
ARC-NES~

Preventing Injection Attacks Through
Automated Randomization of Keywords

by

Daniel M. Willenson

Submitted to the Department of Electrical Engineering and Computer
Science in Partial Fulfillment of the Requirements for the Degree of

Master of Engineering in Electrical Engineering and Computer Science
at the

Massachusetts Institute of Technology

May 21, 2012

@2012 Massachusetts Institute of Technology
All rights reserved.

.. 'f -

Signature of Au

Certified by:

Certified by:

Accepted by:

thor:
Department of Electrical gineering and Computer Science

I. I t

Jeff Perkins, Thesis Supervisor

Prof. Martin Rinard, Thesis Supervisor

Prof. Dennis M. Freeman, Chairman, Masters f Engineering Thesis Commiftee.

May 21, 2012

Preventing Injection Attacks Through Automated Randomization of
Keywords

by

Daniel M. Willenson

Submitted to the
Department of Electrical Engineering and Computer Science

May 21, 2012

In Partial Fulfillment of the Requirements for the Degree of Master of
Engineering in Electrical Engineering and Computer Science

Abstract

SQL injection attacks are a major security issue for database-backed web
applications, yet the most common approaches to prevention require a great
deal of programmer effort and attention. Even one unchecked vulnerability
can lead to the compromise of an entire application and its data. We present
a fully automated system for securing applications against SQL injection
which can be applied at runtime. Our system mutates SQL keywords in
the program's string constants as they are loaded, and instruments the pro-
gram's database accesses so that we can verify that all keywords in the final
query string have been properly mutated, before passing it to the database.
We instrument other method calls within the program to ensure correct pro-
gram operation, despite the fact that its string constants have been mutated.
Additionally, we instrument places where the program generates user-visible
output to ensure that randomized keyword mutations are never revealed to
an attacker.

2

Chapter 1

Introduction

SQL injection attacks are a major security issue for database-backed web

applications, yet the most common approaches to prevention require a great

deal of programmer effort and attention. Even one unchecked vulnerability

can lead to the compromise of an entire application and its data. We present

a fully automated system for securing applications against SQL injection

which can be applied at runtime. Our system mutates SQL keywords in

the program's string constants as they are loaded, and instruments the pro-

gram's database accesses so that we can verify that all keywords in the final

query string have been properly mutated, before passing it to the database.

We instrument other method calls within the program to ensure correct pro-

gram operation, despite the fact that its string constants have been mutated.

Additionally, we instrument places where the program generates user-visible

output to ensure that randomized keyword mutations are never revealed to

an attacker.

This paper is organized as follows. In Chapter 1, we present background

context, describing what an injection attack is and how it works. In Chap-

ter 2, we survey other methods for injection attack detection and prevention.

In Chapter 3, we discuss the goals our system tries to achieve and strat-

3

egy we use to achieve them. In Chapter 4, we outline the implementation

of the system. In Chapter 5, we discuss the ways we evaluated the system

for security, correctness, and performance. Finally, in Chapter 6, we review

limitations of the current implementation, explore avenues for further work,
and present a short summary.

1.1 Injection Attacks

Injection attacks are a form of attack in which malicious users of a program

craft input strings in a way that subverts normal program operation. Vulner-

abilities may occur any time a program accepts user input and later uses that

input as part of the source code for an executable program. For example, a

program might prompt the user to enter his name, and subsequently use the

string that the user provided as the name of a file in a shell program. If the

user knows how the shell program is structured, he may be able to provide,
instead of his name, a string that changes the structure of the shell program.

By doing so, he can cause the program to execute arbitrary commands on

his behalf, using its privileges.

1.1.1 Web Applications and SQL

The web, because of its public nature, its popularity, and its programming

model, provides particularly fertile ground for injection attacks. Many web

sites are publicly accessible, and many others that require registration do

not ask for much verification of their users' identities. This makes it easy

for potential attackers to gain access to the application. There are a large

number of web sites with valuable data, which means there are many attrac-

tive targets for attackers. Finally, the fact that many web sites use database

backends to store their data creates the potential for injection attacks.

4

Typically, the communication channel from a web program, or applica-

tion, to its database is text-based: the application presents the source code

for a program (known as a query) to the database. The database then com-

piles and executes that program, returning the results to the application. The

application provides the front-end interaction with a user's web browser, re-

ceiving input from the user. For example, the application might present a

form to the user, in which she can enter free text (e.g. "first name", "com-

ments"), select choices from a list ("quantity", "state/province"), or use

some more complicated mechanism ("date"). All of these values are trans-

lated into string data (text) for the browser-to-application communication

path, even if they are numbers (quantity ="35") or structured data (date

= "2012-04-05").

When the application receives a request from a user and needs to store

those values in its database, it constructs a query using those values. Fig-

ure 1.1 shows an example query written in SQL (Structured Query Lan-

guage). SQL is the lingua franca for most databases in use today. In this

query, the values B-, 08634, ps6, and CSCI 100 came from a web form on

which the user, presumably a professor, typed in the grade and the student

ID, and selected the assignment and class from a drop-down. Update queries

usually return either no results or a single result indicating the number of

rows updated.

UPDATE grades

SET grade = 'B-'

WHERE student-id = '08634' AND

class = 'CSCI 100' AND

assignment = 'ps6'

Figure 1.1: Update query

Another page of the same application might show a particular student all

5

of his grades for a class. Figure 1.2 shows a query that returns one row for

each graded assignment the student submitted. In this case, the application

doesn't allow the student to enter his student ID; otherwise any student could

look at anyone else's grades. Instead, it looks up his student ID based on his

login account. The value CSCI 100 originates from a drop-down selection.

SELECT student-id, class, assignment, grade

FROM grades

WHERE studentid = '08634' AND

class = 'CSCI 100'

Figure 1,2: Retrieval query

1.1.2 SQL Injections

To see how a injection attack works, we consider a curious student who would

like to know everyone's grades for the class. Instead of using the standard

form with the class drop-down to submit his request, he manually creates a

request with a specially crafted value, such as xx' OR class = 'CSCI 100.

Notice that he has added quotes into the middle of his value. This allows him

to insert non-value text into the query, modifying its structure and meaning.

The full query now looks as in Figure 1.3, and it retrieves all of the grades

for every student in the class, in violation to the original policy that students

can only see their own grades.

SELECT student-id, class, assignment, grade

FROM grades

WHERE student-id = '08634' AND

class = 'xx' OR class = 'CSCI 100'

Figure 1.3: Query with injection attack, revealing grades for all students

6

Let us consider another attack, in which a disgruntled student wishes to

change all of her grades to A+. The application does not allow her to access

the grade-setting page with her login, but she knows about the injection vul-

nerability in the grade listing page. She also knows that the semicolon charac-

ter can be used to separate multiple statements in a query. Thus, she can add

a new statement to the query by using the attack string xx' ; UPDATE grades

SET grade = 'A+' WHERE student-id = '09928' AND class = 'CSCI 100.

