
Database Partitioning Strategies for Social

Network Data
by

Oscar Ricardo Moll Thomae
B.S. EECS, Massachusetts Institute of Technology (2011)

B.S. Mathematics, Massachusetts Institute of Technology (2011)

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Masters of Engingeering in Electrical Engineering and Computer
Science

at the

ARCHIVES>

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2012

@ Massachusetts Institute of Technology 2012. All rights reserved.

IA

Author
Department of Electrical Engineering ah1lComputer Science

May 25, 2012

Certified by.

r--.

Certified by......................

(7>-

V

Stu Hood
Engineer at Twitter

Company Supervis

Samuel R. Madden
Associate Professor

MIT Thesis SInervisor

Accepted by
Dennis M. Freeman

Chairman, Masters of Engineering Thesis Committee

Database Partitioning Strategies for Social Network Data

by

Oscar Ricardo Moll Thomae

Submitted to the Department of Electrical Engineering and Computer Science

on May 25, 2012, in partial fulfillment of the

requirements for the degree of

Masters of Engingeering in Electrical Engineering and Computer Science

Abstract

In this thesis, I designed, prototyped and benchmarked two different data partitioning

strategies for social network type workloads. The first strategy takes advantage of the

heavy-tailed degree distributions of social networks to optimize the latency of vertex

neighborhood queries. The second strategy takes advantage of the high temporal

locality of workloads to improve latencies for vertex neighborhood intersection queries.

Both techniques aim to shorten the tail of the latency distribution, while avoiding

decreased write performance or reduced system throughput when compared to the

default hash partitioning approach. The strategies presented were evaluated using

synthetic workloads of my own design as well as real workloads provided by Twitter,
and show promising improvements in latency at some cost in system complexity.

Thesis Supervisor: Stu Hood

Title: Engineer at Twitter

Thesis Supervisor: Samuel R. Madden

Title: Associate Professor

2

Acknowledgments

On the MIT side, I thank professor Sam Madden for accepting being my advisor

in the first place, meeting online and in person and providing feedback on my work

and guiding it with useful suggestions. Thanks also to Dr. Carlo Curino for giving

me ideas and meeting on Skype to discuss them. On the Twitter side, thanks to

the company for letting me work there during the Fall of 2011, to Judy Cheong for

helping me join the Twitter MIT VI-A program last minute, to the Twitter Data

Services team for being my hosts during the fall of 2011. Thanks especially to Stu

Hood for taking up the supervisor role, meeting regularly, providing resources for my

work and dicussing ideas.

3

Contents

1 Background 11

1.1 Database partitioning . 12

1.2 Graph oriented systems. 15

1.3 The abstract partitioning problei . 16

2 Twitter specific background 19

2.1 Graph store interface . 20

2.2 Workload profile . 23

2.2.1 Query profile . 24

2.2.2 Query skew . 26

2.2.3 Query correlations . 28

2.2.4 Graph data profile . 28

2.2.5 Query-graph correlations . 32

3 Optimizations 34

3.1 Optimizing fainout queries . 36

3.1.1 Modelling fanout perfornance 38

4

3.1.2 The cost of)arallel requests . .

3.1.3 Optimizing fanout performance

3.1.4 Imiplementation considerations

3.2 Optimizing intersection queries .

3.2.1 Workload driven partitionng

4 Experiments and results

4.1 Experiniental setu)

4.2 Fanout performance

4.3 Two Tier hashing on synthetic data . .

4.4

4.5

4.3.1 For highly skewed synthetic degree

Two tier hashing on real data

Intersection queries on real data

. 3 9

. 4 1

. 4 4

. 4 6

. 4 7

49

. 4 9

. 5 1

. 5 3

graphs 53

. 5 5

. 5 7

595 Related work

5

List of Figures

2-1 Frequency of different queries vs rank

2-2 log-log scatter plot showing the relation between fanout popularity and

intersection popularity .

2-3 rank plot of in-degrees over vertices in sample and correlation without-

d egree .

2-4 relation between query popularity and number of followers

3-1 Simulated effects of increasing the number of parallel requests on la-

tency for different types of delay distributions (at 50th, 90th, 99th and

99.9th percentiles) .

4-1 Experimental setup. only one APIServer was needed but adding more

is p ossible .

4-2 Effects of increased parallelization on a small degree vertex vs a large

degree vertex for a synthetic workload

4-3 The two control strategies: vertex sharding and all-shards partitioning.

Note the substantial fractions of data lying beyond the window range.

See also Figure 4-4 .

6

27

29

31

33

40

50

52

55

4-4 Comparing the two-tier strategy and the two control strategies on

fanout latencies for synthetic graph and queries on the same synthetic

workload as Figure 4-3 . 56

4-5 Comparison of fanout query latencies of Two Tier and Vertex hash

partitionings using real graph and logs 57

4-6 Comparison of intersection query latencies of Workload driven and

Vertex hash partitionings using real graph and logs 58

7

List of Tables

2.1 Graph store usage statistics from query logs

2.2 Basic Twitter data .

4.1 Comparison of latencies at different percentiles (in micro seconds) . .

4.2 Comparison of fanout latencies at different percentiles on real data

(m usec) .

4.3 Comparison of intersection latencies at different percentiles on real data

(m u sec) .

8

25

29

54

57

58

Introduction

Twitter is a popular web service and social network that anyone can join. Once in it,

users create a profile and follow other users. Users can post brief messages, known

as Tweets, that get delivered in real time to their followers. Similarly, users can view

the latest messages from the users they follow.

As the network has grown to hundreds of millions of users, the backend systems

supporting Twitter have developed into a vast custom infrastructure, offering many

exciting opportunities for computer systems research. In particular, the data stores

are responsible for storing all the user data as well as serving it quickly upon request.

These services need to reliably store billions of relations between users, their profiles,

their messages, and are tasked with serving this information fast enough to support

the almost instant delivery of up to 30000 unique Tweets per second [10] to up to

about 20 million users in some cases. This kind of scaling requirement is a strong

motivation to seek alternative methods of serving these specific workloads.

The data stores, or data services in Twitter parlance, are among the core backend

systems supporting the site. One of these data services, the graph store, is in charge

of storing the relations between users. The graph store supports basic graph data

structure operations such as inserting and removing vertices and edges, and retrieving

adjacency lists for vertices. In addition to that, it also supports more complicated set

arithmetic queries such as intersections, counts and differences. This thesis proposes

improvements to the graph store.

The techniques proposed are designed for Twitter's specific workload, rather than

9

for general purpose database systems, but these techniques generalize to other social

network type workloads. Social network type workloads are characterized for their

extremes. For example, in Twitter some users are much more popular and central

to the rest of the community than others. Operations on them benefit from being

treated differently.

In chapter 1 I survey the general purpose partitioning approaches used in other

systems and how they related to query. In chapter 2 I look at the specifics to Twitter's

workload. Knowing the specifics of both the kind of data stored by Twitter's graph

store and the patters in its query workload help motivate proposals to improve the

specific Twitter case. In chapter 3 I introduce the two proposals and quantitative

arguments to explain why they should work. Finally, in chapter 4 I present the

results from prototyping and benchmarking these techniques on both synthetic and

real data provided by Twitter.

10

Chapter 1

Background

Many systems with high throughput needs such as Google, Facebook or Twitter

achieve their scalability goals by building distributed infrastructure. This is the case

for most of their infrastructure, from the web servers and caches down to the databases

backing these services. In the specific case of databases, the potential gains from

using multiple computers simultaneously depend partly on a good partitioning of

the underlying data. Database partitioning in general is a widely studied topic, and

there are several standard solutions that work well in general but are not optimal in

the specific case of social network workloads. This thesis presents and evaluates two

different partitioning strategies for social network type workloads.

There are two basic properties desirable from shared nothing distributed system.

The first property, scale out, is that we can double the throughput of the system

simply by doubling the number of nodes, without affecting latency. The second

property, speed up, is that we can halve the latency by doubling the number of nodes.

In practice, it is common that doubling the number of nodes in a system will less than

double its throughput, or less than halve the latency according to the objective, but

those are still the ideals. For websites such as Twitter scale out is seen as the primary

goal because it implies that an increase in users can be matched by a proportional

investment in machines, and that the average cost of running the site remains the

11

same. Latency is also important from the user experience perspective: the web page

needs to feel responsive, and messages sent from user to user should arrive almost

instantaneously.

Traditionally, workloads fall into two categories. The first category is online trans-

action processing, or OLTP, in which the read and write sets of an operation are fairly

small. The second category is online analytical processing, or OLAP, in which the

read sets are fairly large. The emphasis on the first category is on ensuring scale out,

while for the second category there is also attention to speed up. Very often, the

databases serving websites are considered OLTP, and optimized for throughput. But

because in social networks such as Twitter some users have a lot more edges than

others, then for such users, queries like counts and scans are in fact a lot more similar

to OLAP. This type of extreme workload variation is one of the key differences from

other typical workloads, and why speeding up some of the queries becomes impor-

tant. In the next section we wee how different data partitioning policies influence a

system's scaling properties.

1.1 Database partitioning

Ideally, a partitioning strategy enables scaling by distributing all work evenly across

the nodes and having each node work independently of the others. When the work

is not evenly distributed among nodes then the overloaded nodes will likely show

reduced throughput, thus reducing overall system throughput. There are reasons

why work may not be perfectly distributed, one is the unpredictability of which items

will be popular. Similarly, communication and coordination across nodes mean there

will always be some degree of dependence between nodes. When the nodes need to

constantly communicate data or coordinate updates to ensure they are all or none, like

in distributed transaction, then the extra waiting due to locks may reduce throughput.

Even if there is no locking, all the communication between nodes may turn network

bandwidth into the bottleneck. Some operations invariably require looking at several

12

tuples at the same time, and these may be located in different physical computers.

The most general purpose partitioning strategies are hash and range partitioning

[6]. Like their name suggests, hash partitioning uses a hash function to map rows to

nodes, while range partitioning defines value ranges and then maps each to a node.

Given an suitable hash function, hash based partitioning on any sufficiently diverse

attribute will achieve the goal of balancing tuples and requests evenly, even as the

table changes. On the other hand, hash partitioning only guarantees to map equal

values to equal nodes. Two different values will be mapped to the same machine only

by chance no matter how similar. With probability 1/n for a cluster of n machines,

which tends to 0 as n grows. Range partitioning, on the other hand, will map rows

with values close in their natural ordering to the same machine, achieving locality.

