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Abstract

In this thesis, I investigate several ways to probe gravity in the strong-field regime.
These investigations focus on observables from the gravitational dynamics, i.e. when
time derivatives are large: thus I focus on sources of gravitational waves.

Extreme mass-ratio inspirals (EMRIs) can be very sensitive probes of strong-field
physics. Predicting observables from EMRIs must be done numerically, so accurate
numerical methods are required to ensure that any comparison with measurement is
not spoiled by numerical artefacts. The first investigation of this thesis is a spectral
(in the angular sector), pseudospectral (in the radial sector) time-domain PDE solver
for perturbations of a Kerr black hole (i.e. solving the Teukolsky equation). The
method exhibits good convergence and prompts much future investigation.

A second approach to probing strong gravity is to consider theories which are
general relativity (GR) with a few small corrections and investigate the effect of
these corrections on observables. Since gravitational waves are the prime observable
and they control the long-term evolution of dynamical systems, I investigate their
properties in almost-GR theories. The second investigation of this thesis is a study
of the propagation and energy content of gravitational waves in these theories. I
find that in a large class of theories, approaching the asymptotically flat part of
spacetime, gravitational waves propagate in the same fashion as in GR and have the
same effective stress-energy tensor as in GR. Next, I study the strong-field correction
to the structure of a Schwarzschild black hole in a class of theories. Finally, with these
ingredients, I investigate the leading corrections to the dynamics and observables of
a comparable mass-ratio inspiral using post-Newtonian techniques. The main result
is the appearance of dipolar scalar radiation in this class of theories. The dipolar
radiation has a frequency dependence which does not arise in GR and is a distinct
signature of corrections. Such signatures should be testable using gravitational wave
detection and pulsar timing.

Thesis Supervisor: Scott A. Hughes
Title: Associate Professor
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Chapter 1

Introduction

Gravity is the first force that humans recognized—and yet it is more mysterious than

the other three which modern physics recognizes. Today we know of four fundamental

‘forces’: gravity, which has been known since time immemorial; electromagnetism

(EM), which was first recognized through lodestones thousands of years ago; the weak

nuclear force, recognized through radioactive decay at the turn of the 20th century;

and finally the strong nuclear force, first described in the 1930s.

What makes gravity so mysterious? The other three forces (EM, weak, and strong)

are all now described by a quantum theory, known as the standard model (SM) of

particle physics. Gravity, on the other hand, is described by general relativity (GR),

which is classical. What this means is the following: in GR, at each point in spacetime,

the “gravitational field” has one particular value. This is not so for the other three

forces. The electromagnetic field is not described by a set of values at each point in

spacetime; instead, the electromagnetic field is a state, which, when measured over

any given region of spacetime with an operator, yields a measurement described by a

probability distribution. The same holds for the weak and strong fields.

Why this distinction? Does nature act in two distinct fashions, classically for

gravity, by quantum mechanically for the SM? There is good reason to think not.

The simplest argument to suggest that gravity, too, should be quantum mechanical
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comes from the Einstein field equation:

Gab︸︷︷︸
Geometry
(classical)

= 8π Tab︸︷︷︸
Matter

(quantum)

. (1.1)

The left hand side is the Einstein tensor, a tensor field which describes (part of)

how spacetime is curved. On the right hand side is the stress-energy tensor (SET)

field, which describes how much energy density, momentum density, and momentum

flux there is everywhere in spacetime. The problem with this equation is that GR

is only prepared to handle a classical stress-energy tensor. In the standard model,

the stress-energy tensor is not a classical field but a quantum operator. The above

equation is meaningless: it tries to equate two objects of different varieties.

One approach to making sense of Eq. (1.1) is to take an expectation value of the

right hand side, resulting in a classical tensor field 〈Tab〉. This approach is useful so

long as we are only interested in macroscopic physics above the quantum scale. But

ultimately, the only resolution is to promote1 gravity to be quantum mechanical—a

quantum theory of gravity, which is fundamentally needed in order to make sense of

gravitational phenomena. How do we physicists approach this lofty, possibly unattain-

able goal? We must probe strong gravitational fields.

1.1 Theory and experiment

The goal of physics is to build mathematical models (theories) that describes how

nature acts. Theories are verified or discarded if experiments bear out their results or

disfavor them. At times theory leads experiment to certain describe natural phenom-

ena; at other times experiments measure a phenomenon before any theory predicts

it. Most physical theories have been built in the latter scenario, to explain some

measured phenomenon.

1This need not mean a direct quantization of gravity—see e.g. [81] for arguments suggesting that
the Einstein field equations may arise from a thermodynamic coarse graining procedure.
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The (possibly apocryphal) parable of Galileo’s experiment of dropping balls from

the leaning tower of Pisa comes to mind. At this time there were no quantitative

theories of gravity, only qualitative ones: whether heavier objects fall at a different

rate than light ones or not. Purportedly, Galileo observed that objects of the same

composition but different masses accelerate at the same rate, thus rejecting the Aris-

totelian theory that heavier objects fall faster. This observation was an example of

experiment leading theory. The experimental result was a requirement for Newton’s

theory of gravity—which it indeed includes. Newton’s theory also agreed with Ke-

pler’s earlier phenomenological result, that planets move on eccentric ellipses about

the Sun (one of the first examples of unification in physics).

In the late 1700s and the 1800s, the phenomena of electromagnetism were sys-

tematically quantified by Coulomb, Ørsted, Faraday, and others. This was again an

example of experiment leading theory. These observations (especially the dynamical

ones, e.g. where a time varying magnetic field induces a changing electric current)

led to Maxwell constructing the theory of electromagnetism, which correctly incor-

porated all prior electrical and magnetic results (the second example of unification).

At this point theory began to lead experiment, for example with the prediction of

propagating EM waves, later confirmed by Hertz.

In the late 1800s and early 1900s, experiment was again leading theory in the

realm of atomic and nuclear physics, leading to the development of quantum me-

chanics. The observations of the discreteness of atomic spectra, the photoelectric

effect, Rutherford’s scattering experiments, and many others led to rapid and radical

developments in the theory of quantum mechanics. One of the most striking was

the discovery of spin-1/2 particles by the Stern-Gerlach experiment. Only integer

valued angular momentum can arise from orbital angular momentum. The discovery

of half-integer angular momentum should not have been expected from any classical

intuition of how angular momentum works. To agree with these experimental results,

Paul Dirac had to overhaul the quantum theory of the day.

A very similar story played out in the 1950s and 1960s as nuclear energies were

being probed at particle accelerators. Particle experiments revealed a large number

19



of hadrons. Gell-Mann and his contemporaries organized the newly-found particles

into multiplets by their quantum numbers. This organization revealed that all of

the particles could be explained by a simpler model where hadrons had substructure:

they were composed of quarks, which needed an additional quantum number (color

charge) not observed in hadrons. This is one of the most celebrated examples of

experiment leading theory.

The history of general relativity contrasts with the development of particle physics

in this fashion. Almost unilaterally, the story of GR is that of theory leading exper-

iment. There was no experiment or observation which led to the development of

GR.2 Rather, after Einstein’s development of the theory, there was a long checklist

of predictions which were validated by observation: the perihelion precession of Mer-

cury (technically a postdiction); the deflection of starlight by the Sun during a total

Solar eclipse; the time delay of atomic clocks flown about the Earth; the gravita-

tional redshift of light as it climbs out of the potential of the Earth (measured by the

Pound-Rebka experiment); the Shapiro delay of light traversing a gravitational field;

the geodetic and frame-dragging precession effects; and most relevant to this thesis,

the orbital decay of the Hulse-Taylor pulsar binary.

There are two good reasons for theory leading experiment in the realm of gravita-

tion. The first is that Einstein was very smart. The second, a more physical reason,

is that gravity is extremely weak. Whereas we can probe large EM fields in the labo-

ratory and generate high energy particles in accelerators to probe sub-nucleon length

scales, we are incapable of generating strong gravitational fields in the laboratory.

We have to rely on the kindness of nature to generate regions of large curvature and

give us observational handles with which to probe these regions. Regions of strong

gravity3 are exotic and rare in the universe.

2The only possibility of a phenomenon unexplained by Newtonian gravity at the time was the
perihelion precession of Mercury, which by itself could have led to any number of post-Newtonian
theories besides GR.

3What comprises strong gravity is a matter of nomenclature. In this thesis, there are two
senses: in Part I, systems with large “potentials” are studied, whereas in Part II, systems with large
curvatures are studied.
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1.2 To probe strong gravity

We find gravity theory in an uncomfortable situation. We can not treat general

relativity as a fundamental theory (therefore it is an effective field theory), since it

can not mesh with quantum mechanical matter. Therefore we wish to learn how

nature behaves when the approximation regime of GR breaks down—these must be

regions of large curvature, since we have put GR on trial in the regime of weak

curvature, and it passes with flying colors. However, the weakness of gravity makes

it much more difficult to find regimes where curvature is large.

How does one seek a more fundamental description of gravity? One approach is

to build fundamental theories, calculate their observational signatures, and attempt

to observe these signatures. There is a rich history of building fundamental quantum

gravitational theories (for a good review, see [130]). Two modern approaches to

quantum gravity are string theory (ST) and loop quantum gravity (LQG). Both

approaches leapfrog an enormous energy range to arrive at quantum gravitational

results. Experiments to date have probed up to the TeV energy scale. In both string

theory and loop quantum gravity, the energy scale of interest is the Planck energy,

Ep ≡
√

~c5

G
≈ 1028 eV ! (1.2)

as this is the natural energy scale involving quantum mechanics, through ~, and

gravity, through G. There is a chasm of 16 orders of magnitude between where we

stand today and where ST and LQG try to make predictions.

It seems to this humble author an act of hubris to expect there to be no new grav-

itational physics in this chasm. Another approach is necessary: an approach guided

by experiment and observation, and since we can not generate the large curvatures

we want to probe, we have to rely on observations. But which observations? How do

we know where to look, and what we’re looking for?

A candidate system for observation obviously must exhibit strong gravity, which

points to three possibilities: black holes (BHs), neutron stars (NSs), and the very

early universe (I will not discuss the very early universe in this thesis). A candidate
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system must also be a “clean” system, which is difficult to define. All of the physical

phenomena in a clean system must be well understood and can be characterized inde-

pendently of each other (or at least simultaneously over-constrained). This excludes

systems such as accretion disks in active galactic nuclei (AGN) or interacting binary

star systems such as low mass X-ray binaries (LMXBs). Both of the aforementioned

systems involve dissipation in gas, viscosity, turbulence, magnetic fields, winds . . . .

There are many unknowns in such systems, so it would be very challenging to use

them as tests of gravity.

A candidate system should also exhibit gravitational dynamics. This expression

means different things to different people. Typically, the motion of planets about the

sun is considered gravitational dynamics. However, when looking at the metric of

spacetime describing this system, time derivatives are far smaller than spatial deriva-

tives. As far as spacetime is concerned, the situation is quasi-static. One must go

to very extreme systems to find time derivatives (of the metric) as large as spatial

derivatives. As soon as time derivatives approach the size of spatial derivatives, the

metric begins to exhibit wave motion. The excitation of the metric propagates out-

ward through spacetime—gravitational dynamics is synonymous with the generation,

propagation, and back-reaction of these gravitational waves.

Our requirements so far are for strong gravity, a clean system, and true gravita-

tional dynamics (i.e. generating gravitational waves). We will discuss two systems

which fit the bill: the inspiral of two comparable mass compact objects (either a

BH-BH, BH-NS, or NS-NS inspiral), and the inspiral of a stellar-mass body into a

super-massive black hole (SMBH), called an extreme mass-ratio inspiral (EMRI).

For any given system, there are two approaches one might take to probing strong

gravity. The first of these is the “discovery,” “serendipity,” or “null test” mode; the

second is “targeted” mode. Serendipity mode means to find the GR observable that

can be calculated to the highest precision possible and then try to find deviations

away from it. Targeted mode, on the other hand, tries to calculate observables in

theories other than GR in order to discover which systems are most likely to reveal

the signatures of deviations away from GR. This thesis uses both approaches.
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1.3 Organization and overview of this thesis

The two approaches (discovery mode and targeted mode) are reflected in the two parts

of this thesis. Part I, General relativity, is in discovery mode—focusing on improving

the precision of GR observables (here the gravitational waveforms of extreme mass-

ratio inspirals). Part II, Beyond general relativity (BGR), is in targeted mode—

focusing on calculating observables in theories which are “deformations” away from

GR.

Within GR, the comparable mass-ratio inspiral has seen considerable success in

analytical calculations of observables. These calculations go up to a very high order

(in an expansion in powers of v/c, the relative velocity of the objects). Therefore

these systems can already be used as null tests within general relativity. However,

the EMRI problem is rather incomplete. Numerically addressing the EMRI problem

is the focus of Part I, consisting solely of Chap. 2: A (pseudo-)spectral time-domain

Teukolsky equation solver.

Chapter 2 focuses on numerical methods to integrate gravitational waves around

a spinning black hole. While numerical methods already exist, they rely on the finite-

difference method that may be too imprecise for the high accuracy required in the

EMRI problem. This work instead implements a numerical integrator which uses the

pseudo-spectral method, promising to be much more accurate than currently existing

techniques. EMRI waveforms can be simulated in both the frequency domain and the

time domain, but some physics is unavoidably in the time domain, so Chap. 2 focuses

on simulating EMRIs in the time domain. The Teukolsky equation is decomposed in

the basis of spin-weighted spherical harmonics (for the angular sector), and the radial

sector is handled with either Chebyshev, Fourier, or discrete cosine series (the latter

being more desirable because of boundary conditions). Time evolution is performed

with the method of lines which allows the use of ODE steppers. I discuss how to

implement these methods on a computer and present results from an implementation.

The results show the expected exponential convergence in terms of basis functions,
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suggest convergence of the dispersion relation, and display quasinormal ringing of the

black hole spacetime.

Given the incomplete state of the EMRI problem, it can not be considered for

targeted mode probes—there are too many effects which have not yet been calculated.

However, the comparable mass-ratio inspiral can be used for targeted mode probes.

This is the focus of Part II, which consists of three chapters.

Chapter 3, Effective Gravitational Wave Stress-energy Tensor in Alternative The-

ories of Gravity, goes about calculating the modeshapes, energetics, and propagation

properties of gravitational waves in BGR theories. This is a prerequisite for studying

gravitational wave systems in BGR theories. This work was the result of a collab-

oration with Nicolás Yunes and was published as Stein, L. C., Yunes, N. (2011),

Effective gravitational wave stress-energy tensor in alternative theories of gravity,

Phys. Rev. D 83 064038 [138]. We present the perturbed Lagrangian approach and

short-wavelength averaging, which are tools used to separate the gravitational wave

perturbation from the smooth background spacetime. We then reproduce the classic

result of how much stress-energy gravitational waves carry in GR. As a model theory,

we also explicitly calculate the effective stress-energy tensor of Chern-Simons (CS)

gravity, which is identical to that in GR when the CS scalar is dynamical and regular

at spatial infinity. We then generalize to any higher-order gravity theory with similar

properties and show when the effective stress-energy tensor coincides with that of

GR.

Chapter 4, Non-Spinning Black Holes in Alternative Theories of Gravity, calcu-

lates the strong-field correction to the Schwarzschild (non-spinning black hole) solu-

tion in a class of BGR theories. In order to calculate gravitational wave signatures

from black hole systems in BGR theories, the strong-field structure of a black hole

must be determined. This work was another result of the collaboration with Nicolás

Yunes and was published as Yunes, N., Stein, L. C. (2011), Nonspinning black holes in

alternative theories of gravity, Phys. Rev. D 83 104002 [171]. We consider all gravity

theories with a dynamical scalar directly coupled to all possible quadratic curvature

invariants in the action. This class of theories includes both dynamical Chern-Simons
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and Einstein-Dilaton-Gauss-Bonnet gravity. In these theories of gravity, we compute

the scalar hair for a non-spinning (Schwarzschild) black hole, which acts as a “charge”

in the scalar field. This scalar hair also gravitates and acts to deform the spacetime,

and we compute this deformation. From the deformation, we also calculate the mod-

ified Kepler relation for circular orbits (of particles traveling along geodesics), which

allows to find the leading modification to the gravitational wave signature in such

theories (though this signature is for “freely-falling” particles, which do not actually

exist in this type of theory).

