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Abstract

This thesis consists of three chapters in asset pricing.

Chapter | considers an international asset pricing setting with traded and nontraded
outputs. It shows that output fluctuations in nontraded industries are a central risk factor
driving asset prices in all countries. This is because nontraded industries entail a growth
risk that is mostly non-diversifiable, and constitute the largest component of gross domestic
product (GDP) of a country. Supportive empirical evidences include; (i) the effect of an
industry’s growth volatility on the interest rate increases significantly with its nontradability
and (i) carry trade strategies employing currency portfolios sorted on nontraded output
growth volatility earns a sizable mean return and Sharpe ratio for US investors.

Chapter 2 considers heterogeneous-agent setting in which agents differ in risk preference,
time preference and/or expectations. It shows that, because of equilibrium risk sharing,
the precautionary savings motive in the aggregate can vastly exceed that of even the most
prudent actual agent in the economy. Consequently, a low real interest rate, resulting from
large aggregate savings, can prevail with reasonable risk aversions for all agents. However,
as savings rates become extremely sensitive to output fluctuation when savings motive is
large. the same mechanism that produces realistically low interest rates tends to make them
unrealistically volatile. A powerful isomorphism allows differences in time preference and
expectlations Lo be swept away in the analysis, yielding an equivalent economy whose agents
differ merely in risk aversion.

Chapter 3 considers a novel tractable and structural pricing framework. It shows that any
risk-neutral statistical distribution of state variables can be consistently tied to the economic
contents ol the underlying pricing model. It establishes this structural linkage by requiring
that the economy’s stochastic discount factor (SDF) be a proper but unspecified function of
the state variables. Consequently, the structural content of the economy as characterized by
the SDIF can be determined from state variables dynamics through a simple linear differential
equation. As a result, state variables” distribution in physical measure can also be recovered.
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Chapter 1

Growth Risk of Nontraded Industries

and Asset Pricing

1.1 Abstract

This paper shows that output fluctuations in nontraded industries are a central risk factor
driving asset prices in all countries. This is because nontraded industries entail a growth
risk that is mostly non-diversifiable, and constitute the largest component of gross domestic
product (GDP) of a country. In interest rate markets, movements in the growth of industries
with higher nontradability feed greater risk to the economy, and therefore, stronger down-
ward pressure on the interest rate. Empirically, the effect of an industry’s growth volatility
on the interest rate increases significantly with its nontradability. In currency markets. this
risk factor generates carry trade profits because it induces co-movement of the investor's
marginal utility and the exchange rate. Empirically, a carry trade strategy emploving cuu-
rency portfolios sorted on nontraded output growth volatility earns a sizable mean return
and Sharpe ratio for US investors. Trade frictions do not alter these mechanisms. although

incomplete markets may reverse carry trade profits.
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1.2 Introduction

The rational theory and practice of asset pricing center around three fundamental princi-
ples: the tradeofl between risk and return, diversification, and no arbitrage. Movements in
an economy's nontraded-sector output should play a key role in the determination of do-
mestic asset prices and their differentials across cconomies, because these arce risks that are
not easily diversified even in an arbitrage-free international market. This paper shows that
the nontraded output growth risk is indeed an important determinant of international assect
prices. We adopt a canonical consumption-based exchange economy setting, with multiple
countries, multiple traded and nontraded goods, trade costs, and with either complete or
mcomplete financial markets. A new feature of our model centers on its ability to accommo-
date partially traded goods and services as they actually are in reality. This property allows
us to estimate the effects of nontraded output risk that are robust to the possible classi-
fication errors in macro data employed. We verify new implications of nontraded output
growtl risk for the interest rates and carry trade returns using data from the Organisation

for Economic Co-operation and Development (OECD) economies.

The main insight of this paper is that the nontradability of an output amplifies the impact
of its growth risk on the host economy. From this insight follow all our key conceptual results,
which are also verified empirically in the paper. First, at the country level, the fluctuations
in gross domestic product (GDP) growth of less open-to-trade economies pose greater risk,
incite higher precautionary savings motives, and thus induce relatively lower home interest
rates i the cross section of economies. Second, at the industry level, the fluctuations in the
output growth of less traded industries also place stronger downward pressure on interest
rates. Third, in the currency market, the carry trade strategies that expose investors to
larger nontraded output growth risk offer higher returns on average. Fourth, the nontraded
output growth risk regulates consumption allocation, moves investors’ marginal utility and
exchange rates in the same direction, breaks the uncovered interest rate parity, and generates
currency forward premia. In contrast, country-specific traded output growth risk is much

less prominent. because it is subject to diversification via international trades.
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The nontraded sector produces goods and services that cannot be consumed outside of
the home country. It includes wholesale and retail trade, hotels and restaurants. real os-
tate, financial intermediation, and business activities. Two stylized features of nontraded
output stand out. First, nontraded outputs feed the lion’s share to the GDP and na-
tional aggregate consumption in all countries. Figure 1-1 shows that the ratio of rcal
nontraded output over GDP is substantial among the OECD economies, ranging from

0.5 for Iceland to 0.7 for the United States (US). Second, the tradabilitics. measured as
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Figure 1-1: Mean of nontraded output-over-GDP ratio, 1971-2010, for OECD countries

the ratio of total import plus export over output, of key nontraded industries are in-
deed very low. In particular, Table 1.1 shows that the tradabilities in Financial Services.

Construction Services, and Other Services rarely exceed 5% across a host of countries.
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Table 1.1: Services’ tradabilities, 1971-2010

Country Measure Financial services Other services Construction services
Tradability (%) 0.36 2.02 0.09
Australia
Fraction of GDP (%) 22.31 16.07 6.28
Tradability (%) 0.69 3.94 0.34
Canada
Fraction of GDP (%) 21.40 20.72 5.67
Tradability (%) 2.68 18.88 4.47
Czech Republic
Fraction of GDP (%) 14.72 14.44 6.45
Tradability (%) 0.67 12.41 2.43
Denmark
Fraction of GDP (%) 18.58 24.38 5.58
Tradability (%) 1.70 17.01 7.05
Hungary
Fraction of GDP (%) 18.15 18.43 3.98
Tradability (%) 0.21 2.51 1.87
Japan
Fraction of GDP (%) 23.51 23.72 9.78
Tradability (%) 0.22 5.82 0.67
New Zealand
Fraction of GDP (%) 26.17 17.13 1.83
Tradability (%) 0.89 9.28 1.29
Norway
Fraction of GDP (%) 14.76 19.71 4.47
Tradability (%) 0.72 6.95 5.36
Polad
Fraction of GDP (%) 15. 94 16.43 06.37
Tradability (%) 0.99 14.41 10.16
Sweden
Fraction of GDP (%) 20.52 25.17 4.58
Tradability (%) 7.46 2.69 N/A
Switzerland
Fraction of GDP (%) 19.31 24.88 N/A
Tradability (%) 2.93 7.77 1.17
United Kingdom
Fraction of GDP (%) 20.39 20.74 5.30
Tradability (%) 0.46 143 0.23
United States
Fraction of GDP (%) 27.65 26.96 5.23

Notes:

This table lists the mean of country-specific tradabilities and sizes of financial, con-

struetion, and other services for a representative set of 13 OECD countries, 1971-2010. Trad-

ability of services is (one half of) the ratio of total export and import over total output of

these serviees by a country (see (1.26)). Fraction of GDP (or size) of services is the ratio of

total output of these services over the GDP of a country. See section 1.7.1 and data appendix

for further details.

15

These



stylized facts imply that the nontraded output growth volatilities should pose a major source
of risk to national economies which should be reflected in the level of domestic interest rates,
stock market returns, and real exchange rates. Indeed, figures 1-2 and 1-3 depict a notable
inverse relationship between real interest rate and volatility of nontraded (services) output

growth across OECD countries. Structurally, this pattern is precisely implied by investors’
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Figure 1-2: Interest rate vs. nontraded and traded per-capita output growth volatility.
1971-2010, for OECD countries

precautionary savings motives. These figures also exhibit a much weaker relationship be-
tween interest rate and country-specific traded output growth volatility. This pattern is

entirely consistent with the diversification story of traded goods at global market scale.

The case of Japan illustrates the insight of nontraded output growth risk. Japan's low
real interest rate and the yen’s status as a favorite choice for the short currency leg in
profitable carry trade strategies are well-known and perplexing issues in international finance.
Interestingly, these facts fit neatly with the nontraded risk story proposed here. Among all
OECD economies, Japan possesses, in relative terms (i) one of the largest nontraded sectors
(figure 1-1), (ii) one of the most volatile nontraded sectors (figure 1-4), and (iii) the most

“closed” economy in term of trade-to-GDP ratio (figure 1-5).
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Figure 1-3: Interest rate vs. nontraded and traded per-capita output growth volatility,
1971-2010. for OECD countries excluding Estonia and Luxembourg as outliers
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All these empirical regularities suggest that the nontraded output growth risk is more

severe in Japan than anywhere else in the OECD. As a result, Japanese risk-free bonds are
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highly valuable as a safe hedge against this country-specific risk, and therefore offer both a

low yield and are a profitable asset to short in currency investment strategies.

Beyond their dominant impacts at home, nontraded output fluctuations are an impor-
tant source of risk because they also matter for all trade partners of the home countrv. [n
the rational framework of this paper, this inter-countries effect underlies the risk and prof-
its of international investment strategies, including currency trades. The transmission of
nontraded output shocks is facilitated by two distinctive mechanisms. The first is the sub-
stitulion effect, in which countries can substitute their traded and nontraded consumptions
to smooth their overall consumption over time. The second is the trade effect, in which a
country’s traded consumption adjustment influences the traded consumptions of its trade
partners by the force of market clearing in traded goods. An example illustrates. Sup-
pose country H receives a windfall of nontraded endowment, which makes nontraded goods
relatively cheaper than traded goods. When H’s elasticity of intertemporal substitution is

lower than that of the traded-nontraded consumption substitution, as documented for many

18



cconomies (see, e.g.. Obstfeld and Rogoff (2001)), H reduces its traded consumption, and
its trade partners increase traded consumptions to clear the market and accommodate this
adjustment. In other words, the nontraded output risk of a country is actually priced by
tirade partner countries because it influences partners’ consumptions and thus their marginal

utilities (or pricing kernel).

We now discuss in depth the specific implications of nontraded risk on interest rates and
carry trade returns. In light of the standard precautionary savings motives, volatilities of
home nontraded output, trade partners’ nontraded output, and global (aggregate) traded
output all act to depress home interest rates because these three types of shocks are able to
perturh home consumnption. However, as mentioned above, although nontraded output risk
is primarily internalized. the country-specific traded risk is largely internationalized and thus
neutralized in the global pool of traded goods. Consequently, nontraded output volatility
should influence home interest rates more strongly than does the home-specific traded output
volatility. We discuss aspects of testing this intuitive result below after rigorously formulating

the concept of (partial) tradability.

Nontraded output risk is an equally important factor behind carry trade profits. Why do
certain currency pairs tend to generate profits. whereas others incur losses in the currency
market? Let us consider a strategy of borrowing home currency and lending foreign currency.
Anadverse foreign nontraded shock simultaneously causes foreign currency to appreciate and
home traded consumption to drop (by virtue of the substitution and trade effects mentioned
above). That is, with respect to foreign nontraded risk, this strategy pays well when home
investors value consumption highly, and vice versa. From the perspective of home investors,
such carry trade is a good hedge against foreign nontraded output shocks, and it commands
low, possibly negative, expected return to home investors with respect to this risk. By a
siinilar argument, the same carry trade is not a good hedge against home nontraded output
growth risk, and thus commands high expected returns to home investors in that regard.
The overall expected profit (or loss) of the carry trade is determined by whether home (or

foreign) nontraded output growth risk dominates in this process. More specifically, when
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home nontraded output scctor is sufficiently more volatile than that of the foreign trade
partner, shorting home and longing foreign currency tend to generate positive expected
returns to compensate home investors' for bearing the dominating home nontraded risk

embedded in the carry trades, and vice versa.

Nontraded output risk then presents a rational cause behind the violation of uncovered
interest rate parity (UIP), i.e., the empirical regularity in which increasing-interest-rate cur-
rencies tend to appreciate. Lustig and Verdelhan (2007) document that the exchange rates
(with respect to the US dollar) of high-interest-rate currencies tend to positively correlate
with US consumption growth, and therefore longing high-interest-rate foreign currency and
shorting US dollars pose a risk to US investors. These authors consequently attribute this
positive correlation pattern to a force that breaks UIP. Movements in nontraded output
scctors offer a natural way to rationalize this positive correlation. In our setting. countries
having stable nontraded output sectors tend to be associated with high-interest-rate curren-
cies. Thus, for the carry trades that pair US dollars with these currencies. US nontraded
output risk dominates its foreign counterpart. As explained above. the dominating US non-
traded output shocks generate both a positive correlation between endowment rates and US
consumption growth, as well as positive expected profits for the respective carry trade. In
contrast, US nontraded output risk does not dominate the carry trade formed between US
dollars and low-interest-rate currencies, and as a result these carry trades are not profitable

to US investors in the expectation.

In this paper, we devised empirical tests for the effects of nontraded growth risk on
interest rates and carry trade returns for OECD economies. The first test concerned interest
rates and output growth risk at the industry level. We regressed real interest rates on ontput
growth volatilities of various industries, their tradabilities, and the interaction term. while
controlling for other variables. Table 1.5 shows that across OECD economies and on average,
the effect of output growth risk on real interest rates increases by 12% when the output’s

classification moves from traded to nontraded. Another test showed a similar result; the

TCarry trade profits to home investors are determined after the carry trade proceeds arve converted buck
into home currency.

20



volatility of GDP has greater cffect on home interest rates when the economy is less open
Lo trades (i.c., having lower ratio of national trade over GDP). The next test concerned
profits of investment strategies in currency markets. In particular, sorting currencies based
on nontraded output risk and forming carry trade strategies accordingly yield sizable mean
returns. Figure 1-6 shows that the long-short strategy on currency portfolios sorted on the
volatility of nontraded output growth earns US investors a mean annual real return of almost
3%. and Sharpe ratio of around 20%. Though these strategies arc not as profitable as the
investiment strategy in the US equity index,? this figure clearly demonstrates the consistency

of the nontraded output risk rationale with the carry trade profits.

Our analysis naturally suggests two-factor pricing model for each country. The factors are
nontraded and traded consumption growths. We note that in the current setting of exchange
econoniies, the nontraded output is essentially the nontraded consumption and thus is largely
internalized within the country. Consequently, shocks in nontraded consumption are always
perceived as risk and the corresponding factor price is unambiguously positive.® Using carry
trade portfolios as test assets and two different data sets, a two-stage GMM procedure gave a
statistically significant positive estimate of 32 basis points for nontraded consumption factor

price. from the US investors™ perspective.

We extended our theoretical analysis to the incomplete asset market setting, where finan-
clal assets that are contingent on the nontraded outputs of certain (emerging) economies are
not marketable and thus absent {rom markets. In this incomplete financial market, the non-
traded output risk originating from developed economies can still be shared quite efficiently.
However, nontraded risk from emerging countries’ cannot be shared optimally because of
the absence of appropriate assets contingent on these countries’ nontraded outputs. In the
pooling equilibrium, countries choose to spread this risk evenly within the group of developed

countries, and within the group of emerging countries (although not evenly across these two

?Based ou historical data, the strategy of longing S&P500 index earns real return of 7% and Sharpe ratio
of 107, approximately, see e.g., Mehra and Prescott (2008).

*In contrast, movements in home traded consumnption are not necessarily a risk factor to home investors
hecause this consumption is endogenous in the model. Consequently, the factor price associated with traded
constmption growtl volatility is not necessarily positive.
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groups). As aresult, in the pooling equilibrium, all of the above results concerning the effects
of developed economies’ nontraded output risk on other developed economies remain qual-
itatively intact. However, the effects of nontraded output shocks from emerging cconomies
on other economies are much weaker (because of pooling), or are even reversed. compared
to those obtained in the basic setting. To illustrate, a positive shock in an emerging ccon-
omy’s nontraded sector may decrease the traded consumption at home and in other emerging
countries. Consequently, we expect that UIP violation to be more pronounced among cur-
rency pairs of developed economies. Bansal and Dahlquist (2000) empirically observe this
asymmetry in a mixed data set of developed and emerging economics. In retrospect. the

mechanism of an incomplete market thus lends theoretical support. to their findings.'

The current paper contributes to an important asset pricing literature that attempts to
pin down the determinants of asset returns.® Different factors have been proposed and found
to have statistically significant power in pricing assets in different markets. Nevertheless.
many of them are ad-hoc factors that do not necessarily have clear economic intuitions.
The nontraded output growth risk that this paper pursues is fully motivated from and thus
backed by economic rationales. The concept and modeling of traded and nontraded goods
have been widely employed in international economics and international trades. The cirrent
study instead brings this keen intuition of output nontradability to the pricing of financial
assets. In this aspect our paper builds on the early leads of Stulz (1987), Stockman and
Dellas (1989), Backus and Smith (1993), and Zapatero (1995). We extend these analyses
by concentrating on the concept of partial nontradability and its dynamic role on prices. in
particular the carry trade returns and the underlying risk. While the majority of models in
international finance build on the simplified two-country two-good paradigm. the model of
this paper works with multiple-country multiple-good setting with the possibility of incom-

plete financial markets, which is more realistic and promising as advocated by Pavlova and

4Bansal and Dahlquist (2000)’s empirical analysis also concern the differential of inflation level in these
countries.

5This literature expands on the carlier influential Capital Asset Pricing Model (Lintner (1965). Mossin
(1966), Sharpe (1964)). Intertemporal Capital Asset Pricing Model (Merton (1973)). Arbitrage Pricing Mode]
(Ross (1976)), and more recent factor pricing model (Fama and French (1993)).
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Rigobon (2010). In the presence of multiple economic players who face nontraded risk, we
arc able to derive explicit and identify the structural factors that contribute to the diversifi-
cation benefits in both assets and goods markets. In previous literature concerning currency
investment strategies, the international diversification benefits are studied mostly under the
mean-variance cfficiency and reduced-form perspectives, as in Burnside et al. (2008) and
Campbell et al. (2010). Other international asset pricing puzzles concerning real exchange
rate and stochastic discount factor movement, and possible solutions based on recursive util-
ity (together with a long-run risk component), and habit formation are discussed in the work
by Brandt et al. (2006), Colacito and Croce (2011), and Stathopoulos (2011) respectively.
Closest to our paper is Hassan (2010)’s, who is the first to analyze the effect of economy’s
size on carry trade returns. The current paper instead {ocuses on the role of nontraded risk
and makes clear that the economy’s size only enter the international pricing dynamics under
two premises: (i) size is always coupled with the nontraded output of the host economy,
and (i) size's influence is always transmitted by means of international trade. To illustrate,
we consider two extreme cases in which we turn off completely one of these two premises:
(1) all goods arc traded (no nontraded goods), and (ii) all goods are nontraded (countries
as i1solated islands). In both cases, under the assumption that countries have homogeneous
preferences, the sizes of economies do not contribute to the interest rate differentials across

countries.

The paper is structured as follows. Section 1.3 presents the basic international asset
pricing model with a single traded good and symmetric consumption tastes across coun-
tries. Scction 1.1 analyzes interest rates and derives testable implications on the relationship
between interest rates and nontraded output risk, both with and without trade frictions.
Section 1.5 analyzes carry trade strategies and the associated returns, and derives their
testable implications. Section 1.6 presents and develops a much more general international
assct pricing model with multiple traded goods, arbitrary trade configuration and incomplete
fimancial mmarkets. Section 1.7 conducts empirical tests concerning the pricing of nontraded
and traded risk in interest rates and carry trade strategies. Section 1.8 summarizes the main

findings. Appendix 1.9.1 presents a short description of data and lists their original sources.
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Appendices 1.9.2, 1.9.3 and 1.9.4 present derivations and proofs of technical results.

1.3 Basic model

The basic model of the world economy consists of K countries, engaged in trade with one
another and with a single consumption good. Each country also has its countrv-specific
nontraded consumption good, which can be consumed only in that country. We concentrate
on the consumption risk in this paper and thus abstract our findings from production aspects
of the economy. The countries are endowed with country-specific streams of these traded
and respective nontraded goods. Specifically, the endowments (or interchangeably. outputs)

{AS AT are stochastic and follow the country-specific general® diffusion processes
dlog A = pildt + ol dzl! dlog AN = plldt + oldZ Y H=1..K.

where, throughout, the superscript H denotes the country and the subscripts 7. N denote
the traded and nontraded goods, respectively. In the above equations, Z!/ and Z{ arc
standard (possibly multi-dimensional) Brownian motions characterizing the country-specific
supply shocks of the traded and nontraded sectors. For simplicity, we also omit time index /
whenever this omission does not create confusion. Let us first assume that the traded good
is shipped without friction around the globe.” The market clearing mechanism then simply
enforces that traded good outputs from all countries are bundled together. and onlv the

global (aggregate) traded endowment Az enters the dynamic
K
Ap = Z AR dlog Ay = ppdt + opdZy.
H=1

In this section, we also assume that investors can trade at least as many financial assets. i.c..

contingent claims on these stochastic outputs and risk-free bonds denominated in countries’

5That is, the constant moments p&l, uf ok ok are not essential for the model’s implication. although

the geometric Brownian motion specification considerably cases the exposition.
"We reinstate the transportation cost in the next section.
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currencies, as needed to complete the world market. Incomplete markets are the topic of
section 1.6.2. Each country features a representative agent who maximizes the expected
utility weighted over traded and nontraded consumptions ¢ = {Cr,Cy}. It is important
to note that in this representative-agent approach, individual investors in each country are
assumed to be identical,® thus, these are consumptions per capita. The period utilities have

the following standard forin

‘ 1yl 1 1y
Iy = e C e""l—— [wr(CIH "+ (O] 7 wrtwy =1,

=y -

(1.1)
where p denotes the subjective discount factor. Utility is a power function of the consumption
aggregator (' which in turn is a function of traded and nontraded consumptions with
constant clasticity of substitution (CES). Countries may have different tastes {wr,wy} for
traded and non traded goods to model the possible effect of home biases in consumption.
Their normalization is purely conventional. In this setting, the intertemporal elasticity of
consumption is iv and the elasticity of substitution between traded and nontraded goods is
' They satisfv the conditions v > 0, ¢ > 0. The interaction between these two substitution

cffeets drives many of the model’s implications, as presented below.

Equilibrium consumption allocation

We consider the competitive equilibrium in which each country’s representative takes prices
as given and dynamically allocates consumption and savings (i.e., investment in financial
assels) to maximize her expected utility subject to the budget constraint. Market clearing
then consistently determines goods and assets prices. Because the market is complete, equi-
librium consumption allocations across countries can be conveniently characterized by (i)
formulating the world’s representative agent (see Negishi (1960)), and (ii) constructing the
stalic optimization scheme in which the world’s representative agent maximizes her period

atility subject to the aggregate resource constraint at each time and for each state (sec Cox

®An alternative view is to normalize countries’ populations to units.
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and Huang (1989)). As a result, the world’s static optimization problem reads

K K
et Loy
max AH1 - [wT(Cﬁ)l‘( + wN(Aﬁ)l“‘] e st Z = Ay
{CF = H=1 2 H=1

Note that the intra-country market clearings allow us to explicitly replace the nontraded con-
sumptions by the respective nontraded endowments. The {A7} are the countries’ Pareto
weights. Because individuals are identical within each country, A is proportional to the
product of country H's populations and per-capita wealth. In other words, A’ is a measure

of H’s gross domestic product (GDP).

The law of one price indeed holds for the traded good because the marginal utilities of

this good are necessarily equal across countries in equilibrium

Ut poU”

A= =
oCy oCs:

Mp VH.F=1...K. (1.2)

In principle, these K — 1 first-order equations together with the traded good’s market clear-
ing condition determine the K equilibrium consumptions {CH}%_,. In practice, because
marginal utilities are highly nonlinear functions of consumption, the equilibrium allocation
is not known in closed form. Instead, we log-linearize this world optimization problem to
obtain an approximate but intuitive solution for the sake of analysis. Detailed derivations
can be found in appendix 1.9.2. Let the lower-case letters always denote the respective
log quantities; ¢ = log ', dp = log Ay, oy = logAy. In equilibrium, the log per-capita

consumptions are given by (see appendix 1.9.2)

1 Al KA,
7 1" ol :
ef = 0p + ———— < —pt — (v — €)w l—— |0y — — 0y . 1.3
v 'waJrch{ = )N<{ A} N o A N (1.3)
where we recall that d; is the log aggregate traded output. A = > Zﬂ A is a measure of the

H . . . . . .
global GDP, therefore ’—\A— the relative GDP size of countries. This consumption allocation
was first obtained by Hassan (2010), who employs a different construction version involving

initial wealth transfers among households. His interpretation centers on the relative GDP
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size, the hedging and the risk aversion effects. In contrast, we focus on various aspcets of
the nontraded output growth risk in each economy. In particular, we show that the size of
cconomy matters only because it affects the ability of the host country to mitigate its own

nontraded output growth risk through international trades.

First, it is reassuring that only the traded good aggregate endowment, but not their
country-specific counterparts, explicitly enters the equilibrium consumption allocation. We
note that this internationalization has more to do with the global market clearing in the
traded good than with the risk sharing. A deeper and surprising result is that the traded
output influences log consumptions uniformly across countries in the log-linearization approx-
imation. regardless of the countries’ nontraded endowments and sizes. This is an implication
of the perfect sharing in traded output risk (i.e., equalized marginal utilities of traded good)
and homogeneous preferences across countries.? For all countries, the traded consumption
' necessarily increases with the global supply of the traded good in the current setting.

Second, when v > ¢, country /1's traded consumption ¢! increases with its trade part-
ners’ nontraded endowments 8% and decreases with its own §§. The intuition is as follows.
When the elasticity of substitution between traded and nontraded goods 1 is higher than
that of intertemporal substitution %, investors are primarily concerned with smoothing con-
sunption over time, and thus are always cager to adjust their traded-nontraded consump-
tion composition to achieve this smoothing. As a result, traded consumptions ¢f response
strongly to nontraded supply shocks. All else being equal, in times of home nontraded sur-
plus (dZ} > 0), investors substitute traded consumption (dc < 0) with home nontraded
good that has become relatively cheaper. Similarly, in times of foreign nontraded surplus
(dZ}, > 0). foreign investors demand less, and home investors end up consuming more traded
goods (¢ff > 0) by force of global market clearing in the traded good. We accordingly make
the following assumption throughout. Various empirical estimates reported in Obstfeld and

Rogofl (2001) strongly support this assumption.

9The setting of heterogeneous tastes and other extensions are analyzed in section 1.6.

10rps o P

e supply shock dZ in % = pdl + odZ is a shock to both endowment growth and endowment level,
and the change in log per-capita consumption concerns the growth rate of the per-capita consumption level.

Far the sake of brevity, we simply refer to the changes in ¢ (or ) as changes in consumption (or endowment).
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Assumption 1: The elasticity of substitution between the traded and noniraded goods is

higher than that of the intertemporal substitution, % > %

The relationships discussed above are then quantified by the proportional coeflicients

1

1

5 B v
= (v — (); (V= e 1.1

g (v=¢) Py (1.1)

(-9
Ywp A €Wy

.

+

which indeed are measures of the relative difference between elasticities of consumption
substitution and a weighted substitution elasticity respectively. Later, we will encounter

these measures repeatedly in all generalized versions of the current setting.

Finally, in the above expression of equilibrium log consumption, the size of the econonwy
is coupled only to the nontraded output because the traded output is fully internationalized.
A more profound explanation is that trade-partner F’s nontraded shock affects country
H only through the sharing of the traded good. Because the variation in per-capita traded
consumption of a larger country F projects a larger impact on the common marginal utility, !
it is clear that a countryv’s size amplifies its nontraded shock impact on the rest of the world. '
However, it is equally interesting to see that country H's own nontraded shock has a smaller
impact on H’s log traded consumption when H is larger. This lessened impact arises because
a larger country actually finds increasingly less outside room to share traded cousumption
with its much smaller trade partners.!® In the limit where A—A}i — 1, the super economy

Il consumes nearly the entire global supply of traded output, which is exogenous and thus

non-responsive to whatever happens to H's nontraded output.

"We recall that endowment and consumption are per-capita quantities, and thus the marginal utilitics of
traded good are equalized up to the size factor, A/:i g-%'{,- = Al\:gé/—f VH, F=1...K.

'2This observation seems particularly germane in thg situation irn 2009-2010, when Europe and the United
States ave suffering significant, downward shocks to their nontraded production.

31t has long been observed that small nations get more from and are more affected by international trade
than are large countries, other factors equal. This observation adds an additional dimension to this dynanmic.
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Stochastic discount factors

In the current consumption-based setting, a country’s currency (i.e., its numeraire) is its
consumption basket, which is defined as the lowest-cost consumption bundle that delivers
one unit of the respective country’s utility. Consequently, the stochastic discount factor
(SDI) that prices the assets in units of a country’s numeraire is country-specific and equal
o the country’s marginal utility of its consumption aggregator (see appendix 1.9.2); M =
e PHCTY ™Y We note especially that because these numeraires are different from the traded
good. these country-specific SDFs M# are not the same as the common marginal utility of
the traded consumption My = AH%}.” Because in multiple-good settings, assets returns
arc nol invariant with respect to numeraires, the country-specific SDFs M are the most
appropriate choice to price country-specific assets (bonds and stocks).

The log SDF in the log-linearization approximation reads

I K

AF
m! el = ywpdy = yun |68 = aly = Qwpdld + a(y = )wr Z —A—(SIV (1.5)
L F
: [ Al KA,
—pl — ywpdp — ywn |68 — aly — )wy (1 — T) SN+ aly — Owp z ——K—(Sk,
L FAH

where a = (ywy +ewy) ! is a weighted elasticity of substitution, as defined earlier. First, the
SDF of any country decreases with the global supply of the traded good. This effect occurs
is because countries” traded consumptions increase with the aggregate endowment d; and
higher consumptions reduce countries’ marginal utilities. Reassuringly, é; enters countries’

log SDI in a uniform manner because the traded good is globally shared without frictions.

Sccond, the home nontraded endowment 6% impacts the country’s SDF m/ through two

channels. As a direct effect (the first term within the square brackets), a surge in nontraded

H

consumption (which equals 6&) simply suppresses H's marginal utility and m/. However,

although 17 needs to consume its entire nontraded endowment, it still is able to somewhat

AH autt

"\Vhen we use the common marginal utility of traded consumption, My = Telil
A

to price the assets,

prices arc i units of the traded good.
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mitigate this shock by adjusting its traded good’s intake. Indeed, in equilibrium. e drops

(as we have seen earlier), which boosts the marginal utility and prevents m! from falling all
the way.'® Therefore, this mechanism is driven by the indirect effeet (i.c.. through trades)
and gives rise to the second term within the square brackets, which is reassuringly manifested
by the presence of the taste cocflicient wp associated with the trade. Altogether. the direct
effect dominates the indirect,' and m® unambiguously decreases with its own nontraded

supply 4.

Third, country H’s SDF decreases with its trade partners’ nontraded endowments 65%.
Again, this is a consequence of equilibrium consumption allocation and trade effect. All else
being equal, a surplus in F's nontraded supply prompts country /' to curb. and country
H to boost, its traded consumptions. As a result, H’s marginal utility and m'’ fall. The
dependence of a country’s stochastic discount factor on its trade partner’s nontraded shock

is an indirect relationship that arises only through sharing in the traded good.

Finally, the global supply of traded goods impacts all SDFs uniformly when countries
have homogencous preferences. Similar to the way in which the sizes of economies affect
consumption allocations, the foreign nontraded endowment ¢4, matters more for the home
SDF m* when size A¥ is larger. The same holds for the home country; 6§ has greater
impact on its own SDF m/’ for the larger host country H because larger countries have less
outside room to outsource their own nontraded output growth risk. Furtherore, we note
that the coefficient associated with §4 is invariably larger in m! than in any other m”. the
latter is simply an indirect relationship (through trades). We recapitulate these findings in

the following result.

Proposition 1 In the current selting of the world economy, although the nontraded oulpul

shock of a country is priced by all of ils lrade-pariner economies, the home nontraded oulpul

am!’ i’

) Aann
I8
(9(5‘\,

risk is always more dominant in the home SDF m* than it is in foreign m"; > 5 i

5Recall that we assume ¢ < 4, an empirically reasonable relationship among the model’s parameters.
throughout.

"We note that 1 — a(y — wr (1 - —A—\i) =ac+aly - ()wTA—A'i >0 forall v > ¢ >0
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An immediate consequence of this proposition is that either a positive home nontraded
supply shock dZ{ > 0 (or an adverse foreign shock dZ§ < 0) will decrease m more (or
increase 1’ less) than m', and thus widen the SDF differential (1n? — m!), ie., the real
exchange rate (see also (1.10)). Therefore, the asymmetry reported in the above proposition
is the key to breaking the uncovered interest rate parity (UIP) and to generating carry trade

profits in the model as will be shown in more detail in section 1.5.

1.4 Interest rates

In the current multi-country and multi-goods real setting, a country H’s interest rate r#
{referred to hereafter as risk-free rate or short rate) is real and defined as the instantaneous
return rate of any traded asset that is risk-free with respect to H’s currency (i.e., one unit
of consumption basket). A conceptually familiar risk-free asset is the consumption-hased
zero-coupon bond that delivers with certainty one unit of country’s consumption basket at
maturity. Before embarking on a formal solution and analysis, intuitions suffice to suggest
the kev role of nontradability on the magnitude of interest rates in the current model. We

study settings with either frictionless or costly trades next.

1.4.1 Trades without frictions

For siimplicity, we first assume that traded goods can be shipped worldwide without costs.
The precautionary savings effects feature prominently in all consumption-risk aspects of
mterest rates. All else being equal, when an economy exhibits a higher level of uncertainty,
the associated bond offering a sure payoff of one consumption unit becomes more valuable and
mterest rates drop. However, because the country-specific traded outputs arce indifferently
lumped together into the global supply of traded outputs, it is this global supply (but not
the country-specific supplies of traded output) that matters for every country’s interest
rate. The more volatile the global traded output, the lower interest rates in all countries.

Thus what causes interest rates to differ across countries must be the nontraded outputs.
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According to this logic, the volatility of a country’s aggregate output, or GDP, is not wholly
compounded in the level of interest rate. Thus, the presence of nontraded goods warrants
a proper decomposition of GDP into traded and nontraded components, before deciphering

the role of GDP movements on the interest rate and other returns.!”

Volatile nontraded outputs either at home or abroad act to lower home interest rates.
A foreign trade partner F' with volatile nontraded output transmits its volatility to home
country H by consuming highly uneven amount of traded goods. The larger country I is.
the stronger is this impact, and the more aggressively H'’s interest rate decrcases with /s
nontraded volatility. In contrast, the larger home country H is, the less trading room it
finds to outsource its volatility to its trade partners. Consequently, although r’’ decreases
with own nontraded volatility, such an inverse relationship is weaker when /1 is larger. All of
these intuitions are confirmed by a more quantitative analysis, as presented below. Formally.
the interest rate r can be determined from the respective SDF Al through the pricing of
the risk-free bond. This bond pays one unit of country’s consumption basket in infinitesimal

time dt into the future, and its current price is

ML+ dt 1 1 ,
et I [—W[(—E%ﬁ—)} =t = 7 (-E, [(hn,H] — -Q—Va‘r,/ [((hn,H)zJ) .

where the time subscript indicates conditional moments (expectation and variance). To
simplify the exposition, we assume that countries’ nontraded outputs are uncorrelated with
one another and with the aggregate (global) traded output. This assumption naturally
formalizes the stylized premise that nontraded shocks tend to be of an idiosyncratic nature
across countries. The assumption simplifies our analysis considerably by scparating and

hence clearly identifying the role of nontradability on asset pricing. Section 1.7.2 empirically

investigates the merit and implications of the assumption. Using the SDI° m/! obtained in

"nstead, the country’s aggregate consumption and its volatility remain truthful indicators of a country’s
interest rate.
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(1.5) vields an expression for risk free rates in equilibrium

AP
P = v — Qyzwg‘g% + oy(y — wrwy Z 7\*#5\/
F=1
K
1. ‘ AF)Q
S Sl La 1)
5 — (A)
I 2.2.2 2 11\2 2,2 2 A iy
+oavewn iy — Qe wi(on)” —aye(y - G)MwN_A—( v

All endowment expected growth rates p’s contribute to raising risk-free rates via intertem-
poral consumption smoothing cffect. Given a fixed EIS %, steadily growing outputs, either
at honie or abroad, and in either traded or nontraded sectors, always tend to encourage in-
vestors to consume more and save less, which causes risk free rates to surge. All endowment
growth volatilities o’s act to suppress risk-free rates through the precautionary savings effect,
as discussed intuitively above. In particular, the term (o%)? clearly shows that, in pricing
bond /1, home investors f1 are concerned with the nontraded volatility of the trade partner
country F7s. knowing a shock in that seemingly unrelated sector will affect the traded con-
sumption of /7, and thus ff itself. All terms containing coefficients (v — €)wy arise in traded
constmption sharing where wp characterizes investors’ affection for the traded good (trade
effect) and (5 — ¢) their willingness to let nontraded shocks spill over to the traded sector by

substituting these two consumption goods (substitution effect).

Interestingly. the first five terms (ic., all terms in the first line of (1.5)) of risk-free
rates are identical across countries, and what drives wedges between countries’ real interest
rates must have with country-specific nontraded sectors, as anticipated carlier.’® Apparently,
both the nontraded volatility and the size of the host country affect its own interest rate.
However. the size contributes only because it influences in how the host country manages

Lo outsource its nontraded shocks to its trade partners; a larger economy internalizes more

M he interest rate differential is

N 1, . . . . , (AP . .
Ar et s ayewn Apn - 5()‘372(%%\,43(0/\/)2 — oy e(y - Qurw} (T(Uﬁ)z - ‘X‘(va)2>
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of its nontraded shocks, which makes bonds more valuable against these uncertainties and
depresses its interest rate. Finally, the interest rate (1.6) is derived by emploving country-
specific consumption basket as numeraire in cach country and hence is different from the
one obtained by Hassan (2010), who employs the common traded consumption good as nu-
meraire for all countries.!® Consequently, Hassan’s results truly concern carry trade returns.
but not interest rate differentials. Our risk free rate expression is more appropriate in the
consumption-based setting and for tests using exclusive data on interest rates, as will be

shown in section 1.7.2.

A hypothesis concerning interest rates

All findings presented so far paint two very different pictures for the implication of traded and
nontraded growth risk on risk-free rates, which warrant a rigorous empirical investigation.
Below, we formulate a testable hypothesis that concerns the distinct impact of nontraced
output growth risk on the level of interest rate. The actual tests, which indeed confirm
the hypothesis, are presented in section 1.7.2. Because country-specific traded output risk
is internationalized and diversified by means of trades and aggregation, its impact on asset
returns should be relatively weak, and we contend the following.

Hypothesis 1. All else being equal, the impact of country-specific nontraded output growth

risk on home interest rate dominates that of the country-specific traded onutpul growth risk.

The key intuition underlying this hypothesis is the diversification principle. which is
directly relevant to the market for traded goods. To see this, we concentrate on the ex-

plicit contributions of country-specific traded output volatilities o4f to the interest rate (i.c..

omitting terms unrelated to these volatilities)®
2
K
1 1 1 A
H __ 2.2 2 2,2 T _H jvH
r =# — =ywror = H# — Y wr— E ———opdZyp
2 2 dt Ay
H=1
YIn particular, country nontraded output volatilities o contribute to both interest rates and their dif

ferentials as stand-alone terms (i.e., they are not necessarily coupled to economic sizes).
20We recall that global (aggregate) traded outpul is the sum of the country-specific counterparts Ap -
S _  A¥ and o7, {o¥} are their growth volatilities, respectively.
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Clearly, the contribution of country-specific traded shocks dzH is suppressed by the share
of a country’s traded output in the world %jﬂ, Therefore, unless (i) the traded output shock
of a country correlates almost perfectly with global (i.e., aggregate) traded output, or (ii)
a country’s traded output absolutely dominates the global traded output, home nontraded

H

output volatility (o{)? affects home interest rate rff 21

more strongly than (o47)? for all
countrics under a mild home bias (i.e., wy > wy) condition.?®* The empirical merit of this

hypothesis is verified in section 1.7.2.

I a related study, Tian (2011)’s notes that a country’s traded consumption growth
should be less volatile than the country’s traded output growth due to the diversification
in the traded good market. Therefore, if the country-specific traded and nontraded output
growths are highly correlated and equally volatile, a country-specific positive (negative)
shock to these sectors tends to decrease (increase) the domestic relative value of nontraded
goods. Consequently, prices of assets contingent on traded output should be more cyclical
than those contingent on nontraded output. In the data, she finds that the earnings of
traded-good producers are more volatile than those of nontraded-good producers (as many
as five times). This result thus provides indireet evidences for the diversification in global

market for traded goods.

1.4.2 Costly trades

The previous section’s results are derived based on two assumptions, namely, goods are
cither perfectly traded or nontraded, and trades are frictionless. Consequently, traded goods
can be perfectly aggregated globally, which then weakens the country-specific traded output
growth risk and gives rise to Hypothesis 1 above. The introduction of trade costs in this
section aims to relax both of these simplifications. In particular, the concept of (partial)
tradability arises naturally by regulating the trade friction. A traded good can become a

nontraded good when trade cost is sufficiently high. The tradability is the key to bringing

2Hhe impact is characterized by the coefficients associated with (o4)2 and (g4)2.
1 Y S N T
) A

““This condition is « [}( + (v -~ ()w'p/\H//\] > w2t
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our model to the data in section 1.7.2.

To model the frictions in trades, we adopt the “iceberg transport cost” approach and
analysis of Samuelson (1954), Dumas (1992) and particularly Sercu et al. (1995). In this
modeling approach, the commodity trade is not perfect because only a fraction of TL(; ol the
original traded good that leaves the exporting country arrives at the importing country, and
the remainder disappears along the way as a result of this trade friction. To simplifv the
exposition, we first consider a single good shared by two countries { H, F'} of similar sizes.??
The magnitude of 6 directly regulates the amount of the good being exchanged (import and
export) between countries, and thus determines the tradability of that good.* With this

simplified setting in place, below we focus on the effect of output shocks on interest rates

mediated solely by the varying degree of trade friction, while leaving other factors untouched.

The linearity in transport costs is a key modeling advantage because it kecps market
completeness intact without further assumption. Consequently, the equilibrium is obtained
by solving the static world optimization subject to appropriate global resource constraints.

(CHycH)t-n
L=y

(ch+ciht
I=~

TH ((H F(OFy — ,—pt
maX s cH CF F) UmtCct)+UT(CT) =e”

+

st. CH4(1+0)CE=A" CE>0, CE+(1+6)CH =AF;, ¢l >0,

where C" = {CH CHE} are home consumption components that originate from home and
foreign outputs, respectively (the counterpart notation C = {CI], CE} is preserved for
foreign consumption components). Thus, CH is the import by H, which derives from the
original amount (1+0)CH exported from F. Similarly, C'%, which is the import by /. derives
from the original amount (1 + 6)CF, exported from H. At all time, countries desire to trade
to share risk stemming from their unrelated outputs. However, the transport cost hampers
risk sharing. Intuitively, if the cost outweighs the benefit of risk sharing. countries opt not

to trade and instead fully internalize their endowment shock; ('f; = (' = 0. To determine

231t is straightforward to add the transportation costs to the setting of the previous section to have all
perfeetly traded, partially traded and nontraded goods. Instcad, we choose to work with this simiplified
setting here to concentrate on the role of partial tradability.

2 Consequently, we drop the subscripts T, N throughout this subsection.
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the conditions for commodity market freezing, we assume these conditions are currently not
met and that trades take place. Because the shipping incurs a cost, the imported good is
always more expensive than the locally endowed good, and countries always deplete their
endowed resource before reaching out to the imported resource if they need it. In other

words. conditional on trades taking place, there are two mutually exclusive alternatives:

case 1: H immports, I exports, cH = A, C'ﬁ > 0. Ch=0; Cf: < AF,

case 2: H exports, F imports, C,’j < AH, cH =0, Cﬂ > 0; Cf: = A",

By syvinmetry, it suffices to study case 1, in which the two FOCs associated with nou-
binding constraints and the market clearing condition for the home-endowed good establish
the remaining equilibrium consumption allocations (i.e., apart from the binding constraints

SN

2=

AP (1497 AH

o (1+0)~ [AF+ (1+0)AH]
(1+0)+ (1+6) d '

(v/[ .
R &
(1+0)+(1+0)~

(1.7)

[t is apparent that the trades require net positive home import C' > 0 and commodity
market freezes otherwise. We analyze these two regimes in turn.
No-trade regime: Combining cases 1 and 2 yields the following no-trade condition for the

commodity market:

AH R
No-trade conditions: (1+6) "' < (ZT) <(1+9).

Clearly, costly transport (large ), similar outputs (j—ﬁ ~ 1), or low risk aversion (small ~)
all discourage countries to share risk, and thus enforce the commodity market freeze. In
this case, the single good becomes a legitimate nontraded good in any country. Moreover,
cach conntry’s bond has no hedge power against others’ shocks, and the risk-free rate solely
reflects the respective country’s output risk, as in the consumption-based CAPM. In other

words. for cach country, the nontraded output volatility is the only risk that matters here.
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Costly trade regime: In contrast with the no-trade regime, when friction is moderate and
home and foreign outputs are sufficiently different, countries choose to share output risk,
although transport costs and trade flows take place in an appropriate direction. Without foss
of generality, we continue with case 1 above, in which home is the importing country (or ¢’ ">
0). Conditional on this being the case, (1 + 0)~' > (ﬁ—ﬁ)w, the home unambiguously curbs

its imports when transaction cost increases (CF decreases in 6).%°

However. interestingly.
the inverse holds for the exporting country I for all realistic values of transport cost and risk
aversion. Contingent on trades taking place, the foreign country actually boosts its export
(1 +0)CH when 0 increases to compensate for the increasing loss in the transition.?® This
is because, when home investors are risk averse, their net import Cﬁ decreases less than
linearly with the transport cost.

As long as trades take place, regardless of their “iceberg-melting” imperfect nature.

a UH

marginal utilities are equalized across countries (57

=(1+ 0)3( ). as are the interest rates

in the current setting with a single good. We concentrate on the precautionary savings ctfect

revealed in the interest rates, in which the interplay between output shocks and transport

cost dominates.

(L4 02 (A(o1)? + (AFP(o")?
[(1+0)AH + A2

r”':rF:#*%v(’le) (1.8)

As the transport cost increases, interest rates become increasingly sensitive to home output

0%r|

shocks and decreasingly sensitive to foreign output shocks: W > (0, ——L}M < 0.

A (o P2
e : : . . : ol(reoyct
I'hese behaviors, when combined with the earlier findings that ——F— < 0 and L—(ﬁ—’—‘ > ().

precisely support our key thesis that when shocks are of a more nontraded nature (i.c.. 0/
increases), they matter more to the country’s asset prices. From the importing country /1's
perspective, a surge in trade cost coincides with a reduction in trades as its imports ( '

drop. At the same time, the impact of the country’s own volatility o on its interest rate r’/

25This is evident from the expression of Cﬁ; conditional on trade taking place (CH > 0), the numerator
decreases and the denominator increases with 7.

6211+ 0)CH] = 21 +0)5 AF - 2 ‘(1+o) Al - 7(1+0) SEAR L4 0)T AN Forall
realistic values of ~ and () the last two terms are negligible compared with the sccond term. Then. the trade
condition CH > 0 immediately implies that 55 [(1 + G)Cp]
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increases while the impact of foreign volatility o on r# decreases, all of which is consistent
with a reduction in the import in view of the above thesis. Likewise, from the exporting
country /s perspective, a surge in trade cost coincides with a boost in trades as its export
(1 + 0)C'l increases. At the same time, the impact of its own volatility o on its interest
”

rate " decreases, whereas the impact of partner’s volatility o on r increases, which is

also consistent with a surge in the export according to the above thesis.?”

Overall, by making a realistic and smooth transition between traded and nontraded
extremes of goods market, the variation in trade frictions implies a structural relationship
bhetween nontradability and domestic asset prices. The former is naturally identified as the
ratio of trades (import plus export) over output. A refined version of Hypothesis 1 in section
1.1is
Hypothesis 1TA: All else being equal, a country-specific output growth volatility impacts the

home risk-free rate more when the output is less tradable.