Range partitioning may spread things less equally than hashing and will need to

repartition in case one range turns out to be a lot more popular than other ranges,

but its locality properties may help reduce the competing cost of communication

across nodes when queries themselves tend to read nearby values of attributes. This

thesis proposes two alternative partitioning methods that are not intended to general

purpose, but that should work better for Twitter graph store workloads, explained in

more detail in chapter 2.

We saw what methods we can use to partition, but another aspect of partitioning

is which attributes we decided to partition by. Parallel joins are a typical example. If

two large tables are expected to be joined regularly on a field x, partitioning both ta-

bles using the same policy on field x allows the join to proceed in parallel without need

to reshuffle one of the tables across machines. In this case, there is both a through-

put gain (no communication) and a latency gain (parallelism). Another example

illustrates the interactions between choosing partitioning attributes and partitioning

methods. If we partition a table of log entries by using timestamps and a range par-

titioner, then only one machine will be in charge of receiving all updates at one time

and can be overloaded. On the other hand, if we choose to partition by a hash on the

timestamp the write load would be spread across the whole cluster.Similarly, if we

13

had chosen to partition by a range on a different attribute such as log even category,

we would also more likely have spread the workload. The moral is the partitioning

decisions need to be made based on knowledge of the workload.

The closely related concept of database replication deals with how many copies of

each block of data to keep and where to keep them. Even though replication is often

used primarily to ensure fault tolerance, replication decisions also can help improve

performance. For example, a system may replicate heavily read data, allowing the

read requests to be served by different machines. On the other hand this replication

policy increases the cost of writing an update. Depending on the read to write

ratio of the data, this policy can increase or decrease throughput. Another example

of using replication for performance purposes is when a database replicates a table

thats frequently joined with others, this policy helps avoid communication overhead,

and again, involves changing the cost for updates. In this thesis, the aim was to not

affect writing overhead, so we do not consider alternative replication policies, mostly

focusing on the partitioning itself.

Different partitioning policies involve two different implementation challenges.

The first challenge is in storing enough information to enable efficient lookups. Hash

partitioning is very practical from this point of view, because a hash function contains

all the information needed to map any tuple to its location, the overhead for both

storage space and lookup time is 0(1) relative to the number of tuples in the database

as well as the number of nodes, this is relatively little state, so we could even place

it in the client library directly. Range partitioning is not as easy, it involves keeping

a range directory structure that grows as 0(r) where r is the number of ranges we

have split the tuple universe into, because of that, it is less practical to place the

state in the client library and we may need a partition manager node in the archi-

tecture. Alternative partitioning systems, such as those proposed in this thesis, also

need their own customized data structures for implementation. The storage challenge

is complicated by system needs to scale up and tolerate node failures, which is the

second challenge.

14

The more nodes participate in a database, the more likely it is some will fail, and

also the more we need to support easy addition and removal of nodes. The partitioning

infrastructure must make it possible to add new nodes without creating too much work

to adapt. For example, if our partitioning function were f(k) = hash(k) mod n where

n is the number of nodes, then the load would be well balanced on a static system.

On the other hand, if n changes then the system must move most of the data from

from their old location to the new one. There are more elaborate techniques to deal

with these problems, such as extensible hashing and consistent hashing, but they are

more complicated than in the static case. Consistent hashing, for example, requires

an ordered list of size 0(n) where n is the number of nodes. It also requires to be

updated whenever there is an event such as a node leaving or entering the system.

In addition to dealing with nodes that enter or leave the system, range partitioning

must react to many tuples entering or leaving the same range, and react by splitting

or merging ranges and relocating data accordingly. As routing information grows, the

system needs to be able to recover it after failures and to keep it consistent across

different servers and between servers and actual nodes storing the data. All of these

are important problems, but not the focus of this thesis.

1.2 Graph oriented systems

In section 1.1 I described partitioning from the general point of view of databases.

This thesis is specifically concerned with partitioning policies for the Twitter graph

store. The graph store does fall within the domain of databases, but has a more

specific interface and workload. In the case of the graph store, the data is users

and their relations, and the operations are adding users and relationships between

users, and reading them too. I explain the interface and workload in more detail in

chapter 2.

Graph workloads are a specific niche of database workloads, but they are not

unique to Twitter nor to social networking applications. Geographic entities such as

15

roads and cities, semantic web relations and graphical models in machine learning

all exhibit graph structure and can be processed as such. Similarly, Twitter's graph

store is not the only one graph data store. There are many other systems specifically

designed to store and process graph data. Ultimately, a graph can be stored in a

typical relational database and queried there, too. For example, we can store a tables

of vertices and tables of edges. Operations such as neighbors, queries such as degree

per nodes, 2-hop neighbors can be expressed etc can all be expressed with typical SQL

statements. Nevertheless, graph systems with custom interfaces and organization are

becoming popular [24] [31].

The graph processing systems described can be split broadly into two categories:

analytics and storage. Graphlab [21], Pregel [22], and Cassovary [16] work for the

analytics category. Graphlab and Pregel are distributed, and Cassovary is not. All of

them offer a graph-centric programming model and aim to enable efficient execution

of richer algorithms. On the other end there are the storage systems, these include

the Twitter graph store (also known as FlockDB)[17], which provides distributed

and persistent storage with online reads and writes and offers a much more limited

interface: get sets of neighbors, get edge information for a specific edge and a few

basic set operations. Other stores such as Neo4j sit somewhere in the middle: Neo4j

offers persistence, online updates and a richer interface for queries: shortest paths,

2-hop neighbors, etc, but is not distributed [24].

Finally, partitioning in graph oriented systems is done similarly to that of databases.

Pregel uses a function of the hash(ID) mod N as the default partitioner, for example,

but allows to plug in different partitioners [22]. Apache Giraph is similar [3].

1.3 The abstract partitioning problem

I have introduced the partitioning problem in databases, why it is relevant to graph

systems and how it is normally solved. Before presenting any proposals for better

16

partitioning in the Twitter graph store, it is worth noting that the partitioning prob-

lem is complex algorithmic problem for which no solution is known. Partitioning

problems, even in offline batches are often hard to solve optimally. Here I present two

NP complete problems that show, in one way or another, that balancing problems

can only be dealt with heuristically. The first problem is about partitioning a set of

numbers of different values, the second problem is about partitioning a graph with

arbitrary edges.

Definition 1. Balanced partition problem. input A group of n positive numbers

S = a1, ...a,

output A partition of the numbers into two groups A and S A such that | ZaA a-

Zap aj is minimized.

This problem can be interpreted as a way to optimally balance the load across

servers if we knew ahead of time the load ai for each task. In that case, a scheduler

could run the algorithm and then allocate tasks accordingly. One interesting aspect

of this problem is that it involves no communication among the parts, but already is

NP-complete. For practical purposes, there exist several quick heuristic methods to

generate a (non necessarily optimal) solution to this problem.

Often, data partitioning problems also need to consider communication costs. If

doing task a1 and a2 involves some sort of communication, then we may want to

group them in the same partition. Problems like such as this one, with an added

communication cost can be better modeled as the graph partitioning problems rather

than set partition problems. Formally speaking, the graph partitioning problem is

the following.

Definition 2. Graph partition problem input A graph G = (V, E), and targets k and

m.

output A partitioning of V with none of the the parts is larger than |V|/m and

with no more k edges crossing between parts.

17

The graph partitioning problem, unlike the balanced partitioning problem, does

not necessarily have weights, nevertheless it is NP-complete. A more general version

allows both vertex and edge weights is therefore just as hard. Like for the number

partition problem, there are efficient (but, again, not necessarily optimal) heuristics

to solve it. One such heuristic is the Kernighan-Lin method that try finding a good

solution in O(n 2 lgn) time [19]. Kernighan Lin is also one of the components of the

more general METIS heuristic [25]. METIS is an algorithm and associated implemen-

tations that aims to solve larger scale instances of these problems. Graph partitioning

algorithms such as these have been used for parallel computing applications as a pre-

processing step, to divide the load evenly among processors.

The problems and heuristics presented in this section were results on the static

(see everything at once, and graph does not change) case. One challenge for these

algorithms is to scale to larger graphs. As the input graph size increase it may no

longer be possible to fit the graph in a single machine. Another challenge for graphs

that are constantly changing is to compute an incremental repartitioning that does

not move too much data across parts and yet is effective. Running a static partitioner

periodically may not be a good solution if the algorithm produces widely different

partitions every time. Despite the challenges, there exist heuristics for distributed

streaming graph partitioning [28].

Even though the partitioning problem is hard, a partitioning strategy does not

need to achieve optimality. In the previous subsections we saw that hash partitioning

is widely used despite causing many edges to cross between parts, so many other

heuristics will probably perform better. For this thesis, one of the strategies proposed

makes use of the METIS algorithm.

In this chapter I explained the relation between partitioning and scaling, listed the

typical partitioning strategies supported by databases and their more recent relatives

known as graph processing systems, and described known hardness results that are

relevant to the partitioning problem. The next chapter will expand on the Twitter

specific aspects of the project.

18

Chapter 2

Twitter specific background

The main persistent Twitter objects are users, their Tweets, and their relations

(known as Follows) to other users. Each of these objects has associated informa-

tion such as user profile picture and location in the case of an individual user, Tweet

timestamp and location for a Tweet, and the creation time of a Follow between two

users. Any user can choose follow any other user freely, there is no hard limit. Con-

versely, a user can be followed by anyone who chooses to. That policy combined with

the growth in Twitter's popularity made some users such as the singer @ladygaga

or current US president @BarackObama very popular. Each of them has about 20

million followers as of mid 2012. A note on terminology: Twitter usernames are com-

monly with the '@' symbol. Also, by Followers of AA we mean all users @B such

that @B Follows @A. Conversely, the term Follows of @A refers to all the users AC

such that @A Follows @C. A user chooses her Follows, but not her Followers. The

relation is asymmetric.

Each Twitter user gets a view of the latest Tweets from his Follows, this view

is called his Timeline. If @A Follows @B and ©B Tweets c, then @A should see c

in its timeline. Constructing all users' Timelines is equivalent joining the Follows

table with Tweets table. At Twitter, the three tables: User, Tweet and Follows are

implemented as three different services. So we talk about each table as the User store,

19

the Tweet store, and the Graph store respectively. These databases are constantly

joining entries to construct timelines, so all the operations involved in these process

are crucial to Twitter's functioning. This separation also impacts the amount of user

information available internally to the graph store, for example, it is not possible

to simply partition users by country or by language because this information is not

really part of the graph store, which deals with users only as user ids.