The full query now looks as in Figure 1.4, and it accomplishes the attacker's

goal, changing all of her grades.

SELECT student-id, class, assignment, grade

FROM grades

WHERE student-id = '08634' AND

class = 'xx'; UPDATE grades

SET grade = 'A+'

WHERE student-id = '09928'

AND class = 'CSCI 100'

Figure 1.4: Query with injection attack, changing a student's grades

1.1.3 Comment Injection

Some injection attacks require the attacker to not only add his own program

structures to the query, but also remove part of the original program. In

certain cases, the attacker can accomplish his goal just by removing part

of the original query. Attackers can accomplish this by inserting comment

markers to delimit the areas he needs to remove. In SQL there are two kinds

of comment markers: the -- delimiter indicates that the rest of the line

is a comment, while /* and */ mark the beginning and end of a multi-line

comment. When the database interprets the query, it ignores the commented

7

areas.

Consider a query that checks whether a user has supplied a valid username

and password combination at login time, as in Figure 1.5. If this query

returns a result row, the login was valid. Otherwise, the login was incorrect

and the user should be prompted again. By injecting a comment marker

into the name field, an attacker can log in to this application as any user,

without needing a password. For example, if he provides dwillens' -- for

name, the query will look as in Figure 1.6, and it will return dwillens's user

ID no matter what he provides for password. Notice that even though the

quotes become imbalanced, the comment marker prevents the extra quotes

from breaking the query.

SELECT user-id

FROM users

WHERE name = 'dwillens' AND password = 'abc123'

Figure 1.5: Login query requiring valid name and password combination

SELECT user-id

FROM users

WHERE name = 'dwillens' -- 'AND password = 'anything'

Figure 1.6: Login query with injection attack

1.2 Prevalence and Consequences

The Online Web Application Security project (OWASP) consistently lists

SQL injection on their Top Ten Most Critical Web Application Security Risks

report. In the 2010 report, they describe it as common, easy to perform, and

with severe technical consequences including loss of data or system corrup-

tion [6]. Security company Imperva recently spent 9 months monitoring 30

8

web applications, reporting that on average, they observed 71 attempted at-

tacks per hour on each application, up to 1300 per hour when particular

applications were subject to a focused attack. Based on data from Priva-

cyRights.org, Imperva estimate that nearly 300 million data records have

been compromised through SQL injection since 2005 [10].

These compromised data records can range from as simple as a name and

e-mail address, to credit card and social security numbers. An attacker who

gains access to a system thorough SQL injection can often expose or destroy

any or all of data stored on it. Among the most famous successful attacks

based on SQL injection was the breach of Heartland Payment Systems in

2009, resulting in the compromise of 130 million credit card numbers [2].

9

Chapter 2

Prior and Related Work

Injection attacks can be prevented. Whenever a program creates a string

that represents executable code, it must check to be sure that the meaning of

the generated code has the same meaning as originally intended. Many ways

exist to perform this check, but most or all of them require some programmer

intervention to be successfully applied. The rest of this section explores

several existing SQL injection-prevention strategies.

2.1 Manual Prevention Techniques

Most web applications deployed today prevent SQL injections through care-

ful programming. The programmers of these applications keep track of the

source of all the data in the program, either in their heads or explicitly in the

program's code. Whenever the program needs to execute a database query,
the programmer working on that section of the code determines the source

each string that makes up part the query text. If there is a possibility that

that string could include user-entered data, the programmer must make sure

that the program neutralizes potential attacks by sanitizing the string.

10

2.1.1 Sanitization

For SQL query text, the most common injection vulnerabilities happen when

a program accepts string data from a user, then inserts that string into query

text. Typically, the string data is surrounded by quotes, to make sure that

it is interpreted as data and not as executable code. However, a malicious

string that includes its own quote can effectively cause the rest of its data to

be interpreted as code.

Sanitizing the user-entered string data can eliminate these vulnerabili-

ties. The sanitization process involves examining the string for any bare

quotes and replacing them with escaped quotes, which will cause them to be

interpreted as part of the string data, rather than ending the string.

Even though many common attack examples involve subverting quoted

string data, it is worth remembering that almost all user interaction data orig-

inates from strings. Web forms, for example, transmit almost all of their data

as strings, over HTTP. Even a select box containing only numeric values still

transmits the selected number to the server using its ASCII representation-a

string of digits. Moreover, an attacker can easily create a program that sends

any string data as the value of any field on a web form.

SQL, on the other hand, treats non-string data differently from string

data. Queries which include numbers are not required to include quotes

around the numbers. Thus, before including user-entered "numeric" value

in a query, the server must check that the string represents a valid number;

for example, an integer value should contain only digits. If a program fails

to perform this check, then an attacker can include any code he wants to,

without having to end any quoted string. Sanitization cannot prevent this

kind of attack.

11

2.1.2 Database Access Layers

Many programs that access a database use a special layer of software to man-

age the connections, construct and dispatch queries, and process the results.

This layer usually includes facilities for handling the sanitization process de-

scribed in Section 2.1.1. Usually, the way this works is that the program

prepares a query using a library call provided by the data access layer. The

query template passed to this call contains placeholders for parameter data,
instead of actual parameter values. To execute the prepared query, the pro-

gram provides it to a separate library call, along with the actual parameter

values. Since the database access layer knows that the values passed in are

parameters, and should be interpreted only as data, it can automatically

apply a sanitization technique to the string data.

Some access layers also require the programmer to declare the type of

each parameter in a query. This can help to address the issue of numeric

data types. The access layer can automatically apply its own type checking

logic to ensure that the supplied values have the correct type, so that an

attacker cannot supply non-numeric data where a numeric value is expected.

Though access layers provide some automated security, their use still re-

quires careful programming. When the access layer accepts a query template,
it has no way to determine which parts of the template originated from the

program and which parts are user-entered data. For example, imagine that

the program allows a user to specify the name of a database table to use

as part of the query. In this context, the programmer cannot use a query

parameter to specify the name of the table-query parameters are only for

data values. Thus, the user-entered data must be included as part of the

template, and if the programmer does not check that it represents a valid

table name before including it, an attacker can inject any code he wants into

the query.

12

2.1.3 Disadvantages of Manual Prevention Techniques

One of the main disadvantages of manual prevention is the amount of care

and attention required on the part of the programmer to mitigate any and

all vulnerabilities. The problem is twofold. Preventing injection attacks

manually requires care and attention, which means it consumes programmer

time, which costs money. Nonetheless, even one unchecked vulnerability can

be enough for an attacker to compromise the functionality of an application,

or even worse, to gain access to the data stored in the application's database.

These kinds of consequences can be disastrous.

2.2 Automated Prevention Techniques

Automated prevention techniques attempt to relieve the programmer of some

of the burden of remembering to check every query for injection attacks before

sending it to the database. This can both reduce the amount of development

time that must be spent on prevention, and serve as a backstop, foiling

attacks in places where little to no effort was spent to secure the program.

