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Abstract

Natural languages have various ways of expressing quantification, such as the English words
“some” and “all.” Different such words exist in different languages, and the same word can
communicate quite different quantities depending on the context. This thesis presents a
computational framework for modeling quantificational meanings and their use in commu-
nication. The model can represent meanings that depend on absolute amounts (e.g., two)
as well as relative amounts (e.g., half of the total) and context-dependent amounts. It can
also represent meanings with presuppositions. Communication between a speaker and a
listener is modeled as single exchanges in which both participants have noisy perception of
the actual state of the world, the speaker tries to communicate some quantity to the listener
by using some word chosen to be informative, and the listener tries to infer the quantity
using the word and the assumption that the speaker was being informative. The usage
patterns predicted by the model are qualitatively similar to how the words are actually
used. The model also shows that the sets of words in real languages result in more efficient
communication than randomly selected sets of words with comparable meanings.
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Chapter 1

Introduction

In natural languages, there are words that express different quantities or amounts — for
example, English has words such as “some” and “all”. However, across languages there is
a large amount of variation in which quantificational meanings are encoded as words, and
there are many such meanings for which there are not known to exist words in any languages.
This thesis presents a computational model of quantificational words, on the basis that the
purpose of words is to effectively communicate meaning, given a noisy perception of the
world.

Quantificational words are a useful class of words to study because, unlike others such
as nouns or adjectives, they do not refer to specific objects, actions, or properties in the real
world; they are abstract linguistic constructs. The overall frequency of their use is high and
is in many ways independent of non-linguistic circumstances: unlike a content word such as
“red,” which is likely to be used only in situations where red things are relevant, a quantifier
such as “some” could easily be used in almost any situation. Furthermore, quantificational
words are a “closed class” of words: each language has essentially an unchanging set of

them, which makes them easier to enumerate and compare across languages.

1.1 Quantificational Words

In English, “quantifiers” are often equated with “determiners” (which are, roughly, words
that act as specifiers for nouns), but there is not currently a consensus on what words
actually are “quantifiers.” This project will therefore sidestep the issue of these formal

categorizations and deal with “quantificational words,” which will be defined loosely as



single words used to indicate “how much” or “how many.” This excludes many other
determiners, such as those that specify “which” (for example, “this” or “my”).

Much of the past research on quantification has focused on formally characterizing the
syntactic and semantic details of quantifiers in specific languages (e.g., Barwise & Cooper,
1981; Keenan & Stavi, 1986). Languages vary widely ‘in terms of how they express quan-
tification. In many languages, quantificational words do not occupy the syntactic position
of determiner as they (arguably) do in English. They are sometimes expressed as adverbs
or modifiers (similar to the English “dogs are always animals” as opposed to “all dogs are
aninﬁals”) (Matthewson, 1996; Bach, Jelinek, Kratzer, & Partee, 1995). Other languages
use nouns with meanings like “part” or “small amount” (Everett, 2005). This thesis aims

to account for the meanings of quantificational words, regardless of their grammatical roles.

1.2 Efficient Communication

Recent work has shown that language is in many ways optimized for efficient communication.
Particularly relevant to the domain of quantification are other domains in which a finite
set of words must be allocated to a large continuous space of meanings. Cross-linguistics
studies of words for colors (Regier, Kay, & Khetarpal, 2007) and for spatial relationships
(Khetarpal, Majid, & Regier, 2009) have found that the set of words in any language tends
to maximize informativeness, given people’s perception of similarity within the domain.

Perception of quantities is known to be inexact, and in particular, it follows Weber’s
Law, which states that the smallest perceivable change in a stimulus is proportional to the
size of the stimulus itself (Weber, 1846). When judging exact number, people’s estimates
are centered around the correct number, and the standard deviation of the estimates is
approximately a constant prdportion of that number (Whalen, Gallistel, & Gelman, 1999;
Dehaene, 1999). In other words, the smaller a number is, the more precisely people can
estimate it. Therefore it would be expected that words for smaller quantities should also
be more precise.