A second note on terminology: since the the graph vertices correspond to users,

we treat the term vertex; and user as synonyms. Similarly, a Follow relation and an

edge are also synonyms. The term 'node' is reserved for the physical machines on

which the system runs.

2.1 Graph store interface

For the purposes of this thesis, we can think of the graph store as a system supporting

three kinds of updates and three kinds of queries. The updates are to create an edge

or vertex, to delete an edge or vertex and to update an existing edge. The three

queries are described below. In short, the graph store can be thought of as offering

basic adjacency list functionality, with additional support for some edge filtering and

intersection.

The first basic query, known as an edge query, is a lookup of edge metadata given

the two edge endpoints. Metadata includes timestamps for when the edge was created,

when it was last updated and other edge properties such as the type of the edge. For

example, it could be a standard 'Follow', or a 'Follow via SMS' that specifies SMS

delivery of Tweets, or a 'blocked' edge. Edges are directed. At the application level,

the edge query enables the site to inform a visitor of its relation to the profile he's

looking. In the case of blocked users, the metadata also enables the system to hold

their Tweets from being delivered to the blocker.

The second query, mentioned in the introduction as the list of followers query, is

20

referred to as a fanout query. A fanout query returns all the neighbors of a given

vertex @A. The complete interface to the graph store allows for some filters to be

applied before returning results. For example, we may wish to read all the Followers of

OA, or all the Follows of A or users blocked by @A. Some of these queries may involve

filtering out of elements. The fanout query interface also offers to page through the

results of a query, useful in case the client is not prepared to deal with large result

sets, or simply because may be interested only in 1 or 10 followers. Such queries are

used for display in the profile web page, for example. The paging interface requires

specifying both a page size for the result set and an offset from which to resume. The

ordering of the result set can be set to be the order in which follows happened. This

provides a way to answer queries like 'who are the 10 latest followers?'. Because the

time ordering of the edges probably differs from the natural order of the user ids,

some of these queries involve more work than others. The most important use case

of fanout operation is Tweet routing and delivery. Whenever user AA Tweets, the

effects of that action must be propagated to the followers returned, which we find out

using a fanout query.

The third query is the intersection query, the intersection of neighbors for two

given vertices. Intersection queries are more heavy weight than fanout queries. A

single intersection operation implies at least two fanout type operations plus the

added work to intersect the results. The extra work can be substantial, for example

if the two fanouts are coming from separate machines and the are not sorted by user

id to start with. One design option is to let the server implement only fanout queries,

and have the clients intersect the results themselves. This approach reduces work at

the server, but increases external bandwidth use to transmit results that eventually

get filtered anyway. Like with fanout queries, there are many parameter variations

on this query. Like with fanouts, the result for an intersection can be paginated.

There are several Twitter use cases for the intersection query. When a user @A

visits @B, the website shows AA a short list of his Follows that in turn are Followers

of @B. This is an intersection query of the Follows of @A and the Followers of @B.

21

Because the website only displays the first 5 or 10 names, this use case only requires

a executing part of the full intersection. The most important Twitter use case of the

full intersection is, like with fanouts, also related to Tweet routing. When a public

conversation takes place between two users AA and AB, Twitter propagates the

conversation only to Followers of both @A and @B, so it must intersect Followers of

@A with Followers of AB. There are potentially many uses for intersection query, such

as computing a similarity metric between users such as cosine similarity, or measure

the strength of the connection between two users @A and @B by intersecting AA's

Follows with @B's Followers and counting the result. Another example is in listing

paths: a full intersection of @A's Follows with @B's followers encodes all the 2-hop

paths from @A to @B. An intersection query could also be used for looking more

complicated path patterns in the graph, like follow triangles. or simple statistics:

for example, how many mutual Follows-Followers does @A have? We can answer

this by intersecting Follows @A with Followers @A. Intersection is the more complex

operation considered in this thesis, and given these use cases it is possible that gains

from improving its performance may enable the graph store to handle more interesting

queries.

The graph store interface supports more than fanout and intersection queries. It

actually supports more complicated set arithmetic such as three way intersections,

and set differences. It also allows counting queries. A general optimization strategy

for general set arithmetic queries is out of the scope of this thesis, and we will see

that empirically the main uses of the store are fanouts and intersections.

There is limited need to enable arbitrarily powerful queries in the graph store be-

cause Twitter has also developed a separate graph processing system called Cassovary

(mentioned in chapter 1). At Twitter, Cassovary is used for more analytic workloads.

Unlike the graph store, Cassovary loads data once and then mostly reads. Because of

the read only workload, data can be compressed much more. Because it is not meant

to be persistent, all of it can be stored in memory. Even at the scale of Twitter's

operations, the graph in compact form can fit into a single machine. As an estimate,

22

the connections between 1/2 billion users with a combined degree of 50 can be rep-

resented efficiently in around 100GB. The kinds of queries done in Cassovary include

things like page rank and graph traversal, and it is used to power applications such

as Follow recommendations, similarity comparisons between users and search. These

operations can use data that is a bit stale, since they are not meant to be exact. By

contrast, the graph store cannot fall behind updates. When a user follows another,

this change should be reflected in the website immediately. New Tweets from the re-

cently followed user should be delivered as soon as there is a subscription. Similarly,

when a user blocks another the system should react immediately. This is not the case

with recommendations, which can be computed offline and more slowly.

Both FlockDB and Cassovary are open source projects, so full details of their

interfaces and current implementations are available in the source repositories [17]

[16]. While the interface description tells us which operations are possible, viewing

actual logs informs us of which is the actual use the system. The next sections profiles

the queries and data stored in the system..

2.2 Workload profile

The graph store workload is made up of a mix of the queries for edges, fanouts and

intersections as well as by the data stored in it. By checking operation frequencies we

gain a clearer picture of how the API is really used: which operations are relevant and

which are not. And looking at the graph itself we understand the variations in work

needed by these operations. This section clarifies the workload and helps understand

what a social network workload is like.

The goals of analyzing the workload are to check that the operations merit opti-

mization, to learn about the average and extreme cases, and to possibly learn facts

that may help us devise improvements.

1. What are the relative frequencies of the queries?. How significant are fanouts

23

and intersections to the load on the graph store?

2. Are queries are made evenly across users or not? Are there any users with many

fanout queries? Are there users that are intersected often?

3. Are users that get queried for fanout often also queried for intersection often?

4. What is the distribution of data among users? We know some users have reached

20 million followers while others have only about 50, are there many such cases?

can these large follower counts be considered outliers or are there too many of

them?

5. Is there any relation between a user's query popularity its degree?

To answer these questions I used a sample of all incoming requests to the running

graph store for a few hours, resulting in about 300 million samples as well as a sepa-

rately collected snapshot of the Follows graph. These logs did not sample operations

such as writes, deletes and updates, nor counting operations, so we are limited to

only comparing among queries.

2.2.1 Query profile

The short answer to the question about the frequencies of the different operations is

that fanouts are the most popular queries, comprising about 80% of all queries. As

described in section 2.1, the graph store supports paginated results for fanout queries,

and so it accepts both a page size and an offset as part of the fanout query arguments.

By analyzing the more common page sizes and offsets, I found that the main form of

fanout query is only querying for a small page size starting at offset zero. The second

most popular fanout query also starts at offset zero, but requests page sizes of above

100. As described in section 2.1 small page size fanout queries may be produced by

user page views. Fanouts done with larger page sizes are more consistent with the

Tweet routing use case. The full aggregate results are shown in Table 2.1.

24

operation type frequency

fanout (small page, zero offset) 70%

fanout (large page, zero offset) 10%

intersection 1.5%

edge metadata 0.5%

other fanouts, etc 18%

Table 2.1: Graph store usage statistics from query logs

The 'other fanouts, etc' category includes fanouts done at starting at larger offsets

and a few unrelated operations. Because a full logical fanout query may be actually

implemented as a series of paged requests at different offsets, the 'other fanouts,

etc' category may include the same logical fanout repeatedly, which is why I show

it separately. And about the other queries, intersections happen much less often,

suggesting they may not be as important. Surprisingly, edge metadata queries seem

to happen seldom.

The significance of a particular type of query in the workload is not just a function

of how frequent it is, but is really a product of its frequency and the load each

individual operation places on the system. For instance, the page size given to a fanout

query has a relation with the potential cost of the operation. Requesting the latest 1

or 10 followers is lightweight, but requesting 1000 of them can involve more work both

in scanning it (it may occupy multiple pages on disk) and in sending it (its more data

after all). For this reason, I believe they should be considered separately. Similarly,

a single intersection operation implies at least 2 fanouts and at some merging (which

can be quadratic in size). Even at small page sizes, the intersection operation may

need to internally read much larger fractions of the fanouts in order to compute a

small number of answer elements. so, the effect of intersection on system load could

well be larger than its frequency alone suggests.

The effect of this load factor can easily match the effect of frequency: since the

light weight fanout operations represent at most about 70% of the requests, and the

heavy weight ones about 10%, then an individual heavyweight operation needs to

be about 7x more work than a single light weight, for the heavyweight operations

25

become just as significant as the light weight ones. I did not have a way of checking

whether this difference in workload is as significant as this or not. Either way, as a

result of this observation the work in this thesis focuses on the heavy fanout queries

and slightly less on the intersection queries, and none on the edge queries.

2.2.2 Query skew

The second question is whether queries are uniformly distributed across users. It is

often the case in other systems that requests have certain skew. For example, in a

news website it is expected the recent articles are probably requested much more than

older ones. In Twitter's case, individual people may be much more active users than

others, and some people's profiles may be much more visited than others. Information

about query skew is important for optimizations. A large skew makes it harder to

balance load across nodes easily, because even if the databases are nominally balanced

by user count, not all users contribute to system load the same way. On the other

hand, caching may be more effective in large situations than in the case uniform

access, which means skew can also be helpful. Either way, a system that assumes a

uniform distribution may not be capable of deal with extremes such as particularly

popular users or messages. Because of its important effects, also many papers or

benchmarks model this kind of skew explicitly by generating queries with some bias,

for example [4] and [5].

In order to verify whether this kind of query skew also occurs at Twitter, we ag-

gregated the sample query logs by user and randomly re-sampled about 1000 different

users, we got a view of the number of operations they were involved in. The results

appear in Figure 2-1.