In order to automatically prevent injection attacks, a transparent soft-

ware layer must be inserted between the program and database. This layer

intercepts every query the program sends to the database, and examines it

to determine whether or not it contains a potential attack. If an attack is

detected, the prevention layer rejects the query, sending an error back to the

program. Otherwise, it forwards the query on to the database.

Unfortunately, it is not generally possible to determine by examining a

query string alone whether it contains an injection attack or not, because

the attacker's goal is to create a valid query string which the database can

execute without knowing that it performs the wrong operation. The query in

Figure 1.3, for example, is syntactically a valid SQL query; only the semantic

13

meaning of the query has been subverted. Since an automated system cannot

guess what the semantic meaning of the query should be, we cannot detect

this injection without some other information. This means that an auto-

mated prevention mechanisms must maintain some extra data (metadata)
about the program's query strings that allows it to detect when user-entered

data changes a query's structure.

2.2.1 Randomization

Many changes to the structure of a query require the attacker to insert new

keywords into the string. SQLRand [3] tries to prevent these changes by de-

tecting when one of a query's keywords did not exist in the original program.

If the keyword did not exist in the original program, it is likely that it was

inserted by the user, and so the query may represent an attack and should

not be executed.

The metadata required by SQLRand is embedded in the query strings

themselves. When a programmer creates a new query template, she must

modify the keywords in the template, appending a random string of digits to

the end of each one. SQLRand provides a tool that applies the modification

to a single query, but the programmer is responsible for making sure it is

applied to each query. In Figure 2.1, we show how the randomized query

template appears in the program's source code.

SELECT123 student-id, class, assignment, grade

FROM123 grades

WHERE123 student-id = '%s' AND123

class = 'Xs'

Figure 2.1: Randomized retrieval query

SQLRand uses a proxy as its transparent software layer. The programmer

14

modifies the program so that instead of connecting to the database directly,
it connects to SQLRand's proxy, which implements the database network

protocol. The proxy maintains its own connection to the real database.

When the program sends a query to the proxy, it parses it using a grammar

that expects randomized keywords instead of standard ones. If the proxy can

parse the grammar successfully, then it produces an unrandomized version

and forwards it on to the database. If it cannot parse the query, then it

is possible that it contains an injection attack, so the proxy simply returns

an error to the program without forwarding anything to the database. In

our example, when the curious student uses the attack string xx' OR class
= 'CSCI 100, the parser rejects it because the token OR, without the key

appended to it, doesn't have any meaning.

2.2.2 Parse Tree Matching

Many automated systems make use of the observation that all successful

injections change the structure of the query they attack. SQLGuard [4]

requires programs to build query strings using SQLGuard, a static class they

provide. When a programmer places user input in the query string, she is

required to declare it as such. SQLGuard wraps the user-entered data in

random keys similar to those used by SQLRand; so all of its metadata is also

carried in the string itself. At query execution time, SQLGuard generates

two query strings; one, the real query, simply has all of the random tokens

removed. The other, a reference query, replaces all of the marked user input

with dummy inputs. SQLGuard parses both query strings, and if the parse

tree from the real query does not match the from for the reference query,
SQLGuard determines that an injection has occurred and stops the query

from executing.

CANDID [1] provides a similar verification system; it generates a reference

15

query by replacing user-entered data in the query string with dummy data,

then compares parse trees. Instead of requiring the programmer to declare

which data is user-entered, however, CANDID uses a source-to-source trans-

formation to create a parallel data set for strings in the program. Whenever

the program assigns to a string variable, CANDID inserts code to assign to a

shadow variable which will be used in the reference query. If the real variable

is assigned a string constant, then the shadow variable gets the same value.

If the real variable receives a value from user input, then the shadow variable

gets a dummy value. String operations such as concatenations are performed

on both data sets in parallel. At query execution time, CANDID uses the

shadow variable corresponding to the real query string as its reference.

2.2.3 Taint Tracking

In contrast to SQLRand and SQLGuard, which embed their metadata within

the program strings themselves, several approaches track metadata in sepa-

rate but related objects. CSSE [13] uses the idea of "taint," wherein each

string has some related metadata that describes the source of its data. In

CSSE, each string that is instantiated as the result of user input receives

a taint marking that indicates it consists of untrusted data. Strings from

within the program itself receive no marking. As strings are concatenated or

otherwise manipulated, these taint markings are transferred. For example,

a string which resulted from concatenating user input to a string constant

would have a taint marking indicating which part was copied from the in-

put string. At query execution time, CSSE ensures that there are no un-

escaped single quotes in tainted portions of the query string. Nguyen-Tuong,

Guarnieri, et. al. [11] describe a similar system, in which the verification step

consists of tokenizing the string, then checking to make sure that no keyword

or operator tokens result from tainted data. Both systems require the use of

16

a modified PHP runtime system.

WASP [8] takes an opposite approach to the previous two systems, which

the authors call positive tainting. WASP applies taint to trusted, instead

of untrusted, data. Trusted data comprises string constants, and strings

derived from sources listed in a special configuration file. At query execution

time, it tokenizes the string, and only accepts the query if all operators and

keywords result from trusted data. This is an inherently more conservative

estimate, which prevents more injections than negative tainting. However,

it also generates a higher false-positive rate, because in situations where a

query results from a source that should be marked as trusted but is not,

the system will improperly reject it. WASP uses a Java implementation

similar to our own. They take advantage of the Java agent library to perform

transformations on compiled code, inserting instructions into the bytecode

that call their own methods, which keep track of taint and check queries on

execution.

17

Chapter 3

Architecture

3.1 Goals

The goal for this project is to introduce a fully automated system for detec-

tion and prevention of SQL injection attacks. All of the automated systems

described so far require some manual effort at development time. For ex-

ample, to use SQLRand, a programmer must change all query templates in

a program's source code so that they only contain randomized keywords,
and must change the database connection parameters so that the program

connects to SQLRand's proxy instead of the database.

There are several reasons to desire a more automated solution than those

proposed previously. Some amount of programmer effort must be spent to

make the required modifications to the program. In addition, the modified

source code may be harder to read and understand, which also contributes

to development costs.

Another advantage we gain from fully automating this process is assur-

ance that all code paths leading from user input to the database are checked.

With manual approaches any mistake in the program, such as unsanitized

string data or a missed data type check, leads to a vulnerability.

18

Most importantly though, a major disadvantage of any solution that re-

quires source code modification is that the application of the solution requires

access to the source code. If a person or organization wishes to deploy a web

application developed by a third party, they may not be able to modify

query templates or ensure that the program always sanitizes string data be-

fore inserting them into a query. We wanted to design a system that could

automatically secure a program even without access to its source code.

3.2 Strategy

To protect the database from injection attacks, the protection system will

still need to install a transparent access layer between the program and the

database. Likewise, in order to be able to decide whether a query the program

submits contains an injection, it will need to maintain some metadata about

the sources of the program's data.