Some attempts have been made to map quantificational words directly to numerical
values (e.g., Bass, Cascio, & O’Connor, 1974). Others have tried to characterize words
as distributions over quantities, where each word has a range of amounts it could denote

but some are more likely than others (e.g., Wallsten, Budescu, Rapoport, Zwick, & Forsyth,
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1986). However, this approach can only be taken so far, because some quantificational words
are explicitly context-dependent. For almost any quantity there exists some situation in
which it could be called “many,” but in any particular situation there is a more limited
set of quantities that “many” likely applies to. People’s interpretations of such words rely
heavily on world knowledge and expectations. When judging the proportions referred to by
words like “many” or “few,” people’s estimates vary depending on their prior beliefs, judging
“few” to be a smaller proportion when the proportion expect;ed is smaller (Moxey & Sanford,
1993b) or when the total set is larger (Newstead, Pollard, & Riezebos, 1987). Judgments
can even be influenced by the grouping of visible objects or the similarity of other objects
present (Coventry, Cangelosi, Newstead, Bacon, & Rajapakse, 2005; Coventry, Cangelosi,
Newstead, & Bugmann, 2010).

Furthermore, even with well-defined literal meanings, words can convey additional infor-
mation through pragmatic inference. Unlike in a domain such as color, where the meanings
are fairly absolute, a quantity word can convey more information than its literal meaning
because certain inferences are licensed by the non-linguistic context. For example, in En-
glish the word “some” is often used with the implication “some but not all,” based on the
reasoning that if “all” were true then the speaker would have used that word instead. Such
implicatures can be explained by assuming that speakers choose words informatively, based
on how well the words specify the intended referent (Frank, Goodman, Lai, & Tenenbaum,
2009; Frank & Goodman, 2012). Goodman and Stuhlmiiller (2012) show that listeners’
inferences are sensitive to the speaker’s knowledge state (if the speaker cannot see all of the
objects, the “not all” implicature for “some” is cancelled), and they develop a computational

model that predicts this behavior as rational communication.

In addition to the quantities that they are making statements about, some quantifi-
cational words also have presuppositions. A presupposition is something that is assumed
to be true in order for a statement to be evaluated at all. For example, the word “the”
presupposes that there exists a unique thing for it to refer to, and so a statement such as
“the king of France is bald” is neither true nor false but simply nonsensical, because there
is no king of France. It is usually infelicitous to use a word without a presupposition when
there exists another word with a satisfied presupposition and otherwise the same meaning
(such as using “a” in a situation where “the” could be used). Heim (1991) postulates a

“maximize presupposition” maxim to explain this observation. Presuppositions are gener-
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ally assumed to be common knowledge to all conversational participants, so it would seem
that they provide no information. However, there are certainly some contexts in which a
listener is not aware of (or has forgotten) whether a presupposition is satisfied, but upon
hearing a statement that presupposes it, gains that information (Schlenker, to appear). It
can therefore be more informative to use words with presuppositions than those without

presuppositions.

1.3 Overview

The purpose of this thesis is to produce a computational model that can account for what
sets of quantificational words éxist in natural languages and how they are used. Specifically,
the model accurately predicts what words are likely to be used in what contexts, and it
shows that the sets of words in existing languages are efficient for communication.

This work differs from previous approaches in that it takes into account people’s real-
world perceptual uncertainty, so although it uses strict logical representations (a word either
applies or does not apply in a given situation, there are no distributions contained in
the meaning), the model’s distribution for how likely a word is to be used for particular
quantities in practice can be substantially nonuniform.

Chapter 2 describes a computational model for informative communication of noisily-
perceived quantities. Chapter 3 presents results from the model and compares its behavior
to real-world languages. Chapter 4 summarizes the thesis and discusses possible future

work.
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Chapter 2

Computational Model

The basis of the model is that in the world there are various quantities that need to be
communicated, and there are words with which to communicate them. A speaker is pre-
sented with a situation in which there is some total set of objects, and some subset of the
total set is the reference set, whose magnitude he needs to convey using a word. A listener
perceives the same total set but does not know the reference set, so she needs to use the
speaker’s word to guess the size of the reference set.! Both the speaker and the listener

have imperfect perception of the exact quantities.