The plot is on a log-log scale because of the extreme values of the workload. From

Figure 2-1 we can see that fanout skew is a lot larger than that for intersection, But

in either fanout or intersection, the skew is large. While most vertices are involved in

relatively few queries of either type, the most queried vertices are involved in up to

26

Rank plot for number of intersection

101 102
Rank

(a) Intersections look linear

Rank plot for number of fanout queries

101 102
Rank

(b) Fanouts show different behavior at two ranges

Figure 2-1: Frequency of different queries vs rank

27

102

C-
C
0

I-

0

E

101

100 1 0
100 103

0*

C
4-
4-
0

E

103

102

101

100 L_
100 103

slightly less than 10k fanout queries or up to about 100 intersections (recall this is a

small sample of about 1000 vertices that appear in the query logs). Intersection for

some reason shows a very straight line, typical of power law distributions, while the

fanout frequency somehow is made up of two different straight line segments. These

plots show skew results consistent with measurements seen in other workloads, such as

Wikipedia [30]. The results for skew on both queries show that there are opportunities

in caching, as well as in pursuing which users are the most actively queried and maybe

treat them differently. Later in this chapter we check for whether these users also

have large degrees, and find a weak but nevertheless positive correlation between

these variables.

2.2.3 Query correlations

We saw that some users are queried much more than others. The third question is

whether the same users that are popular for intersections are also popular for fanouts.

In this section we see there is a weak but unambiguous correlation. The results of

these measurements are shown in Figure 2-2.

Interestingly, fanout queries and intersection queries are observably correlated.

This suggests that it is meaningful to think of a vertex as being 'popular' for queries

as a whole, because being popular for some types of queries implies it is likely also

popular for other kinds. Correlation of skews also implies the overall workload skew

is more pronounced than if there was no correlation.

2.2.4 Graph data profile

The fourth question was not about the queries to the data store but about the data

in it. As of March 2012, Twitter has an active user population of beyond 140 Million

[15], and the overall number of vertices is some multiple of that (though most of the

load in the system probably comes from those active 140 million users).

28

log-log scatter

10 4

. 10 3

E

02

0

. 101

plot of fanout involvement vs. intersection
(corr: 0.532, log-corr: 0.491)

100
100 102101

fanout involvement

Figure 2-2: log-log scatter plot showing the relation between fanout popularity and
intersection popularity

For the experiments I performed, described more extensively in chapter 4 I worked

with an older sample of the graph with 130 million vertices and an average follower

count of 40, for a total of about 5 billion directed edges. The maximum degree vertex

in this sample had about 1 million followers.

The basic Twitter data information is summarized in Table 2.2, side by side with

the dataset I used for some of the benchmarks.

quantity

number of vertices
average followers (in-degree)
max number of followers
number of edges (using average)

2012 estimates
> 140 million

< 100
24 million

> 10 billion

workload data
130 million

40
1 million
5 billion

Table 2.2: Basic Twitter data

In the snapshot, the gap between the average in-degree of 40 and the maximum

in-degree of 1M is typical of of heavy tailed distributions. In Figure 2-3 A rank plot

shows the in-degree as a function of rank. Like with many other naturally occurring

29

involvement

* e.g ft.
I I
II .26
U U
I I..
*
~ I S **

I, .

3 33,
1 9,
0 S
0

'I

graphs, the degree distribution tail is similar to a power law: most of the users have

relatively small degree but with a still substantial tail of users having larger degrees.

Like with the plots for query skew shown Figure 2-1, the plot looks as a straight

line in part of the range, and shows variation along orders of magnitude. From the

smoothness of the line We can see how there is a natural progression in degree, which

means heavy vertices cannot really be considered outliers because there is a clear

progression from the bulk of the data to the extreme values. This suggests that

any system needs to know how to deal with both very large and very small degree

vertices, and it may need to do so differently. This is one of the motivations behind

one optimization approach described in chapter 3.

Figure 2-3 again shows the wide range of both the out-degree and in-degree dis-

tributions, but additionally also shows how they are very strongly correlated. This

correlation holds even the in-degree is decided independently by other users whereas

an individual user is in full control of his out-degree. Also note, the out-degree and

in-degree are very correlated but an the out-degree is one order of magnitude smaller

in range than the in-degree.

The differences between out degree and in degree have suggests interesting opti-

mizations. For example, may be better off storing edge (a, b) as associated with a

rather than with b, because this method reduces the incidence of extreme degree cases.

Similarly, we could decide users pull Tweets rather than push them. Because pulling

is an operation with load proportional to the out degree, whereas pushing is propor-

tional to the in-degree, load may be more balanced this way. I do not pursue these

ideas further, but they exemplify the kind of optimizations enabled by knowledge of

the specific workload 1.

'On the other hand, this pull based approach could increase latency in presenting timelines.

30

Rank plot for Number of Followers

101 102
Rank

(a) The number of followers (in-degree) of a vertex

log-log scatter plot of number of follows vs. number of followers
(corr: 0.357, log-corr: 0.757)

0

I a

e

0

0
0

10 1

e a

102 10 4

number of follows

(b) Strong correlation between in-degree and out-degree

Figure 2-3: rank plot of in-degrees over vertices in sample and correlation without-
degree

31

106

10 5

10 4

0 10U)

4--

10

E
z 101

100 1
100 103

106

10 5

14L 104

0

00 10~

101

10 0
10 10 5

I

10 3

2.2.5 Query-graph correlations

The last question is about correlations between query skew and degree skew. There

are arguments why this correlation is plausible: perhaps heavy users are much more

active by visiting the site or tweeting more often. Also, a vertex with very large

degrees implies a larger historic amount of writes, and would seem more likely to be

followed in the future. By joining the log records from section 2.2.1 with the graph

snapshot, we checked for any significant patterns. The results are shown in Figure 2-4.

The correlations are positive but fairly weak.

In this chapter I introduced the Twitter graph store and its API, including and the

two main operations my thesis aims to improve; fanout and intersection queries. I also

explained the relevance of these operations from the application's perspective. Most

importantly, I presented statistics on actual usage, these included both information

about which queries are more common, which turn out to be fanout queries of small

page size followed by fanout queries of larger page size, and then by intersection.

Also, I exhibited the heavy query and and degree skews in the query patterns and

graph respectively, these observations form the basis of the optimization proposals

presented in the next chapter.

32

log-log scatter plot of intersection involvement vs.
(corr: 0.117, log-corr: 0.011)

number of followers

106

105

1 0 4

10

02

4- 0

.0

E 2
CM 102

101

100

(a) Intersections seem to be independent from degree

log-log scatter plot of fanout involvement vs. number of followers
(corr: 0.571, log-corr: 0.197)

101
fanout involvement

(b) Fanouts are slightly related to degree

102

Figure 2-4: relation between query popularity and number of followers

33

0 't 0

0 0 00 GOW

*00

10 101 102 103
intersection involvement

106

10 5

10 4

L1030

4- 3

E
e 102

101

10

0 *

0 0 *

* 0 0 *

gO . 60

Sg 0.e

100

10 4

0 L

Chapter 3

Optimizations

The contributions of this thesis are two different partitioning methods that improve

fanout and intersection query performance. Performance refers to many desirable

but different properties of a system. As discussed in the introduction, throughput is

one such desirable property and it has a direct effect on the costs of growing system.

The optimizations aim to improve latency for individual requests. Specifically, the

objective of these techniques is to improve service latency, without sacrificing anything

at all levels of the distribution, in other words, improving the worst cases without

worsening the common case.

There are two good reasons for reasoning about latency in terms of distributions

rather than as a single number. The first reason is that if a distribution has a

very large spread the mean value is less meaningful. So for instance in the case

of Twitter the degree of all users in itself shows high variance, as does the rate at

which some users are queried. In situations such as these, average case analysis fails

to account for the significant mass concentrated at the extreme cases. A second

reason for targeting the full latency distribution rather than only median or average

cases is that large latency variability for a service (even with good expected case)

creates latency problems when integrating that system into larger ones. The intuitive

argument is that when call latency is variable, parallel call latency worsens as we add

34

more calls. In this thesis this same phenomenon affects the design of a partitioning

strategy internally later on in this Chapter, in subsection 3.1.2. Perhaps as a result

of these reasons it is common practice in service oriented architectures to include

latency targets such as bounds on latency at the 99.9 percentile [9].

Another important decision in searching for better partitioning strategies was

to exclude adding replication. A few optimization proposals in the literature often

involve exploiting not only partitioning but also replication [30]. While those opti-

mizations will likely improve read performance, they involve trading reads off against

writes. Writes are one of the core differentiators of the graph store, so there was a

conscious effort to focus on improving the reading queries without modifying write

costs.

From the information in the previous chapter we know that there are significant

degree and query skews. Degree skew causes longer latencies in fanout queries because

some vertices simply have very large degrees. The first optimization approach in this

chapter reduces the effect of degree skew by making fine grained partitioning decisions

for the tail of the degree distribution. The result is a corresponding improvement in

the latency distribution. Query skews mean that some queries are more popular

than others, this applies also to pairs of vertices involved intersection queries. The

second proposed optimization partitions vertices according to how often they are

intersected so that they are placed in the same locations, yet, still are spread out

so that no only one machine is overloaded. Both of these optimizations are made

possible partially because we can make these more fine grained partitioning decisions

only of the more significant or active parts of the graph. I expand on the techniques

and their motivation in the next sections.

35

3.1 Optimizing fanout queries

Under the current hash by vertex approach employed in the Twitter graph store, some

fanout queries take much longer than others because some vertices have many more

edges than others. Because we partition by vertex, then all edges adjacent to the

same vertex will always be on the same machines. As new vertices are added to the

graph and new edges connect old or new vertices, the differences in vertex degree will

become more pronounced. For these two reaons, fanout query latency may become a

problem.

Consider that the largest Twitter users have around 25 million followers at the

moment of writing. Using conventional hardware parameters, we can estimate the

minimum amount of time that different basic tasks take to execute on a vertex of

degree 25M. Consider the time it takes to scan sequentially and in memory all of the

fanout a heavy user of that degree:

8B 250musec lmsec
25M id x- id MB ~50msec

id MB 1000musec

So, assuming it takes 250 micro seconds to read 1MB sequentially from memory, it

would take 50 milliseconds to complete the task. This number is large enough to fall

within the grasp of human perception. As a second example, consider the same task

of reading 25M user ids but this time when done over the network or from disk. In

that case the calculation changes slightly, and we get

8B 10msec 1sec
25M id x - x x ~ 2sec

id MB 1000 msec

So, to read list of followers sequentially from Disk or to send them sequentially to

one node over Gigabit ethernet it takes about 2 seconds. This number is also over

optimistic, it assumes we can make use of the full bandwidth, which is not the case

if there are any seeks in disk for example.