Our system uses a security model similar to that of SQLRand. It random-

izes keywords in query strings so that it can determine the source of string

data. When the program wishes to execute a query, it tokenizes the query

string to see if there are any unrandomized keywords. If there are none, it

passes the query on to the database; otherwise, it sends an error back to the

program.

Nevertheless, the manner in which our system accomplishes these tasks

is significantly different from that of SQLRand. As in WASP, we use instru-

mentation to automatically apply our changes to a compiled program when

the runtime system loads it, eliminating the need for a programmer to man-

ually change all of the query templates in the program. It also allows us to

secure a program even without access to its source code. This way, compa-

nies can safely deploy third-party code, without having to worry whether it

contains injection vulnerabilities.

19

Applying changes to compiled code has other systemic security benefits.

For example, in SQLRand, the only way to change the randomization key is

to edit the source code, rebuild the program, and test it to make sure nothing

has broken. In our system, the key can be changed at will, and could even

be chosen randomly when the system starts.

While automatic randomization has benefits, it also creates complica-

tions. For example, without potentially complicated dataflow analysis, we

cannot tell, when we encounter a string constant in the program, whether it

is part of a query template or not. This means that we are forced to replace

keywords in every string in the program, even if it will never be used as part

of a query. We have to implement extra functionality to ensure that the

program operates correctly when strings with randomized keywords are used

in a non-query context.

20

Chapter 4

Implementation

4.1 Instrumentation

The Java agent infrastructure allows the examination and modification of

Java class bytecode at load time. Our system uses a Java agent to change

the value of strings in a class when it is loaded; this is how it modifies

query templates, replacing standard SQL keywords with randomized key-

words. The agent also replaces certain method calls in the class with calls

to methods we have written. These method call replacements allow us to

insert our own code between the program and the Java libraries, which we

do for two reasons. First, it serves as our transparent query verification layer,

where we can decide whether a given query string contains an injection or

not. Second, it allows us to correct program functioning in places where

automated keyword randomization has mutated a string used outside of the

context of a database query.

21

4.1.1 Bytecode Manipulation Tool

Since the Java agent infrastructure only provides access to the raw bytecode

of a class file when it is loaded, we use the ASM bytecode manipulation tool

from the OW2 consortium to implement our bytecode modifications. ASM

reads the raw bytecode, and provides a simple interface for iterating over

each instruction in each method in the class file. It also provides an easy

interface for inserting and removing instructions from a method's bytecode.

4.1.2 premain()

The Java agent infrastructure gives us the ability to execute some code before

the target program's main function begins. This allows us to register our

bytecode transformers and specify which classes to transform. In some cases,
our code depends on classes we would like to transform, which means they

are loaded before our transformer is registered. In these cases, we use the

Instrumentation. retransf ormClasses method to ask the infrastructure to

reload these classes, allowing our transformer a chance to modify their code.

4.2 String Mutation

Whenever a Java program uses a string constant, it contains an ldc (load

constant) instruction, which pushes the value of the constant on the stack.

For example, the compiled code for the statement in Figure 4.1 would con-

tain the three instructions in Figure 4.2. Note that the string data are not

contained directly within the instruction. Rather, the instruction contains

an index into a constant table included in the compiled program.

As each class is loaded, our Java agent examines all of the ldc instruc-

tions in the bytecode. When it finds one that loads a string constant, it

mutates the value, replacing any SQL keywords within the string with ran-

22

query = "SELECT * FROM users WHERE name = ' + name + "' AND

password = ' + password +

Figure 4.1: Program fragment using string constants

ldc #1; //String SELECT * FROM users WHERE name =

ldc #2; //String ' AND password =

ldc #3; //String '

Figure 4.2: Compiled bytecode referencing string constants

domized versions. It adds the mutated string to the class's constant table,

and updates the ldc instruction's operand. The bytecode from Figure 4.2

might be transformed into the bytecode in Figure 4.3.

ldc #7; //String SELECT123 * FROM123 users WHERE123 name =

ldc #8; //String ' AND123 password =

ldc #9; //String '

Figure 4.3: Compiled bytecode with mutated string constants

4.2.1 Keyword Randomization

Our approach to mutation appends a random string of digits to the end

of each keyword. It has the disadvantage that it changes the final length

of the string constant, as well as the positions of data within the string.

For example, in Figure 4.1, string #1 is originally 34 characters long, but

after mutation, in Figure 4.2, string #7 has 43 characters. Additionally, the

23

keyword FROM originally extended from positions 9 to 13 in the string, but

after mutation it extends from positions 12 to 19. These changes can cause

challenges in maintaining program correctness, as we will discuss later.

Another approach to mutation would be to replace each keyword with

a same-length string of random characters. This would have the advantage

of maintaining overall string length and data positions, but we chose not to

use this approach because we wanted to be able to make the possibility of

collisions arbitrarily small. For example, imagine the keyword AND. In order

to mutate this keyword, we have to choose a random three-character string of

characters to replace it. Imagine that we chose the replacement string ZMC. If

a legitimate user enters his password, baZMC8tW, then the query verification

layer will produce something like Figure 4.5 to send to the database. Note

that the user's password has been garbled, and as a result he will not be able

to log in.

RDKDBS id EQNL users VIDQD name = 'john' ZMC password =

'baZMC8tW';

Figure 4.4: Randomized query string with password

SELECT id FROM users WHERE name = 'john' AND password =

'baAND8tW';

Figure 4.5: Derandomized query string with garbled password

It might seem that we could reduce the probability of collision by trying to

pick character combinations that are unlikely to occur in a normal program.

Nevertheless, it may be very difficult to pick such strings, as we can see from

the password example. Additionally, to maintain security, we have to change

the replacement keywords regularly; possibly even as often as every day, or

every time the program is loaded. Each time we do so, it becomes more likely

that we will cause a collision.

24

Another solution would be to choose the replacement keywords' charac-

ters from a set unlikely to occur in a program's regular operation. Unicode's

large character set facilitates this-we could choose to replace OR with QH .

This may work, but only as long as we don't try to target a system which

happens to try to use these characters. It may be impossible to find a char-

acter range that will never occur in any program. Additionally, we may run

into character set support issues when debugging the system's operation-

examining randomized queries may become more difficult or impossible.

Our randomization solution, on the other hand, always allows us to reduce

the chance of a collision. Clearly, the chances that we will encounter another

string that collides with a randomized keyword go down as the randomized

keyword gets longer. Even if we only use digits as the key character set, we

can always reduce the probability of a collision by making the key longer.

For example, it may be likely that the string 123 will occur in other parts of

a program, but it is much less likely that the string 829357038497025 will

occur elsewhere. By allowing ourselves flexibility on string length, we gain

the ability to make the probability of a collision arbitrarily small, even if we

choose new randomization keys daily.

4.2.2 Keyword Matching and Replacement

Our string mutation implementation is based on regular expressions. Dur-

ing premain(), we construct a regular expression that matches any SQL

keyword, as long as it is a whole word. For example, we match the the

characters OR in "a OR b" but not in "MORK FROM ORK". Our transformer

uses ASM to scan each instruction in each loaded class file. Each time it en-

counters an ldc instruction, it matches it with this regular expression. Any

matches are replaced with the matched text, followed by the randomization

key.