2.1 Representation of Meanings

The meaning of a word has two parts, the presupposition and the assertion. The presup-
position constrains the size of the total set, and the assertion constrains the size of the
reference set. Each of these two parts is represented as an interval, with an upper and lower
bound (which can be contained in the interval or not — i.e., it can be open or closed). The
endpoints of an interval are not necessarily numbers, but are one of three types of points:
absolute numbers (such as two), proportions relative to the total amount (such as one-half),
or a special point that refers to some context-dependent “default” proportion of the total
set size. For computational reasons, the upper bound for presuppositions is infinity, and
the upper bound for assertions is 100% of the total set size. All quantities get rounded

to the nearest integer. Table 2.1 shows examples of how the meanings of some English

1For disambiguation purposes, the speaker will be referred to with masculine pronouns and the listener
will be referred to with feminine pronouns.
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quantifiers are represented. This representation certainly ignores some of the subtleties of
natural-language meanings — for example, it cannot represent the difference between “all”
and “every” — but it is sufficient to capture many of the important features (also see Section

4.2.1 for a discussion of how the model can be extended).

. | Presupposition Assertion
Word Bottom Top Bottom Top
the >1 <1 >1 <1
some >0 < o0 > 2 < 100%
many | >0 = <oo | >default % < 100%
all >0 < > 100% < 100%

Table 2.1: The model’s representatiohs of the meanings of some English quantifiers.

2.2 Communication Scenarios

2.2.1 World Setup

For each communication exchange, three bparameters specify the context: the total set size,
the reference set size, and the “default” proportion to be used by meanings that depend on
it in context. In the results reported here, the total set size follows a uniform distribution
from 1 to some specified maximum, and the reference set size follows a uniform distribution
from 0 to the total set size. The default proportion is uniformly distributed from 0 to 1,
but for computational simplicity it is rounded to the nearest 0.05 (and cannot be 0). The
speaker and listener both know the distributions of these parameters.

There are two types of perceptual uncertainty about the exact quantities in a given
situation. First, there is some probability that the total set is not completely visible. If it
is not, the size of the visible portion is distributed uniformly from O to the total set size
(including 0 but not including the total set size), and the size of the visible portion of the
reference set is distributed uniformly from 0 to the actual reference set size (including 0 but
not including the reference set size) with the restriction that the visible reference set size
cannot be larger than the visible total set size. Second, there is uncertainty about the exact
quantity of a set. The quantity a person perceives is sampled from a Gaussian distribution
whose mean is the actual visible quantity and whose standard deviation is some constant
multiple of the mean (the constant is a model parameter, called the coefficient of variation,

that can be specified). Values for the perceived set sizes are sampled separately by the
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speaker and the listener. Each person knows whether he can see the whole set, but he does
not know whether the other person can. The default proportion is known exactly by both
participants.

Table 2.2 defines the variables that will be used for the derivations in the remaining
sections. Figure 2-1 shows a diagram of the directed graphical models (Pearl, 1998); each
variable is a node, and an arrow from a node z to another node y indicates that y’s dis-
tribution is conditionally dependent on z. The variables’ values are actually sampled from
the full distribution, but the speaker and listener each have their own simpler model of the

other’s behavior.

Variable | Definition
r actual reference set size
Tus reference set size visible to speaker
g speaker’s perceived reference set size
Ty listener’s guessed reference set size
t actual total set size
tus total set size visible to speaker
ts speaker’s perceived total set size
toe total set size visible to listener
ty listener’s perceived total set size
Vs whether set is completely visible to speaker
) whether set is completely visible to listener
w word
d default proportion

Table 2.2: Variables used in the model.

2.2.2 Speaker

The speaker has some noisy perception of the total set size and the reference set size, and has
to choose a single word to say to the listener, to maximize the probability that the listener
will correctly guess the actual reference set size (not the speaker’s perceived reference set
size). He considers a communication successful only if he communicates the exact quantity,
so if the actual reference set size is 99, it is just as undesirable for the listener to guess 98
as to guess 2 (this assumption is for computational simplicity and could straightforwardly
be generalized).