Finally, in Chapter 5, Post-Newtonian, Quasi-Circular Binary Inspirals in Quadratic

Modified Gravity, we calculate the leading order corrections to observables from a

comparable mass-ratio inspiral in a class of BGR theories. This work was the result

of the collaboration with Kent Yagi, Nicolás Yunes, and Takahiro Tanaka, and was

published as Yagi, K., Stein, L. C., Yunes, N., Tanaka, T. (2012), Post-Newtonian,

Quasi-Circular Binary Inspirals in Quadratic Modified Gravity, Phys. Rev. D 85

064022 [165]. We consider the same class of theories as in the previous chapter and

compute the scalar field and gravitational wave (metric) solutions for a compara-

ble mass-ratio binary inspiral, using post-Newtonian (PN) techniques. That is, the

equations of motion of the scalar field and the metric are expanded about Minkowski

space, in a multivariate expansion. The dominant solution is the leading order GR,

PN solution for the metric (and a vanishing scalar). At next order we calculate the

solution to the scalar field, which is sourced by black holes acting as scalar “charges”

as found in the previous chapter. We find the solution in the near zone and far zone

by performing an asymptotic matching. At this same order, we also calculate the

deformation to the metric in the near zone and far zone, again employing asymptotic

matching. Finally, the far zone solutions of the scalar and the metric deformation

allow the calculation of the correction to the energy flux out of the binary. This cor-

rection modifies the rate at which the binary inspirals and leads directly to observables

in the gravitational wave phase.
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Part I

General relativity
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Chapter 2

A (pseudo-)spectral time-domain

Teukolsky equation solver

It all looks fine, except for the results.

Scott A. Hughes

Abstract

Extreme mass-ratio inspirals (EMRIs) promise to be a sensitive probe of gravity in
the strong-field regime through their gravitational wave signatures. To use EMRIs as
tests of gravity will require numerical simulations that are sufficiently precise: when
comparing measurements to predictions, imprecision may be falsely misattributed to
new or unaccounted-for physics. Since gravitational wave detection is so sensitive
to the phase of the wave, one especially dangerous numerical artefact would be a
numerical dispersion relationship which is not faithful to the continuum one. This
Chapter implements a time-domain Teukolsky equation solver which is completely
spectral in the angular sector and pseudo-spectral in the radial sector. This solver
exhibits pseudo-spectral (exponential) convergence and excellent convergence in the
numerical dispersion relationship.
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2.1 Motivation

2.1.1 Why extreme mass-ratio inspirals?

In our quest to probe strong-field gravity, we are immediately drawn to black hole

systems. But why, then, focus on extreme mass-ratio systems?

The amplitude of gravitational waves emitted from an EMRI is proportional to

the mass ratio, η ≡ m/M . The inspiraling can be thought of as the back-action of

these emitted waves on the small body itself, but this is a second order effect: the

energy flux scales as

Ė ∼ −32

5
η2v10 . (2.1)

The result is that the small compact object (SCO) moves nearly on a geodesic, and

spends an extremely long time in the strong-field region of the SMBH. Since the SCO

moves nearly on a geodesic, it can be used as a tracer of the geometry of the spacetime

(see e.g. [43, 151]).

But besides just being a tracer of the spacetime geometry, the gravitational waves

from an EMRI should be extremely sensitive to strong-field effects. It is not the size of

the gravitational waves, or their frequency content, which makes them such sensitive

probes. Rather, it is the amount of time that the SCO spends in the strong-field

region. The gravitational binding energy goes as E ∼ −Mm/r ∼ −M2η/r ∼ −v2ηM .

This scaling, combined with the scaling of the energy flux in Eq. 2.1 means that the

decay time scales as tinsp ∼ Mη−1. This extremely long decay time means that even

small effects, such as resonances and spin-curvature coupling, can imprint on the

gravitational wave signal through secular or integral effects.

This long decay time leads to a gravitational waveform with O(η−1) cycles—likely

105 cycles in the band of a LISA-like mission. A phase shift of just one cycle in such

a long waveform is immediately evident in signal analysis. Thus EMRIs can serve as

null tests, informing us as to whether or not our models contain all of the physics

relevant to describe motion in the strong-field.
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A better understanding of the EMR limit can also inform our understanding of the

comparable mass ratio limit. As it currently stands, the computational complexity

of EMRI calculations is much lower than that of full numerical relativity (which is

required for the comparable mass ratio limit). Recent work in the “effective one-body”

(EOB) formalism [32, 110] aims to bridge the gap between the comparable mass ratio

problem and the speed and simplicity of analytics (in post-Newtonian theory) and

of EMRI simulations. The EOB formalism, however, has various coefficients which

need to be “calibrated” from both full numerical relativity and EMRI simulations in

order to be valid for all mass ratios. Since full NR simulations are so computationally

expensive, EMRI calculations are much cheaper to use for EOB calibration.

2.1.2 Why black hole perturbation theory?

In the past decade, fully non-linear GR simulations have gone from being a dream

to commonplace for several research groups around the world. Why, then, would one

want to numerically simulate perturbative equations instead of directly solving the

full equation of GR? It turns out that calculating waveforms from EMRIs presents

a unique computational challenge to numerical relativity. This can be seen from the

simple scaling arguments which follow.

A numerical simulation needs to resolve all of the length and time scales of interest

in a problem, and these scales set the fundamental computational requirements for

any scheme to simulate them. Let us enumerate these length and time scales. The

smallest length scale which must be resolved for a black hole of mass m is the size

of its horizon, which is proportional to the mass, `horiz ∼ m. Let us suppose that

we wish to simulate an EMRI with a mass ratio of η in the range of 10−5 to 10−9.

The SCO starts at a large distance away from the central BH; let us suppose we

wish to simulate an orbit starting from 10s of M away from the central black hole (of

mass M). The total grid must have a linear dimension much larger, say a few 100M .

Already this represents an enormous computational complexity, in trying to resolve

lengths on the order of ηM in a grid which spans ∼ 100M ; this represent a dynamic

range in length of ∼ 102η−1.
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More damning still are the dynamics of such a system. The shortest timescale of

interest is related to the shortest length scale of interest, m. The longest timescale

of interest is of course the inspiral time. As suggested above, the number of orbits

goes as η−1, or tinsp ∼ η−1torb. The net result is that for extreme mass ratios, the

simulation needs i) finer spatial resolution, ii) smaller time steps, and iii) needs to be

run for longer; the combined complexity of such a calculation goes as the tragically

steep O(η−3).

How, then, does one simulate EMRIs? The smallness of η which curses attempts

at full numerical relativity is also a blessing. With a small parameter in the prob-

lem, EMRIs are amenable to perturbation theory. One can treat the SCO and the

gravitational waves as a perturbation on the background of a stationary (Kerr) black

hole, and attempt to solve for both the motion of the SCO and the GWs which are

emitted. To date, there are no simulations where both the motion of the SCO and

GWs are solved for simultaneously in a self-consistent fashion1; this is still an active

area of research.

2.1.3 Why the Teukolsky equation?

Typically, general relativity is treated as a theory for the metric of spacetime. Pertur-

bation theory therefore typically takes the form of splitting the metric into a “back-

ground” piece and a small tensor perturbation h, and solving for h. The Teukolsky

formalism, on the other hand, seeks a perturbation to the curvature tensor rather

than the metric. There are a number of attractive reasons to consider curvature

perturbations rather than metric perturbations.

First, let us touch on a fact relevant to simulating any “gauge” theory. A gauge

theory is one which has a local symmetry transformation under which the theory is

invariant. Both the standard model and GR are gauge theories, but GR is unique since

the symmetry is actually diffeomorphisms of the manifold, rather than an “internal”

symmetry of a fibre bundle of the manifold. The common trait that these theories

1Diener, Vega, Wardell, and Detweiler have performed self-consistent simulations of a particle
coupled to a scalar field (forthcoming), but not gravitational waves.
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share is that the fields in these theories have more components than the number of

physical degrees of freedom, precisely because of the gauge freedom. What this means

in numerical simulations is that the fields must be gauge fixed (i.e. choose a specific

gauge, to restrict the space of possible fields) so that spurious and unphysical gauge

degrees of freedom will not spoil the simulation for any number of reasons.

Performing metric perturbation theory would entail solving a system of 10 partial

differential equations [4 elliptic (constraint-type) and 6 hyperbolic (wave-type)] for 10

metric components (6 physical degrees of freedom and 4 gauge degrees of freedom),

all components being coupled to each other. In contrast, the Teukolsky equation(s)

are for perturbations to the complex Weyl scalars [108],

Ψ0 = −Cabcdlamblcmd (2.2)

Ψ4 = −Cabcdnam̄bncm̄d , (2.3)

(and Ψ1,2,3 which have been omitted) where Cabcd is the Weyl tensor, and la, na, ma

and m̄a are two real null vectors and one complex null vector (and its conjugate)

which form a Newman-Penrose tetrad [108].

We can now state why the Teukolsky formalism is attractive. First, because of

the somewhat miraculous symmetries of the Kerr geometry,2 the Weyl scalars ψ0 and

ψ4 are gauge invariant quantities. These same symmetries also lead to the resulting

equations being decoupled : the equation for the evolution of ψ4 is not coupled to any

other perturbative quantity. These properties mean that one does not have to be

concerned with gauge fixing or concerned with non-physical gauge degrees of freedom

spoiling the numerical simulation.

The final point of interest about the Teukolsky equation is that it is separable:

it admits solution by separation of variables (although the eigenfunctions and sepa-

ration constants must be found numerically). This is firstly important since before

computation was cheap, these problems could only be attacked analytically. As we

will mention in Sec. 2.1.4, our goal is to solve the Teukolsky equation in the time

2Specifically that Kerr is a Petrov type D spacetime [139]
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domain, where the equation can no longer be separated and hence must be numeri-

cally integrated. However, the separability is still relevant to us; the second reason is

that a body of literature with analytic results exists, which allows one to validate a

numerical scheme.

As an aside, it is important to point out the difficulty of being self-consistent.

The perturbation to the spacetime is caused by a small body (modeled as a point

particle), but the trajectory of this small body is also affected by the perturbations

to the spacetime. To be self-consistent, one would need to simultaneously solve for

the trajectory of the perturber and the field. In order to calculate the trajectory of

the small body, the metric perturbation is required. This does not completely pre-

clude the curvature approach, since the metric perturbation may be reconstructed

from the curvature perturbations via the Chrzanowski procedure [157]. However, this

procedure involves more than just one curvature scalar at a time, so one would need

to simultaneously integrate the PDEs for ψ0 and ψ4, which would then be coupled

through their combined effect on the matter source term. Because this involves metric

reconstruction, such a scheme does not seem any more attractive than direct integra-

tion of the metric, rather than curvature perturbations. For the time being, though,

no self-consistent scheme is available; we resign ourselves to the simpler task of in-

tegrating the separated curvature equations, rather than trying to be self-consistent.

In fact, in this work, we do not even address including the source term; that is left

for future work.

2.1.4 Why the time domain?

To analytically separate the Teukolsky equation, one must use an ansatz for the

temporal piece of the solution going as T (t) ∼ eiωt. Essentially, this is performing

a temporal Fourier transform. This is very convenient for performing calculations

on geodesics in Kerr spacetime, which are multi-periodic with three frequencies (the

azimuthal, radial, and polar frequencies) and an infinite but discrete spectrum of their

higher harmonics [133, 56].
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The usual approach is to treat an inspiralling trajectory as an adiabatically-

evolving family of geodesics. To compute the instantaneous flux of energy and angu-

lar momentum on an inspiralling trajectory, one instead calculated the flux of energy

and angular momentum at infinity of the geodesic which goes through the same point

with the same velocity—assuming that the particle has always been and always will

be on that geodesic. One then applies the geodesic result to construct the family of

geodesics.

While this assumption is warranted at early times, when the radiation-reaction

time is very long compared to the orbital time, it breaks down at late times. This is

very obvious when the inspiral is terminated by a final near-geodesic plunge into the

event horizon—the plunge is not even a periodic orbit.

This approach also neglects other effects which may be comparable in magnitude

to radiation-reaction, such as the conservative part of the self-force and the spin-

coupling force. The computation must also be modified when two or more of the

frequencies become commensurate with each other (and rational orbits are dense in

all orbits, but likely only small integer ratios are important) [62, 64].

One must therefore abandon the original ansatz of quasi-periodicity in the tempo-

ral dimension. In doing so, one also abandons separability, and therefore the problem

returns from being a set of coupled ODEs to being a PDE. Hence we will be solving

the Teukolsky equation in the time domain, rather than the frequency domain.

2.1.5 Why (pseudo-)spectral methods?

We must address representing an infinite-dimensional function space on a computer,

with a finite dimensionality (and finite precision). There are several popular ap-

proaches for numerically integrating partial differential equations; some of these

are the finite difference, finite element, finite volume (flux conservative), spectral,

Galerkin, and pseudo-spectral (collocation) methods (see [28] for a good pedagogical

guide to spectral methods).

In the EMRI literature, the primary method has been that of finite differences [87,

140]. The pseudo-spectral method has seen some attention [40], but so far only in
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Schwarzschild. One very compelling reason to use the pseudo-spectral method is the

fidelity of the dispersion relationship the method provides, as compared to the errors

introduced by finite differences [28].

Discretizing a differential operator (turning it into a difference operator) unavoid-

ably introduces errors. A very useful way of quantifying these errors is to let the

discrete operator act on plane wave solutions and decompose the error into ampli-

tude and phase errors, corresponding to numerical dissipation and dispersion. For

the purposes of gravitational wave detection, phase errors are much more important

than amplitude errors, because of the phase sensitivity of matched-filtering. It is easy

to see how numerical dispersion could corrupt the extracted gravitational wave signal

from such a simulation: if high frequencies and low frequencies propagate out from

the strong-field region at incorrect speeds, the extracted signal can be stretched or

squeezed when it arrives at spatial infinity, where the signal is extracted. Thus it is

very important to strive for a good numerical dispersion relationship.

A finite difference operator has a fixed polynomial order corresponding to the

number of grid points used in the computation of a derivative. By contrast, calcu-

lating a derivative in a collocation method uses all of the grid points in the domain,

effectively giving a derivative of the highest possible numerical order. The result is

a dispersion relationship which is more faithful to the continuum limit than finite

difference [28]. Since phase accuracy is the name of the game in gravitational wave

detection and inference, pseudospectral methods are very compelling.

2.2 Mathematical formulation

The goal is to rewrite the Teukolsky equation in a (pseudo-)spectral fashion amenable

to numerical evolution. In this Section we cover the necessary mathematical formu-

lation. To decompose the angular sector, a generalization of the spherical harmonics

is employed which is adapted to the problem. These are the spin-weighted spheri-

cal harmonics, discussed in Sec. 2.2.1. We then show how the angular sector of the

Teukolsky equation decomposes in this basis in Sec. 2.2.2. In Sec. 2.2.3, we present
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the standard coordinate transformations and ansatz for integrating the Teukolsky

equation, which control the near-horizon and spatial infinity limits of the solution. In

Sec. 2.2.4, we go over calculating spatial derivatives using the pseudospectral method.

In Sec. 2.2.5, we discuss how to represent the field on a computer and the algorithmic

complexity of the scheme described here. In Sec. 2.2.6, we discuss time-stepping via

the so-called method of lines. Finally, in Sec. 2.2.7, we discuss how to implement

purely-absorbing boundary conditions.

2.2.1 ð and spin-weighted spherical harmonics

We start with ordinary spherical harmonics. In terms of Wigner’s D matrices, the

spherical harmonics are

Y`,m(θ, φ) =

√
2`+ 1

4π
D`

0,m(φ, θ, 0) . (2.4)

Here ` is a label to denote the dimension (2` + 1) of the matrix, and the two lower

indices are matrix indices. Viewed as matrices with arguments (θ, φ, ψ) labeling a

group element, the D matrices are irreducible representations of the rotation group,

SO(3).