Admittedly, these two calculations are estimates for the largest of users, but in

36

reality other factors make these calculations fall far below what they actually are.

For example, any extra information besides the user ids sent over the wire, or less

locality in reads from memory, or paging through the result, would increase the time

substantially. From a user standpoint, a difference of less than 5 seconds probably

does not detract from the real-time feel of the experience but longer differences could.

The graph store is only one of the many components that contribute to the latency

between a tweet being posted by a user and the tweet being delivered to the last

recipient, but its latency contribution grows with the number of edges in the graph,

whereas some other contributors are independent of this latency.

Besides the previous latency argument, there are other reasons to improve fanout

performance. There exist several side effects to having some users get Tweets delivered

much later than others. One effect is that it causes chains of dependent tweets to

stall. Many Tweets are responses or retweets of other tweets. Because delivering out

of order conversations would be detrimental to user experience, Twitter implements

mechanisms to enforce ordering constraints. One such mechanism is to withhold

tweets from delivery until all of their dependencies have been satisfied, or to pull the

dependencies upon discovering they are not satisfied. Any unsuccessful attempts to

deliver a tweet or repeated calls to pull are a waste of bandwidth. The chances of

long chains of stalled tweets increase as latency for large fanouts increases.

Having established the need for methods to improve fanout query latency, we turn

to considering methods for improving it. Using parallelism to reduce latency as vertex

degrees increase is a natural solution, but the more naive parallelization approaches

do not work well. For example, one possible solution is to partition the edges for

every vertex into 2 shards. This technique effectively slows the degree growth rate

of the graph. Another possible approach is to instead of hashing by vertex, we hash

by edge. This way, all large degree vertices are distributed evenly across all cluster

nodes. The problem with this approach is that every query will require communication

with all nodes, even queries for small degree vertices that only have a few followers

will need to communicate with many nodes. The problem with both the hash by

37

edge technique and hash into two parts technique is that for a great fraction of the

vertices, splitting their edges into two separate locations does not improve latency

and moreover, needing to query all or many shards is a waste in bandwidth. Many

vertices in the graph are actually of small degree, so it is quite likely that the overall

system will be slower and have lower capacity than one partitioned using vertex hash.

In order to evaluate what the optimal policy for partitioning edges is in view of

the factors of parallelism and communication, I present a simple performance model

for fanout queries in the following subsections, and I use it derive the 'Two-Tier'

hash partitioning technique, the first of the two partitioning methods proposed in

this thesis.

3.1.1 Modelling fanout performance

Intuitively, the main determining factor for fanout query latencies is the number of

vertices needing to be read from disk or memory and then sent over the network, this

cost is proportional the degree of the queried vertex, which we denote d. If we decide

to parallelize, then the amount of work to do per node decreases, but the effects

of variability network communication times start becoming comes in as a second

determining factor. The more parallel requests there are, the more latency there is

in waiting for the last request to finish. Equation 3.1 expresses the tradeoff between

parallelism and parallel request latency more formally:

L(d, n) = an + max'(Li + qd/n) (3.1)

In Equation 3.1 a and q are system dependent constants, d stands the vertex degree

and n for the number of nodes involved in the query. When the n parallel requests get

sent to the n nodes, each of those n nodes performs an amount of work proportional

to the amount of data it stores, d/n. The initial term an corresponds to a client

38

side overhead in initiating the n requests1 . Additionally, a random delay Li is added

independently to each request, representing latency variability. The total latency

L(d, n) is a random variable, because the Li are assumed to be random as well.

Since we are interested in optimizing latency for an arbitrary percentile level p, let

percentile(p, X) stand for the pth percentile of a random variable X. For instance,

percentile(O.5, X) is the median of a distribution.

3.1.2 The cost of parallel requests

The formula in Equation 3.1 also captures, indirectly, what happens as we increase

the n. Whenever we parallelize an execution we potentially reduce the work term d/n

done at each node, but add the overhead of making more calls. This overhead has

several sources: making each call involves some work, so as we increase the number of

calls this work overhead increases linearly with it. Depending on the amount of work

we are parallelizing in the first place, this call overhead may become important for

large enough n. This overhead is also described elsewhere [12]. A second factor is in

the variability of the time it takes to make these function calls. Each call made over

a network has a natural variability in latency. Since ultimately we need to wait for

the last of the parallel calls to finish, we need to wait for the worst case of n requests.

As n increases, the chance of delay also increases.

In this section I explore the sorts of overheads that can occur via simulation. It is

reasonable to assume that the effect of making a parallel call to an extra machine will

slow the system down a bit, but the exact functional form depends on the variability

distribution in the first place. A few simulations show what the effect on latency is

like for three different popular distributions: exponential, Pareto (also called a power

law) and uniform. As we increase the number of nodes we get the trends in Figure 3-1.

Note that the effects can go from seemingly linear, like in the case of the Pareto

distribution, to very sublinear like the case of the exponential. In empirical tests

'Though technically, this cost itself may be lowered to ig n if the initialization of requests is itself
done in parallel

39

Parallel (exponential distributed) requests and latency

>1

5 10 15
Number of nodes working in parallel

Parallel (pareto distributed) requests and latency

5 10 15
Number of nodes working In parallel

Parallel (uniform distributed) requests and latency

C

5 10 15
Number of nodes working in parallel

Figure 3-1: Simulated effects of increasing the number of parallel requests on latency
for different types of delay distributions (at 50th, 90th, 99th and 99.9th percentiles)

40

carried out on a real cluster, the linear shape seems to be the more accurate one.

Also note that depending on the exact distribution, the different quantiles may diverge

completely like in the case of the power law, or may draw closer like in the uniform

distribution case.

3.1.3 Optimizing fanout performance

From subsection 3.1.2 we know percentile(p, max' 1(Li)) for any fixed p is an increas-

ing function of n. We showed that this function may or may not be linear, and the

shape depends on the sort of probability distribution. Nevertheless this linearity as-

sumption, also made in [12], helps simplify the calculation about optimal partitioning

as follows. We can rewrite the sum an + percentile(p, maxz 1 (Li)) as kn for some

new parameter k. We then get to Equation 3.2, a simpler model of latency. Also,

because the percentile operation does not change the calculation, from now on we

avoid writing it explicitly.

L(d, n) = kn + qd/n (3.2)

Optimizing n to minimize latency from Equation 3.2 is straightforward.

dL/dn = k - qd/n 2 (3.3)

>nopt(d) = Vlqd/k (3.4)

The equation shows that the larger q is, that is, the more expensive it is to read

objects from memory for instance, the more we will want to parallelize, while also

showing that the more expensive it is to make another parallel call, parameter k, the

less we want to partition, both statements agree with intuition. From Equation 3.4,

the corresponding minimum latency is Equation 3.5. So the optimal latency actually

still depends on the vertex degree itself as well as the other system parameters. The

equation confirms that the larger either of the cost parameters k or q is, the worse

41

for our system's performance.' Also, In a system where there is no cost associated

with increased parallelism the 'minimum' latency would be zero, as we could sim-

ply increase n linearly with d. This is also reflected in Equation 3.5, which shows

Lmin(d) - 0 as q -+ 0.

Lmin(d) =2 qkd (3.5)

Also, somewhat surprisingly, the optimal number of nodes into which to divide a

vertex grows not linearly with the degree, but as a (vd), as shown in Equation 3.6.

d/nopt(d) = dl|'qdlk (3.6)

= dk/q (3.7)

One interesting consequence of this calculation is that when we partition every

vertex optimally as a function of its degree, the corresponding latency grows as 8(vfd),

whereas with a naive hash by vertex approach, latency grows as E(d). This is an

asymptotic improvement. Finally, for a single vertex the optimal number of fanout

elements stored per node as a function of a degree is d/nopt(d) = kd/q. Somewhat

counter-intuitively, this number is a function of the degree rather than a constant.

Note, this series of results does depend on the functional form we give to cost of

increased parallelism. If for example we had modeled it as k lg n instead of kn, then

this results change to the ones in 3.8.

L(d, n) = k lg n + qd/n (3.8)

rt dL/dn = k/n - qd/n 2 (3.9)

* nopt(d) = qd/k (3.10)

=Lpt(d) k(lg (qd/k) + 1) (3.11)

= d/nopt(d) = k/q (3.12)

42

The results from Equation 3.8 are also intriguing, since they seem to challenge

intuition a bit less than the ones before, but experiments done in this thesis do show

linear cost is not an unreasonable assumption, and also, assuming a linear cost did

show improved performance ultimately.

The above analysis were done for an arbitrary but fixed d variable, so the result

in Equation 3.4 is valid when we partition a set of vertices of arbitrary but uniform

degree. In reality, there are vertices with many different degrees. To optimize for a

database with variation of degrees, as happens in reality, one intuitively good but, in

our case, suboptimal approach is to redo the analysis above to optimize the average

latency, and partition based on it [12]. The solution in that case is Equation 3.15,

which follows from Equation 3.13.

The calculation in Equation 3.13 shows this may not be optimal for this workload.

Ed[L(d, n)] = Ed[kn + qd/n] (3.13)

= kn+qE[d]/n (3.14)

-navg opt = [qdavg/k (3.15)

This result in Equation 3.15 means that for any workload, including Twitter's,

the average latency is maximized by optimizing for the average degree. Since the

average degree of the Twitter dataset is fairly small at less than 100 followers (see

Table 2.2), the result in Equation 3.15 implies ntwitter opt < Vl00q/k. In chapter 4

the values of q and k in my particular test system are empirically found to be 0.01

musec/vertex and 30 musec/node respectively. Incorporating those estimates into

the formulae together with the average degree, the optimal amount of partitioning

is to put everything in a single node which is equivalent hashing by vertex. And

indeed we do find vertex hashing does perform well at the mean. On the other hand,

if we wish to improve performance at every level of the distribution (median, 90th

percentile, 99th percentile, max), then this averaging technique will not help, which

is why it is suboptimal.