To choose a word, the speaker has to consider three things: his own perceptual uncer-

tainty, the listener’s perceptual uncertainty, and the method by which the listener will guess

15



(b) Speaker’s model. (c) Listener’s model.

Figure 2-1: Directed graphical models. Blue-outlined variables are known to the speaker,
and red-outlined variables are known to the listener.

16



a reference set size after hearing a word. To avoid infinite-recursive definitions (in which the
speaker considers that the listener considers that the speaker considers that ...), the speaker
assumes that the listener will guess a reference set size uniformly from all those of which
the word is true in her perception of the world. He also assumes that although the listener
has imperfect perception of the total set size, she will only consider total set sizes consistent
with the presupposition of the word she has heard. However, he does not assume this about
the word’s assertion — for example, he assumes that if the listener only perceives a total
set size of 1 but he says “two,” then she cannot guess correctly, whereas if he says “both,”
she will revise her belief about the total set size and guess 2. This difference in treatment
between the presupposition and assertion is motivated by computational simplicity but also
seems not unreasonable for real communication.

For each word, the speaker computes the probability that the listener (or rather, his
simplified approximation of the listener), after hearing that word, will guess the correct
reference set size. This depends on two factors. The first factor is the reference set size: the
speaker does not know the actual value r, so he must marginalize over all possible values.
The second factor is, for each possible value of the actual reference set size r, the probability
that the listener’s guessed size r; will in fact equal r. Putting these two factors together,

the speaker gets:

P(correct|w, rs, ts, vs,d) = Z P(r|rs, ts,vs)P(re = r|w,r, ts, vs, d). (2.1)
T

The probability of each actual reference set size can be computed using Bayes’ Rule:

P(7'|Ts,t37vs) X P(T‘3|7‘, t37vs)P(r|tsvvs)' (2'2)

Now the speaker must consider his own perceptual uncertainty. If v, is true (the set is
completely visible), then the first term in (2.2), P(rs|r, ts, vs), is Gaussian with a known
coefficient of variation, so it can be computed directly. If v, is false, then the speaker must
marginalize over the possible values of the actual total set size, the visible total set size,

and the visible reference set size:

P(ralr,ts,vs) = DY > Pltlts, v6) P(tuslt, v5) P(rus|r, tus, vs) P(Ts|rus, tus).  (2.3)
t

tus Tus
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Similarly in the second term in (2.2), the speaker marginalizes over the possible values

Qf the actual total set size, and applies Bayes’ Rule:

Plrlts,vs) = 37 P(rI) P(tft 0,) o< 3 P(rlt)P(talt, vs) P(1). (2.4)

The speaker knows the distribution for the reference set size P(r|t) (uniform) and the
distribution for the total set size P(t) (also uniform). The distribution of his observed total
set size P(ts]t,vs) can be computed analogously to P(rs|r, ts,vs) above: if vg is true (the
entire set is visible), then it is Gaussian; otherwise, the speaker must marginali‘ze over the

possible values of the visible total set size.

Returning now to the second term in equation (2.1), the probability of the listener’s
guessing a given reference set size r, the speaker must consider the listener’s perceptual
uncertainty. For simplicity he assumes that the set is completely visible to the listener, so
he can ignore vg. The listener’s guess depends both on the word w and on her perceived

total set size ¢4, so the speaker must marginalize over values of ¢, (and therefore also t):

P(rp=r|w,r, tg, vs,d)

= Z Z 1y appliesP(titSa US)P(tfltv ’w)P(T[ = r['w, T, te, d)’ (25)
t te

where 1, applies is equal to 1 if word w is true for the given r, t;, and d, and 0 otherwise.
This equation represents the speaker’s model of how the listener interprets a word. There is
some total set size ¢; the speaker’s belief distribution over this value, P(t|ts, vs), has already
been computed. The listener perceives the total set size to be tp, which depends on t in
the same way that ¢; does (in equation (2.4); the speaker assumes that v, is true). When
the listener hears the word w, any values of ¢, that do not satisfy w’s presupposition get
their probabilities set to 0 (and the probabilities for the remaining values are renormalized).
Finally, the listener assumes that the word is true, and (in the speaker’s model) guesses a
reference set size 7, uniformly at random from all the values of which the word is true given
her perception. So P(ry = r|r,w,t, d), the probability that she guesses the correct value r,

is 1/|w|, where |w| is the number of values of which w is true given ¢, and d.