Recall that we can define [132] raising and lowering operators to change the eigen-

value m,

L± = e±iφ
(
± ∂

∂θ
+ i cot θ

∂

∂φ

)
(2.5)

L±Y`,m =
√

(`∓m)(`±m+ 1)Y`,m±1 . (2.6)

We can view this as an operator acting on the second lower index of the D matrix.

By analogy, we can introduce a set of operators to act on the first lower index. These

operators are traditionally known as ð and ð̄, and the related eigennumber is known as

the spin weight s. They are defined [69] as operating on some spin-weight s quantity
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η as

ðη = −(sin θ)s
(
∂

∂θ
+ i csc θ

∂

∂φ

)
(sin θ)−sη (2.7)

ð̄η = −(sin θ)−s
(
∂

∂θ
− i csc θ

∂

∂φ

)
(sin θ)sη . (2.8)

Then ðη has spin weight s + 1, and quantity ð̄η has spin weight s − 1. The trans-

formation properties of some spin-weight s quantity is η → eisψη under a rotation by

angle ψ, the third Euler angle.

Now, operating on the D matrices, one can associate

sY`,m(θ, φ)e−isψ =

√
2`+ 1

4π
D`
−s,m(φ, θ, ψ) , (2.9)

where sY`,m is called the spin-s spherical harmonic. From the above we can see that

the spin-0 spherical harmonics are also the ordinary spherical harmonics. We can see

that the spin-s harmonics are defined only for ` ≥ |s|.

Just like the ordinary spherical harmonics, the spin-s harmonics are also eigen-

functions of ∂
∂φ

with eigenvalue

∂

∂φ
sY`,m = im sY`,m . (2.10)

The action of ð, ð̄ on the spin-weight s spherical harmonics is [69]

ð sY`,m = +
√

(l − s)(l + s+ 1) s+1Y`,m (2.11)

ð̄ sY`,m = −
√

(l + s)(l − s+ 1) s+1Y`,m (2.12)

ð̄ð sY`,m = − (l − s)(l + s+ 1) sY`,m . (2.13)

The spherical harmonics of spin-weight s are eigenfunctions of ð̄ð, and are therefore

suited to act as basis functions to expand spin-s functions on the sphere. They in
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fact form a basis, with orthogonality and completeness relations,

∫∫
dΩ sY

∗
`,m sY`′,m′ = δ``′δmm′ (2.14)∑

`m

sY
∗
`,m sY`,m = δ(φ− φ′)δ(cos θ − cos θ′), (2.15)

where an asterisk denotes complex conjugation. Note that there is no orthogonal-

ity relation amongst elements with different values of s; each set of spin-weight s

harmonics forms a basis for functions on the sphere.

Angular functions and derivatives can be thought of as operators acting on the

linear vector space A of square-integrable functions on the 2-sphere. At this point, it

is convenient to use the bra-ket notation to represent elements |v〉 ∈ A and 〈v| ∈ A∗,

the dual vector space. The inner product is defined in terms of integration over the

2-sphere as usual. We also write the spin-s harmonic basis elements in this notation,

with |s, `,m〉 representing sY`,m. The value at some point on the sphere can be

evaluated by taking

sY`,m(θ, φ) = 〈θ, φ|s, `,m〉 , (2.16)

and the dual bra gives the value of the complex conjugate,

sY
∗
`,m(θ, φ) = 〈s, `,m|θ, φ〉 . (2.17)

In this notation, the orthogonality (2.14) and completeness (2.15) relations can be

written as

〈s, `,m|s, `′,m′〉 = δ``′δmm′ (2.18)∑
`m

|s, `,m〉〈s, `,m| = 1 , (2.19)

where 1 is the identity operator.
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We will need to be able to evaluate how certain operators “connect” different

elements of the spin-s harmonics. These matrix elements may be calculated by de-

composing some arbitrary function on the sphere into spin-0 (the usual) spherical

harmonics, and then using the Clebsch-Gordan coefficients [39],

∫∫∫
dΩdψ Dl3∗

s3m3
Dl2
s2m2

Dl1
s1m1

=
8π2

2l3 + 1
〈l3,m3|l1,m1; l2,m2〉〈l3, s3|l1, s1; l2, s2〉 ,

(2.20)

where 〈l3,m3|l1,m1; l2,m2〉 is the Clebsch-Gordan coefficient for SO(3): the coeffi-

cients for decomposition of the product |l1,m1〉⊗|l2,m2〉 into the basis |l3,m3〉. With

no s label, a state |l,m〉 is taken to be an ordinary spherical harmonic with s = 0.

When s2 = s3 and s1 = 0, one can multiply the first and second D matrices by

e±isψ and replace each D matrix by a spin-weighted spherical harmonic (the third

one an ordinary spherical harmonic). Then there is no more ψ dependence, and the

integral may be used to evaluate

〈s, l3,m3|Yl1,m1|s, l2,m2〉 ≡
∫∫

dΩ sY
∗
l3,m3 s

Yl2,m2 0Yl1,m1

=
√

(2l1+1)(2l2+1)
4π(2l3+1)

〈l3,m3|l1,m1; l2,m2〉〈l3,−s|l1, 0; l2,−s〉 .

(2.21)

In particular, we will encounter

cos θ =

√
4π

3
Y1,0 (2.22)

sin2 θ =
4
√
π

3

(
Y0,0 −

1√
5
Y2,0

)
, (2.23)

which we have decomposed into ordinary spherical harmonics. There is no depen-

dence on φ, so only m = 0 harmonics are involved in the decomposition. From the

Clebsch-Gordan selection rules, these only couple together states of equal m. The

non-vanishing matrix elements are

〈s, `,m| cos θ|s, j,m〉 =

√
2j + 1

2`+ 1
〈`,m|j,m; 1, 0〉〈`,−s|j,−s; 1, 0〉 (2.24)
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and

〈s, `,m| sin2 θ|s, j,m〉 =
2

3
δ`,j −

2

3

√
2j + 1

2`+ 1
〈`,m|j,m; 2, 0〉〈`,−s|j,−s; 2, 0〉 . (2.25)

We see that the operator cos θ is tridiagonal in `’s, i.e. it connects states ` to states

(`, ` ± 1); whereas the operator sin2 θ is pentadiagonal, connecting states ` to states

(`, `± 1, `± 2).

We can rewrite operators O ∈ End(A) (i.e. O : A → A) in the algebra of A×A∗.

For example, we can write the ∂φ and ð̄ð operators as

∂

∂φ
=
∑
`,m

|s, `,m〉im〈s, `,m| (2.26)

ð̄ð =
∑
`,m

|s, `,m〉(s− `)(`+ s+ 1)〈s, `,m| . (2.27)

We can now write the Teukolsky equation with the angular sector decomposed into

the basis of spin-weighted spherical harmonics.

2.2.2 Teukolsky equation with spectral angular sector

We now apply the math of Sec. 2.2.1 to linear perturbations of a rotating black hole

(Kerr) spacetime. The equations of motion of a spin s field on a Kerr background are

described by the Teukolsky equation [145, 146, 127]. We can write this as

∆TsΨs = 4π∆ΣTs , (2.28)

where the field Ψs can be different Newman-Penrose scalars and the associated source

term Ts is different for each field (these can be found in [145]); and the Teukolsky

differential operator (times ∆), in Boyer-Lindquist coordinates and in units where
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G = c = 1, is

∆Ts =
[(
a2 + r2

)2 − a2∆ sin2 θ
] ∂2

∂t2
−∆−s+1 ∂

∂r
∆s+1 ∂

∂r

+ 4Mar
∂2

∂t∂φ
− 2s

[
M(r2 − a2)−∆(r + ia cos θ)

] ∂
∂t

+

(
a2 − ∆

sin2 θ

)
∂2

∂φ2
− ∆

sin θ

∂

∂θ
sin θ

∂

∂θ

− 2s

[
a(r −M) +

i∆ cos θ

sin2 θ

]
∂

∂φ
+ ∆(s2 cot2 θ − s) , (2.29)

or, slightly more compactly,

∆Ts =
[(
a2 + r2

)2 − a2∆ sin2 θ
] ∂2

∂t2
−∆−s+1 ∂

∂r
∆s+1 ∂

∂r

+ 4Mar
∂2

∂t∂φ
− 2s

[
M(r2 − a2)−∆(r + ia cos θ)

] ∂
∂t

+ a2 ∂
2

∂φ2
− 2sa(r −M)

∂

∂φ
−∆ð̄ð , (2.30)

where the usual Boyer-Lindquist quantities ∆,Σ are given by ∆ = r2 − 2Mr + a2,

Σ = r2 + a2 cos2 θ. In going from Eq. (2.29) to Eq. (2.30), we have identified the

operator

ð̄ð =
1

sin2 θ

∂2

∂φ2
+

1

sin θ

∂

∂θ
sin θ

∂

∂θ
+ 2s

i cos θ

sin2 θ

∂

∂φ
+ (s− s2 cot2 θ) (2.31)

in the Teukolsky operator. The Teukolsky operator is almost, but not quite, diagonal

in the |s, `,m〉 basis. It does not connect states with differing m numbers, but it is

pentadiagonal in the `’s, because of the appearance of cos θ and sin2 θ in the operator.

The field Ψs and source term ∆ΣTs can be decomposed into the basis |s, `,m〉.

We simply write

Ψs(t, r, θ, φ) = 〈θ, φ|Ψs(t, r)〉 (2.32)

|Ψs(t, r)〉 =
∑
`,m

Ψs,`,m(t, r) |s, `,m〉 , (2.33)
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where the coefficients Ψs,`,m(t, r) are found as

Ψs,`,m(t, r) = 〈s, `,m|Ψs(t, r)〉 (2.34)

=

∫∫
dΩ sY

∗
`,m(θ, φ) Ψs(t, r, θ, φ) , (2.35)

and similarly for the source term,

∆ΣTs(t, r, θ, φ) = 〈θ, φ|τs(t, r)〉 (2.36)

|τs(t, r)〉 =
∑
`,m

τs,`,m(t, r) |s, `,m〉 , (2.37)

where the coefficients τs,`,m(t, r) are found as

τs,`,m(t, r) = 〈s, `,m|τs(t, r)〉 (2.38)

=

∫∫
dΩ sY

∗
`,m(θ, φ) ∆ΣTs(t, r, θ, φ) . (2.39)

We can now view the Teukolsky operator (2.30) as a 1+1 dimensional linear, time-

independent partial differential operator. The coefficients of this differential operator

are built from the algebra of functions of r times matrix operators in A×A∗ acting

on functions on the 2-sphere. We can write a standard form for such PDEs as

∆Ts|Ψs〉 =
(
Att∂tt + Atr∂tr + Arr∂rr +Bt∂t +Br∂r + C

)
|Ψs〉 = |S〉 , (2.40)
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and identifying the operator coefficients in Eq. (2.30),

Att =
(
a2 + r2

)2 − a2∆ sin2 θ (2.41a)

Atr = 0 (2.41b)

Arr = −∆2 (2.41c)

Bt = 4Mar
∂

∂φ
− 2s

[
M(r2 − a2)−∆(r + ia cos θ)

]
(2.41d)

Br = −(s+ 1)∆2(r −M) (2.41e)

C = a2 ∂
2

∂φ2
− 2sa(r −M)

∂

∂φ
−∆ð̄ð (2.41f)

|S〉 = 4π|τs〉 (2.41g)

where cos θ, sin2 θ, ∂φ, and ð̄ð are all treated as angular operators with expansions

given by Eqs. (2.24), (2.25), (2.26), and Eq. (2.27), respectively; and any radial

function not multiplied by one of these angular operators is implicitly multiplied by

the identity operator.

2.2.3 Coordinate transformations and radial falloff

Borrowing from the experience of successfully-implemented numerical integrations of

the Teukolsky equation, we make standard transformations to the differential equa-

tion. These transformations follow the work of [87, 140, 188] and are motivated by the

asymptotic behaviour of the solution to the Teukolsky equation in the near-horizon

and spatial infinity limits.

First, the frame dragging of the ergosphere is “unwound” with the transformed

azimuthal coordinate φ̃ defined by

dφ̃ = dφ+
a

∆
dr , (2.42)

which can be integrated to give

φ̃ = φ+
a

r+ − r−
ln
r − r+

r − r−
, (2.43)
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where as usual, r± are the larger and smaller roots of ∆ = (r − r+)(r − r−) = 0 and

are given by

r± = M ±
√
M2 − a2 (2.44)

(the event horizon is located at r+).

It is of great importance that the transformation of partial derivatives induced by

this change of variables,

∂

∂φ
→ ∂

∂φ̃
(2.45)

∂

∂r
→ ∂

∂r
+
a

∆

∂

∂φ̃
, (2.46)

does not dramatically affect the angular sector. Specifically, the operator ð̄ð in the

“tilde” coordinates has the same structure, which can be written as ˜̄ðð, by simply

putting a tilde onto each φ. An identical decomposition into spin-weighted spherical

harmonics can be performed in tilde coordinates, which we assume from here for-

ward. The induced change on the coefficients of the Teukolsky operator in the tilde

coordinates are

Ãtt = Att (2.47a)

Ãtr = Atr (2.47b)

Ãrr = Arr (2.47c)

B̃t = Bt + AtrJφ̃
∂

∂φ̃
(2.47d)

B̃r = Br + 2ArrJφ̃
∂

∂φ̃
(2.47e)

C̃ = C + Arr
[
J2
φ̃

∂2

∂φ̃2
+

(
∂

∂r
Jφ̃

)
∂

∂φ̃

]
+BrJφ̃

∂

∂φ̃
, (2.47f)

where Jφ̃ = a/∆, all ∂φ in the coefficients are replaced with ∂φ̃, and where ð̄ð is

replaced with ˜̄ðð.
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Still for the near-horizon limit, the “tortoise coordinate” r∗ is introduced, defined

by

dr∗ =
a2 + r2

∆
dr . (2.48)

This Jacobian may also be integrated to explicitly find

r∗(r) = r +
2Mr+

r+ − r−
ln
r − r+

2M
− 2Mr−
r+ − r−

ln
r − r−

2M
. (2.49)

The significance of this coordinate transformation is that solutions to the Teukolsky

equation are asymptotically periodic in r∗ [146] in both the r → ∞ (r∗ → ∞) limit

and the r → r+ (r∗ → −∞) limit; i.e. respectively the spatial infinity and horizon

limits. This coordinate transformation induces the coefficient transformation

Ã∗tt = Ãtt (2.50a)

Ãtr∗ = JrÃ
tr (2.50b)

Ãr∗r∗ = J2
r Ã

rr (2.50c)

B̃∗t = B̃t (2.50d)

B̃r∗ = JrB̃
r +

(
∂

∂r
Jr

)
Ãrr (2.50e)

C̃∗ = C̃ , (2.50f)

where Jr = (a2 + r2)/∆.

We now move to the spatial infinity limit. In this limit, the asymptotic behaviour

of outgoing waves of ψ4 behave as ψ4 ∼ exp(iωr∗)/r [146]. The argument of the

Teukolsky operator, Ψs for s = −2, is related to ψ4 through Ψ−2 = ρ−4ψ4, where

ρ = −1/(r − ia cos θ). We are interested in the oscillatory behaviour in the spatial

infinity limit, so to scale out radial power-law behaviour, we will rewrite the equation

for the auxiliary field ψ′ ≡ r−3Ψ−2. To keep things general, this can be accomplished

by ‘conjugating’ the differential operator by some purely radial function fn as follows:
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∆Ts|Ψs〉 = 4π|τs〉 (2.51a)

∆Tsfnf−n|Ψs〉 = 4π|τs〉 (2.51b)(
f−n ◦∆Ts ◦ fn

)
|f−nΨs〉 = 4π|f−nτs〉 . (2.51c)

The coefficients of the differential operator (∆Ts)fn ≡ (f−n ◦∆Ts ◦ fn) (the inner

automorphism of ∆Ts by fn) will be written with subscript fn, and are related to the

pre-conjugated coefficients of ∆Ts by

Ã∗ttfn = Ã∗tt (2.52a)

Ãtr∗fn = Ãtr∗ (2.52b)

Ãr∗r∗fn = Ãr∗r∗ (2.52c)

B̃∗tfn = B̃∗t + n
f ′

f
Ãtr∗ (2.52d)

B̃r∗
fn = B̃r∗ + 2n

f ′

f
Ãr∗r∗ (2.52e)

C̃∗fn = C̃∗ + n
f ′

f
B̃r∗ +

(
n
f ′′

f
+ n(n− 1)

f ′2

f 2

)
Ãr∗r∗ (2.52f)

|S̃∗fn〉 = |f−nS̃∗〉 , (2.52g)

where the prime is a derivative with respect to the radial coordinate in the operator,

here r∗. For our purposes, we have f = r(r∗) and n = +3, and we need the derivatives

f ′ = dr/dr∗ = ∆/(a2 + r2) and

f ′′ =
∂

∂r∗
∆

a2 + r2
=

∆

a2 + r2

2M (r2 − a2)

(a2 + r2)2 . (2.53)

2.2.4 Radial sector: pseudo-spectral method

All of the angular operators (multiplying by a function, e.g. cos θ, and taking deriva-

tives, e.g. ∂φ̃ and ˜̄ðð) have been transformed into sparse operators in spectral space.