In seetion 1.7.2, we will test this hypothesis empirically by employing several measures
of nontradability, including countries’ trade closedness, country-specific and global nontrad-
ability at the industry level. Here, we briefly discuss the generalization of the costly trade
mechianism to a setting with arbitrary K countries, where subtleties arise because the im-
port from a country does not unambiguously originate in the export of another. In this
situation, conditional on trades taking place, each country H is classified into either an im-
porting (1) or an exporting (E) group. Let C!/ and C,; denote country H’s consumption
components derived from its own and foreign outputs, respectively. Trades take place when
{1 < AU, =0} VH € £ and {C] = A, > 0} VH € Z. Because of the ambi-

guity mentioned above of global import-export source matching, there is now only a single

“"Obviously. the interest is in the relationship between a country’s risk-free rate and its trade volume (ie.,
import and export goods that arrive at or leave a country’s border). In contrast, the relationship between
a country’s risk-frec rate and its trade partner’s exports and imports is not of interest because a portion of
these goods is lost i the transition.
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market clearing condition, and the world optimization problem reads:

K , _
(CH + )=

max e Pt s.1. Z(Yﬁ + (1 +6) Z (7f’,, = Z Al

“H oH 1 -
{ChCly} H v He& Hel He&

Combining FOCs associated with nonbinding constraints?® and the market clearing condi-
tion yields the equilibrium consumption allocations.?® Subject to trades taking place, mild
conditions on the distribution of trades assure that when transport cost € increases, country
II's import CH, decreases and its own output volatility o matters more for the domestic

risk-free rate rf.

1.5 Carry trade returns

The underlying risk

Let us consider the typical carry trade strategy from the perspective of country H's investors.
(i) at time ¢ borrowing risk-free one unit of base (home) currency /1 at rate r'*: (i) innne-
diately converting this into foreign currency F and lending risk-free at rate r: and (iii) at
thme ¢+ dt, liquidating the long position in currency F', immediately converting the proceeds
into home currency and liquidating the short position in base currency /1. It is then obvious
that the return on carry trade strategies is beyond the simple difference between the two
interest rates involved because the former also concerns the exchange rates. As risk free

rates are known at ¢, in our real and rational setting, the uncertainty rests entirely with the

28These FOCs arise from the partial derivatives %g VH € £ and %n— VH € T.
“H H

29Conditional on trades taking place, these allocations are

L+ s A+ X g A
1+ 0K, + (14 0)7Kg

ol (1+0)> [(1+~0)Z,EZA1tZE€gAE]7 o

1+ 0K+ (1+6)% Kg

ct, = ~ A" VHcT

where Kg and K are the numbers of exporting and importing countries, respectively.
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exchange rate.® In other words, carry trades are bets on exchange rates, and the premia

associated with the short-horizon strategies are rewards for bearing the exchange rate risk.

Let Sy denote the spot exchange rate. Our convention is that S; units of foreign currency

I exchange for one unit of home currency H. In the current complete market setting,®! this

MH

Mp The realized excess return (i.e., in excess of the base interest rate

exchange rate is Sy =
) o this carry trade strategy, which shorts bond H and longs bond F, and its expected
counterpart, respectively, are

X[f{ +1,117+F — HIZ [/\/11‘7(“(1 + “th)%/]_ — (1 + 7! dt)}

E, {'x H;ﬁi;ﬂ = —4Cov, [dm!!.dm" — dm"|. (1.9)

Reassuringly, the carry trade expected excess return is the premium associated with the

exchange rate risk.#2

The consumption volatilitics contribute to the expected carry trade profits preciscly
because they perturb both SDFs m#, mf". Here our discussion is readily carried over from
the previous section’s analysis on the SDF. Because traded shocks spread uniformly to all
countries. they do not affect exchange rates. and are not counted as risk to be compensated
m the cary trades. In fact. they are canceled out in the difference dm'’ — dm®. This leaves
nontraded volatilities as the sole sources of carry trade risk and return in the current rational

setting. Indeed, the log exchange rate follows a simple diffusion process implied structurally

'()m settings are real. In practice. there is risk associated with inflation. When we consider short-horizon
carry trade strategies, which are rebalanced once every quarter or more frequently with new available risk-free
rales, inflation risk is less important in practice.

"o illustrate this, we examine the current price (denominated in currency H) of bond H, which delivers
one unit of currency H at ¢ + dt. The pricing can either be done directly in currency H or in any other
currency Fowith the help of exchange rates. The absence of arbitrage implies the law of one price, and thus

Alwm o lE A'Iflj—df ]th

E L Syt = S =
t t+dt t MF

ME LTS TN MF

#2Indeed. in a currency long bet, a promised payoll of one unit of foreign currency at ¢ +dt yields .S,+ 4y it
of howe currency also at ¢ +dt. The associated consumption-based Euler equatlon for this bet, under the per-

spective of country H's investors, produces identical premia above; —Couv, [T'I*,;’—', dSt'Mf] = E, [X]g:ﬁé;“” }

Sec also footnote 34.
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from (1.5) in the model
dlog S, = dm™" — dmP = #dt + ~yaewy (JfV’dZ,’\f — (Tyl\(jZﬁ/) . (1.10)

On one hand, as a result of proposition 1 above, an adverse foreign nontraded shock dZ5 < 0
makes F’s nontraded good scarce and suppresses the real exchange rate S (i.c.. foreign
currency appreciates), and therefore m” — m# surges. On the other hand, dZf < 0 also
forces F' to consume more and H to consume less traded goods, and m surges. That is. the
long bet on foreign currency pays off well when home investors highly value consumption.
Therefore this carry trade strategy is a good hedge against foreign nontraded risk, and i
commands high price and low expected return E, [X R=#+"] in equilibrium.

In contrast, an adverse home nontraded shock dZ{ < 0 directly boosts m*. Morcover,
it also leaves its trade partner F with less traded consumptions and thus also increases m”
to a lesser extent. Consequently, m* — m! drops because the real exchange rate S increases
(i.e., home currency appreciates). That is, the long bet on foreign currency pays off poorly
when home investors highly value consumption. Therefore, this carry trade strategy is nol

a good hedge against home nontraded risk, and it carries a low price tag and offers a large

expected return [XR' ”‘“’} to compensate for the risk it cannot hedge in equilibrium.

The overall expected profit (or loss) of the carry trade is determined by whether home

(or foreign) nontraded risk dominates, as seen quantitatively in the following result.

Proposition 2 The expected carry trade excess relurn to US investors is

E[XR‘H’+*‘}~Q2~2 2 N D S A" e -
t {+dt = yewy | €+ (v — wr A (on) (v C)W'J‘A (on)" ¢ (1.11)

where a = (ywr + cwy) !

is a weighted elasticity of consumption substitution (1.4). Conse-
quently, the carry trade strategy offers the expected profit when either home nontraded 1isk
dominates or trade effecl 1s weak,

A[l y Alv

¢+ (v = Qur—| (on)* > (v = Juwr—(o)"
A A
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The intuitions underlying this result are as follows. First, we recall that the carry trade is
a good (bad) hedge against the foreign (home) nontraded output growth risk. When home
nontraded risk dominates, (o#)? > (of)?, this strategy is risky and nccessarily offers high
expected returns £y {XR;:;’;”F] > 0, and vice versa. Second, when (v — €)wy is positive but
small, investors are not enthusiastic about substituting nontraded for traded consumption
goods. This weakens the trade effect and makes home nontraded output risk even worse
to home investors. Therefore, in this case, carry trades are also risky and tend to generate
compensating profits in the expectation. A reflection on the behaviors of risk-free rates
and carry trade returns reveals that the nontraded consumption risk is a factor behind the
violation of uncovered interest rate parity, a prevailing puzzle observed in the international

financial market.

Uncovered interest rate parity

The uncovered interest rate parity (UIP) puzzle (a.k.a. forward premium puzzle) is an em-
pirical regularity in which appreciating currencies tend to be also associated with increasing
mterest rates (Hansen and Hodrick (1980), Fama (1984)). This pattern is puzzling because
it appears that the appreciating currencies are more valuable, yet investors require higher
premia (i.e.. interest rates) to hold them. Carry trades, i.e., borrowing low-interest-rate
currencies and lending high-interest-rate currencies, are a popular strategy to reap the profit
from this regularity. In the current setting, a nontraded consumption risk offers a rationale

behind this profit.

When the home country has volatile nontraded sector by nature (of large), home risk-
free bonds are very valuable as a safe asset, and home interest rates are low (r// small). At
the same time, carry trades returns tend to be high because these strategies are not a good
hedge against this home nontraded volatility as asserted by proposition 2. In contrast, when
the foreign nontraded sector is perceived to be of low-risk nature (o} small), foreign interest

rates are high (r large). and the expected carry trade return to home investors also tends

43



to be high.?3 All in all, the nontraded output risk, originated from either home or abroad.

is a culprit behind the violation of the uncovered interest parity.

Examining a large set of countries, Lustig and Verdelhan (2007) document that the
exchange rates (base currency being US dollar) of high interest rate currencies tend to
positively correlate with the US’s consumption growth. The study clearly identifies the
interrelationship of the exchange rate risk and the consumption risk as the source of the
currency bet’s expected profits. Namely, the carry trades of selling US dollar and buyving
high interest rate currencies are risky to US investors because they pay poorly (i.e.. foreign
currencies depreciate) when investors value consumption the most (i.c., US consumption
drops). Our investigation carries this line of rational reasoning a step further by explaining
the positive correlation between home consumption growth and exchange rates, as observed
for US by Lustig and Verdelhan (2007); it is the nontraded output risk that can not only

perturb the two quantities but also push them in the same direction.

Whereas our analysis lends support for the widely-practiced carry trade strategy of short-
ing low-interest rate currencies and longing high-interest rate currencies, it also suggests the
following novel currency bet, which is directly tied to the nontradability aspects of consump-
tion risk. We examine empirically the merits of this macro-based strategy in section 1.7.3.
Hypothesis 2: Borrowing currencies of countries with a volatile nontraded scclor and lend-

ing currencies of countries with a stable nontraded sector generale posilive expecled relurns.

Linear factor analysis: Theory

Our finding that country-specific traded and nontraded shocks arc priced very differently
by the international market warrants a simple linear-factor pricing model in which the risk
factors are country-specific traded and nontraded consunption growths.

TH TH
d(/flv . H _ ﬁ](/ N

H > N T H
CH CH

H
=

33See proposition 2. Intuitively. this is because the foreign nontraded risk against which carry trade
strategies can hedge are perceived to be small.
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The exploration also emphasizes the difference between global (aggregate) traded output risk
and the country-specific traded consumption risk. For illustration, carry trade portfolios are
used as test assets in the discussion below and in the estimation process in section 1.7.3.
As the risk factors are independent of test assets a priori, the discussion carries over to any

other financial assets.

We consider the same carry trade return strategy of borrowing home and lending for-

cign cirrency. Again, its excess return to investor H and to be realized at ¢ + dt is (1.9):

XR, =L IM“”' (147 Ft)Me, MF — (1 + 7“Hdt)}. The factor analysis starts with the stan-

14 r/l dt ]\/ﬁ, dt

dard unconditional** consumption-based Euler equation for this carry trade return

AVE e , 1 .
2 { A—’/—‘;#X/f,’f{’,; ”} =0=>F [XH;}{’“*F} = -5 Cou [1 +dmlt, ~ Eldm!’ ), XH;J{’,,”] :
; ‘

Because home consumption is made of both traded and nontraded components, log-linearized
SDE (1.5) immediately implicates that the carry trade is priced by the following linear two-

S 1 dc H _dcl
factor model (f# = N = _C—fvT)

. 2 ; . ~HAF .
12 XH[ ﬁuﬂ} = —Cov [be’ﬁwdt + ijll\/J,H—dt’ XRz:thJr } (1.12)
(1’1" ) YW ‘ l” B (i(iT - (]‘("}/ - ()LUN ( ()” Z[ " /\ (514>
by —WN i déll

Several observations can be made here. First, this is a country-specific pricing model that
prices the assets from the perspective of home investors. Accordingly, the risk factors
{11 [} are home-specific traded and nontraded consumption growths, because they are
the only risks priced by home SDF m#. By restricting the pricing to a countrv-specific
perspective, we can conveniently pack other countries’ nontraded outputs into a single home

iraded consunption factor to facilitate the accompanied empirical analysis.?® Second, this is

] . . H+F
i In the conditional Euler equation approach, [XR,+(,,+ ] =
1/ oy H H,+F . H P
-~ Covy ll Admfl - Eldmlt ), X R } = —Cou [dmf ,,,dml,, — dmf ], where the last

equality confirmns that the result here is indeed identical to the expected excess return computed by a more
mtuitive approach in the previous section.
*B\We can also construct an international factor model in which the global traded output growth is a
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a factor pricing model in which the factor loadings (b’s) and risk factors (/’s) arc structurally
determined and explicitly obtained. In particular, the loadings unambiguously increase with
the tastes and risk aversion of investors. The factor [ reveals all equilibrium effects os-
tablished in previous sections, just as aggregate traded, trade partners’” and country's own
nontraded risk (respectively in dr, ok, 04) are all compounded in the home traded consump-

tion allocation.

To better discern, both empirically and theoretically, the risk factors from the loadings
of carry trade strategies on these risk types, we proceed to the beta-pricing version of the

linear factor model.

B XRG] = M+ a8t (1.13)
M

o —by
|

= |cov( ", M)

~bx

3r 41| Cou(fH X RAE
T 1:C0U(fH,fH)] ov(f; ﬂ)
Ak Cov(fH. X R+

where [( oo(fH, 1 )] denotes the 2 x 2 variance-covariance matrix of the factors { /1. /1.
As /3 are slope coefficients of returns linearly regressed on the risk factors. the magnitude of
7 quantifics the exposures of investment strategies to the two risk factors. In contrast, tactor
prices { M AR} are the rewards (in the form of expected returns) to bear one notional unit

of corresponding risk (i.e., as if ; = 1), which are independent of assets.

How exactly is risk embedded in asset payoff priced by the home investors? The basic
risk-return tradeoff picture is that any shock that moves asset payoff and home marginal
utility (or SDF m*) in opposite directions is perceived as risk (again, because these assels
pay poorly when investors highly value the payoff). and the corresponding reward (factor

price) is positive, and vice versa. We begin with the home nontraded consumption growth

stand-alone factor. Ilowever, this model inevitably needs to involve all other country-specific nontraded
outputs, and it will result in a multiple-factor model that would complicate the empirical analysis. requiring
non-traded output data of all countries worldwide.
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visk. Substituting the analytical expressions above for factors [’s and loadings 0’s yields the

following testable results.

Proposition 3 The faclor price associated with nontraded consumption growth risk is un-

ambiguously positive,

A“
M= aywy e+ (v — 6)0«)'1‘7\- (efh? >0 VH. (1.14)

That is. the uncertainties in domestic nontraded consumption growth always pose as a risk

Lo home investors in all countries.

Because idiosynceratic nontraded outputs can only be consumed domestically, the price of
nontraded consumption risk involves only the volatility off. As smaller economies can better
outsource this risk to their trade partners by flexibly adjusting their traded consumption,
this risk is more severe for larger economies. We indeed see that the corresponding factor
price MY s higher for larger size A, Section 1.7.3 obtains a positive and statistically
significant estimate for the US nontraded consumption growth factor price, which thus lends
empirical support for the current model. We now turn to the factor price associated with

the country-specific traded consumption growth risk,

‘ o2,
M= qwp(or)? (v — ) Rwpwd Z ) (oh)? (1.15)
F#H
AY AH
- vy = Quy (1 - T) {e + (v - 6)wT~A—:J (o).

[n sharp contrast with A¥, the home traded consumption growth uncertainty is not neces-
sarily a risk to home investors, which is manifested in the ambiguous sign of the associated
factor price A, This ammbiguity arises because a country’s traded consumption is endoge-
nous in equilibrium. A surge in home traded consumption can be a consequence of either
(i) a surge in global (aggregate) traded output (direct effect), (ii) a surge in trade partners’
nontraded outputs (substitution and trade effects), or (iii) a drop in home nontraded output

(substitution effect). Stating the last result inversely, a surge in home nontraded output acts
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to lower home traded consumption and boost home marginal utility. Consequently, from the
perspective of the endogenous home traded consumption, home traded output shocks are not
perceived as a risk, whereas shocks of global traded output and trade partners’ nontracded
outputs are, which explains the signs of all terms in M. The overall sign of this home traced
consumption growth factors depends on the relative contribution of these terms, and may

vary from country to country.

Diversification benefits

Our consumption-risk framework not only delivers closed-form returns to carry trade strate-
gics but also sheds light, both qualitatively and quantitatively. on the diversification benefits
of the currency investment. In our setting, the key feature is that nontraded output risk of
all countries enters the pricing of the carry trade return between any two countries. Con-
sequently, forming currency portfolios facilitates the diversification among these sources of
risk.?® Previous literature” has found that forming equally weighted portfolios of currencies
can substantially increase the Sharpe ratio of the carry trade investment strategies. although

the underlying mechanism is not explicitly analyzed beyond the law of large number and

ad-hoc mean-variance intuition.

Indeed, nontraded output shocks carry different weights, depending on the magnitude
of their volatilities and the size of the economies of their origins, in the carry trade returns
(L.11). This feature immediately offers a structural recipe that balances the above weights
to achieve an optimal currency portfolio with maximal diversification. Let n! denote market
prices of risk from country /I’s perspective,®® which is a vector in the face of multiple shocks
priced by the H’s SDF, M*. Let us consider a generic carry trade portfolio that borrows

home currency and lends several foreign currencies with weights {y/*} r and 3. y//" - 1.%

36 As long as the total number of countries K is finite, nontraded risk cannot be entively diversiticd and
expected returns on currency portfolios preserve spread; see footnote 40.

37The partial list includes Burnside et al. (2008), Burnside et al. (2011), Lustig and Verdelhan {2007).
and Menkhoff et al. (2011).

38That is, (—!X%:— = —rHdt —y".dZ where notation A- B emphatically denotes the scalar product of vectors
A and B.

39T simplify the notation, our convention is that this sum is over all K countries. including . However.
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The realized and expected excess returns of this portfolio are simply the weighted values of

the pairwise carry trade realized excess returns,

PR a = r 7t”[‘ XR;«:Z;t+F = ZF Uz”[‘ [ (rh ’7{) dt + (771” - 77t[) ’ dZt+dt] ,

EPR = EPReal = SEy 0l (ff =nlf) = ull - (nl = S ul).

It is apparent that forming a portfolio is not about improving the expected excess returns;
the return of a portfolio of high-return currency trades remains high and vice versa.®® Risk-
neutral investors, who care only about expected returns would stay only with the single
currency that offers the highest expected carry trade profit. The diversification instead helps
recdluce the portfolio return fluctuation and thus is slated to generate a Sharpe ratio superior
Lo any single-currency carry trade strategies. From the excess return follows the portfolio’s

Sharpe ratio (we conventionally set investment horizon dt = 1 for ease of exposition),

I B[ PRy B 77tH ) ( ZF Ut ) H
SHy = 7= - 0 H’ln H(‘()s()
(Var, [PRiya)) Inf! =3 pyftnf
where © s the angle hetween vectors o/ and (nf — S>> y/¥nf) in the output innovation

hyperspace. From the perspective of investor H, prices of risk 5/’ are fixed and the optimal
portfolio (of highest Sharpe ratio) is characterized by weights {y/7f'} - that deliver the highest
value for cos © (lowest value for ©). That is. by forming a portfolio. we can align the price
of risk vectors as much as possible. The intuition is simple. Independent noises optimally
offset one another when they are of similar magnitude. Pairwise carry trade strategies do
not offer this condition simply because nontraded output statistics are heterogencous across

countries and are priced differently by F. This can be seen most lucidly in the analytical

it is possible that investors take opposite positions in some pairwise carry trade strategies; i.e., y/’¥ can
assume negative values.
" Thix statement holds, given the total number of countries K stays fixed and finite. When the number

of countries R increases unbounded, however, all economies become atomistic TF — 0, and all pairwise
expected carry trade returns converge because nontraded risk becomes less prominent in such a diluted
world: sce (1.11). This effect is related more to the dilution of cconomic scales than to the diversification of
nontraded risk.
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expressions of the prices of risk

—YTOT
VH : nt . dz = [dZT dzt {(JZ,P\;}F#J | —YwN [1 —ay — €)wr ( - %{-’) } ol
!

AF ke
—ywno(Y — wp=5—0T ,}
{~rovolr—dwriiok}

Accordingly, the optimal portfolio choices {y/¥'}r place appropriate weights on {n’} to
essentially undo these heterogeneities to maximally enhance the noise cancellation in the
realized portfolio return. Simple geometric arguments immediately show that the minimum
© is the angle between vector n// and its projected image on the space gencrated by all

41

other prices of risk vectors {nf }r.u.#' Straightforward but tedious algebra then identifics

analytically the optimal ©, portfolio weights and the maximum Sharpe ratio.

1.6 Beyond benchmark model

The key intuition, developed alongside the basic setting of international finance in previous
sections, is that the country-specific traded output risk should have a smaller impact on asset
prices than the country-specific nontraded output risk because of the diversification in the
traded good market. However, the basic model possesses several simplifications, including
(i) homogeneous consumption taste for a single common traded good and (ii) complete
financial markets worldwide. In this section, we relax these assumptions and verify and thus

strengthen the above intuition to a more realistic and robust economnic setting,.

1.6.1 Arbitrary trade configuration

Generalized setup: In the current general setting, there are [ varieties of traded goods and
K types of nontraded goods, and each of the latter is consumed by one respective country. A

particular type h of traded goods can be consumed only by some ', countries, and similarly,

10ye can show that the choice {y# ¥} that minimizes the angle between " and (nf" 3> . yf'"'nl") also

minimizes the angle between nff and — ZF?”, THEN T
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a particular country H trades and consumes only some [ varieties of traded goods. These
featnres aim to capture the realistic and vastly different trade configurations among countries,
as well as the vastly different popularity of different traded goods.*? Moreover, countries can
also have country-specific tastes for the traded goods ({w/'}) and nontraded good (w#)
that they consume, subject to the conventional normalization wif + Zh = 1. We also
assume that the financial market is complete because contingent claims on all outputs and
countries’ risk-free bonds are available investment instruments. Consequently, the world’s
static optimization problem can be used to study the equilibrium behaviors of consumption

allocations and asset prices in this economy.

ol H T« K,
max L AM ‘; Zw (CH ) 4 wh (Al = st Y Ol =Dy Ya=1,...,
() | 1 ‘

Although a country may have different tastes for different goods that they consume. the
substitutability between any two varieties, either traded or nontraded, is characterized by
the same elasticity coefficient €. It is apparent from the market market clearing conditions
that only the aggregate outputs for traded good varieties directly enter the dynamic of the
cconomy.  However, the associated output shocks will have different impacts on different
cowntries. depending on their country-specific trade configurations. The current complex
setting (.-,alls for a quantitative analysis to shed light on the role of these shocks on consump-
tion allocations and prices.

Equilibrium allocations: Combining log-linearization and iteration techniques yicld the

equilibrium log consumption ¢f of traded good h by country H,

Kh, lJ
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“L\(\m))l(*s include the oil consumed by all countries versus rare earth minerals, which are consumed only
by the most advanced economies




where in the current general setting,

I

K,
AiEZI:AI; all (1—wﬁ;/+wfvfe >0 (1.17)
are the good-specific relative size of the aggregate economies (those that consume good )
and a country-specific measure of weighted clasticity of consumption substitution, respee-
tively. It is plausible that in this entangled trade network, many outputs affect country /1's
consumption of good h. In leading orders of importance, these include h’s global supply
(8n1); H's nontraded output (§4); nontraded output (%) and traded global supply (4;)
consumed by any other country .J € K" that also consumes h; global supply (d;7) of any
other traded good i € (" consumed by H; and finally, the nontraded output (34,) and global

supply (dxr) of traded goods k consumed by any country I € K' that also consumes /.

Similar to the simpler setting of section 1.3, a country’s traded consumption allocation
cfl increases with the global supply 67, decreases with the host’s nontraded output ol and
increases with nontraded output 6% of all trade partners J in good h. As country // also
consumes other traded variates {d; r}c;, H's consumption cfin good h tends to negatively
correlate with shocks dZ,;p[#h through the substitution effect between any two traded goods.
Furthermore, because the consumptions of all trade partners J € K in good h are tuned to
the nontraded 83 and traded global supplies {6;1};¢s that they consume, these shocks are
also positively compounded into ¢}, again through trade (market clearing) and substitution

effects.

Most interestingly, even in the current general trade network setting, the international
transmission of output shocks follows a simple and intuitive quantitative pattern in the

leading orders. That is, the transmission process involving trades in a good ¢ with a mediating

country I warrants a dampening coefficient, 3
1 1
(v—e)a’A—[— < i\_l_
A, Lwy 4 wi A
‘ 5
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Heve, ‘{I characterizes the relative power of mediating country [ in setting the global price

. N . - 1-wl wl e .

(or traded good i (through FOC), and (% — %) / <~—§Jﬂ + —$> quantifies how readily shocks
in one consumption sector affect the others in a country.® Next, we examine the stochastic
discount factors (SDFs) to explore how investors price the risk associated with these output

shocks in different countries.

Equilibrium pricing: As shocks affect consumption allocations, they also move equilibrium

prices accordingly to clear the market. The country H'’s log SDF is

lH lH
AH
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Reassuringly, all shocks that affect country H'’s consumptions are also priced by this stochas-
tic discount factor. In particular, all traded and nontraded consumption shocks of H and
any ol it trade partners are compounded in m. As in the simpler case of section 1.3, up to
taxte coefficients. the traded shocks are fully internationalized (in the aggregate output d;, 1)
and spread uniformly to all countries I ¢ K, that consume good h. As w,'fT generally drops
with the nwmber 7 of varieties consumed by H,* the country-specific traded shock of a
particular variety matters even less to its country of origin in the current setting of multiple
traded goods. In contrast, nontraded shocks are internalized, but not fully. As the second

veri within the square brackets shows, country /1 can tunnel its own nontraded shock in ¢4

through trades in all I channels in which H participates. The ability to mitigate this shock
: . : : "o,
through a particular channel h clearly decreases with a country’s relative size ?\' in the

world trade market for good h. Under mild home bias condition, country-specific nontraded

MSection 1.3 asserts that the difference % - % characterizes how willing a country is to substitute traded
and nontraded consmnptions to smooth its aggregate consumption. When this difference is large and positive
as in the data. conntries are fHexible to make this substitution. As a result, a shock from one consumption
sector is readily transmitted to the other sector. In the current setting, each country has one nontraded and
several traded sectors, but all have the same pairwise substitution elasticity of ¢.

Sy e : : s i
This is a consequence of the normalization condition wh + 357, wh =1
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shocks still matter more to the country’s pricing than do the traded counterparts. Finallv.
we also see that traded shocks (in d;r) affecting any trade partner J are also factored in m'".
When // does not consume these goods, j ¢ I, their shocks to // are similar the purely

nontraded shocks of partners J.

1.6.2 Incomplete market

In equilibrium, the complete financial markets equalize all countries” marginal utilities of the
traded consumption and thus enable the optimal international risk sharing and consumption
allocation. In reality, however, the financial markets of some countries are more developed
than those of others, which should better facilitate these developed countries to manage
their own as well as trade partners’ output risk. Stylistically, because of either information
asymmetry or lack of proper managerial enforcement, the equities associated with nontraded
scctors of emerging economies are less marketable worldwide. It is interesting to explore the
new qualitative implications of market incompleteness on international risk sharing and con-
trast them with those of the simplified complete market paradigm. To this end. we now
analyze a stylized model in which nontraded output risk is the central factor behind the
incompleteness in the financial markets.

Setup: We consider the world cconomy with perfect trades but an incomplete financial
market. In the commodity sector, there are countrv-specific nontraded goods (one per coun-
trv) and a single traded good (common to all countries). The traded good can be shipped
globally without the friction, and thus only its aggregate output influences the pricing. Ac-
cordingly, we assume that the financial asscts associated with the traded good sector are
perfectly structured. That is, a stock Sy contingent on the aggregate output and a risk-free
bond By paying one unit of traded good in the next period are available to investors world-
wide. In contrast, the financial assets associated with nontraded sectors arc incomplete. We
assume that countries belong to either the “developed” or the “emerging” group. IFor anv
developed economy (H € D), the stock S¥ contingent on the /’s nontraded output and

risk-free bond BY paying one unit of H’s nontraded good in the following period are also
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available to all investors. However, assets associated with nontraded sectors of emerging
economies (/I ¢ D) are not marketable and thus simply do not exist. In this framework,
the world financial market is incomplete because there arc more shocks than the available
financial hedging instruments. To simplify the exposition, we assume a homogeneous size for
all economies embedded in a two-period setting {f,! + 1}, but maintain the heterogeneous
constmption tastes {wi, wl } 5 across countries. Relaxing all of these assumptions is tedious
but straightlorward.

The most convenient choice for the numeraire in this setting is the traded good, which
we adopt hereafter. Thus, in every period, all prices are in (contemporaneous term of) the
traded good. Because the market is incomplete, we consider the optimization problem for
46 I

et 2815 a8 255 £lFB denote the holdings of H’s investor, respectively,

in world stock Sy, world bond By, F’s stock SE, and F'’s bond Bﬁ.

cach country.
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subject to the market clearing and budget constraints
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where (' = {C}1, Cl} denotes the standard CES consumption aggregator as in section 1.3,
(7' denotes the power utility function of C*, and W/ denotes investor H’s initial wealth.
[dentity operator 1pep equals one if F'is an developed country and zero otherwise, which

simply reflects the fact that investors can invest in financial assets paying nontraded goods

Wit an incomplete market, the centralized optimization can also be formulated as in Pavlova and
Rigobon (2008) using the convex duality technique (Cvitanic and Karatzas (1992)). However, this approach
offers an exact and analytical solution only for the special case of log utility.
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and convert these payoffs into units of traded good at the respective nontraded price 25
VI' € D for their consumption purpose. In contrast, no assets paying nontraded goods of
emerging markets exist, and consequently no investors, domestic or otherwise, ever nced to
convert these goods into the traded good and back. In other words, in the current incomplete
market setting, nontraded shocks are identical to preference shocks. Furthermore, we note
that by summing all countries, the above budget constraints and market clearing conditions
automatically imply the resource constraints Y, Cff, = Az, S, Cff ) = Aqyiy in both
periods.

First order conditions corresponding to variations about optimal holding positions /.

B PSS pHFB respectively, generate pricing equations for all available financial asscts.
[WH MIZI
. T1+1 _ 7,141 :
Sty = Iy WAT,t+1 ; Bry = E, A \28
T Tt
M M1l
[ Tit+1 A F a . Foo_ T+l 0 a
T T

Ho : : - Ly
where ME, = ;%rr is the country-specific marginal utility of the traded consumption™
’ ‘T.t

In the complete market setting, the marginal utilities are necessarilv equalized across
Mﬁ,f,“ . A'I'IE,M]
MET T TNIE,

countries V{H, I'}, which together with market clearing conditions. then
establishes directly the equilibrium consumption allocations. In the incomplete market.
the marginal utilities are indirectly connected to one another only through the pricing of
available assets. Accordingly, the solution approach here is very different. In sequence. we
first conjecture a solution for the consumption allocations, solve for the asset prices. and

verify that these prices support the conjectured consumptions in equilibrium. As before. we

log-lincarize the above first order conditions for all countries /1 and all developed countries

TWe recall that the current numeraire is the traded good, and therefore AM[/, =

e
e‘ptwéf(c,"\?t)‘e [w#(Cﬁt)]‘5+wﬁ(Cﬁt)]"éJ =+ is the country H's pricing kernel with respeet to
this numeraire.
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log </—3’l—’~) = Couy, [dmﬁtﬂ,émﬂ] ; log BFt = Coy, [dmﬁtﬂ,dﬁ,tﬂ] (1.19)
Tt Nt
! T
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where dm* denotes the log-linearized stochastic discount factor (recall from (1.4) that off =

[
y;u»f! Mw‘l\/ )’
TH
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Equilibrium: Consistent with the log-linearization approximation scheme, we look for the

equilibrium consumption allocations in the following most general log-linear form,

i
&

vH
C'I',t

deft, ) = log ="+ adr i+ Y WAk, VI (1.21)

F

and ¢'s. a’s. b's are constant parameters to be determined, and dd’s denote the changes in

log outputs, i.e., output growths (dt = 1)
ddpyvy = Oy 4y — Oy = ppdl + opdZy; ddﬁtﬂ = 6Ny — 5,% = ultdt + oldz

This choice renders a log-linear SDF dm!? in the approximation and greatly simplifies the
pricing of financial assets in the incomplete market settings (Weil (1994)). Indeed, substi-
tuting the above conjectured consumptions and SDFs into the pricing equations and the

market clearing conditions readily yields the following consumption allocations (derived in

appendix 1.9.1)," where we recall that of = —-— > 0 denotes the country-specific
YW tewy y p

SAlthough the log-linearization technique remains useful to obtain an approximate closed-form solution,
it does not address the possible multiplicity and stability of the equilibrium.
WSpecifically. the pricing equations log(Sy,/Br,)'s determine cocefficients {a Jyy, log(SN.,/BK.,)’s de-

termine (bYW pep vir, log Byy's determine {67 }ypgp vi, and log(B%,/Br.)’s determine the nontraded
prices ol developed countries {])‘;1\}1’,+1}v1~‘g7), see appendix 1.9.4.
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weighted elasticity of consumption substitution.

e incomplete market: // is an emerging economy (/I ¢ D)
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e incomplete market: /7 is a developed economy (H € D)
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where g's are country-specific parameters. These parameters help to enforce, and thus
can be found from the market clearing conditions (see appendix 1.9.4)., but because thev
are deterministic factors, they do not enter the analysis below. To verify these cquilibrinm
consumptions, we substitute them back into the above pricing equations to compute all
available asset prices {Sy. Bry}, {SK. Bh.}rep. which finance these consumptions hy the
construction of the solution. This configuration is in equilibrium,? because, for cach available
asset, the associated price is identical under all investors’ perspectives in the construction.
Compared with the counterpart complete market setting with a single traded good, in which

the consumption allocations are®!

e complete market: i, = gt1 + ;‘,'(' gy 4 21« oFwlok, — (v Qs
: 7 NN

the incomplete market allocations are markedly different in several aspects.™  First. the

%0 Although this is not necessarily the unique equilibrium.

SIThis is a straightforward generalization of (1.3) (in the basic model) to the setting where countries
have heterogeneous consumption tastes (but countries’ sizes are homogeneous). In the current casc. the
log-linearization of FOC implies mp = —pl + wh — (y — Jwlsl + —rc‘}{ Combining this FOC with the
(log-linearized) market clearing condition (1.27) for traded good yields this log consumption ¢f in complete
market. See further details in appendix 1.9.2.

52In light of the possible existence of other incomplete market settings and multiple equilibria. our discus-
sion here pertains to the specific incomplete market setup and the associated equilibrium presented carlier
in this section.

58



tradoed shock impacts stay the same in both market configurations. This is because cven
when the market is incomplete, the equity and bond on the traded output 7 are available to
all investors, who then are able to mitigate these shocks as optimally as possible by trading
these financial assets. When combined with the force of cross-country diversification in the
traded sector, this result implics that country-specific traded output risks remain relatively

less miaterial to countries’ risk free rates, compared with the nontraded output risk.

Sccond, the nontraded output shocks (in %) of a developed country F € D affect the
wraded consumption ¢! of all other countries H similarly, regardless of the market’s com-
pleteness. Because investors can trade the financial assets contingent on these nontraded
shocks. thelr associated risk can be shared effectively. In particular, all else being equal, a
surge in developed country F’s nontraded output prompts /' to trim its traded consumption
and boosts other countries’ traded consumption by forces of trades and market clearings.
Similar to the complete market settings, under a mild degree of home biases, a country’s
own nontraded shocks matter quantitatively more to a developed country’s consumption

allocation than do the nontraded shocks of their developed trade partners.

Third, the nontraded output shocks (in d%) of an emerging country I ¢ D are uniformly
compounded in the consumptions ¢ of all developed countries [{ € D.% This feature is
intuitive.  In the absence of financial assets in emerging markets, these shocks cannot be
properly hedged. The developed investors instead opt to simply pool their consumptions
uniformly to cope with the associated risk. Risk sharing is still feasible, albeit imperfect,
because it is evident from the equilibrium allocation that a surge in the nontraded output
from an emerging economy boosts traded consumptions of all developed economies. The
coeflicient characterizing this relationship, %ﬁz—zlj, increases (decreases) with the number
of emerging (developed) economies. That is, the significance of the unhedged risk on con-
sumption allocations is larger when the financial market is less complete in this pooling

equilibrium.

I'ourth, the incomplete market has a strong and surprising impact on risk sharing between

T .
Bhat is. 2% is same for all F ¢ D, HeD.

G5 F
sy,
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two cmerging economices. Possessing no finaneial assets directly tied to the nontraded output
shocks of their own or those of their emerging trade partners, the emerging economies also
pool their traded consumption in equilibrium to uniformly share nontraded risk. [merg-
ing country H's traded consumption ¢ decreases with not only its own nontraded good
endowment d4 but also with other emerging countries’ nontraded output d%. The latter
behavior, which is the inverse of a perfect financial market, signals that the risk sharing
is most severely hampered between emerging trade partners. This is indeed the group of
countries whose nontraded output risk is the least hedgeable because of the incompleteness

of the market.

The incomplete market setting, as formulated in this section and pertaining to the pooling
equilibrium, does not qualitatively change the risk sharing behaviors, and thus prices, among
developed economies. Any sizable effects stemming from market incompleteness instead arise
in the group of emerging countries whose financial markets are the least developed in the

setting.

1.7 Empirical results

The principal assertion of this paper, motivated by theoretical considerations in preceding
sections, is that nontraded output risk is a key factor determining asset prices and price
differentials in international markets. This section investigates this assertion erpirically and
provides supportive evidence. We implement various tests on interest rates and carry trade
returns. Our empirical analysis involves OECD countries®® plus Eurozone (i.e., Economic and
Monetary Union, available after 1998), which are more developed economies and cconomic
and financial data series of which are reasonably expected to be more complete and of higher
quality. Our main empirical tests exclude three possible outlier countries (Estonia. Iceland.

and Turkey) for the reasons presented in the next section on stylized facts of nontraded

51n our notation, before the German reunification in 1990 (and including that year), the Federal Republic
of Germany (FRG) is referred to as West Germany. From 1991 onward, the (reunified) Federal Republic of
Germany is referred to as Germany.
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output risk. All nominal macrocconomic output scrics arc first transformed into real scries
and then detrended using Hodrick-Prescott (HP) filter.5® All employed data series are cited

in double quotes, and their original sources and other details are listed in the data appendix.

1.7.1 Stylized facts concerning nontraded output risk

We identifv “services” as nontraded sectors in all countries, following the standard classifi-
cation in the literature (see, e.g., Stockman and Tesar (1995)). Key components of services
sectors include wholesale and retail trade, hotels and restaurants, financial intermediation,

real estate, business activities and construction services.

To obtain some idea about the size of nontraded sectors in the economies worldwide, figure
I-1 plots the ratio of real services output over real GDP, averaged over the period 1971-2010,
for all OLLCD countries plus Eurozone. Output data are from “Aggregate National Accounts:
Gross domestic product,” and services are computed as the sum of (i) wholesale and retail
trace, repairs. hotels and restaurants. and transport; (ii) financial intermediation, real estate,
renting and business activities; (iii) construction; and (iv) other service activities. Figure
1-1 shows that nontraded outputs constitute a substantial fraction of the total GDP in all
OECD countries, ranging from 0.5 (lceland) to 0.7 (US). Among others, this figure thus

re-dlocuiments a known fact that services sectors carry a huge weight of the US economy.

To justify the identification of services as a nontraded sector, Table 1.1 lists the country-
specific tradability and size of financial services, construction services, and other services for
arepresentative set of 13 OECD countries (see data appendix for classification details). Trad-
abilitics and sizes are averaged over the period 1971-2010. The country-tradability of services
is (one half of) the ratio of total exports and imports over the total output of these services by
the conntry (see (1.26)). The economic size of services is the ratio of total domestic output of
these services over the country’s GDP. Countries’ export and import series are from OECD’s
“Trade in Services” data base. Countries’ services output series’® are from OECD’s “Aggre-

PPWe use smoothing parameters A = 1600 for quarterly time series, as in Hodrick and Prescott (1997),
and A - 6.25 for annual time series, as in Ravn and Harald (2002).
PUSpecifically. these series are BIGF (Construction). BIGJ.K (Financial intermediation, real estate, renting
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gate National Accounts: Gross domestic product.” The table shows that, whereas the trad-
abilities and sizes of the same services vary considerably across OECD economics, their trad-
abilities are indeed small (in the order of few percentage points, and never exceeding 20%).
In particular, financial services are a substantial part of GDP in all countries (ranging from
14.7% for the Czech Republic to 27.7% for the US), yet their tradabilities are very low (rang-
ing from .21% for Japan to 7.5% for Switzerland). Similarly, Table 1.2 lists the 15 most traded
industries in the US, along with their two measures of tradability. The US-specific tradabil-

ity of an industry is computed similarly to the above country-specific tradability (1.26).

Table 1.2: Top-15 (ISIC rev. 3) US traded industries, 1971-2010

ISIC rev. 3 ) US-specitic QECD
Industries
designation tradability (%) tradability (%)
] 19 leather. leather products and footwear 379.10 173.16 :
2 30 office, accounting and computing machinery 188.51 217.59
3 18 wearing apparel, dressing and dying of fur 135.52 105.76
4 34 motor vehicles, trailers and semi-trailers 97.98 12861
5 27242732 non-ferrous metals 93.10 11914
6 32 radio, television and communication equipment 88.05 105.83
T 31 electrical machinery and apparatus. n.e.c. 66.99 82.14
& 33 medical, precision and optical instruments 66.83 106.44
9 29 machinery and equipment, n.e.c. 65.42 83.14
10 353 aircraft and spacecraft 60.00 104.28
11 3524359 railroad equipment and transport equipment. n.e.c. 58.33 111,70
12 17 textiles 56.39 09.83
13 24ex2423 chemicals excluding pharmaceuticals 50.20 108.05
11 23 coke, refined petroleum products and nuclear fuel 14.02 101.03
15 27142731 iron and steel 41.06 71.31

Notes: This table lists 15 most traded industries in the US, along with their US-specific and
OECD tradabilities. The industries are classified by ISIC Revision 3. US-specific tradabil-
ity is (one half of) the ratio of total export and import over total output by the US of the
industry (see (1.26)). OECD tradability for a industry is defined similarly, but with export.
import, and output replaced by total-OECD counterparts (see (1.25)). See section 1.7.1 and
data appendix for further details.

In the determination of OECD tradability (see (1.25)), export, import and output are
OECD-aggregate quantities. These industry-level macro series are from the “OECD Struc-

tural Analysis (STAN)” database. Table 1.2 shows that all of the top 15 traded industries

and business activities), and B1GL_.P (Other service activities).
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in the US belong to the manufacturing sector. In either measure, their tradabilities are
substantially higher than those in the services sectors listed in Table 1.1, which justifies the
classification of traded and nontraded goods adopted in the literature as well as in the cur-
rent paper. The table also shows that country-specific tradabilities do not necessarily and
quantitatively coincide with their OECD counterparts because countries are heterogeneous
i their consumption and production to a certain extent. For the sake of robustness, our

tests presented in the next section will employ both of these tradability measures.

To have a sense of the level of nontraded output risk across countries, figure 1-4 plots the
volatility of per-capita nontraded output growth for each OECD country. The volatility is
computed as the standard deviation of these nontraded output growth series over the entire
period of 1971-2010.  Per-capita quantities are computed using the World Bank's “Total
Population™ series. This figure shows that the level of fluctuation of nontraded output varies
widely across OIECD countries. In particular, Estonia is the second smallest economy among
O1IXCD member states (Iceland is the smallest economy),>” yet its per-capita nontraded
output growth is subtantially more volatile than any other country (approximately ten times
more volatile than Germany, France and the US). We therefore exclude Estonia and Iceland
from cmpirical tests. When countries’ nontraded output volatilities are computed for each
ten-vear period, Turkey exhibits an extremely unstable volatility pattern over time. We thus

also drop Turkey from the tests.

To have a sense of the level of trade “openness” of OECD countries, figure 1-5 plots the
ratio of cach country’s total exports and imports over its GDP (see also (1.24)), averaged over
the period 1971-2010. These ratios are from OECD’s “Trade-to-GDP ratio” annual series.
The figure shows that trade openness is markedly heterogeneous across OECD countries,
ranging from 0.17 for Japan to 2.08 for Luxembourg. It is known that this ratio can be
biased downward for larger economies, and hence a low value of the openness for a country
does not necessarily imply high (tariff or non-tariff) obstacles to foreign trade. Rather, the

low value of the openness can be a measure of either weak reliance of domestic producers

"’r"]‘)sivurl’lia"s GDP is approximately 20 Bln USD for the year of 2010, or less than 0.05% of the aggregate
GDP of OECD group. Iceland GDP is 12 Bln USD for the same year.
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on foreign supplies and markets or of the country’s geographic remoteness from potential
trading partners. Any of these possible causes are consistent with our notion that the output

growth risk of the more closed economies is internalized by home couuntries to a larger extent.

Finally, as a preliminary and graphical check of the allegedly key role of nontraded output
risk on national asset prices, figure 1-2 plots the real risk free rates against the volatilities
of per-capita nontraded and traded output growths, in the cross section of OECD countries.
Real interest rates are deduced from the nominal “IMF Exchange Rates and Short-term
Treasury Bill Rates”™ and the accompanying price index series, following Obstfeld and Rogoff
(2001). Figure 1-2 shows an inverse relationship between risk-free rates and nontraded output
volatilities, which in particular is vividly stronger than that between risk-free rates and traded
output volatilities. This difference persists even when we drop potential outlier countrics in
figure 1-3. This simple pattern is consistent with the theoretical finding presented earlier that
the asset returns differentials across countries are tied principally to the countries” nontraded

output risk characteristics.?®

1.7.2 Interest rates

In reality, no goods are either perfectly nontraded or perfectly traded. Even il some goods
were, macro output series are inevitably subject to measurement errors. Furthermore. costs
in trades also affect the structural relation between nontraded output risk and asset prices.
In this section, we investigate the empirical relationship between nontraded output volatility
and the level of real interest rate across OECD countries, taking into account these prac-
tical regularities. Specifically, we devise four tests based on the various classifications of
nontradability, in order of increasing sophistication. These regression-based tests involve
(i) the closedness of an economy, (ii) the brute-force cutoff dummy of nontradability at the
industry level, (iii) the global nontradabilities at industry level, and (iv) country-specific

nontradabilities at the industry level, respectively.

5813y means of trades and diversification, in contrast, country-specific traded output risk is pooled together
and therefore does not distinctly impact the risk-free rates around the world.
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Tests using countries’ trade closedness

The hypothesis to be examined here is that when an economy is exposed more to interna-
tional trades, its nontraded risk can be better mitigated through trades and the substitution
between traded and nontraded consumption. This assertion is a specific form of Hypoth-
esis 1 (section 1.4) and Hypothesis 1A (section 1.4.2), and is motivated by the structural
model with trade friction presented in previous sections. The basic regression test of this

relationship reads
ik B0l 4 3eCl + Bpe(al)Cl + B X+

where o' denotes the per-capita GDP growth volatility and X's the various control variables.
We adopt the common definition of a country’s trade openness O as trade-to-GDP ratio
(trade being the sum of export and import), from which also follows the closedness C*

OH:IM”+EXH. o M 4 EXY

- . S 1.24
Gppf appY (1.24)

Table 1.3 reports the results associated with this regression. National output data are from
“Aggregate National Accounts: Gross domestic product” and trade openness from “Trade-
to-GDP ratio.” We compute the volatility of per-capita GDP growth either over the entire
period of 1971-2010 (in which case, the above time index ¢ should be dropped), or over each
of four non-overlapping 10-year periods, and the mean of interest rates (dependent variable)
over exactly the same periods. Control variables include per-capita GDP mean growth, GDP
size {or the ratio of countries” GDP over the aggregate GDP of OECD group), and inflation
volatility.” The last control variable aims to address the fact that the model is real and thus

does not capture the possible effects from inflation risk.