25

4.3 Method Call Replacement

Whenever a Java program calls a method on an object, it contains instruc-

tions that load that object and all of the method arguments onto the stack,
followed by an invoke. . . instruction. The opcode of the instruction de-

pends on the type of method to be called. For example, methods speci-

fied in a regular class definition are called using the invokevirtual instruc-

tion, whereas methods specified in an interface definition are called using the

invokeinterf ace instruction. Figure 4.6 shows a typical method call for one

of the JDBC query-execution methods. Figure 4.7 shows the corresponding

bytecode.

s.execute("SELECT * FROM users");

Figure 4.6: Program fragment calling JDBC Statement .execute () method

aload_2 //Statement s

ldc #14; //String SELECT FROM users

invokeinterface #15, 2; //InterfaceMethod

java/sql/Statement . execute: (L java/lang/String;) Z

Figure 4.7: Bytecode fragment calling JDBC Statement .execute () method

Notice that this code first loads the Statement instance owning the

execute method, followed by the String argument to the method. For

static methods, there is no owning instance to load, so a static method call

simply loads the arguments before executing the invokestatic instruction.

We take advantage of this difference to easily replace method calls in the

compiled code with calls to our own methods. For each method we want

to replace, we define a static method that takes, as its first argument, an

instance of the class whose method we are replacing. The static method's

second argument is the same as the replaced method's first argument, the

26

third argument is the same as the replaced method's second, and so on. This

way, when our Java agent encounters an invokeinstance or invokevirtual

instruction referring to one of the methods we wish to replace, it simply re-

places that instruction with an invokestatic referring to our static replace-

ment method.

4.3.1 Instrumentation Annotations

Unlike the string mutation pass, which examines and potentially modifies

every ldc instruction in a target class file, we only want to replace certain

invoke.. . instructions. To make it easier to determine which method calls

to replace, we devised a system of annotations with which we mark our

replacement methods.

When we want to replace calls to methods in a particular class or in-

terface, we create an instrumentation class to contain them. For exam-

ple, to replace methods in java. sql. Statement, we define a new class,

StatementInstrumentation. We apply the @InstrumentationClass anno-

tation to StatementInstrumentation, as shown in Figure 4.8. This annota-

tion requires the name of the class or interface owning the original method. If

the original method owner is an interface, we also set isInterf ace = true,

so that our transformer replaces invokeinterface instructions instead of

invokevirtual instructions.

In StatementInstrumentation, we implement methods designed to re-

place calls to the Statement's methods. These replacement methods are all

static, but for non-static calls to Statement, each replacement method takes

an instance of Statement as its first argument, followed by the normal pa-

rameters for that call. We mark these methods using the

@InstrumentationMethod annotation. Using this annotation, we can spec-

ify everything about the target invoke... instruction we would like to

27

modify. This includes the type of invoke ... instruction, the name of the

target method, and its type signature. By default, we assume that it is in-

voked with invokeinterf ace or invokevirtual, depending on the value of

isInterf ace in the

@InstrumentationClass annotation. The default name is the same as the

replacement method's, and the default type signature depends on the invoca-

tion instruction. If we are replacing an invokeinterf ace or invokevirtual

instruction, the parameters are the same as the replacement method's with-

out the first parameter. If we are replacing an invokestatic method, then

the targeted type signature is the same as the replacement method's.

@InstrumentationClass(value = "java/sql/Statement",

isInterface = true)

public class StatementInstrumentation {

@InstrumentationMethod

public static boolean execute(Statement s, String sql)

throws SQLException {

sql = SQLRandomizer. getInstance() . intervene(sql);

return s.execute(sql);

}

Figure 4.8: Part of St atement Instrumentation

28

4.3.2 Replacement

During premain (), we create our transformer, and register with it of all

of the defined instrumentation classes. It uses reflection to scan all of the

instrumentation classes' annotations, producing a Map from target method

invocations to the instrumentation invocations that should replace them.

Then, as classes are loaded, the transformer scans their bytecode. When

it finds a method invocation, it checks whether it is a call to a targeted

methods. If it is, then the transformer replaces that invocation instruction

with a call to the instrumentation method.

4.4 Instrumentation Methods

We replace method calls in the target program for two reasons. First, prior

to query execution, we need to insert the logic that determines whether the

provided query text might contain an injection attack. Secondly, in other

places where strings are used, we may need to de-mutate the string data or

otherwise correct the operation of the replaced methods, so that the program

continues to work.

4.4.1 Query Verification

The Java Database Connectivity (JDBC) interface is the API most Java

programs use to interact with a database. Using JDBC, a program es-

tablishes a connection to its database, represented in the program by an

instance of the Connection interface. By calling methods on this object,

the program obtains Statement objects that represent queries it can send

to the database. All of the SQL query text the program sends to the

database passes through these method calls, so they are a natural place

to install the transparent software layer that intercepts queries. To imple-

29

ment our query verification layer, we replace calls to Statement. execute()

and Statement .executeUpdate 0, as well as Connection. prepareCall 0

and Connection. prepareStatement 0. Our replacement calls perform the

query verification before calling the original method to send the query to the

database.

Tokenizer

To implement query verification, we initially modified an existing SQL92

parser, written in Java, called JSqlParser. Unfortunately, there are many

different dialects of SQL, because nearly every database management system

(DBMS) has extended the language, usually to support DBMS-specific fea-

tures. The plain SQL92 parser failed to recognize several syntactic structures

from our initial tests.

One possible solution to this problem would be to extend the parser until

it supported each individual SQL dialect completely. We find, though, that

we do not necessarily need a full parser to determine whether a query string

contains a potential injection attack or not. Instead, it is sufficient to tokenize

the string, breaking it up into program elements such as identifiers, keywords,
numbers, strings, and operators. In the example query string in Figure 4.9,
there are eight tokens, including the keyword FROM123, the identifier users,
the string 'Dave', and the operator =.

SELECT123 * FROM123 users WHERE123 name = 'Dave'

Figure 4.9: Example query string containing 8 tokens

One complication with the tokenization approach is that in SQL, not all

keywords are reserved. This means that it may be impossible to tell, without

fully parsing its context, whether a particular token represents a keyword

or an identifier. In order for tokenization to work, we make the simplifying

30

assumption that keywords are not used as identifiers; therefore, we apply our

check to any keyword or identifier in the token stream.

Verification

Once the query string is tokenized according to SQL's syntax, we examine

the keywords and identifiers. For each one, we check whether it is an plain

keyword, without the random mutation applied. This would indicate that it

did not come from one of the program's string constants. If we find such a

keyword, we reject the query, reporting a database error to the program.

If the query text contains no unmutated keywords, we remove all instances

of the randomization key from the query. Since we only remove instances of

the key in this step, an attacker cannot break the system by using his own

random key. If he did so, his random key wouldn't be removed, and the

database itself would reject the query as invalid.