This is amenable to numerical simulation simply by choosing some sufficiently high
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maximum `max and truncating the angular harmonics higher than that value. As

motivated in Sec. 2.1.5, we will address the radial sector with the pseudo-spectral or

collocation method.

Under the umbrella of pseudo-spectral methods there is still the choice of colloca-

tion points, or equivalently, the choice of basis functions used to represent the data.

Corresponding to each choice of basis functions is a different representation of the

derivative operator, which in general is a dense Nr ×Nr matrix, with Nr the number

of radial collocation points (or spectral coefficients). However, two choices of basis

functions avoid dense derivative operators: the Fourier and Chebyshev bases. That

the Chebyshev basis has this property follows from the Chebyshev polynomials being

re-mapped Fourier basis functions,

Tn(cos θ) = cos(nθ) , (2.54)

so the sparsity of the derivative operator in the Chebyshev basis follows from the

sparsity of the derivative operator in the Fourier basis. The other ingredient which

makes the derivative operator sparse in the Fourier and Chebyshev bases is the ability

to perform a fast Fourier transform (FFT). Calculating a derivative then corresponds

to going into the spectral domain with an FFT (which costsO(Nr logNr)), calculating

a derivative (which costs O(Nr)), and then transforming back to the collocation (grid

points) domain. The derivative calculation in a Fourier or Chebyshev basis is thus

only O(Nr logNr), compared with the typically O(N2
r ) cost in a generic basis. The

basis transformations and derivative operations are laid out below.

Fourier basis

The discrete Fourier transform (DFT) is defined on N complex data points labeled

{fj}N−1
j=0 , at standard grid points {xj = j}N−1

j=0 . The basis functions, in the convention

of FFTW [60, 66], are

ek(x) = e+2πikx/N , k = 0 . . . N − 1 . (2.55)
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These basis functions are orthogonal (but not normalized) under the discrete integral,

i.e. the sum over grid points. Then the DFT is defined as

f̃k =
N−1∑
j=0

fje
∗
k(xj) =

N−1∑
j=0

fje
−2πijk/N , (2.56a)

and the “inverse” as

fj =
N−1∑
k=0

f̃ke
+2πijk/N . (2.56b)

Applying successively Eq. (2.56a) and Eq. (2.56b) results in an overall multiplication

byN which must be divided out. The DFT may be computed inO(N logN) time with

the fast Fourier transform (FFT), making use of the factorization of the transform

into two transforms of smaller size.3

The coefficients f̃k are arranged so that the first dN/2e coefficients are positive

frequencies and the remaining ones negative. To take a derivative of a function in the

Fourier representation, the function’s Fourier coefficients are multiplied by a factor

proportional to k. This factor is clear from the derivatives of the basis functions,

d

dx
ek(x) =

 2πi k
N
ek(x) k ≤ bN/2c

2πiN−k
N
ek(x) k > bN/2c

. (2.57)

Therefore the derivative is calculated as

(
d̃f

dx

)
k

=

 2πi k
N
f̃k k ≤ bN/2c

2πiN−k
N
f̃k k > bN/2c

. (2.58)

The above derivative calculation is appropriate on the standard domain of {xj = j}N−1
j=0 .

One may apply an affine transformation to change the domain to {xj = xmin + j∆x}N−1
j=0 ,

with ∆x = (xmax−xmin)/(N−1) (such that the smallest grid point has value x0 = xmin

3This is true even for sizes N which are not multiples of 2. For a size with a factorization N = pq,
the DFT may be decomposed into p DFTs of size q and q DFTs of size p.
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N

N

Figure 2-1: A function (in black) on the domain [0, N ] and its extension (in red) to
the whole real line. In the top panel, the extension uses the Fourier basis, resulting
in a jump discontinuity at the boundary. In the bottom panel, the extension uses the
discrete cosine basis, leading to continuity at the boundary (but a discontinuity in
the first derivative).

and the largest grid point value is xN−1 = xmax). Then the derivative is found as

(
d̃f

dx

)
k

=

 2πi k
N

N−1
xmax−xmin

f̃k k ≤ bN/2c

2πiN−k
N

N−1
xmax−xmin

f̃k k > bN/2c
. (2.59)

Though simple and generally useful, the Fourier basis is actually adapted to pe-

riodic boundary conditions, i.e. fi+N = fi; that is, the Fourier series representation

of a function on a compact domain defines an extension of the function to the whole

real line (see Fig. 2-1). However, for the problem at hand, there is no reason that the

value of ψ at the left and right boundaries should be equal. This results in a jump

discontinuity for the Fourier extension of the function. The Fourier representation of

a step function only has algebraic convergence in Fourier coefficients: the power in

the k coefficient goes as f̃k ∝ 1/k. In general, for a function with a jump disconti-

nuity in the pth derivative, the convergence of the spectral representation is algebraic

with slope f̃k ∝ kp−1. An infinitely differentiable function, on the other hand, has
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Figure 2-2: The Chebyshev-Gauss-Lobatto collocation points. Points are equally
spaced in angle on the semicircle over the domain [−1, 1]. The collocation points
come from projecting down the co-ordinates. Figure inspired by Fig. 4.4 of [28].

geometric convergence, f̃k ∝ e−µk for some number µ [28]. To recover this potentially

geometric convergence, other bases should be considered.

Chebyshev basis

The basis of Chebyshev polynomials Tn(x) is complete and orthonormal on x ∈

[−1,+1] with integration kernel w(x) = (1 − x2)−1/2. This corresponds to Gaussian

quadrature with the collocation points given by [126]

xj = cos

(
jπ

N − 1

)
, j = 0 . . . N − 1 , (2.60)

which is the Chebyshev-Gauss-Lobatto grid (the grid includes the endpoints of the

domain). The collocation points can be visualized as in Fig. 2-2. Note that here

x0 corresponds to the rightmost grid point and xN−1 is the leftmost grid point. A

function with values fj on this grid can be written as a linear combination of basis

polynomials as

fj =
N−1∑
k=0

f̃kTk(xj) =
N−1∑
k=0

f̃k cos

(
k

jπ

N − 1

)
, (2.61a)
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from the identity Tn(cos θ) = cos(nθ), and where the spectral coefficients can be found

from the Gaussian quadrature

f̃k =
1

N − 1

N−1∑′

j=0

fjTk(xj) =
1

N − 1

N−1∑′

j=0

fj cos

(
k

jπ

N − 1

)
, (2.61b)

where the prime on the summation means that the first and last terms of the sum

are multiplied by 1
2

in accordance with the trapezoidal rule for Gaussian quadrature.

Notice that Eqs. (2.61a) and (2.61b) are identical up to an overall scaling of 1
N−1

and the factors of 1
2

on the first and last terms of the sum in Eq. (2.61b). One can

therefore use a convention where instead the first and last Chebyshev coefficients are

replaced with twice their values and the sum in Eq. (2.61a) replaced with a “primed”

sum
∑′ as in Eq. (2.61b) to compensate,

fj =

N−1∑′

k=0

f̃ ′kTk(xj) , (2.62)

and where f̃ ′k = f̃k for k = 1 . . . N − 2 and f̃ ′k = 2f̃k for k = 0, k = N − 1. Then,

besides the scaling by 1
N−1

, both operations are achieved by the first type of discrete

cosine transform (the so-called DCT-I [60]). The DCT, like the Fourier transform, can

also be computed in O(N logN) time by breaking it up into subproblems of smaller

size and combining their results.

The derivative d
dx
Tn(x) of a Chebyshev polynomial, when expanded in the Cheby-

shev basis, has contribution from all lower polynomials of opposite parity; that is, the

derivative has a dense expansion in this basis rather than a sparse one. However, the

use of a recurrence relationship can reduce the time for calculating the derivative to

O(N). This recurrence is

2Tn(x) =
1

n+ 1

d

dx
Tn+1(x)− 1

n− 1

d

dx
Tn−1(x) . (2.63)

For a fixed expansion order N (i.e. having N coefficients), the expansion f̃ ′k clearly has

no contribution from TN , TN+1, or higher. Therefore the derivative of the expansion,
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(
d̃f
dx

)′
k

has no coefficient in front of TN−1, TN , or higher. This is enough to start the

recurrence calculation for the expansion of the derivative [31],

(
d̃f
dx

)′
N−1
← 0 , (2.64a)(

d̃f
dx

)′
N−2
← (N − 1)f̃ ′N−1 , (because coefficients are “primed”) (2.64b)(

d̃f
dx

)′
k−1
←
(
d̃f
dx

)′
k+1

+ 2kf̃ ′k , k = (N − 2) . . . 1 , (2.64c)

[but note that Eq. (2.64b) differs from Eq. (6) of Broucke [31] since his largest coeffi-

cient is not “primed”]. The above derivative calculation takes place on the standard

grid given in Eq. (2.60) which goes from [−1,+1]. The Chebyshev series expansion

can be applied on any compact domain [xmin, xmax] through an affine transformation;

then the derivative calculation must be multiplied overall by the Jacobian of this

affine tranformation, which is simply a factor of 2
xmax−xmin

.

The advantage of the Chebyshev basis is that it does not impose a periodic bound-

ary condition as the Fourier basis does. This means that each endpoint can have an

arbitrary value (and arbitrary first derivative) without affecting spectral convergence.

The Chebyshev basis also greatly increases the resolution near the boundary—the grid

spacing towards either boundary goes as N−2, as compared to the N−1 spacing of

the Fourier basis. While this can be beneficial, it is also potentially problematic

for a hyperbolic (time-evolution) problem. Typically, the stability of a hyperbolic

problem is controlled by the size of the time step δt. The size of the stability region

is controlled by the largest eigenvalue of the time-evolution operator, which in turn

comes from the largest eigenvalue of the spatial derivative operator. This in turn

comes from the finest spatial scale which is resolved—i.e. from the grid spacing. The

net result is that a Chebyshev code unfortunately requires a much smaller time step

than a Fourier code, and therefore more wall clock time per simulation time. One

potential approach to alleviate this unfortunate situation is to use domain decompo-

sition, where the domain of the simulation is subdivided into several intervals, each

of which is covered with a Chebyshev grid, and the domains passing information be-
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tween each other. Domain decomposition is beyond the scope of this work and is left

as a potential future improvement to this technique.

Discrete cosine/sine basis

One returns then to evenly spaced grids, but with different boundary conditions than

the Fourier basis. One approach is to use the discrete cosine basis, which extends

compactly-supported functions to the real line in a way different than Fourier series.

The boundary conditions of the discrete cosine basis are such that the extension of

a function to the real line is even about both of the endpoints of its domain, i.e. for

a function f defined on x ∈ [xmin, xmax], the function is even about both x = xmin

and x = xmax. If f is continuous on [xmin, xmax], then the extension is automatically

continuous on the real line. The derivative of this extension has the opposite parity at

each endpoint, and is therefore a sine series rather than a cosine series (see Fig. 2-1).

For discretely sampled functions, there are actually several basis choices. These

are described by i) parity at each endpoint (4 choices total) and ii) whether the point

of parity (or reflection) is on a sampled grid point or midway between sampled grid

points (another factor of 2), leading to a total of 8 basis choices altogether. These

are the DCT and DST of types I, II, III, and IV, each with their own conventions.

As mentioned in Sec. 2.2.4, the Chebyshev transform is accomplished with a DCT-I,

which is its own inverse (up to a factor of N − 1). The DCT-II and DCT-III are each

others’ inverses (up to a factor of N), as are the DST-II and DST-III. The remaining

transforms are all self-inverting (up to a factor of N).

To implement a DST/DCT basis, one needs a cosine and sine transform (and their

inverses) which have the same points of parity. In practice we use the conventions of

FFTW [60, 66], presented below. All of the transforms are on the standard grid of

{xj = j}N−1
j=0 . The DCT-II (named REDFT10 in FFTW) has even parity about the

points x = −1/2 and x = N − 1/2, and is defined as

f̃+
k = 2

N−1∑
j=0

fj cos[π(j + 1/2)k/N ] . (2.65a)
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The DCT-III (REDFT01) has even parity about k = 0 and odd parity about k = N ,

and is defined as

fj = f̃+
0 + 2

N−1∑
k=1

f̃+
k cos[πk(j + 1/2)/N ] . (2.65b)

The DST-II (RODFT10) has odd parity about x = −1/2 and x = N − 1/2, and is

defined as

f̃−k = 2
N−1∑
j=0

fj sin[π(j + 1/2)(k + 1)/N ] . (2.65c)

Finally, the DST-III (RODFT01) has odd parity about k = −1 and even parity about

k = N − 1, and is defined as

fj = (−1)j f̃−N−1 + 2
N−2∑
k=0

f̃−k sin[π(k + 1)(j + 1/2)/N ]. (2.65d)

The transforms have been written in such a way that the DCT-II and DST-II are

used to go into the spectral domain (labeled by k), and the DCT-III and DST-III

return to the values at grid points (labeled by j), dividing by 2N to normalize the

transforms. The derivative of a cosine series is performed in the spectral domain,

resulting in a sine series, and vice versa. The basis functions for the DCT-II are

e+
k (x) = cos (πk(x+ 1/2)/N) k = 0 . . . N − 1 , (2.66a)

and the basis functions for the DST-II are

e−k (x) = sin (π(k + 1)(x+ 1/2)/N) k = 0 . . . N − 1 . (2.66b)

Taking derivatives of the basis functions yields

d

dx
e+
k (x) =

(
−πk
N

)
e−k−1(x) (2.67a)

d

dx
e−k (x) =

(
+
π(k + 1)

N

)
e+
k+1(x) . (2.67b)
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The derivative calculation is as follows. Start with samples of the function fj at

the grid point xj. Construct the cosine series f̃+
k by applying the DCT-II. Take the

derivative, resulting in the sine series
(
d̃f
dx

)−
k

, given by

(
d̃f
dx

)−
k

=

(
−π(k + 1)

N

)
f̃+
k+1 , (2.68)

and where
(
d̃f
dx

)−
N−1

= 0. Then the sine series may be transformed back to grid points

via the DST-III.

Similarly, one may start with a sine series f̃−k . Taking a derivative results in the

cosine series
(
d̃f
dx

)+

k
, given by

(
d̃f
dx

)+

k
=

(
πk

N

)
f̃−k−1 , (2.69)

and where
(
d̃f
dx

)+

0
= 0. As mentioned earlier, these derivatives are all calculated on

the standard grid {xj = j}N−1
j=0 . Again one can make an affine transformation to a

grid with x0 = xmin, xN−1 = xmax; and on this grid all of the derivative calculations

must be multiplied by an overall factor of the Jacobian, N−1
xmax−xmin

.

2.2.5 Numerical representation, computational complexity

In Section 2.2.2, we showed how to treat the Teukolsky equation’s angular sector

spectrally, discretizing it; this discretization may be truncated at some sufficiently

high `max for simulation on a computer. In Section 2.2.4, we showed how to treat the

radial sector with the pseudospectral/collocation approach: derivatives calculated in

the spectral domain, and multiplying by radial functions performed on collocated grid

points (where the residual of the truncated spectral series vanishes). The numerical
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state of the field ψ can now be represented as an Nr ×N` array of coefficients

ψ(t) =


〈ψ(t, r∗0)|`min〉 〈ψ(t, r∗0)|`min + 1〉 . . . 〈ψ(t, r∗0)|`max〉

〈ψ(t, r∗1)|`min〉 〈ψ(t, r∗1)|`min + 1〉 . . . 〈ψ(t, r∗1)|`max〉
...