The key observation from table 1.3 is that the slope coefficients associated with the

interaction term (variance x closedness) are always negative. These coefficients are statis-

Inflation is computed as the year-to-year percentage change of the consumer price index, and the latter
is sourced from IMEF's CPI series. Furthermore, inflation volatility is commputed as standard deviation of the
inflation growth.
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Table 1.3: Trade-closedness regression. 1971-2010

Panel A: Four 10-vear Periods

Panel B: Entire Period

(1) (2) () () (5) (6) (7) (8)
growth variance -36.245 -39.245 -37.266 -36.149 6.769 2.9643 19.305 18.233
(22.249) (23.685) (23.92) (24.666) (27.713)  (29.912) (28.615) (30.002)
closedness -.01246 -.0118 -.00818 -.00842 01565 02349 04367 039917
(.00892) (.00889) (.01046) (.01039) (.01458)  (.01706) (.01809) (.01918)
variance x closedness -44.26 -43.553 -51.34~ -52.343" -93.324*  -113.38"* -167.21*""  -159.61"*"
(30.133) (29.686) (30.984) (32.282) (45.975)  (52.996) (53.36) (56.442)
growth mean .1529 13368 1205 39029 34268 .26642
(.28422) (-29327) (-30318) (.277) (.28719) (.3311)
gdp size -.03433 -.03288 -.08515**  -.08045™""
(.03625) (.03593) (.02984) (.0277)
inflation volatility -.00054 -.00124
(.0007) (.00082)
constant 02892 02537 025967 .02682™*" .01781*" 0074 00492 .00944
(.00426) (.00721) (.00742) (.0079) (.00731)  (.01071) (.01071) (.01271)
N 98 98 98 98 33 33 33 33
adj. R? 0.103 0.097 0.093 0.085 0.082 0.120 0.228 0.228

Notes: OLS regressions with robust standard errors in parentheses: r
to examine the effects of output volatility o and trade closedness C* on interest rate r

H _
;=

H

o+ B (o2 + BHCH + BE (o H Y2 CH + 8, X +€ff
. Panel A reports results when

the variance of GDP growth is computed for each of 10-year non-overlapping periods, from 1971 to 2010. Panel B reports
results when the variance of GDP growth is computed for the entire period from 1971 to 2010. The sample consists of
annual data series for OECD countries 1971-2010. excluding Estonia, Iceland and Turkey. Current members of European
Monetary Union are dropped from the sample at the moment they joined the Union, and replaced by a single observa-
tion for Eurozone. Growth variance is the annualized variance of growth rate of per-capita real GDP over corresponding
period. closedness is one subtracted by the ratio of country’s total trade over country’s GDP (see (1.24)). Growth mean
is the annualized mean of growth rate of per-capita real GDP over corresponding period. GDP size is the ratio of coun-
try’s real GDP over total real GDP of OECD member states. Inflation volatility is the standard deviation of country’s
consumption price index over the corresponding period. Sce data appendix for further details.
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tically significant when we take into account the GDP growth (which contributes throngh
the intertemporal smoothing desires of investors), economy size, and inflation risk effects,
for cither the entire period (i.e., in the cross sectional data) or for four 10-year periods (i.e.,
i the panel data). This negative sign is consistent with the model’s central economic ra-
tionale that when a country is less open to trade and all else is equal, the country’s output
shock tends to be more internalized, and to have stronger impacts on lowering country’s real

interest rate through the precautionary savings mechanism.

Tests using multiple industry outputs and their nontradability dummies

Another form of Hypothesis 1 and Hypothesis 1A (sections 1.4.1, 1.4.2. respectively) to
be examined in this section is as follows. Controlling for anything else, a country’s output
growth risk ol nontraded industries tends to have a stronger impact on domestic interest rate
than its output growth risk of traded industries. Intuitively, this is because country-specific
traded risk can be diversified in the global pool of traded goods before it affects prices in
any country. The basic regression testing this relationship employs national output data at

the industry level. We use binary dummies to classify the nontradability of the industries.

L L H\2 B | HAN2 -H H
roy T o ’))U(ai,l) + ,‘3(1(11“! +- »30(1(0“) ([iyg + jl)(” -+ Cigs

where pHo=

is country H’s interest rate and thus independent of industry type i, d,,
is nontradability dummy (d;, = 1 for nontraded industries and 0 otherwise, as we explain
below). Table 1.4 reports the results associated with this regression. Countries’ real an-
nual industry-level outputs are constructed from the “OECD Structural Analysis (STAN)”
database. An industry 4 is classified as nontraded (d;, = 1) if it belongs to one of the fol-

lowing ISIC classes™

(sce further details in data appendix): 40-41 (electricily gas and water
supply): 45 (construction); 50-55 (wholesale and retail trade, restaurant and hotels); 60-64
(transport storage and communications): 65-74 (finance insurance real estate and business
services): 75-99 (community social and personal services). Other industries are taken as

SUTSTC stands for International Standard Industrial Classification of All Economic Activities
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Table 1.4: Multi-industry nontradabilitv-dummy regression. 1971-2010

Panel A: Pooled OLS Regression e Panel B: Panel Regression
(1 2) 3) ) (5) (6) () (8)
growth variance -.02793* " -.02659* -.030367"7 -.0255877" 03765 -.03676 -.044167 -.03697"
(.00767) (.00674) (.00831) {.0097) (.02311)  (.02342) (.02303) (.02179)
nontradability duinmy 00347 00339 .00291 00334 004717 0047 0044~ 00494~
(.00237) (.00236) {.00233) {.00228) (00222)  (.00222) (.00218) (.00206)
variance x dummy -.360477  -.4497377 -.47498""7 - 52871 -1.5183 -1.56324 -1.5814~ -1.6366~
((16142)  (.16597)  (.17103)  (.17824) (94835)  (.95064)  (.93323)  (.88259)
growth mean 01232 00932~ {00891 00172 -.00299 -.0045
(.00564) (.00562) (.00558) (.00716) (.00707) (.00669)
gdp size -.04086* -.03773""" -.04019*  -.0346"""
(.00479) (.00459) (.00675) (.0064)
inflation volatility -.00096™** -.00189""
(7.1e-05) (.00018)
constant .02555* 0253577 0271677 028247 0262177 .02618***  .02785™"  .03006™""
(.0006) (.00061) (.00069) (-00072) (.00051)  (.00052) (.00059) (.00059)
N 2026 2026 2026 2026 2026 2026 2026 2026
adj. R? 0.000 0.001 0.016 0.031 0.006 0.005 0.041 0.143

Notes: OLS regressions rlH, =+ /3,,(0{1,)2 + Bad; g + /i(,d(af,)zdi,r. + /erf_i, + rf_{, to examine the effects of industry-level out-
put volatility /1 and its dummy nontradability d; on interest rate rH . Panel A reports results with robust standard errors in
parentheses. Panel B reports results with between-cffect standard ervors in parentheses. Dependent variable is the annualized
real interest rate, proxied by the short-term Treasury bill rate, averaged over the corresponding period. The sample consists
of annual data series for OECD countries 1971-2010, excluding Estonia, Iceland and Turkey. Current members of European
Monetary Union are dropped from the sample at the moment they joined the Union, and replaced by a single observation for
Eurozone. Growth variance is the annualized variance of growth rate of per-capita country-specific industries’ real output over
each of four 10-year periods, from 1971 to 2010. Nontradability dummies are at industry level; they assume value 1 for indus-
tries classified as nontraded sectors (Electricity gas and water supply, Construction. Wholesale and retail trade, restaurant and
hotels, Transport storage and communications, Finance insurance real estate and business services, Community social and per-
sonal services), and 0 otherwise. Growth mean is the annualized mean of growth rate of per-capita country-specific industries’
real output over the corresponding period. GDP size is the ratio of country’s real GDP over total real GDP of OECD member
states. Inflation volatility is the standard deviation of country’s consumption price index over the corresponding period. See
data appendix for further details.
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traded (d,, = 0). We divide the entire time period 1971-2010 into four 10-year periods, and
the volatility of per-capita output growth for each industry is computed as the respective
standard deviation over each period. As before, the control variables include per-capita GDP

mean erowth. GDP size, and inflation volatility.

The key observation from table 1.4 is that the slope coeflicients associated with the
imteraction term (variance X dummy) are always negative. When we take into account
the GDP growth, economy size, and inflation risk effects, these coefficients are statistically
significant either for robust or between-effect standard errors.®! The negative sign precisely
fits the basic economic intuition that the output growth risk is more serious to the economy
than that of the traded output. Consequently, the output risk enhances the value of risk-free
bonds. and depresses risk-free rate more aggressively when the risk comes from a nontraded

industry.

Tests using multiple industry outputs and their global nontradabilities

Some industries are not clear-cut traded or nontraded as depicted by a binary dummy of
the above regression. In this section, we use continuous-valued global nontradability at
mdustry level to account for this fine distinction. The hypothesis to be examined here is the
same as above, namely all else being equal, output risk of nontraded industries matter more
Lo country’s interest rate than that of traded industries. The basic regression testing this

relationship reads

o H H\2 ) H\2 I
]‘1"/ =+ )/30'(01',./,) + /J)TTi,t =+ daT(ayﬁJ) Tit + /3$X,H/ + 61‘,7{/,»

where 7, is a global measure of nontradability of industry 7. We adopt the standard definition

of tradability as the ratio OECD aggregate trade over OECD aggregate output of the industry

“Ihe 1o fimited data, the choice of between-effect model is appropriate.
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¢, and nontradability is the complement to tradability

ZOECD countries [ijs import +1’s CXPON'] 195
2%y i's output (1.25)
OECD countries ¢ S OULPU

Tz’zl—‘

Table 1.5 reports the results associated with this regression. Data sources arc identical to
those employed in the above regression. We use country-specific output series to compute
country-specific industry i’s growth volatility over each of four 10-year periods. We aggregate

these series to compute the global tradability and nontradability for each of good i.

The key observation from table 1.5 is that the slope coefficients associated with the
interaction term (variance x nontradability) are always negative. When we take into account
the GDP growth, economy size, and inflation risk effects, these coefficients are statistically
significant cither for robust or between-effect standard errors. The negative sign precisely fits
the basic economic intuition that as countries mostly internalize their own nontraded shocks.
the fluctuations in nontraded industries are more serious risk to the cconomy than those of
the traded ones. Furthermore, output volatility act to lower risk-free rate. Consequently,
risk-free rate is more sensitive (and negatively related) to output risk of industries of higher

nontradabilities.

Tests using multiple industry outputs and their country-specific nontradabilitics

In some situation, global measure of tradability does not exactly reflect the tradability
of an industry at country level. This happens, for e.g., when the trade levels are highly
heterogeneous across countries in certain industries. To account for this fine distinction. in
this section, we use continuous-valued country-specific nontradability at industry level. The
hypothesis to be examined here is the same as above, namely all else being equal, output risk
of nontraded industries matter more to country’s interest rate than that of traded industries.

The basic regression testing this relationship reads

HAys H HN2_H | o vH L H
ri =+ B.(0lh)* + BeTiy + For(00,) Ty + 3 X[ + €5,
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Table 1.5 Multi-industry global nontradability regression. 1971-2010

Panel A: Pooled OLS Regression Panel BB: Panel Regression
1) (2) (3) {4) ) (6) {0 8)
growth variance -.059417 05469 -.06901" -.07466""" -.10134 -.10093 -.12434" -.14698*"
{.02778) (.02575) (.02752) (.02809) (.06564) (.06573) {.0646) (.06122)
global noutradability 00133~ .00128** 00127~ 001~ .0014*~ 0014~ 00137+ .00085
(.00052) (.00053) (.00052) (.00051) (.00068)  (.00068) (.00066) (.00063)
variance X nontradability  -.00608~ -.0055" -.00706™" -.00829™~ -.01099 -.01101 -.01334 -.01707
(.00349) {(.00325) (.00346) (.00353) (.00904)  (.00905) (.00889) (.00842)
growth mean 01139 00821 .00787 .00109 -.00371 -.00498
{.00569) (.00564) (.00555) (-00715) (.00706) (.00668)
gdp size -.04127 > -.03829*** -.04075***  -.03539***
(.00473) (.00455) (.00675) (.00641)
inflation volatility -.00094**~ -.00188**~
(6.9¢-05) (.00018)
constant 02555 .02535"** 02719 .02833*** 02634 02632 .02803™**  .03039**~
(.00057) (.00058) (.00066) (.00069) (.00052) (-00054) (.0006) (.00061)
N 2026 2026 2026 2026 2026 2026 2026 2026
adj. R? 0.002 0.002 0.018 0.032 0.006 0.005 0.042 0.141

Notes: OLS regressions Tfr. =a+3, (Uf,)2 + BrTig + Bor(ofh)2 10 + . XH + ffx to examine the effects of industry-level output
volatility off and its global nontradability 7; on interest rate r”. Panel A reports results with robust standard errors in paren-
theses. Panel B reports results with between-cffect standard crrors in parentheses. Dependent variable is the annualized real
interest rate, proxied by the short-term Treasury bill rate, averaged over the corresponding period. The sample consists of an-
nual data series for OECD countries 1971-2010, excluding Estonia, Iceland and Turkey. Current members of European Monetary
Union are dropped from the sample at the moment they joined the Union, and replaced by a single observation for Eurozone.
Growth variance is the annualized variance of growth rate of per-capita country-specific industries’ real output over each of four
10-year periods, from 1971 to 2010. Here nontradability is a global measure and at industry level: it is one subtracted by the
ratio of global total trade (i.e., import plus export) in an industry over the global total output in that industry (see (1.25)).
Growth mean is the annualized mean of growth rate of per-capita country-specific industries’ real output over the corresponding
period. GDP size is the ratio of country’s real GDP over total real GDP of OECD member states. Inflation volatility is the
standard deviation of country’s consumption price index over the corresponding period. See data appendix for further details.



where 7F is a country-specific measure of nontradability of industry i. We adopt the standard

definition of tradability as the ratio of national trade over national output of the industry i,

and nontradability is the complement to tradability

S [i’s import + i's export] by country /[
; :

(1.26)

(2 xi's output] by country I/

Table 1.6 reports the results associated with this regression. Data sources are identical to
those employed in the above regression. We use country-specific output serics to compute
both country-specific industry i’s growth volatility over each of four 10-year periods and i's

country-specific tradability and nontradability.

The key observation from table 1.6 is that the slope coefficients associated with the
interaction term (variance x nontradability) are always negative. When we take into account
the GDP growth, economy size, and inflation risk effects, these coeflicients are statistically
significant cither for robust or between-cffect standard errors. The negative sign precisely fits
the basic economic intuition that as countries mostly internalize their own nontraded shocks.
the fluctuations in nontraded industries are more scrious risk to the cconomy than those of
the traded ones. Furthermore. output volatility act to lower risk-free rate. Conscquently.
risk-free rate is more sensitive (and negatively related) to output risk of industries of higher

nontradabilities.

1.7.3 Carry trade returns

The evidences above shows that nontraded risk is a key factor behind national assct re-
turns. This is very intuitive because national asset prices are country-specific measures and
nontraded shocks are mostly internalized by countries. Taking a step further, as cvery in-
ternational investment strategy is exposed to nontraded risk of all countries involved. the
associated compensating profits should reflect the interplay of these risk factors. In this
section, we investigate the empirical relationship between carry trade expected returns and

nontraded output volatilities of the countries involved. Specifically, we devise two tests which

72



€L

Table 1.6: Multi-industry country-specific nontradabilitv regression. 1971-2010

Panel A: Pooled OLS Regression Panel B: Panel Regression
(1) (2) ) ) 6) {6) ) (8)
growth variance -.03498 -.03985 -.05086~ -.06099"" 05515 -.05372 -.07389 -.11651"
{.0269) {.02707) {.02697) (.028) (.07436) (.07465) (.07329) {.06955)
nontradability 6.3e-05"""  4.5e-05* 5.6e-05"" 4.2¢-05" 9.4e-05~ 9.7e-05" .0001~~ 6.1e-05
(2.0e-05)  (2.5e-05)  (2.4e-03) (2.4e-05) (5.0e-05)  (5.2e-05)  (5.1e-05) (4.8e-05)
varianceX nontradability -6.9e-05""  -3.9e-05* -7.7¢-05™" -8.2e-05"*" -.00013 -.00013 -.06016™  -.00016""
(2.8e-05)  (3.0e-05)  (3.0e-05) (3.1e-05) (8.1e-05)  (8.1e-05)  (8.0e-05) (7.5e-05)
growth mean .00969 .00597 .0063 -.00172 -.00678 -.00659
(.00626) (-00623) (.00614) (.00739) (.0073) (.00691)
gdp size -.04162>**  -.03852** -.04109**  -.03557*~
{.0048) (.0046) (.00675) (.00642)
inflation volatility -.00095*** - 00187
{7.0e-05) (.00018)
constant 02583 .02564™"  .02751""" 02859 02664 02667 .0284™*" 03061~
(.00059) (.00061) (.0007) (.00073) (.00051)  (.00053) (.00059) (.0006)
N 2026 2026 2026 2026 2026 2026 2026 2026
adj. R? 0.001 0.001 0.017 0.031 0.005 0.004 0.042 0.140

Notes: OLS regressions 7/, = a + f,(0/4)? + 875 + B, (0271 + 3, X[, + €}, to examine the effects of industry-level output
volatility o and its country-specific nontradability 7H on interest rate 7. Panel A reports results with robust standard errors
in parentheses. Panel B reports results with between-effect standard errors in parentheses. Dependent variable is the annualized
real interest rate, proxied by the short-term Treasury bill rate, averaged over the corresponding period. The sample consists of
annual data series for OECD countries 1971-2010, excluding Estonia, Iceland and Turkey. Current members of European Mone-
tary Union are dropped from the sample at the moment they joined the Union, and replaced by a single observation for Eurozone.
Growth variance is the annualized variance of growth rate of per-capita country-specific industries’ real output over each of four
10-year periods, from 1971 to 2010. Nontradability is a country-specific measure and at industry level; it is one subtracted by the
ratio of country’s trade (i.e., import plus export) in an industry over the country’s output in that industry (see (1.26)). Growth
mean is the annualized mean of growth rate of per-capita country-specific industries’ real output over the corresponding period.
GDP size is the ratio of country’s real GDP over total real GDP of OECD member states. Inflation volatility is the standard
deviation of country’s consumption price index over the corresponding period. See data appendix for further details.



involve (i) forming currency portfolios based on countries’s nontraded volatility and size. and
(i) constructing nontraded and traded consumption risk factors to price carry trades. The
valuation of all carry trades is exclusively from the perspective of US investors. for whom

the ultimate profits are in term of US dollars.

Forming portfolios based on the nontraded output growth volatilitics and ccon-

omy sizes

The theoretical analysis of section 1.5 clearly indicates that®® controlling for all else. carry
trades with partner countries of smaller sizes and less volatile nontraded outputs yield higher
expected returns to US investors.®® To directly verify this structural mechanismn, stated in
Hypothesis 2 (section 1.5), we construct portfolios of currencies based mainly on the volatil-
ities of nontraded output as suggested by the theory. As argued by Lustig and Verdelhan
(2007). forming portfolios helps filter out the noises in individual currency returns. and de-
livers large and stable return spreads between portfolios by means of frequent rebalancing.

Burnside et al. (2008) document and the current paper’s section 1.5 theoretically shows

sizable benefits of diversification in portfolio construction.

We consider carry trade returns from US investors’ perspectives. For each countrv. we
identify the nontraded consumption as the expenditure on services (a component of the
expenditure on total private consumption in the expenditure approach to GDP). These
consumption expenditure scries are available only at quarterly (or lower) frequencies, and
sourced from OECD’s “Quarterly National Accounts” database.®® At the beginning of cach
quarter ¢, countries are sorted into four (quartile) portfolios based on the value of coumtry-

specific product of per-capita® nontraded consumption growth variance and relative GDP

62 xpected returns of the carry trades to US investors have been computed in section 1.5, I, [X l?,,ff(’,‘,’ /‘1! B
a?y2ew?, { [( + (v - c)wT¥] (o2 — (v - ()wTA;—(af,V

63 A1l carry trades involve shorting US dollars and longing foreign currencies.

64Ty obtain a more extensive historical data, however, US quarterly consumption expenditure series arc
sourced from US Bureau of Economic Analysis. See data appendix for further details.

658ince the population time series are not available at quarterly frequency, they are constructed from
the annual population by intrapolation, assuming constant population growth within each year. Anuual
population data are from World Bank’s “Total Population series”.
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size. For cach country, the product is computed over the previous eight-quarter period, and
thus the portfolios are quarterly rebalanced on rolling basis. Portfolio 1 contains countries
with lowest value of the above product, and portfolio 4 the highest. After portfolios’ currency

compositions are known at the beginning of quarter ¢, US investors short US dollars and long

-US.pP

equally weighted portfolios /7 of foreign currencies I to earn the quarterly returns X /2,

realized at the beginning of quarter ¢t + 1

usar S i ry® usap_ x& 1 _USAF
XRWH = (1 ) — (14 2 XREEPTE =3 " o X RSH
SE 4 4 =K

By the convention adopted here, spot exchange rate S} is the number of foreign currency

units per US dollar. These spot exchange rates are sampled simultaneously with the above

interest rates."® To compute the real carry trade returns to US investors, we subtract US
e e . ~US,+P . . -
mflation from the above nominal returns X 2,777 . The US inflation is constructed as per-

centage change of “US quarterly consumer price index (CPI) series”. Finally, the annualized
real carry trade returns for each portfolio are obtained by compounding the quarterly coun-
rerpart values.”” We note that because OECD’s “Quarterly National Accounts” database is
unbalanced (data start at different times for different countries, sce data appendix), when
we match it to IME’s IFS dataset, not all OECD countries are available at the same time

for the purpose of portfolio sorting,

Iigure 1-6 plots the mean annualized returns and Sharpe ratios on four equally weighted
carry trade portfolios. The figure shows a monotonically inverse relationship between mean
returns and the values of product of nontraded output variance and size across portfolios.
Portfolio 1 carns a mean annual return of 2.33% (Sharpe ratio of 14%), and portfolio 4 a
return of -.47% (Sharpe ratio of -4%) to US investors. Thus a long-short portfolio strategy
(long portfolio 1, short portfolio 4) earns mean annual return of 2.8%, and Sharpe ratio

of around 20%. This empirical inverse relationship is supported by our rational theory

““Both nominal interest rate series r, and spot exchange rate series SF are sampled at quarterly frequency
from INI’s International Financial Statistics (IFS) database.

“Because portfolios are rebalanced quarterly, the currency compositions of portfolios do not necessarily
stay fixed over the course of any year.

75



Figure 1-6: Carry trade excess returns and Sharpe ratios for portfolios sorted on nontracded
output risk

Carry Trade Return, 1971-2010 Sharpe ratio, 1971-2010
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This figure presents means and Sharpe ratios of real excess returns on four quarterly rebalanced
currency portfolios to US investors. The sample consists of quarterly data series for period 1971-
2010. The portfolio are constructed by sorting currencies into four groups at beginning of quarter
t based on the value of nontraded variance x gdp’s size over the previous 8 guarters. Portfolio
1 contains currencies with the lowest value of nontraded variance x gdp’s size, portfolio 1 the
highest. Due to unbalances in macro-data scrics, countries’ data become available at different
times, and number of countries changes over time. See data appendix for further details.

concerning nontraded risk as summarized in Hypothesis 2 (section 1.5). The intuition is
that, partner countries’ risk-free bonds, as insurance instruments, are relatively less valuable
when their domestic economic environments are more stable, and offer larger interest rates
to benefit the carry trade investors. However, high-return portfolios’ payoffs tend to go up
and down together with US nontraded endowment. They thus pose a consumption risk to
US investors and necessarily pay superior expected returns to stay attractive in equlibrium.
Sorting portfolio based directly on nontraded output volatilities (coupled with sizes) provide
direct empirical supports for the key role of nontraded risk in the current rational approach

to intrenational asset pricing.
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Lincar factor analysis: Empirics

The theoretical analysis of section 1.5 suggests another very intuitive way to consider non-
traded and traded consumption risk as two key pricing factors. From US investors’ per-
spectives, fluctuations in US traded and nontraded consumption are risk, and payoffs that
correlate with these consumptions are priced, and carry risk premium accordingly. In this
section we use currency portfolios sorted on interest rates as test assets to estimated the
prices of risk associated with these two consumption risk factors. We do not sort currency
portfolios on the nontraded output volatilities because doing so amounts to replicating the
enipirical exercise of the previous section, which already offers evidences that US investors
price the nontraded risk of carry-trade partner countries. Instead, the choice of currency
portfolios sorted on interest rates aims to relate the consumption risk to the violation of
uncovered interest rate parity, which has been most robustly observed in these interest-rate-
sorted currency portfolios. Below we discuss, in order, the estimation procedure, the data,

and estimation results.

We empirically identify the US traded and nontraded consumption variations as risk

. ) o Us s Us cls, —-C¥s . T
factors for US investor: Tiel = — '23115 S INT = ——%*4 Using carry trade portfolio
USHP
excess returns X 7)) " as test assets, the fundamental Euler pricing equation (see section
1.5) can be written as®
Us —H+F| _
Ey [{1—1’7( T+l )“bN(th+1 NN)}XRt+1 ]—0,

&= UNHl] are unconditional means of the factors. The latter

where 4 = U} Aok 1]
form readily suits a GMM process to estimate the factor loadings {by,by}. Consequently,
follow the factor prices {A, AL} of the traded and nontraded risk, and the exposures

{/)’[ s ,J'a’;\;'\"[)} of currency portfolios P to the US traded and nontraded consumption risk

“his equation results from the standard Euler equation £ [( +dm¥S — E[dm,H]) X[i,“f;s‘+P] =0

and the linear lactor pricing specification log AT é dmb® = by fT,+1 + b/\/fNH_1 See section 1.5.
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(sce section 1.5)

/\ng by

" | = [cov e )] ,

AN by
3USF -1 | Cov(fiS XR-USHP
BT omigte, ]| Ot X
355F Cov(fY%. X R7US+P)

where [Cm)( is the covariance matrix of risk factors. Thus the GMM procedure

/TUS /.US):l
employed to estimate factor loading b’s also estimates factor prices A’s and portfolio risk

exposures ;3’s.

Currencies are sorted into four portfolios based on previous nominal interest rates in a
procedure similar to the one presented in the above section. Portfolio 1 contains currencies
associated with the lowest interest rates, portfolio 4 the highest rates. For this sorting. we

use current quarter’s nominal interest rates sourced from IMF. The quarterly carry trade

~US+P : :
excess returns X R, 7 to US investors are computed over the next three-month periods.
This return computation is identical to that of above section. The risk factors [£° [L~

are computed as quarter-to-quarter percentage changes of per-capita real US traded and
nontraded consumption respectively. The US consumption and CPI series are from US
Bureau of Economic Analysis™ “Quarterly US consumption expenditures and price indexes”.
We identify the personal consumption expenditures on “services” as nontraded consumption,
and on “goods” as traded consumption (see data appendix for further details).%” After having

constructed the quarterly series of portfolio returns XR;US”LP

and factors [¥2, [i7. we
employ a two-stage GMM procedure on the above Euler equation to estimates factor loadings
br, by jointly with the first moments pu%®, u§° of the factors, as detailed in Menkhoff et al.
(2011).7 Finally, traded and nontraded factor prices A5, A{S and portfolio risk exposures

JUS, P QUS,P , . . : , ;
g0, By are deduced from the above simple matrix operation. Their standard errors ave

591t is important to note that we should not use US output series (in the output approach to GDP) for
the current factor analysis. This is because for traded component, due to trades, the US traded output is
not the same as US traded consumption. And in the theory being tested, it is the conswuption risk that
matters for the pricing.

"0We also use lagged values of the carry trade portfolio returns as instruments.
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determined [rom GMM-generated standard errors of factor loading 0’s and the delta method,

as stggested by Burnside et al. (2011).
Figure 1-7 plots the mean annualized returns and Sharpe ratios on four equally weighted
carry trade portfolios. The figures show a monotonic relationship between mean returns

Figure 1-7: Carry trade excess returns and Sharpe ratios for portfolios sorted on nominal interest

rates
Carry Trade Return, 1971-2010 Sharpe Ratio, 1971-2010
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T'his figure presents means and Sharpe ratios of real excess returns on four quarterly rebalanced
currency portfolios to US investors. The sample consists of quarterly data series for period 1971-
2010. The portfolio are constructed by sorting currencies into four groups at beginning of quar-
ter { based on the value of nominal interest rate available then. Portfolio 1 contains currencies
with the lowest nominal interest rates, portfolio 4 the highest. Due to unbalances in interest rate
and spot exchange rate series, countries’ data become available at different times, and number
ol countries changes over time. See data appendix for further details.

in carry trades and the values of mean interest rates across portfolios. This in essence
exhibits the violation of UIP and have been widely documented in the literature.™ It is
this monotone that qualifies these four carry trade portfolios as test assets for the empirical
analysis ol the current linear factor model. Accordingly, Table 1.7 reports the estimated
factor prices. Both factor prices for traded and nontraded risk are positive and significant.
Quantitatively, one additional “unit” of exposure to US nontraded consumption risk (i.e.,
Ay = 1) boosts the expected return on the strategy by 32 basis points. The corresponding

“Tlor recent related work on UIP violation at protfolio level, see e.g. Burnside et al. (2011), Lustig et al,
(2011). Menkhoff et al. (2011).
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Table 1.7: Estimation of factor prices in linear factor models

Nontraded consumption Traded consumption
Factor prices (%) (332)* i?;;
port. 1 -1.92 A9
beta’s port. 2 -1.61 Al
port. 3 -1.51 .87
port. 4 -1.87 2.31

Note: Upper panel reports the GMM annualized estimates of the factor prices (in
percentage points), lower panel reports the estimates of the portfolios” exposures to
risk factors (i.e. beta’s) in the carry trade linear factor model using four quarterly
rebalanced currency portfolios as test assets. HAC standard errors for the factor
prices are obtained by two-stage GMM procedure using constant and lagged carry
trade portfolio returns as instruments, and are reported in parenthesis. The curren-
cies are sorted based on interest rates. The sample consists of quarterly data series
for the period 1971-2010.

figure for US traded consumption risk is 34 basis points. Most importantly, the positive
nontraded factor price well suits the rational implication of nontraded risk.™ As nontraded
output are largely confined and consumed within country’s border, fluctuations in nontraded
consumption growths are perceived as risk by all host countries. The proposition 3 then
asserts that nontraded factor price AY¥ should always be positive for all countries /7. The
results reported in table 1.7 thus empirically confirms this assertion from US investors’
perspective. Beyond that, the results also show that fluctuations in US traded consumption
are perceived as a risk by US investors. Table 1.7 also reports the estimated consumption
betas for four currency portfolios. Values of betas vary across portfolios implying that foreign
countries with different interest rate levels correlate differently with US traded and nontracded

consumption growth. While the current two-factor model most likely leaves out other risk

72In the current factor pricing model, the expected excess return on any asset is E[X R] = A3y + Anv .
The positive factor price Ay > 0 implics that any payoft positively correlated with nontraded conswption
growth, By > 0, commands a positive expected return components. In other words, nontraded consumption
growth volatility is a risk to investor.
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factors.”™ the movements in US traded and nontraded consumption growth are statistically

significant sources of risk being priced in the currency market.

1.8 Conclusion

This paper points out the effects of nontraded output growth risk on national asset and
international investment returns. Nontraded output growth risk is particularly impactful,
because this outputl makes a large share of GDP and is consumed almost entirely by home
population. In contrast, country-specific traded output growth risk can be diversified by
means of commodity trades. Hence our analysis calls for a careful decomposition of GDP
mto traded and nontraded output components before assessing its role on the determination
of asset prices,

Nontraded output shocks are nevertheless not entirely internalized by home countries
because countries engage in trades in other goods as well. While, to a certain extent, trades
weaken the impact of nontraded output risk on the home country, trades also transmit and
thus bhroaden the impact of home nontraded output shocks to all trade partners of the home
country. This mechanism is behind the profits of all international strategies, including carry
trades. This is because the global traded output risk spreads fairly equally across countries,

and thus drops out of strategies involving off-setting positions in different national markets.

The frameworks in which a risk, apparently intrinsic to only one party, actually affeets
other parties are pervasive in the real world. Examples include any social network settings,
financial institutions. or interbank systems featuring counter-party risk. The asset pricing
analyvsis presented here for the international finance setting, especially in regards to trans-
action costs and incomplete markets, would help shed light on other interesting frameworks

just mentioned. We hope to address these frameworks in future work.

“\We can infer from table 1.7 that these two risk factors account for about 15% of the expected carry
trade return to US investors.
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1.9 Appendices

1.9.1 Data sources

The empirical part of the current paper concerns only countries that belong to the Organisation for Economic
Co-operation and Development (OECD) principally because we reasonably expect that data quality for these

developed economies should be higher than the rest of the world.

OECD countries: currently, there are 34 OECD member states listed as follows; Australia, Austria.
Belgium, Canada, Chile, Czech Republic, Denmark, Estonia, Finland, France, Germnany, Greece, Hungary.
leeland. Ireland, Israel, Italy. Japan, Korea, Luxembourg, Mexico, Netherlands. New Zealand, Norway.
Poland, Portugal. Slovak Republic, Slovenia. Spain. Sweden, Switzerland. Turkey. United Kingdom. United

States.

IEurozone countries: among OECD states, the following 15 belong to the Economic and Monetary Union
(ak.a., Eurozone or Euro area) with respective adopting date in the parenthesis;”" Austria (01/01/1999}. Bel
gium (01/01/1999), Estonia (01/01/2011), Finland (01/01/1999). France (01/01/1999), Germany (01/01/1999).
Greece (01/01/2001), Ireland (01/01/1999), Italy (01/01/1999). Luxembourg (01/01/1999). Netherlands
(01/01/1999), Portugal (01/01/1999), Slovak Republic (01/01/2009). Slovenia (01/01/2007). Spain (01/01,1999).

“Aggregate National Accounts: Gross domestic product” contains the following annual real output scries
available either in national currency or USD. constant prices of OECD base year 2000 (output approach to
GDP): Gross domestic product (B1.GA);: Wholesale and retail trade, repairs. hotels and restaurants. trans
port (B1GG.I); Financial intermediation, real estate, renting and business activities (31GJ_K): Construe
tion (BIGF); Other service activities (B1GL_P), sourced from OECD.org, downloadable via “OECD Stat

Extracts”.

“Total Population series” contains annual data on population, sourced from World Bank World Devel-

opment Indicators (WDI).

“IMF Exchange Rates and short-term Treasury Bill Rates” provide spot exchange rates and nominal
interest rates sourced from IMF International Financial Statistics (IFS) at both quarterly and annually
frequencies. Treasury Bill Rates are associated with maturities varying from one to three months. For
those countries where the short-term Treasury Bill Rates are not available, we use Money Market Rates
from the same sources. Consumer price index (CPI) series is also provided by IFS (at quarterly and annnal

frequencies). Inflation then is computed as the period-to-period percentage change of the consumer price

"Only two other Eurozone states are Cyprus and Malta, but they do not belong to OECD and are not
considered in the empirical analysis of the current paper.
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index.

“Trade-to-GDP ratio” (i.e., trade openness) contains the value of ratio of nominal national total im-
port plus export over national GDP, sourced from OECD Trade Indicators database, downloadable via

“ORECD.Stat Extracts”.

“O1CD exchange rate series” contain the exchange rates, in national units per USD (USD monthly
average). lor all OECD countries. The series is sourced from OECD Main Economic Indicators (MEI),

downloadable via "OECD .Stat Extracts”.

“Three-month nominal interest rate series” of OECD countries are provided by Data Stream. These
original daily series consist of the bid, ask (i.e., offered) and mid quotes for 3-month Eurocurrency-deposit
interest rates (end-of-day quotes from London market). This dataset is unbalanced; Australia’s series starts
m 1997, Greece in 1991, New Zealand in 1997, Norway in 1997, Portugal in 1993, Spain in 1992, Sweden in
1997 Other OCED countries’s series start earlier (before 1984, the date when the spot exchange rate series
start. and hence this date 1984 does not pose further data limit constraints for the computation of carry

trade returns).

“US quarterly consumer price index (CPI) series” is sourced from OECD Main Economic Indicators

(MEL), downloadable via “OECD.Stat Extracts”.

“Quarterly National Accounts” database contains quarterly series on expenditure on services (“P31413:
Services™) for individual OECD countries. This is a component of the expenditure on total private consump-
tion, in the expenditure approach to GDP. For those OECD countries where these series on services expen-
diture arc not available, we substitute them by the quarterly services output series (“B1GG_P-Services”).
These quarterly dataset is quite unbalanced, namely available data of different countries start at quite dif-
ferent thme. Quarterly US consumption data series are very limited, being available only from 1995 onward.
Consequently, the Quarterly US consumption data will be sourced from the US Bureau of Economic Analysis

(sce next),

“Quarterly US consumption expenditures and price indexes” are series from US Bureau of Economic
Analysis. Table 2.3.5. thercin contains “Personal Consumption Expenditures by Major Type of Product”.
Table 2.3.4. contains “Price Indexes for Personal Consumption Expenditures by Major Type of Product”.
We identify the personal consumption expenditures on services (i.e., the component “Services” listed in
these tables) as the US nontraded consumption. We identify the personal consumption expenditures on
other goods (i.e., the component “Goods” listed in these tables) as the US traded consumption. These
quarterly series start well before 1971 (all our empirical studies in the current paper concern periods starting

i 1971 or later).

“Irade in Services™ is from OECD’s International Trade and Balances of Payments database. 'This
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dataset includes the export and import series (in the transactions between residents and non-residents). in
unit of countries’ currencies and at annual frequency, of financial services, construction services and other
services. Financial services cover financial intermediary and auxiliary services (except those of insurance
enterprises and pension funds) conducted between residents and non-residents. Included are intermediary
service fees. such as those associated with letters of credit, bankers’ acceptances, lines of credit. financial
leasing, and foreign exchange transactions. Construction services cover work performed on constiiction
projects and installations by employees of an enterprise in locations outside the economic territory of the
enterprise. Other business services cover various categories of service transactions between residents and
non-residents. They include (i) merchanting and other trade-related services, (ii) operational leasing services
(rental) without operators, (iii) legal, accounting, management consulting, and public relation services.
(iv) advertising, market research and public opinion polling services transacted hetween residents and non
residents (v) research and development services, (vi) architectural, engineering and other technical services.
(vii) agricultural, mining and on-site processing services, (viii) other miscellaneous business, professional and
techuical services. See original data source for further details.

“OECD Structural Analysis (STAN)” database provides, for each OECD country. the annnal nominal
output series (in national currency) and the corresponding deflator series (of OLECD base year 2000) for
various industries. It also provides country-specific annual nominal import and export series (in national
currency) and the corresponding deflator series (of OECD base vear 2000) for these industries. We construa
the real output series by dividing the nominal series by the respective deflator series. The constructed
real output series are thus in national currency, constant price of base year 2000. All rcal outpul =eries
arc detrended using Hodrick-Prescott filter. The following non-nested industries are listed in STAN. with
International Standard Industrial Classification of All Economic Activities (ISIC) Rev. 3 identification
given in parenthesis: Agriculture hunting and related service activities (01); Forestry logging and related service
activities (02); Fishing; fish hatcheries; fish farms and related services (05); Mining of coal and lignite extraction
of peat (10); Extraction of crude petroleum and natural gas and refated services (11); Mining of uranium and
thorium ores (12); Mining of metal ores (13); Other mining and quarrying (14); Food products and beverages (15);
Tobacco products (16); Textiles (17); Wearing apparel, dressing and dying of fur (18); Leather, leather products
and footwear (19); Wood and products of wood and cork (20); Pulp, paper and paper products (21); Printing
and publishing (22); Coke, refined petroleum products and nuclear fuel (23); Chemicals and chemical products

(24ex2423); Pharmaceuticals (2423); Rubber and plastics products (25); Other non-metallic mineral products

(26); lron and steel (271+2731); Non-ferrous metals (271+2732); Fabricated metal products, except machinery
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and equipment (28); Machinery and equipment n.e.c. (29); Office, accounting and computing machinery {30);
Electrical machinery and apparatus n.e.c. (31); Radio, television and communication equipment (32); Medical,
precision and optical instruments (33); Motor vehicles, trailers and semi-trailers (34); Building and repairing
of ships and boats (351); Aircraft and spacecraft (353); Railroad equipment and transport equipment n.e.c.
(352 +359); Manufacturing nec (36); Recycling (37); Electricity, gas, steam and hot water supply (40); Collection,
purification and distribution of water (41); Construction (45); Sale, maintenance and repair of motor vehicles; |
retail sale of fuel (50); Wholesale, trade & commission excl. motor vehicles (51); Retail trade excl. motor
vehicles; repair of household goods (52); Hotels and restaurants (55); Land transport, transport via pipelines
(60); Water transport (61); Air transport (62); Supporting and auxiliary transport activities {63); Post and
teleccommunications (64); Financial intermediation except insurance and pension funding (65); Insurance and
pension funding, except compulsory social security (66); Activities related to financial intermediation (67); Real
estate activities (70); Renting of machinery and equipment (71); Computer and related activities (72); Research
and development (73); Other business activities (74); Public administration and defense compulsory social security
(75); Cducation (80); Health and social work (85); Sewage and refuse disposal sanitation and similar activities (90):
Activities of membership organization n.e.c. (91); Recreational cultural and sporting activities (92); Other service
activities (93); Private households with employed persons (95); Extra-territorial organizations and bodies (99);
High technology manufactures (N/A); Medium-high technology manufactures (N/A}); Medium-low technology

manufactures (N/A); Low technology manufactures (N/A).

1.9.2 Derivations and proofs: Basic model

In the basic model with complete market and no trade friction, in equilibrium the marginal

utilivies of traded consumption equal across countries, which give K FOCs; My = g—?;
o
VIE =100, K. The market clearing condition for traded good presents another equation

o solve for A -+ 1 unknowns; {CH}E_| and Mr. We log-linearize the system to obtain

approximaltive solution in closed form.

Iiquilibrium log consumption (1.3): Plugging the expression (1.1) for U into the FOC

(1.2). and log-lincarizing this FOC around the steady state corresponding to the symmetric
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configuration {6 = &&; 65/ /AH = &£ /AY} yield an approximate equation™
my = AT — pt + (e — V) (wrcl + wndd) — e +logwy.

Similarly, log-linearizing the traded good market clearing equation vields (where A = log A ==
K
log 3y AT

= AH i X AH 11
;—A-CT :5T+YIL;TA — A (1.27)

Substituting ¢! from the first equation above into the second ecuation gives ny, and then

e in (1.3).

Countrv-specific stochastic discount factor (1.5): In pricing country-specific financial as-
sets, the appropriate measures are country-specific consumption baskets (i.e.. national cur-
rencies in the current conswmption-based setting). A country-specific consumption basket is
the lowest-cost bundle of traded and nontraded consumption that delivers a unit of country’s
utility, given the consumption goods™ prices {P}/ = 1, P} (in term of traded goods). The
hasket’s composition {CH, C¥} and value P solve mings cn P = Cl + CH P subject
to [wr(CIH' +wn(CH) ] T 1. Then follows the value of consumption basket in term

of traded good
T

1 1 .
= o+ ]
From this and Ay above follows the identity in equilibrium M, P/" = Afl', where M/T =

oLt
oCH
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= e P(C")™ and C" is the country-specific consumption aggregator.™ The current
price of the country-specific risk-free bond (that pays one unit of country-specific constump-

tion basket at time s) is

1 M MH
Bl = e | = g

5We recall that lower-case letters always denote logarithms; m = log M, X = log A, ¢ = log (". d = log A
and so on.
Tn contrast with the country-specific M7, Mr is the marginal utility with respect to traded good and

is same for all countries in complete market settings.
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[t is this pricing equation that establishes the above A/ as the country-specific SDF of
country M. That is, prices computed using this SDF are in unit of country-specific con-
sumption basket. Log-linearizing m" = log M# = —pt — vC* and using log equilibrium

traded consumption ¢! in (1.3) yield country-specific log SDF (1.5).

Costly trades: Suppose that home country is an importer (case 1) and trades take place,
the variation of social planner’s Lagrangian with respect to non-binding consumptions 3—%?’
,;{{},~ produces FOC (C+ CH) ™ = (1 +0) (CH + CE)™7. Combining this with binding
consumption Cl = A" CH = 0, and market clearing condition Cf + (1 + 0)CE = AF
vields (1.7). From this we can also find home SDP M# = = (A + CH)”™". The risk-
free vate ' is the opposite to expected growth rate of M, rff = —LF, [%’;} Plugging
equilibrium consumption solutions (1.7) into M? | and an application of Ito lemma yields

(assuming independent endowments A, AF)

(1 +9)2(0'H)2(AH)2 + (UF)2(AF)2
[(1+ 0)AT + AF]?

u , m(l‘% 9)/.L11A”+,U.FAF 41
LT AT AR 7+ 1)

which is a more explicit version of (1.8).

Proof of Proposition 1. From (1.5) follow the partial derivatives

am*t A
S5 T TYWn 1—oa(y—cwr|{l- e
N
omt H
Er =W |y = E)W'I'T .
N
FEvidently, ((’)—’:,",i > %’o’% because vy — ¢ > 0 (assumption 1, section 1.3). =
N N

Proof of eq. (1.9) and Proposition 2. We start with the differential representation for
SDE ArH

(a 1

‘ = —ptdt —nfaz"; m" =log mf = dmfl = — <r” + ;2-(77”)2> N VA

A

where " is the home market price of risk. Similar relations hold for A7¥ and m*. Plugging
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H—H<+F

these into the realized carry trade excess return X 2,7 (upper equation in (1.9)), applving

Ito’s lemma and taking the conditional expectation yield

o 1+ d[\[:
E, [XR;M;* J = By | g (L rdt) = (L r'd)
M
1

which is (1.9). Next, combining (1.5) and (1.10) implies the key expression for expected

carry trade excess return (1.11) of Proposition 2. m

Proof of Proposition 3. We first develop (1.13) to obtain more explicit expressions [or

A and Ay
M= Var(fior + Cov(fE. fibn: N = Coe(fF, by + Var(f b,

Plugging {br, by} and {/7, /#} from (1.12) into above expressions yields (1.11) of Proposi-
tion 3 and (1.15) for factor prices associated with nontraded and traded consumption growth

risk respectively. =

1.9.3 Derivations and proofs: Arbitrary trade configurations

This appendix presents technical derivations of the results concerning arbitrary trade config-
urations of section 1.6.1. Here, there are K countries and [ different types of traded goods. A
(generic) traded good of type h is consumed by some subset of K, countries, and a (generic)
country H consume ! types of traded goods (apart from the country’s intrinsic nontraded
good). Consumption tastes {{w,f{,r}h;lw’,(h,w[’j} (with normalization Z;,H wilp W) are

heterogencous across countries. Country-good count, and good-country count are necessarily
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identical
1 K
YKy =) 1" (1.28)
h H

The assumption of complete financial market is maintained here and implies that marginal
utilities of a traded good are equalized across counries that consume this traded good in
equilibrium (this is a FOC in the social planner’s optimization problem). Furthermore, the

phvsical market for this traded good h is also cleared among K, countries,

H
Ay = AH 3? YOl =M. VR VHEK,
HEK)L

H=1,.,K

Thus. in total we have Y-, K" equations™ and Y~ ,; (¥ unknowns consumptions {C}'},

By virtue of (1.28), in principle, the social planner’s optimization alone is sufficient to deter-
mine all equilibrium traded consumption allocations {cf'}. In practice, however, the above
system is highly nonlinear for CES utilities (1.1). To obtain approximate solution we log-
lincarize above system, which yields a set of >, K K" linear equations and that same number

of unknowns,

my, = A= pt - logwfly 4+ (€ = ) (Z wiipel! 5/\1) —ecHl.
H H K, . . 8 _
L”( $, A,\/ (Shj -+ ZHCK, An /\\ - /\h; /\h = ZHI /\H, /\H = log /\”; /\\h = ]Og Ah:

(1.29)
for all o and 11 € K. Albeit linearity, this system is (almost arbitrarily) large due to
arbitrary trade configuration. We first note that we can always reduce this system to |/

equations and [ unknowns. Multiplying both sides of above eq for my, by wf’, then summing

“"For cach traded good h. we have one market clearing equation and (Kn — 1) FOCs (because My, is not
known a priori).
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over I € [ (while keeping H fixed) gencrate a relation between 7wl iy, and ST wl ol

Zw,',,{,,m«z,,,, = (M =pt+logwis) (1 —wih) + (e = )1 — wihwlisl
h
— lewn +9(1 Z wi'rcy

l”

= (/\“ = pl+ logwill{:r) (1- W;\;) + (e =1 - W ) Né“ T L (I‘I’#U)
where we have used the consumption tastes normalization, Zﬁl Wil + wl = 1 and the
definition (1.17) of weighted elasticity of substitution

H 1
ewhl + (1 — Wil

o
Il

This relation is the key bridge that connects the country-specific SDF A (or marginal

utilities of consumption aggregator) to the marginal utilities of traded goods Af,,. Indeed.

by log-linearizing m*’ = lo ]\IH lo ’":ﬁ we obtain
g g g & ac
l”
= —pt — Z“)h Trh + wNO = # — eyl + ~val! Xw,i{»rmh (1.31)
h

where we have omitted the deterministic terms (which are independent of stochastic endow-
ments 0's). Backing out Y wil el in term of 3w/, my from (1.30) and substituting it into

upper equation of (1.29) give an consumption allocation ¢/ in term of {m;}.

l”

m ,
il =o' (N — pt +logwf'y) — (v — )awil sl — Gh ij emg o (1.32)
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Multiplving both sides of this equation by %1:—, summing over H, and plugging it into market

clearing conditions (lower equation of (1.29)) indeed yield { linear equations (i.e., h = 1,...,1)

— Z AH/\H M| Fe Z Aot (M — pt + log wf!)
e ( H K An " HeK An g B
A h
AN AH W
~(y — ) Z oMW — S+ (v - O Z i ot Zu ey, Vho=1,(1.33)
Hek, HEK),

for [ unknowns {my,}. We next solve this system and the equilibrium consumption (approx-
imately) by iLel'ation‘methodA The procedure consists of 4 steps.

step 1o (Zervoth order of my) We conjecture that the global (aggregate) endowment d, 7 of
traded good type i dominates other endowment {J,};,, in the contribution to my,. We
then can decouple the above system and solve for each m,, separately in zeroth order. We
also note that the term my, on the right-hand side of above equation is negligible compared

to term my on the left-hand side. Thus, in zeroth order, Vh = 1,...,1,

AH AH H
my, < ( PR /\h) +e > = (M= pt +logwy!)
HEK), An HeK,,
AH
(v =) Z A—h(yliwgdﬁ — O

step 20 (First order of my,) We substitute the zeroth-order mglo ) above into right-hand size of
(1.33) to obtain first-order expression for m; (we again omit all deterministic terms, which

are independent of stochastic endowments §’s)

H
mf' = S (51»‘,’1' + (v =0 Z}Iehh “«,, ol Z Wi T5/ 1)
""" (v =« ZH&I\",, /\, (“‘)NO — ¢ Z WJJ ZJE}\ A; JW}<I51J\1>

T oofficie ASSOC1E ; ) " AY HOH
Phe coefficient associated with 6, 7], is (v = €) Yo pen,nn, &, @ @) 80 endowment of

traded good ol type j contributes more the marginal utility ), of good h when there are
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more countries H that consume both goods. To be consistent with the log-linearization
approximation, we do not need to go beyond the iteration’s first order.

step 3: (Traded consumption allocation ¢;') Substituting the first-order vuﬁ,,,” above into
(1.32) yields equilibrium consumption™ ¢}’ in (1.16).

step 4: (Country-specific log SDF m*) Substituting the first-ordoer mflw above into (1.31)

vields equilibrium consumption ¢} in (1.18).