43

A second approach is to split vertices into two classes, 'light' and 'heavy', and

optimize them independently. We can use the result in Equation 3.15 on each of

these groups separately. For example, we can divide vertices into those with degree

d < 100k and the rest. Because the average degree for the first group can only be

smaller than the average for the full graph, the group of 'light' vertices will still be

partitioned into one single vertex. The heavier group, will be presumably partitioned

by at least 100k * 0.01/30 ~'- 5, because the average degree by construction is greater

than 100k. This is an improvement, but by the nature of the degree distribution it

is likely this group will has an average degree fairly close to the minimum of 100k

edges. Hence, the weakness of this this approach is that still fails to deal carefully

special care of the largest users. In view of those limitations, we opt to optimize for

independently for each vertex. This third approach guarantees an improvement at

every tier of the latency distribution. At the same time, this fine-grained approach to

partitioning each vertex introduces complications in the system which did not exist

for vertex hashing, which we discuss next.

3.1.4 Implementation considerations

By partitioning on a vertex by vertex basis we make optimal global decision, but now

we need to store enough information for the the system to be able to split each vertex

properly and then route queries to the right storage nodes. For an idea of what the

system looks like, refer to Figure 4-1. The hash function approach has the advantage

of being stateless, but to support arbitrary partitioning by user id we need to store

some lookup table (user ids are arbitrary numbers, with no correlation to any attribute

such as location). Fine grained partitioning comes at the cost of complexity in the

sharding mechanism. This new state must be stored at every router and updated as

the system changes and this state is now also vulnerable to failures, and needs to be

recoverable in some way.

One implementation option is to, for each user, keep track of how many parts it is

44

divided into, and then use hashing to figure what the actual locations are. So we only

need to keep track of a user id - number of parts mapping, rather than the explicit

name of the nodes a user is in. The back of the envelope calculation in Equation 3.16

shows that for a projected graph size of 1 Billion vertices an explicit lookup table

of this kind of pair would need a minimum of 10 GB to store. A table this size is

small in comparison to other databases, but it may still be too large for coordination

and configuration services such as Zookeeper, which in particular expects individual

pieces state to be in the range of 1MB [11].

On the other hand, the same calculation shows limiting the lookup table to the

100 thousand largest users would still be possible. So an example of a potential

implementation compromise is to only use the optimal strategy on each of the top

100k-Im users. Moreover, because the degree distribution is significantly skewed then

techniques like this probably still account for a good fraction of the vertices that most

need to be partitioned. This is a case where the skew works in our favor.

1 B (id,num) pair x 10 B/(id,num) pair 10 GB (3.16)

4 1 M (id,num) pair - 10 MB (3.17)

4 100 K (id,num) pair 1 MB (3.18)

Adding or removing edges now has an extra effect, as a vertex gains or loses in

degree we may need to change the way we partition it. Some celebrity users make

great gains in followers within a few days. For the recovery process, ultimately the

routing tables are soft state that can be computed from the data nodes themselves,

or we can use a fault tolerant system such as Zookeeper to store the lookup table if

it can be made small enough.

Other techniques for how to handle lookup tables are described in [29].

45

3.2 Optimizing intersection queries

Unlike fanout queries, where the total work done is the same size as the result set,

intersection queries often need to do a lot more work than the result set they return:

for example, even in the best cases they may need to do linear work only to realize that

the intersection is empty. In the worst cases, they may require quadratic work. Also

unlike fanout queries, intersection queries may require extra communication steps

within the graph store in order to complete.

Intersection queries and their uses were described in chapter 2, and as mentioned

in that chapter, one strong motivation for implementing intersections and difference

operations within the graph store service itself is to push the filtering as close to the

data as possible. Filtering early not only reduces latency but also reduces bandwidth

waste, thereby increasing overall system capacity. The optimization I propose takes

this reasoning one step further: we prefer the filtering to happen at a single graph

store node rather than to have it involve an extra round of communication among

internal graph store nodes.

Set intersections are a particular kind of equijoin operation, so many of the same

algorithms used for joins are effective to make intersections more efficient. For exam-

ple, techniques such as hash join, sort-merge join improve intersection from any naive

two loop solution, and these kinds of optimizations have already been made within

the graph-store. The focus of my proposal here is again in partitioning, to locate

vertices across machines in a way that minimizes the number of intersections across

nodes. It is hard to know based on the vertices themselves which are likely to be

intersected, but this can be predicted by using query logs. In the workload chapter

it became clear that a relatively small fraction of users account for many other in-

tersections, so by finding out which users are intersected often, we can likely predict

correctly which will continue being intersected. The main ideas for this strategy and

the implementation were taken from a similar system that attempts to minimize the

amount of distributed transactions in a system [7], in our case, there are no proper

46

transactions but there are distributed queries, which are still relatively expensive. I

call this approach workload driven partitioning, and describe it in detail below.

3.2.1 Workload driven partitioning

The goal of this technique is to partition the graph so that often intersected pairs

get placed together. To do that, we explicitly partition the graph trying to minimize

edge crossings. The important point here is which graph we partition. Many graph

partitioner based strategies aim to split the follows graph so as to place adjacent

vertices together. This kind of partitioning seems a natural way of handling database

partitioning since the graph probably contains clusters defined by external social

structure. This social graph driven approach has two drawbacks in the case of Twitter

infrastructure. The first is the challenge of partitioning the full graph. Even in the

offline case, the graph snapshot was heavy enough that we were not able to get a

good result after running METIS for several hours. The second drawback is that the

benefits from partitioning the graph explicitly based on communities are not clear

either.

This is especially true in the case of Twitter's data services architecture, described

in chapter 2, because the user tweet tables and the user timelines are already stored

separately, so the only operation happening in the graph store involving multiple

vertices are intersections, not tweet deliveries (which would indeed be speeded up

if they had to only travel within one machine). Therefore, placing a vertex in the

same machine as its followers does not imply more locality in intersection queries

unless there is a strong correlation between being followers and intersections. In that

case, we might as well explicitly use the workload logs themselves to compute which

intersections actually happen often. This is what distinguishes the workload approach

from the social graph driven one. The workload driven approach eventually does split

the social graph itself and also uses a partitioning heuristic often used to explicitly

partition large graphs, but the partitioner itself is based on a different graph, which

47

we call the workload graph. The differences between workload and the follows (social)

graph are more clearly explained below.

Definition 3. Follows graph.

Directed graph G = (V, E) where the V are users and an edge (v, w) is in E if

and only if v follows w.

Definition 4. Workload graph (for a time interval)

Symmetric weighted graph WG = (V', E') with V' a subset of V, with vertex weight

for v proportional number of queries involving v in the given interval, and with edges

{v, w} in E' with weight w, proportional to the number of intersections involving v

and w in the same time interval.

Both the follows graph G and the corresponding workload graph WG change over

time as edges and vertices are added, but WG changes even if G remains the same,

depending on the queries received in that time interval. Also note that while V'

is a subset of V, E' may not be related at all to E. There are other important

differences between these graphs. Partitioning G evenly implies that the amount of

data stored per node is balanced. Partitioning G minimizing edges means a node is

likely to be close to its followers. On the other hand, partitioning WG evenly implies

that actual work done across the partitions is even, and that nodes that are often

intersected are close together. Other important differences are that WG can be small

if the time interval is small enough, which provides us a natural way of sampling it by

simply sampling the logs. The workload driven approach first computes an explicit

partitioning on the workload graph, and then extends it to the rest of the graph via

heuristics. The most active part of the graph will be represented in the workload

graph, so how optimally partitions the rest of the follows graph is not crucial to

performance.

48

Chapter 4

Experiments and results

4.1 Experimental setup

I implemented a small system to test the different partitioning strategies. The system

also allowed to do a other experiments that validated a few of the assumptions upon

which the strategies are made, such as the cost of fanouts and work. I describe the

system as well as the different experiments done. Experiments include running the

query logs on a real graph snapshot, as well as testing them on my own synthetic

benchmarks.

The setup, implemented in Java, consists of a DataNode class that stores the

actual graph information, and is run on several separate independent server ma-

chines, and an APIServer class that translates the graph store API calls getFanout (),

getIntersection() and getEdge (), as described in Section 2.1 into several internal

remote procedure calls (RPCs) to the separate nodes. The system allows potentially

many separate APIServer instances to access all the back-end Data nodes. A diagram

for the basic architecture is shown in 4-1.

The APIServer acts as a query router, so in the case of the fine grained strategies

it also needs to store lookup tables necessary for routing. The APIServers and the

49

Figure 4-1: Experimental setup, only one APIServer was needed but adding more is
possible

DataNodes communicate via Java RMI. Each of the nodes were run on identical

hardware and held edge information in memory. For the purposes of this experiment

I did not need to support persistence, or concurrent updates since I was measuring

read latencies and the effects I was most interested in measuring were the ones due to

the amount of data being read. Normally the effects of buffer pools and seeks in disk

are much more important, but as more and more services are move to be in-memory,

these effects will be less important. Another important effect is the transmission of

information across the network, which we address later.

For an in memory databases it isn't as necessary to support concurrent writes

because there is no disk IO bottleneck [14]. Finally, in a real system the data can

be stored compactly by using custom data structures that take much less space, and

using systems implement in languages less memory hungry than Java. But for these

experiments, since the data set was static, I used sorted Java arrays to implement a

more memory efficient map. This would not be appropriate if there were writes to

the database. Using sorted (static) arrays rather than binary search trees keeps the

50

search time for an edge or offset to O(lg n) but minimizes space devoted to pointers.

Ordered reads from an array may perform better than range scans in a more dynamic

data structure, since they have a lot more locality, so it could be the effects of our

optimizations may be more stronger in a dynamic setting.

Besides the APIServer and DataNode, a Benchmark class and associated scripts

were in charge of running the benchmarking workflow: deploying new versions, start-

ing all remote DataNodes, generating and loading data, with parameters specified

in a configuration files and gathering statistics. This allowed me to easily evaluate

different combinations of parameters such as number of DataNodes, size of the data

set, average degree of a vertex, etc. On this setup, I ran the experiments described

as follows.

4.2 Fanout performance

The first series of experiments aimed to to determine whether the model of 3.1.1

captured the main factors contributing to latency in a parallelized fanout query. To

test this assumption, I carried out a series of experiments varying the degrees of

vertices from 100 to 10 million edges, as well as the number of data nodes processing

the query. The results are shown in Figure 4-2. In these experiments all vertices in

the database had identically large fanouts, and the latency percentiles are computed

from a sample of 100 thousand fanout queries.