The speaker’s probability for a word w in a given context will be defined as the ex-
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pression from equation (2.1), P(correct|w,r;,ts,v‘s, d), normalized such that the speaker’s
probabilities for all words in a context sum to 1. In other words, the speaker’s probability
for a word is proportional to the probability that if he uses that word in that context, the
(simplified) listener will guess the correct reference set size. Using these probabilities, the
model has a parameter to choose between two options for how the speaker selects a word:
either his probability of selecting a word can be proportional to its speaker’s-probability, or

he can choose the word with the maximum speaker’s-probability.

2.2.3 Listener

The listener has some noisy perception of the total set size but not the reference set size,
and hears a word from the speaker. She assumes that the speaker’s word is true, and that
the speaker chose the word to be informative — that is, that his probability of choosing a
given word was inversely proportional to the number of possible reference set sizes of which
it was true. She also assumes that the speaker has perfect perception of the world, i.e., that
he knows the total set size t and the reference set size r exactly.

She first computes a distribution over the total set size, based on her perception and
on the presupposition of the speaker’s word (but not the assertion of the word). Then she

computes the distribution over reference set sizes:

P(r|w, tg,ve,d) = Y P(t|te, ve, w)P(r|w,t,d)
t

o Y P(telt, ve) P(t)P(wlr,t,d)P(r|t). (2.6)

t
Most of the terms in (2.6) are analogous to those from the speaker’s computation. The
distribution P(w|r, t,d) is the probability that the speaker (or rather, the listener’s idealized

version of him) would choose word w given r, ¢, and d, and is equal to 1/|w|, where |w| is

the number of values of which w is true given ¢ and d.

19



20



Chapter 3

Results

The model was evaluated using simulations and comparisons to existing languages. Pa-
rameters for perceptual uncertainty were chosen to approximate reality, though of course
real-world conditions vary widely. Unless stated otherwise, the coefficient of variation for
exact-number uncertainty was 0.2 (see, for example, Whalen et al., 1999), and the proba-
bility of the entire set being visible was 0.8. The total set size was drawn uniformly from 1

to 100.

3.1 Efficiency of Real Languages

If the model is assumed to be an approximately accurate representation of real commu-
nication with quantificational words, then it can be used to assess properties of existing
languages. This analysis focuses not on the individual words but on the efficiency of com-

munication using particular sets of words.

3.1.1 Empirical Data

In order to use the model on real languages, data had to be gathered about what quan-
tificational words exist in what languages. A survey was conducted in which speakers of
non-English languages reported the quantificational words that exist in those languages.
They were given the following description:

Quantifiers are, roughly, words that specify amounts — in English, they are

approximately the words that can be answers to “how much” /”how many”.
Some examples of quantifier words in English are
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‘some’, ‘all’, ‘every’, ‘each’, ‘none’, ‘a’, ‘the’, ‘both’, ‘half’, ‘neither’, ‘either’,
‘any’, ‘few’, ‘several’, ‘enough’, ‘many’, ‘much’, ‘most’, etc.

Some examples of quantifier meanings that English does not have single words
for are things like

‘all but one’, ‘less than half’, ‘some but not all’, ‘almost all’, ‘about how much
you’d expect’, etc.

They were then asked to report all of the quantifier words in their language, along with
English translations.

There were a total of 45 respondents, of whom 5 were excluded for not following in-
structions. Some of the respondents were contacted with followup questions, to clarify their
definitions and cross-check the responses of other people about the same language. The

resulting data included 13 languages® (plus English).

