged

under a U(1) gauge field coupled to classical fermions. We will be agnostic about the

nature of this classical matter, that is, we will not specify the details of the boundary

theory. However, the setup is general enough that it encompasses many known ex-

amples of gauge gravity duality (say, A( = 4 SYM) and presumably many unknown

examples. Thus our study will hopefully be universal over a large range of gauge-
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gravity duals. We will leave the charge of the fermionic operators, q, general; the

actual attainable q are particular to each example.

The bulk action is

Sblk -

6
Jd4X /g 7R

- Fm NFMN (3.21)

where R is the AdS radius, r, the Newton's constant and 9F the gauge coupling. The

solution we are interested in is the charged AdS 4 black hole

ds
2 r 2 R 2 dr2

- (-fdt2+dZ2)+
R2 r2 f

+ Q2 Mf=1+-4-3
r r3

At = p(1 - -)r
(3.22)

with Q, M the black hole charge and mass respectively andp gF/ (R 2 r2). ro is

the outer horizon, i.e. the largest solution to f (ro) = 0. In the boundary, this geometry

corresponds to a theory with finite charge density and temperature

2Q
S2R2gF

T = 3ro
47rR

2 (1 (3.23)

At extremality, the inner and outer horizons merge into a double zero of f and

M = 4 - Q=,V/r2 -=> T = 0 (3.24)

We will usually work in units with R = 1. In addition, in our numerical work, we will

often put the horizon at ro = 1 and set gF = 1-

We want to study the Dirac equation (2.10) in the bulk,

FrDaT - m1F= 0 (3.25)
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One can nicely cancel off the spin connection contributions to this equation by defining

'' = (gg)rr)e--iwt+ikix@ (3.26)

with 7 = (x, y) the spatial directions on the boundary. Substituting and rearranging,we

get

(3.27)" (FOr - m grr)7P + iKIFLO = 0

with

(3.28)

and

U = t ( + sq(V - 11 TO))
(3.29)

and pq = pq. This system of four coupled equations becomes simpler by choosing

the k momentum to be entirely in the x direction (which we can do by rotational

invariance) and by a canny choice of gamma matrices,

ial 0

0 ior

P F = (

Defining4 =

-a2 0

0 0 2

-o. 3 0

0 -o.3

0 -io 2

io.2 0

(

)
(3.30)

and rearranging gives

(a,+mg r3)<D = rr
V-gt

+ pq(1 - ) jo
2 <D + r k(-1)oa1ucD,

rgji

with a = 1, 2. This gives two decoupled, real 2 x 2 equations.

Note that this is a different basis of r matrices then the one put forth in the previous

section (2.12), useful for calculating two point functions. To calculate, we should relate
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the two bases. In terms of (3.31), solving the Dirac equation at the boundary gives

01
<Da - acrM + bar- m  (3.32)

In terms of V)+, 0- defined in (2.12), this gives

V+ ~ A (k) rr + . . (k) = a
(a2

~ D(k)r-m + ... ,D(k) = b1 (3.33)
b2

The difference in the exponents from (2.13) is due to the r-dependent field redefinition

(3.26). In terms of the matrix, S, defined in the previous section

b1 si s2  ai (3.34)

b2 83 s4  a2

Since the two a equations are decoupled, we can choose independent boundary condi-

tions that do not mix <1 and <2 giving s2 = 0 and, from (2.18),

,/ bi/ai 0
GR = iSY= - (3.35)

0 b2/a2

with

f _ 0 t/ ' -= UrtU-1 (3.36)

where U is the basis change between the <Da basis and the chiral basis. For alternative

quantization, the source and vev are switched and similar reasoning leads to G =

-1/Gc.
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4.4 Low Frequency Limit of Retarded Greens Func-

tions

We are interested in looking at the low frequency limit (compared to the chemical po-

tential, p). Naively, we should expand Ia in a perturbation series in W. However, there

is a subtlety because the coefficient multiplying w in (3.31) blows up at the horizon

and so we cannot treat w as a small perturbation there. To deal with this, we split the

r-axis into two regions, an inner region (with variable () and an outer region (with r).