4.4.2 Program Correctness

As mentioned earlier, one issue with a fully automated approach is that it can-

not benefit from the careful eye of a programmer when it makes its changes

to the program. When it mutates the program's strings, for example, it

cannot tell whether a particular string is part of a query template or not.

This indiscriminate modification will cause the help text "Select whether

you want guacamole or not" to be changed to "Select123 whether you

want guacamole or123 not123". These modifications can cause user con-

fusion, unexpected behavior, and program crashes. In general, we need a

way to preserve program correctness even when its string data have been

indiscriminately modified.

Fortunately, all operations that modify or examine string data in Java

are implemented in method calls, even the + concatenation operator, which

31

compiles as a call to the StringBuilder. append method. This allows us

to use the same method-call replacement technique to insert our own code

whenever we want to correct the outcome of an operation on mutated string

data.

String Comparison

Many of the cases we had to correct involved comparisons. We wanted to

preserve the meaning of string equality, even when strings that occurred

as constants have been mutated whereas strings that came from user in-

put have not. For example, the comparison "ROW". equals (str) should re-

turn true whenever str contains "ROW" or "R0W123". To implement these

semantics, we instrument calls to String.equals, String. hashCode, and

String. compareTo. The instrumented methods pass both values to the same

routine that removes the randomized key when a query verifies as safe, before

calling the original comparison method.

Any classes on which our code depends do not get transformed automat-

ically. In some cases we are able to retransform these classes so that any

time they call one of the string comparison methods, our code is invoked in-

stead. In other cases, we were unable to retransform the dependencies. For

example, HashMap is loaded and used extensively before our transformer can

start. In this case, we replace calls to HashMap's methods with calls to our

own methods, so that we can undo the mutations before entering HashMap's

logic. Other types of Map and Set are able to use our implementations of

String. hashCode and String. equals to produce correct results.

Because Java Strings are immutable, the string library is able to pro-

vide a faster way to test for string equality. By calling the String. intern

method, a program can obtain a reference to a canonical ("interned") repre-

sentation of the string. This reference can then be compared to other interned

strings, and if these references are equal then the strings must be equal. This

32

can provide a performance increase over standard string comparison, which

must iterate over every character in the strings if they are indeed equal.

Testing references for equality does not call a method, so we cannot apply

our method call replacement strategy in this case. Instead, we observe that

the primary use of interned strings is for comparison. Also, there are no

performance benefits to interning a string constant that is part of a query

template, i.e. interning does not provide any benefits for concatenation or

value interpolation. These reasons make it unlikely that an interned string
d - '1 ((

constant will ever be used in a query context (user-entered strings may be

interned and used, but these are not randomized anyway). So, in this case,

instead of replacing the reference equality instruction, we instead replace

calls to String. intern, inserting our own code which removes the random

key before calling the real intern method.

String Length and Positions

Other string operations may also be affected by our mutations. Because we

have elected to append our key to each keyword in the statement, rather

than picking same-length replacements, our randomization pass will change

both the overall length of string constants and the positions of characters

within them. Consider the string in Figure 4.10, which becomes the string

in Figure 4.11. when mutated. The original string has length 19, while

the mutated string contains 25 characters. The * symbol has moved from

(zero-indexed) position 7 to position 10. The keyword FROM, which origi-

nally extended from positions 9 to 12, now reads FROM123 and extends from

positions 12 to 18. All of these changes affect the correctness of string op-

erations such as String.length, String.charAt, String.substring, and

String. indexOf, as well ass the correctness of operations that build on these

primitives, like regular expression matching and string splitting.

Because these changes affect methods that return string positions as well

33

S E L E C T * F R 0 M u s e r s

0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8

Figure 4.10: Original String, with character positions shown below

S E L E C T 1 2 3 *F R 0 M 1 2 3 u s e r s

0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4

Figure 4.11: Mutated string

as those that use them as parameters, it is not an unreasonable assumption

that many programs will remain correct. For example, a program that uses

indexOf to find the spaces in our mutated example string will correctly

find them at positions 9, 11, and 19. If it subsequently uses substring to

extract the text between these positions, it will correctly obtain the strings

SELECT123, *, FROM123, and users. The randomized keywords obtained may

be derandomized when they are used in some other context later. Only if

the program tries to find and operate on characters in the random key will it

become incorrect. Note also that only string constants are randomized. All

of the string-indexing operations continue to operate the same way on strings

obtained as input. Many programs do not attempt to use indexing operations

on their own string constants, or even on strings built by concatenating them

with input. So, it may be possible to simply ignore the string length and

position changes, and expect that many programs will still be able to operate

properly. We pursued this course, after finding that all of our test programs

fell into this category.

34

Nevertheless, it may be desirable to maintain the consistency of these

operations for programs as much as possible. For example, mutation might

make a program's regular expressions match incorrectly-the expression

([A-Za-z] + [A-Za-z] +), which matches two sequences of letters separated

by a space, will no longer match the string "FROM users", because it has

been mutated to FROM123 users. In addition, programs which supply string

positions as constants will no longer work properly. For example, a program

which expects to retrieve "FROM users" by calling substring(9, 18) will

instead receive " * FROM12". (Note that the arguments to substring are

the beginning index and the ending index, and that the ending index is not

inclusive.)

We implemented a solution to correct these issues, making indexOf,

charAt, length, and substring consistent with respect to unmutated po-

sitions. All four receive and return position values as if they were indexed

into the original string. To implement indexOf, charAt, and length, it is

sufficient to demutate the string before passing it to the real API method.

substring requires some extra work.

For substring, we would like to preserve the randomization of a keyword

if and only if it is fully contained within the requested substring. For example,

substring(7, 15) should return "* FROM123 u", whereas substring(7,

11) should only return "* FR", and substring(11, 15) should only return

"OM u".

The first step is to build a table describing where the keywords exist in

both the unmutated and mutated string. In our example string, this looks as

in Figure 4.12. We build this table using the same regular expression we use

when derandomizing strings. Each time it matches a randomized keyword,

we add its position in the mutated string to the table. The offsets in the

original string can be calculated by subtracting the number of randomized

keywords we have seen so far, times the length of the random key string

35

(3 in this example). Keyword extents can never overlap, because only one

keyword precedes each instance of the key.

Keyword randomization table:

Keyword Original Start Original End Mutated Start Mutated End

SELECT 0 6 0 9

FROM 9 13 12 19

Figure 4.12: Randomization Table

Once we have the table, we use it to adjust the beginning and ending

index of the substring we are to retrieve. The substring's beginning position

in the mutated string must be offset by the same amount as the end of the

closest preceding keyword. So, we find the keyword with greatest "origi-

nal end" position smaller than the substring beginning position, and adjust

the substring beginning position by the difference between that keyword's

"original end" and "mutated end" positions.