Word Number of Languages | Included in Model
a / one 10 v
about half / a good amount 1
all 14 v
any 9
both 12 v
(a) couple 5 ’
every / each 14 (v)
either 3
(a) few 6 v
half 14 v
(a) little 10 (v)
many 6 v
most 11 v
much 11 (v)
neither 4 v
no / none 10 v
several 8
some 14 v
the 8 v
very few 1

Table 3.1: Frequency of quantificational words in 14 different languages. The words with
checkmarks are the ones capable of being represented in the model. The words with paren-
thesized checkmarks cannot be exactly represented by the model, but can be considered the
same as other words that can (for example, if a language has a word for “much” but not
“many,” for modeling purposes it is considered to have “many”).

1Chinese, French, German, Haitian Creole, Hindi, Marathi, Polish, Portuguese, Romanian, Russian,
Serbian, Spanish, and Yiddish.
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Many respondents reported words that were questionably not (or clearly not) quan-
tificational. The criteria for inclusion were that a word should be something that would
be used to indicate how much or how many of something have some particular quality,
if a situation were presented with no context. Thus words that depend on specific other
context-dependent quantities, such as “enough” or “more,” were not included.

Table 3.1 shows a list of the approximate meanings of the reported words that fit the
criteria. Not all of these meanings are exactly the same as English’s, however. For example,
in some languages the word for “some” can also mean “few” or “several” or “any.” The
reason these meanings are not listed separately is that many respondents only gave single-
word English translations even when the English word had a different meaning, so it would
be inaccurate to count separately the words that did have more thorough translations.

It is also likely that some existing words were not reported. There is the concern that the
instructions could bias respondents toward simply translating the English examples into the
other languages; the inclusion of examples that do not have English words was intended to
mitigate this factor. In addition, few respondents listed all of the words that were reported
for their language, even words that were specifically given as examples in English. And for
many of the languages, many of the meanings that were not reported were indeed confirmed
not to have words.

The primary observation is that different languages do not seem to divide the space of
meanings along different boundaries (as they do with, for example, color words). Rather,
languages with fewer quantificational words tend to have a subset of the same meanings
used in languages with more words. This is perhaps not surprising, given that unlike in
domains such as color, there are few well-defined boundary points, and the meanings of the
words overlap significantly. It should also be noted that even if the literal meanings are the

same, the usages in practice could be substantially different.

3.1.2 Analysis of Sets of Meanings

For each of the languages, the set of its meanings representable by the model was analyzed.
For comparison, other random sets of words were generated from a larger set consisting of

all of the words from the real languages, plus other plausible words that were not reported in
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any of the languages (“some but not all,” “less than half,” “exactly the default-proportion,”
“not the” (i.e. “zero of one”), and “not all”).

Across languages, the average proportion of words that are literally true in a situation
is negatively correlated with the total number of quantificational words in the language
(r = —=0.90, p < .01) (Figure 3-1). In languages that have few quantificational words, a
larger proportion of them tend to be true in each situation, whereas in languages with many
quantificational words, a smaller proportion of them tend to be true. This result would be
expected if languages with fewer words tend to have broader, more generally applicable
words, and the additional words in bigger languages are specific to certain scenarios. In
contrast, when sets of words are selected randomly, there is no correlation between the

number of words and the average proportion that are true.

0.5 T T T T ]
X
X
o 04f ¥ |
=
hd
v X
=
(=}
X

2 03} « 8 |
o ] X
g [ ]
g ° 2
§_ ¥ s ®
= 0.2f y E
Q
[=)]
o
(]
>
[1v]

0.1} 1

e e real languages
x x random words
005 2 4 6 8 10 12

number of words in language

Figure 3-1: Average proportion of words true in a given situation, plotted against total
words in the language, for real languages and for random sets of words.

To assess the communicative efficiency of sets of words in existing languages, simulations
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were run in which 1000 scenarios were randomly sampled for each language. For each
scenario, the speaker chose a word with probability proportional to (his estimate of) the
probability that the listener would guess the correct reference set size. Figure 3-2 plots
the average proportional difference between the actual reference set size and the quantity
that the listener guessed, for each of the languages. Languages with more words have
lower average errors (r = —0.92, p < .01); this is not just a result of the informative
communication assumption, because random sets of words did not show this correlation
(r = —0.34, p = .24). The random sets of words also had an overall higher average error

than the real languages (t = —4.81, p < .01).
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Figure 3-2: Average proportion difference between actual reference set size and listener’s
guessed reference set size, as a function of number of words in the language. Error bars
show + one standard error of the mean.
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3.2 Usage Patterns

The model also makes specific predictions about how individual words will be used, depend-
ing on the context and on what other words are available. The accuracy of these predictions
shows that the model is a reasonable representation of real-world communication of quan-

tities.