1.9.4 Derivations and proofs: Incomplete markets

This appendix presents technical derivations of results concerning incomplete financial mar-
kets of section 1.6.2, in particular the equilibrium consumptions (1.22). (1.23). Substituting
the conjectured consumption allocation (1.21) into (1.20) yields a more explicit expression

for the log-linearized SDF

H
o9 a y , , cH }: va o
dNLT = —a“ﬁ — a‘]‘{‘dé[ — (") — C)J.)N + Q—H dC)N — a_H(l()‘ :. ( lv; 1)

H HH HF
b } b
B F#H

[n the current setting (K countries of homogeneous size with a single traded good). the
market clearing condition in log-linearized form is a special case of (1.27) (where all A/ ave

identical) and reads Y j_, el =3 op el + Yopgp ¢ = Kor = Klog K. which implics

K
D dcfl =N " defl + Y def = Kdor.
H=1 HeD H¢D

where d denotes the difference operator acting between ¢ and ¢ + 1. Substituting the con-
jectured equilibrium consumption allocations (1.21) in above equation vields the a set of

constraints for the solution parameters

Sa'=rK Y g¥=0 > =0, vF (1.35)
H H H

"8\e note that the log-linearization approximation is accurate up to terms of order O(wx). Owy). Con
sequently, we disregard all terms of order O((wn)?), O((wr)?). O(wrwn).
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On the other hand, substituting dmf in (1.34) into the law of one price (1.19) for —g—% implies

that the [ollowing expression is the same for all f,

th H aH
log B” = (Coy, [d’mT’tH,(ST)H]] = ——Fom, VI
Combining above two equations immediately yields
Kol 1
e SV vy sy (1.36)
Py Y+ Wy

Similarly, the law of one price (1.19) for St

F
BP L implies that log ( ) = Covy, [dnl’f{‘vt-lf-]v 5]’\71“]

is identical for each developed country I € D and all countries H. Using (1.34), we have

bFF bHF

(v - Qwy + — = — foreach "€ D, forall H # I
(63 Q

When combined with the constraint (1.35) above, this yields

FF _ _(n _ __a
b V_ (v = Jwhal (1 Zfim’)" VE €D (137)
YIE = (v — Owlial anl_"I) VEeD VH#F

=1«

In particular, given a choice of F' € D, we note that ; is the same for all H # F.

Next, first substituting conjectured solution (1.21) into (1.34), and then into the law of

one price (1.19) for bond By, imply that

i

g 1 1 2 .
A = —-%(/—cw,’vlui],'#—ZbHFu\,—E Z(bHP) (oh)?
bHH

S0 = PR — (7 — ol (o)

is the same for all 11, Using (1.37), we separately rewrite the above expression for emerging
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and developed economies,

H

g
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fep 2ara @ 2 FeD =
We note that the expressions within the square brackets are identical (i.e., independent)
for all countries H (either H € D or I ¢ D), and thus can be disregarded. The above

requirement imposed by the law of one price on bond By, thus becomes

9 won 1 2 H nb”” 1152
{45+ 0= ol = S Pl - (- ol o
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This system has the following simple solution (of pooling type within developed cconomics.

and within emerging economies), that also satisfies the constraint 3~ ,, """ = 0 in (1.35).

T~ VIl ¢ D.F ¢ D (1.11)
bt = %ﬁ%a” VHeD. F¢D .

and the appropriate country-specific parameters g’ to assure all equalitics in 1.40. 1%i-

nally, substituting the solution parameters in (1.36), (1.37), (1.41) into (1.21) we obtain the
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equilibrium consumption allocations (1.22), (1.23) for emerging and developed economies,

respectively.
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Chapter 2

The Behavior of Savings and Asset
Prices When Preferences and Beliefs

are Heterogeneous

(in collaboration with Richard Zeckhauser)

2.1 Abstract

This paper establishes new asset pricing results when agents differ in risk preference, time
preference and/or expectations. It shows that risk tolerance is a critical concept driving
savings decisions, consumption allocations, prices and return volatilities. Surprisingly, due
to the equilibrium risk sharing, the precautionary savings motive in the aggregate can vastly
exceed that of even the most prudent actual agent in the economy. Consequently, a low
real interest rate, resulting from large aggregate savings, can prevail with reasonable risk
aversions for all agents. One downside of a large aggregate savings motive is that savings
rates become extremely sensitive to output fluctuation. Thus, the same mechanism that
produces realistically low interest rates tends to make them unrealistically volatile. A powerful

isomorphism allows differences in time preference and expectations to be swept away in the
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analysis, yielding an cquivalent, ecconomy whose agents differ merely in risk aversion. These
results hold great potential to simplify the analysis of heterogeneous-agent economics, as
we demonstrate in quantifying how asset prices move and bounding their volatilities. All
results are obtained in closed form for any number of agents possessing additivelyv separable

preferences in an endowment economy.

2.2 Introduction

The genius of the market is its ability to transform the holdings of agents with heterogencous
preferences and endowments into outcomes that are superior for all. When time and subjec-
tive beliefs enter the picture, agents’ claims shift across time and state in patterns that reflect
both aggregate shocks and their beliefs, and time and risk preferences. Aggregate measures
in the cconomy, such as interest rates and saving rates, reflect the outcome of agents who

trade within such dynamic market processes.

We assume, as is common in the consumption-based equilibrium asset pricing literature.
that agents start with birthright endowments of a risky asset. i.c.. the contingent claim on
its stochastic dividend stream. The dividend is interchangeably referred to as endownient.
output or supply hereafter. In addition there is a riskless asset created by the agents of zero
net supply. The price of the risky asset and the interest rate are determined by the supply
and demand of the market participants. Those participants possess additively separable
utility functions. As the world unfolds, they allocate their available funds - asset values plus
asset returns - among consumption and holdings of the two types of assets so as to maximize
their discounted expected utility. Thus agents continually shift their portfolios as asset prices
rise and fall in response to the economy (endowment). Such shifting would not take place
if agents held identical preferences. Note agents are better off in this heterogeneous world.

They could mimic a homogeneous world by just refusing to trade.

Our attention to heterogeneity in preferences is intended to capture real world richness.

and to study the evolving patterns when diverse agents interact. Most prior analyses have

100



eschewed heterogenceity. therehy sacrificing relevance to escape the technical intractability
that normally accompanies attempts to allow for significant agent differences. We were able
to define a new but straightforward construct that characterizes the dynamic contribution
of individual agents to the demand for assets, and also identifies how current asset returns

influence agents’ optimal allocations.

We build on our analysis of differences in preferences to examine how disparate subjective
beliefs about the economy’s uncertain fundamentals also affect outcomes. Whatever the
sources of differences, the risk-averse agents share the unavoidably variable aggregate output
in a manner that smooths out their personal consumptions. Naturally, more risk averse and
impatient consumers respectively get smoother and earlier consumption, but they get less

and ultimately much less later consumption.

All ol our results are obtained in closed form. We show that all aggregate quantities of
interest can be expressed as functions of agents’ equilibrium consumptions, which in turn
respond to those aggregates. Agents whose consumptions are most sensitive to shocks, not
surprisingly, contribute predominantly to influence the behavior of the economy as output

Huctnates.

The risk tolerance measure that we advocate in the current paper captures this intuition
of risk-sharing mechanism. It is defined as individual 4’s marginal propensity {%}, to

1

consume ¢ out of the aggregate endowment w. It is proportional to individual risk tolerance,
and shows that more risk tolerant agents embrace more volatile consumption paths (i.e.,
larger response of -‘3—‘; to an output shock) in return for greater shares of the endowment
when times are good. It proves both convenient and reassuring that the economy’s implied
aggregate (i.c., market-revealed) behavior toward uncertainty, such as the risk premium
and precautionary savings behavior inferred from the market prices, and the volatilities
ol its bond and stock returns can be readily expressed in terms of means and variances
under this measure. For this reason, throughout this paper we will interchangeably refer
to these aggregate behaviors as market-revealed, and market-equivalent characteristics of a

fictitious equivalent single individual representing the entire body of agents. This aggregation
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is feasible in our complete-market economy.

In the special case of heterogeneous CRRA agents, it is well known that aggregate risk
aversion decreases with aggregate consumption. Similarly, given that more risk-tolerant
agents invest relatively more in the risky stock, a positive shock boosts their relative position
in the economy, thereby making them more influential. Observed risk tolerance thus increases

in good times, and vice versa, due to ownership shifts.

Our risk tolerance measure makes available many parallel and intuitive vesults for the
cconomy as a whole on time preference, precautionary savings motive, and the response
of aggregate savings to aggregate shocks. A simple decomposition identity illuminates the
way. Market-revealed (aggregate) risk aversion is a weighted average of the individual risk
aversion in risk tolerance measure, implying that its response to shocks is merely the aver-
age of individuals’ responses plus the respounse of the risk tolerance measure itself to such
movements. This latter term arises from the equilibrium risk sharing among agents, and is
responsible for many noteworthy effects in the aggregation dynamics presented below. i, as
is usually assumed, there is a long-term upward drift in endowments, risk tolerance, despite

bouncing around with output shocks, will drift upwards as well.

Like risk aversion, the market-revealed time discount factor is the weighted average value
ol individual counterparts in the risk tolerance measure. As time rolls forward, more patient
agents - who have smaller discount factors - are more willing to defer consumption. Asscts
shift to their hands, which drives down the aggregate discount rate. This phenomenon
exerts downward pressure over time on market-revealed time preference in the economy. Of
course, the interaction with aggregate shocks and risk preference can amplify or dampen the

1

pressure.! Our decomposition identity yields simple expressions for how the discount rate

moves with time and supply shocks.

Our story is a story of risk sharing and wealth re-distribution as uncertainties resolve and

time passes. Surprisingly, these shifts allow market-revealed characteristics for the equivalent

L1f more patient agents are more (less) risk tolerant, positive shocks will amplify (dampen) the pressure.
and vice versa for negative shocks.

102



agent 1o lie outside the range of values held by the agents in the economy. That is, if one
were to posit that the observed outcome came from a population of homogeneous agents,
the hypothetical representative agent could have values for his preferences or actions that

lay bevond those for any agent in the true economy of heterogeneous agents.

Precautionary savings illustrate. The equivalent agent may have stronger savings motive
than would even the most prudent actual agent in the heterogeneous world. The explanation
is straightforward. Agents facing stochastic output save for a rainy day. A world of het-
erogencous agents injects an additional layer of dynamic uncertainty in the economy, since
the standings of individuals in the economy change stochastically. This additional dynamic
behaves as if it raises the demand for precautionary savings. Thus, we point out that, in
heterogencous-agent economies, the large market-revealed precautionary savings motive is
not necessarily associated with the dominance of the precautious agents. Rather, the sav-
ings motive is high when risk-sharing dynamic between agents is important, i.e., when agents
are sufficiently different in their beliefs, or in risk and time preferences. To illustrate, the
risk sharing can push up market-revealed precautionary savings motive even when the mean
value of risk aversion in the economy drops. It is well known that precautionary savings
powerfully push up bond values and lower interest rates. Then it is possible and natural
that the interest rate moves in the same direction with the economy’s average risk aversion

when agents differ in their characteristics.

In a heterogeneous and temperate? world, savings and savings motives are also highly
sensitive to endowinent fluctuations: they increase when economic prospects dim and en-
dowments shrink.  This phenomenon is consistent with the observed extraordinarily low
real interest rates observed in most developed economies in the period following the 2008
meltdown. Aggressive monetary policy surely contributed, but savings had also skyrocketed
due to precautionary concerns. Another remarkable implication is that when interest rates
are low. they tend to be unstable in the current general additive utilities setting. This is

preciscly because, as discussed above, the large savings motives responsible for low interest

2TPenperance is a determinant of portfolio choices. It is proportional to the fourth derivative of the utility
function. We will characterize this behavior under uncertainty more precisely in a later section.
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rate is induced by substantial level of risk sharing and hence is highly sensitive to cconomic
fluctuations. In other words, large savings imply large savings cyclicalities in the models.
We establish an analytical and almost universal lower bounds for interest rate volatilitics.
Within the additive utility framework, our investigation thus uncovers, both qualitatively
and quantitatively, the insightful role of savings cyclicality in the long-standing risk-free rate
and equity premium puzzles of macroeconomics and finance. In retrospect, it also explains
why promising models addressing these puzzles in the literature need to adopt cither features

beyond additive utility (e.g., habit formation, recursivity) or richer time-serics properties for

aggregate supply and consumption.

Furthermore, our results on the dynamics of risk aversion and precautionary savings.
and their consequences for the movement of savings with the economy, have significant
implications for determining the direction and magnitude of volatilities in stock returns.
The underlying logic is clear: saving decisions reflect portfolio choices, which are intimately
related to the volatility of all asset prices, which in turn are influenced by the sloshing
of assets among different classes of agents. This savings dynamic (more specificallv. the
savings sensitivity to cconomic fluctuations) plays no role in simple and popular models of
the economy that employ a representative agent or two classes of agents holding power utility
functions. The critical role of the cyclicality of savings gets obscured in such models. In
our models, with a plethora of heterogeneous agents, the cyclicality of savings stands out
for its influential role quite beyond risk aversion and precautionary savings. The extent of

heterogeneity, i.e., how greatly agents differ, turns out to be critical.

In any market-exchange economy, prices are determined by both the growth rate and
volatility of output (endowments in our models), and by the participants’ tastes for risk and
tradeoff across time, as well as their beliefs. As far as consumption and risk sharing are
concerned, our formulation identifies a simple tradeoff between these two key, but secemingly
quite different factors. That is because an interesting duality emerges. An cconomy whose
agents differ on time and risk preferences is isomorphic to another economy whose agents

differ merely on risk aversion, though the evolution of the endowment in the second economy
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will differ from what it is in the first. The isomorphism means that consumption partitions,
risk sharing between agents, and market-revealed characteristics are identical in the two

ccononiies.

This isomorphism potentially enhances our ability to study economies where agents differ
on multiple dimensions. First, the seemingly complex dynamic interactions of market partic-
ipants in an economy with heterogeneous agents are reduced to those of simpler economy but
with a modified output process. In particular, there proves to be an intimate connection bhe-
tween this heterogeneity reduction and the market’s "natural” selection (that is, the survival)
of agents in the economy. Second, employing this isomorphism may immediately pin down
the direction in which additional classes of heterogeneity or expanded heterogeneity (e.g., a
mean preserving spread) within an existing class will affect the volatility of asset returns. If
the modified volatility of the isomorphic economy’s output is lower than that of the original
cconomy, that implies that the expansion in heterogeneity in the original economy tend to
shrink the volatility in asset returns. This is simply because the volatility of asset prices
increases with output volatility in the first order. The powerful implication of this result is
that should endowments change, our bounds on asset return volatilities can be immediately
adapted from a world where there are mere differences in risk aversion to one where differ-
ences i time preference pile atop those. Our later analysis also allows individuals to differ
in their beliefs on how endowments will evolve, what might be thought of as their levels of
optimism. Morcover, the isomorphism extends. That is, we can add differences in beliefs to
those of time preference and risk aversion, and still find another equivalent economy whose
agents differ merely in risk aversion. In other words, the disparities in time preference and
optimism can be rotated away by a transformation in the evolution of the output process.
Market-revealed characteristics toward risk taking and savings will be identical in the two

CCONONIES.

The paper is structured as follows. Section 2.3.1 reports briefly the empirical statistical
monients (means and volatilities) of interest rates and equity market returns, which have been

extensively documented in literature. We also discuss recent estimates of distributions of



risk aversion and time preference in the population. Not surprisingly, these show substantial
degrees of heterogeneity among individuals. Section 2.3.2 positions our work and findings
with respect to the related literature. Section 2.4 derives various equivalent forms of the risk
tolerance measure and discusses their merits in the aggregation analysis of the economy with
heterogencous agents. Section 2.5 analyzes the effeet of savings behaviors on interest rate
volatility and identifies substantial lower bounds given the premise of large savings. Section
2.0 carrics out similar analysis on cquity return volatilities and derives a sufficient condition
for excess equity return volatilities, as long observed in data. Section 2.7 shows and analyzes
the equivalence between the effect of heterogeneitics in time preferences and beliefs, and
an appropriate modification in the output statistics. Section 2.8 concludes. All proofs and

derivations are given in the appendices.

2.3 Empirical facts and related literature

This section provides factual material to motivate our study of the linkage between risk
sharing and equilibrium asset prices given heterogeneous preferences. First, we recount the
observed behaviors of returns on key asset (risk-free bond and stocks). Next, we provide
recent evidence from literature surveys showing sizable heterogeneity of markel participants’
prelerences. Models employing homogeneous agents do not capture the richness of the world

in which we live. Finally, we discuss the literature most relevant to the current work.

2.3.1 Estimates of asset returns’ moments and preferences

Returns on equities and risk-free assets are among the most documented quantities in the
empirical finance literature. The behaviors of these returns expose stylized facts that can be

"puzzling” from the consumption-based asset pricing perspective.
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Table 2.1: Consumption growth, and real return on equity and short-term risk-free debt
(annual %): recent history

—

o e Japan UK uUs
Quantities (1970.2-1999.1) | (1970.1-1999.2) | (1970.1-1998.4)

M;(»;Vxlwlnption mean 3.20 2.20 1.81
growth stddev 2.56 2.51 0.91

" real return mean 4.72 8.16 6.93
on cquity | stddev 21.91 21.19 17.56
“eal return mean 1.39 1.30 1.49
on bills stddev 2.30 2.96 1.69
Ecuity 3.33 6.86 5.44

I)l'el'llilllll

“Source: Campbell (2003)
Risk-free rate and return on equity

Table 2.1 reports the recent historical means and standard deviations of aggregate consump-
tion growth. returns on equity and short-term risk-free assets (bills), for Japan, UK and US.

All retwrns ave real and in annualized percentage values. For further illustration, table 2.2

Table 2.2: Equity premia (annual %): long history

Japan UK Us
(1900-2005) (1900-2005) (1900-2005)
Equity mear 9.84 6.14 7.41
premium® | stddev 27.82 19.84 19.64

“Sources: Dimson, Marsh and Staunton (2008)

also reports long historical equity risk premia for these countries. In all three countries, for
both recent and long histories, real risk-free rates are both low and stable, compared to much
higher and more volatile returns on equities. This is the risk-free rate puzzle (Weil (1989)).
Similarly, equitly premia are also large and volatile vis-a-vis low and stable aggregate con-
swmption growth.* This is the closely related equity premium puzzle (Mehra and Prescott

(1085)).

Dividend growths are also much less volatile than returns on equities.
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Heterogeneity in risk and time preferences

Our analysis includes heterogeneity in both risk and time preferences, thus it is important

to determine whether there is heterogeneity in such dimensions in the real world. Table

Table 2.3: Heterogeneity in Individuals’ relative risk aversion R

RRA Standard
Country Method P deviation
Use Surveys 12.07 16.58
Us® Surveys 8.2 6.8
Norway*® Surveys 3.92 2.94
Us Actual financial decisions | 2.85 3.62

*Sources: Barsky, Juster, Kimball and Shapiro (1997)
bKimball, Sahm and Shapiro (2008)

¢ Aarbu and Schroyen (2009)

4 Paravisini, Rappoport and Ravina (2010)

2.3 reports the results of some recent studies on the distribution of individuals™ relative visk
aversion, R = i“—gg/%:ﬁ, which have been conducted on the US and Norway populations.
The first three estimates are obtained from responses to different survevs, over diflerent
periods. The surveys emploved various forms of hypothetical gambles. The last estimate
is inferred from actual financial decisions of investors in an online person-to-person lending
platform. Readers should consult the original sources for details. Clearly, all four studies
show substantial heterogeneity in the level of relative risk aversion reported by either survey
respondents or actual investors. Table 2.4 reports estimates for the distribution of individ-
uals’ discount factor 6 = -%%% Both studies found differences in time preference reported

by the respondents.

The sizable dispersions in preferences found in these studies motivate our current study

of the impacts of heterogeneity on equilibrium asset prices.
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Table 2.1: Heterogeneity in individuals’ time discount rate ¢ (annual %): Estimates from

surveys
, Mean
Country Method Number}of disc. rate Stal.ld‘iwd
observation 5 deviation
us® Surveys 138 10.6 16.58
Ust Surveys > 8000 7.5 2.4

“Sources: Chesson and Viscusi (2000)
Y Alan and Browning (2010)

2.3.2 Related literature

Owr paper is most closely related to heterogeneous-agent equilibrium models addressing price
anomalies in financial economics literature. The interest on price puzzles has skyrocketed
since the seminal papers by Mehra and Prescott (1985) and Weil (1989). Mehra and Prescott
(2008) s dedicated handbook offers the most extensive single source of up-to-date references
on this important and vibrant topic. The current paper does not attempt to provide new
solutions; it instead contributes to a deeper understanding about the nature of risk-free rate
and cquity premium behaviors within the classic additive utility setting, a setting in which
these phenomena are most puzzling. First and conceptually, we shed new light on the crucial
role of the cyclicality of precautionary savings in shaping equity and bond return dynamics.
Scecond and analytically, we identify substantial lower bounds on interest rate volatility when
mterest rates are desirably low. Together, these demonstrate the hard-to-reconcile nature of

low and smooth interest rates observed in real-world economies.

In the finance literature, the heterogeneous-agent formulation appeared early on in Ben-
ninga and Mayshar (2000), Dumnas (1989), Wang (1996) and others, where agents differ in
their risk aversions. Helerogeneity in market participants’ characteristics has evolved into
an attractive topic of active research. which now also incorporates differences in time prefer-
ences (Gollier and Zeckhauser (2005), Jouini and Napp (2007), Lengwiler (2005)), beliefs in
the fundamentals (Basak (2005), Detemple and Murthy (1994)), or all of the above (Bhamra
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and Uppal (2010), Lengwiler et al. (2005), Sandroni (2000), Yan (2008)). Heterogencity
generates non-trivial risk sharing patterns and consequently, has rich implications for price
dynamics (Bhamra and Uppal (2009), Dumas et al. (2009), Chan and Kogan (2005). Zap-
atero (1998)), portfolio choices and trading (Gallmeyer and Hollifield (2008), Longstall and
Wang (2008)), and market selection (Blume and Easley (2006), Kogan et al. (2006) and
(2009)). In contrast with these works, our paper points out an intuitive tradeoff between
agent-based heterogeneities and macroeconomic conditions, which is helpful in analvzing

agents’ equilibrium interaction and the resulting price dynamics mentioned above.

The degree of heterogeneity in the economy is plausibly the key determinant of the
magnitude of heterogeneity’s impact. In particular, Chen, Joslin and Tran (2010) study
the impact of heterogeneous beliefs in the likelihood and severity of rare events (e.g.. crises.
disasters and alike) on asset prices. They point out that the risk premiwum in the economy
may drop even when the average level of pessimism among agents surges. This is becanse
there, the driving force is the dynamic dispersion of beliefs and the associated risk sharing.
but not just the mean value of the belief distribution. By showing that subject to sufficient
heterogeneity in risk aversion in the economy, the equilibrium interest rate may even increase
when the average level of precautionary savings motives among agents surges. the current
study complements their results in identifying another setting where the risk sharing induced

by heterogeneity yields spectacular effects.

2.4 Risk tolerance measure and aggregation

In any economy, be it one of homogeneous or heterogeneous agents, risk taking and savings
are determined by the behavior of individual agents. In a heterogeneous world, the dynamic
competitive interactions among such agents play a major role in determining aggregate out-
comes. To address the interactions that are determined by risk taking propensitics, and the
ultimate consequences for various aggregates, the concept of risk tolerance proves to be both

extremely powerful and convenient. It precisely measures how agents’ consumptions move
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with changes in the aggregate endowment. This section uses risk tolerance measures to derive
key market-revealed quantities, including risk aversion, time preference and precautionary
savings. The approach neatly separate the contributions of agents’ characteristics from their
interactions. Many interesting aggregate behaviors of the economy, some known others new,

then can be readily elucidated.

2.4.1 The setting

To develop intuitive results on aggregation, we first investigate a general endowment econ-
omy with many classes of agents. Within each class, agents have identical preferences,’
but across classes agent risk aversions and time preferences differ. Throughout the paper,
the superscript @ denotes quantities associated with agent ¢. Agents maximize their general
tiime-separable utilities, which are increasing, concave and three-time continuously differen-
tiable. Agent i's relative risk aversion (RRA) R'(¢,¢') and subjective discount factor &'(¢, ¢*)
generally can be functions of consumption ¢* and time ¢. Alternatively, we will also study
the canonical settings with power utilities to make precise the model’s key results. For that
case, agents” RIRAs are constant and simply denoted +*, instead of R¥({, ¢*) reserved for more
sencral (non-CRRA) settings. At the outset, each agent i is endowed with a fraction 65(0)
of a visky stock payving a stochastic dividend stream w(t). The dividend, which reflects the

state of the cconomy, follows a geometric Brownian process (GBM)
s = 4 o™ dZ () = w(l) = w(O)(e(““y'(“w)z/m("’mZ(”. (2.1)

When (= (0")?/2) > 0 the economy is growing in the long term (limy_,o, Folw(t)/1w(0)] —
x a.s. ). A single share of the risky stock is available in the economy for agents to trade. In
addition, there is a zero net supply of a riskless asset (money market account, also loosely

referred to as bond below) created by the agents. Agents trade these two assets and choose

For this reason, to simplify notation, hereafter we simply use agent (being representative of her own
homogeneous class) in place of class (of identical agents).
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consumption levels to maximize their expected utilities subject to a budget constraint® and
market clearing

7
max f wt(cH(t), 1)dr.
max iy [ (c'n) )

s.t. c(t)dt = 05 () [w(t)dt + dS(t)] + 05 (8) B(t)r(t)dt — dw'(t), (2.
and Zﬁg(t) =1 Z@ig(z‘,) =0 WV,

[N
o

where S(1), B(t) = exp(fol’ rdt) and w' = 05(0)B(L) + 05(1)S(l) respectively denote stock
price, bond price and wealth processes.® Since the market is complete, there exists a sct of
positive constant utility weights {A'} such that the above optimal individual consumption

plans also solve the equivalent-agent optimization (see Negishi (1960))
Lot |
VA({w}) = max E, —,/ w'(ct(t), t)dt  s.t. ) = w(t) Vi 2.3
({w}) = ma ZA (c'(1). 1) Z() (1) (23)

As the aggregate constraint holds at all time and states, the optimization problem (2.3) can
be equivalently cast in a static formulation at each time and state (IKaratzas et al. (1987).

Cox and Huang (1989))

vMw(t). t) = max » —ut(c(t).t) st Zci({,) = w(l). | (2.1)

>Aggregating the budget constraint (2.2) over all agents we obtain Y, dw'(t) = dS(1), i.c.. the total
change in agents’ wealths equals the change in value of the single share of stock. which is the net asset of
the economy.

5Given the infinite time horizon T — oo, Lengwiler, Malamud and Trubowitz (2005) shows that this
cconomy’s necessary and suflicient. condition for equilibrium existence is precisely the boundedness of every
agent’s expected utility of aggregate endowment,

Ey {/ u"’(’LL)(l,)J,)clll <oo Vi
0

Note that this condition also assures that the stock price is finite.
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Combining the first order equations with the envelope thecorem we obtain the following

system of equations satisfied by optimal consumption plans

1. .
;\zvti(cl(t), t) = vy (w(t), t) Vi, (2.5)
Throughout the paper, subscripts denote partial derivatives. Thus, f.(z,y) = aféi’y),

2.4.2 Risk tolerance measure

In the cconomics of uncertainty, the ways agents optimally allocate their consumptions across
states and time are determined respectively by their relative risk aversion (RRA) and pure
time preference (ak.a. subjective discount factor). It is convenient to adopt these standard
characteristics for an equivalent agent of the aggregate economy. Given a complete market,
these characteristics are revealed unambiguously from observed prices, and are attributed
to this equivalent agent as if there were only one class of agents in the economy. For this
reason. hereafter R, 6 and T are respectively referred to as risk aversion, discount factor and

risk tolerance of the market-revealed equivalent agent (hereafter, equivalent agent).

— Wy (W, 1)

R ) = e y R(w.t) = : 2.6
(c'. 1) o D) (w. t) . D) (2.6)
—ul (ot — v (W,

§(cht) = —————u“"(.( ) +— J(w,t) = Tl 2) ((u ),
wl (et ) Vo (w, 1)

e —ui(ct) — Uy (w, t)

Tile ) = el Tlw, 1) = 27
(c'.0) wl (1) (w.1) Ve (W, 1)

The apparent analogy of these market-revealed characteristics with those of single-agent
cconoly aims to capture the whole economy’s attitudes, such as discount factor 9, risk
aversion R and utility function v(w), as of a single equivalent (representative) agent’s. In
particular, in the aggregate the above definitions implies 7" = %, a relation that also holds
at individual level.

Following Wilson (1968), there exists a simple aggregation relation on risk tolerance (see
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also proposition 4)
T(w,t) =Y T'(c.1).

which motivates the choice of the risk tolerance measure {p'} as micro-cconomic building

blocks of all these market-revealed characteristics

. T (c',t) T'(c' t) ,
p'(c(w, t),1) = = = e
(w00 =0y S~ 2
This implied normalization together with p* € [0, 1], which holds when all agents arc risk

averse (T* > 0 Vi), qualify {p'} as a standard measure.

This measure is formulated to precisely capture a key concept that risk tolerant agents
play predominant role in consumption and wealth distribution dynamics. To sce this point.
we note the following very interesting and intuitive relation

pc(w,t),t)=¢

“w

(w. 1), (2.7)

This identity shows that risk tolerance measure exactly characterizes the individual optimal
consumption responses to an aggregate endowment shock. In equilibrium, more risk-tolerant

Tl
T

(Le., larger =) agents embrace relatively less smooth consumption paths (i.c.. larger o ).
and necessarily contribute more to economy’s reactions to output fluctuations. In compar-
ison, we note that neither the least risk averse agent (min{R'}) nor the one who consimes
most (max {%}) invariably put up strongest response to the aggregate shocks. This signifies
the unique role of risk tolerance measure in determining the risk sharing and consumption
partition among agents. As agents save and trade accordingly to realize their optimal con-
sumption plan, asset prices and their volatilities necessarily are contingent on this measure.

Establishing this link more quantitatively is a central theme of our subsequent analyvsis.

Being functions of equilibrium consumptions, {p*(c}, 1)} entirely capture both aggregate
fluctuation effects and the dynamics of the competitive interaction between agents. The

mere fact that p > 0 Vi (when all agent are risk averse) immediately implies a known
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and important result that no agents cut their optimal consumption when the aggregate
endowment increases, dw > 0. Furthermore, agents whose optimal consumptions respond

7

most strongly to an aggregate endowment shock will dominate in this measure,” as the

following concise result implies.

Proposition 4 The equivalent RRA, discount factor and risk tolerance of the entire econ-

omy arc related to their single-agent counterparts as follows

H('wj L) = Z #?Hl(giv L) — E{pt}[f{t], (28)
5(’&17 f) = Z I_,_(_Cl’_t))_(st((lJL) — E{pl}{(si]’
T(w,t) = ZTi(ci,t),

where 12,4]. . .| denotes the expectation under risk tolerance measure {p' = iT—'} This result
generalizes the time preference aggregation obtained in Gollier and Zeckhauser (2005) to
stochastic settings. (See also Lengwiler, Malamud and Trubowitz (2005) for a discrete-time
formulation of the results). Both market-revealed RRA and discount factor are expressed
succinetly as averages in risk tolerance measure.® These representations elucidate many
important properties of this economy. Indeed, (2.8) indicates R, 7 > 0, and then v, >
0, 0y < 0 respectively by virtue of egs. (2.5), (2.6), guaranteeing the desired risk-averse

and increasing utility for the equivalent agent.

In the stochastic and complete market, agents perfectly share their risks by taking
stochastic positions in both stock and bonds. The optimal consumption plans thus are

necessarily stochastic, and so are their risk tolerance measures (also referred to as weights),

pt == ¢! . The resulting equivalent preference characteristics e.g., I?, 4, are stochastic, not nec-

u

essarily because their agent-based counterparts e.g., R, §* are stochastic, but rather because

their dynamics weights {p*} bounce stochastically. Indeed, in a CRRA utilities setting, the

- . . . . . . (w,t . .
"The most widely-used heterogeneity measure in literature is consumption share {‘lf}—‘(‘;)l}, which is less

expressive with respect to the rich dynamics of equilibriuin consumption’s changes under supply shocks.

®That is, weighted averages, with weights being the risk tolerance measures %
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individual £, 6" are constant, yet R, § in (2.8) arc not so, obviously. To understand those
dynamics more precisely, it is best to see how the risk tolerance measure changes under
aggregate supply shocks

dpi('w,t) — Ci (U) t) —

T Ci;’/) i i . .
o . ( S (TH(c 1) = Tu(w. 1)) . (2.9)

(T'(w,t))

which simplifies in the CRRA utilities setting to

g ey (1 [ e L (1 T
TR \y Y Ty \y o T )

These imply that the least risk averse agent 7 (4 = ™) has convex consumption ¢, > 0

w

(2.10)

and her weight ¢, unambiguously increases with aggregate endowment. The converse holds
for the most risk averse agent (4™%*). In between, the transition is monotonic: percentage
changes in less risk averse agents’ weights ¢!, are more dramatic than those of more risk averse
ones. The stochastic nature of risk tolerance measures is induced by risk sharing mechanism
and has profound implications for the volatilities of all market-revealed characteristics. as
the latter are some form of weighted averages in this measure. This observation is reflectod

in the following result, which provides the basis for many findings presented below.

Proposition 5 Suppose {a'} are some agent-based characteristics. The response of lhe
resulling risk-tolerance aggregate Eyyila’] to an aggregate supply shock dw can be decomposed

mto two components

(')E{p:} [(l,i]

al T p”l.’ k3 s
———'du)—— = b{p"}[aur]+coll’{p’} (;}*(I) . (_)11)

Of special interest, the second component is exclusively associaled with the dynamic behavior

Pl = %); of indwidual risk tolerance p'(w,t).

To a lesser degree, the first component is also related to risk-tolerance measures, because
1

al, = a'c, = a'p’. But it is primarily associated with the dependence a*(c'. 1) at the agent-

specific level at the onset. The mechanism underlving this decomposition is very intuitive.
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For a simple illustration, let us continue with eq. (2.10) and assume that all the o' are

constant. Dividing both sides of (2.10) by p* = T*/T yields

P 1 ( 1 )
=t — = Ty (w,t) | .
p T T\ e

Clearly, ~' < ~7 = %— > %},—, or percentage changes in weights p' are greatest for agents
with lesser risk aversion v'. This is because under a positive shock dw > 0 to the aggregate
endownment, less risk averse agents, who invest disproportionally in the risky contingent claim
on aggregate wealth (stock) become relatively better off, and contribute more to the welfare.

Indecd, in this CRRA framework, (2.11) simplifies to

8E{P"} [al] 1 1 ;
- C Vi -, g .
dw Tlw, 1)~V \ 5 ¢

The situations when a* > o/ for v' > 47 and vice versa are referred to as comonotone.

Similarly, anti-comonotonicity means a* > a/ if 4* < 47 and vice versa. To illustrate, when o'
is the discount rate ¢', comonotone relations represent the normal case where less risk averse
agents also tend to be more patient. We see that when {a'} and {7’} are comonotone,
the mean value Iy, [a'] decreases unambiguously with aggregate endowment w. This is
preciselv because smaller values of @' (associated with smaller 4* by co-monotonicity) have
relatively larger weights after a positive shock increases w as we argued above, and thus drive
down the mean value. The opposite holds when {a'} and {~'} are anti-comonotone; larger
a' (associated with smaller 4 by anti-comonotonicity) have relatively larger weights after a
positive shock increases w, which makes mean value E{pl}[ai] increases unambiguously with

aggregate endowment w.

Two nhmmediate applications concern the market-revealed risk aversion R and discount

117



rate ¢ of proposition 4, specialized to the CRRA utilities setting”

1 1
wlw, t) = ——C i o , 2.12
Ry (w, ) Trw t)(‘ov{p} ('y 77,) <0 (2.12)

. 1 1
Ow(’U)., f) = TCOl‘{pr} <"-.()1> .
f')//

The first equation demonstrates a well-known result of decreasing market-revealed risk aver-
sion (see e.g., Wang (1996)). The second formalizes the wealth effect on market-revealed
time preference first obtained in Gollier and Zeckhauser (2005). We recast these known and
important results in connection with the risk tolerance measure to capture the key intuitions

underlying this measure’s dynamics.

The above market-revealed characteristics also yields the equivalent hyperbolic discount-
ing behavior of the economy (Gollier and Zeckhauser (2005)). Taking the derivative with

respect to time, &, = %%, again within the CRRA setting yields

2
(w. 1) Z}) w0 =07 (2.11)
v
The intuition again can be distilled from competitive interaction in equilibrium. More patient
agents are more willing to defer their consumptions, and thus will increase their dominance as
time rolls forward. Given that being more patient means having smaller ¢, this competitive
behavior simply decreases the weighted average discount factor d(w, ) over time. This in turn

has interesting and direct effects on the term structure of interest rates (Lengwiler(2005)).

When heterogeneities are present in both risk and time preference, cither a low risk
aversion or a small discount rate will lead an individual to play a greater role in the long
run We will analyze quantitatively the tradeoff between these characteristics in conjunction

with agents’ long-run survival in section 2.7.

Corresponding expression for non CRRA setting is R, = £Couy,y (v.T}). sce (2.67).
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2.4.3 Market-revealed precautionary savings

Prudence (see Leland (1968) and Sandmo (1970)) is a key characteristic determining pre-
cautionary savings, and thus both interest rate and returns on other assets. Kimball (1990)

shows that the prudence, defined in analogy with relative risk aversion (2.6) as

i k(‘i“’icc((ji’/’)
Pt t) = e Plw,t) =

— WU (W, 1)

V(W £)

b

provides an analytical measure of the intensity of the precautionary savings motive. Other
factors being equal, an agent ¢ who is more prudent (larger P*) will save relatively more
under the prospect of future income uncertainties. For a heterogeneous-agent economy with
general additive utilities, we can differentiate the FOC (2.3) twice to obtain the explicit

aggregation relation

nl q i 1 1 1 i i Cle Ci,t
/1(111‘ 1) = ]g,{p,}{/J ((« , /)] — COV{pi} (R ((’ , //). m) + COV{pi} (Il’ ((7 ,/,), ( ) ) ’

(R, t))?
(2.15)
where the moments again are defined in the risk tolerance measure. The key observation
is that while market-revealed risk aversion (2.8) has value bounded within the spectrum of
agents” RRA (1t < R(w, t) < R™*), such bounding need not apply for market-revealed
prudence P(w, t). The market-revealed precautionary savings motive contains a weighted
average 2,4 P'| over individual agents, which plausibly results from a simple aggregation.
More profoundly, it also contains additional components which arise from the dynamics
of the risk sharing, and thus the risk tolerance measure itself, much in the spirit of the
mechanisim underlying propososition 5. To illustrate this insight, let us employ the class of

power utilities, wherein (2.15) becomes
nl Tl i 1 i m ) :
Plw, t) = Egy | P, 1)] = Covipiy ('y : —7—1> = By [P -1 Z’y Clog- (2.16)

defines the risk tolerance measure, ¢

ww

As pt = ¢

e

clearly characterizes the dynamics of

this measure under changes in aggregate endowment w. Individual agents’ savings are not
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made independently as naive intuition about aggregation might suggest. That is becanse
the economy’s precautionary savings reflect both agents’ average precautionary savings mo-

10

tive and the response to stochastic wealth distribution.'® This second factor inflates the

market-revealed precautionary savings motive because the term Covy,yy (7? WL) is invariably

negative. The more risk averse agents have concave consumptions (¢, < 0, sce (2.10)), and

wuw

they contribute positively to this induced prudence due to their larger ~*. When agents are
sufficiently different in their risk preferences, this covariance tends to be large (and negative)
and it can inflate economy’s savings motive greatly beyond that of even the most prudent
agent in the economy. The proposition 6 and figure 2-1 below confirm this extraordinarvy

effect stemming from risk sharing between agents.

Before turning to the main results of this section, we note that there exists another rela-
tion involving prudence P(w,t), directly obtained from the definitions of R and P (dervived
in appendix 2.9.1)

R.(w,t) = (1 + R(w,t) — P(w.t)). (

NS
~1

R(w,t)
w

This equality does not rely on any aggregation mechanism, and hence holds at both the
agent and aggregate level. (2.17) implies that high market-revealed precautionary savings
are related to the countercyclicality in market-revealed risk aversion. We will discuss this
cyclicality and its implication for interest rate volatility in more detail in section 2.5. NMany
important properties related to risk sharing between agents emerge in a world with merely
two classes of agents. We find it very helpful in various places to present these results in a

two-agent economy.

'0We may also see this quantitatively in the equivalent agent’s optimization problem in a simple two- period
model. The equivalent agent optimally chooses current savings X subject to initial wealth constraint 1" and
future uncertain income Y

max ['v(W ~ X, )+ Eu(X +Y, 1+ 1)} =

max {Z max Z ;\1—1 ['Ili(()i, )+ Epul(c t+ 1)) } :

(=W =X T e (1) =X+Y 5
Evidently, equivalent agent’s precautionary savings optimization composes of two-stage optimization over

agents', subject to market clearings in each period. This subtle constraints constitute additional sensitivity
of social utility to futurc uncertainty that equivalent agent should be wary of.
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Proposition 6 1. In the multiple-CRRA-agent economy, market-revealed precautionary
savungs are

Plw.t) = By [12(¢ 1)] — Covgyy (“/i, :%) . (2.18)

and thus is always larger than or equal to the average individual precautionary savings

[‘;{,,1}11”((:". )] in risk tolerance measure {p'}.

2. The market-revealed precautionary savings in the two-CRRA-agent economy are a con-

cave quadratic function of p?

piw.t) | pB(w’t)) . (2.19)

Pe,t) = (0w, )yt + pP(w, )75) <1 + vl 5
v v

When individual RRA v, 42 satisfy 7:}“ > ~yA there exists a region of consumplion
distribution between the two agents where the market-revealed precautionary savings

are higher than that of either agent

P* > max{P* =41 + 1, PP =45 1 1}.

To illustrate the results of proposition 6, Figure 2-1 plots the market-revealed prudence in
a two-C'RRA-agent economy with v* = 0.1 and v = 15. In this case, I’ is a function
of first agent’s risk tolerance weight p? = ,T{c;j“:}m Following the pattern of eq. (2.16),
we decompose this aggregate into two components; the weighted average prudence and the
dynamics-induced prudence. We see that the maximum market-revealed prudence P ~ 30

ALDB
Y

e — ~ 0.6. This value far exceeds either individual prudence level,

P S oke Sl
is reached al p® = oo

P - 1.1, PP 16. The excess stems from the risk sharing mechanism, and is quantified
by the risk tolerance measure dynamic. The latter tends to zero in both homogeneous limits
(p” = 0 or 1) where the risk sharing possibility between the agents vanishes. Collectively, the
agents may keep up this high market-revealed precautionary savings motive for an extended

period of time because they differ as well in time preference.!’ We will study in detail how

“Nan (2008) shows that no agent dominates the others in the long run when they have similar "survival
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components of aggregate precautionary savings motive

Figure 2-1: Two-CRRA-agent economy: v* = 0.1, % = 15. Market-revealed (aggregate)
prudence P(p") and its components (2.18): weighted average (w.a.) Fipmy 7] and
dynamics-induced (d.i.) prudence -Covm (";.‘. }) These are plotted against agent A's
A

TA cALB

risk tolerance weight p = TATTE = BB

precautionary savings affect both the levels and volatilities of asset returns in later sections.

2.4.4 Cyclicality of market-revealed precautionary savings

We now delve deeper into the microeconomic foundations of asset pricing to see how the

cyclicality of precautionary savings motive moves with consumption and wealth, This anal-

w2 Ny ) w2 o ) :

index” values 64 4 ~ (,u”' (—”—ZL) 2= 68 4 4B (;r.” — {Lz—)—) For current parameters 4 = 0.1, ~¥ 6
. 4 s . . . sA s

this co-survival condition holds, e.g., when subjective discount rates are e %" =~ 0.8, ¢ " =~ 1.
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ysis provides rigorous grounds to study the key cffects of savings cyclicality on equilibrinm

price hehaviors in later sections.

Central to our analysis is a simple and strong relation between precautionary savings

motive ?(w, 1) and its cyclicality P, (w, t) that holds for any general time separable utility.