The inner region has
wR2

r - ro = 2 , E < w < oo (4.37)

and the outer
wR 22 < r - ro (4.38)

with R 2 = 1/V6 (really there is a factor also of the AdS radius, R, which we have

set to one). The strategy now is to develop the solution as a perturbation series in w

with ( in the inner region and r in the outer region. Because the distinction between

inner/outer involves w, the inner region equation no longer blows up in the w -* 0

limit and the perturbation series between the two regions is reshuffled.

Let us examine the lowest order solution in the inner region by taking the limit

w -+ 0, c -+ 0, wRj/c -* 0. Writing the Dirac equation in this limit gives

(-Dc + - + e R2 ka (4.39)
ro

with e3  9F! 12. This is precisely the Dirac equation for a spinor in AdS 2 x R

- (-gg C)1/4<b), where ( = 0 is the boundary. This near horizon AdS 2 geometry

has radius R 2 and constant electric field e3 . In fact, we can think of this as a Dirac

spinor on just AdS 2 where the k term is a T-violating mass. We are interested in
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matching to the outer region by taking ( -+ 0. Here, the equation becomes

(4.40)

-mR 2

-e 3 q + ( 1 ) kR 2

e3 q + (- 1 )kR 2ro

mR2

This matrix has eigenvalues iA 0 with

1 Ik2 R
Ao = 2 + m 2 R4 - q2 e2R

R2 Iro

implying that at the boundary the solution is

20I(O) = A(w)v~a(~A" +

with

v+a = ( mR 2 -F A,

e3 q - ()kR 2 )
(4.43)

(4.44)

The AdS 2 retarded Green's function, in the presence of a constant E field, is, gener-

alizing (3.35), B/A. Again, we must set infalling boundary conditions at the horizon.

Thus, we can normalize the outer solution as

41)() = v+a(A, + Go(w)v_4(Aa

The AdS 2 retarded Green's function is (see [62])

GF(-2A0 )F(1 + Aa - iqe3 ) (m + i(-1)" )R 2 - iqe3 - A,
G, (W) = e-~A, oe ZC)x (2w) 2A*

R A- X k
I (2Aa) (1 - a - iqe3) (m +- (-1 ) )2 - Wge3 -- A

Going through the same kind of analysis as in (2.19), A, is related to the scaling

dimension of the AdS 2 operator, 6c by 6, = Aa + 1/2. Note also, that by momentum
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conservation in R2, operators with different k do not mix.

Now, we look at the outer region equations. Here, we can safely set W = 0 to get

the lowest order solution. Again, we get

TTA,

Matching, we conclude

4 R2 -A" R2 +A 4.8<D () - (r 2 + G (w)v -, 2 (4.48)

Now, in the outer region, we can perturbatively expand the linearly independent solu-

tions

77±a = 7c + Wr±J, +. (4.49)

where we have already solved for 7O. The higher orders can be obtained by solving

the dirac equation and requiring that the solution has no piece proportional to the lower

order ones. Thus, the matching is entirely determined by the lowest order and we

conclude

D= + G'(w)qa (4.50)

To know qia we must solve the dirac equation everywhere-we must have all the UV

data. Gc(w) is determined entirely, however, by the IR. At the boundary of AdS 4 , we

know (from (3.32))

77 ~n r adn T m 0 + bd Tn -M (4.51)

giving the full greens function perturbatively as (3.35)

) bi0 Al ) obL2) + GI(w)(b + wb 0(w 2 )) (4.
G-(w, k) O (4.52)

a + wa+ 1 + 0(w 2) + GO(w)(aP wa ± 0(w 2 ))
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We hope the distinction between G'(w, k) (the full AdS 4 greens function) and G' (w)

(that of of the near horizon AdS 2 geometry) is not too confusing.

We note that in [17], it was found that the bosonic low frequency two point function

has the same form. However, whenever there is a "fermi surface" for these bosons (see

below), there is always an instability.