The end position shifts similarly. However, if the beginning of the sub-

string falls in the middle of a keyword, the logic is not quite the same. In this

case, if the substring end position coincides with that keyword's end position

then we shift by the amount for the preceding keyword (as we would if the

position were in the middle of this keyword). This prevents us from including

the random key when a substring does not pick up the whole keyword. If

the substring continues past the end of the keyword, we have to break the

substring operation up into two operations, one ending at the end of the

keyword, and the other beginning there. We then concatenate their results

to produce the correct substring.

substring(7, 15) does not begin in the middle of a keyword, so it does

not have to be broken into two operations. To adjust the beginning position,
we find that SELECT is the closest preceding keyword. SELECT's end position

shifts by 3 positions, so the beginning position in the mutated string starts

36

at 10. The end position does not coincide with the end of a keyword, so we

shift it by 6, the same amount as the end position of FROM; producing the

ending position 21. If we examine Figure 4.11, remembering that substring

is not inclusive of the end position, we can see that the characters from 10

to 20 represent the substring we wanted to generate, "* FROM123 u".

substring(7, 11) proceeds similarly. The beginning position 7 shifts

to 10 as before, but the closest preceding keyword for ending position 11 is

SELECT, so we shift 11 by 3, to 14. The characters from 10 to 13 in the

mutated string are, again, the correct substring, "* FR".

substring (11, 15) does have to be broken into two operations, because

its beginning position is in the middle of the keyword FROM (which extends

from positions 9 to 13), and its end position is after the end of the keyword.

The first sub-operation substring(11, 13) begins in the middle of FROM

and ends at its end, so the end positions shifts according to SELECT, by 3

to 16. The beginning position also shifts by 3, to 14. Characters 14 and 15

of the mutated string produce the string "OM". The second sub-operation

substring(13, 15) shifts both positions by 6 using the offset from FROM.

Positions 19 and 20 of the mutated string produce " u", so the final result

is "OM u", as expected.

One consequence of making the operations consistent in this way is that

random keys may be lost in certain cases. For example, consider a program

that copies from a string to a character array by looping through it, character

by character. Each time it calls charAt, it retrieves a single character from

the derandomized string; at the end, the character array contains only the

derandomized string. Loss of random keys may lead to false positives-

our system would detect an injection where none existed. Additionally, the

instrumentations we have described add a lot of overhead to string operations.

Because of this, and because we suspect that many programs will operate

properly even if string operations are inconsistent with constant positions,

37

we decided not to use this model of string consistency in our final system.

4.4.3 Output Envelope

Besides affecting program correctness, improper handling of the mutated

strings can pose a security risk. If a keyword has been properly mutated,
then at query verification we assume it is safe, because it must have or-ginated

in one of the program's string constants. However, if the attacker car figure

out how to mutate his own keywords cgretly, . can make -r

to also be safe. If the program outputs "Selectl23 whether you want

guacamole or123 not123" to an attacker's display, then he has learned how

to mutate the keywords SELECT and OR, and can then use them as part of

future injection attacks.

We should note that this may be one major advantage our approach

has over static source code randomization techniques. A standard practice

during application development is to print out the text of a failing query to

the user's terminal, so that the programmer can see what part of the query is

producing a problem. If this debugging output is left in place in production

code, or if an attacker can gain access to a development deployment of the

code, then all he has to do is create an input that produces an error to

reveal all of the randomized keywords in a particular query. With output

derandomization, this is not a concern, because random keys will be filtered

out of even debugging output.

By examining the Java API, we can identify method calls that can carry

string data back to a user. For example, PrintWriter. print (String) is

usually used to display output to a user. The constructor File(String)

is used to create a reference to a file; a user may be able to access the file

system and see the names of created files. It is unlikely that string data that

passes through the output envelope will ever be used as query text.

38

Chapter 5

Evaluation

5.1 Security

We evaluate our system along three dimensions: security, program correct-

ness, and performance. Security was evaluated as part of IARPA's STONE-

SOUP (Securely Taking On New Executable Software of Uncertain Prove-

nance) program [9]. The goal of STONESOUP is to find a way that the

US intelligence community can deploy software developed by third parties

without having to worry about its security infrastructure. As part of this

evaluation, we were provided insecure test programs to which we applied

our system. The evaluation team then ran a battery of inputs against each

program. For each attack input, our system was evaluated on whether it

was able to render the program unexploitable; that is, that it prevented the

expected undesired behavior. For benign inputs, it was evaluated on whether

it preserved the correct operation of the program.

In the STONESOUP evaluation, there were 17 separate test programs

we were to secure against SQL injections. Across all of the programs, we

received 28 benign test inputs, and 27 attack inputs. For all of the benign

inputs, our system preserved the correct operation of the test program, that

39

is, we did not cause the program to break or report an injection incorrectly.

For 24 of the 27 attack inputs, we successfully detected and stopped the

attack. At the time of the evaluation, we had not yet implemented comment

randomization; the three attack inputs we failed to detect involved comment

injection.

We also tested our system against the SAMATE (Software Assurance

Metrics and Tool Evaluation) Reference Dataset Juliet test suite [12], which

contains a number of test programs designed to contain SQL injection vul-

nerabilities; these are primarily listed under "CWE-089: Failure to Sani-

tize Data within SQL Queries (SQL injection)." These programs are all

fairly simple, but they are designed to test a wide variety of query execution

methods (different ways of calling JDBC such as execute, executeBatchO,

executeQuery(), and executeUpdate()) and untrusted data sources (such

as reading from a network socket, file, or environment variable). Against

2024 of the test programs in this suite, we tried 12 generic attack inputs and

7 benign test inputs. We were able to detect all of the attacks, and generated

no false positives.

5.2 Program Correctness

For program correctness, we tried to use real-world programs so that we

could gauge the likely impact on an actual deployment. One program we

tested was Daikon [7], a dynamic invariant detector developed by our group

for a previous project. Daikon reads traces of a program execution and uses

the data to try to find invariant conditions at various program points. The

trace files can be large since they contain a full trace of the execution of a

particular program, including all of the data values within the program at

each point. Once Daikon has read all of the data, it does a large amount of

string processing, including comparisons, concatenation, substring, etc. In

40

fact, our initial tests with Daikon were the impetus for our implementation

of interning for comparisons. After applying our system to Daikon, we were

able to verify that it produces the same output as it does without our system.

Since the primary target for our system is web applications, we also tested

it against the open source web application server Tomcat [5]. To test it, we

implemented a small servlet which executes a few simple SQL queries. We

confirmed that the servlet still worked properly with benign inputs while our

system was operational. We also confirmed that attempted injections were

caught and reported as errors.

5.3 Performance

To test performance, we first wrote a small driver program which reads some

input from the console and uses each line to construct a query, which it

executes on a sample database. Without our system enabled, the program's

startup time (before it began reading inputs) was 0.5 seconds, and it took

30.1 seconds to complete after that point. With our system enabled, the

startup time is 2.9 seconds, and the program takes 31.9 seconds to complete

after startup. So, for this simple program, most of the overhead of our system

is in the startup time. During startup, our premain() is running, and all of

the classes that are needed to run our system and the program are loaded

and transformed. This is likely because the number of classes is large-over

200 classes even for a small program. Fortunately, our target programs are

generally larger, longer running processes such as servers, which only pay

their startup cost before serving hundreds or thousands of requests.