M(l + P(w, t) — Q(w, t)), (2.20)

P.(w,t) = ”

where Q(w, () is referred to as temperance

o . :i/ i’ , fi,[ 3
Ql(("[, f) - ¢ ucccc(( ) ¢ Q(UJ f) =
ut (CL7 t)

cee

— Wy (’LU ) [ )

Vwww (W, )

Kimball (1992, 1993) shows that in a partial equilibrium setting with multiple sources of
risks, temperance affects the allocation of savings between safe and risky assets, i.e., portfolio
choice. First. in light of the relation (2.20), temperance Q(w, t) contributes decisively to the
cyclicality of savings. This savings adjustment in turn is reflected in asset return volatilities

2

and asset (bond and stock) holdings.'? In the current general equilibrium settings, our

observation in (2.20) thus reinforces Kimball's partial equilibrium results.

sScecond and more important, equation (2.20) constitutes a new and keen relation between
savings and savings cyclicality in general heterogeneous-agent settings; savings behaviors
tend to be more volatile when savings motives are higher! Indeed, all else being equal, the
intensity of cyclicality P, increases more than linearly with P.1* in (2.20) This finding is
somewhat unexpected since a priori savings and volatility of savings may not necessarily
be tightly bound. A counter-example illustrates this point. When the representative agent
conventionally has CRRA utility of the form U(C,t) ~ ?—31, the precautionary savings
motive 2 =~ + 1 is constant, and thus savings cyclicality is null, regardless of how big
this savings motive / is. In contrast, the intuition behind our observation (2.20) highlights

the risk sharing dynamics in an environment with heterogeneous agents. As we saw in the

2 Given complete market hedging, portfolio choices are one-to-one with asset return volatilities; the posi-
tion in the stock is the ratio of wealth volatility to stock price volatility.
H() may also change with P. But in a setting with many agents, this dependence is rather weak.
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last section, in such setting the aggregate savings motive I° is high not because the most
precautious agent dominates the economy. Rather, large P arises when risk sharing dynamics
are important, which are possible on the premise that agents sufficiently differ in their
characteristics, as illustrated by figure 2-1. Precisely because of this marked heterogencity
in agents’ risk preferences, shocks to the output induce considerable amount of assets and
wealth changing hands among investors. As a result, economy’s savings behavior is then

highly sensitive to output fluctuation.

To illustrate, we establish the aggregation relations concerning temperance, along the
lines similar to our analysis of market-revealed precautionary savings. For simplicity. we
consider again the power utilities setting.!* Differentiating the FOC (2.5) repeatedly vields

the analytical expression of market-revealed temperance Q(w. t)

. o1 R*(w. t) 1 )
w.l) = By [Q = 2Coun (7, = ) — oo Vargy [ — ). 2.21
Qw.t) = By Q'] = 2C0uq <7 v 71> Plw.g) M <7> (2.21)

Given that market-revealed temperance arises from the third order derivative of the FOC.
the dynamics of risk sharing, and thus risk tolerance measure, contribute two terms bevond
the naive weighted average of individual temperance. This basic intuition also enicrges
from proposition 5. In the difference with prudence, for temperance the contribution of
risk tolerance measure dynamics is both strong and ambiguous. The market-revealed 9
can either be larger than the largest @', or smaller than the smallest Q. In analogy with
proposition 6, when specializing to the two-CRRA-agent cconomy, we can specificallv assess
the market-revealed tolerance P(w,t) and temperance Q(w, t) on a comparative basis. This

comparison is important since both direction and quantitative behavior of savings cvelicality

P (2.20) are determined by the relative importance of P and Q.

Proposition 7 The market-revealed temperance in the two-CRRA-agenl economy is a sitn-

e derive general results for any additive utilities in the appendix 2.9.1.
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ple rational-polynomial function of first agent’s risk tolerance weight p? (note: pB =1-pt)

Prwy _ pPluw)

pllw.t)  pPlw )\ L7 GaE ©
,-YA ,-YB 1 pA(w,t)
_J’._ Sl Sl A

B (. ’
pB(w,t)
- + B

(2.22)

Qw, 1) == (1)‘4('10, 1‘,)“/‘4 4- pB(w, t)’yB) 3 (

N

which can be either positive or negative. There always exists a consumption region determined
by
1 1 ’\/AvB
Af A
(e 1) > max <0, = + = ———7 ¢,
R { 2 20y =78

within which market-revealed precautionary savings motive is countercyclical; 1%, < 0.

As mentioned above, the cyclicality of P should influence interest rate smoothness. Hence
this proposition provides an important precursor to assessing the volatilities of asset returns
in this cconomy. Those results will be reported in proposition 8. To illustrate, Figure
2-2 plots the market-revealed temperance Q(p?) together with its two components: the
weighted average temperance (first term of (2.21)) and the dynamics-induced temperance
(last two terms of (2.21)). BEach is a function of the first agent’s risk tolerance weight
pt = ’1-\ = ;\ﬁ‘;—:%;-; in the illustrative two-CRRA-agent economy (with 4 = 0.1, ~® = 10).
Clearly, unlike market-revealed RRA R{w,t), Q(w,t) is not bounded by individual CRRA
temperances Q' = v +2. For a certain range of consumption partition, the dynamics-induced
temperance is so strong that market-revealed Q(w, t) falls negative albeit all individual Qs
arce positive. Again in homogeneous limits (p* = 0, 1), the sharing dynamics vanish and so

does the dynamics-induced temperance.

Interestingly. with three agents or more in the economy, the market-revealed characteris-
tics R(w ), P(w. 1), Qw, t) are largely independent of each other. allowing more flexibility
o estimate the model in accordance with empirical patterns. This shows the rich outcome
of genuine heterogeneities, beyond that of the customary but rigid assumption of a CRRA-

representative agent in the literature.



components of cyclicality of aggregate precautionary savings

Figure 2-2: Two-CRRA-agent economy: v = 0.1, v8 = 10. Market-revealed (aggregate)

(ele]

temperance (savings cyclicality) @ and its components (2.21): weighted average (w.a.)
Fpy[@Q'] and dynamics-induced (d.i.) savings cyclicality Q — Eg Q'] (eq. (2.21)). These

A ¢y B

are plotted against agent A’'s risk tolerance weight p* = TATTE = AgBTigs -

2.5 Interest rate volatility

[n this model’s complete-market intertemporal setting, no-arbitrage is enforced by the unique
state price density M (w, (). In the current consumption-based framework. this state price

density is the marginal utility (2.5) of the equivalent agent

M(w, t) = vy (w,1). (i

[S]
[R]
[}
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The risk-free rate (rfr) r and the market price of risk (mpr) (or Sharpe ratio) » are identified

with the drift and volatility of the state price density: d}\%‘ﬂ)) = —r(w,t)dt — n(w, t)dZ(t),

and thus

It

6(w, t) + R(w, t) [ = $(a™)*P(w. t)]

r(w,t)
n(w,t) = 22" = o*R(w, t).

T(w,t)

(2.24)

Here r(w, () is the instantaneous risk-free rate at time ¢. Throughout this paper, for brevity
we also refer to it interchangeably as risk-free rate and interest rate. Both rfr and mpr have
forms familiar from a single-agent economy, which justifies the use of the associated charac-
veristics {1, 17, (Q} revealed by market prices as if there were a single equivalent agent rep-
resenting the current heterogeneous-agent economy. In particular, a strong market-revealed

precautionary savings cffect is needed to drive down the interest rate’s magnitude in (2.24)

w

2u

Plw,t —
(LL ) > (0-'117)2

~ 100. (2.25)

Here the numerical bound is based on the estimates of the aggregate consumption growth
moments (1 ~ 2%, 0¥ ~ 2% (Table 2.1). As we see in proposition 6, the risk-sharing
dynamic in heterogeneous-agent economy is able to generate a strong savings motive P
out of much smaller individual values P!, given that agents differ sufficiently in their risk
preference. Similarly, for the stock market to be priced by the above state price density
M{w. 1), mpr 7 needs to satisfy the Hansen-Jagannathan bound (Hansen and Jagannathan
(1991). sec also appendix). By virtue of (2.24), this constraint too has a very familiar

expression in the current heterogeneous-agent setting

) > p(w,t) = r(w, é)[

U‘“s,y.

o“R(w,t) = n(w,t 1 —r(w,t)], (2.26)

wheve p* and o, ., are respectively the stock market expected return and excess return

volatility. In the data, typically the stock market excess return p® —r ~ 6%, the excess
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volatility o, , ~ 20% and the real rfr » ~ 2%, which imply a conservative lower bound!
Y 0y y

on the aggregate risk aversion

o p—
R('{“,t) 2 '—1;[1} (U}, t) T(fu)’t)

1T —r{w,t)] > 15. 2.27
i L (w0) > 15 (227)

The large value for risk aversion implied from the excess stock market return is the well-
known main thesis of the equity premium puzzle. In the current section, our main focus is to
show analytically that this and specially the large precautionary savings bound (2.25) also
have profound impact on the interest rate volatility. Intuitively, as hinted by the stochastic
natures of r(w.t) and n(w,t) in (2.24) as well as the presence of aggregate quantities 1. /”
therein, the heterogeneity among agents necessarily affects the volatilities of asset prices in

important ways.

To fix the notation. we adopt the interest rate diffusion process dr(w.t) = p"(w.)dt +

o"(w,t)dZ(t) where like 7(w,t) itself, the ", o7 are endogenous in the model. Indeed. in
analogy with (2.40), the volatility o of the rfr is

o (w,t) = wo'ry(w. t) = o (w, t) + oy (w, 1), (2.2%)

where

of(w. t) = wo™ (;L“"Rw(w, t) — (a")? [Ru(w, t)P(w, t) + R(w, t) P, (w. f)]) . (2.29)

2

ol (w, t) = wo"d,(w,t),

are the components of rfr volatility associated primarily with the heterogeneity in risk aver-
sion and time preference, respectively. The expressions for these components are obtained
by computing the partial derivative r, from (2.24). We now analyze the contribution ol cach

type of heterogeneity to rfr volatility.

15Both bounds on P (2.25) and R (2.27) are most sensitive to the estimated value of consumption growth
volatility ¥, In the US data (Table 2.1) 0¥ ~ 1%. Here we adopt 0 ~ 2% to have very conservative lower
values for the aggregate savings motive and risk aversion, while noting that a smaller value of 0 will lead
to larger P, R and thus an even more volatile rfr than what we point out in this section.
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Judging from the abundance of the derivatives R,. £, in the above expression of of.,
this component of rfr volatility is necessarily characterized by the response of economy’s
collective risk preference and savings motive to supply shock dw. A closer look helps to
estimate the magnitude of this volatility. Plugging (2.17), (2.20) into (2.29) yields

(6"
2

op = o R(w, t) |—p*(P(w,t) — R(w,t) — 1) + Plw, ) (Q(w.t) — R(w,t) — 2)] .
(2.30)
Terms on the right-hand side simply express the sensitivity of aggregate intertemporal con-
sumption smoothing and precautionary savings behaviors to output fluctuations, as they
are derived directly from the last two terms of (2.24). The most remarkable feature here is
that both of these sensitivities are substantial under the afore mentioned premise of large
savings motives (2.25) needed for a low real interest rate. Indeed, both terms in (2.30) are
dominated by the large factor P, given the realistic values for aggregate consumption mo-
ments 1", 0" ~ 2%. 'This observation then offers a simple but very drastic implication for
the interest rate of general heterogeneous-agent economies with additive utilities. Namely,

in these models, a realistically low interest rate will tend to be excessively volatile. The

following proposition quantifies this important observation in analytical terms.

Proposition 8 Assuming sufficiently large precautionary savings motive (2.25), in a general
cconomy with agents heterogeneous in their time-additive risk preferences, the interest rale

volatility is almost always '° bounded from below

2u*
(0%)?

lo"(w. t)] > p*o* R(w, t) 'Q(w,t) - , (2.31)

More specifically,

2/1,“’

(I"('u:,() > u'“U“’R(w»t) <Q(w,t) _ (01“1)2> >0 if Q(w,t) S 241"

(7P

w

+ R(w. t)2.32)

ul

o"(w, ) < " R(w,t) (Q(w,t) — (ii)2> < 0f Qw,t) < 2 (2.33)

(av)?

(2 as specified in this proposition.
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Qualitatively, a key factor determining the volatility of the rfr is the cyclicality I, of precau-
tionary savings, quantified by market-revealed temperance Q(w,t) in the above expression.
This observation identifics a new and interesting factor driving interest volatility, one that
is supported by strong intuitions. Here, a critical connection is the relation (2.20), i.e., large
precautionary savings I’ tend to induce strong savings cyclicality |,]. In turn, for large I’
(2.25), both the intertemporal consumption smoothing and precautionary savings motives
arc ficreely sensitive to supply uncertainty as in (2.30), and the resulting interest rate is
highly volatile unless these two sensitivities cancel out. Proposition 8 shows that such can-
cellation holds only within a range of temperance, 0 € ((%f?-, (%“—)—2 + R(w, l)). Given the

small empirical values for the consumption moments p*, o% ~ 2%, and a non-extreme value

of risk aversion (R < (727“—)—2), this range is narrow on relative scale, and thus the cancellation

is unlikely (see Fig. 2-3 below). As a result, large precautionary savings most likely render

the interest rate both low and volatile.

Furthermore, interest rates are potentially volatile regardless of the direction of savings

cyclicality,.  When Q(w,t) < (3‘,1',';»2, the volatility of intertemporal consumption smooth-
ing dominates the precautionary savings term. Given a positive shock to endowment.
the aggregate risk aversion decreases and the elasticity of intertemporal substitution in-
creases; agents tend to defer more consumption to later time and the interest rate drops. In

other words, the equilibrium interest rate is countercyclical in this case. Converselv, when

Qlw,l) > (i‘,f,u)lg + R(w, (), the volatility of precautionary savings dominates the consumption
smoothing term. Given a positive shock to endowment, the precautionary savings term de-
creases and the interest rate surges. In other words, the interest rate is procyclical here.!'?
We can also draw parallel results from related literature. Kimball (1992.1993) finds in a
partial equilibrium model that sufficiently temperate (large positive Q) investors may invest
most, of their savings in safe assets. Our findings on the relation between temperance and

interest rate volatility echo this link in general equilibrium settings.

""Detailed portfolio choice solutions for multiple-agent economies with gencral additive utilitics. as con-
sidered in proposition (8), are beyond the scope of this paper. Their closed-form expressions are not knowu
and may not exist.
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Quantitatively, the lower bound of interest rate volatility is substantial when @ is not
in the vicinity of a knife-edge (critical) value of ((27—‘]? For sufficiently large precautionary
savings [? (2.25) (to render a low interest rate), when () is slightly off from the above critical
value, the lower bound is several times larger than the observed interest rate volatility of 2%

(Table 2.1)

iQ(u}.l,) - —;2}‘% | 9122
01— o s o.m(w,t)—(%L > 6%,
7

where the last numerical value is based on a conservative Hansen-Jagannathan bound (2.27).
FFig. 2-3 illustrates this bound in a setting with two heterogencous CRRA agents. The figure
plots the volatility of interest rate (upper panel) vis-a-vis the cyclicality of precautionary
savings motives as characterized by temperance Q(p”) (lower panel). The choice of risk
aversion parameters {y?,v8} are dictated by the low empirical interest rate and Hansen-
Jagannathan bound (2.25), (2.27). As stated by proposition 8, we clearly see that interest
rate volatility is small only when temperance () assumes values in the immediate vicinity
of the critical value Q* = (—j% (or p”* =~ 0.35). When @ is slightly off this value (by a few

percentage points), the interest rate is hugely volatile.!®

Proposition 8 underlines the rich and complex equilibrium dynamnics of the heterogeneous
cconomy. It shows, for c.g., that a standard cure addressing, say, the level of the rfr may
adversely increase its volatility. All that said, though large precautionary savings motive has
been found very uselul in addressing the equity premium and interest rate level in literatures,
it is likelv to bring about an unrealistically volatile rfr in the heterogeneous-agent economies
(with additive utilities). The incompatibility of these canonical exchange economies and the

observed equity premium is well known.! Our contribution here is to offer a new analytical

BNote that Q(p?) = Q* = (—jL)g) in another region in the vicinity of p# = 1, wherc interest rate is both
low and smooth. But in this region the less risk averse agent A dominates the economy, hence Hansen-
Jaganmathan bound is strongly violated, and stock market is incorrectly priced by the model.

“INew clements in preferences such as habit formation (Campbell and Cochrane (1999)), catching-up-with-
the-Joneses (Chan and Kogan (2002)), or recursive utility together with growth rate long-run predictability
{Bansal and Yaron (2004)) have been invoked to tackle these asset price puzzles. In a new hybrid approach,
Lettau and Wachter (2009) enlarge the state variable space to include exogenous short rate process while
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Interest rate r and its volatility "
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Figure 2-3: Two-CRRA-agent endowment economy: v = 0.01, v% = 15, ¥ = 2%.
o = 2%. The upper panel plots the interest rate r(p”) and interest rate volatility o’ (p*)
in %, the lower panel plots the market-revealed (aggregate) precautionary savings motive
(prudence) P(p?) (eq. (2.18)) and savings cyclicality (temperance) Q(p™) (eq. (2.22)). and
Q(pt) — P(p”) — 1. These are ploted against agent A's risk tolerance weight
A 7‘,4 r'A‘YB
P" = FA778 = AyB1.BA"

perspective on this incompatibility, within the standard setting of time separable preferences.

We next consider adding heterogeneity in time preferences to see whether that can case
the puzzles. The contribution of time preference heterogeneity can be computed either
directly, as to be performed in this section, or indirectly by first homogenizing this hetero-

geneity, as explained in section 2.7. The component o’y of rfr volatility (2.28) arises [vom an

maintaining the equilibrium-based relation between the market price of risk and the fundamental dividend
process.
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interesting interaction between heterogeneities in risk aversion and discount factors
ol = wo S (w,t) = c“R(w. t)Covy,y (T7, 8'), (2.34)

where the last equality is an application of proposition 5, also derived in appendix 2.9.1 (eq.
(2.6:1)). The covariance structure is rich because both the risk tolerance measure {p‘} and
marginal risk tolerance T are dynamic. In a CRRA economy, the latter is the inverse of the
risk aversion coefficient. In that setting, the sign of o}, depends on the relativé orderings
(comonotone or anti-comonotone) between risk aversions {7'} and discount factors {§'}.
Under a positive supply shock dw > 0, a procyclical discount factor 4,, > 0 increases the
time value of consumption, thus encourages consumption and discourages savings. It thereby
leads to a surge in the rfr . Hence, a procyclical discount factor contributes to procyclicality
in interest rates and vice versa. The heterogeneity in time preferences can have either positive
or negative effect on rfr volatility, and therefore can help temper the extreme nature of the

latter’'s bound.

Indeed, combining (2.28), (2.32) and (2.34) yields more comprehensive bounds on rfr

volatility

(0‘“'

o"(w. 1) < a¥R(w, () (,u“Q(w,t) X ;,‘)2 +COV{,,1}(TZ,5i)) if Qw, () < Zhp. (2:35)

o (. 1) > o R(w, 1) (u“'Q(w,t) W) | Covip }(Tc'f,d")> if Q(w. 1) > 2% + R(w,t),

Specifically, for countercyelical precautionary savings motive Q(w, ) < (’f;Lﬁv a time prefer-

ence ordering such that Cov{,ﬂ}(Tci, 0*) > 0 helps loosen the bound on the volatility of the

+ R(w. ().

20)

interest rate.® Similar condition holds for the other case where Q(w, () > b+

(U“’
Despite being a function of consumption allocations {c'}, the covariance term is intimately
associated with the discount rate heterogeneity structure, and can be formulated largely in-

dependent of the temperance term in (2.35).2! This makes heterogeneity in time preference

“In CRRA settings, T2 = 1/7%, s0 Cov (T}, 0°) = Cov ey (5r,
most likely associated with large §* and vice versa (anti-comonotone). These are configurations wherein no
agent dominates other in long run (see section 2.7).

i CRRA settings, the covariance termn is always negative if RRAs and discount factors are co-monotone

d%) > 0. This means that small 7 are
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a venue to mitigate the interest rate volatility in the consumption-based pricing modecls. In
an attractive alternative approach, Garleanu and Panageas (2010) show that the combined
features of overlapping generations and heterogeneous preferences are able to sustain the
long-term survival of groups with different risk aversions, while generating stable risk-frec

rate.

2.6 Equity return volatility

How do heterogeneities in risk and time preferences affect the volatility of return on stock?
The answer is considerably more involved than that for the interest rate because the stock
price S is a contingent claim on the entire series of future dividend streams. To pursue
this question, we employ the convenient tool of Malliavin calculus, following closcly the
approach presented in Detemple et al. (2003) and Bhamra and Uppal (2009). We assume
that there are just two classes, A and 3, of CRRA agents, thus simplifying the exposition
while retaining heterogeneity. In such economies, there is a single state variable, which can
be chosen as agent A’s risk tolerance weight p” = % Detailed derivations can be found in

the appendix 2.9.2.

In risk-neutral measure Q, all payoffs are discounted at the risk-free rate ». The stock
price then is

T
S(w,t) = el rdu 2 [/ e~ Jo' ATy () du | (2.36)
t

In our Markovian (GBM) setting, the stock price S(w, t) is a function of current endowment
w, and thus stock return volatility ¢® can be defined from the associated diffusion process

(i.e., gain process)
dS(w,t) + dw

Stw.t) (. t)dt + 0" (w, 1)dZ(t). (2.37)

(v > 97 & §° > 87), and positive if anti co-monotone (¥ > 47 ¢ 37 > §*). independent of consumption
dynamics.
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A standard application of Malliavin calculus confirms these relations

T (s U
o’ (w,t) = o — —mEtQ {/t duﬁt%}—i%j/t dr D, (a¥n(w, 7) + r(w, 7)) | . (2.38)

where 3(w, ) = exp (j(: r(w, u)du) is the numeraire associated with the money market ac-
count, and D, denotes the Malliavin derivative at time t. This representation of stock return
volatility is very intuitive, as it reflects fluctuations both in the fundamental dividend and
the discounting process. In the deterministic discounting scheme (r, 1 arc constant), fluctu-
ation in the stock return results entirely and without distortion?? from stochastic movement
in the dividend process 0¥ = ¢, However, in the current general equilibrium settings, both
the interest rate and the market price of risk are endogenous and stochastic. They then
also contribute to the excess volatility o*(w,t) — o (terms 0“Dyn and D,r) in (2.38)) of the
stock return via the discounting mechanism. Because the Malliavin derivative of a process
X is proportional to its volatility o: D, X ~ o (sce (2.80)), we arrive at a simple sufficient
condition for stock return excess volatility to be positive, o®(w,t) — ¢* > 0, in the current
wo-CRRA-agent economy
9]

g et et )] <. (2.39)

Empirically, the return excess volatility in stock market is pointed out first by Shiller (1981).
Here the above condition allows us to rigorously validate intuitive arguiments from the con-
sumption CAPMI literature attempting to address this anomaly. In particular, either a
countereyelical Sharpe ratio or a countercyclical rfr acts to boost the stock return volatility.

We now discuss these two components in more detail.

All celse equal, when the interest rate r is countercyclical, r and hence the discount
rate decrease with the output. Similarly, when the Sharpe ratio 7 is countercyclical, the
risk premium. and again the discount rate, also tend to move in opposite direction with

the supply. Given a positive shock to the endowment, the contingent claim (stock) price

*2Note that the volatility o of GBM endowment is kept constant by construction.
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plausibly increases. However, under either countercyclical 7 or 7, the stock price would
increase more than proportionally with the endowment because the discount rate tends to
drop in both cases as mentioned above. The opposite holds when the endowment shock is
negative. This is why either a countercyclical Sharpe ratio 0”7 < 0 or countercvclical interest
rate (6" < 0) would contribute directly to positive stock return excess volatility o*(w, () - 0.
as expressed by each component of (2.39). The countercyclicality is a feature present in nany
models in the equity premium literature, and is pivotal to producing empirical patterns of
predictability in stock returns. Campbell and Cochrane (1999) enlist habit formation to
generate a Sharpe ratio that is high when aggregate consumption is low and vice versa.
Chan and Kogan (2002) construct a heterogeneous-agent economy with a catching-up-with-
the-Joneses feature in preferences, which renders risk premia countercyclical to endowment

shocks. Quantitatively, a standard Ito manipulation on 7 (2.24) yields the following Sharpe

ratio volatility (with the convention: dn(w,t) = p'(w, t)dt + o"(w, 1)dZ (1))
o(w, 1) = w(c")* Ry (w, t). (2.10)

It follows that the condition o™(w,t) < 0 is achieved, as one would expect, when market-
revealed risk aversion is decreasing with respect to aggregate consumption, R, (u.l) < 0.
This is behaviorally quite reasonable as we would expect agents to be bolder in accommodat-
ing risks when they are richer. As viewed intuitively and generically as a dircet implication
of the risk sharing mechanism (proposition 5), a negative R, originates from the dynamics
of the risk tolerance measure, which favors less risk averse agents after a positive shock to
the endowment, and vice versa. It thus arises very naturally in the setting with heteroge-
neous CRRA agents (see (2.12) and also Wang (1996)). In a more general setting (beyvond
the CRRA framework), this countercyclicality is easily observed under the premise of large
precautionary saving (2.25). Indeed, we can use (2.17) to rewrite o”(w, () in terms of the

aggregate characteristics R(w,t), P(w,t)

o"(w, t) = () R(w, )[1 + R(w,t) — P(w,1)]. (2.11)
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Unless £ assumes unreasonably large values, R > P > (2""' ~ 100, the condition on

Uw)Z
large savings (2.25) needed for a low interest rate readily assures a countercyclical Sharpe
ratio. Alternatively, proposition 9 below provides an agent-based sufficient condition for the

countereyelicality beyond CRRA framework.

Proposition 9 When all agents’ risk aversions and precautionary savings motives salisfy
the relation P t) > 14 RH(c',t) on the equilibrium consumption path {c'};, the counterpart

relation must hold at the aggregate level: P(w,t) > 14 R(w, ().

[ntuitively, given a certain degree of uniformity among the heterogeneous agents, this propo-
sition asserts that the individual preference properties, that are central to determining the
price volatilities. are preserved under dynamic aggregation. In other words, when all agents
possess a large precautionary savings motive, so does the economy as a whole. Proposition
9 confirms and states this intuition as a rigorous sufficient condition. Whereas the risk aver-
sion aggregation is linear (proposition 4), the aggregation on precautionary savings is highly
nonlinear. This contrast makes these results far from obvious. It is also interesting to note
vhat, R (Low) = %ﬂ(] + R(l,w) — P(t,w)) as in (2.17), proposition 9 simply states that
market-revealed risk aversion is decreasing in consumption if that property holds for each
individual agent. A known special result of this proposition is obtained when all individual
utilities belong to the CRRA class, whence both R* = ~', P* = 4' + 1 are constant and

satisly the hypothesis of proposition 9. Then
o1
Pw, ) = R(w, ) + 1 — Covygyy (7', ——.> > R(w,t) + 1.
’Yl

Proposition 9, however, holds more generally for any additive expected utilities.

Back to the condition (2.39); combining its two terms yields a more complete insight into
the relation between stock price movement and the economy’s behavior toward risks. We

rewrite this sufficient condition for positive stock return excess volatility in term of aggregate
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quantities R, P, ()

w w, )(Qw, 1) — R(: —4 1
(0‘“")2 ((L:}L‘_U_)ﬁ(l 4 R(U,’, t) _ P(’lu,t)) N P(w, [)(Q(U ,/)2 H(U],[/) 1) < A_(}()((y{ﬁ}((gl‘ :/{)242)

A few important observations should be made. First, each of risk aversion, precautionary
savings and temperance affects stock return volatilities. Intuitively, this is because all three
influence savings and portfolio choices. The mechanism at work is as follows. All clse
being equal, small ) enforces the above sufficient condition, and therefore boosts the excess
volatility of the return on stocks. We recall from (2.20) that temperance @ is crucially related
to P, namely small enough @ is associated with procyclical P. A positive supply shock
will increase precautionary savings (as P, > 0), leading to a decrease in both the interest
and discount rates (see (2.24)). Thus the stock price increases more than proportionally
compared to the endowment, which implies excess volatility in the stock return. (Sec also
Shiller (1981) for a behavioral explanation of this phenomenon.)

Second, the relative orderings between agents’ risk aversions and subjective discount
factors also influence return volatility, via the term Corg,y (07, &), That is because these
orderings determine the dynamics of risk sharing, consumption partition and risk tolerance
measure in the economy. These in turn are compounded in the asset price movements due

to changes in endowment. We will return to these heterogencity effects in the next section.

Finally, it is noted that while risk aversion and the precautionary savings motive have
enjoyed substantial credence as shapers of asset price patterns in consumption-based pricing
models, the cyclical properties of precautionary savings (or equivalently, temperance) are
not well studied. Our investigation makes explicit the important link between these cvelical
properties and asset (bond and stock) return volatilities. One reason why this very intuitive
link has been quite implicit in the literature lies with the heterogeneity structure of the model
itself. For a close illustration, we consider the setting of Bhamra and Uppal (2009). Thev
obtain the first sufficient condition for positive stock return excess volatility that involves

solely precautionary savings.*® How can we reconcile this result with our condition (2.12)?

23Bhamra and Uppal (2009) investigates an exchange economy with two a,gelits who differ only in risk
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The answer is as follows. In the two-CRRA-agent economy, as seen earlier, there is only
a single state variable. This can be chosen without loss of generality as the first agent’s
risk tolerance measure pt = fli Each and every aggregate quantity 2, I° and () then is a
simple function of p?, and thus they pairwise bear a one-to-one relation.?* The derivation
of Bhamra and Uppal’s sufficient condition exploits these simple relations, and in doing so
inadvertently obscures the role of tempefance Q(w, ). In fact, by virtue of (2.24), the
d P

derivative of rfr d};’; contains the term e ’;,T, which is obviously related to the cyclicality

P, of precautionary savings. This example and (2.42) together indicate that in more general
multiple-agent settings R and P arc important, but far from sufficient statistics to determine

stock return volatilities.

It is reassuring that all the above observations and intuitions concerning the cyclicality
ol precautionary savings, or equivalently temperance, also underlie the parallel results on

interest rate volatility, reported in proposition 8.

2.7 Heterogeneities and homogenization of beliefs

The heterogeneous-agent economies we have explored so far address heterogeneities in risk
aversion and time preferences. As we have seen, these differences can foster rich and resilient
exchanges leading to the equilibrium when agents assume off-setting characteristics in their

preferences. While a higher degree of patience (smaller 6°) favors deferring consumptions, a

larger clasticity of intertemporal substitution ¥ (equivalently lower risk aversion ' = % in

the additive utility framework) produces the same effect. Another practical and important

factor in which agents differ is in their subjective beliefs about economic fundamentals.

aversion. Their proposition 2 presents a sufficient condition for positive stock return excess volatility; P <
1 -(,;“,,,)3, This is a stronger version of (2.42), when (2.42) is adapted to the setting of homogeneous time
prefercnces.

2 two-CRRA-agent economy, we have P(w,t) = R(w, t) {1+ MTM)

~ 'YB
Pav K o B . . .
2Gince P2 = (py A+ plyB) (1 + It %,—g),we have (_jd[% Sy — (% - Ay Ii,,) (this relation is needed
in the derivation of key condition (2.39), see (2.83)). Thus f‘ﬁ, and for that matter. sufficient condition

(2.39) appear unrelated to temperance ), while they actually are.
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Such beliefs directly affect agents’ intertemporal decisions and thus asset prices. In this
section we will show that, as far as consumption and risk sharing are concerned. an economy
whose agents differ in all time preferences, risk aversions and beliefs may be transformed
isomorphically into a far simpler one with heterogeneity only in risk aversion. The required
transformation offers new quantitative perspectives on the above-mentioned tradeoff between
different dimensions of heterogeneity. The analysis also relates neatly to the survival of

market participants (a.k.a market selection) in the long run.

2.7.1 Heterogeneity in time preferences, risk aversions and belicfs

We consider the canonical case, widely studied in literature, of a two-CRRA-agent cconomy
with GBM endowments. The next section addresses the setting with multiple agents. In
addition to heterogeneities in discount factors and risk aversion, agents A, B also differ
in their beliefs about the growth rates p4, u? of the endowment process w(t) (2.1). The

realizations of w(t) are correctly observed by all parties

o . dw(t , w s
luu,..\d[ + o dZ/\(f) — ~_(__)_ . ﬂ“”Hdl‘ + (T”/CIZB([)‘:
w(t)
where Z4(t), ZB(t) arc standard Brownian motions under each agent’s subjective informa-

tion set (i.c., belief). We assume agents act on their own persistent beliefs.?® A comparison

with (2.1) yields

wo_ A
dZA() = dZ(t) + 04de; e =H 1T
o
w B
dZP(t) = dZ(t) + 0%dt; o8 =11 (2.13)
0—“

Coefficient " in essence characterizes the deviation of agent i’s beliefs on the endowment

growth rate u*? from the its true value u*. When 6° < 0, agent 4 is optimistic (with respeet to

26That is. agents do not draw inferences from the willingness to trade by others. Later. we will extend
our framework to accommodate time-varying beliefs, which in turn may arise from learning or other ad-hoc
belief adjustment mechanism.
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the objective growth rate p*) and vice versa. Also, two agents assign different but equivalent
probability measures and distributions to the future uncertain endowment process. Since
agents are still allowed to trade in the riskless bond and a contingent claim on the aggregate
endowment (stock). the market is complete and the equivalent-agent optimization problem

can be constructed to explicitly account for different beliefs

m ax

1 _ o
anax Ak 2 {/Oe A (e )di} = XEE (B) [/0 éBtuB(cB)dt] (2.44)
S M) B = wlt) Vi

aybont F . L. . .
Here v = (('1)77" and Et('){, ..] denotes the time-t conditional expectation under agent i's

belief. There exists a standard approach (see e.g., Detemple and Murthy (1994) and Basak

(2005)) to convert the above optimization problem to one under the physical measure

, —()Af A - 13 ~ABr uB
Be® [v/ et g [ e
st M)+ B(

The above operation involves a change of measure, from subjective P* to physical P, using
the Radon-Nikodym derivative £(t)

dP*

E(t) = —5 = eXp (—%(ei)zt — eiZ(f,)> i€ {A, B}, (2.45)

where 0 is given in (2.43). The dynamics of this heterogeneous-agent economy is captured

by the FOC and the market clearing equation

e e (1) = e PR ()P (1)
cAt) + Pt ) = w(t)

>4

(2.46)
Here we clearly see that all three dimensions of heterogeneity - risk aversion, time preference
and belief - play roles in shaping the equilibrium. To simplify the analysis, it would be

desirable to reduce this economy to one where only risk aversion experiences heterogeneous.
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Remarkably, that is possible. Consider the following simple multiplicative transformation

(which is derived in the proof of proposition 10, see appendix 2.9.3)

cAt) — A1)
cB(t) — aB(t) =T(Z(1),t)cB (1), (2.17)
w(t) = w(t) = Y(Z(t), Hw(t),

where

Y(Z(t),t) = exp (87°) exp (87 Z(1)), (2.18)
370 = 6460 . 5y4 _ &ML;‘)E—{SB—Q?E _ 8N mel
= JAZINEB / = ~A_+B = THANB

The cocfficients 6fff =5+ %ﬁ, 5§f =68+ (—ql—;ﬁ arc the effective discount rates of agent
A and B respectively, with their subjective beliefs being incorporated. The coefficients .37
and 47 quantify respectively differences in beliefs and in time preferences. normalized with
respect to the difference in risk aversions. These coefficients will have a neat interpretation
as slopes of a linear projection in characteristics space (d,~v.0) when we come to the full

multiple-agent settings in the next section. Interestingly, we note that this transformation

indeed considerably simplifies the full dynamics (2.46), which now become
(2.19)

Equation (2.49) represents the familiar dynamics of a two-CRRA-agent cconomy whose
agents differ only in their risk aversions ¥#, ¥, as studied in Benninga and Mayshar (2000).
Dumas (1989) and Wang (1996). Effectively, we have been able to "rotate” the hetero-
geneities in subjective beliefs and discount factors away by changing the aggregate endow-

ment w(t) to Y(Z(t), t)w(t). This in turn is equivalent to shifting the growth and volatility
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rates of the GBM endowment

d,ff((f)) = p¥dt + o“dZ (1),
o¥ = o¥ + 309, (2.50)

T , . ,5 ’0 ﬂw.()
pe =t A+ 370+ 50 (0“’ + T) :

Thus in the dynamics of consumption and risk sharing, the differences in time preferences
and beliefs can be taken into account by modifying both the growth and volatility of the
supply process. We will refer to {7, ~%,6%, 6%, 6", 6% w(t)} as the original economy, in which
two CRRA agents differ in risk aversion, time preference and belief, as specified in (2.43).
Similarly, we denote {7!, 7%, w(¢)} as the reduced economy, whose agents differ only in risk
aversion.  The defining property of the transformation, that all agents™ equilibrium con-
sumptions stay the same up to a (stochastic) multiplicative factor Y(Z(t),t) in the two
cconomies (2.47), implies a profound relationship between the two respective consumption
sharing dyvnaniics. Not only are the consumption shares unchanged ((E = %5 and g—; = ;—;),

but more importantly, the individual marginal propensities to consume out of the aggregate

endowment (2.7), our key risk tolerance measure, remain identical in the two economies.

e B _ ey
YT 5) & < Tw,t)y

ey vy

And so do the aggregate characteristics built upon this measure in the two economies. The

first is the (market-revealed) equivalent risk aversion (2.8)
. T ) Tt
R 1) = ' = 2~ = R(w, ).
2y T X T T )

Market-revealed precautionary savings P(w,t) and temperance Q(w,t) are also identical in
the two cconomies, which can be directly deduced from their expressions (2.71), (2.72) for
CRRA wutilities. Because of these relationships, we will refer to this key property generally

as presevving consumption partition dynamics below. We summarize this precise correspon-
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dence in the following proposition.

Proposition 10 Suppose that the aggregate endowment follows a GBM process w(t) (2.1).
and that there are two classes of CRRA agents. In term of consumption partition dynamics

al equilibrium, the two economies are isomorphic:
{71,7%,64,0%,60", 6% w(t)} e (¥, ", 0 (1)},
where the isomorphic endowment w is also a GBM process defined in (2.50).

Though this result holds exactly under the specific premise of GBM endowment, it clearly
shows the direction and possibility of an interesting and qualitative tradeoff between agent-
based characteristics and aggregate supply statistics in more general cases. In this way,
the findings in a reduced economy can be adapted to economies with additional dimensions
of heterogeneity. Among others, the analytical results on the linkage between risk sharing
and the size of endogenous credit markets obtained in Longstaff and Wang (2009) can be
immediately generalized to allow agents to differ also in time preference. To fix the convention

for the next discussion, we assume without loss of generality that y* < +# throughout.

Iirst we note that when (5?” < 663”,27 37 > 0, the modified endowment v has an
unambiguously higher growth rate (2.50). That is, as agent A is both less risk averse and
cffectively more patient in the original cconomy, she would take more risk and be more
willingly to defer consumption than would agent B. Then it is necessary to boost the
isomorphic economy’s endowment growth rate, in which agents are now equally patient.*
to induce agent A to undertake similar consumption sharing in equilibrium. The opposite
holds when (5§H > 53/. Second, when 4 < 07, 37" > 0, the modified endowment ' has
both higher growth rate and volatility (2.50). That is, as agent A is both less risk averse and

more optimistic? in the original economy, she would bear risk more aggressively in this casc

27Since 63”' =64+ ﬁ-g—;‘—)i, 65 =08 + Qi;ﬁ, this inequality can be result of {64 < §7;04 = 0%}, or
{64 = 68,04 < 6P}, or some of their appropriate mixtures

28They are now heterogeneous only in risk aversions

2994 < 9 and (2.43) imply that agent A believes in a higher growth rate than agent B: p"* > -8
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100, Then to preserve equilibrium consumption partition dynamics, it is necessary to boost
both the isomorphic economy’s endowment growth rate and its volatility, given that agents
now have identical beliefs. Finally, we also note that while time preference heterogeneity
is reflected only in the isomorphic economy’s endowment growth rate. belief heterogeneity
influences both that growth rate and volatility. This is because a subjective belief relative to
truth, as characterized by a Radon-Nikodym change of measure (2.45), is always stochastic,
5

while a discount process e~ is deterministic.

Time-varying beliefs

Interestingly, the above isomorphism also exists in the richer class where beliefs vary over
time as agents observe the realizations of the endowment process. The analysis can address

general forms of time variation of subjective beliefs, for which the perceived growth rates

w.A lu'.b’

./ of endowment are bounded, adapted processes.® Important special cases would be

"

Bavesian updating and other ad-hoc learning mechanisms. In such settings, in place of (2.45),

imdividual beliels are characterized by the path-dependent Radon-Nikodym derivatives
P

Lot , Z(t)
o T exp -i/ (0*(w, s))*ds -/ 0" (w, s)dZ(s) i€ {A, B}.

The cocfficients 04,08 (2.43) now are bounded, adapted stochastic processes and describe
possible evolution patterns of beliefs. To illustrate, let us briefly consider two examples. The
first is the Bayesian updating case where agents’ priors about the endowment’s unobserved
growth rate g are nornal distributions N (m!(t), v!(t)), I € {A, B}. In this setting, Brennan
31

(1998) obtains the following learning dynamic

l‘l ] X 77
dm! = W(nt—f)(—);? [(u* = m")dt + ovdZ(1)] ,

i _ v (0)(on)?
V) = T

I € {A, B}.

S0 hese are prerequisites for Girsanov’s theorem on change of measure to work. See, e.g., section 3.5 in
Karatzas and Shreve (1991).
We asswne that agents agree to disagree, and learn only from the observed realizations of endowment.

145



Evidently, as time lapses, both agents’ beliefs converge to truth; lim, . v/ (1) — 0, lim, .o /(1) >
p. 1 e {A B}. In the second example, even if agents eventually learn the truth, their be-
liefs may diverge incrementally following a negative shocks to the output when relation

al” -0 < 0 holds.

ow

The current general belief heterogeneity can be rotated away by modifications in the
growth and volatility of endowment process. similar to (2.47). The only difference with
(2.48) is that now the transformation parameters 37, 37 are stochastic. Accordingly. in

place of (2.50), the endowment process of the isomorphic economy becomes

W) = it + ot dZ (1),

w(t) —
0% (w, 1) = g% + Pl (2.51)
. Al 12198 (00 112 Alw)—08 (w1 w Al t) =08 (et
(1) = 0+ S48 4 LR | 6 )07 ) (U 10 (UWQ%}‘(‘E‘% .

While the original output w(t) is a pure geometric brownian process. its isomorphic coun-
terpart (1) incorporating the time variance in belief dynamics, generally belongs to richer
classes. In particular, when beliefs diverges in bad time (dw < 0), the volatility of the iso-
morphic economy’s endowment 0% gets further away from that of the original economy o*.
though the former economy does not necessarily become more volatile (i.c., o' can cither
increase or decrease with w). Furthermore, certain time-varying patterns of beliefs in the
original economy may transform into a degree of mean reversion in the output of the isomor-
phic economy so that the risk-sharing dynamic between agents is preserved despite beliefs
being homogenized. The mean reversion in the output’s growth benefits alternatively one or
the other agent when the trend turns.®* This implies that the original belicf heterogencity
acts to compensate agents’ difference in risk aversions in a way that sustain their presence in
cquilibrium, despite market selection. Qualitatively, the isomorphic transformation allows us
to see quickly how heterogeneities in beliefs and time preferences affect agent’s risk-sharing
behaviors in the original economy per se. The dynamic (2.51) of isomorphic economy’s

output then initiates a quantitative analysis of the risk sharing in the simplified setting of

#2We will analyze in section 2.7.3 how the output’s growth rate affects agents’ survival in the long run.

146



heterogeneity only in risk aversion.

So far our analysis has involved two-CRRA-agent economies, for which case the isomor-
phism exists. We turn next to the more general setting with multiple CRRA agents and

relate it naturally to the important issue of long-run survival of these agents.

2.7.2 Multi-agent setting

We now generalize the findings of the previous section to the case of many CRRA agents,
and relegate missing derivations to the appendix 2.9.3. Quantitatively, the consumption
dynamics isomorphism between the original (fully heterogeneous) and the reduced (agents
heterogeneous only in risk aversions) economy {{~*, 6.8}, w(t)} «— {{7'}i.w(t)} is con-

cerned with both FOC and market clearing.

Le ()T = M(w, t) Vi - (¢ (1) = M(w,1)

v 4 (2.52)
> c(t) = w(l) > (L) = w(t)

In the above expressions, M (w, t) and M (w0, t) are unique state price densities in the respec-
tive cconomies. The key to this isomorphism is the existence of a common multiplicative

factor (T(Z(1),1) = 5 = ‘LTL Vi) that is able to absorb and homogenize all agent-specific time

preferences and beliefs

Y(Z(t), )] e E(t) = ———2L Vi,
0.0 e €W =
Plugging in agent 2’s belief £ (2.45) for the GBM endowment under current consideration,

the above condition is satisfied when two linear (quadratic) relations hold in characteristics

space (0.~ 0" (A B.C, D are some constants, that are identical for all agents)

8 =0+ B0 = Ay By,

, Vi. (2.53)
0= C+ Dy,
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Under these premises, much more meaningful interpretations can be obtained for coefficients
A, B,C,D. Namely, they are the slope and intercept coefficients of projections from time
preferences {0} and beliefs {6’} onto risk aversion {y'} parameter spaces.
B = g = C”:/(W 5eff) _ %ZN( ef/) sz Z ch[7 2.51)
ar( ) N Z ) 2 (Z 71)
Cov (', 6") _ Kll‘zz (v'0) — 3 30 Z 67
Vert N e = (B )

D = pgf= , (2.55)

where N is the number of agents in the economy. In this result, heterogeneities in beliefs
and time preferences are accounted for by a change in endowment, very much like the setting

with two agents

T(Z(t),t) = exp (37t) exp (877 Z(1)). (2.56)

w(t) — w(t) = T (Z(t), Hw(t) = exp [(/ﬂ' - (”;')2) t+ O'@Z(If)}.
ol = gw 4 »37,0’ (2.57

W= g+ 30 20 (07 5

[\
o
~I
~——

In particular, when either v and #* (or 4¢ and 5'(",'/.‘[) are co-monotone, the slope cocfficients
3% (or 37?) are positive. Then the growth rate @ and volatility o of the isomorphic
endowment w are unambiguously larger than their original counterparts p*, o“. This is
because the co-monotonicity in 4' and 6" means agents are highly polarized; less risk averse
agents are also likely more optimistic ones and vice versa. To induce agents to preserve
their consumption sharing dynamics, it is necessary to boost both the growth rate and
volatility of the endowment in the reduced economy, in which agents by construction have
homogeneous time preferences and beliefs (that is, they are less polarized). The same ap-
plies for co-monotonicity in 4* and 5f,ff. These general intuitions, when combined with the

regression-based interpretation of the coefficients B, D in (2.54), (2.55), point again to the

interesting tradeoff between microscopic (agent-based) characteristics and macroscopic (ag-

148



gregate) supply statistics in the multiple-agent economy. When the the linearities (2.53) in
characteristics space (6%~ 6*) do not hold, no exact isomorphism can be found between the
original {{7*,0%,0°};,w(l)} and the reduced {{~'};, @(l)} economies. Nevertheless, the latter
can always be explicitly constructed about the linear projections (2.54), (2.55) from time
preferences {6°} and beliefs {#%} onto risk aversion {v'}, as we see in (2.57). We reasonably
expect that the consumption partition dynamics in the reduced economy, heterogeneous only
in risk aversions, would most closely match that of the original economy, heterogeneous in

all three dimensions of risk aversion, time preference and beliefs.

So far in this section, our strategy for analyzing heterogeneous-agent economies has becn
1o deform the aggregate supply process to the point that it fully (or best) accounts and thus
compensates for agents’ heterogeneities in time preferences and beliefs. In certain aspects,
this pairs well with a popular strategy in the literature to substitute different dimensions
ol heterogeneity. either at the individual agent or representative agent level. The latter
strategy addresses whether the risk loving, patience and optimism of each agent or the
whole cconomy (market-revealed agent) are equivalent and mutually substitutable given
observed risk sharing and price dynamics. In the single-generation settings under current
consideration, a specific but central question is on the domination and survival of some
agents over the others in the long run. Working in the context of the market selection, we

now formally relate these two strategies.