4.5 Fermi Surfaces

Let us suppose that there exist certain kf where a+0, (kf) = 0. This will generically

only happen for real A,. For small k1 = k - kf and small w, the Greens function

(4.52) can be written

G(w, k)

O9ka
Vf=- (1

a (0

h2 = -Ic(kf)a_
BOka

(5.53)
k, - go - h2 ei-y(kf)w

2 Aa(kf)

(k5) _bij(kf)

F(kf) b)a(kf)

+ (k)(k

(kf)
(5.54)

This greens function has a pole in the complex w plane

We= w(k) - iF(k)
1- ) A (f -(kf) 1

-e (,~ 2AA(k, e (kf) Ac,(kf) <
h2 2

1
= f kI - h 2Vf eiy(kf)(vfk) 2 a(kf) , Ac(kg) > (5.55)

We interpret the w = 0, k1 = 0 singularity as a fermi surface and the finite W polls as

particle-like excitations above this fermi surface. Since, in general, it is not true that

F ~ W2 .we are looking at systems not described by Fermi Liquid Theory, i.e. Non-
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Fermi liquids. Looking at (5.55), the excitations have dispersion relation w,, (k) oc kz

with

1 1
z = , Ac(kg) < -

2Aa(kf) 2
1

= 1 , A(k) > - (5.56)
2

and widths IF(k) cx k6 with

1 1
6 = Ac(kg) < -

2A, (kg) 2
1

- 2A,(kf) , Aa(kg) > - (5.57)
2

For Ac,(kf) < -, the width and energy are comparable and the excitations are not
2'

stable quasi-particles. For A,(kf) > -, as we scale towards the fermi surface, the

ratio of lifetime to energy goes to zero and there are such quasi stable excitations. For

A,(kf) = 1/2, both Gc(w) and a(') have poles which cancel, leaving a log in the

greens function. It is

hi
G'(w, k) k (5.58)

R ~ki + cio + 1w log w

with 21 real and ci complex. Such a greens function is thought to be relevant for high

Tc cuprates and have been dubbed "marginal fermi liquids," in the literature.

Thus, we have written down a Greens function for excitations about a fermi surface.

The low energy properties, such as the form of the lifetime and dispersion relation

are entirely determined by the scaling dimensions of an emergent near horizon (IR)

conformal field theory.
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4.6 Turning on Dipole Couplings Couplings

We want to look at the effects of adding an electric or magnetic dipole term in the

bulk on the existence and location of fermi surfaces. To do this, we use the Dirac

Lagrangian density,

L = i(FaDa - meF4) - if(gm + geF)E9PvFj, (6.59)

with (in our basis)

S= F _FLFLI = 0 -io) (6.60)
(-io 2 0

The Dirac equation is now

F"Da4' - mb + i(gm + ger)E"F,,T = 0 (6.61)

Once again, we can cancel the spin part of the covariant derivative by making the

definition (3.26). Doing the same sort of manipulations leading up to (3.31) and using

Frt = pro/r 2, we get

(&r + m grro)4a = " f o + pq(1 - 2 T ioc + k o
-gt t r gii

+ ) + 1 (6.62)

where again a = 1, 2 and # # a is the other 4. Note that in this basis the dirac

equation is no longer block diagonal, though it is still real. The dipole terms have no

effect boundary behavior of this equation.

Because there is mixing with ge # 0, the process for extracting the Green's function

is slightly more complicated. Equation (3.34) still holds, but we can no longer choose

two sets of boundary conditions such that GR is diagonal. Instead, we use two sets of
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linearly independent boundary conditions, I, and II. (3.34) becomes

bV bV ss al all( b b' S2 1j ( (6.63)
b, bl sa s4) al al

or B = SA in matrix notation. The greens function is GR(w, k) = BA-'.

4.6.1 Discrete Symmetries

We can discover several discrete symmetries by examining the effect of conjugating

the dirac equation (6.62) and the infalling boundary conditions with certain simple

matrices, U. For example, when we pick our two sets of infalling boundary conditions

in 2 x 2 blocks, conjugating with the matrix

0 1
U ==iraE (6.64)

=(1 0

switches the sign of k in the Dirac equation and switches the two sets of boundary

conditions. We learn that

G(w, -k) = UG(w, k)U (6.65)

When ge = 0, we can take a diagonal basis, leading to G,(w, -k) = G2(w, k). For the

general mixed case, we note that det G(w, -k) = det G(w, k), so that our graphs of

fermi surfaces in the (k, q) plane will be invariant under k -+ -k. In a similar way, by

examining the effect of U on (6.62) and on the boundary conditions, the choice

o3 0
U = ( o.3 = 1 > G(-w, -k; -q, -gm, ge) = -G*(w, k; q, gmi, ge)

(6.66)
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This, along with the first discrete symmetry, implies that our fermi surface plots with

9m, = 0 will be symmetric under q -> -q. Finally, the choice

0

a 2

02

0 ) = i r=

-- > G(w, -k; -im, -gm, -ge) = - [G(w, k; m, mi, ge)1

(6.67)

In particular, this implies that alternative quantization is equivalent to taking (m, gmn, ge)

(-m, -gm, -ge).