...
. . .

...

〈ψ(t, r∗Nr−1)|`min〉 〈ψ(t, r∗Nr−1)|`min + 1〉 . . . 〈ψ(t, r∗Nr−1)|`max〉

 (2.70)

where the s,m indices have been suppressed in the basis kets as they are the same

for all elements. This is an element of the vector space F ≡ RNr × AN` where RNr

is the vector space of (complex) radial functions discretized at Nr points, and AN` is

the space spanned by the first N` angular harmonics of spin-weight s and azimuthal

number m of complex functions on the 2-sphere with m-fold azimutal symmetry.

Now we can discuss how the different operators act in this representation. An

angular operator such as cos θ, ∂φ or ð̄ð is represented by a square N` × N` matrix

(with matrix elements given in Sec. 2.2.1). Acting with an angular operator in this

representation amounts to multiplication from the right by the transpose of the matrix

(though all the matrices we deal with are symmetric, so the transpose has no effect).

For example,

ð̄ðψ =


. . .

...

. . . 〈ψ(t, r∗j )|`I〉 . . .
...

. . .

×

×


(s− `min)(`min + s+ 1) 0 . . .

0 (s− `min − 1)(`min + s+ 2) 0
... 0

. . .

 . (2.71)

In general, this would scale as O(NrN
2
` ). However, all of the angular operators

involved are sparse in the basis of spin-weighted spherical harmonics. Therefore such

operations only cost O(NrN`).

Multiplying by a radial function f(r∗) is accomplished by multiplying each row

r∗j by the value fj = f(r∗j ). This, too, can be represented by a matrix operator: this
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time a square Nr ×Nr diagonal matrix which acts from the left,

f(r∗)ψ =


f0 0 . . .

0 f1 0
... 0

. . .

×


. . .
...

. . . 〈ψ(t, r∗j )|`I〉 . . .
...

. . .

 . (2.72)

This operation clearly scales as O(NrN`).

Transforming into the spectral domain may too be represented by a square matrix

acting from the left, but this matrix would not be sparse. Instead, each column (a

fixed-` subspace overR) is individually transformed with a fast Chebyshev transform,

FFT, or DCT/DST;4 this is O(N`Nr logNr). As shown in Sec. 2.2.4, for each of the

bases considered, taking a derivative when in the spectral representation is an O(Nr)

operation for each column, and therefore also O(NrN`). For the FFT basis, taking a

derivative corresponds to multiplying each row by a factor given in Eq. (2.59). This

can be treated as matrix multiplication from the left by a diagonal matrix where the

kth element on the diagonal is proportional to the wavenumber of the kth radial basis

element. For the Chebyshev basis, the derivative must be computed by starting at

the bottom row of the array and applying the recursion relation in Eq. (2.64), working

upward through the array. For the DCT/DST bases, the derivative corresponds to

shifting the whole array up or down by one row (and filling the top/bottom row with

zeros), and then multiplying each row by the appropriate factor given in Eq. (2.67)

(which can also be represented by multiplying from the left by a diagonal matrix);

always keeping track of whether the array represents a cosine or sine series.

There are three ingredients necessary for good scaling: sparsity of angular oper-

ators, fast pseudospectral transformations, and fast derivative calculations. As long

as all three of these requirements are met, then the asymptotic scaling is dominated

by the pseudospectral transformation: O(N`Nr logNr) per timestep.

4Here a practical matter is important for implementation on a real computer. An FFT (or
DCT or fast Chebyshev transform) will be fastest if the data being transformed are contiguous
in memory, thus avoiding cache misses and allowing vectorization. Therefore, radial grid points
should be adjacent in memory; this is called “column-major” storage order for the array presented
in Eq. (2.70).
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2.2.6 Time evolution: Method of lines

Thus far we have discussed the angular and radial sectors, but not the temporal sector.

Starting with the infinite dimensional function space of complex functions with m-

fold symmetry on S2 over r∗ ∈ (−∞,+∞), we have truncated the angular space to

be only N` dimensional over each r∗, truncated the radial domain to r∗ ∈ [r∗min, r
∗
max],

and further discretized the radial domain to be Nr dimensional, represented either by

the Nr values at the collocation points or equivalently by the Nr spectral coefficients

which have no residual at those collocation points.

We now have an NrN` dimensional function space F with a well-posed initial-

value problem. That there exists a well-posed IVP comes from the hyperbolicity

of the Teukolsky equation [and can simply be read off of the principal part of the

differential operator in e.g. Eqs. (2.41), (2.47), (2.50), and Eq. (2.52)].

A point in the function space labeled by time t corresponds to a field configuration

ψ(t). The solution to the PDE is a curve ψ : t→ F in the function space, which is a

sequence of field configurations evolving over time. In a sense, the PDE has become

an “ODE” on the function space (this viewpoint can only be taken for PDEs with a

well-posed IVP).

Leaving the temporal direction continuous while discretizing the spatial directions

is sometimes referred to as the “method of lines,” with each “line” coupled to the

others, since the resulting solution has support on a set of timelike lines in the t− r

space. Evolving this “ODE” can be approached with any standard ODE technique

such as the Runge-Kutta method or Adams-Bashforth-Moulton predictor-corrector

method. These methods can be either explicit or implicit, and with a fixed time step

or adaptive time step.

Regardless of whether the method is explicit or implicit, there is no guarantee

of stability, though implicit methods ought to be more stable. This author is un-

aware of any analytical results on the stability of numerical methods for simulating

perturbations to a Kerr spacetime. Even the stability of the continuum limit (no dis-

cretization) is an open question—the available results are for per-mode stability [156]
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or for |a| �M [49]. Regardless of the lack of analytic results, the experience of earlier

numerical simulations suggests that the problem is stable [140] with certain steppers.

In practice we use the ODE drivers available in the GNU Scientific Library

(GSL) [75]. The only “Jacobian”-free implicit method available in the GSL is the

multi-step Adams-Bashforth-Moulton predictor-corrector method. To use any of

these drivers, the system must be put into first-order (in time) form. Order re-

duction is always possible by introducing auxiliary variables which are derivatives of

the field variables.

Starting with our generic second order equation with field u, introduce the auxil-

iary variable which is the field “velocity” v ≡ ∂tu. Then the original system

[
Att∂2

t + Atr∂t∂r + Arr∂2
r +Bt∂t +Br∂r + C

]
u = 0 (2.73)

can be rewritten as the system of two first-order (in time) equations in two fields, u

and v,

∂tu = v (2.74a)

∂tv = −
(
Att
)−1 [

Atr∂rv + Arr∂2
ru+Btv +Br∂ru+ Cu

]
. (2.74b)

Note that for our purposes, Att is a symmetric, positive-definite, pentadiagonal ma-

trix. It can therefore be decomposed as Att = LDLT where L is a lower triangular

matrix with all elements on the main diagonal equal to 1, D is a diagonal matrix of

definite signature (positive in this case), and LT is the transpose of L. Furthermore,

L has only one subdiagonal, since Att has two. The system can be efficiently solved by

forward- and back-substitution in O(N`) per radial grid point (if Att was dense, this

would instead be quadratic in N`). These sparse matrix routines are available in most

linear algebra systems; we use the Eigen template matrix library [59]. The LDLT

decomposition is slightly better than the classical Cholesky decomposition (i.e. LLT )

since it avoids square roots of diagonal elements and is defined for both positive- and

negative-definite matrices (but not indefinite matrices).
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The system is now in a standard first order form,

d

dt
fj = Fj

(
t, ~f
)

(2.75)

which is expected by generic ODE integation routines such as those in the GSL. The

index j is actually a super-index running over both u and v, the radial index, and the

angular mode numbers.

2.2.7 Boundary conditions

The spatial boundary of our domain is non-empty, and therefore our hyperbolic PDE

also requires boundary conditions (BCs). Physically, we do not want waves entering

our spatial domain from infinity (r∗ → +∞) or from the event horizon (r∗ → −∞).

The conditions to impose are called outgoing BCs or absorbing BCs.

Mathematically, we want to ensure that only rightgoing (respectively leftgoing)

waves are supported at the right (respectively left) boundary. This is straightforward

for the simplest of wave equations: consider the non-dispersive, non-dissipative scalar

wave equation [
∂2
t − c2∂2

x

]
ψ = 0 , (2.76)

for some real number c. The differential operator may be directly factored into first

order differential operators which have leftgoing and rightgoing waves in their kernels,

(∂t + c∂x) (∂t − c∂x)ψ = 0 . (2.77)

A wave in the kernel of either operator is a solution of Eq. (2.76). Then at the

rightmost boundary of the domain xR, one can impose the boundary condition

∂tψR = −c∂xψR (2.78)

which is solved only by rightgoing waves ψ = exp (iωt− ikx) (and with the opposite

sign for the leftmost boundary).
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For a general wave equation with dispersion and dissipation, one can not impose

a first order boundary condition which absorbs all wavenumbers without reflection.

What made it possible to impose Eq. (2.78) for all wavenumbers is the linearity

of the associated dispersion relation ω(k), or equivalently that the phase velocity

c(k) = ω(k)/k is constant in k. Ideally, one would allow ω(k) to act not only on real

numbers k but also on operators, constructing the general boundary condition

1

i

∂

∂t
ψ = ω+

(
1

−i
∂

∂x

)
ψ , (2.79)

where ω+ gives the rightgoing dispersion relationship. However, such an operator

would have spatial derivatives of arbitrarily high order.

In general, though, the phase velocity c(k) asymptotes to a constant in the limit

as k → ∞. This constant is the instantaneous slope of characteristics of the wave

equation in the t−x plane. Equivalently, the dispersion relationship ω+(k) asymptotes

to a linear function ω+(k) ≈ c∞k, where c∞ ≡ limk→∞
ω+(k)
k

.

An equivalent way to identify the speed of characteristics is to look only at the

principal part of a differential operator, i.e. the highest order derivative operators.

The principal part of the Teukolsky operator in the form presented in Eq. (2.52) is

Pr
[
(∆Ts)fn

]
= Ã∗ttfn∂

2
t + Ãtr∗fn ∂tr + Ãr∗r∗fn ∂2

r∗ (2.80)

Pr
[
(∆Ts)fn

]
=
[(
a2 + r2

)2 − a2∆ sin2 θ
]
∂2
t −

(
a2 + r2

)2
∂2
r∗ . (2.81)

In some sufficiently small region about a boundary of the domain, the solution should

consist of some linear combination of N` purely outgoing plane wave modes with

speeds cj and mode shapes |vj〉, where each mode individually satisfies

Pr
[
(∆Ts)fn

]
exp

[
iω
(
t− c−1

j r∗
)]
|vj〉 = 0 , (2.82)
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and where the mode shapes are normalized 〈vj|vj〉 = 1. These speeds and mode

shapes are found by operating with the differential operator,

{[(
a2 + r2

)2 − a2∆ sin2 θ
]
−
(
a2 + r2

)2
c−2
j

}
ω2|vj〉 = 0 . (2.83)

This is an eigenvalue problem,

[
I − a2∆

(a2 + r2)2 sin2 θ

]
|vj〉 = c−2

j |vj〉 . (2.84)

The operator S ≡ I − a2∆ sin2 θ/ (a2 + r2)
2

is symmetric and positive definite at all

values of r. It is non-degenerate except when spin vanishes and at the horizon and

r =∞. The splitting in the spectrum is somewhat small, though. It can be estimated

from the splitting in the spectrum of sin2 θ, which has a typical splitting on the order

of δ sin2 θ ≈ 1/N`; thus the splitting in the spectrum of S is given approximately by

δS ≈ a2∆/
[
N` (a2 + r2)

2
]
, where ∆ and r are evaluated at the boundary (either the

left or right boundary).

Given that the operator S is non-degenerate (except for a = 0 and at the horizon

and spatial infinity), the eigenvalues c−2
j are all unique, and S may be diagonal-

ized; there are no degenerate subspaces, so the eigenvectors may be orthonormalized,

〈vj|vk〉 = δjk. Since the eigenvalues are all positive, the eigenvectors are all real and

the transformation matrix O to go into the diagonal basis is an orthogonal matrix,

S = OTDO, with D a diagonal matrix with the jth diagonal component c−2
j . Then

in the standard basis of |s, `,m〉 vectors, the transformation matrix O is given by

O =
N−1∑
j=0

|s, `min + j,m〉〈vj| , (2.85)

i.e. the jth column is given by the jth eigenvector.

The jth modeshape satisfies the rightgoing-only first order “scalar” (for only this

component) equation [
∂

∂t
+ cj

∂

∂r∗

]
ψ = 0 . (2.86)
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Then if one were in the diagonal basis, the vector wave equation ∂∂t +


c0

c1

. . .

 ∂

∂r∗

ψ =

(
∂

∂t
+D−1/2 ∂

∂r∗

)
ψ = 0 (2.87)

would appropriately allow only rightgoing modes. This equation can be rotated back

into the standard basis of |s, `,m〉 through the transformation matrix O,

(
∂

∂t
+OD−1/2OT ∂

∂r∗

)
ψ = 0 . (2.88)

This condition, with O, D calculated at the location of the rightmost boundary, is the

appropriate outgoing boundary condition at the right boundary. The same condition

but with an opposite sign (and again with O, D calculated at the location of the

leftmost boundary) is the outgoing boundary condition at the leftmost boundary.

2.3 Numerical experiments

We performed a number of numerical experiments to characterize the performance of

the method. There are several questions one should ask about this numerical method

which we address in this Section.

Figure 2-3 shows an example of the output from one numerical experiment. The

output data are snapshots of the angular harmonics of the field across the radial

grid, at various times. The simulation parameters for Fig. 2-3 were a radial grid

r∗ ∈ [−70, 630] with 3072 evenly spaced grid points (and using the DCT/DST basis

for derivative calculations); 16 angular harmonics were simulated in the range of

` ∈ [2, 17]; the black hole spin was taken to be a = 0; the simulation was for the

m = 2 mode of the field r3Ψ−2; the integration took place over the time span t ∈

[0, 499] with ∆t = 0.002, using the first order Adams-Bashforth-Moulton method.

The initial conditions were a real gaussian in r∗ centered at r∗ = 100 with σ = 25,

and amplitude in the `th harmonic A` = 1/(`(` + 1)). The initial time derivative of
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Figure 2-3: The evolution of an outgoing pulse of radiation. Each column is a different
time slice (t = 0, 99, 199, 299, 399, 499) and each row is a different ` mode (` ∈ [3, 15]).
The horizontal axis of each individual tile is r∗ ∈ [−70, 630] and the vertical axis is the
real part of r−3Ψ−2 for the m = 2 mode for a black hole with a = 0. The simulation
was performed with 3072 grid points spaced evenly in r∗, using the DCT/DST bases
for derivatives, using the first order Adams-Bashforth-Moulton time stepping routine
with ∆t = 0.002. The initial conditions were a Gaussian in r∗ centered at r∗ = 100,
with σ = 25, with amplitude in the `th mode A` = 1/(`(` + 1)). The initial field
velocity was chosen as if the wave was a right-going solution to the flat wave equation
∂2
t − ∂2

r∗ = 0 with velocity 1.
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the field corresponds to a right-going solution to the flat wave equation ∂2
t − ∂2

r∗ = 0

with unit spatial velocity.5

There are several wave phenomena visible in Fig. 2-3. The most apparent is

dispersion: the gaussian contains multiple frequencies which each have differing phase

velocities. Therefore the wave packet does not maintain its shape, leading to the

multiple oscillations within the wave. Looking across the panels (going forward in

time), you can observe the phase fronts moving within the wave packet (unfortunately,

the time dimension on the plot is too coarsely sampled to make this motion obvious).

Also visible are the differing group velocities amongst the various ` modes.