To get a sense of what performance is like on larger, string-processing

heavy program, we also timed Daikon. Here we found a more significant

increase in runtime, from 4.1 seconds to 18.5 seconds. This heavy increase in

running time is likely due to the high number of string manipulations used in

41

Daikon-each time an operation needs to derandomize a string, that repre-

sents a regular expression match and replacement. However, we expect that

most of our targeted programs will represent a much lower string processing

workload than Daikon, so this is likely to be a high upper bound on the

performance penalty.

42

Chapter 6

Conclusion

6.1 Limitations

Our system secures applications against any injection attack that requires

the attacker to add a keyword or comment marker to the query string. A

classification of injection attack types given in [14] shows that this kind of

approach (similar to SQLRand) neutralizes all of the types of attacks that

can do damage or reveal data from an application. Some of the injection

attacks it cannot prevent include illegal queries, alternate encodings, and

stored procedures.

In illegal query injections, the attacker gains information by inducing an

error in the query text. Since we do not actually parse the query before

sending it to the database, an attacker could cause a syntax error by adding

some non-keyword in an illegal place. It is not clear, though, whether he

could induce any other kind of error, such as a type-checking or logical error,

without introducing a new keyword into the query. In alternate encoding

injections, the attacker uses a different way of representing characters to

implement the attack; we cannot detect this in our current implementation,

because to do so we would have to implement these other character sets.

43

Stored procedure injections are nearly impossible to prevent in an automated

manner, because at the application level there is no way to know what the

stored procedure will do with the data we pass to it; it may change data,
retrieve it, or do something completely different such as run an operating

system command.

Another limitation to our system relates to correctness and consistency of

string operations. We described two strategies for dealing with string opera-

tions. In one we allow string operations to proceed unchanged on potentially

mutated strings, which may cause incorrect program functioning in certain

cases. In the other we are careful to maintain the exact semantics of string

operations, at the expense of performance and of incurring false positives,
wherein legitimate query strings are rejected because of the processing that

occurred along the code path that generated them. Both of these solutions

represent some amount of compromise, but we think that many programs

will be able to operate under the first, more relaxed, model.

6.2 Further Work

The output envelope of the system is not yet fully instrumented. To do so

we need to make an inventory of all the methods in the JDK, and decide for

each one whether it represents a potential output from the system, adding

an instrumentation method for it if so.

Currently, the random key is chosen in the system source code, to ease

debugging. For a real deployment, there needs to be a way to change the key

on a regular basis, at system startup for example.

Checking for keywords by tokenization works well, but the system could

be more robust if it employed a full parser. For example, it could distinguish

between identifiers and keywords, alleviating the issue of collisions. The

problem we found with this approach is that there are a wide variety of SQL

44

dialects in use, so it is easier to maintain a common list of keywords than a

common grammar for all of them, or one for each.

String operation performance and consistency are certainly weak points,

and it is possible that further work in this area might lead to a better model

that would make fewer restrictions on the string operations the secured pro-

gram could employ, or offer better performance and false-positive behavior

than the strictest model.

6.3 Summary

We have introduced a new system for securing application programs against

SQL injection attacks. This is particularly important for web applications,

which by their nature are easy targets and prone to include vulnerabilities.

Our system mutates, at load time, the string constants of the program to

be secured, changing any SQL keywords it finds by appending a random

key. These random keys will be propagated through the program as string

constants are combined with other data to form full query strings. At the

same time as we mutate the string constants, we replace method calls to SQL

query execution methods so that we can insert calls to our own verification

layer. The verification layer tokenizes the query string, and if it finds any

unrandomized keywords, it assumes they came from user input and rejects

the query. Otherwise, it derandomizes the query and passes it on to the

database.

Our approach has several advantages. It can be applied to compiled

programs without access to their source code, so that institutions can de-

ploy third-party code without worrying about its provenance. It prevents

any injection attack that involves adding a keyword or comment marker to

the query string, which defeats all injection types that directly harm the

database. Finally and most importantly, it is fully automated, so it requires

45

no intervention by an application developer to make it work. This means

that it costs less to implement, and provides more complete security than

the manual solutions which are still commonly used in web development.

46

Bibliography

[1] Sruthi Bandhakavi, Prithvi Bisht, P. Madhusudan, and V. N. Venkatakr-

ishnan. Candid: preventing sql injection attacks using dynamic candi-

date evaluations. In Proceedings of the 14th ACM conference on Com-

puter and communications security, CCS '07, pages 12-24, New York,
NY, USA, 2007. ACM.

[2] BBC. US man 'stole 130m card numbers'.

http://news.bbc.co.uk/2/hi/americas/8206305.stm, August 2009.

[3] Stephen W. Boyd and Angelos D. Keromytis. Sqlrand: Preventing sql

injection attacks, 2004.

[4] Gregory Buehrer, Bruce W. Weide, and Paolo A. G. Sivilotti. Using

parse tree validation to prevent sql injection attacks. In Proceedings of

the 5th international workshop on Software engineering and middleware,

SEM '05, pages 106-113, New York, NY, USA, 2005. ACM.

[5] Apache Foundation. Apache tomcat. http://tomcat.apache.org/, Jan-

uary 2012.

[6] OWASP Foundation. Top 10 most critical web application security

risks-al-injection. https://www.owasp.org/index.php/Top_10_2010-A1,

June 2011.

47

[7] MIT CSAIL Program Analysis Group. The daikon invariant detector.

http://groups.csail.mit.edu/pag/daikon/, June 2010.

[8] William G J Halfond, Alessandro Orso, and Panagiotis Manolios. Using

positive tainting and syntax-aware evaluation to counter sql injection

attacks. pages 175-185, 2006.

[9] IARPA. Stonesoup program. http://www.iarpa.gov/manager-vesey.html,

September 2009.

[10] Imperva. Hacker intelligence summary report an anatomy of a

sql injection attack. Technical report, Imperva, September 2011.

http://www.imperva.com/docs/

HIIAnAnatomy-of-aSQLInjectionAttackSQLi.pdf.

[11] Anh Nguyen-Tuong, Salvatore Guarnieri, Doug Greene, Jeff Shirley, and

David Evans. Automatically hardening web applications using precise

tainting, 2005.

[12] NIST. Juliet test suite. http://samate.nist.gov/SRD/testsuite.php,

April 2011.

[13] Tadeusz Pietraszek and Chris Vanden Berghe. Defending against injec-

tion attacks through context-sensitive string evaluation, 2006.

[14] J. Viegas W. G. Halfond and A. Orso. A classification of sql-injection

attacks and countermeasures. In Proceedings of the International Sym-

posium on Secure Software Engineering, March 2006.

48