4.6.2 The Low Frequency Limit

Again, we develop a perturbation series in w by splitting the r-axis into inner and outer

regions. The lowest order inner region equation is

(-&g + mR2a3) = + qes i2J% +R2 k(-1)ac<Da
To

+ 2e (gmo1a + g13) (6.68)

Near the boundary of AdS 2, we get

- = U2qe 3 <a - R 2 (mo 3 + lkia O) <k

AI, =-(-1)"- +2 m 2

= U(ge, gm)"
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+ 2 geoR (6.69)

(6.70)

(6.71)



and the four eigenvalues of U are

L1A,2 = i 1
R2\

(m 2 + 2 )R4 + e2(4(ge + g - q2R 2) ± 4e3R 2
ro 2 g 2 + g2 (m2 + 2

(67ro

(6.72)

where the 1, 2 correlates with the ± in the square root. Thus the dimensions of oper-

ators in the IR CFT are significantly changed. In the case of ge = gm = 0, the usual

case of two degenerate eigenvalues obtains.

By making a basis change on (6.68), we can block diagonalize it (though we cannot

do so for the full dirac equation)

+ i 1,2 = 0 (6.73)

+ 4Ve (g2 g2 (m2 +) R2

(6.74)

This is exactly the same AdS 2 dirac equation as (4.39), with

rk
TO

R±

Aa - - q2e3 = A1,2
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(-8 - i(W +

with

4e2 (g2 + g2 ) R2 + (m2 + k2R

(6.75)



Thus,

G1 2(W) eirA,2 F(-2 1 ,2)F(1 + A1,2 - ie 3) -iv± - iqe3 - A1 ,2 ( 2 )2Al 2R I(2A1 ,2 )(1 - A1,2 - We3) -± - iqe3 + A1,2
(6.76)

As in (4.48), we can match in the outer region onto either G' (w) or G2(w), this

defines our two boundary conditions. The components in the outer region, however,

will generically be mixed 4-spinors. We will have two solutions

=I I ±G 2w 11 (6.77)

We can expand A and B (6.63) perturbatively in w near the boundary. For example,

B = B + wB 2) + (B(?) + wB(1) + O(w2 ))GR(w) (6.78)

with
G1~w 0

GR (W) = (6.79)

The equation for the low frequency greens function is

B +wB +(B +wBT )Gn(W = GR(w, k) [(A(O) + wA )) + (A(O) + wA(_)GR(w

(6.80)

All previous equations for correlation functions, say (5.53) hold, with an's and b,'s

replaced by matrices A's and B's, GR(w) replaced by the matrix GR(w) and all de-

nominators replaced by matrix inverses. The fermi surface is now defined by

det A (k ) =- 0 (6.81)

The dispersion relation and width, the analogues of (5.56) and (5.57), are determined
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by solving

det [(A 1?(kf) + OkA± (kf)k_ +wA ((kf) + A(_)(kf)GR(w) =0 (6.82)

Thus, in general, the dispersion relation and width will be controlled by the smallest

of A,, A2.

For simplicity with the numerics, we will find it easiest to deal with nonzero gm

and ge separately.

4.6.3 gm / 0, ge 0

In this case, there is no need to do any basis changing; the dirac equation is block

diagonal. The near horizon equation is (setting ro = 1)

+ - a (W + qe 3 + R2((- 1)"'k +

Thus the effect of the magnetic dipole in the near horizon limit is to shift the momen-

tum oppositely in the two blocks. In the matching region (the AdS 2 boundary), the

solution goes like

S v+a + A vQa (6.84)

with
1

Aa = R
V(kR2 + (-1)Q2gme 3 )2 + m 2R' - q2 e2 R' (6.85)

vi - ( mR 2 - A,

e3(q - 29-) - (-1)kR2

Matching onto the near horizon region,

D= 77+a + G'(w)7_,

)
121

2e 3gm (6.83)

and

(6.86)