In Sec. 2.3.1, we suggest that the method converges in the pseudospectral sense. In

Sec. 2.3.2, we study the power-law convergence of the method of lines. In Sec. 2.3.3, we

observe the convergence of the numerical dispersion relationship. Finally, in Sec. 2.3.4,

we observe the quasinormal ringing of the spacetime in order to compare with analytic

results.

2.3.1 Pseudospectral convergence

The first question to ask is whether or not the method actually displays convergence

in the pseudospectral sense, i.e. that the spectral coefficients have a geometric (expo-

nential) decay at high k-number, as compared to algebraic (power-law).

Evidence to support pseudospectral convergence is presented in Figure 2-4. This

figure presents the radial spectral components of the field after evolution for a time

of t = 100, with initial data as described above. The salient feature is a straight line

in the log-linear plot—which is exponential decay, i.e. pseudospectral convergence.

2.3.2 Temporal convergence

The time evolution in this scheme, the method of lines, is implemented in terms of

an ODE integrator—in our case, the first order Adams-Bashforth-Moulton predictor-

5This is the asymptotic form, at large r∗, of the Teukolsky equation (in the conjugated form used
in this work). Of course, because there is a well-posed IVP for the Teukolsky equation, any initial
data will do. The goal of this type of initial data is to try to have a mostly right-going solution for
simplicity.
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Figure 2-4: Pseudo-spectral convergence: Snapshot of the DCT-II of the field r−3Ψ−2

shows an exponential decay at sufficiently high k-number, where the solution becomes
resolved. The snapshot was taken at t = 100. The initial conditions are the same as
those described in Fig. 2-3. The simulation had parameters a = 0, m = 2, with 2304
radial points (or basis functions), using the DCT/DST basis. For legibility, the logs
of the spectral data have been smoothed with a 10-point moving window average.
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Figure 2-5: Temporal convergence: The ` = 11 mode after t = 198., compared
against ∆t = 0.001. The vertical axis is the error between the highest temporal
resolution run (∆t = 0.001) and the stated temporal resolution (from top to bottom,
∆t = 0.008, 0.004, 0.002). A more careful analysis suggests linear convergence with
∆t at low k numbers. For legibility, the logs of the spectral data have been smoothed
with a 30-point moving window average.
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corrector method. The convergence with respect to choice of timestep ∆t is tied to

this scheme. Since it is first order in time (meaning errors are of order O(∆t2)), one

should expect to see exactly this polynomial dependence as one varies the timestep.

To test the temporal convergence, several integrations were performed with all

parameters and initial conditions fixed but varying the timestep ∆t. The initial

conditions are the same as those described above; the grid had 3072 points and 16

angular harmonics (` = [2, 17]). Data from the ` = 11 mode (arbitrarily chosen) are

plotted in Fig. 2-5 from runs with different ∆t, after evolving for t = 198. Plotted

are the differences between the highest temporal resolution run (at ∆t = 0.001) and

three lower resolution runs (from top to bottom, ∆t = 0.008, 0.004, 0.002).

Numerical experiments suggestion linear convergence with ∆t at low k numbers

where the spectral representation has significant power. Each mode in k space seems

to have a different convergence coefficient in front of ∆t.

2.3.3 Phase errors/dispersion relation

One of the main motivations for this work was to improve the phase accuracy of the

extracted gravitational waveforms, since gravitational wave detection relies so heavily

on phase sensitivity. One way of judging the convergence of the numerical dispersion

relationship is to run several simulations with only the spatial resolution varying and

compare their outputs. Such a comparison is presented in Figure 2-6.

Several simulations with identical initial conditions (as described before) but dif-

ferent spatial resolution were integrated for t = 498 to try to accrue as much phase

difference as possible.

This numerical experiment suggests that the convergence of the numerical phase

relationship is extremely good. At the scale of the waveform itself (top panel in Fig. 2-

6), it is impossible to make out any difference between the results of simulations at

different resolutions. To suss out any difference, the waveforms were interpolated

with 5-point interpolating polynomials in order to compare across the differing grids.

The differences between the interpolating polynomials are presented in the bottom
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Figure 2-6: Convergence in dispersion relation. Top panel: The field r−3Ψ−2 in the
m = 2, ` = 3 mode after evolving for t = 498 with initial data as before and a = 0. All
resolutions look identical at this scale. Bottom panel: The differences between various
resolutions and the highest resolution (8192 grid points). From top to bottom, the
resolutions are 2048, 2304, 3072, 4096, and 6144. Since all runs have different grids,
the field is interpolated between grid points with 5-point interpolating polynomials.
The artefact at right is likely a spurious reflection off of the domain boundary.

68



0 200 400 600 800 1000 1200 1400
-15

-10

-5

0

k number

lo
g 1

0
 dc

tHr
-

3
Y

-
2

L¤

{=17

{=16

{=15

{=14

{=13

{=12

{=11

{=10

{=9

{=8

{=7

{=6

{=5

{=4

{=3

Figure 2-7: Spectral convergence with quasinormal ringing: Same as Fig. 2-4 but
with an initially ingoing pulse as described in Sec. 2.3.4. The field snapshot is taken
at t = 100.

panel of Fig. 2-6. That the differences are so small is a sign of the convergence of the

numerical dispersion relation.

2.3.4 Quasinormal ringing

Quasinormal (QN) frequencies can be calculated from the Teukolsky equation without

resorting to time-domain integration; they are found in the process of separating the

equation in the frequency domain. There is already a large body of literature (see

e.g. [17]) which has calculated the real and imaginary quasinormal mode (QNM)

frequencies which can be used for validation of our numerical method.

To excite QNMs, a different set of initial conditions were used. Rather than an

outgoing pulse of radiation, an ingoing pulse was used, since most of the ringing

is generated near the light ring (near r∗ = 0). The initial conditions were again a

gaussian in r∗, but this time centered at r∗c = 15 with a width of σ = 5, and again

amplitude in the `th harmonic A` = 1/(`(` + 1)). The time derivative of the field

69



0 50 100

-26.

0

26.

{
=

3

0 50 100

-26.

0

26.

0 50 100

-26.

0

26.

0 50 100

-26.

0

26.

0 50 100

-26.

0

26.

0 50 100

-26.

0

26.

0 50 100

-5.5

0

5.5

{
=

4

0 50 100

-5.5

0

5.5

0 50 100

-5.5

0

5.5

0 50 100

-5.5

0

5.5

0 50 100

-5.5

0

5.5

0 50 100

-5.5

0

5.5

0 50 100

-1.8

0

1.8

{
=

5

0 50 100

-1.8

0

1.8

0 50 100

-1.8

0

1.8

0 50 100

-1.8

0

1.8

0 50 100

-1.8

0

1.8

0 50 100

-1.8

0

1.8

0 50 100

-0.8

0

0.8

{
=

6

0 50 100

-0.8

0

0.8

0 50 100

-0.8

0

0.8

0 50 100

-0.8

0

0.8

0 50 100

-0.8

0

0.8

0 50 100

-0.8

0

0.8

0 50 100

-0.5

0

0.5

{
=

7

0 50 100

-0.5

0

0.5

0 50 100

-0.5

0

0.5

0 50 100

-0.5

0

0.5

0 50 100

-0.5

0

0.5

0 50 100

-0.5

0

0.5

0 50 100
-0.4

0

0.4

{
=

8

0 50 100
-0.4

0

0.4

0 50 100
-0.4

0

0.4

0 50 100
-0.4

0

0.4

0 50 100
-0.4

0

0.4

0 50 100
-0.4

0

0.4

0 50 100
-0.3

0

0.3

{
=

9

0 50 100
-0.3

0

0.3

0 50 100
-0.3

0

0.3

0 50 100
-0.3

0

0.3

0 50 100
-0.3

0

0.3

0 50 100
-0.3

0

0.3

0 50 100

-0.2

0

0.2

{
=

10

0 50 100

-0.2

0

0.2

0 50 100

-0.2

0

0.2

0 50 100

-0.2

0

0.2

0 50 100

-0.2

0

0.2

0 50 100

-0.2

0

0.2

0 50 100
-0.2

0

0.2

{
=

11

0 50 100
-0.2

0

0.2

0 50 100
-0.2

0

0.2

0 50 100
-0.2

0

0.2

0 50 100
-0.2

0

0.2

0 50 100
-0.2

0

0.2

0 50 100

-0.1

0

0.1

{
=

12

0 50 100

-0.1

0

0.1

0 50 100

-0.1

0

0.1

0 50 100

-0.1

0

0.1

0 50 100

-0.1

0

0.1

0 50 100

-0.1

0

0.1

0 50 100

-0.1

0

0.1

{
=

13

0 50 100

-0.1

0

0.1

0 50 100

-0.1

0

0.1

0 50 100

-0.1

0

0.1

0 50 100

-0.1

0

0.1

0 50 100

-0.1

0

0.1

0 50 100

-0.1

0

0.1

{
=

14

0 50 100

-0.1

0

0.1

0 50 100

-0.1

0

0.1

0 50 100

-0.1

0

0.1

0 50 100

-0.1

0

0.1

0 50 100

-0.1

0

0.1

0 50 100
-0.1

0

0.1

t=0.

{
=

15

0 50 100
-0.1

0

0.1

t=20.

0 50 100
-0.1

0

0.1

t=40.

0 50 100
-0.1

0

0.1

t=60.

0 50 100
-0.1

0

0.1

t=80.

0 50 100
-0.1

0

0.1

t=100.

Figure 2-8: A reflected pulse with quasinormal ringing tails: Same as Fig. 2-3 but for
an initially ingoing pulse, as described in Sec. 2.3.4.
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Figure 2-9: Quasinormal ringing: The reflected pulse of radiation has exponentially
decaying tails, which are a proxy for the QN mode frequencies. Extracting the field
at a fixed radius of r∗ = 30 and letting time pass allows one to see the exponential
decay. Higher ` modes damp more quickly, so reading downward is monotonically
increasing in ` ∈ [3, 10].

was chosen as if this was a purely leftgoing solution of ∂2
t − ∂2

r∗ = 0, so there are

both leftgoing and rightgoing parts in the Teukolsky equation. This is not a problem,

though, since the QN ringing is seen in the reflection of the ingoing pulse, and this

reflection is not contaminated by the originally outgoing pulse. The run parameters

were as before, a = 0, ` ∈ [2, 17], r∗ ∈ [−70, 630], with 4096 points in r∗, and

t ∈ [0, 499] with ∆t = 0.002. The integrator exhibits exponential convergence wih

ingoing data as well, as illustrated in Fig. 2-7. A snippet of the timeseries can be

seen in Fig. 2-8.

One can clearly see an exponentially damped tail following the reflected wave

packets in the top two rows. This exponential decay can be examined more closely

by “extracting” the waveform at a fixed r∗ as time passes. This is clearly visible in

Fig. 2-9, which was extracted at a radius of r∗ = 30. You can clearly see the pulse

arriving at around t = 50 (time enough for the pulse to go from the initial position
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of r∗c = 15 to the light ring near r∗ = 0 and back to the extraction radius at r∗ = 30),

followed by the exponentially damping tail. Higher ` modes have slower decay times,

so reading downward in Fig. 2-9 is monotonically increasing in `. The decay time

seems to asymptotes to a constant at large `.

From the numerical simulation, decay times could be extracted and compared

against QN frequencies in the literature. Unfortunately, our decay times seem to be

quite a bit off from those in [17]. This is likely a symptom of an error in the integrator.

Note also that the ` = 2 mode has anti-damping, rather than damping; another sign

that there is a bug in the code.

2.4 Future work

Several avenues of improvement and extensions to the work are open. Four possi-

bilities are expounded upon below: in Sec. 2.4.1, including a higher order implicit

method; in Sec. 2.4.2, using hyperbolic slicing to include future null infinity in the

domain and obviate the need for boundary conditions; in Sec. 2.4.3, using domain de-

composition to allow using the Chebyshev basis with a reasonable Courant condition;

and finally, in Sec. 2.4.4, introducing the source term, which is essential for generat-

ing EMRI waveforms. This list is by no means exhaustive, but is simply meant to

highlight some of the research which we intend to pursue in the future.

2.4.1 Higher order implicit method

Due to reliance upon the GSL for ODE steppers, the only implicit, Jacobian-free

method available is the Adams-Bashforth-Moulton predictor-corrector method. The

implementation in the GSL can adaptively vary in order, though this order-varying

only takes place when the method is driven with an adaptive step size and automatic

error control. For the studies at hand, using a fixed time step is preferable (for ease of

control). Furthermore, the Adams method seems to have a bug wherein it attempts

to change the order by more than one at a time, resulting in an internal inconsistency
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and terminating the integration. Therefore for technical reasons, this code is limited

to a first order implicit method.

A higher order implicit method would be a straightforward improvement. This

would require switching to another ODE driver package, such as the odeint [109]

package; or alternatively, reinventing the wheel and writing a stepper by hand. Either

way, this is not a fundamental limitation of the technique presented here and would

be straightforward to implement.

2.4.2 Hyperbolic slicing

Any numerical integration on a computer must take place on a finite number of

grid points (or basis functions), and both the grid point coordinates and values of

the fields must be finite numbers (representable with floating point numbers). This

automatically limits the simulation to take place on a compact domain. However, the

observables in the EMRI problem (waveforms) are extracted at asymptotic future

null infinity.

One might ask, “why not compactify the radial coordinate, bringing infinity in to

a finite radial coordinate?” There is a fundamental flaw in this approach, though.

On a slice of constant t, an outgoing plane wave solution has an infinite number

of zero crossings between any finite radial coordinate and spatial infinity. Trying

to compactify the radial coordinate would introduce an essential singularity in the

domain of calculation, which can never be expressed with any finite number of basis

functions or grid points. An example of this type of essential singularity is displayed

in Fig. 2-10.

A promising recent proposal goes by the name of hyperbolic slicing or hyper-

boloidal compactification [187, 188]. For a hyperbolic wave equation, an initial value

problem exists only for a Cauchy surface, which has a timelike normal everywhere.

Typically this Cauchy surface is taken to be surfaces of constant coordinate time t

for some convenient coordinate—in the case of Kerr, often the Boyer-Lindquist coor-

dinate time t.
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Figure 2-10: An example of the type of essential singularity resulting from radial
compactification for a hyperbolic wave equation. This problem is alleviated by using
hyperbolic slicing.

However, a perfectly good Cauchy surface is one which asymptotes to being tan-

gent to a characteristic (null ray) as one approaches spatial infinity. Asymptotically

approaching infinity, the characteristics also become lines of constant phase for outgo-

ing waves. When sliced with an asymptotically null Cauchy surface, outgoing waves

no longer experience an infinite number of oscillations approaching infinity. Instead,

they asymptote to a constant. There is then no problem with compactifying the

radial domain when using an asymptotically null slicing.

To change coordinates to such a slicing can again be considered a transformation

along the lines of Eqs. (2.47), (2.50), or Eq. (2.52). Following [188], define a radial

compactification with a conformal factor Ω through

r =
ρ

Ω(ρ)
, Ω(S) = 0 , Ω′(S) 6= 0 , (2.89)

where Ω′(ρ) ≡ dΩ/dρ and ρ = S corresponds to the r =∞ limit. Then define a time

transformation via a “height function” h(r),

τ ≡ t− h(r) and τ − ρ = t− r (2.90)

=⇒ h = r − ρ =
ρ

Ω
− ρ (2.91)

H ≡ dh

dr
= 1− Ω2

Ω− ρΩ′
. (2.92)
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Then transforming derivatives, ∂t = ∂τ , ∂r = −H∂τ + (1 − H)∂ρ. Turning this into

a coefficient transformation, if one started with coefficients Att, Atr, Arr, Bt, Br, and

C, one would find

Aττ = Att −HAtr +H2Arr (2.93a)

Aτρ = (1−H)
(
Atr − 2HArr

)
(2.93b)

Aρρ = (1−H)2Arr (2.93c)

Bτ = Bt −HBr − (1−H)H ′Arr (2.93d)

Bρ = (1−H) (Br −H ′Arr) (2.93e)

C = C . (2.93f)

Note that this transformation preserves the sparsity of angular operators, so this

slicing has the same computational complexity as claimed in Sec. 2.2.5. Zenginoglu

and Khanna used

Ω = 1−
(
ρ− ρTr.

S − ρTr.