The plots show how increased parallelism can speed up queries for large degree

fanouts, or slow them down for small ones. Additionally, latency was measured at

different percentiles of interest. Higher percentiles show more variability, and while we

expect even for large fanouts eventually the cost of parallelism will dominate, it seems

this effect is felt earlier at the tail of the latency curves. The plots support the model,

for fanouts of 100 nodes the effect is a somewhat linear increase in latency,consistent

with the kn factor, while for large degree d and low enough n the term qd/n dominates.

51

Effect of parallel requests on latency (degree 100)
3500

2 3 4 5 6 7 8 9
Number of nodes working in parallel

(a) for vertices of degree 100

Effect of parallel requests on latency (degree 1M)

S 50.0 percentile

90.0 percentile

- 99.0 percentile
- 99.9 percentile

Li

C

2 3 4 5 6 7 8 9
Number of nodes working in parallel

(b) for vertices of degree 1m

Figure 4-2: Effects of increased parallelization on a small degree vertex vs a large
degree vertex for a synthetic workload

52

U

C

To achieve these results, I had to remove a network bottleneck and also the bot-

tleneck from putting all the results together at the APIServer. In other words, we

cannot reduce overall fanout latency if fanout query goes from being server bound

to being either network or client bound. So, obtaining improved performance at the

level of the full set of Twitter infrastructure may also require parallelizing the client

side.

4.3 Two Tier hashing on synthetic data

4.3.1 For highly skewed synthetic degree graphs

Besides validating the main premise of the Two Tier hash technique, I also used the

experiments of Section 4.2 to infer the system parameters k and q from the model

using least squares regression. The parallel request cost parameter, k was about 30

musec/nodewhile the work cost q was 0.01 musec/vertex. Using the tuned parameters

I was able to choose the optimal amount of partitioning for every vertex in the bench-

mark graph, each degree d. For this section, the benchmark generates a graph with

a degree skew of 1.0 and runs 100k fanout queries from nodes chosen uniformly at

random. From the measurements in 2.2.2, we know there is little correlation between

a vertex having a large fanout and being queried for more often.

For the first round of experiments I generated a synthetic graph with 1000 vertices

and power law (exponent a = 1.0) distributed degrees ranging from 1 edge to 10

million, and a skew parameter of 1. The real Twitter graph has a much higher number

of vertices, but the actual amount of data should not affect the measurements (on

the other hand, repeatedly querying the same single vertex could produce misleading

results due to caching effects). Also, the real Twitter graph has a larger a, which

should decrease the effectiveness of the Two Tier strategy, so I also experimented with

larger a later in the next subsection. On this synthetic dataset, I ran a benchmark of

pure fanout requests for vertices chosen uniformly at random, under three different

53

strategies: a simple hash by vertex as control, a two-tier hash, and an all shards also

as control, on a cluster of 13 data nodes. Most of the cluster (9 out of 13) nodes

were 4 core Intel(R) Xeon(TM) CPU 3.20GHz machines, with cache size 2MB and

total RAM 2 GB. The other 4 machines were dual core Intel(R) Pentium(R) 4 CPU

3.06GHz machines, cache size 512 KB and also 2 GB RAM. The differences did not

seem to cause significant discrepancies in the metrics.

Our expectation is that for small degree vertices the two tier hash technique should

perform better than querying all shards, and about as well as vertex hash. For large

degree vertices it should behave more like an all shards partitioning and should be

as good as all shards queries, and much better than the vertex hash. In the latency

histogram, these observation should translate to the two-tier latency histogram having

a shorter tail than vertex hash histogram, and about the same shape as all shards. It

should also imply that the lower percentiles (20th percentile for example) are better

for vertex hash as well as two-tier than for all shards. The full histograms are plotted

in Figure 4-4 and the main results summarized in Table 4.1.

As we expected, at higher percentiles (90th, 99th and 99.9th) the Two Tier and

All Shards perform comparably, while the vertex hash is substantially slower (by

factors of more than 2). As expected, this improvement of two-tier hashing over

vertex hashing is even higher at the 99th percentile: all-shards and two-tier each take

about 9000 musec, whereas single vertex took 76000musec. The median latencies

(and below) for vertex hashing and two tier are similar, whereas All shards does not

do very well at these ranges. Lower latency percentiles show more strikingly how all

shards queries are expensive for smaller nodes.

strategy 5th 10th 30th 50th 90th 99th 99.9th
vertex hash 546 590 647 748 9938 75884 149500
two tier 299 348 452 549 2605 8938 48156
all shards 824 850 919 998 2663 9175 50628

Table 4.1: Comparison of latencies at different percentiles (in micro seconds)

Note, the relative improvement from using the two tier strategy depended both

54

0.005 Latency of fanout queries (Vertex partitioning vs. All-Shards partitioning)

Vertex (83.3% within window)

All Shards (92.4% within window)
0.004-

c 0.003-

- 0.002-0

0.001-

0.000
0 500 1000 1500 2000 2500 3000 3500

Latency (p sec.)

Figure 4-3: The two control strategies: vertex sharding and all-shards partitioning.
Note the substantial fractions of data lying beyond the window range. See also
Figure 4-4

on tuning it and on the skew of the data. Here the skew parameter was 1. The larger

the chances of extreme cases, the better a two-tier strategy performs relative to either

strategy at all latency percentile ranges.

4.4 Two tier hashing on real data

I also tested the strategy on the graph snapshot, using the fanouts from the query

logs. The dataset used is described in Table 2.2. Figure 4-5 shows the difference

in latency between Vertex hash partitioning and two-tier partitioning for the real

workload. A result summary is shown in Table 4.2. The hardware setup for this

section was different than the one for Subsection 4.3.1, the machines had 80 GB

of RAM, and I only used 5 of them, and the graph has less skew than the one in

that section as well. Also, at that moment I had not yet implemented fine grained

partitioning, but simply chose at threshold from which to partition. The tail of the

55

Latency of fanout queries (Vertex partitioning vs. Two-Tier partitioning)
n n

Vertex (83.3% within window)

Two-Tier (92.5% within window)
0.004 -

0.003-

0.002 -

0.0011-

0 500 1000 1500 2000
Latency (p sec.)

2500 3000

Latency of fanout queries (All Shards vs. Two-Tier partitioning)
I I I I I I

All Shards (92.4% within window)

Two-Tier (92.5% within window)

3500

WuU Iuuu 1500 2000
Latency (p sec.)

Figure 4-4: Comparing the two-tier strategy and the two control strategies on fanout
latencies for synthetic graph and queries on the same synthetic workload as Figure 4-3

56

.00_
CL

0.000

0.005

U,
C
a)

'U
.0
0
a-

0.004-

0.003-

0.002-

0.001 -

0.000 L
0 2500 3000 3500

-

distribution is reduced substantially, and the two-tier sharding histogram shows a

bimodal distribution. One possible explanation for the the bimodal shape is that I

partitioned all nodes after a threshold equally, rather than in the more careful way

explained in the previous section. The benefits are still clear from the table.

strategy 50th 90th 99th 99.9th
vertex hash 468 743 1113 2030
two tier 376 548 947 1756

Table 4.2: Comparison of fanout latencies at different percentiles on real data (musec)

Latency of fanout queries TwoTier vs. Vertex

Vertex Hashing

Two-Tier strategy
0.004--

U, 0.003-

0.002-0

0.001

0.000
0 200 400 600 800 1000 1200 1400 1600

Latency (iy sec.)

Figure 4-5: Comparison of fanout query latencies of Two Tier and Vertex hash par-
titionings using real graph and logs

4.5 Intersection queries on real data

Similarly, I tested the workload driven partitioning strategy on the graph snapshot

described also using the the query logs. For this particular experiment, first it was

necessary to generate the static partitioning, using the log records themselves, the

graph snapshot and the METIS partitioner.

57

0.0014-

0.0012-

0.0010-

CL

.0008-

S0.0006-

0.0004-

0.0002-

Latency of intersection queries Workload driven vs. Vertex

Vertex Hashing ~

Workload driven

0.0000
0 500 1000 1500 2000 2500 3000 3500

Latency (p sec.)

Figure 4-6: Comparison of intersection query latencies of Workload driven and Vertex
hash partitionings using real graph and logs

Since the query graph includes only a about 10% of the total nodes, we partition

the rest of the graph by using a vertex hashing function and similar to described

in Section 3.1. We replayed traffic from the same log on a running system loaded

with the snapshot from the previous section. One possible effect of this is that

performance is better than it would really be on previously unseen data, but the

experiment is still meaningful as an upper bound in performance. Further experiments

are needed in order to evaluate how the strategy performs on workloads less related

to the training data. Resulting histograms for running these intersection queries are

shown in Figure 4-6, and Table 4.3 shows the comparison in latency.

strategy 50th 90th 99th
vertex hash 1608 10562 1038754
workload driven 975 1838 12010

Table 4.3: Comparison of intersection latencies at different percentiles on real data

(musec)

58

Chapter 5

Related work

In this thesis I presented a particular approach to partitioning tailored specifically for

improving fanout and intersection queries in social network type data. Many other

papers have presented proposals for different kinds of partitioning strategies.

Dewitt et al. [12] show a partition technique that optimizes parallelism for the

average query, for a general database. They propose a model very similar to the one

used to evaluate two tier hashing in this thesis, but are thinking of general workloads.

They propose a Hybrid Range partitioning strategy, where they split the keyspace into

ranges and then use hashing above that. They show improvements on both latency

and throughput when compared to either pure hashing or pure range partitioning.

Also in the general database partitioning area, Schism [7] partitions tables explicitly to

minimize the number of distributed transactions. It does this based on past workload

data,and by modelling the problem as a graph partitioning problem. They compute

the partitioning by employing the METIS algorithm.

On a different line of work, there are systems as Feeding Frenzy [26] have also

exploited the differences in workloads across Twitter users, and leverage it to pro-

pose a hybrid push-pull strategy for Tweet delivery. They proposed making a pair

by pair decision on whether to push Tweets at publication time or pull them later.

The technique improves performance because some users publish much more rapidly

59

than others consume. By not pushing Tweets that never get seen by a slow consumer

the system can save bandwidth.Also in the same line of making fine grained parti-

tioning decisions on social network graphs, Graphlab [1] also uses optimizations such

as treating large degree vertices differently than small degree vertices to enable more

parallelism.