(6.87)



where the effect of the dipole coupling is to shift k in G'(w), and to change the UV

data r/±. The AdS 2 greens function is

= e-i7F(-2AQ)F(1 + A, - iqe3)
F(2Aa ) F(1 - Ac - iqe3 )

+2e3gn
na= (-1)"k±+2em

4.6.4 ge $ 0, gm = 0

In this case, the (ro = 1) near horizon equation is

- 2+ m s = (w + e)io2a + -(-1)"koi 1 +

For completeness, the unitary transformation which block diagonalizes this is

U

A= m±k+ m 2 +k 2

giving

= (w + q )2 +

-A_ iA_ -iA+

-A+ iA+ iA_

-A+ -iA+ iA_

-A_ -iA_ -iA+

(6.90)

R2 ((-1)"V/m2+k2 +

In the matching region, the solution again goes like

4% ~ "v+a + {^^va

with

V(vm2 +k 2 R2 + (-1)2ge3 )2 - q2 e2R 2
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G'(w) x
(m + in,) - iqe3 - A,
(m + in,) - iges + A,

(6.88)

2geo-
3 @) (6.89)

1

2V2V/k2+m2+m m 2 +k 2

2e 
g (6.91)

AaQ=
R2

(6.92)

(6.93)



and

via= ( 2 TAa (6.94)
esq - ) a(1)" vm 2 + k2R 2

The full outer region solution is again

<i0= 7+a, + Ga/w)m_ (6.95)

and

G' (w) =eirAal r(-2A,)F(1 + A0 - iqe3) ina - iqe3 - Aa 2

R (2Aa)r(1 - A, - iqe3) ina - iqes + A A
2e 3g,

na= (1) m 2 + k2 + 2 (6.96)

4.7 Numerical Results

To find fermi surfaces, we look for kf such that a+ (kf) = 0. By (4.51), this cor-

responds to w = 0 solutions to the dirac equation which are normalizable (because

of mixing, the process is slightly more complicated for ge # 0; we review it below).

We implement this procedure by numerically integrating the W = 0 equation to the

boundary and looking for zeros of a+?O for some range of k and q .

Such numerical work was done in [17] for gm = ge = 0 . There, it was found

that fermi surfaces existed in branches in the (k, q) plane that were basically straight

lines jutting out of an oscillatory region (a region where the AdS 2 operator dimensions

(4.42) are imaginary and inside which there exist no fermi surfaces). See Figure 4-1

for such a graph with m = 0.4. The oscillatory region is shaded green.

4.7.1 gm 0, ge = 0

For g, f 0, the above structure is preserved; there are fermi surface branches jutting

out of oscillatory regions in the (k, q) plane. By (6.85), turning on gm keeps intact the
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Figure 4-1: Fermi Surfaces ge = gm= 0, m 0.4

shape of the oscillatory region, moving it to larger k (it also moves another copy to

smaller k, but we focus on k > 0 as everything is k - -k invariant). We note the

following qualitative observations

1. As the oscillatory region moves to larger k, it "eats" fermi surfaces in the (k, q)

plane. These fermi surfaces branches move to higher and higher q for larger Igml
(see Figure 4-2).

2. The dipole coupling seems to have the most effect at low q, where it flattens

and curves fermi surface branches close to the oscillatory region. Far from the

oscillatory regions, the branches asymptote to straight lines.

3. This effect is most pronounced for m < 0 (alternative quantization). For m

negative enough, local and global maxima and minima can develop in fermi

surface branches near the oscillatory region. See Figure 4-3 for an example of

how such a minimum develops as m is lowered. Also, in Figure 4-4 we plot

results for gm fixed and m = -0.4, 0, 0.4.

In [17], a "phase diagram"was constructed in the (m, q) plane which showed the

attainable Aa 's for the primary fermi surface (that with the largest kf for a given q).

Here, we construct a similar phase diagram for gm = -2. Because of various ambi-

guities and discontinuities, we focus only on the q > 0 branch affected most by the

dipole coupling. Because the branch gets flattened near the oscillatory region, there
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are more attainable A's than with gm, = 0 for the same range of m, q. Also, because

of #3, when global or local minima occur we must pick what we mean as the primary

fermi surface within a branch (note that this differs from gm = 0 where the choice is

made between different branches). We choose that fermi surface with the largest A,.