)4

Θ(ρ− ρTr.) , (2.94)

so that to the left of the transition point ρTr. < S, one would have Ω = 1 and the

slicing would coincide with constant t slicing. The fourth power in Ω is to ensure a

sufficiently high number of vanishing derivatives in Ω at the transition point.

In this scheme, one would then not need to do any extraction to future null infin-

ity: it is included in the computation domain at ρ = S. Zenginoglu and Khanna [188]

have studied the differential equation approaching the endpoint and found it to be

regular, and needing no boundary condition, which is somewhat remarkable. This

can be understood by looking at the speeds of leftgoing and rightgoing characteristics

in the τ − ρ coordinates. Approaching the boundary, the incoming wave speed ap-

proaches 0, taking on that value exactly at the boundary. Exactly at the boundary,

the partial differential equation should become an ODE, obviating the need for a

boundary condition.
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2.4.3 Domain decomposition

Both the Fourier and DCT/DST bases make unphysical assumptions about boundary

conditions of the field. The only basis considered which both admits an O(N logN)

spectral transformation and an O(N) derivative which does not make unphysical

assumptions on the BCs is the Chebyshev basis (thus ensuring geometric, rather

than algebraic, convergence). Unfortunately, the Chebyshev basis results on O(N−2)

grid point spacing approaching the boundary, leading to a Courant condition which

similarly scales as O(N−2).

One possible solution to this problem is domain decomposition. Rather than one

global domain, the computational domain is split into M smaller domains Ωj which

each have N/M grid points and correspondingly N/M harmonic coefficients, typically

at least N/M = 8 (the boundary between finite element methods and pseudospec-

tral domain decomposition is somewhat blurry). The minimal grid spacing then

becomes O(M2N−2), as does the Courant condition. The computational complex-

ity of the pseudospectral transformation is O(N/M log(N/M)) in each subdomain,

or O(N log(N/M)) overall. One then needs to ensure continuity between the subdo-

mains Ωj and Ωj+1 at the boundary, for both the field and some number of derivatives.

Care needs to be taken to properly transmit information between adjacent domains.

Such a technique has been implemented e.g. in [40].

2.4.4 Source term

This work has discussed only a source-free (homogeneous) integrator. Of course

to generate EMRI waveforms, one needs to introduce a small body to perturb the

spacetime of a SMBH, thus we need an inhomogenous integrator.

In the Teukolsky equation for Ψ−2, where ∆T−2Ψ−2 = 4π∆ΣT−2 (where here

∆ = r2 − 2Mr + a2 and π is the real number), the source term is given in the
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Newman-Penrose formalism as [146]

T−2 = (∆̃ + 3γ − γ̄ + 4µ+ µ̄)
[
(δ̄ − 2τ̄ + 2α)Tnm̄ − (∆̃ + 2γ − 2γ̄ + µ̄)Tm̄m̄

]
+ (δ̄ − τ̄ + β̄ + 3α + 4π)

[
(∆̃ + 2γ + 2µ̄)Tnm̄ − (δ̄ − τ̄ + 2β̄ + 2α)Tnn

]
, (2.95)

where the null tetrad employed is the Kinnersley one, which in Boyer-Lindquist co-

ordinates has components

lµ =
[
(r2 + a2)/∆, 1, 0, a/∆

]
(2.96a)

nµ =
[
r2 + a2,−∆, 0, a

]
/(2Σ) (2.96b)

mµ = [ia sin θ, 0, 1, i/ sin θ] /
[
21/2(r + ia cos θ)

]
, (2.96c)

which has the non-vanishing spin coefficients

ρ = −1/(r − ia cos θ) (2.97a)

β = −ρ̄ cot θ/(2
√

2) (2.97b)

π = iaρ2 sin θ/
√

2 (2.97c)

τ = −iaρρ̄ sin θ/
√

2 (2.97d)

µ = ρ2ρ̄∆/2 (2.97e)

γ = µ+ ρρ̄(r −M)/2 (2.97f)

α = π − β̄ (2.97g)

and where the scalar differential operators are D = lµ∂/∂xµ, ∆̃ = nµ∂/∂xµ, and

δ = mµ∂/∂xµ (note that in Eq. (2.95), ∆̃ is a differential operator and π is a spin

coefficient).

The stress-energy tensor Tαβ appearing in Eq. (2.95) is given by that of a point

particle of mass m with world-line coordinates γ : zµ(λ) and tangent vector żµ(λ),
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namely [118],

Tαβ(x) = m

∫
γ

gαµ(x, z)gβν(x, z)ż
µżν√

−gµν żµżν
δ(4)(x, z)dλ , (2.98)

with gαµ(x, z) the bitensor of parallel transport and δ(4)(x, z) a properly normalized

4-dimensional Dirac delta function.

Earlier approaches modeled the source term with a representation spread out over

several grid points, satisfying some integration conditions for delta functions [140].

However, the source term is fundamentally divergent at the location of the particle.

This should spoil the convergence of a spectral method.

First note that T−2 will need to be decomposed into τs,`,m(t, r) as in Eq. (2.38)

by integrating against basis bras 〈s, `,m|. We can estimate the power in the `th

component. First, note that a delta function on the sphere has equal power in all `

components. Next note that an angular derivative of a delta function can be rewrit-

ten as ðδ plus lower order (in number of derivatives) parts. Thus evaluating the `

coefficient of p derivatives of a delta function can be evaluated by using integration

by parts p times, moving all ð’s onto the basis function sY`,m. Using the properties

in Eqs. (2.11) and (2.12), we can see that the ` coefficient of ∂pδ goes as

〈s, `,m|∂pδ〉 ∝ `p . (2.99)

For the source term T−2, we have p = 2—there is overall increasing power in higher

` components of τs,`,m ∝ `2. This is likely offset by the faster exponential decay rate

of higher ` modes of the field, so it is potentially not an issue.

The radial scaling has the same problem. A radial delta function has equal power

in all k modes; the pth derivative of a radial delta function will have power growing as

∝ kp in the kth pseudospectral coefficient of the function. How many derivatives of a

delta function end up in the field Ψ−2? The source term has ∂2δ as the highest number

of derivatives of a radial delta function (coming from the ∆̃∆̃Tm̄m̄ term). This is to

be equated to the Teukolsky operator acting on Ψ−2, and the Teukolsky operator is
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second order; therefore Ψ−2 needs only contain a delta function and Heaviside theta

functions, not any derivatives of a delta function. The spectral convergence of Ψ−2

would be k0.

There is, however, a technique to avoid this spectral catastrophe. This technique

is called the “particle-without-particle” technique [40] or more formally the method of

extended homogeneous solutions [77, 15]. The idea is rather straightforward: perform

domain decomposition with a domain boundary at exactly the location of the particle.

The solution has three parts,

Ψ−2 = ΨLΘ(rp(t)− r) + ΨP δ(r − rp(t)) + ΨRΘ(r − rp(t)) . (2.100)

That is, the solution can be decomposed into a regular piece on the left, ΨL, a regular

piece on the right, ΨR, and a delta function contribution at the location of the particle,

ΨP . In a weak formulation, integrate

∫
f · (∆T−2Ψ−2 − 4πΣ∆T−2) dr = 0 , (2.101)

where f is a sufficiently smooth test function. This gives jump conditions (or Rankine-

Hugoniot conditions) at the location of the particle: the magnitude of ΨP , the size of

the jump [Ψ]rp ≡ ΨR(rp)−ΨL(rp), the size of the jump in the first derivative, [Ψ′]rp ,

etc.

Though this approach is probably workable, it may be prohibitively slow. At each

time-step, the domains to the left and right of the particle need to be changed, the

coefficients of the differential operator at the locations of the grid points recalculated,

and so on. Still, this method warrants investigation.

2.5 Outlook

This Chapter has demonstrated a new numerical method for numerically integrating

the source-free Teukolsky equation. The three main ingredients to the method are i)
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a fully spectral decomposition of the angular sector, ii) a pseudo-spectral approach

to calculating radial derivatives, and iii) evolution with the method of lines.

The method presented here shows exponential convergence in pseudospectral num-

ber, and polynomial convergence in timestep, as determined by the order of the ODE

method employed in the method of lines. The convergence of the numerical phase re-

lationship is excellent. Quasinormal ringing is observed, but deviates from published

damping times; this deviation needs to be investigated further.

There is a plethora of future work. A higher order implicit method would improve

the temporal convergence. Hyperbolic slicing will obviate the need for boundary

conditions at r∗ = +∞ and allow direct waveform extraction at infinity. Domain

decomposition will allow using the (preferable) Chebyshev basis without sacrificing

with a tiny timestep. Finally, the source term needs to be included to actually

integrate up EMRI waveforms, which should be possible by using the technique of

extended homogenous solution with moving domain decompositions.

The gravity community has only just scratched the surface of the rich dynamics

present in EMRIs. In order to use EMRIs as probes of strong gravity, we need to

know that all of the effects are understood and under numerical control. But even if

we understand all the physics that goes on in the strong field regime, simulations are

meaningless unless the numerical methods employed do not contaminate the results

and are well understood. This chapter is one small but crucial step in building high

precision EMRI simulations.
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Chapter 3

Effective Gravitational Wave

Stress-energy Tensor in Alternative

Theories of Gravity†

Abstract

The inspiral of binary systems in vacuum is controlled by the stress-energy of grav-
itational radiation and any other propagating degrees of freedom. For gravitational
waves, the dominant contribution is characterized by an effective stress-energy ten-
sor at future null infinity. We employ perturbation theory and the short-wavelength
approximation to compute this stress-energy tensor in a wide class of alternative the-
ories. We find that this tensor is generally a modification of that first computed by
Isaacson, where the corrections can dominate over the general relativistic term. In a
wide class of theories, however, these corrections identically vanish at asymptotically
flat, future, null infinity, reducing the stress-energy tensor to Isaacson’s. We exem-
plify this phenomenon by first considering dynamical Chern-Simons modified gravity,
which corrects the action via a scalar field and the contraction of the Riemann tensor
and its dual. We then consider a wide class of theories with dynamical scalar fields
coupled to higher-order curvature invariants, and show that the gravitational wave
stress-energy tensor still reduces to Isaacson’s. The calculations presented in this pa-
per are crucial to perform systematic tests of such modified gravity theories through
the orbital decay of binary pulsars or through gravitational wave observations.

†This chapter originally appeared as Stein, L. C., Yunes, N. (2011), Effective gravitational wave
stress-energy tensor in alternative theories of gravity, Phys. Rev. D 83 064038 [138].
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3.1 Introduction

Feynman has argued that no matter how beautiful or elegant a certain theory is, or

how authoritative its proponents, if it does not agree with experiments, then it must

be wrong. For the past 40 years, this philosophy has been applied to gravitational

theories with great success. Many modified gravity theories that were prominent in

the 1970’s, have now been essentially discarded, as they were found to disagree with

Solar System experiments or binary pulsar observations [159]. Similarly, this decade

is beginning to bring a wealth of astrophysical information that will be used to con-

strain new modified gravity theories. In fact, precision double binary pulsar observa-

tions [33, 91, 86] have already allowed us to constrain modified theories to exciting

new levels [181, 167]. Future gravitational wave (GW) observations on Earth, with

the Advanced Laser Interferometer Gravitational Observatory (aLIGO) [89, 1, 42],

aVIRGO [154] and its collaborators, and in space, through the Laser Interferometer

Space Antenna (LISA) [90, 128, 52, 51], will allow new precision tests of strong field

gravity [134].

Such tests of alternative theories of gravity will be very sensitive to the motion

of compact bodies in a regime of spacetime where gravitational fields and velocities

are large, i.e. the so-called strong-field. Gralla [70] has shown that motion in classical

field theories that satisfy certain conditions (the existence of a Bianchi-like identity

and field equations no higher than second-order) is “universally” geodesic to leading-

order in the binary system’s mass-ratio, with possible deviations from geodesicity due

to the bodies’ internal structure. He also argues that one might be able to relax the

second condition, as it does not seem necessary. In fact, motion in certain higher-order

theories, such as Chern-Simons modified gravity [6], is already known to be purely

geodesic to leading-order in the mass-ratio, without influence of internal structure

due to additional symmetries in the theory.

Tests of modified gravity theories in the strong-field, however, not only require a

prescription for the conservative sector of motion, but also of the dissipative sector,

that which describes how the objects inspiral. Geodesic motion must thus be naturally
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corrected by a radiation-reaction force that drives non-geodesic motion toward an

ultimate plunge and merger [14]. Similarly, one can think of such motion as geodesic,

but with varying orbital elements [125, 71, 123, 124, 122] (energy, angular momentum

and Carter constant). The rate of change of such orbital elements is governed by the

rate at which all degrees of freedom (gravitational and non-gravitational) radiate.

In the gravitational sector and to leading order in the metric perturbation, such

a rate of change is controlled by an effective stress-energy tensor for GWs, first com-

puted by Isaacson in General Relativity (GR) [78, 79]. In his approach, Isaacson

expanded the Einstein equations to second order in the metric perturbation about

an arbitrary background. The first-order equations describe the evolution of gravi-

tational radiation. The second-order equation serves as a source to the zeroth-order

field equations, just like a stress-energy tensor, and it depends on the square of the

first-order perturbation. This tensor can then be averaged over several gravitational

wavelengths, assuming the background length scale is much longer than the GW

wavelength (the short-wavelength approximation). In this approximation, Isaacson

found that the effective GW energy-momentum tensor is proportional to the square

of first partial derivatives of the metric perturbation, i.e. proportional to the square of

the gravitational frequency. Components of this stress-energy then provide the rate

of change of orbital elements, leading to the well-known quadrupole formula.

Alternative theories of gravity generically lead to a modified effective GW stress-

energy tensor. It is sometimes assumed that this stress-energy tensor will take the

same form as in GR [107, 106], but this need not be the case. In GR, the scaling

of this tensor with the GW frequency squared can be traced to the Einstein-Hilbert

action’s dependence on second-derivatives of the metric perturbation through the

Ricci scalar. If the action is modified through the introduction of higher-powers of the

curvature tensor, then the stress-energy tensor will be proportional to higher powers

of the frequency. Therefore, the consistent calculation of the modified Isaacson tensor

needs to be carried out until terms similar to the GR contribution (proportional to

frequency squared) are obtained. This in turn implies that calculations of effective

energy-momentum tensors in modified gravity theories to leading-order in the GW
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frequency can sometimes be insufficient for determining the rate of change of orbital

elements.

In this paper, we present a formalism to compute the energy-momentum tensor

consistently in generic classical field theories. We employ a scheme where the action

itself is first expanded in the metric perturbation to second order, and the background

metric and metric perturbation are treated as independent fields. Varying with re-

spect to the background metric leads to an effective GW stress-energy tensor that

can then be averaged over several wavelengths. This produces results equivalent to

Isaacson’s calculation.

We exemplify this formulation by first considering CS gravity [6]. This theory

modifies the Einstein-Hilbert action through the addition of the product of a scalar

field with the contraction of the Riemann tensor and its dual. This scalar field is also

given dynamics through a kinetic term in the action. The leading-order contribution

to the CS-modified GW stress-energy tensor should appear at order frequency to

the fourth-power, but Sopuerta and Yunes [137] have shown that this contribution

vanishes at future null infinity.

We here continue this calculation through order frequency cubed and frequency

squared and find that such CS modifications still vanish at future null infinity. This is

because the background scalar field must decay at a certain rate for it to have a finite

amount of energy in an asymptotically-flat spacetime. If one insists on ignoring such

a requirement, such as in the case of the non-dynamical theory, then frequency-cubed

CS modifications to the energy-momentum do not vanish.

We explicitly calculate such modifications for a canonical embedding, where the

scalar field is a linear function of time in inertial coordinates. This is similar to

previous work [76] that calculated another effective stress-energy tensor for the non-

dynamical version of Chern-Simons. In this case, the dominant modification to the

radiation-reaction force is in the rate of change of radiated momentum, which leads to

so-called recoil velocities after binary coalescence. In GR, such recoil is proportional to

the product of the (mass) quadrupole and octopole when multipolarly decomposing

the radiation field. In non-dynamical CS gravity with a canonical embedding, the
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recoil is proportional to the square of the mass quadrupole, which dominates over the

GR term.