2.7.3 Agent survival

Following Sandroni (2000) and Yan (2008) we use original economy’s FOC (2.52) to examine

Lhe scaled equilibrium consumption ratio of any two agents ¢, j

V
LT s ) ()]
[(w] e e () w(t)]
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1

TTY
Ny,

= mexp (17— I')t] exp [(67 ++/0™ — 0" — v'a™) Z(1)], (2.58)
0
where wy is the initial value of endowment, and
) g ‘91' 2 ) wy2
J O U M (R it RS (2.59)
2 2
Consider the case p* > (0;,)2 so that the economy is growing statistically. When /' < [/, Yan

(2008) notes that the above scaled equilibrium consumption ratio (2.58) grows to infinity

almost surely as ¢t — oo. As the consumption ratio & € [0.1] is bounded, this necessarily
y p ]

u
ol

(st 3
w

’(‘t)' — 0 almost surely, or agent j will fail to survive in the long run.®

implies that FFor
this reason, parameters I* are referred to as survival indices. By performing this pairwise
comparative analysis for all agents in this growing economy, Yan (2008) obtains a necessary
condition for long-run survival in this economy.

cH(w, t)

tmoo w(l) #0:>i6argmjin{1j}. (2.60)

Any agent 7 who survives in the long run must have minimum survival index among all agents.
Clearly, either high risk aversion (large '), impaticnce (large §') or pessimism {large (") will
contribute negatively to the market selection of an agent. On top of these, the economy’'s
strong growth (large positive u* — (J‘Q—)Z) also fastens the extinction process for those who
arc not fit to survive. This is because, the statistically growing cconomics do not reward
these characteristics of "reservation” nature in the long run.** We note that this condition
however is not strictly sufficient for survival. Consider the case where there are several agents
i.j all having minimum index I' = I’ = [,,;,. In the limit of { — oo, standard Brownian
motion Z(t) — oo with equal probability (a well-known non-stationarity problem). (2.58)

then implies additionally that only agents having extremum (minimum or maximum) value

' (w,t)
w(t)

33Here any agent i's long-run survival definition is that his consumption ratio does not, tend to zero
in the limit of large ¢.

3 For example, more risk-loving agents have lower EIS, defer more consumption and invest more in risky
cquity relatively. When cconomy grows steadfastly, the stock warket pays off well, and these agents quickly
dominate the economy. The rate of their ascent increases with the economy’s growth rate.
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of 07 4 ~Io% (among agents with minimum survival index) survive. This observation allows
us to deduce a more elaborated set of necessary conditions, that also connect well with our
analysis of the isomorphic economy. Namely, common to all agents ¢ who survive, there exist

two constants /', L such that

w)2

5+ % + 9 (/15‘“ ~ ————("2 > = K,

0+ i =L,

Vi. (2.61)

These necessary conditions are none other than the lincarity sufficient conditions for the
existence of the reduced economy. The immediate conclusion is that the set of survival agents
implies the existence of the exact isomorphic economy. To put it in another way, ultimately
all heterogencous-agent economies specified in this section can be exactly reduced to its
simpler isomorphic version, when all agents differ only in their risk aversion.*® Furthermore,
in this case the reduced economy’s supply w turns out to be constant, which makes the
analysis of co-surviving agents even simpler. In the not-so-long run, the isomorphism docs
not hold exactly because other agents (who ultimately perish) hang on. Nevertheless, in the
current setting with additive utilities, Kogan et al. (2009) show that these agents leave no
lingering traces on price dynamics after their consumption shares become negligible. Then as
discussed earlier, the linear projection construction (2.51), (2.55) will determine qualitatively
the time preference and heterogeneous belief contributions, as well as significantly simplifying
the analysis on consumption partition and perhaps the asset price dynamics of the original

eConomy.

We thus show that agent survival implies the existence of an isomorphic economy. But
is the converse true, i.e., does isomorphism also imply survival? We recall that isomorphism
just requires that the original economy can be reduced to a simpler economy heterogeneous
only in risk aversion. Obviously, the latter generally does not imply survival, because both

(i) agents are still heterogeneous in risk aversion and (ii) its aggregate endowment W can be

10 this regard, the special case when only one agent survives is trivial, because he eventually consumes
the whole ageregate endowment. For time separable utilities under consideration, the economy will converge
{0 a single-agent cconomy in all aspects as shown by Kogan et al. (2009).
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cither growing or shrinking steadily. Thus survival is the stronger concept, and the existence
of isomorphic economy does not imply the survival of different agents in general. Only in a
special case where the transform Y(Z((), 1) assumes some particular functional forms. does

the isomorphism imply the survival of all agents.

2.8 Conclusion

IFinance, and economics more generally, has made great progress utilizing the representative
agent model. However, real world agents differ significantly in risk aversion, time prefer-
ence and beliefs. Moreover, such differences strongly motivate the trades that are made on

financial markets, and therefore the behaviors of asset prices.

We analyzed the savings and consumption choices for agents who differ in preferences
and beliefs within an economy with a GBM endowment. These choices translate into ag-
gregates, which in turn determine asset price behavior. The most significant results are two
remarkable isomorphisims, which may greatly facilitate the study of cconomies composed of
heterogencous agents. First, when agents differ only in risk aversion. the economy behaves
as if all agents were identical to a single market-equivalent agent with a derived level of
risk aversion. Second. when agents differ in all of risk preferences, time preferences and
beliefs about the future growth of the economy, the economy is equivalent to one where all
agents differ merely in risk aversion. Combining these two results, despite three dimensions
of heterogeneity, the economy operates as if it were homogeneous and composed only of the

market-equivalent agent.

Surprisingly, the aggregates in the heterogeneous economy, such as the "observed™ pre-
cautionary savings motive, can lie well outside the behaviors that would be observed were
the economy composed of any possible one of its constituent types of agents. That is be-
cause the dynamic risk sharing and trading of assets among types as the economy incurs
shocks are of a stochastic nature. Low real interest rates, equivalent to those observed in

the real world, can be achieved with reasonable risk aversions for all individual agents, given
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that large aggregate precautionary savings motives are feasible in equilibrium. However,
such large savings motives tend to imply large savings cyclicality, which in turn generates
unrealistic levels of interest rate volatility. (We show that such volatility can be dampened
by heterogeneity in time preference.) Savings cyclicality also influences stock prices and

volatility, as is demonstrated.

To move from the heterogeneity in all of risk aversion, time preference and beliefs to
those merely on risk aversion, that is to dramatically reduce the dimensions of the problem,
requires merely modifying the mean and volatility of the endowment process. We expect

this insight to make future investigations of heterogeneities much more tractable.

The risk tolerance measure proves to be an extraordinarily versatile tool quantifying how
mmdividuals share risk and how resulting aggregate behaviors response to growth shocks. The
sensitivities to these shocks (i.e., derivatives) of risk tolerance reveal how agents are jostled in
their weightings within the economy as uncertainties unfold. Conveniently, these derivatives
prove to be simple functions of individuals’ risk aversion, prudence and temperance. This

property allows us to obtain interesting and analytical bounds on asset return volatilities.

The principal risk that we face in the modern economy, as we witnessed in recent years,
is the movement of asset prices within the economy. This analysis traced how agents who
differ on preferences and beliefs trade amongst themselves to simultaneously hedge against,
capitalize on and generate such movements. Most important, it showed that those tracings

prove tractable.

2.9 Appendices

We recall that subscripts always denote partial derivatives; f, = g—i throughout the paper.
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2.9.1 Proofs concerning risk tolerance measure

Preliminary derivations

Derivation of key eq. (2.7): Using FOC (2.5) we have

1

Uy = Y ucc( w*

Plugging FOC (2.5) and above eq. into the expression for market-revealed risk tolerance

(2.6)

e e = Lol — L —ulfut, T

= = — — = - C = e——— =
y P u . r M

U’ll’ w Az U'IH'IU Zl’f e cf[ - UU.' / U'Uv"“’ F

which is (2.7).
Derivation of egs. (2.9), (2.10): Using p* = T*/T = ¢, we have

i Tw T T, 1 i i T T i . p i
Po =" ~ 77 =5 (TCCL; - 7%) = (=T =5 (T -T),

which is (2.9). In the CRRA settings, T = 17— =T = %— and

0 1
:5;27” ZT”_L{,, T]Al,{p}[ }

now eq. (2.9) becomes (2.10).
Derwation of egs. (2.12), (2.14): Taking the partial derivative 7; of risk aversion R =

s
Zi lT—

1
I {w =

1 S 1 1
! = 0oy (V) 17) = mCovg, ( 7;) ~

> T - (Z vZT—) (Z T)

where we have used (2.7) ¢, = —TT = p', and in the last equality CRRA utility’s property

T 91t 1

Det T oyt

Taking Ito differential on both sides of d = Y. TT then identifying diffusion and drift part

1
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gives

1 o
Sy = __E (5~ )T, = TE G T’ = = Coviyy (T3, 8, (2.64)
__ 1 < 2 i z_—l (5i~5)2 i
51'?1(0“ ct_TE TTwTi—?——T’

where again the last equality holds for CRRA utilities: 7T) = ,yi These concise expressions

capture and generalize key results on the behaviors of social discount rate first obtained in

Gollier and Zeckhauser (2005) to stochastic environments.

Precautionary savings (prudence) P = =52 - temperance @ = —22wewwe qng their rela-

1111111

tions: Taking the partial derivative 5= of risk tolerance T' = —=»

(1+Ty)w

wUwww —1 1 o P
Ty = 1o telwew gy T T ) D p— (14T, R =

2
ww Wy Vww R

. (2.65)

w

Similarly, since R = 7, and using above expression for P yields a general relation for any

time separable utilities (possibly non CRRA)

1 wTy, R
Ry= 11~ =—(1+1R-P), 2.
Pt = favne (2.60)

which together with (2.40) implies (2.17), (2.41). Combining (2.63), (2.17), we have in CRRA

setting

/f o
Ry, " —(1+R—-P)= —COU{pi} (' T7) . (2.67)

Very similar to (2.66), we also have in the general case

A O =Wl Vg | WU W P

5 e wuww wwuw wwww . >

Py T = te— - =—(1+P-Q) (2.68)
ow Ui Vi Vi Vi w

Next, taking one more time the partial derivative on T), in (2.65)

2 I's
: Vwwlwww  VwVwwiww R T P (2P - R - Q)
Fu = ww Ve + wYwwww 9 W www __( ‘ (269)

2 2 3 ;
Vi VI vd w R
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Plugging R., (2.66) and £, (2.68) into o} in (2.29) we obtain

o = —0"R|u’(P— R— 1)+ (¢¥)?P <1 T ; Q)] : (2.70)

which proves (2.30).

Derivation of eq. (2.15), (2.21): The derivation of the key aggregate relation (2.63) /° ==
R+ RT,, must also hold at individual level®® P' = R' + R'T!. Computing the latter's mean
in risk-tolerance measure (that is, Er,[X] = Y, 2 X' ), and taking the difference with the

former

P = B[P+ BTy = By [RTY] = Egy [P + RY Tic, — By [R'T)]

1

= By [P'] 4 By [RY] By [TE] = By [RT] = Eqy [P1] = Covgy (R1.717)
1 ] 7 1 Ci RZ
= E{pi} [P] - COU{V:} (R s F - m@) .
where in the last equality we have used 7" = -’é,— This is (2.15). In the special case when all
agents have CRRA utilities, R* = v, R, = 0 Vi, P' = 4* + 1, the market-revealed prudence

is simplified to

o 1 ,,- 1 e s
> = By [P] = Covgyy (”/ ) ;) = By [v] (1 + By L—D > Epy 7] 27

Same technique can be used on temperances (see (2.69)) Q@ = 2P — R — 'ur’l'“.,,,% and ()" =

i i ii R
2P — R = T, 5

] ; R 1 [{l

30We can obtain result at individual level from aggregate result in economy with only a single agent.
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[Mirst note that we can derive an agent-based sufficient condition for the convexity of market-

revealed precautionary savings
= YT S Ty = SOTR(E? + ST,
_ 0 (T
_ 100 \2 AT
1 T 7\°
i A2 & et il
Z;Tw«w) o [ 2T (ZTCT)

1 2

.
Il

P 1 .
= D Th() FVare) (T2).

i

Consequently, when 17 > 0 Vi, we also have T,,, > 0. This aggregation property echoes a

similar result of proposition 9. Now plugging T,., into above @, we have

Q= EpnlQ1+2(0 = BuaP]) = 5 Y Termg = 5V ern (T + By | Toes,

ce pi
1

N B ; wR y L (R R?
Bl Q'+ 2 (P = Ep[PY]) = 5mVarp) (1D) + Egy [T T <( pi) - ?ﬂ

whR (T wR , [ R]

) i ot . 'Ry R? i o ((RD)? R?
/1’{1}’}{(211 - ZC/()»(’{P"'} <R s ?{—1 - (Rl)?) — —F\/axr’{pl,}(lﬂc) + E{p’} [T Fw < B _ _P__

In the special case when all agents have CRRA utilities, B! = ¢, R. = 0, T¢, = 0 Vi, the

market-revealed temperance is simplified to (2.21)

. . , o1 12 1
(2 = E{p:}[Q ] - 2(/01’{1711} ’y ,:Y—i - ——FTVGT'{I,L} . (272)

Devivation of Hansen-Jagannathan bound (2.26): Let S(w, t) be price of the contingent claim

(i.c.. stock) on the dividend stream,

S(w.t) = E; [M(Hd” {S(w+dw,t+dt) + dw}]

IY0)
n | M(t+dt) S(wtdw.t+dt)+dw |
= [y { M) S(0d) ] =L
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Next, since M (L +dt) = M({1)[1 — r(w, t)dl — n(w, ()dZ(1)], up to order di we have

N L)
E, [___(_L_f_ﬁlq

G {1 +7(w, z‘di}}

Combining these identities yields

{M(t + dt) <S(w +dw,t + dt) + dw
’ _

M(t) S(w. t) =1 —=r(w, t)dt)} =0

S(w+dw,t+dt)+dw

where =—======~1—r(w, t)dt is simply the stock excess return. Standard argument

the absolute value of correlation between this and the stochastic discount factor —“%;%{;'l is

that

less

than unity implies (after plugging in (i) the mean value 1-rdt and standard deviation nvdf of

MA(;Z?Q. (ii) the expected stock excess return f, | Seddwtedtde g o0 g -

S(unt)

= (4

by virtue of gain, and (iii) the notation o,_,dt for stock excess return volatility)

VR IR AL A SR

Tpe _rdt

Iinally, to use annual data, we somewhat coarsely set dt = 1. Since the expected s

excess return is positive, this is precisely the bound (2.26).

Proofs of propositions

Proof of proposition 4. Market-revealed risk tolerance: since >, ¢' = w -» > ¢l =

i i T
-;T =T or ZPZZ?:L

Market-revealed risk aversion

1,0 . i 1

vww Fu:’(czu u TL “C 'U TL [])L

R=—w = —wi— = : § - § —
(U 37 U ul, ’,
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Market-revealed discount factor

§ == _gﬂ - “ g - Z i (—u (t> = %c} = ;1,
' i

) 4 3 g ow M 3
hecause Y, cp = ‘—(%2( ) = %% = 0 as aggregate endowment w and time ¢ are two independent
variables.

Proof of proposition 5.

or ()] N i i
81”2(1 zdawp +zl:apw

A

Zaf‘p : Lcﬂp“ ¢ Lap zjz%p]?—;a ZTJ‘
iy + Covgy (aﬂ%f) +Zaipi2%p]
i j

1 /):U 1 pu
= Epnlay] + Covgyy (a’p“) +E{pz,}[a Zp] - Epnlal] + Covgyy ( )

The last equality holds because ), p? = 1, and hence term Egyla’] 2 >, =0 m

Proof of proposition 6. For CRRA utilities, eq. (2.71) shows that market-revealed
prudence /7 is always larger or equal average prudence E',i) [P*] under risk tolerance measure
{p" '} Inthe case of 2-CRRA economy (i = A, B) (and assume without loss of generality

throughout that v < +5), plugging P' = ~" + 1 into (2.71)

- 1 o ! Y !
ro- MWNW+1]~1+EW}{]EW}LJ FW}[]<1+bW}kﬁ)
A

— ()A A + (1__ A) B) 1+p__+1~p/‘ (2 73)
= A\ Py ~A ~B : '

Precautionary savings /2 is an explicit concave quadratic function of p#. Theoretically,* it

obtains maximum value

A B | ALB\2 A~B
v+ 7B+ 11
(v AP+ ) at ph o -y (2.74)

P"=max P = , _
Ay A 9 " 9~yA 4B

7 his is indeed the legitimate maximum when the corresponding argmax pA* e [0, 1}.
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. B .
vidently, when - > A, p** € [0,1] and the above value P* is indeed market-revealed

prudence’s legitimate maximum. Furthermore in this case, market-revealed prudence /’(p)

is larger than the largest individual prudence (which is agent B’s under current convention)

3

PB=~8 11 forall 0 < pt < 2ph* =1+ V”AAjfB. However. when —— < v pt <0, the

market-revealed prudence’s legitimate maximum is P* = P? = ~% + 1, which is attained at
pM™* =0 m

Proof of proposition 7. For CRRA utilities (Q" = ' + 2), from eqgs. (2.72) and (2.71)

1 R? 1 1])?
2 ,4 1 — - = ') R EE—— - L/ kA I
i 2B L/"] P (E{p} {(7")2} (F{p} {D >

Q

nl 1
1} L= By [(7)7}
+,

- E{p’}hi] Sy [?

w

Next, using (2.68) P, = P—“Lf:—@ we see that () > P+ 1if and only if P, < (). Specializing

in the 2-CRRA economy, we have

AP O A A ,)Ij )[} - )/\ TATB A3 A

Iju::T‘/_\“—p”:(A-’yB) 1+P A[ +7 BI : / ;
Op? Ow ¥ ~y T3 AAyB

where we have used the explicit expressions for P (2.73) and p7 (2.62). It is now clear that

P, < 0, or equivalently @ > P+ 1, if and only if (note that p* + p? = 1 and we have

assumed ¥ < 4B throughout)

A B B A AB
p—p pT =D A ,A*__l I ~7y
1+ A A + ~B >0&pT2p :§+§7/\ — B

A* < 0. In this case we simply have Q > P - 1 for all

B
7 Y A
We note that when 7 <YL P
A A B . .
p? > 0. The value p** = %‘{‘%%_V—WB is also where the market-revealed precautionary savings
P attains maximum (see (2.74)). m

Proof of proposition 8. This proposition holds on the premise of the large precautionary
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savings [7 > 5 (2.25) needed for the observed low real interest rate.

( m

Case @ > (2‘,f >+ R+ 2: we first rewrite (2.30) as

w __t (()—“))2
e 2W(Q—R—m—lP+R+1.

Since the expression inside square brackets is positive in the current case, large precautionary

savings (2.25) implies

o > pYo"R ([(g/wl (Q—R-2)— 1] (2,u) + R+ 1)

) ' 2 w 2 w
- uwo“R(Q—l— ; )~u“’ “R(Q— . )
(U“ ) (0"”)
which is (2.32) (the last approximation is from the conditions @ — (0,,) G > R+ 2 and bound

(2.27)).%

Case () < 2“'; . we first rewrite (2.30) as

v (0-11’)2 - Qle 2uw Z,Uu
ot =i (v o= 2] |5 - o]+ [ B -2r])

In the current case, all three expressions inside square brackets are negative under large

w

precautionary savings condition (2.25), and thus

T w (O—“lv ) ° g 2/'Lm w 2#’“’
oy <o"R 9 P 62 - (0’“')2 < Qo "R Q - W s
which is (2.33) (the last inequality is again from the conditions (2.25)). =

Proof of proposition 9. First we note from (2.65) that /> = (1 + 7,)[t, which implies

,

1 T . . o
P>R+1s T, > 5= e wl, >T, similarly PP> R+ 1T >T.  (2.75)

[0 the same approximation, in the statement of proposition 8 we write Q > (%"ﬁv + R in place of

Q > (»i e R+ 2. Practically. the difference is non-material by virtue of empirically large value (U“,) ~ 100.
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Next, since 7= Y. 7" and ¢!, =

il
T

() (53, ) 1

why =T =w)_, T, - T =

-
2 .
> (=, \/ﬁ) -T2 > (Z,'lz)Q—'/’2 _0,

where the first inequality is an application of Cauchy-Schwarz’s, the sccond arises from the
proposition’s hypothesis (2.75). Now wT, —T > 0 is equivalent to P> > R 1 again by
virtue of (2.75). m

2.9.2 Proofs concerning asset return volatilities

Preliminaries:

When 6 is a continuously differentiable function of the underlying Brownian motion /. the
Malliavin derivative D, is the deviation in 6 due to change in the path of Z starting at ¢.
The Malliavin calculus is a handy tool to study stock return volatilities. We adopt this tool
here along the presentation of Detemple et al. (2003) and Bhamra and Uppal (2009). More
extensive exposition of this powerful tool can be found in Nualart (2006). We first state two
useful results for our proofs.

Result 1: Let /3(1) be a general GBM process with bounded drift and diffusion

d3(1)
A(t)

= p(B, t)dt + o (B, t)dZ(t) where |u(B,1)|, |o(3,t)] < oo almost surely.  (2.76)

Then the process 3(t) never changes its sign

B(t)3(s) >0 Vt,s almost surely. (2.77)

Result 2: Let 0(t) be a general diffusion process

dO(t) = (6. t)dt + o0, 1)dZ (1), (2.78)
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then under regularity conditions the Malliavin dertvative ©(1) = D,0(1) of process 0(L) is a

generalized GBM process with specified initial value

de(r)
o(7)

= jg(0, T)d7T 4+ 09(0, T)dZ (T); O(t) = a(0,t). (2.79)

Note that subscript 8 in g, og always denotes the partial derivative and Malliavin derivative
D,0(7) is a process with respect to the ulterior time 7, and thus is defined only for 7 > ¢. This
result makes clear the relation between diffusion of a process and its Malliavin derivative.

More specifically,

D) = O(1) = o(0, 1) exp {/ﬁ (m;(@,u) - %oj(e,u)> du + /t a(;(Q,u)dZ(u)}. (2.80)

In particular they are identical when the Malliavin derivative is contemporaneous, D,0(L) =
a(0,1).

In case of two-CRRA-agent economies, working with first agent’s risk tolerance measure
™" is also convenient for our technical proofs. Applying Ito lemma on ph = %ﬂ yields the
dynamics of this state variable Indeed, the general volatility P4 and drift P of this state
variable’s diffusion process

dtled) — pA(pt)dt + oPA (pA)dZ (L),

pA{w.t)

oPA(p?) = 0¥ RpB (# - %) , (2.81)

7
., y NA N . w A B
[ e (=) 0 () (s - )]

where pP = 1 — pA, and R(p?*) = p*y? + pB+P is the aggregate risk aversion in (2.6). We

now proceed to the proofs.

Dervivation of mpr volatility (2.41): plugging I, in (2.17) into (2.40), we immediately obtain

(2.41).

Deration of eq. (2.98): Taking the Malliavin derivative D; in measure Q of both sides
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of eq. (2.36) yields

o*Q(w, 1)S(w. ) fo 7@ = £ [D,G(t,T))], (2.82)
G, T) = jtl e~ Jo Ty (1) du,

where 09 is the stock return volatility in measure Q. The diffusion invariance principle
0°C = ¢° justifies the drop of superscript Q hereafter. Using the explicit aggregate endow-

ment process (2.1) in measure Q

w(l) = w(0) exp {(u“’ — (U;) ) R A U“’/ n(w. u)duJ,

0

and the chain rule we obtain Malliavin derivative

T u gl
D,G(,T) = / duw(u)e™ Jo 77 {0“‘ - 0“’/ dr Din(w, 7) - / dr Dyr(uw. 7)} :
Jt t Jt

Plugging above D,G/(t,T") into eq. (2.82) we get the excess volatility of stock return (2.38).

Derivation of eq. (2.39): Let’s define
O(w. 1) = o"nlw,t) +r(w,t);  di = pldt + o®dz(1).

From (2.38), it is clear that D,f(w,7) < 0 Vr > { implies positive stock return excess
volatility o® > o". In light of Result 2 above, this Malliavin derivative is a gencralizod
Brownian motion, and Result 1 implies that it will remain negative at all time il all following

conditions hold.

1. Diffusion ¢ = %"; is bounded. Indeed this is the case. In the current two-CRRA-

agent setting, d, R, P are simple polynomials of p, and so are r, 7 in (2.21), and also

0 and o = [3(r 4 0¥n)/Op]oP4 by virtue of (2.81). Then the next-generation partial
n g

. . ¢ 0 . . 1 .
derivatives f,4 = 5‘;—0; and (rz/, = g‘gﬁ are also simple polynomials of p”'. These in turn
[
. 0 T A . .
imply of = % = s bounded almost surely because p” is in (0, 1).
P
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2. Duift g == ‘i“ is bounded. This holds by identical reasoning.

3. Initial value D#(w, 7)l,= < 0. Note that because 7 = ¢, this Malliavin derivative is
simply the volatility o = [9(r + a¥n)/0p?|oP4. From (2.81), o4 is always positive
for our convention ¥4 < v#, then this last condition is precisely the required sufficient

condition (2.39).

Dervivation of eq. (2.42): In 2-agent economy, we can work with risk tolerance measure

P = LI:;;‘_, as key underlying state variable. Using (2.24)

et = Ly + 0¥ nw) = o {5 + (0v)? ((7,“—)—2 +1- g) R, — §(o%)? RP‘”} (2.83)
ey [c'o«u{,),.} (57?, —) ( a1 ) (R+1—P)—L(o)2P(1+P— Q)]
= e [Cougpy (83) + (0007 ({ e + 1) (4 1) — gy + KO0

where the second equality arises from (2.64), (2.66), (2.68). Next, since 0?4 = plo™, together

with convention v < ¥ and (2.81) we have p22 > 0. From (2.83), the derivative —(%@ in

(2.39) is negative only if the expression in square brackets is negative

Cowy2 “u‘ “uP ‘ P(Q— R'—4) v i 1
(o) <{W }{R+1} — D + 5 < —=Covgyy (5,’7 :

For empirically reasonable values of aggregate consumption moments p* ~ 2%, o% ~ 2%,

we have ch_f’ > 1, above condition becomes (2.42). Thus, (2.42) implies (2.39), so it is also

a sufficient condition for positive stock return excess volatility.

2.9.3 Proofs concerning heterogeneity transformations

Proof of proposition 10. The multiplicative factor T(Z(1),() (2.47) is required to be
able to reduce FOC (2.46) to a simpler FOC (2.49), thus it satisfies

A B

e—d"tg/\(fr)v :e—o‘EtSB(T)w '



Let us look for T in the form exp ([3””‘5(,) exp (/BV*GZ(//)). Plugging in the Radon-Nikodym

. . : - 12 _p?
derivative & = e~ (@")t/2=02(1)  above eq. becomes

exp K%md . (92)2> z‘} exp [(v4377 — 0) Z(1)]

— ex ~Boave B_(GB)2 ) ~Bavd  pBY o
= p {787 ~0 5 )t exp [(P577 %) Z(1)].

Identifying the drift and diffusion parts immediately yields 579 37" in (2.48). This trans-

formation implements the isomorphism {4!, v%,§'.6%. 0%, 0% w(t)} «— {~+". 42 w(1)}. =
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Chapter 3

Bringing Structures to Reduced-form
Asset Pricing Models: the Functional

Stochastic Discount Factor

3.1 Abstract

Anv risk-nieutral statistical distribution of state variables, either reliably inferred from prices
observed in the market or exogenously formulated to generate closed-form prices, can be
consistently and neatly tied to the economic contents of the underlying pricing model. We
establish this structural linkage by requiring that the economy’s marginal utility, or the
stochastic discount factor, be a proper but unspecified function of the state variables. In
this functional stochastic discount factor approach, the most general economic structures,
being consistent with any state dynamic of choice, are identified to accommodate investors’
rich behaviors.  As a further result, state variables’ distribution in physical measure can
also he recovered. We illustrate the construction with an explicit real business cycle model
in which (i) interest rates have affine term structures and (ii) the forward premium puzzle
is consistent with consumption-risk rationale, the two key asset pricing features previously

deemed conceptually incompatible. More generally, our approach offers novel flexibilities
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that serve to extend several existing assct pricing frameworks: affine, quadratic, quotient

interest rate models, as well as the models built on the linearity-generating processes.

3.2 Introduction

Arguably, the stochastic discount factor (SDF, also referred to as state price density, or
pricing kernel in literature) is one of the most fundamental objects in asset pricing theory
and modeling. From the arbitrage pricing perspective, the existence of SDF is equivalent
to the absence of arbitrage, as asserted by a fundamental theorem of asset pricing. From
the general equilibrium pricing perspective, SDF is the marginal utility of investors in the
economy, as derived in the first-order condition of optimality. Indeed it is so fundamental
that many assct pricing models just set out with the definition of the stochastic discount

factors.

[n the current paper, we propose a novel, general and tractable asset pricing construction
in which pricing kernel is a proper function of underlying state variables. We refer to all vari-
ants of the construction as functional stochastic discount factor. Also throughout, by abusing

terminology perhaps, pricing kernel and stochastic discount factor are used interchangeably:.

Equilibrium asset pricing models, which center on stochastic discount factors, can be
broadly classified into two groups. In the first group, the stochastic discount factor is iden-
tified structurally with a representative agent’s marginal utility of consumption and thus
is motivated fundamentally from rational time and risk preferences of market participants.
Known models here include endowment and production economies with additive utilities.
recursive utilities, and habit formations. Though being richly enhanced with economic in-
tuitions, associated asset (bonds, stocks, options) prices do not necessarily have simple ox-
pressions. As a results, models’ estimation processes vis-a-vis price data can be cumbersome
in practice, even with ever increasingly powerful computational aids. In the second group.

the stochastic discount factor is imposed at the onset in reduced form.’, together with some

"This is usually done by picking a special short rate process r(t). We recall that in risk neutral measure,
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specification of the underlying state variablp dynamic, under risk ncutral measure (). The
setting is desirable thanks principally to the conveniences of the resulting closed-form as-
set prices. Known models here include Black-Scholes option pricing paradigm, and affine
and quadratic term structure of interest rate modeling. Though being highly tractable, the

associated models do not necessarily have structural economic intuitions.

Our basic construction is motivated to fill the gap between these two groups. Functional
stochastic discount factors, when appropriately constructed, can have both first group’s
cconomics consideration and second group’s pricing tractability. Being a proper function
of underlving state variables, SDF is a structural object that can be mapped to rational
intuitions. To enforce tractability, we can rely on the same risk-neutral state dynamic of

known reduced-form models.

Specifically, our construction is bascd primarily on very simple obscrvations. First, in
many settings the statistical distribution properties of state variables in reduced-form asset
pricing models are loosely connected to, and thus are (vaguely) compatible with exceedingly
large cconomic modeling class of investors rational preferences. This can be a consequence
ol incomplete market or otherwise. Second, once it is imposed that SDI* in physical measure
P be a proper, but unspecified, function of state variables, it can be consistently linked to,
and thus determined from the given risk neutral dynamic of state variables and short rate
process via a standard linear differential equation. In other words, our construction proceeds
consistently from the state dynamic in risk neutral measure to the endogenous SDF function
in physical measure. And then foliow market prices of risk, physical state dynamic and all

other quantities of interest.

This construction theme fits very well into the practice and theory of asset pricing. First,
in many settings the risk neutral probability of state dynamic is observable thanks to (i) the

prices observed in the market and (ii) the tractability of the risk-neutral pricing apparatus.?

the stochastic discount factor (or more precisely, the pricing kernel), exp (~ ft' 'I'(S)db‘), is determined solely
by the short rate process r(t).

20nc¢ classic setting is the option market. Breeden and Litzenberger (1978) show that the risk-neutral
conditional probability distribution of the underlying stock price can be determined from the prices of
Furopean call options of various strikes and maturities.
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The simplest version of our construction takes the risk-neutral dynamic as given, while other
versions considerably relax this assumption. Second, being able to consistently reconstruct
the stochastic discount factor in physical measure simultancously determine both investors'
preferences and the physical probability of state dynamic. In particular, the latter has been
cmbarrassingly difficult and in this regard the literature has to resort to dircet but rather
noisy responses to surveys from investors. Given that the stochastic discount factor is a
proper function of state variable, our construction first consistently pins down this function,
and then all other quantities of pricing interest, including the market prices of risk and the

physical probability distribution.

The advantages of the proposed construction are illustrated and employed to rationally
embrace a key stylized regularity in international finance. We construct a model in which
the consumption risk explicitly accounts for the elusive forward premium puzzle (FPT. also
known as the violation of uncovered interest rate parity). FPP is an empiricallv observed
puzzling pattern in international market, that high interest rate currencies tend to appreci-

ate.3

In the proposed international asset pricing model, our novel functional SDI is impliced
from a hybrid of power and exponential utilities. When coupled with the general affine
interest rate and consumption dynamic, the resulting price of consumption risk correlates
negatively with interest rate. Consequently, changes in exchange rates move in the opposite
direction of interest rates” differential. and therefore, in consistence with the forward pre-
mium puzzle. Intuitively, when home market and consumption surge, home risk-free bonds
lose their appeals as of insurance instruments, become cheaper and home interest rate in-
creases. In other words, investors in a bull (say, home) market tend to consume more and
confidently reduce precautionary savings, which boosts the interest rate in the associatod
country (and vice versa). At the same time, investors also perceive lower risk in home

market, loosen their risk-based discounting aggressively* (which depresses the price of risk)

3This is puzzling because it appears that appreciating currencies are more valuable, yet investors require
higher premia (i.e., interest rates) to hold them.
Yalbeit a surge in risk-free rate and risk-free discounting.
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and end up valuing home currency more favorably. Altogether, these consistently render
a highly-desirable affine term structure of interest rates and a rational explanation for the
[orward premium puzzle: home currency appreciates relatively while home interest increases.
This hybrid functional form of the SDF is pinned down naturally and unambiguously in our
construction from the imposition of two requirements; (i) SDF be a proper function of state
variables (consumption, in particular) and (ii) state variables have affine dynamic. The two
requirenients are customary, but usually and respectively imposed in different literatures of
structural and reduced-form asset pricing modeling. Our hybrid construction is essential for
both PP consistency and the extrenicely tractable (affine) term structure of interest rates.
In comparison, the SDF in simple exponential-affine form does not deliver completely affine
term structure dynamic, while the SDF in simple power form does not accommodate the

forward premium puzzle.

In the literature of dynamic term structure modeling (DTSM) of interest rate, several
analytical and convenient settings, those featuring affine and quadratic yields, have been pro-
posed and widely employed. Conditional on functional SDF, we establish a unified framework
for all these analytical settings. The key ideas are as follows. First, analytical bond pricing
can be implemented outside the risk-neutral measure using transforms inspired by character-
istic function techniques. This then motivates us to start out with a canonical tractable state
dynamic in any equivalent measure R, which does not have to be either risk-neutral ) or
physical 2. Yet after rotations back to these meaningful measures, the associated - and /°-
dynamics are highly non-trivial. In particular, employing this change-of-measure flexibility,
we show that gquadratic DTSM, quotient DTSM and many other non-linear DTSM can all
he derived from an affine DTSM in some spurious but equivalent measure R. This approach
not only preserves the desirable bond pricing tractability, it also accommodates non-linear
interest rates and rich structures of market prices, and most importantly, explicit economics
motivations conveyed by the functional stochastic discount factor. In this regard, our con-
struction shows that any tractable pricing setting can be greatly generalized by embedding

original model in a new, appropriately chosen, equivalent measure R.



FFurthermore, the recently proposed tractable asset pricing class based on lincarity-
generating (LG) processes neatly fits into our construction, since in the former setting the
stochastic discount factor is a (linear) function of state variable. In term of modeling, this
LG class of asset pricing models possesses a strong measure-invariant property (namely, if
the model is LG in a measure, it essentially remains LG in any other equivalent measurc).
which hence cannot be generalized by using above change of measure. Yet, built upon our
differential approach, we arc able to construct a more general version of LG pricing models

that does not have to set out with a strictly LG process.

Our paper contributes to the unceasing interest of building the structural cconomic mod-
els with tractable underpinning dynamics in no-arbitrage asset pricing literature. all revolving
about the object of stochastic discount factor.® The fundamental properties of the stochastic
discount factor; its existence, its relation to no-arbitrage and its pricing implications. are
obtained first in Cox and Ross (1976), Ross (1976). and Harrison and Kreps (1979). In struc-
tural pricing literature, the properties of stochastic discount factors are formulated hased on
investors™ rational (usually, utility-maximizing) behaviors. Consumption-based capital as-
set pricing models (C-CAPM) developed by Rubinstein (1976), Lucas (1978) and Breeden
(1979), and a large subsequent equilibrium pricing literature follow this utilitarian line. with
richer added features ranging from habit formation, recursive utility to heterogencous-agent
setting. The current paper partially adopts this approach in the sense that we explicitly
constrain the stochastic discount factor to be proper function of a subset of state variables.
This restriction facilitates the structural interpretation of our construction by clearly iden-
tifying the necessary characteristics of the utilitarian investors, whose preferences implv the
SDF. To take a shortcut, Constantinides (1992) and Rogers (1997) directly formulate the
stochastic discount factor® in physical measure without invoking investors’ utilitics. How-

cver in their work the SDF is exogenously specified. A key innovation that differentiates our

3t is impossible to thoroughly review the ever-growing literature on this subject within the scope of a
paper. Here. instead we opt to briefly discuss only works that are most, directly related to onr proposed
construction of functional stochastic discount factor. Interested readers are referred to Cochrane (2005). who
gives an extensive account of the merits of the discount factor approach in a much more general setting.

SRogers (1997) refers to the stochastic discount factor as state price density.
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functional SDF construction from this (and consumption-based CAPM) literature is that in
our approach, once the SDF is set to be a proper function of state variable, the functional
form can be implied endogenously and consistently from the statistical distribution governing
state variables. In this regard, our construction is non-parametric and thus flexible enough

to accommodate rational behaviors of investors.

In tractable pricing literature. Duffie and Kan (1996) construct a general class of mod-
cls with afline dynamic in risk-neutral measure @ that encompasses several previous classic
reduced-form bond pricing models. The current paper generalizes this modeling paradigm
by flexibly introducing affine dynamic in any equivalent measure R as the starting point. Dai
and Singleton (2000) construct a general scheme to classify and analyze all affine term struc-
ture models of interest rate based on the numbers of relevant factors driving the volatility
dynamic and the entire model. The current paper also attempts to classify term structure
models, but based on a very different dimension. In our scheme, different models are re-
lated if their dynamics can be rotated from one to the other by a change of measure. In
this classification, affine, quadratic and quotient term structure models can be connected as
all may stem from an affine dynamic in some spurious cquivalent measurc. More recently,
Gabaix (2009) introduces the class of linearity-generating processes in conjunction with a
lincar stochastic discount factor (and dividend) specification that allow for tractable bond
and equity pricing. The current paper generalizes his construction by incorporating arbitrary

(non lnecarity-generating) dynamics of the underlying state variables.

Our paper is most closely related to, but independent of and simultaneous with Ross
(2011). who also presents a procedure to reconstruct physical dynamic and preferences from
the risk-neutral dynamic. In that paper’s setting, the state space is discrete and thus the
approach therein is of algebraic (matrix) nature. The current paper’s construction of func-
tional stochastic discount factor is in continuous state spaces. We show that it is possible to

reformulate hoth papers” approaches using a unified martingale method.

The paper is structured as follows. Section 3.3 introduces motivations for the most basic

construction in which functional SDF is derived endogenously from state variables’ dynarmic
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in risk neutral measure. In particular, subsection 3.3.3 presents a comparalive analvsis
of our functional SDF construction vis-a-vis Ross (2011)’s recovery theorem. Section 3.1
generalizes the basic construction by introducing a new equivalent measure 7 and derives
many surprisingly close relations between classic models of dynamic term structure of interest
rate. Section 3.5 constructs a more general version of linearity-generating processes and
shows that they all are special cases of the functional SDF approach. Section 3.6 proposes
an explicit equilibrium pricing model in which the forward premium anomaly is consistent
with consumption risk and interest rate’'s term structure is affine. Section 3.7 demonstrates
our construction at work in multi-factor settings, and sketches the maximum likelihood
estimation procedure. Section 3.8 concludes. Appendices present proofs to all results as well

as a table summarizing key technical notations employed in the main text.

3.3 Endogenous construction of stochastic discount fac-
tor

In this section, we present a novel approach to the construction of stochastic discount factors.
The approach crucially hinges on the assumption 1 below that stochastic discount factor be a
proper function of model’s underlying state variables. We begin with formal presentation of
this construction concept, and then proceed to in-depth discussion and various motivalions

for this assumption.

3.3.1 Set-up

To set the notation, we first consider a basic asset pricing setting driven by a state variable

X (t), which follows standard diffusion process in either physical measure (alwavs denoted
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by [°) or risk-neutral measure (always denoted by Q)

dX(1) = pSP (X, dt+oX(X,1)dzZ"(t) (3.1)
= QX )dt + o (X, 1)dZ(1),

where Z(1)’s are standard Brownian motions in respective measures, drifts ©X’s and diffu-
sion oY arc well-defined measurable processes (we note that the diffusion is independent of
measure). For the sake of clarity, here we assume that X (t) is a scalar (one-dimensional)
process. The multi-dimensional case will be studied in a later section. The inclusion of jump
processes is also possible.

Let - and M” denote the risk free rate (rfr) and SDF in physical measure /” respectively.
Note that our definition of the stochastic discount factor M (t) in the current paper is
different from the period SDF commonly used in the literature, which in our convention

Mty dt)

is 5755 Assuming no arbitrages throughout and standard regularity conditions, the

martingale pricing of any contingent payoff D(X,T) generates the identity

exp( I Xsds)
exp( ftrXsds)

o {MP(T) D(X.T)| . (3.2)

P D(X. T)} E?

and the following relation for all ¢

MP(t) = exp <~/tr(x,s)ds>5‘9’°(t), (3.3)

P = exp </ OO, s)s - nQP<X~<>dZP<S>)’

q) P - . . . . .
where €97 is the Radon-Nikodym derivative” chararacterizing the change of measure from

"More rigorously, this object is defined by stochastic exponential martingale operator, see e.g. Rogers
and Williams (1987). When P and @Q are two equivalent measures, E?[D(T)) = EF [5Q (T)D(T)J where

€97 js the Radon-Nikodym derivative chararacterizing the change of measure from Q) to P.
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() to P, and n®?" the associated market price of risk
dZ9(t) = dZ"(t) + n®F (X t)dt.

Note that £9% is a martingale under measure P, and its reciprocal ¢7? = {—%,-; is a mar-
tingale® under ). Combining relations in (3.3) vields a very useful and known differential
representation of SDF that we will repeatedly invoke in later sections

dMP(t) , >

———— = —r(X. t)dt — " (X, )dZ"(t). 3.1

TP~ T D= (X, 0z (1 (3.1
We note specially that, when state variable X is traded, Cox and Ross (1976)'s original
no-arbitrage argument immediately fixes the its growth rate in risk neutral measure to be
the short rate®

pX (X, 1) = Xr(X,t). (3.5)

[n the rest of paper, however, we assume that state variables are not traded. and thus abstract
from this explicit requirement on growth rate in risk neutral measure. In other words. there
is no relation between ;?(X,#) and r(X.f) in the setting a priori. We will address this

case in a new version of the paper.

3.3.2 Construction: Basic version

The construction is motivated by risk-neutral pricing methodology and starts with the state
(Q—dynamic p*9(X, 1), oX(X, ) and short rate process (X. (). This framework is custom-
ary in leading dynamic asset pricing models of interest rate term structures. Furthermore.
risk-neutral state dynamic can be inferred from observed prices. In a recent work, Carr
and Wu (2007) design a procedure to estimate the risk-neutral distribution of currency re-

turns from currency option prices recorded in over-the-counter market, which enables them to

8As €27 is the Radon-Nikodym derivative associated with the change of measure from  to P. {9 is
the one associated with measure change from P to Q.
9The author is very grateful to John Cochrane for pointing out this case of traded state variables.
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demonstrate the importance of the skew dynamic in that market. Furthermore, our construc-
tion docs not impose any specific functional form on the physical state dynamic por(X. 1),
0¥ (X ). which, in contrast to risk-neutral dynamic, is hard to estimate in practice. Instead,
we make the following defining assumption for the our endogenous construction of stochastic

discount factor.

Assumption 1: [n physical measure, stochastic discount factor MY is a proper function of
state variable X and time t of the form MY (X.t) = e P*M¥P(X), where p is the standard

subjeclive time discount factor 0.

This assuniption immediately yields a differential representation for SDI' in risk neutral

meastre simply because 1to’s lemina is applicable herein

, 1
dMP(X ) = (5(04\(X,t))2M§X(X,z)+MX»Q(X.r,)M§(,\’,¢)prP(x.,t)> di(3.6)

+ oM (X OME(X, 0)dZ9(¢),

whiere the subscripts always denote corresponding partial derivatives. From other direction,
we have yet another representation for SDF (see also (3.4)), again by applying Ito’s lemma

on (3.3)
dMP(X ) = - MPX) [{r(Xn) = (097 (XL 0)2 di+ 9P (X, 0dz9(1)]

Under regularities, the uniqueness of this stochastic differential equation’s solution allows to
identifv the drift and diffusion parts of SDF (recall that M (X, t) = e »M"(X))
(o (XM (X)X MY (X)) +[r(X 1) = (07X, )7 = p] MT(X) = 0. (3.7)

!
2

oM (X, OME(X) + P (X )M (X) = 0. (3.8)

W0 Phe assumption of constant subjective time discount factor p is convenient but nonessential for our
analvsis. Extension to the case where p is some function of time is possible, but conceptually contributes
little to the construction.
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Consistent with given underlying state Q-dynamic {uX@(X, (), c¥(X,1)} and short rate
process r(X,t), the assumption 1 determines both SDF M* and mpr n®F jointly in (3.7).
(3.8). To sce this more clearly, we can also combine these to produce a single differential

equation!!

@XXOP NP (XY + p XX, ME(X) (5.9)
o X (XN2(MEP(X))? 5
 (rx,0) = RGN ) arrx) = o,

from which indeed SDF M ¥ and then the physical probability follow endogenously as desired.
However, a very serious technical obstacle in this construction is that this differential equation

is highly non-linear and its solutions can be very elusive.

The situation is not that all dreadful. Interestingly, a careful observation offers a hint to
meet this challenge. So far, the gist of our approach has been to solve for P-measure SDIF
consistent with (Q-measure state dynamic. In this change of measures, the Radon-Nikodym

. . > X -t /\’w d: . . . . . B} ’.
derivative £/’ = 2 L{%—ﬂi is necessarily a Q-martingale. That is, if A/”" and 1772

are two consistent solutions of the construction, their linear combinations k' A7 4 g2 112

are not '?. This explains why the construction is not linear in A/”. Rather. it should he

linear in MLP This prompts us to a change of variable
1 e Pt

MP(X) ~ MP(X.1)

of'(X) = (3.10)

after which key eq. (3.9) becomes a homogeneous second order linear differential equation

(HSOLDE) in ¢”(X)
%(a‘*(x, 020k x (X) + X, D)o (X) + [p - r(X, )" (X) = 0. (3.11)

Note that we furthermore need to impose appropriate condition ¢ (X) > 0 VA, and a

"1 Again we implicitly assume that state variable X is not traded, and thus there is no relation between
9 (X,t) and (X, t) a priori. See the discussion below eq. (3.5).
xp (~ I rds) exp (— I rds) exp (~ I r(ls)

OIS . . (2 N .
'2This because while T T are Q-martingales, =gz IS not.
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conventional initial condition ¢¥(X(0)) = 1 to qualify M* as a proper stochastic discount
factor.’ From (3.4), (3.11) follows consistently the market price of risk n%% and the physical
dynamic {N (X0}

—MEX )« b x _
WO mﬂ' (X,t), (312)

PP (X = X + R (X )oY (X,

n?r (X 1) =

(X.1) = cbﬁ['})(X )

and any other quantities of interest, that can be used to estimate the model.'* This is a
key result of our functional SDF construction, so we formally recapitulate it in the following

proposition before proceeding with further analysis.

Proposition 11 Given the state dynamic {*%(X,t), 0% (X, t)} under risk-neutral measure
Q and short rate v(X,t), the stochastic discount factor in physical measure P is a proper
and endogenous function of state variable MP = e P MP (X)) iff ¢¥(X) = —M—,s](—x—) solves the
second-order linear differential (3.11). Under this condition, physical dynamic p*-F(X 1)

and markel price of risk n?F can be consistently inferred as in (3.12).