3.2.1 Example Words

For a given set of words, the the speaker’s probabilities across different situations qualita-
tively correspond to how the words are used in real communication. Figure 3-3 shows, for
a particular set of seven words and a constant total set size, the speaker’s probability for
each word across different sizes of the reference set. Even though the literal meanings of
the words are either true or false for a given reference set size, the probabilities are graded
rather than all-or-nothing. It is also important to note that the probabilities are not simply
how likely the speaker believes each word to be true: for example, “all” is true of only a
single reference set size, yet the speaker gives it a high probability for all large reference set
sizes because it would make the listener more likely to guess correctly.

This example for the most part accords with intuition about how these words are used
in communication. The probabilities assigned by the model seem to approximate the ap-
propriateness of each word. For small quantities, the speaker is relatively certain about the
best words to use, and for larger quantities there are more words that could be used.

The results also bring to attention some unrealistic features of the model. One noticeable
fact is that the speaker can assign a high probability to a word even if that word has
a very low probability of actually being true. This can be viewed as a tradeoff between
two factors: on the one hand there are precise words like “all,” with a low probability of
being true but a high probability of communicating an exact quantity; and on the other
hand there are broad words like “some,” with a high probability of being true but a low
probability of communicating an exact quantity. In real-world communication, precision is
somewhat important, but the model overemphasizes this factor because it treats correctness

as a binary value. For the same reason, the word “some” in this example is not given as
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Figure 3-3: Speaker’s probabilities for each word in an example vocabulary, over different
reference set sizes, when the total set size is 50 and the default proportion is 0.4. The bars
at the bottom show the reference set sizes of which each word is literally true.

high of a probability as might be expected. Although “many” and “few” are more precise,
real-world speakers are sometimes not concerned with the additional information that those

words carry, and might simply want to convey the concept of “some.”

3.2.2 Numbers

Number words were not included in the sets of words for real languages because all of the
languages from the survey have effectively infinitely many words for integers. However, the
model can be used just as well for numbers, and they provide a particularly clean example

that demonstrates the interaction between informativeness and perceptual uncertainty.
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Figure 3-4: Speaker’s probabilities for (a) exact meanings of number words and (b) lower-
bounded meanings of number words (e.g. “at least three”), over different reference set sizes
(the total set size is 20).
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Figure 3-4 shows the speaker’s probabilities for a vocabulary with lower-bounded number
meanings (such as “at least three”) versus a vocabulary with exact number meanings. For
smaller quantities, the distributions are very peaked around the exact reference set size that
the speaker perceives: he is fairly sure of the quantity, and consequently fairly sure that the
listener will guess correctly if he uses that number word (and not if he uses another word).
As the numbers get larger, the distributions get flatter because of perceptual uncertainty. If
the coefficient of variation for perceptual uncertainty is set to a lower value (corresponding
to, for example, a person explicitly counting), then the speaker’s probabilities become much
more peaked around the exact quantities.

For the lower-bounded meanings the same general pattern is visible. Words with lower
bounds closer to zero are more likely to be true, but they are less informative because
there are more possible reference set sizes of which they are true. The results for the
lower-bounded meanings demonstrate a case where an additional level of recursion might
be useful. In the current model, the speaker assumes that the listener will guess uniformly
from all reference set sizes of which the word is true, and so there is not much difference
in informativeness between “at least n” and “at least n + 1” (especially if the total set
size is large). If the speaker knew that the listener was assuming that he was speaking

informatively, this difference would be more important.