Note, in this case, such a fermi surface actually has smaller kf.

4.7.2 ge 0, gm = 0

For ge # 0, there is mixing. We change bases in the w = 0 dirac equation so that

(6.83) is the near horizon limit. We then use two different infalling boundary condi-

tions, each corresponding to a distinct AdS 2 dimension. We integrate this out to the

boundary, change basis back to the original spin basis and numerically look for zeros

of det AO) = 0 (a a 2 ) - a±+1(o) a +20) (see 6.63). Some observations:

1. Fermi surface branches continue to jut out of an oscillatory region. As |gel is

increased, the oscillatory regions kiss and move to the right (see figure 4-6). As

in the magnetic case, the oscillatory region and "eats" fermi surface branches as

it moves to the right.

2. Fermi surface branches are created to the left of the oscillatory region which I

will call the "interesting region". As one increases |gel more fermi surfaces are

created in this region. There can also be local maxima or minima created near

the oscillatory region as in the magnetic dipole case.

3. For ge # 0 the fermi surfaces are much more gently sloping in the interesting

region than for fermi surface branches with similar gm (and all other constants

comparable). For m = 0, the fermi surface branches are nearly flat.

4. There seem to be small gaps between the fermi surface branches at k = 0.

This indicates local maxima or minima at k = 0. As one lowers |m|, the gaps

become larger and larger (see Figure 4-7), although for m < 0 there always

exists a branch with a large gap.
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4.8 Conclusions

We have found that fermi surfaces are robust under the addition of quadratic magnetic

and electric dipole operators. Turning on these couplings changes the scaling dimen-

sion of the emergent IR AdS 2 symmetry.

It would be interesting and important to have a better analytic understanding of

the meaning of the bulk dipole couplings in terms of the boundary field theory. In

vacuum, these couplings do not affect the fermion two point function. They do, how-

ever, change the structure of the current-fermion-fermion three point function. The

full calculation is complicated, but one simple characterization is the following. With

gm = ge = 0, there are no terms in (lJJQM/3J) proportional to second rank clifford

algebra elements; turning on the dipole couplings creates such terms. It would be

interesting to understand better the physical implications of this.

It was previously found that the existence of fermi surfaces in ordinary quantiza-

tion was correlated with the existence of the oscillatory region in k space where the

AdS 2 scaling dimension becomes imaginary. The oscillatory region corresponds to

pair production in the AdS 2 region and so a heuristic interpretation is that this creates

a bulk fermi surface leading to a boundary one. However, it appears that this explana-

tion is not necessary; boundary fermi surfaces can appear in alternative quantization

without oscillatory regions. However, the alternative quantization is unstable in the

RG sense; any small addition of the double trace operator OfO flows the CFT to the

that of ordinary quantization. Thus, the fermi surfaces without oscillatory region are

also unstable; they flow away, as can be seen most clearly in Figure 5 of [17].

As discussed above, the existence of the oscillatory region implies that the bulk

fermi surface has support at the black hole horizon. Naively, backreaction should be

suppressed by a factor of 1/N 2 . However, when one integrates the horizon charge

density, there is a log divergence which can offset this suppression in the extreme IR;

backreaction cannot be ignored [59]. For this reason, it would be interesting to find

a deformation of the action which allows fermi surfaces that are RG stable. Unfortu-
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nately, our numerical results indicate that the dipole couplings are not such a deforma-

tion. Although the couplings change the shape and location of the oscillatory region in

the (k, q) plane, we again find that fermi surfaces in ordinary quantization only occur

with an oscillatory region.

Finally, we have found that the dipole operators curve fermi surface branches in

the (k, q) plane close to the oscillatory region. For certain values of gm and ge we can

create local maxima and minima of these branches. It would be interesting if we could

embed this system into a larger one where q is a tunable parameter. In this context,

a local maximum, for example, would represent two fermi surfaces that merge and

annihilate as q is continuously increased. We leave such an embedding to future work.
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Figure 4-2: Fermi Surfaces for Increased gm with m = 0.4
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m=0.4 g.=-2

2 4 6 8 10

- . .......................... .......

m=0 g,=-2

-2

-4

-6

m=0.4 g,=-2

2 4 8 10

Figure 4-4: Fixed gm = --2 for m -0.4, 0, 0.4
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