A different part of the literature aims to compute graph partitions. The METIS

[25] heuristic has a reputation for producing good partitions and is used prior to

work by parallel processors to partition graph like objects such as image meshes, a

problem of allocation similar to distributing data in a database. METIS has proven

so successful that systems like Schism use it in a similar way to how it was used in

this thesis. On the other hand, METIS suffers from being an offline heuristic, so

there are proposal for feasible online graph partitioning algorithms, such as the one

by Stanton and Kliot [28]. Some other approaches to graph partitioning are explicitly

designed for social networks and attempt to uncover community structure in order to

find natural partitions of graphs. However, these approaches do not aim to produce

necessarily balanced partitions.

Other papers propose systems to explicitly support Twitter like workloads. Pujol,

Erramilli et al [23] propose an online heuristic called SPAR (for social partitioning

and replication) for partitioning a graph such as Twitters that is constantly being

written to. Their goal is for the system to minimize the number of graph edges going

across partitions. This system reacts to each node or edge addition and deletion using

a local, greedy heuristic. Unlike the approach in Schism, SPAR partitions happen

online. Also unlike Schism, SPAR partitions are based on the social graph itself

rather than based on the workload. For operations considered in this thesis such

as intersection queries, it is unclear that there is a correlation between social graph

edges and workload graph edges. Authors of both Pregel and Giraph, two different

graph processing systems, point out that careful data graph based partitioning in

their systems may not work well because in practice inter vertex communication in

the workload is not necessarily related to the edges in the data graph [22] [3].

60

A related issue that arises when creating custom partitions is to be able to store it.

Schism attempts to solve this problem by using decision tress to infer simple predicates

that explain the graph partitioning. Pujol et al, in their test implementation of SPAR,

keep an explicit lookup table and scale it by implementing it as a DHT. Tatarowicz

et al [29] explain different methods to help solve the problem of storing state for fine

grained partitioning strategies. Several techniques that they propose are used in this

thesis, such as keeping track only of a small subset of the vertices and using a hash

partitioner for the rest.

61

Conclusion

I have presented two data partitioning strategies for improving query latency in Twit-

ter's graph data store. The first one, two-tier Hashing, improves fanout query latency

across the whole distribution of latency for fanout queries. The second strategy, work-

load aware partitioning, improves intersections latency.

Two-Tier hashing treats large degree vertices differently from the average degree

vertices. It spreads heavier vertices across more machines than lighter vertices, this

enables more parallelism for large fanout queries, while it also preserves locality for

small fanout queries. The exact number of partitions a used to spread the edges for a

given vertex can be computed using an explicit performance model, and is a function

of vertex degree and two other system dependent parameters. The strategy requires

the partitioning system to be aware of the different vertex degrees and parameters in

order to route queries correctly.

Because keeping explicit information for every vertex of the graph would be pro-

hibitive, the implementation in this thesis divides vertices into two tiers. The par-

titioner only needs to keep track of which vertices are in the top tier, and for each

of those it keeps degree information. For the rest of the vertices it uses a default

hash by vertex partitioner. By keeping detailed degree information for the heaviest

vertices it can optimize for each individually. Moreover, Because most light vertices

should not be partitioned into multiple pieces anyway, the default vertex hashing will

be optimal for them too. For this reason, this two tier approach performs just as well

as the best strategy at different levels of the degree distribution. Experiments using

62

both synthetic and real data workloads provided by Twitter show two-tier hashing is

keeps latency lower than vertex hashing.

Workload aware partitioning attempts to place vertices that are often intersected

together into the same machine. Intersection operations that occur across machines

are much more resource intensive than operations occurring within a single machine,

so by minimizing cross-machine intersections, we improve both intersection latency

and reduce usage of external bandwidth. Workload aware partitioning can find good

partitions because it uses actual query logs and graph partitioning software to calcu-

late which vertices should be located together.

Like with two-tier hashing, workload aware partitioning must keep track of explicit

partitioning decisions for each vertex. Because keeping track of all vertices in a graph

the size of Twitter's would be difficult, this implementation only keeps track of the

more actively accessed vertices, and uses a default hash function on the rest. Because

there is a large skew in the query distribution, keeping track of the most queried

vertices still allows workload aware partitioning to perform substantially better than

vertex hash partitioning.

63

Bibliography

[1] D Bickson. Preview of graphlab v2 new features! Blog
post, December 2011. http://bickson.blogspot. com/2011/12/
preview-for-graphlab-v2-new-features.html.

[2] L Breslau, P Cao, L Fan, G Phillips, and S Shenker. Web caching and zipf-like
distributions: Evidence and implications. In in INFOCOM 99: Proceedings of
the 18th IEEE International Conference on Computer Communications, pages
126-134, 1999.

[3] Avery Ching. Giraph: Large-scale graph processing on hadoop. Talk at Hadoop
Summit, 2011. http://www.youtube. com/watch?v=14nQjAG6fac.

[4] B F Cooper, R Ramakrishnan, U Srivastava, A Silberstein, P Bohannon, H-
A Jacobsen, N Puz, D Weaver, and R Yerneni. Pnuts: Yahoo!s hosted data
serving platform. In In Proceedings of the International Conference on Very
Large Databases (VLDB, 2008.

[5] B F Cooper, A Silberstein, E Tam, R Ramakrishnan, and R Sears. Benchmark-
ing cloud serving systems with ycsb. In In SoCC: A CM Symposium on Cloud
Computing, 2010.

[6] Oracle Corporation. Partitioning with oracle database 11g release 2. White
Paper, September 2009.

[7] C Curino, Y Zhang, E Zones, and S Madden. Schism: a workload-driven ap-
proach to database replication and partitioning. In In Proc. VLDB, 2010.

[8] Jeffrey Dean. Achieving rapid response times in large online services. Talk Slides,
March 2012. http: //research. google. com/people/jeff /latency.html.

[9] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakula-
pati, Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter
Vosshall, and Werner Vogels. Dynamo: amazon's highly available key-value
store. SIGOPS Oper. Syst. Rev., 41(6):205-220, October 2007.

[10] Lauren Dugan. Twitter users send 32,000 tweets-per-minute during champi-
ons league final. mediabistro, May 23 2012. http://www.mediabistro.com/
alltwitter/new-tweets-per-second-recordb22987.

64

[11] Apache Software Foundation. Developer documentation, 2012. http: //
zookeeper. apache. org/doc/current/zookeeperProgr ammers .html.

[12] Shahram Ghandeharizadeh and David J. DeWitt. Hybrid-range partitioning
strategy: A new declustering strategy for multiprocessor database machines. In
Dennis McLeod, Ron Sacks-Davis, and Hans-J6rg Schek, editors, 16th Inter-
national Conference on Very Large Data Bases, August 13-16, 1990, Brisbane,
Queensland, Australia, Proceedings, pages 481-492. Morgan Kaufmann, 1990.

[13] Goetz Graefe. Query evaluation techniques for large databases. ACM Comput.
Surv., 25(2):73-169, June 1993.

[14] Stavros Harizopoulos, Daniel J. Abadi, Samuel Madden, and Michael Stone-
braker. Oltp through the looking glass, and what we found there. In Pro-
ceedings of the 2008 ACM SIGMOD international conference on Management
of data, SIGMOD '08, pages 981-992, New York, NY, USA, 2008. ACM.
http://doi.acm.org/10.1145/1376616.1376713.

[15] Twitter Inc. One hundred million voices. Company blog post, September 2011.
http: //blog. twitter. com/2011/09/one-hundred-million-voices. html.

[16] Twitter Inc. Cassovary big graph processing library. Company
blog post, 03 2012. http://engineering.twitter.com/2012/03/
cassovary-big-graph-processing-library.html.

[17] Twitter Inc. Flockdb. Source code repository, 2012. https: //github. com/
twitter/flockdb.

[18] Twitter Inc. Twitter turns six. Company blog post, March 21 2012. http:
//blog.twitter. com/2012/03/twitter-turns-six.html.

[19] B W Kernighan and S Lin. An efficient heuristic procedure for partitioning
graphs. Bell System Technical Journal, 49(2):291-307, 1970.

[20] D Kossmann. The state of the art in distributed query processing. ACM Com-
puting Surveys, 32(4):422-469, December 2000.

[21] Yucheng Low, Joseph Gonzalez, Aapo Kyrola, Danny Bickson, Carlos Guestrin,
and Joseph M. Hellerstein. Graphlab: A new framework for parallel machine
learning. CoRR, abs/1006.4990, 2010.

[22] Grzegorz Malewicz, Matthew H. Austern, Aart J.C Bik, James C. Dehnert,
Ilan Horn, Naty Leiser, and Grzegorz Czajkowski. Pregel: a system for large-
scale graph processing. In Proceedings of the 2010 international conference on
Management of data, SIGMOD '10, pages 135-146, New York, NY, USA, 2010.
ACM.

[23] J Pujol, V Erramilli, G Siganos, X Yang, N Laoutaris, P Chhabra, and P Ro-
driguez. The little engine(s) that could: Scaling online social networks.

65

[24] Marko A. Rodriguez and Peter Neubauer. The graph traversal pattern. CoRR,
abs/1004.1001, 2010.

[25] Kirk Schloegel, George Karypis, and Vipin Kumar. Parallel static and dynamic
multi-constraint graph partitioning. Concurrency and Computation: Practice
and Experience, 14(3):219-240, 2002.

[26] A Silberstein, J Terrace, B Cooper, and R Ramakrishnan. Feeding frenzy: Se-
lectively materializing users' event feeds.

[27] Steven Skiena. The Algorithm Design Manual (2. ed.). Springer, 2008.

[28] Isabelle Stanton and Gabriel Kliot. Streaming graph partitioning for large dis-
tributed graphs. Technical Report MSR-TR-2011-121, Microsoft Research.

[29] A Tatarowicz, C Curino, E Jones, and S Madden. Lookup tables: Fine-grained
partitioning for distributed databases.

[30] Guido Urdaneta, Guillaume Pierre, and Maarten van Steen. Wikipedia workload
analysis for decentralized hosting. Elsevier Computer Networks, 53(11):1830-
1845, July 2009. http: //www.globule. org/publi/WWADH-comnet2009.html.

[31] W3C. Sparql query language for rdf. W3C Recommendation, January 2008.
http://www.w3.org/TR/rdf-sparql-query/.

66