3.2.3 Presupposition

In this model, the purpose of a word’s presupposition is for the speaker to provide informa-
tion about the total set size, which can be useful because of the listener’s perceptual uncer-
tainty. The model demonstrates that even without an explicit “maximize presupposition”
maxim, presuppositions will naturally be maximized by a speaker trying to communicate
informatively to a listener with imperfect perception. Figure 3-5 shows the speaker’s proba-
bility for numerical words with and without presuppositions (such as “two” versus “both”),
compared with the word “all.” As the quantities get bigger, the presupposition becomes
less useful, because it is less likely to be true. This result is consistent with the observation
that in the survey data, all of the words that have presuppositions presuppose a total set

size of 1 or 2, never any larger numbers.
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Figure 3-5: Speaker’s probability for exact number words (“n of the things”) versus number
words with presupposition (“n of the n things”) versus the word “all,” for scenarios in which
the reference set size is equal to the total set size.

Similar to the example in Figure 3-3, the model does seem to care too much about exact
quantity, and the relative probabilities of “all” compared with the presuppositional words
are lower than one might expect. Another fact not captured here is that although words with
stronger presuppositions might be more informative, they are applicable in fewer situations.
It might therefore not be worthwhile for a language to give them their own words, because
in the few situations where they would be used, a combination of other words could be used

instead (for example, “all n” or “the n” in English).
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Chapter 4

Conclusion

4.1 Summary

This thesis has presented a new framework for modeling linguistic communication of quanti-
ties. The model uses a simple representation of word meanings as intervals that can depend
on both relative and absolute quantities, and includes realistic assumptions about commu-
nicating informatively in the presence of perceptual uncertainty. Each word is either true
or false in a given situation, but the model predicts that some words are more likely than
others to be used in certain situations, just as is observed in real-world communication.
Furthermore, when the sets of words from real languages are used by the model, they tend

to result in lower error rates for communication than sets of words selected randomly.

4.2 Possible Extensions

4.2.1 Additional Features

Some of the features in the meanings of real quantificational words and communicative
situations are not currently represented in this model but could be incorporated into it.
The communicative intention of the speaker is quite simplified in the basic model. In
the real world, a speaker often does not care about the exact quantity, and in fact some-
times there is not any exact quantity. A speaker might want to convey only a particular

aspect of the quantity (for example, that it is larger than expected) and be satisfied if the
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listener inferred any quantity in some range. Or a speaker might want to convey a par-
ticular distribution over quantities. It would be straightforward to modify the model such
that the speaker considered a communication equally successful if the listener guessed any
quantity within some range, or such that the speaker tried to communicate a specific belief
distribution over quantities instead of having the listener guess any single quantity.

The model also does not include any representation of subjective “degree,” such as the
difference between “many” and “very many.” This is because in any particular commu-
nicative context it only has one “default” proportion. It would be possible to instead keep
track of multiple default proportions, a different one for each word that needed one, so that
“many” could be represented as “more than Default Proportion z” and “very many” could
be represented as “more than Default Proportion y”. It could also be useful to have default
absolute amounts in addition to default proportions.

Relatedly, the meanings of some real words depend on both relative quantities and
absolute quantities. For example, it would sound odd to use “many” to refer to two out of
three, because “many” generally has to be a large absolute amount in addition to being a
large proportion. Such meanings could be represented in the model by allowing the interval
representation of a meaning to have multiple lower and upper bounds, so that the meaning
only applied to quantities that were greater than all of its lower bounds and less than all of

its upper bounds.

4.2.2 Additional Experiments

The model’s results are consistent with general intuition about the the meanings and usage
of quantificational words; however, it will be useful to quantitatively compare the predictions
with real speakers’ probabilities of using words and real listeners’ probabilities of guessing
quantities. These probabilities could easily be obtained by presenting people with the same
controlled contexts used in the model, and either asking for probabilities directly or asking
for a single choice selected from a list of options and computing the probabilities across
participants.

It would also be interesting to conduct a more thorough investigation of what quantifi-

cational words exist in what languages. To address the possible English-bias of the survey
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from Chapter 3, an experiment could be conducted in which words are elicited not by giv-
ing English examples but by displaying actual scenarios. This method would provide more
precise information about the meanings, and could be structured to determine each word’s
literal meaning as well as in what contexts it is actually used.

Overall, the model presented here has provided some interesting insights into the work-

ings of quantificational words, and has set up a foundation for further investigations.
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