Proof.  Alternative to the intuitive derivation above, we sketch here a direct and very
exp(~_[f’1'(X,s)ds)
MP(Xt)

be writlen as exp <~ [Hr(X,s) — p]ds)@P(X). It is a Q-martingale, and so is driftless under

short prool to this proposition. The Radon-Nikodym derivative £7°¢ = can

risk neutral measure. Assumption 1 then allows us to obtain an explicit expression of £7@’s

drift under Q-measure in term of {p%9(X,t),0¥(X,t)}. Identifying this drift with zero

Since these boundary conditions are on case-by-case basis. we omit further details in the current section’s
general discussion. Cheridito et al. (2007) explicitly treat the regularity conditions for the class of extended
afline D'TSM. The Feller’s admissibility condition for the square-root process (a.k.a., Cox-Ingersoll-Ross or
CIR) is discussed in section 3.6.2.

“There is another way to see why the introduction of ¢F(X) = —pﬁ comes in handy in the current con-

struction. Namely, once we make the assumption MP = e P*M P (X), we rightfully have a linear differential
equation by staying within measure P (see (3.7))

|

(0 (XL 00)° My (X) + 0P (X )ME(X) + (X, 0) = o] MP(X) = 0.

|8

The problem, however, is that the construction does not. wish to impose rigidly any specific functional form
APt the onset. As aresult, above linecar differential equation is unspecified, and cannot be used.
Conveniently, this simple change of variable also works for the setting of multi-dimensional state variables,
as secn in osection 3.7,

for p
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immediately gives rise to equation (3.11), which underlies the above proposition. m

While subsequent sections will present the most general, analytical solutions to the fun-
damental differential equation (3.11) under many configurations, the most remarkable fea-
ture of the construction is readily conveyed by proposition 11. Starting out with the ob-
servable risk-neutral dynamic {u*?(X,t),0%(X,t)} (e.g., by inferring from option prices)
and short rate 7(X,t), we can reconstruct consistently the marginal utility A/”, the mar-
ket price of risk n®” and the physical dynamic {7 (X,8),0%(X,0)}. In our current
continuous-state approach, any specific and qualified!® solution of (3.11) may constitute a
possible stochastic discount factor consistent with the same observable risk-neutral dvnamic
{r(X, 1), p¥2(X,1),0¥(X,t)}. This substantially simplifies the application and thus em-
powers the functional SDF approach. Instead of solving this differential equation in earncst
generality, we may much simpler construct a specific solution with appropriate properties
motivated by economics considerations. The obtained SDF should have both the consistency
with the prescribed @-dynamic and equilibrium economics appeals. Interestingly, it is this
feature that also renders practical uses for our multi-factor functional SDIF construction of

section 3.7.

3.3.3 In relation to the recently-proposed “recovery thcorem”

In an independent and simultaneous work,'® Ross (2011) formulates a theorem, named “The
Recovery Theorem”, to recover the physical probability distribution (and preferences) from
risk-neutral probability distribution. In term of their goals, thus, Ross (2011)’s theorem and
the proposition 11 above are very similar. Whereas the recovery theorem employs algebraic
(matrix) approach, the proposition 11 employs analytical (differential equation) approach.

This section reconciles the two approaches using a martingale formulation.

We again start with a Q-martingale property £7 [¢P2(T)] = €72(1) for the Radon-

15Stochastic discount factors need be positive to enforce no arbitrage. Other propertics may also be
motivated and imposed out of economics considerations.

6The author is very grateful to John Cochrane and Steve Ross for the introduction to and many discnssions
on Ross (2011)’s paper.
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Nikodym derivative £79(t) = exp (— J""rdﬁ) JMP(X, 1) = exp (~ f”[r - p]ds) ¥ (X), which
implies

o ] =0

To bring the above martingale condition to the formulation of the recovery theorem, we
consider an infinitesimal period T = t +dt and denote p(X, ¢; Y, T) the transition probability

density from (X, t) to (Y. T) in risk-neutral measure. The above equation then reads
/ e~ Iy X 1Y TV (Y)Y = 6P (X) (3.13)
y

Since this holds for any initial state X, on one hand, in discrete-state setting this equation
is identical to the characteristic root equation in Ross (2011), which in turn gives rise to the
recovery theorem therein.!” On the other hand, in the continuous-state space, by virtue of
the Kolmogorov backward equation on the transition probability density p(X,t;Y,7T) in the
risk-neutral measure,

1) 0 1 , 02
(X Y. T) = X D) ==X, Y, T) + = (0™ (X, 1))?

p(X, Y. T)

the same equation (3.13) immediately implies the key differential equation (3.11), which
anderlies our proposition 11. Thus, both the recovery theorem and the current paper’s
construction trace their roots back to the fundamental change-of-measures martingale, the
premicr apparatus of modern asset pricing theory. It is worthwhile to note that the current
construction works with continuous-state, continuous-time setting and does not produce
strong results in the uniqueness as in the case of the recovery theorem. Additionally, we do
not fix investors” preferences a priori. Our approach instead systematically and endogenously
reconstructs a set ol possible preferences for investors that are consistent with dynamic
in risk neutral measure. It is this flexibility that will help us to construct equilibrium
models consistent with rational economic intuitions. The physical probability distribution is

"I the one-period discrete-state setting, T = ¢ + 1, (3.13) becomes ), e™""p;;¢; = d¢;, or the charac-
teristic root equation P¢ = d¢, where P,j = e "'p;; 6 = ¢ #; & = {¢i}+.
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identified once the preferences have been pinned down. Section 3.6 present, an international
asset pricing model constructed precisely along this theme that is consistent with the forward

premium puzzle.

3.3.4 Motivations and discussion

Several further thoughts on this construction approach are in order here.

First, that the stochastic discount factor is a function of state variable features predomi-
nantly in consumption-based equilibrium asset pricing models. Therein SDF is representative
agent’s marginal utility M” = Ql_é_%_H) = U (C, H), and thus is proper function of aggregate
consumption C', and possibly other state variables such as consumption surplus /7 (in habit
formation setting), and so forth. In fact, this is one of prime motivations of our construction
and aims to explore the possibility to place certain no-arbitrage pricing models. for e.g.. those
in dynamic term structure of interest rates literature, on explicit utilitarian framework. In
this regard, although the construction restricts the choice of market price risk n?"” as we seen
above, we have the freedom in modeling the short rate function 7( X, () as desired. In tuim.
the resulting P-dynamic p*P(X,t) in (3.12) is very rich. Specifically. in the next scction
we construct a class of tractable bond pricing models, wherein short rate r( X, (), dviamic
P (X t) and even p* (X, t) do not have to be linear in X. The class thus is bevond affine

dynamic term structure framework.

Second, the assumption 1 that stochastic discount factor be some proper function A7 (X' 1)
of underlying state variable appears similar to imposing a Markovian structurce on it. In
single-factor setting and under standard conditions, diffusion dynamic (3.1) implies that
X(t) is Markovian and so is MP(X,t) given this function being regular enough. Any SDIF

has the following integral representations

t 1 al D
MP = exp—/ HﬁnQP(X’ 5)? +7‘(X,s)} ds + 9P (X, s)dz2" ()], (3.11)

which implies that in general (outside assumption 1) M” depends on the history path of
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state process {X(s)}, (or path-dependent). Hence beginning with two exogenously given
and arbitrary functions r( X, t) and n9F(X, t), the SDF may not always be a simple function
of only current state (X, (). It is only when (X, ¢) and n®F(X, () jointly are restricted '* by
system of equations (3.7), (3.8), the SDF can be proper function of current state variable.
In other words, n@F(X.1) is implied from the fundamentals {u™*9(X, 1), 0¥ (X, 1), r(t, X)}
via assumption 1, and in the same process a consistent function A/ P(X,t) is endogenously

determined.

Yet interestingly, the functional requirement placed on SDF does not rule out a design
in which AI* retains the path-dependent feature. A simple counterexample is obtained
when the state X (1) itsclf depends on the entire path {Z(s)}} of Brownian motion Z”(1),
and so does MP(X.t). As suggested in Chen and Joslin (2011), we may augment the
state space to absorb the path dependence in one variable into another new state variable.
Consider an overly simple setting in which F({X(s)}§) = F (X(t),f' f(X. s)dZP(s)> is a
path-dependent object.  After defining a new state variable Y = fff(X. s)dZP(s), F =
F(X.Y) becomes a proper function in new augmented state space (X,Y). Now the new
state vector (X, Y) has the dynamic similar to (3.1), but generalized to a multi-dimensional
frammework. the task that we take up in section 3.7. Alternatively, we can also embed our
basic functional SDF construction in any other equivalent measure R (which is not necessarily
P or (). see construction 2 below). As a result, when we get back to physical measure P,
the SDIY AP = AMP({X(s)}, 1) now depends on the entire history path of state variable.
We present now yet a more specific construction of path-dependent SDF in our approach.

Consider the following specification

MP{X}. 1) = exp (/ J(X(s))dz%(s ))M”(X,t),

where [(.X) is some general and given function of state variable, and M7 (X, t) = e Pt MP(X)

is another function to be solved endogenously in our construction. This path-dependent spec-

BIndeed, beginning with given and unrelated functions r(t X) and 79(t, X), the system (3.7), (3.8) will
generally have no solution ¢¥(X) (or P-SDF MF(t, X) = 7 (x 27xy) (because either r(t, X) or n@(t, X) alone
is suflicient to yield a solution ¢ (X) up to constants of integration).
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ification f" J(X)dZ9(s) is an Ito’s integral under measure () to facilitate the determination
of path-independent factor M*(X). This feature is not essential and we will restore the full
endogenous specification of M” under measure P later. Indeed, by the identical reasoning,

ol(X) = ﬁ#x) can be determined for a linear differential equation analogous to (3.11)

310 (OPeX (X)) + [1¥X) = [(X)o ™ (X)] ¢ (X)
+H[32X) + o= (X 0] 9" (X)(X) =0.

Path-dependent factor also enriches the market price of risk 7@ (compared with (3.12)).

which can be found from (3.4)

In this example, the ex-post SDF in physical measure is path-dependent and reads

2 ' i
MP({X},1) = exp ( / [+ S (X ()" (X (5))] ds + / f(X(s))dZ”(s))ap—(;)«
Third, the SDF in explicit functional form AM?(X, 1) can facilitate testing and estimation
via generalized method of moments (GMM). Specially, when underlying state variable \ is
observable, the associated Euler equation can be estimated in discrete time following the

standard procedure of Hansen and Singleton (1982)

BP MP(X(t+1).t+1)
‘ MP(X(t).t)

RIX(t+1),t+ 1) =1,

where R is a gross return on any traded asset. Alternatively, the resulting /-dvnamic
{nF(X, 1), 0% (X, 1)} explicitly obtained in this construction is sufficient statistics to carry
out an approximate but cfficient maximum likelihood estimation as proposed by Ait-Sahalia

(2002). The scction 3.7 below provides key steps for this procedure.

Finally, we will analytically solve for key equation (3.11) for many important functional

configurations of p¥? ¢¥@ and r in the next section. For now we just note that there
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exists a very standard, convenient and simple solution method that works for arbitrary
time-homogeneous functions p*9(X), 09 (X), and r(X). In that setting, a simple change
of variable v (X) = %},%E—%) transforms sccond order differential eq. (3.11) into a (first-order)
Riceati differential equation
> QMXQ(/Y)
I P 2 P
P (X)+ W (X)) + oV (X)) + o =0,
RO+ X0+ gt )
which can be numerically solved very quickly. The nice feature of this transformation is that

,
by virtue of (3.8) and (3.10), p2(X) = Z),gg)) = "UQ;(())(()), and above Riccati equation directly

determines mpr 727(X). In other words, the mpr 97 satisfies a simple Riccati different

equation in this construction.

In the next section we apply this construction to modeling dynamic term structure of
interest rate. and explore various generalizations of the current basic configuration in section

3.7.

3.4 Affine term structure modeling and beyond

While affine and other term structure models are reduced-form models motivated by remark-
able fixed-income derivatives pricing tractabilities, the proposed construction is motivated
by a closed-form SDF and thus has the appeal of structural models. A possible connection
between these two approaches will place them on firmer footings, either from pricing or equi-
librinm consumption perspectives. The principal question here is on equilibrium modeling
side: how we can build a functional SDF that also possess tractabilities of leading models of

dynamic term structure.

We first note that the premise of interest rate affine term structure models suits partic-
ularly well the basic construction of previous section. In particular, both require specifying
Q-dvnamic {p¥9 (X, 1), 0% (X. 1)} and short rate process 7(X,t). But this is just the start-

ing point of the current comparative exploration. We will substantially generalize the basic
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construction by initiating it in any equivalent measure R, and recover tractable bond pricing
frameworks with very rich P- and @Q-dynamics as well as highly non-linear short rate. Sub-
ject to assumption on a functional SDF, this approach thus provides a single new framework
for many dynamic term structure models (DTSM) from affine, quadratic, quotient and other

classes.

3.4.1 Construction 1: basic ()-dynamic term structure modeling

We recall the key ingredients of affine term structure models (Vasicek (1977), Cox. Ross and
Ingersoll (1985), Duffie and Kan (1996)), that render tractable bond prices and vields. They
are affine Q-dynamic (u*? and (0¥(X))? linear in X) and linear short rate (r linear in X).
Then follows price of zero-coupon bond of maturity 7" in closed form

S '
ZCB(t. 1+ T) = Ef [ezzp f ffrz Ej((.j;):zjs

= exp [A(T) + B(T)X(1)].

where A(T), B(T) satisfy a system of Riccati equations. Evidently, the term structure is
lincar in these scttings. Although leading affine DTSM models, such as completely affine
(Dai and Singleton (2000)), essentially affine (Duffee (2002)), extended affine (Cheridito et
al. (2007)) also impose affine dynamic in physical measure 2 out of econometrics conve-
niences, affine ¢-dynamic is the key for bond pricing tractabilities.

Our first construction is built on above ingredients of Q-dynamic term structure models in
order to retain the fixed-income derivatives pricing tractabilities. together with the assump-
tion on functional SDF.

Construction 1:

¢ in P-measure, SDF is proper, but unspecified, function of state variable ' - M7(X. 1) =

e P MP(X)

o affine Q-dynamic: pNR(X) = K& + KOX; (6X(X))? = Hy+ I, X
0

9This ingredient also contains an implicit requirement that time discount rate in the economy be g.
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o lincar short rate: r(X) =a+bX

Implied SDF

The specified Q-dynamic immediately yields a differential equation on ¢ = 15, as a special

case of eq. (3.11)

1 5
Mo+ X8R (X) + [K§ + KEX65(X) +[p— a—bX]0"(X) =0 (3.15)
Appendix 3.9.2 derives analytical solution to this equation. We summarize the general

resulting characteristics of construction 1 in the following proposition.

Proposition 12 The most general functional stochastic discount factor M¥ consistent with

construction 1 1s

47
e Pl u®

MO0, 7;2) + A2 — v+ 1.2 — v 2)]

VEREECHO A (3.16)

2= j(Ho -+ [1’1X),

where Ay Ao are two constants of integration associated with differential equation (3.15),
a..3.3.0 are constant coefficients related to model’s parameters given in appendiz 8.9.2 and

O(-. - 2} 1s the confluent hypergeometric function of argument z.

We note that there may be many functional SDFs consistent with the same construction
I, cach is characterized by a constant pair {A;, A\a}. However, {A1, A2} are not arbitrary.
They should be chosen to assure the positivity of M*”(X) in admissible domain of X and

the normalization 2 M7 (X(0)) = 1.

In general solution (3.16). a very convenient property of confluent hypergeometric func-

tion ®(a, a: z) — e* Va, = gives rise to the following two interesting special cases.

2UStochastic discount factor can be determined only up to a multiplicative constant.
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1. Ay =0, = ~: in this case,

MP(X. t) = el (et (HotH1X) (3.17)

N

which is well-known in term structure modeling literature as exponential affine (see
e.g., Duffie et al. (2000)). In particular, this is a completely affine configuration,
because the resulting mpr is n%7 ~ 0% = /Il + H X, and P-dynamic X" is affine
in X.

2. Ay = 0,0 = 1: in this case,
MP(X 1) = emPlem (DA (pp g X)L, (3.18)

which is a new and richer SDF form that also contains a polynomial factor in X
(referred to as polynomial-exponential-affine hereafter). Remarkably. the P-dynamic
implied by this SDI is also affine, even though market price of risk 427 associated with
MP¥ does not have to be proportional to state variable’s volatility a*. We will derive
and study this special SDF in much more details in sections 3.4.1 and 3.6. There
we show that, even in one-factor settings. its richness pays off a desirable negative
correlation between changes in exchange rate and interest rate differentials. This is the
forward premium puzzle (FPP) in international finance that, in comparison, cannot
be accommodated by above exponential affine configuration. as noted by Backus of al.

(2001).

Relations to affine DTSMs

In our construction, the market price of risk is readily implied from (3.8) and P’-dynamic

drift from (3.12)

ME(X
77QP(X) - M)éEX;O'X(X) )
> el g P ,r >
(X = ¥R + (XN (X) = K§ + KEX — 158 (Ho + 1 X)
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Then it is clear from the solution (3.16) that this construction is able to accommodate
non-affine P-dynamic pX*(X). In comparison with leading affine dynamic term structure
models 2! where both 2 and Q) dynamics arc affine, the tradeoff is evident. We have rich
(non-linear) P dynamic at the price of more restrictive choice of market price of risk (needed
to enforce proper functional SDF in our construction). We now characterize this tradeoft

more quantitatively in the following proposition.

Proposition 13 In I-fuctor settings with linear short rate r = a + b.X :

(i) The funclional-SDF construction 1 with additional specifications

- K§ =0, (KPP = (K9] =b,

| —

reduces to a model in the completely (and essentially) affine DTSM class.

(it) The functional-SDFE construction | with additional specifications

(1\1{" - Kg?) (1\’5’ K9 - 1) =0, [(K{”)2 - (K?)‘z] =,

[N R

reduces to a model in the extended affine DTSM class.

Other torm structure models with non-affine state dynamic in data generating measure have
been proposed in the literature, all with linear short rate. Duarte (2004) constructs semi
affine squarc-root (SAS-R) model in which state variables have affine dynamic in @, but
non-alline in 2. He shows that the SAS-R model outperforms known DTSMs in matching
the time variability of the term premium. Most recently, Le et al. (2010) propose a class of
discrete-time dynamic pricing models with a very general functional market prices of risk,
which in our notation is n(X,t) = A(X,t)v/X, where A(X,t) is some general exogenous
function of state variables. Their models then imply non-linear physical dynamic u? ~ p®?+

A(X.1)X via the corresponding (Q-martingale Radon-Nikodym derivative %ﬁ% =

(Ax.\’(u;).t*l).‘((hl) - , e . e . - . X
NN T T T [n comparison, market price of risk function is implied endogenously

2LCompletely athine models by Dai and Singleton (2000), essentially affine models by Duffee (2002), and
extended altine models by Cheridito et al. (2007).
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in our construction. In later sections, we generalize our construction further to allow for
non-linearity specification on both @-drift and short rate processes. We turn now to a new

key in implementing these generalities via the change of measures.

3.4.2 Construction 2: introducing equivalent measure R

A simple observation generalizes our basic construction substantially. In a nutshell, the in-
troduction of (any) equivalent measure R (which is not necessarily risk-neutral @ or physical
P) to construction 2 naturally and richly renders (i) non-affine Q- and - dynamics ¢ ¥?(.\).
1P (X)), (i) non-linear (X)), (iii) general non-Markovian (path-dependent) SDF in measure
P, while (iv) keeping bond pricing tractable. Though, in the difference with the risk-neutral
probability, there is no apparent link, and thus constraint, on R dynamic directly from price

data.

In fact, no-arbitrage pricing may be performed in P, Q or any equivalent measure R.
IFor a contingent pavoff D(X,T'), an extension of (3.2) reads

exp (* fTT(X, s)ds>
exp (— f" r(X, .s‘)ds)

MR(X.T)
ME(X, 1)

EP D(X,T)| = EF D(X,T)

where M is the stochastic discount factor associated with equivalent measure R by con-
struction. In particular, the tractability of bond pricing is extended to R-affine framework
using a transform technique (see e.g., Chen and Joslin (2011) and Cuchicro et al. (2009)).

All that is needed here is the existence of the Fourier transform 22 AR of SDE A7

XN (v, D).
(3.19)

/RU —nX R R
NIF(u,0) = \/_/ MR(X, )dX s MP(X, 1) = \/_/

Assuming the existence of M%(v), affine zero-coupon bond pricing in equivalent measure

221,aplace transform can also be employed.
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procecds as usual

ZCBt,LH‘ =

(3.20)

MBX(L+T),L+T)
& [ MR(X(0), 1) ]

e=PT

1 RSN ‘
— MR , ER S X (t+T) -
75 ey R

e Pt 1 © . ’
— ]\4]{ . A(L‘,T)+B(U,T)/\(t)l )
@EMR(X(L))/, (v)e «

¢

Alternatively. when M# has certain functional forms, e.g., product of polynomial and ex-
ponential functions M# = e** X™ the bond pricing can be performed in measure R by

repeated differentiating as suggested by the technique of moment generating function

Z(V]J)H e E/,R eA(a,TH»B(L\',']')X(t).

MU(X(t+ T),t+T)} "

o a
~ E aX(t+1)] - L
ME(X(1),0) Do e ]

Ayt
a=0 da

a=0
where the last equality is obtained because state dynamic is affine under measure R.

These {lexibilities in turn allow for non-lincar short rates, and thus relate our construc-

tion to more general DTSMs such as quadratic, quotient, and other models.

Construction 2: Lel R be an (any) equivalent measure

o SDF is proper, bul unspecified, function of state variable in measures I’ and I3:
MP(X ) = e PMP(X), ME(X,t) = e MR(X).2 Purthermore, M"(X) is bounded

Junction.,
o affine R-dynamic: p* (X)) = KF+ KEX; (6¥(X))? = Hy + 11 X

o Q-dynamic drift ¥ (X) is some given®, but arbitrary function.
23 is straightforward to incorporate the more general configurations where rates p” and pft are different.
This arises for e.g., in models where measure I? characterizes representative agent’s subjective belief and
true disconnt rate p’ is mixed up with belief’s drift term to produce an effective discount rate P, see eg.,
Yan (2008). However, this flexibility do not present new construction concept., and will be omitted for the
sake of shnple exposition.
e choice of Q-dynamic ¥ @(X) is either dictated by price data, as in Breeden and Litzenberger
{1978)"s formula for option market, or exogenously specified as in models of affine term structure of interest
rate.
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The main advantage of this construction’s genceralization is the substantial modeling flexibili-
ties to compensate for functional SDF restriction motivated by general equilibrium principle.
and at the same time ?-dynamic is not directly constrained by observed prices. The bound-
edness of M?(X) is sufficient to assure the existence of its Fourier transform AR (v). and
the subsequent tractable bond pricing. R-SDF A/®(X, () is implied in the construction by

integrating out the first-order differential equation (see (3.22))

X X.R(, X.Q(.

, p (@) = pt () .

= MPX)=Nex —/ drp, 3.21
(%)= rexp{ - [ D (321)
where A is the constant of integration. As constructed, this is the most general func-
tional form of possible SDFs in measure R that are consistent with the given dynamic
(59X, w5 B(X), 0% (X)}. As a check, however, we need to verify the boundedness on {his
ME(X.t) afterward. Before proceeding further, two quick observations concerning this func-
tion are in oder here. First when the dynamic follows Ornstein-Uhlenbeck mean-reverting

(constant diffusion, H; = 0) process in both measures,
A]R(X) ~ (,A-&-BX%—CX2
which has the exponential-quadratic functional form studied by Constantinides (1992). We
will study this configuration in the next section. Second, when the dvnamic follows CIR

(i.e., [y # 0) process in both measures,
MR(X) ~ @A+BX(H() + HIX)C,

which has the polynomial-exponential-affine functional form. We thus reconfirm the form

(3.18), which was derived under similar assumption of CIR square-root - and P- dynamics.

Now back to the construction 2, a specification for u*?(X) is still needed as we do not
wish to impose any functional form on SDFs M (X), M®(X). This construction docs not

fall into the jurisdiction of proposition 11 because short rate r(X) is not given at the onset
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here. Alternatives to this configuration will be considered in construction 3.

Nomn-linear interest rate

The first property of this construction is the non-affine dynamic p**(X), p*9(X) in both
measures I” and Q. This is the essential consequence of shifting the bond pricing task (and
the required affine dynamic) to an (any) equivalent measure R, and thus setting loose the
dynamics on Q and P measures. As a result, interest rate is non linear in general. Combining
[to’s lenuna and no-arbitrage principle 2 on function ME(Xt)

— M0 [r(X)de + N gz — dM (X ) = (3.22)
(0N (X))2PME (X )+ pSR(XOME(X, 1) — pMA(X, t)} dt + o ME(X, t)dZ ",

]
[ 2

and plugging in construction 2's specified R-dynamic yields the interest rate

— [N QX)) = (X)X Hy (K KTXP o+ K~ KT

rA = o+ I X

(3.23)
Flexibility in the choice of u™® translates into the very flexible form of short rate. The
resulting non-linearities here can be useful in interest rate modeling practice. In particular,
the non-parametric empirical studies of Ait-Sahalia (1996) and Stanton (1997) point to a
diffusion term ol power d &~ 1.5 in the short rate process dr = u"(r)dt + or®dZ"”. Meanwhile,
one-factor affine dynamic setting with linear interest rate can only generate either ¢ = 0
or 0 = 0.5. Appropriate specification of 4*?(X) in our construction (3.23) in contrast can
give rise to wider choice for §. We might have started with some exogenously specified and
non-lincar r(X) and proceed to P-SDF M¥P(X,t) along the line of proposition 11. This

specification, however, would not lead to tractable bond pricing in general.

Note that up to this point we have not made use of the assumption on proper functional

form A/7(X, () in measure I°. It will be needed if we wish to pin it down along the strategy

25Note that interest rate is the opposite growth (drift) rate of stochastic discount factor in any equivalent
measure,
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of construction 1 above. This is because by now we have obtained the explicit functional
short rate r(X) in (3.23). The only difference is that r is specified exogenously as a linear
function of the state variable in construction 1. SDF MP(X, () in physical measure follows

from linear differential equation (3.11). We will carry out this procedure explicitly next.

Quadratic DTSM

We consider now the first simple and special specification of construction 2, wherein state
variable has affine dynamic also in risk neutral measure, with constant volatility (i.c.. mean-
reverting).

pNUX) = KE + KPX; (oM (X)P = H.

The short rate in this model is necessarily quadratic in X as implied by general formula

(3.23)

T(X) = po +,01X+/JQX2, (321)
KRY2_ (K@ 2_ g9 _ KRy AKRKR_KQRQ KRY2 _(1¢@)y2
/}05/)+( Q) ( O)Ho 1 1 0; P = (K 1HOQ 1); pQE( 1_)H__0(_L_)~_

It is interesting to see that this is the quadratic DTSM developed in Ahn et al. (2002) and
Leippold and Wu (2002) from the exogenous Ornstein-Uhlenbeck (OU) mean-reverting state
dynamic and quadratic short rate. ¢ Thus the current construction 2, when specialized to
27

mean-reverting Q-dynamic “* | relates to this quadratic DTSM framework in the literature,

However, since we also assume that P-SDF is proper function of stare variable M (X 1) --

- > . pt . . . . . . S .
c PMAMP(X) = 3P(x): We can construct its governing linear differential equation. Feeding

quadratic short rate (3.24) into proposition 11 yields

1

5 Ho%x (X) + (KG + KFX)0R(X) + (0= po = ;X = p2X?)6"(X) = 0. (3.25)

“These quadratic DTSMs specify OU state dynamic in measure P. and impose an affine market. price of

risk. These together imply OU dynamic in measure @, which is all needed for risk-neutral tractable boud
pricing with given quadratic discount rate r(X).

*"Recall that we need to specify the Q-dynamic ;9(X,1) in construction 2, though this function can be
quite arbitrary.
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This equation pins down all possible qualified SDF functions M (X, ).

Proposition 14 The most general functional stochastic discount factor MT consistent with
construction 2, when the latter is specialized to OU mean-reverting Q-dynamic (or equiva-

lently, quadratic DTSM), is

MPD R (X 1) = (3.26)
p—Plo—MX—-NX?
o minX)? QY -(m+4nX)2 Q9 p )
Ae g (g + 15 (m+§—)‘—)i> + Ag(m 4+ nX)e T @ (—;— +4,3 ————“”*;‘X’Z)

where X, Ay are two constants of integration, v,m,n, M, N are constant coefficients related to
model’s parameters given in appendiz 3.9.2, z is linear in X, and again ®(.,.; z) is confluent

hypergeometric function of argument z.

Two particularly simple cases obtain when v assumes special values.® (This amounts to

imposing a constraint on model’s parameters. See appendix 3.9.2 for the expression of v.)

. Ay = 0: in this case,

NI

») 1 . 1
MPX )= ——¢ ~MX -~ NX?~ ~(m 2.
(X,t)=c¢ X exp( 4(m+nX)>

The resulting P-dynamic z” (X, t) as determined by (3.12) has the form % +B+CX

which is more general than affine.

2. 1 =4, Ay = 0: in this case,

, 1
MY (X, t) = e Pexp <—MX ~ NX? -~ Z(m + nX)2>,

is an exponential-quadratic SDF under physical measure P. The resulting P-dynamic
is affine (just as the given Q and R-dynamics in the current setting). This is a strong

reminiscence of the SAINTS 2 model introduced in Constantinides (1992). We will

28 Again, the property ®(a,a;z) = €* Va, z of confluent hypergeometric function is behind these results.
9quared autorcgressive independent state variable nominal term structure.
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formally analyze this model in connection with the framework of our construction 3

below.

Back to general cases, for any values of v and Aj, Ay, we can straightforwardly determine
R-SDF M#(X,t) from (3.21), which in the current quadratic setting is exponential quadratic

function of state variable.

In light of proposition 14, we can start out with eitklér affine R-dynamic (then coeflicients
dp, 01, 09 are necessarily related to construction’s original parameters by (3.24)), or a new
quadratic short rate r(X) = po+ p1 X + p2 X2 (then dy, d;. 09 are exogenous, and only subject
to the positivity of 7(X) in admissible domain of X). In comparison with the quadratic
DTSM of Ahn et al. (2002) and Leippold and Wu (2002), our construction has rich /-
dynamic (non-affine drift " (X, t) and mpr 5@} at the price of a restrictive (functional)

SDF M(X.t), vet both give quadratic forward rate and equally tractable bond pricing.

Quotient DTSM

In another simple and special specification of construction 2. Q-dynamic is also afline (a
square-root process)

pNQX) = K¢+ KPX: Hy=0.

From (3.23) follows the quotient short rate process

T’(X) :0_1‘)1{+90+61X, (.327)
R\2 _(1cQv2 e @ RicR_ 1@ 1oQ ; RY2 (W2
0., =K - KR+ G (11;]0) K go=p+ KM&EM + K9 0 = !,fil)_mﬂl_l,_
R-SPD is found from the general formula (3.21)
Q "R
MP(X,t) = et X TR/ oy (51—5-[1‘- ) . (3.28)
1
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Not surprisingly. A7 #(X, () has the same polynomial-exponential-affine form as M*(X, () in
(3.18). because this is the most general functional form of SDF consistent with square-root
dynamic in both respective ([¢ and @, or I and Q) measures. as discussed below (3.21).
However, the approaches to these functional SDFs are quite different. Putting this in a
simplificd way, measure [ of the setting leading to (3.18) is similar to measure 7 of this
setting. The current interest rate of the quotient form (3.27) is implied and more general
than the linear function r(X) = a + bX of construction 1. Consequently, when we go to the
data generating measure, the current SDF M (X, t) = e"ptaﬁ is determined by a special

version of different equation (3.11)
> - - = 1 . 5
I X 0% (X) 4+ (K + KPX)5(X) + (p— 9~1‘X‘ — 0 — 6, X)o"(X) =0, (3.29)

Consequently, A7 (X, t) is different from (3.18) of previous construction 1, confirmed by the

following result.

Proposition 15 The most general functional stochastic discount factor M¥ consistent with
construction 2, when the latter is specialized to CIR square-root Q-dynamic (or equivalently,

quoticnl short rate), is

F"_”XX*S
AP0, y;2) + Azt 7P(0 — v+ 1,2 — 75 2)

MDA (X gy = et (3.30)

‘ 1/2
2 [(K?)Z + 2}119]}
X
H,y

A

where A, Ay are two constants of integration, «, 3,v,8 are constant coefficients related to
model’s paramelers guen in appendiz 3.9.2, and ®(-,-; z) is the confluent hypergeometric
function of argument z.

" 2 -_ P . Pl
Then follow consistently from (3.12) the mpr n®@” = -% and P-dynamic u®" = %@ +
o n@" which is generally non-affine. Bond pricing is tractable by (3.20), or other transforms

presented in Duffie et al. (2000). Again we note that result of proposition 15 holds regardless
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whether we begin with the given quotient short rate or affine dvnamic in some equivalent R.

In the latter case, coefficients 6_1, 6, 6; are given in (3.27).

3.4.3 Construction 3: bypassing ()-measure

All our constructions so far have required the specification of Q-dynamic {s%@. o¥?}. Tra-
ditionally, this is because pricing in interest rate models is very conveniently (and explicitly)
performed in risk-neutral measure as in (3.2), and hence state variables’ Q-dyvnamic can ci-
ther be directly inferred, for e.g. by observing stock prices, or exogenously chosen to produce
closed-form prices. Nevertheless as we see in the previous sections, not only pricing can be
done in other equivalent measure (see (3.20)), but also r can be implied (not specified) from
functional SDF. We then can generalize the construction by replacing risk-neutral specifica-
tion by that in any equivalent measure, in place of the risk neutral Q). As a result. we obtain
as a special case the class of squared autoregressive independent state variable nominal term

structure models of Constantinides (1992).

Construction 3: Let 1 be an (any) equivalent measure

e SDF is proper function of state variable in measures P and R: M (X, 1) = ¢ "AI"7(X).
MR(X,t) = e " M®(X). Function M?(X) is exogenously specified and boundcd.

whereas M"(X) is implied.

o affine R-dynamic: pXf(X) = K&+ KEX; (0X(X))? = Hy + | X

This construction clearly does not rely on any specification involving measure (). Simi-
lar to construction 2, Fourier transform of bounded A (X, () exists and renders tractable
zero-coupon bond price (3.20). Also in this bond pricing process, the specification of SDF
ME(X, ) in equivalent measure is a natural replacement % for short rate specification (X, )

in construction 1. The advantage of this construction lies in the arbitrary and infinite choice

$0From the view of martingale pricing (3.19), exp (— [' (X, s)ds) can be defined as SDEF in measure ().
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of equivalent measure R, compared to a single and rigid choice of risk-neutral measure @)
in no-arbitrage complete markets. As always, the assumption on functional P-SDF helps to
pin it down endogenously and consistently. However, as both r(X, () and @ are not given

at the onset here, we first have to generalize (3.11) to the current setting of construction 3.

We begin with another generalized version of martingale pricing identity (3.2) for mea-

sures /2 and R

MP(X,T) M®(X,T)
EP =2 D(X,T)| = Eff | —5~—=D(X,T)| .
CLMP(X ) X )} ‘ [MR(X,t) (X.1)
The change of measure I” «» [ is implemented by the Radon-Nikodym derivative = %—;

and associated mpr nftf

PP X)) = ptRX)

I]RP()() — UX(X)

de™P (X, 1) = =" (X tm™"(X)dZ T (1),

Similar to the derivation of eq. 3.11, by combining Ito’s lemma with the same key change of

variable M7 (X, t) = e*”‘ﬁ%}j in (3.10), we obtain a differential equation

aX 2 R
ORGP () + (IUX,R(X) n M) o (X) (3.31)

MH(X)
pCRCOME(X) | P XOPME LX) | B OPIMEXOIY P —
+ ( MR(X/)\ + szij())(()x + 2[MR(X)§]2 ) ¢ (X) =0.

Since MF(X. 1) and R-dynamic {pMF(X), 0¥ (X)} are all specified in construction 3, this
is well-specified second order linear differential equation determining all possible P-SDF
MP(XN. ) that are consistent with the construction. Also follow endogenously all other

U of M™ respectively,

quantities of interest in order: 7 and '™ from drift and volatility
O-dvnamic gY@ = ¥R — p@REX " pdynamic pXf = pYR 4 nfPoX | and finally mpr %"
fornt volatility of above M. In other words, assumptions of construction 3 are indeed self-
sufficient. Moreover, the implied interest rate and dynamics in canonical measures P and

Q all are non-linear and rich. For a simple illustration of this approach we next consider

X. K X.Q

M hat is. G0 - —pdt — n@RAZ (1), where dZO(t) = dZT(t) + n®fdt and O = L=

MR o
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the class of the squared autoregressive independent state variable nominal term structure

(SAINTS) models.

SAINTS models in any equivalent measure

SAINTS models of Constantinides (1992) fit into our construction framework directly. be-
cause they are built upon specifying a proper functional SDF. This class of models is con-
structed originally in physical measure P with the following ingredients: (i) OU mcan-
reverting P-dynamic {p*" = K& + KFX;(6X)? = Hy = constant} (ii) exponentini-
quadratic P-SDF M P = e=rte(X=2)"  The zero-coupon bond price is tractable because state
variable X is a (conditional) Gaussian, and thus M ¥ is log x? process. The (no-arbitrage) dif-
ferential representation ‘]161—7: = —rdt —n®Pdz"(1) for P-SDF immediately implies quadratic

short rate r(X), and linear mpr n%7(X) = 2y/Hy(a — X). The latter in turn implies that

(Q-dynamic is also afline
pr X)) = (X)) = o QP (X)) = K = 2aly 4+ (KT + 2Hy) X

We note that the featuring exponential-quadratic form of SDF in SAINTS models can also
be precisely established the other way around. Once proper functional (but unspecified)
SDF MP(X,t) is assumed (our key assumption in this paper), above O-U Q-dynamic un-
ambiguously implies an exponential-quadratic SDF as explained in the discussion following
(3.21). Hence the two approaches to SAINTS models by specifying either (i) SDIF A/7(.X, 1)
(as in Constantinides (1992), and construction 3 more generally) or (ii) risk-neutral dynamic

w9(X) (as in construction 2) are equivalent.

Our current pursuit of introducing equivalent measure to modeling scheme can extend
SAINTS models in a very simple way. Let us specify SAINTS dynamic in an (any) equivalent
measure 1 (instead of P). As a result, bond pricing is equally tractable while physical
dynamic pFP(X) and SDF MP(X,t) are much richer after this extension. Specifically, we

consider the following scheme in line with construction 3.
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e OU R-dynamic: {,uX‘R = K({z + KlRX; (gx)2 = Hy}
e Specified R-SDF: MR = e~Ple(X—a)?
o lunctional P-SDF: MP(X,t) = e MP(X) with unspecified (implied) M (X)

Bond price ZCI3

S B — B MPX(+T) A T)] e [MAX(+T) 0+ T)]
R MP(X(0). 1) ! ME(X(), 1)

and the resulting forward rate dynamic are obviously as analytical as in original SAINTS
setting. by the interchange P «» R. The short rate 7(X,t) is also quadratic in X by
the same reason. The functional assumption MF(X.t) pins it down from a differential
equation (which is a particular version of the general equation (3.31) adapted to the current
exponential-quadratic A/F(X,1)). Not surprisingly, as the current short rate is quadratic,
this second order linear differential equation has identical form as eq. (3.25). An application

ol Proposition 14 then immediately yields the P-SDF in our extended SAINTS framework.

X e—ptefMXfNX'z
MP(X 1) =

(moinX)?

- ‘ —(m+nX)?
e @ ( + %v %? W) + Xo(m + nX)e*(fa—X)(P ( +

N
LI

3. (minXx)?\’
"2 2

[STAN

where A\, As are constants of integration, v.m,n, M, N are constant coefficients related to
model's parameters (appendix 3.9.2). Evidently, this SDF M”(X,t) is more general than
exponential-quadratic function of the original SAINTS*2. Consequently, both market price
of risk ?”(X) and state dynamic g (X) in physical measure are not confined to linear

form in out extension.

3.4.4 Summary

We now briefly sumimarize the main connections between our functional SDF approach and

the key interest rate term structure models in literature, for later uses. The fundamental

82Nis M P (X, 1) becomes an exponential-quadratic function in the special case where v = £ and Ay = 0

{sce discussion following Proposition 14), or when equivalent measure R simply coincides the physical P.
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assumption here is that stochastic discount factor is a proper (cither specificd or implied)

function of underlying state variable.

When state dynamic follows OU mean-reverting processes under risk-ncutral measure
(2 and another equivalent measure R (which can be P as a special case), (0¥)? = [/, -
constant, the functional R-SDF is necessarily a exponential-quadratic function A/%(X 1) =
e PLeAtBXHCX? o] the resulting short rate is quadratic function of state variable +(.\\') =
po + ;X + pr X% Various special forms of this result are covered in (3.21), (3.21) and

SAINTS models.

When state dynamic follows CIR square-root processes under risk-neutral measure ()
and another equivalent measure /2 (which can be /” as a special case), (0*)2 = Iy + /1, X.

the functional R-SDF is necessarily a polynomial-exponential-affine function
MR(X ) = e PeBX(Hy + H X)C, (3.32)

and the resulting short rate is generally quotient function ** of state variable r(.\') =
01X '+0,46,X. Various special forms of this result are covered in (3.17). (3.18). (3.21) and
(3.28) ®'. In particular, our above polynomial-exponential-affine function is the most general
functional form of SDFs that are compatible with the canonical complete-affine DTSM stud-
ied by Dai and Singleton (2000). This form is more general than the exponential-affine SDIF
widely considered in literature. It is this new generality that will prove to be a very useful

feature of affine dynamic models to address the forward premium puzzle in international

finance.

*31n special cases, when model’s parameters satisfy certain relations, the quotient short rate can be reduced
to lincar function. as in affine DTSM underlying eq. (3.17).

4 Indeed, as SDF can be determined only up to a multiplicative constant, the forins (3.18) and (3.32) arc
essentially the same, while (3.17) is a special case of (3.32) with C = 0.
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3.5 Linearity-generating dynamic and beyond

In this section we study the functional stochastic discount factor approach in conjunction
with the lincarity-generating (LG) processes recently proposed by Gabaix (2009). Asset
pricing models based on LG processes possess closed-form prices for both bond and equity
as hinted in an carly model by Menzly et al. (2004) on return predictability. This tractabil-
ity can be very useful in illustrating economics mechanisms, for e.g., rare disasters eflect

underlyving price anomalies (see Gabaix (2008)).

Interestingly, the class of LG asset pricing models has SDFs as proper (in fact, linear)
[unctions of state variables and thus is directly related to our current construction. We
first studies the original LG dynamic using infinitesimal generators of stochastic calculus.
This powerful differential tool places LG models in line with our analysis framework, yields
Gabaix (2009)’s key results promptly, and specially, points to possible generalizations of LG

modeling approach.

3.5.1 Linearity-generating dynamic and infinitesimal generator

Linearity-generating bond pricing models comprise of (i) underlying LG (vector) process
X (1) in physical measure such that EF[dX (t)] = —QX (t)dt where Q is generator matrix and
(ii) SDF is a linear in X: M”(X) = A™. X where A™ is a constant vector **. For stock
pricing, additional specification is M D(X) = A™¢. X | where M D is the product of P-SDF

M and dividend process D.

To simplify the exposition, we employ the infinitesimal generator DX*¥' associated with

difussion process X(¢) (3.1) in measure P. This operator acts on appropriate function f(X,t)

35Both © and A" can vary with time ¢, but must be independent of state variable X to assure tractable
asset prices of the model.
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and is defined as follows

DYPI(X,1) = Jim L [f‘(X(HAL),(lAt Al)) = [(X(0). 1)]

= filX, 0+ pNP X fx(X 1) + %Tr [eX(X, )T (X, 0 [xx (X D),

where Tr and superscript T denote the trace and transpose operator respectively. Practi-
cally for well-behaved functions, DF f presents the drift of the associated diffusion process
df (X.t). In special case f(t, X) = X, DXFX = pXP(X,1). The main ingredients of Gabaix
(2009)’s LG asset pricing models are

DXPX() = pX P (X 1) = -QX (1), M(X)=M"-X; MD(X)=A".X.

The use of infinitesimal generator combined with state-independent property of ) greatly

simplifies the conditional expectation operation. By induction we have

t+T t+7
EF[X(t+T) = X(t)+EF [/ dX(s)} = X, w—/ QEP (X (s)] ds

t+T s
= Xy = TQX(1) + 92/ / Ef [X(r)|drds = ... = e "X (1),
13 {

where in the last expression, matrix-exponential notation is the limit of the usual Tavior
expansion of an exponential function. A sufficient condition for this convergence is that all
eigenvalues of €1 be strictly positive. Zero coupon bond price (maturing at (+77) then [ollows

immediately because the stochastic discount factor A7 is in the linear span of vector X

]V[PXt T /\MEPX T 7n.?~~7'52)\’[{
ZCB(/,,X):E;’[ (X, t+ )}: PIXA+HT) ™ (1)

MP(X,1) Am X (1) A X()

Similarly, stock contingent on dividend stream {D(X,#)} also possesses closed-form price

(assuming usual regularity conditions to interchange the order of integration and expectation

B xplicit bond and stock pricing requires additional step of diagonalizing the generator € to implement

exponential matrix operation e~ 72,
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operations)

P(X.1) = EF | [ ML 4

¢ MP(X1)
o T pPIx (e))ds AT e (o] x (1)
MP(X.0) - MP(X1) :

LG pricing models versus affine DTSMs

At first glance, linear drift p¥" = —QX (¢) of LG processes is a strong reminiscence of affine

DTSMs. However, the resemblance stops here. First, the short rate in LG pricing models

can be computed from the differential representation d]y: = —rdt —n?FdzZ*(t) to be
DYIMT(X ¢ A - DY X (1 Am2X (1
r(X)=— S - ) _ A (), (3.33)
MP(X,t) Am = X (t) Am - X (1)

which is rational, but not linear as in affine DTSMs, in X.

Second, as far as bond pricing is concerned, LG models do not place any restriction on the
state variable's diffusion (¢¥)2. Whereas affine DTSMs specify a linear structure Ho+ H, - X
on this quantity. But as LG models also aim to price stock analytically, they actually also
imply some specification on the diffusion. Technically, this specification follows directly the

LG model’s requirement — A" QX (t) = DXFPIMPD(X 1))

1, : .
SATQX () = ._A,,,,.gzx(zv)l)(x,t)+§M’ (X, 0)Tr (0¥ (X, D)o M (X ) Dy x (X, 1))

X0 Dy (X, t).

P - X X,T
+ MU(X, ) | -QX({) + 0™ (X, t)o (X’t)MP(X,L)

Plugging in LG explicit specifications M¥ = A™ . X(t), D = MD _ ’t\,,,d))((((tt)), this clearly

is a kev dynamics constraint that partially 37. specifies diffusion 0¥ of the underlying LG

Process.

The two approaches to tractable bond pricing are quite different. Whereas canonical

T seltings with vector state variables, this constraints is not suflicient to pin down matrix o
&
unanbiguously.

X(,XT
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affine DTSMs specify lincar short rate, affine Q-dynamic and imply non-linear SDI. LG
pricing models specify linear SDF M¥*(X), affine drift on P-dynamic and imply non-linear
short rate. As a result. affine DTSMs gencrates a neatly lincar forward rate, while LG models

can also give analytical stock prices.

3.5.2 Extension to LG modeling

We now analyze the connection between LG pricing models and functional SDF approach.

hefore exploring possible extensions to the former.

LG pricing models versus functional SDF construction

As noted earlier. LG pricing models can be classified as a functional SDF construction. \We

now explore deeper relation between these two approaches.

"The gist of LG modeling starts with the eigen-problem of infinitesimal generator: D'\ —
—0X, and then specifies SDF A" and SDF-dividend product A" D on linear span of the
cigen-basis X (¢). Interestingly, our construction can also be neatly built around this funda-

mental differential operator.

Irom martingale pricing perspectives, if 77 is the SDF in physical measure and » is inter-
est rate process, then Radon-Nikodym derivative 97 = el r(Xs)ds prP( x| t) is P-martingale
and £79 = eI’ T(X’S)dsm is (Q-martingale. These imply null drifts under respective
measures

DXPeQP .

i

DY =,

In particular, the same sccond equation implics both differential equation (3.11) after ap-
propriate change of variable in functional SDF construction, and the short rate (3.33) after
plugging in A/7(X, 1) = A™ - X in LG modcling. In short, our construction specifies r(X, ()
and lets loose M” (X, 1), while LG models specify M”(X, () and let loose r(X, ().

Similarly, if A7" is the SDF in an (any) equivalent measure, corresponding Radon-
Y g
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and

¢PR = MR(X)

N LT o Ao e RP— MP(Xt) —
Nikodym derivatives & = WP

= VXD are [>- and R-martingale respectively,

and

DX,P{-RP _ O, «DX,REPR — O

The last equation is eq. (3.31) in our construction 3, and yet there are no counterpart LG
models here. A natural and tempting question then is whether the original LG setting can
be generalized along the line of introducing an (any) equivalent /2. It turns out that LG
specifications are invariant with respect to measure. To see this, we assume therefore in

some (any) equivalent measure 12 the followings:
DYEX (1) = QX (1) MRX,t) = " X(1); MED(X.t) =A™ X(t).

After defining a new state variable, X(t) = €77 X (t) = %X(t}, we can bring above spec-

ifications to physical measure P (recall that Radon-Nikodym derivative 7P is a scalar P-

martingale)

DYLX (1) = DX [RP X (1)] = ERPDYRX (1)] = —€RPQX (1) = —QX (1),

MP(X 1) = M RO 1) = £RP A X (1) = A X (1),

MED(X 1) = ﬁﬁgf{,jﬁg MED(X, 1) = 0P md X (1) =A™ X (1).

That is. X({) is LG process under P if and only if X(t) is LG process under R. This
measure-invariant property shows that LG pricing dynamic is already most general, and
thus neutral, with respect to measure rotation. Generalizations to LG setting within the
current differential venue, while keeping its analytical pricing power, is still possible after a

siimple twist.
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Extension
The extension starts out with a non-LG, and thus more general, vector dynamic
dX (1) = pP (X, 0)dt + o (X, 1)dZ" (1),

where uXP(X 1) is not necessarily linear in X. Hence this extension is most handy in
setting when state variable dynamics are given beforehand possibly to meet other empirical
constraints or pricing/statistical aspects of the model. We then wish to construct a new
state variable vector Y as (vector) function of Y = F(X,t) that has desirable LG dynamic,
DXPR(X, 1) = —wl (X, 1), or for all components I of vector ¥

1 . . .
5T (X )0 (X ) Fieye (X, )] + P (X0) - FL(X.t) + FI(X, 1) ZQW X

(3.31)
where [ and Fy denote respectively gradient vector and Hessian matrix of scalar com-
ponent F*. The final step is to specify P-SDF to be linear in ¥, MP = M. ¥ for bond
pricing (and MPD = A" .Y for stock pricing). In the essence, in (3.34) we are building
a functional SDF from the general dynamic of underlying state variable X. This extcnsion
scheme fits exactly into our construction approach. In the special case of original LG bond
pricing models, F(X) is linear in (in fact, identical to) X, Fixx = 0, which clarifies the
irrelevance of volatility specification ¢ (X, t) there.

In practice, given the state dynamic {7 (X, 1), o ¥ (X, t)} and a solution Y of eq. (3.3:).

any function of the form MP = A™ .Y, subject to non negativity and other regularity

conditions, is a consistent stochastic discount factor of equally tractable bond pricing model

MP(X(U+T)t+T)] A e TOR(X 1)
MP(X(1),1) A P(X)

ZCBr = EF

even though the X (1) is not a LG process. The set of dynamic {;%""(X, 1), 0¥ (X, 1)}, that
can render a closed-form solution F'(X, () for eq. (3.34), can be much larger than the lincar

span of X. Then plausibly follows extra flexibilities for LG modeling.
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Let us illustrate this extension approach in a simple example of two independent factors

X = (X}, X2)" following a 3-power process (see Ahn and Gao (1999)) 38

AX, (1) = Xy(t)lay = Xa(D)]dt + V2[X, (1)]¥2dZ] (1),
AXo(t) = Xa(l)[az — Xo(t))dt + V2[Xo(0)]¥?dZ] (1).

We can easily verify that the following transformed state variable Y (¢) is a LG process with

gencrator €2

Yu)_: g et Xl(l)[a1+X1(t)] ; Q- p— a 0
Ya (1) Xa(t)]ag + Xa(1)] 0 p—a

This suggests, for two constants A™!' A"? the SDF
MP(X) = P LMX (Dla + X (8] + A2 X (0)]as + Xa(D)]}

and the resulting bond prices

/\wle*T(P‘al)Xl(t)[a] + X](t)] + /\m,2e—T(p—a2)X2(t)[a,2 -+ Xz(l‘)]
)\m,l)(l(t){al + X1<t)] + /\7”’2)(2((:)[@2 + XZ(t)]

SCBy, =

We note that while there exists closed-form general solution of eq. (3.34) for this specific
dynamic, we can be content with some simple and special solutions. This is because any
solution, regardless of how special, is consistent with same state X dynamic and has identical
LG pricing power by construction. In practice, this feature renders both flexibility and ease

to incorporate extension to LG modeling.

s process evidently does not belong to linearity-generating class.
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3.6 Application: The forward premium puzzle

We study in this section an application of our functional SDF construction to a pricing
anomaly in international finance. This anomaly is commonly known as forward preminm
puzzle (FPP) (a.k.a., uncovered interest rate parity puzzle): on relative basis appreciating
currencies tend to be also associated with increasing interest rates. Generally speaking and
assuming complete market, the forward premium puzzle can be very conveniently discussed
using the apparatus of stochastic discount factor. In particular, in the same international
finance setting, Bakshi et al. (2008) construct exogenous SDFs that accommodate both local
and global risk to produce stochastic risk premia consistent with data in currency option
market. Our construction instead concentrates on the consumption risk and the general
equilibriwun aspects of the pricing model by solving the endogenous SDFs as proper function
of (consumption) state. We attempt to shed light into the necessary ingredients of investor
rational behaviors (preferences) and canonical equilibrium models that are compatible with

this international asset pricing anomaly.

3.6.1 Forward premium puzzle and affine dynamic

To set the notation, we use the standard superscripts i and f to denote quantities pertaining
to home and foreign countries respectively. Let S(1) be the exchange rate available at time /.
namely S(¢) units of home currency exchange for one unit of foreign currency then. Consider
any payoff D/(T') available at a future time T and denominated in foreign currency. We can
compute its current value in home currency by converting either its current foreign value to
home currency, or the payoft to home currency first. By no arbitrage, the two approaches

give identical value

S E} [%D/‘ (T)} = EF [

M*P(T)

WS(T)W(T) : (3.35)

where M*“" is country i’s stochastic discount factor in physical measurc
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For simplicity we do not assume information asymmetries between countries 39 and
consequently all countries use identical prior distribution for pricing. In complete market
settings, the SDFs are unique, which implies (omitting multiplicative factor immaterial for

the dynamic under investigation) for all time ¢

[P
S(t) = %—E% or s(t) =m"Pt) —mMF ().

where lower-case letters denote logarithms of appropriate quantities. The FPP can be quan-
titatively and succinctly expressed as negative unconditional covariance between the changes
ds in log exchange rates and the interest rates’ differential (all expectation and covariance

in this section are with respect to physical distribution)
™A = oy (ds(t), 'r'h(L) — 'rf(l)) < 0,

This covariance is indeed proportional to the slope coefficient of Fama (1984)’s forward
premium regression, the negative sign of which constitutes a necessary condition of the
puzzle. Plugging in the above formula for exchange rate S and applying [to’s lemma yield a
more explicit representation for the unconditional covariance (we hereafter omit the factor

dl to simplily the exposition)

[
2

e

gdH8T — (ov (’rh((,) + Tf(t) - 5 ﬁf’h(t) - rf(t)) <0, (336)

2 . . . . . . . .
QP s country i’s market price of risk, see (3.4). This signed relation, observed em-

where 1)
pirically for majority of countries pairs, implies that foreign currency’s appreciation (ds(t)
increases) tends to go hand in hand with relative increase in foreign interest rate (interest
rafe differential 7*(t) — r/(t) decreases) and vice versa ‘. The directions of these comove-

ments constitute a puzzle, apparently it looks like international investors would demand a

¥hongh this possibility may fit very well into our introduction of an equivalent measure R to pricing
model construction in general.
WEq. (3.38) presents a restricted version of the puzzle’s counterintuition, namely country’s market price
of risk necessarily moves in the opposite direction of it’s interest rate.
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lower premium (i.e., interest rate) for holding a depreciating currency.

Motivated by the power of affine dynamic framework in modeling interest rates and asso-
ciated term structures, Backus et al. (2001) explore the FPP within given afline dyvnamic
setting. They find that it is difficult, both theoretically and empirically, to accommodate
the puzzle with the given dynamic. In the relation with this stalemate, our construction can
be best illustrated to be able to overcome these difficulties, and at the same time provides a
viable risk-based explanation for the puzzle. Albeit Backus et al. (2001) employ a somewhat
special class of affine dynamic detailed next, the flexibility and advantage of our construction
manifests itself in that it is bound to the same dynamic restrictions. Before presenting the
construction. we briefly sort through Backus et al. (2001)’s arguments.

Backus et al. (2001) consider symmetric, independent and single-factor @-affine dvnamic for

cach country 4! together with positive interest rates linear in respective state variables

dX'(t) = (KG9 + KYOX)dt + /Hy + H{X'dZ9(1);

e {h, [} (3.37)
r(X) =a' + b X(t): E, [th-Q(t)de’Q(t)] =0 gy

In particular, they assume the standard completely affine dynamic setting of Dai and Sin-
gleton (2000), wherein market price of risk is proportional to the volatility of state variable:
nePHX ) ~ oX = \/H} + HI X, for i € {h, [}, so that dynamic in physical measure 1 is

also affine (see discussion below eq. (3.17)). In this setting. the condition (3.36) reads

O,ds,Ar - Var (T‘h(t)) + %CO’U ([nQPlh]Q’ rh(t)) o+ (h o f) (338)

= ("*Var (X"(1) + %Hl"bhl/ar (X"1) + (h & f) < 0.

where (h < f) denotes the repetition of terms but with concerning home quantities being
replaced by foreign counterparts. This serves both to shorten the notation and to emphasize
the current symmetric setting. The key observations of Backus et al. (2001) are as follows.

First, for either countries, the admissible domain H} + HX" > 0 for positive, possibly un-

*I'Note that symmetric factors common to both countries do not contribute in any way to the covariance
(3.36) by mutual cancellation.
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bounded, square-root process X*(t) implies that H: > 0 (more rigorous discuss of regularity
condlitions is presented in the next section). Second and by the same reason, almost surely
positive interest rate assumptions a' + 0*X* > 0 require both b" b/ > 0. These two obser-
vations render the inequality (3.38) impossible, and consequently the FPP inconsistent with
the given affine dvnamic setting. Backus et al. (2001) then relax assumptions on single and
independent factors, still they found that this more general setting fares poorly in addressing
empirically the puzzle. Their paper also points to a possible modeling solution, which allows
interest rates to assume negative values with some positive probabilities. We keep intact all
original dynamic restrictions and instead propose a natural generalization of market prices
of risk to tackle this deadlock. Conceptually and more importantly, our construction also

points Lo a risk-based story behind the puzzle.

3.6.2 A risk-based class of FPP-consistent models

As sunmmarized in the discussion leading to eq. (3.32) (and also (3.17)), we see that the
completely affine dynamic employed in the above study of forward premium puzzle can be

innplied by the exponential-affine SDF

MP(X ) = e Pt BY — pPRUX) ~ 0% = \/Hy + H X, (3.39)

This and onr carlier obscrvations then motivate a simple generalization of the complete-affine

setting.

The model

Our FPP-consistent model is based on construction 1 in section 3.4.1. We now start out
with a functional SDF of the more general polynomial-exponential-affine form (3.32) for each

countries in physical measure P. As a result, the implied market prices of risk have much
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richer structure??

MYP(XT 1) = e™te " BN (1 4 Hi X (3.10)

. : ) T C'H!
1,QP 1 1 i iV 1 . [
= X)) =—-B\WH:+ H Xt — —— i€ {h, f}. 3.11
X 0 ! VHy+ H XY th- 7} ( )

We note, however, that in one regard this specification is simplistic because currently the

above square-root process X (t) and SDF M™” are stationary. For more realistic construc-
tion, we can overcome this shortfall by augmenting the state spaces, and adding (identical)
non-stationary multiplicative factors to the SDF of both home and foreign economies (sece

section 3.7).

For the sake of simple exposition, we hereafter adopt the convention
Hy=0, VYie{h [}
This amounts equivalently to an innocuous change of variable X' — X' = X' ;—j" and
t
does not affect the validity of our construction in any way. We otherwise retain exactly the
specification (3.37) used by Backus et al. (2001). namely (i) linear, almost surely positive
short rates and (ii) independent, symmetric Q-affinc dynamic for cach countrv. With our

choice of polynomial-exponential-affine SDF (3.40), the dynamics are also affine in phvsical

measure [?

dXHt) = (K§" + KPP XYdt + 1/ HiXdZBP (1),
Ky =Ky -cHi, K=K -BH ie{h [}

. . . . . . P - ? .
Hereafter we work exclusively with the dynamic specification { K (’)‘[ K ;‘] }in measure 2. All
findings below concerning this specification can be immediately obtained for the risk-ncutral

{K59, K19} specification by reversing the above linear relations between these two scts,

12 Cheridito et al. (2007) first obtain this form of the market price of risk in their extended affine DTS
setting. Here we generate it fromn a polynomial-exponential-affine SDF.
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The key FPP necessary condition (3.36) now reads

oA = Var (r"(t)) + -;-Cov (In®PRO P () + (h < f) (3.42)

= (b")?Var (X"(0) + —;—(B}L)QH{"b"’Var (X))
1

1
+ §((7*‘)21/]'lz)h(7(m (X"(t), Xh—(t)> +(h ¢ f) <0.

Compared to previous structure (3.38), our construction offers a key new ingredient, namely

ds.&r - These terms stem

the covariance terms in (3.42) for the FPP regression coefficient o
[rom the richer SDF and associated mpr (3.40), and interestingly are invariably negative.
Under mild condition (see the proof of proposition 16 in the appendix), we also have a very

convenient approximation as an application of delta method

. 1 Var (X'(t)) ,
Cov (X‘(t s ) RS e ie{h, [} (3.43)
xw) ™ Eweay
Next. we need to examine whether their values can be small enough to drag the full ¢%4" into

the negative-valued domain for FPP to be consistent. The analysis also helps to understand

the cconomics intuition behind working models.

1. Ieller’s admissibility condition: For the square-root processes (3.37) under considera-
tion, X*(/) will be strictly positive almost surely when following conditions hold (recall

that we currently set 1 = 0 Vi for simplicity)
oKy > Hi >0  ie{h f}, (3.44)

where the first inequality is Feller's condition, the second is a regularity to make sure
that the square-root operations X' = \/H! X* do not generate complex-valued volatil-

ities for all admissible X*(¢).

2. Linecar interest rates: As summarized in section 3.4.4, the polynomial-exponential-affine
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SDF of the forms (3.32) or (3.40) generally leads to quotient short rates

7,1‘()(1‘) 1 E,P [dMi-P(X’?,t)jl (i (_fﬁ_(_l_;(_ﬂ _ [&'évl)) _L

Td MtP(X11) 2

(p’ — KB = KPPer — BlCiH{) LB (W}q‘,,l’ - ]/1/;'>

Hence we impose the following parametric relation to enforce linear short rates (by
getting rid of <5-term) as a requisite following Backus et al. (2001).

Hi(1-CY

KPP —
0 2

ie{h, [} (3.16)
Note that the same specification gives rise to the linear short rate of our carlier coun-
struction 1 of section 3.4.1 (see the discussion following eq. (3.32)). Plugging this

specification into immediately above expression for short rate, we indeed have

a =p - Ky"B — K{PCU - BiO H

rt=a" +b' X" with ‘ ‘ o
b= (17 + 42

i€ {h Y. (317)

. Non-negative interest rates: now as X'(t) are strictly positive (possibly unbounded).
like before, the conditions to assure non-linear short rates r' = a’ + b X' are b' > 0 Vi
or

(e HIB
B (K{‘P+ 12 ><o ie{h f}. (3.18)

We are ready to tackle the elusive sign of FPP covariance (3.42). We note that as a prereg-

uisite inherited from last section, the parametric setting is presumably symmetric between

countries, so similar parametric conditions are to be enforced in both countries. The most

plausible and robust sufficient specifications are to make the covariance terms Cov (X', ).

being always negative, the dominant contribution in (3.42) and thus render a FPP-consistent

negative o

ds,Ar

(CYH} > b > (BY*HY  ie{h,f}.

Combining this with above conditions (3.44), (3.46), (3.48) we finally arrive at the core
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specifications (3.49) of the FPP-consistent construction.

Proposition 16 [n an international asset pricing model possessing all of the following prop-
erties (where i € {h, f})

(i) polynomial-exponential-affine functional SDF in physical measure **

A/fi,/’(X'i,’ t) ~ e*ﬂl,elii/\”(x‘iy)(,'i
(i1) affine. independent and symmetric-across-countries state dynamic (3.37)
(iii) additional paramctric specifications

i1 - ).

B'>0; C"<0; H >0, K§"" = 5

—K;" > BH;, (3.49)
the change in exchange rates correlates negatively with interest rate differential as in (3.36),

Lo, the forward premium puzzle holds.

Within linear interest rate class (3.46), (3.47) our construction is both consistent and robust
with respect to forward premium anomaly in the sense that the FPP-consistent specifications
(3.19) can be casily satislicd for a wide range of parameters. The most decisive resulting
constraints among all is on B*, as long as B* has small enough values permissible domains
of other parameters implied by our construction will widen substantially (see appendix for
details). A more important task of uncovering any possible risk-based intuitions underlying
the anomaly, within this line of construction, warrants a thorough examination of nature of

these restrictions.

The risk story

The independence of risk factors between countries transforms FPP into separate intra-

country anomalies in (3.42). That is, as long as (squared) market price of risk (n"QP)Q

T his s (3.40). under the convention Hj = 0. Consequently, note that though parameters {H{}i=s s are
not in these SDFs {M%*},2n s, they still contribute fundamentally to the forward premium via their role in
the state dynamic volatilities.
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and interest rate r’ moves in opposite directions within each country 4, the countries” cross
independence will only add up these negative correlations and push the (squared) market
price of risk differential (n?@F)2 — (p/@P)2 changes further away from those of intcrest
rate differential 7* — /. Motivated both by the desire to preserve the original Backus
et al. (2001)’s modeling framework and this clear-cut separation, we have also assumed
this same independence. Our strategy actually relies more fundamentally on the mean-
reverting dynamic of consumption X (), and establishes FPP-counsistent relations between

key economic quantities, shown schematically below.

ML S,

) ) =" 185,
A[h.} i«T (nh,QP) JrT rh = A,[h,P TT Th

Symbols [T, 11 respectively denote same and opposite directions of comovements. These
movements should be taken only in statistical sense. As such, the concluding thesis 1 .+ S
expresses FPP observed in the data: all else being equal, home interest rate 1" likely drops
(r" |) when home currency depreciates (exchange rate S 1), and vice versa. Here is our

risk story underlying all of the above linkages.

MPP |1 S: This relation is a mechanical consequence of the assumption which keeps foreign
economy intact. Nevertheless, the intuition is that, all else being equal, home currency is
likely to depreciate when home risk is likely to increase. This can be best inferred from no
arbitrage relation (3.35)

MIP(T)
MIP(0)

D’ (T)] =El [Msm[ﬂ (T)

S(HE} [ R0

Keeping all but S(T), M"P(T) fixed for a simple exposition, increases in home country’s
future risk prompt investors to apply more aggressive discount scheme (M"”(T) |) theve.

FFacing such cloudy prospects at home, investors are to accept a time-T" payoff S(T) D/ (T)

in home currency only when projected exchange ratio is sufficiently attractive (S(77) 1) into

HRecall that at time ¢, S(¢) units of home currency exchange equivalently for one unit of foreign curvency,
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the future.

2 : :
MPP |4 (y"QP)%: The reasoning here is already covered by above argument. Increases
in future risk simultancously boost both required risk premium ((™9*)” 1) and discounting

(AMI™7(T) 1), Reassuringly, this is the just a statement of quantitative relation (3.4).

(nQF) % 14 vh; This key relation is a more subtle, but is also keenly implied by our construc-
tion. Nevertheless, without diving into full-blown rigors, the intuition is again very simple.
When home market goes up, home riskless bbnds lose their appeals (equilibrium interest rate
surges 1" 1), at the same time risk-averse investors likely wary less about risk (equilibrium
risk premium drops (77"‘"3’))2 1), and vice versa. We now substantiate this intuition via
canonical consumption risk embedded in state variable X (¢) itself: (nh’QP)E WX(8) Mt

We now argue for these relations in turn.

The signs B' > 0, O < 0 in specification (3.49) fit particularly well into a consumption-
based story. FFor illustration, we consider a setting wherein positive and mean-reverting state
variable X} is simplistically identified with consumption®®, with explicit (growth) dynamic

(3.37) (vecall H = 0)

dXi(t)  pXF oX' Ky P H:
M g T _azie) - K at Uz,
vy~ xot xp@ O e TN A @ W

Recall that (3.49) also implies Ké’P > 0, Kf’P < 0, or assuringly state variable dynamic is

mean-reverting in each country. We conventionally associate good states of economy with

NX",P
X

large realized values of endowment X*(t). As such, both consumption expected growth
and growth volatility -‘5‘—:—,— drop in good states. These dynamics are key to of the risk-based

explanation of the forward premium puzzle.

In equilibrium, country i's representative agent has (additive) marginal utility of the de-

sired polynomial-exponential-affine form Ul (X*,t) = MP(X* 1) = e e X' (X)), Since

B his identification is somewhat simmplistic, but X can easily be enriched with additional factors by state
space augmentation techniques discussed in section 3.7.
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M*P > 0, the associated utility % is increasing. It also has the hybrid appeal of exponential
and power preferences (though B* > 0 here). We may see this alternatively in the implicd
risk aversion ~*

XUk (XD XTMRT(X)

= - -C' - B'X".

X : : ,
LSS Ui (X000) MP(X )

i

The first constant component is from the power utility factor, and the second linear compo-
nent from the exponential. For almost power preference, quantified by parameters’ choices

P [ ot P : 4 " Ky" ‘
B'Ky" <« C'K}", the consumptions X* mean-revert about a positive level —&r This mean
—C !
B1,

value is well below and the above risk aversion coefficient ~' is always positive. In other
words, utilities are convex, and representative agents have decreasing positive risk aversion
for all admissible consumptions as rationally desired. This downward-sloping behavior of
7'(X") is due to exponential factor of preference. For small enough B* (which is most rel-
evant for our construction), power behavior dominates the preference, wherein risk-averse
representative agent demands lower risk premia in better states of the economy. That is.
market price of risk n?P(X?) decreases with consumption X'. Indeed, a transparent uanti-
tative analysis confirms this intuition (a direct but less intuitive computation on (3.40) also

does the job)

(9 ; 8 ; : O'Xl(/Yi)
QP iy i [
L X' = : X' 1) ————=| <.
gl (X =55 (v( )=
The inequality results from observation that both risk aversion coefficient 7" and market
growth’s volatility ”Xi ~ _\/i(: drops when market goes up. Consequently, investors demand

less premium for holding consumption-contingent asset and market price of risk decreases in

good states in our rational model: ('f)"*QP)2 1 X().

In light of consumption risk, the same interest rate (3.45) can also be recast in a very

lucid form related to risk aversion coefficient (square-bracket expression) and precautionary

16T he associated utility is U (X, t) ~ e7?'t [ ¢ #'teBYYC gy,
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: ; Mk .
savings (0 = — X"—XX curly-bracket expression)

AP
XLP( i Xt(yiy]2

o C | RXY) VoX (XD . oo o

1 AN ' ) X1 _ - . i Xz 91 Xl

P = o |E 0| = 8 g T )

~C'Ky" i [Py 1o navi , OO 1)
= constant + —XFQ— - B Kl’PX — §Hl {(B X+ — [ (3.50)
Interestingly, all C*-terms originated from power preference load on 3(1—, all Bi-terms from ex-

ponential preference load on X, This signals a very interesting interaction between intertem-
poral consumption smoothing desire (square-bracket terms), precautionary saving motives
(curly bracket terms) and the mean-reverting consumption dynamic. It is this rich interplay

that can give rise to FPP-consistent behaviors of equilibrium interest rates.

e Lincar interest rate specification: Under this restriction (3.46), all A%—terms cancel
out and (3.50) coincides with (3.47). We now concentrates only on non-canceling
terms (other terms will be studied next). Positive shocks in X* boost up elasticity of
intertemporal substitution ﬁ But as investors face negative expected consumption
orowth (mean- reverting coefficient K{'P < 0in “);(—1]3), the intertemporal consumption

smoothing (term —B' K" X" > 0) increases in good states (large X*). This effect

contributes to a surge in interest rate. Furthermore, when preference is mostly of
power type (B' <« (), we can always disregard the second-order term originated from
precautionary saving (term 3 (BY)?H{X*). Thus, in our linear interest rate specification
mimicking Backus et al. (2001)’s, intertemporal consumption smoothing dominates
over precautionary saving motives, and interest rate moves in the direction of economy:

rerr XE

o Quoticnt interest rate specification: For the sake of completeness, we now venture out
ol domain of linear interest rate and additionally consider all %—terms in (3.50). Under
almost power preferences, consumption expected growth actually drops in good states
due to mean reversion, which prompts investors to trim current consumption and save

I i P

—("K . .
more (term —7%—). As a result, interest rate decreases. But at the same time growth
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. X" . . .
volatility % also drops in good states. Investors then reduce their precautionary
: - Lpri C1(C 1) : ST : eTeasos '
saving motives (term 5/H}=—<—) and consequently interest rate increases. When

. . . . . . ; K/
either investors are risk averse or consumption is variable enough, //j > =% > 0. the
precautionary saving effects dominate %7 and interest rate again surges in good stales

of economy: rt 11 X

Altogether, our construction tells a risk story on the dominant negative correlation between
riskless rate and risk premium in (3.42), as the two moves oppositely with respect to con-
sumption X'(4) . Looking back, Backus et al. (2001) consider a dynamic setting that can
be implied from pure exponential preference (3.39). We inherit this structure, but add to
the picture a dominant factor of power type (3.40), after which the model becomes 1'PP-
consistent. It might appear that power utility is all we need for the story to work here, and
in particular it might also be tempting to set B' = 0. However, the remarkable and relevant

. . iy
role of this exponential preference e?'X

in SDF is in fostering appropriate degree ol interest
rate variability: slope coefficient b* (3.47) is proportional to 5. Graveline (2006) estinmates a
two-country pricing model of extended affine class, in which the market price of risk dynamic
is exogenously specified to have the form similar to (3.41). He shows that extended affine
dynamic is consistent with FPP in the data. This study thus supports our construction
empirically. Since these same dynamics are being implied from the consumption wodel. we

have gained further viable risk-based intuitions which drive forward premium anomaly in

this setting.

There is neither consumption risk sharing nor trading at international level here, so in
such aspects, the construction is a rather simplistic version of real world. Nevertheless.
it serves our aim to demonstrate the advantage of functional stochastic discount factor
approach, the principal theme of current paper, in constructing economic models to address
certain economic and price phenomena. Introducing interdependence between countries” risk
factors will certainly enrich the model in many relevant ways. This however calls for a multi-

factor generalization of our functional stochastic discount factor construction, the subject of

“TNote that now real interest rate may have negative values, but also we currently are not strictly bound
to linear interest rate specification of Backus et al (2001).
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next section.

3.7 Multi-factor settings and estimation

With the exception of section 3.5.2, so far our constructions have been confined within
one-factor setting wherein state variable X (¢) is unidimensional (scalar) process. Realistic
cconontics problems are usually driven most certainly by multiple state variables. 1t is
always desirable to have analytical frameworks, such as the original affine D'T'SM or linearity-
generating dynamic, that can handle several correlating factors. In this section first we show
that our functional stochastic discount factor approach also works in multiple-factor settings,

then briefly outline the quasi-maximum likelihood estimation procedure for the construction.

3.7.1 Multi-factor setting

The state variable X (¢) now is a vector-valued diffusion process in R", driven by m indepen-
dent standard Brownian motions Z(t) € R™. To present key ingredients of the multi-factor
generalization, below we work with the basic construction (section 3.3.2). Generalizations

to other constructions follow in analogy.

Here the state dynamic specification in risk-neutral measure (n-vector drift ;159(X),
n = m-matrix volatility % (X)) and scalar short rate process r(X) are given in conjunction
with the featuring assumption that SDF in physical measure M”(X.t) = e ”M"”(X) be
proper [unction of state variable (and time). Under these condition, we can explicitly apply
1to’s lemma on general function A7 (X, 1) and identify outcomes with martingale differential
representation (3.4). This results in multi-factor counterpart of eq. (3.9), which now is a

second order partial differential equation (PDE)

3T (0 (X oS (X, ) ME (X)) + w59 (X) - ME(X)

T MET (X)X (X)X T (XIME(X)
+ (r(X) - i G(IVIP(X))Z S] - P A"[P(X) =0,
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where n-vector A/{ and n x n-matrix A% respectively are gradient and Hessian of P-SDF.

The convenient change of variable ¢”’{X) = —2-— nicely transforms the above non-linear
7o\ A{P()\) g8

differential equation into a linear one, just as (3.11)
1 7 > -
5T (0 (X )0 (X, )%y (X)) + 1¥%X) - 08 (X) + (p = r(X))e"(X) = 0. (351)

At the first look, it is apparent that there is little hope to pin down the multivariate SDF from
this PDE, given {u¥9(X).0%(X)},7(X). A closer examination concurs that this vagucness
actually poses a very practical advantage for our current multi-factor construction. First.
the gist of this construction (see proposition 11) is that any solution of differential equation
(3.51), subject to regularity conditions to rule out arbitrage, can be a SDIF cousistent with
the given dynamic. That is, we do not need to solve this PDE in full generality, a very
difficult task in multi-dimensional setting. It turns out that, for the flexible equation (3.51).
not only it is much quicker to obtain special and consistent solutions, but also one has more
room to impose and accommodate economics-motivated structures on these solutions. let
us illustrate this point in a simple specific example, motivated by separation-of-variable ¢lass

of special solutions.

We consider now a two-correlated-factor model, and for notational clarity we write
(X.Y)T in place of the 2-vector state variable X above. Similar to construction 1 in scction

3.4.1, we specify a linear interest rate and @Q-affine dynamic for state variable

dX dzXQ(1)
r=a+b"X +b'Y; = uQdt + o , (3.52)
dy dZY9(1)

where ZX:Q(t), Z¥9(t) are uncorrelated standard Brownian motions in risk neutral measure
() and

uxe k§ + k{TX

ut e k§ + kYT X + kYY

H
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GQmw OQJU hgm‘+_h{m)( h0‘+-h1)<
gE gt ho+hi X R + WX + hl'Y

Plugging these specifications into the key equation (3.51), we can confirm that special solu-
tions of interest can be obtained using standard separation of variables techniques. Specifi-

cally, we-look for solution of the form
(X, Y) ~ eBYG(X).
This is indeed a solution of (3.51) if the following relations hold for unknowns 13 and G(X)

W'B? KB — 1Y =0,

2

Lo2w Gy ¢+ (Bo® 4 u Q) Gy + (%[h/g” F R X+ BlkE 4+ kX 4 p—a — wa) G =0

Solving first quadratic equation yields parameter B. With all coefficients being linear in X,
the second equation is identical to (3.15) of construction 1. The most general solution of
(X)) is in term confluent hypergeometric functions ®(.,.; 3X), as readily given in propo-
sition 12. Accordingly, in practice we may start out with a functional stochastic discount

factor of the class

6—m€~BY—aX

MO 7 BX) + M(BX) D0 — v+ 1,2 — 7, 3X)

AMP(X Y =

which will be consistent with the multi-factor dynamic (3.52). Yet different specific choices
within this class yield rich sets of possible equilibrium interpretations, market prices of risk
and PP-dynamics, as we have seen in our previous re-constructions of various term structure

models, lincarity-generating dynamic, and specially the forward premium puzzle.

3.7.2 Maximum likelihood estimation procedure

Since zero-coupon bond prices are tractable here, we can also use the maximum likelihood for

the model estimation. Singleton (2006) offers an extensive resource for empirical estimation
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of many dynamic pricing models. For the sake of completeness, in this scction we are
content with only sketching the maximum likelihood estimation steps entailed specifically
to our construction. The following procedure is also drawn upon the works of Ait-Sahalia

(2002), Cheridito et al. (2007) and others.

e Step 1: Collect data on more bonds than state variables (Pearson and Sun (199)):
Pick price data of K bonds (with K different maturities. Treat first N bonds’ prices as
exact (i.e., observed without errors), and the rest K — N prices as noisy (i.c.. obscrved
with errors). Here N is number of state variables. Assume that observation error vector

is i.i.d. Gaussian multivariate with parameters set 7.,

e Step 2: Pick a model to be estimated, e.g.. as in Construction 3. Choose some specific
numerical value set for input parameters of this construction. The input parameters
are

Tiotr = {Ho: Hy; Kot K7; parameters inside SPD ¢”: 7, }.

e Step 3: Because zero-coupon bond prices are tractable (Chen and Joslin (2011)s
method) in the model. from the data (prices) of first N bonds, back out the inplied
(latent) variable vector X (¢) = {X'(t);...; XM (1)} (corresponding specifically to the

above numerical set of parameters). (In our one-factor model, N = 1)

e Step 4: Now because our construction allows for explicitly (solved) P—mcasure dy-
namic u”’, ¢, we can (approximately) construct the transition probability Ly (X (1) X (/-
1)) in P—measure using Ait-Sahalia (2002)’s approximation (Hermite polynomial ex-

pansion).

e Step 5: Since zero coupon bond prices is tractable, there is a tractable relation between
latent variable vector X (¢) and yield vector y(¢): y = y(X). Jacobian of this relation
allows us to convert state-variable transition probability Ly (X (1)|X (L — 1)) into vield

transition probability L, (y(t)|y(t — 1))

e Step 6: We compute the implied error vector (in the observed data) of the rest ' - N
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honds:

¢ = (K — N) yields’ error vector =

observed (K — N) yields — theoretical (K — N) yields

where theoretical yields are computed by feeding the implied state variables (obtained

in Step 3) into the model’s tractable zero-coupon bond price

e Step 7: As error vector ¢ is assumed Gaussian multivariate, its likelihood is known
by placing ¢ into normal multivariate density N (e, 7). Then the total likelihood

function is the product

L(,ﬁw‘«ul) = L‘.l/(y(t)w(t - 1)) X N(E, 7:”)

e Step 8: By maximizing this total likelihood function L(7iea) by changing the numerical
value of the parameter set 7 in Step 2, we will arrive at the best-fit parameter set

Ir* total -

3.8 Conclusion

This paper starts with a key and simple observation that when stochastic discount factor is
proper function of underlying state variables, it can be determined from the risk-neutral state
dynamic via a simple linear differential equation. Consequently, state dynamic in physical
measure can also be consistently pinned down. Accordingly, we propose a novel, tractable
and most general asset pricing model of functional stochastic discount factor (SDF). The
construction is motivated by and provides structural foundation for many popular reduced-

form pricing models, which currently might lack of economic intuitions.

As an application, we construct a functional stochastic discount factor that sheds light

into viable consumption risk underlying the forward premium anomaly. Intuitively, when
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home market and consumption go up, home risk-free bonds lose their appeals. become
cheaper and home interest rate increases. At the same time, risk-averse international in-
vestors perceive lower risk in bull home market, and value home currency more favorably.
Altogether, these consistently render a rational explanation for forward premium puzzle:

home currency relatively appreciates while home interest increases.

As a function of state variables, stochastic discount factor also offers new framework to
unify diverse existing asset pricing models. To illustrate, we establish simple conditions under
which many classic settings of dynamic term structure modeling (such as affine. quadratic
and quotient interest rate models), as well as pricing models based on recently-proposed

linearity-generating processes, all can be derived from functional stochastic discount factors.

3.9 Appendices

3.9.1 Table of notations

The following table lists all key quantities and their notations employed in the main text.

3.9.2 Proofs

We recall that subscripts always denote derivatives or partial derivatives (when appropriate):
eg., fx = g)f? throughout the paper. To simplify the notation, we also omit the explicit state
and time contingency (X,t) from general function f(X.t) wherever the omission docs not

create possible ambiguity.

Proof of proposition 12. Our construction of functional stochastic discount factor
MP(t, X) out of given processes governing the state variables is based on the key second-
order linear differential equation (SOLDE) (3.11), and thus benefits greatly from established
mathematical results. A recent comprehensive resource on differential equations and their

special function solutions is the NIST handbook (2010) edited by Olver et al.
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In particular, equation (3.15) can be solved analytically by transforming it into the follow-
ing standard confluent hypergeometric differential equation (CHGDE) (recall that subscripts

denote the derivatives)
)
g+ (2-1) 9. = 29 =0, (3.53)
z z

<

whose two fundamental independent solutions are expressed in term of confluent hypergeo-

Notation Description
P physical (data-generating) measure
Q risk-neutral measure
R any general measure equivalent to P and Q
VAV ARVAL standard Brownian motions under respective measure
X (vector) state variable
TR TR TR dynamic {drift) of state variable X in measure P, (J, R respectively
o X dynamic (volatility) of state variable X
(identical in any equivalent measure)
AP MR ME stochastic discount factor (SDF) under respective measure
MU(X 1) SDF as proper function of (X, t)
NPT (X SDF as proper function of (X,t), parametrized by Ay, Ay
M (v, t) Fourier transform of M (X, t) (in variable X)
P subjective discount factor
ol(X) - A,,}(A,) = M‘L(Z\/»y,,) reciprocal of SDF M ¥ (X)
e - %;f,)— Radon-Nikodym derivative to change measure from @ to P
(X, 1) instantaneously risk-free rate (short rate) process
9T g0 ‘*]'ZQ(MLZL market price of risk associated with measure change from Q to P
DAFP infinitesimal operator associated with (diffusion) process X in measure P
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metric functions ®(., .; 2)
®(5,7; 2); AP -+ 1,2 v 2).

That is, any solution g{**2}(z) to (3.53) is a linear combination of the two independent
solutions

g () = N ®(8,7;2) + M2 TR0 — v+ 1,2 — 71 2).

where Aj, Ay are constants of integration. Specific steps to bring (3.15) into (3.53) ave as

follows.

First, after a change of variable

) Hy
=g+ THhX ¢— X ="~ - —
Yy o+ 11y o

equation (3.16) becomes

. bH, b
. AKTH, — K Hy + K]‘?;y)ép N 2 (p + a) =247y

P ey =
- = (), 3.51
Oyy ny v ny o) 0 (3.51)

Next, we make the following transformation and another change of variable

o(y) = e™g(By); z = Py,

where o and 3 are two coustants of choice to be determined below. Differential cquation ol

g(z) then follows from (3.54)

K2 BKY HI—KQHQ)} g

e+ 23 [+ Sy + LI

1
o bH,
+ [{oﬂ + —2‘;['2? 2 } 4 26 {als Hl“K?H‘)]“L”*”TQ'”)] g=0.
1

z

- HY HZz

To bring this equation into the standard CHGDE (3.53) we choose parameter o such that
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the expression inside the curly brackets vanishes®

1
20K9 2 K° (K2 2 \°
2} Lo =0=a=—-——+ : =1 . 3.55
R TP E “T T ( HE I (3.55)
Dividing both sides of above DE then yields
2 Ky Q Q bH
L2 20K Hy ~ K Hy) N ot N 2<a[K0 H - K, H0]+P+71—;°*-a) .
.(]:; : . [1,12: 3 gl ﬂH]QZ g -

Evidently. this equation is identical to standard CHGDE (3.53) by the following parameter iden-

tifications

1
AKZH, — K2 H) K9 (K92 2p\?
v = ;o B=-2 a+7{—.f— = F2 7 +H—? ;

S 2(@[[(63}11le(‘?H()]+p+%%lfa) ol K¢ Hy — I(?H0]+p+%{fl~a

BH? 04H12+K1Q

b
where « is given by (3.53). Undoing previous transformation and changes of variables we obtain
the most general solution of (3.15)

oM (X) = B [\ B0, 7 2) + Aoz (- v+ 1,2 - %;2)]

with z = gy = 8(Ho + H1X). Finally, using definition (3.10) yields (3.16). m
Proof of proposition 13. The specification of completely affine DTSM with one factor
X ¢ " (Dai and Singleton (2000)) can be written as

M= KEREX, (0?2 =X, r=a+0X; 197 = VX,

#\Which root of « to be chosen should be dictated by economic consideration, such as how stochastic dis-
comnt factor M 7(X) varies (increases or decreases) with state variable X. See section 3.6 for an illustration.
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where Ay is a constant. This specification implies that the dynamic is also affine under

pXQ = X g Xp@P = K8 4 KOX with
K¢ = Kl K@= KPP~y (3.56)
In this setting, SDF MP (X, () satisfies a special version of (3.7), (3.8)

IXME, + [KE+ KPXIME + [a+bX — p]MP(X) =0,

ME 4 A MP =0= ME, = )2, MP.

Plugging sccond equation into the first, and identifying terms of order XU (constants) and

X'1in both sides respectively yield

a = p+AInKy =p+ KK - KP).

A 1
b = An (/«f —~ %) =3 [(K{’)? —~ (K?)Q] .

Using A1) from (3.56) we obtain first set of identities in proposition 13. (The first identity
above can be attributed to a choice of discount factor p, and was omitted in the proposition.)
The specification of completely affine DTSM with one factor X € R* (Cheridito et al.
(2007)) can be written as

. A .
PSP =K KPX, (0¥ =X, r=atbX; 77@1»:\/_0)%+/\”\/}

where g1, A1 are constants. This specification implies that the dvnamic is also affine under

Q: pNQ = Xl — ¥’ = K€ + KX with

KE =K =X, KE=KI = (3.57)
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In this setting, SDF MF(X, () satisfies a special version of (3.7), (3.8)

LXME + [KE + KPXIME + la+bX — p)MP(X) =0 ,

/\/)[; + (L\XOL + )\11) ]\/[P =0= A/[)]?X — (x\m;—g/\(zn + 2)\0/1Y)\U -+ )\%1> MP.

Plugging second equation into the first, and identifying terms of order X 7!, X% and X! in

both sides respectively yield

Dot + 1
0 = Am(f(g’— o F )

2
a = p+ /\11K(§) + /\01[(1[) — Ao,

A
b — A (h{—%).

Finally, using Ag1, A1 from (3.57) we obtain the second set of identities in proposition 13.
(The second identity above can be attributed to a choice of discount factor p, and was omit-
ted in the proposition.)

Generally, the functional SDF in construction 1 does not necessary imply /’—affine dynamic.
Conversely. completely (or extended) affine DTSM does not necessarily imply a proper func-
tional SDE ATY(X, 1), Only with these additional parameter restrictions, the functional SDF
MUT(X. ) in construction 1 generates a completely (or extended) affine DTSM. =

Proof of proposition 14. Equation (3.25) can be solved analytically by transforming it

into a form of standard Weber differential equation (WDE)

~2
Goz — (f4- + l/) g =0, (3.58)

whose two fundamental independent solutions are expressed in term of confluent hypergeo-

metric functions ® (., . 2)
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That is, any solution gt"1*2}(2) to (3.58) is a linear combination of the two independent

solutions

11 22 .2 v 33 22
Midaby e mp (VL LAY o Y L
(] ( ) 1€ ( +427 2 + /\2~P 4 2 +4a2- 5

where Aj, Ay are constants of integration. Specific steps to bring (3.25) into (3.58) are as

follows.

First, after a transformation
oP(X) = emxwvxi’g(X)
where M, N are constants of choice to be determined below, equation (3.25) becomes
%Hog,\',\’ + [(QHON + K3 X + (HoM + KOQ)} gx — [AX?* + BX + Clg=0. (3.59)

where parameters A, B,C are related to M, N and are deferred till after the latter are
determined. Evidently, to bring (3.59) into Weber form (3.58) we choose M. N such that

term gy vanishes

K

HoM + K@ =0 = M= _"0.
My

Q Ky

/ = S

These choices then pin down A, B, C' in equation (3.59)

CAHGN? + AKPN = 2p,  (KP)? + 2paHy
Iy - 112 ‘

A=

AHoN + 4KEN + 2KPM — 20, 2K P Hy + 2KFKP + py o)

B= H, 112

_ HoM? + 2KFM + 2(p — po) (S = 24(p — po)
H, B Hg ‘

C =
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Next. the change of variable®

N

z = (4A)

B
X + —
(x+53).

22#_4/1(7—/’32 0
g:z 4 4/1% g‘~ .

transforms (3.59) into

Identifying this with standard Weber equation (3.58)

4AC — B2
4A3

<
fl

bl

immediately yield the most general solution of original equation (3.25)

o > 2 (v 11 22 2 (v 33 22
o! (K) = MV 17/\16 T <§ + Z, 5; ——) + Agze i P <‘2° + Z, 72' '——)} ;

where Aj, Ag are constants of integration, and z = (4A)% (X + —2%) is linear in original state
variable X. Finally, using definition (3.10) vields (3.26). =

Proof of proposition 15. This proof is similar to that of proposition 12 in the sense that
equation (3.29) can also be transformed into the standard CHGDE (3.53), though detailed

steps are a bit different.

I'irst, after a transformation
(bP(X) = (;QXX/i.(/(X),
where a3 are constants of choice to be determined below, equation (3.29) becomes

’ Q Q
gxx + [-f; (,3+ if,%) +2 (a+ %—)} gx+

B2H +(2KF —H1)B-20_, n 2 HiaB+KQa+ K2 B+p—60) n Hio?+2K%a-201] 0
Hy X2 H X Hy g="yv

YReal value for z requires A > 0. In case of A < 0 we can proceed similarly to bring the original equation

{3.25) to another form of Weber differential equation g,, + (54- - 1/) g =0.
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To bring this into (3.53) we choose parameters o, 3 such that cocfficients of order X° and

X% of term g (last term in the above differential equation) vanish.

1/2
~ K9+ [(K?)2 + 2H191}
, ’
i, - 2KQ + [(2}(59 CHO)? 4 8L,

FPHy + (2KE — H\)3—20_, =0= 3 = 211, h

Hio? +2K% — 20, =0=> a =

172

The differential equation for g becomes

2 Kg K9
-)?</j+71‘1—>+2(0é+‘[_[—1 gx +

Finally, the change of variable

1/2
( KQ) 2 [(A’?)uw]el}
1 -
= 2la+ — | X=7F X,

gxx +

20Hhos + Kfa+ KE3+p - 0) |
H X o

H, H,

preciscly transforms the above equation for g into the standard CHGDE (3.53). Analvtical
solution for g(z) and then ¢¥(X) follow similarly as in the proof of proposition 12. We thus
obtain (3.30). =

Proof of proposition 16. We will show that when relations specified in (3.49) hold,

the covariance o@4"

< 0, or high interest rate currencies tend to appreciate. But first we
explain how these relations are formulated in the first place. The relation /7] > 0 is dictated
by the Feller’s admissibility condition (3.44) to assure the positivity for the volatility of X''s
Hi(1-CY)

. .. )
square-root dynamic. Similarly, Ky" = 5

is required to generate linear short rate r’
(3.45). The choice condition C* < 0 is motivated by an economic intuition that —C* >
characterizes the risk aversion of the representative investor in country i € {h. [} as the
SDF M is to be identified with the her marginal utility in the structural model of scction

3.6.2. The choice condition B* > 0 together with small absolute value |3'| robustly assure

non-negative interest rate (3.48).
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Next, using delta method approximation (3.43) we rewrite the key FPP-consistent con-

dition (3.42) as®™

(O (KPFY?

Hh
2 (KT

1
oA by ar (X {bh + 5 (B") HY — +(h e f) <0

Since 0,6/ > 0 (see (3.47), (3.48)), this covariance is negative when the last term inside

square brackets dominates the first two terms (we explicitly plug in Ké’P = ﬁi%—_c—) and

Dt — - B (K{"P + Q}”—) (3.47) in what follows)

[

A ip  BH N2 i , .
> - B (A’I’P+ 5 1) > (BY)* 1] ie{h, [}

(CP L")
Hi(1 — C¥)?2

Since 13,111 > 0, the last relation of (3.49) —K>" > B'H! clearly implies the above
incqualities, and thus also the negative covariance %47 < 0, for any risk aversion coefficient
(" {hat is strictly positive. The later part of section 3.6.2 justifies all relations in (3.49)

we have just derived here from a structural (risk-based) consideration. m
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