We then construct a wide class of alternative theories that differ from GR through

higher order curvature terms in the action coupled to a scalar field. We compute the

GW stress-energy-momentum tensor in such theories and find that corrections to the

Isaacson tensor vanish at future null infinity provided the following conditions are

satisfied: (i) the curvature invariants in the modification are quadratic or higher order;

(ii) the non-minimally coupled scalar field is dynamical; (iii) the modification may be

modeled as a weak deformation away from GR; (iv) the spacetime is asymptotically

flat at future null infinity. These results prove that the effective stress-energy tensor

assumed in [107, 106] is indeed correct1.

Even if the effective GW energy-momentum tensor is identical to that in GR,

in terms of contractions of first derivatives of the metric perturbation, this does

not imply that GWs will not be modified. First, background solutions could be

modified. For example, in dynamical CS gravity, the Kerr metric is not a solution

to the modified field equations for a rotating black hole (BH) [74], but it is instead

modified in the shift sector [169]. Second, the solution to the GW evolution equation

could also be modified. For example, in non-dynamical CS gravity, GWs become

amplitude birefringent as they propagate [80, 2, 176]. Third, additional degrees of

freedom may also be present and radiate, thus changing the orbital evolution. All

of these facts imply that even if the Isaacson tensor correctly describes the effective

GW energy-momentum tensor, GWs themselves can and generically will be modified

in such alternative theories.

In the remainder of this paper we use the following conventions. Background

quantities are always denoted with an overhead bar, while perturbed quantities of

first-order with an overhead tilde. We employ decompositions of the type gµν =

ḡµν + ε h̃µν + O(ε2), where gµν is the full metric, ḡµν is the background metric and

h̃µν is a small perturbation (ε� 1 is a book-keeping parameter). Covariant differen-

1The authors of [107, 106] presented an energy loss formula which was not evaluated at I +. In
the limit of r →∞, their energy loss formula reduces to the Isaacson formula.
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tiation with respect to the background metric is denoted via ∇̄µBν , while covariant

differentiation with respect to the full metric is denoted via ∇µBν . Symmetrization

and antisymmetrization are denoted with parentheses and square brackets around the

indices respectively, such as A(µν) ≡ [Aµν + Aνµ]/2 and A[µν] ≡ [Aµν − Aνµ]/2. We

use the metric signature (−,+,+,+) and geometric units, such that G = c = 1.

This paper is organized as follows: Section 3.2 describes the perturbed Lagrangian

approach used in this paper to compute the effective GW stress-energy tensor. Sec-

tion 3.3 applies this framework to GR. Section 3.4 discusses dynamical CS gravity.

Section 3.5 computes the full effective stress-energy tensor in this theory. Section 3.6

generalizes the calculation to a wider class of alternative theories. Section 3.7 con-

cludes and points to future research.

3.2 Perturbed Lagrangian approach

Isaacson [78, 79] introduced what is now the standard technique to obtain an ef-

fective stress-energy tensor for gravitational radiation, via second-order perturbation

theory on the equations of motion. This technique requires an averaging procedure

to construct an effective stress-energy tensor. This is because of the inability to lo-

calize the energy of the gravitational field to less than several wavelengths of the

radiation, and because of the ambiguities of the metric perturbation on distances of

order the wavelength due to gauge freedom.2 Isaacson employed the Brill-Hartle [29]

averaging scheme, although one can arrive at an identical quantity by using different

schemes [185, 186, 184], e.g. Whitham or macroscopic gravity.

An alternative approach to derive field equations and an effective stress-energy

tensor for GWs is to work at the level of the action. One possibility is to use the

Palatini framework [101, 41], where the connection is promoted to an independent

field that is varied in the action, together with the metric tensor. Such a framework,

2Gauge freedom in perturbation theory stands for the freedom to identify points between the
physical and “background” manifolds [104, 105].
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however is problematic in alternative theories of gravity, as it need not lead to the

same field equations as variation of the action with respect to the metric tensor only.

A similar but more appropriate approach is that of second-variation [92]. In this

approach, the action is first expanded to second order in the metric perturbation,

assuming the connection is the Christoffel one Γσµν . Then, the action is promoted to an

effective one, by treating the background metric tensor and the metric perturbation

as independent fields . Variation of this effective action with respect to the metric

perturbation and the background metric yields the equations of motion. The former

variation leads to the first-order field equations, when the background field equations

are imposed. The latter variation leads to the background field equations to zeroth

order in the metric perturbation and to an effective GW stress-energy tensor to second

order.

Let us begin by expanding all quantities in a power series about a background

solution

ϕ = ϕ̄+ εϕ̃+ ε2 ˜̃ϕ+O(ε3) , (3.1)

where ε � 1 is an order counting parameter and ϕ represents all tensor fields of

the theory with indices suppressed: ϕ̄ is the background field, ϕ̃ is the first-order

perturbation to ϕ, and ˜̃ϕ is the second-order perturbation. The action can then be

expanded, as

S[ϕ] = S(0)[ϕ̄] + S(1)[ϕ̄, ϕ̃] + S(2)[ϕ̄, ϕ̃, ˜̃ϕ] +O(ε3) , (3.2)

where S(1) is linear in ϕ̃ and S(2) is quadratic in ϕ̃ but linear in ˜̃ϕ. We now define

the effective action as Eq. (3.2) but promoting ϕ̄ and ϕ̃ to independent fields.

One might wonder why the field ˜̃ϕ is not also treated as independent. First,

variation of the action with respect to ˜̃ϕ would lead to second-order equations of

motion, which we are not interested in here. Second, the variation of the action with

respect to ϕ̃ cannot introduce terms that depend on ˜̃ϕ, because the product of ϕ̃ and

˜̃ϕ never appears in Eq. (3.2), as this would be of O(ε3). Third, the variation of the

action with respect to ϕ̄ can only introduce terms linear in ˜̃ϕ, which vanish upon
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averaging, as we describe in Sec. 3.2.1. This is because averages of any odd number

of short-wavelength quantities generically vanish. Therefore, we can safely neglect all

terms that depend on ˜̃ϕ in the effective action, which renders Eq. (3.2) a functional

of only ϕ̄ and ϕ̃.

As in the standard approach, the second-order variation method still requires that

one performs a short-wavelength average of the effective stress-energy tensor. Upon

averaging, the variation of the first-order piece of the action S(1) with respect to ϕ̄

vanishes because it generates terms linear in ϕ̃. Since S(1) does not contribute to the

effective stress-energy tensor, we can safely drop it from the effective action for now.

The effective action reduces to

Seff[ϕ̄, ϕ̃] = Seff(0)[ϕ̄] + Seff(2)[ϕ̄, ϕ̃] . (3.3)

Naturally, the variation of Seff(0) with respect to the background metric ḡµν yields

the background equations of motion. The effective stress-energy tensor comes from

averaging the variation of Seff(2) with respect to ḡµν ,

δSeff(2) = ε2
∫

d4x
√
−ḡ δḡµνtµν , (3.4a)

T eff

µν ≡ −2ε2〈〈tµν〉〉 , (3.4b)

where the factor of 2 is conventional for agreement with the canonical stress-energy

tensor, and 〈〈 〉〉 is the averaging operator, which we discuss below. One of the

immediate benefits of working from an action principle comes from the diffeomorphism

invariance of the action. The diffeomorphism invariance immediately implies that the

variation of the total action with respect to the metric is divergence free [41]. When

the matter stress-energy tensor is itself divergence free, then the gravity sector – the

sum of the stress-energy of non-minimally coupled degrees of freedom and the effective

stress-energy tensor of gravitational waves – will also be divergence free.
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3.2.1 Short-wavelength averaging

The goal of the averaging scheme is to distinguish radiative quantities, those which

are rapidly-varying functions of spacetime, from Coulomb-like quantities, those which

are slowly-varying functions. This is accomplished by defining the operator 〈〈 〉〉 as a

linear integral operator. This operator may either be an average over the phase of the

rapidly varying quantities or over spacetime. If the integral is over spacetime, there is

an averaging kernel with characteristic length scale Lave that separates the foreground

short-wavelength λGW from the background length scale Lbg, that is, λGW � Lave �

Lbg.

The details of the averaging scheme are not as important as their properties [185,

186, 184], since one arrives at equivalent results using different schemes. The most

useful properties of 〈〈 〉〉 are:

1. The average of a product of an odd number of short-wavelength quantities

vanishes.

2. The average of a derivative of a tensor vanishes, e.g. for some tensor expression

T µαβ, 〈〈∇µT
µ
αβ〉〉 = 0.

3. As a corollary to the above, integration by parts can be performed, e.g. for

tensor expressions Rµ
α, Sβ, 〈〈Rµ

α∇µSβ〉〉 = −〈〈Sβ∇µR
µ
α〉〉.

Let us briefly mention where some of these properties come from and some caveats.

When considering monochromatic functions, an odd oscillatory integral has an av-

erage value about zero, while an even oscillatory integral has a non-zero average.

This is enough to find that that averages of expressions linear in a short-wavelength

quantity will vanish. Expressions at third (and higher odd) order would vanish for

monochromatic radiation, but not in general. However, these are at sufficiently high

order that we neglect them.

The vanishing of averages of derivatives is a subtle point. In the spacetime average

approach, this is found by integrating by parts, leaving a term with a derivative on

the averaging kernel. This term is smaller than nonvanishing averages by a factor of
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O(λGW/Lave) and depends on the averaging kernel. From physical grounds, the choice

of averaging kernel should not affect any physical quantities, so the average should

in fact vanish identically. From the action standpoint, the average of a derivative

can be seen to arise from an action term which is a total divergence. Since total

divergences in the action do not affect the equations of motion, the average of a

derivative vanishes.

A similar argument holds for integration by parts. In the Brill-Hartle average

scheme, integration by parts incurs an error of order O(λGW/Lave) from a derivative

of the averaging kernel. From the action standpoint, though, integration by parts at

the level of the action incurs no error, since there is no averaging kernel in the action.

The fact that the variation of S(1) with respect to ϕ̄ does not contribute to the

effective stress-energy tensor is a direct consequence of property (1) above. The

vanishing of all terms linear in ˜̃ϕ upon averaging is also a consequence of (1). As one

can see, these properties greatly simplify all further calculations.

3.2.2 Varying Christoffel and curvature tensors

Let us now consider what types of terms arise from the variation of the effective

action with respect to ḡµν . In order to perform this variation properly, any implicit

dependence of the action on ḡµν must be explicitly revealed; for example, terms

which contain the trace h̃ must be rewritten as ḡµν h̃
µν . Indices should appear in their

“natural” positions (see Sec. 3.2.4), for indices raised and lowered with the metric have

implicit dependence on it. Furthermore, since we are approaching gravity from the

metric formulation, rather than the Palatini formulation, there will be contributions

from the variation of ∇µ and curvature tensors.

Consider a term in the effective action such as

Sex.1 =

∫
d4x
√
−ḡ T γ···δ··· ∇µ S

α···
β··· , (3.5)

where g is the determinant of the metric and T γ···δ···, S
α···

β··· are some tensor expres-

sions, with all indices contracted in some fashion, as the action must be a scalar.
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When such a term is varied with ḡµν → ḡµν + δḡµν , besides the obvious contributions

from δ
√
−ḡ, and explicit dependence of T γ···δ···, S

α···
β··· on ḡµν , there are also contri-

butions from varying the Christoffel connection Γλµβ in ∇µ. The general expression

is

δ(∇µS
α1···αn

β1···βm) = ∇µ(δSα1···αn
β1···βm)+

+
n∑
i=1

δΓ̄αiµλS
···λ···

β1···βm −
m∑
j=1

δΓ̄λµβjS
α1···αn

···λ··· , (3.6)

where · · ·λ · · · in the ith term of a sum means replacing αi or βi in the index list with

λ; and where

δΓ̄σµν = −1

2

[
ḡλµ∇νδḡ

λσ + ḡλν∇µδḡ
λσ − ḡµαḡνβ∇

σ
δḡαβ

]
. (3.7)

Curvature tensors also depend on derivatives of the connection, so one naturally

expects terms of the form∇ρ∇σδḡ
µν from the variation of curvature quantities, i.e. the

Riemann tensor Rµ
ναβ, Ricci tensor Rµν , or Ricci scalar R. For example, one can

show that

δR̄µ
ναβ = 2∇[αδΓ̄

µ
β]ν , (3.8)

where the contribution from Γ∧Γ cancels [41]. Upon integration by parts any scalar

in the action that contains curvature tensors, one can convert a term containing

∇ρ∇σδḡ
µν into

δSex.2 =

∫
d4x
√
−ḡ P σ

µν∇σδḡ
µν . (3.9)

In fact, many terms in the variation of the action can be written in the form of

Eq. (3.9).

The contribution of Eq. (3.9) to the effective stress-energy tensor is found by

integrating by parts and then averaging, according to Eq. (3.4). Upon averaging,

however, one finds that such terms do not contribute to the effective stress-energy

tensor because

T eff,ex.2

µν = 2〈〈∇σP
σ
µν〉〉 , (3.10)
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vanishes according to property (2) in Sec. 3.2.1.

The above arguments and results imply that the variations of curvature tensors

and connection coefficients with respect to ḡµν do not contribute to the effective

stress-energy tensor. Only metric tensors which are raising, lowering, and contracting

indices in the action contribute to this tensor. We can thus concentrate on these, when

computing T eff
µν .

3.2.3 Contributions at asymptotic infinity

When calculating the radiation-reaction force to leading order in the metric pertur-

bation, it is crucial to account for all the energy-momentum loss in the system. The

first contribution is straightforward: energy-momentum is radiated outward, toward

future, null infinity, I +. Since the stress-energy tensor is covariantly conserved, the

energy-momentum radiated to I + can be calculated by performing a surface integral

over a two-sphere at future, null infinity3.

However, not all energy-momentum loss escapes to infinity, as energy can also

be lost due to the presence of trapped surfaces in the interior of the spacetime.

Trapped surfaces can effectively absorb GW energy-momentum, which must also be

accounted for, e.g. in the calculation of EMRI orbits around supermassive BHs [174,

175]. Calculations of such energy-momentum loss at the BH horizon are dramatically

more complicated than those at I + and we do not consider them here.

What is the relative importance of energy-momentum lost to I + and that lost into

trapped surfaces? To answer this question, we can concentrate on the magnitude of

the leading-order energy flux, as the argument trivially extends to momentum. The

post-Newtonian (PN) approximation [21], which assumes weak-gravitational fields

and slow velocities, predicts that the energy flux carried out to I + is proportional

to v10 to leading-order in v, where v is the orbital velocity of a binary system in

a quasi-circular orbit (see e.g. [21]). On the other hand, a combination of the PN

approximation and BH perturbation theory predicts that, to leading-order in v, the

3We will not consider spacetimes which are not asymptotically flat, e.g. de Sitter space; the
calculations are more involved in such spacetimes.
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energy flux carried into trapped surfaces is proportional to v15 for spinning BHs and

v18 for non-spinning BHs [99]. BH GW flux absorption is then clearly smaller than

the GW flux carried out to I + if v < 1, which is true for EMRIs for which the PN

approximation holds.

Intuitively, this hierarchy in the magnitude of energy-momentum flux lost by BH

binaries can be understood by considering the BH as a geometric absorber in the

radiation field. Radiation which is longer in wavelength than the size of the BH is

very weakly absorbed. Only at the end of an inspiral will the orbital frequency be

high enough that GWs will be significantly absorbed by the horizon. Notice that

this argument is independent of the particular theory considered, only relying on the

existence of trapped surfaces. This result does not imply that BH absorption should

be neglected in EMRI modeling, but just that it is a smaller effect than the flux

carried out to infinity [174, 175].

In the remainder of the paper, we will only address energy-momentum radiated

to I + and relegate any analysis of radiation lost into trapped surface to future work.

The only terms which can contribute to an energy-momentum flux integral on a 2-

sphere at I + are those which decay as r−2, since the area element of the sphere grows

as r2. No terms may decay more slowly than r−2, as the flux must be finite, i.e. the

effective stress-energy cannot scale as r−1, as a constant or with positive powers of

radius. Similarly, any terms decaying faster than r−2 do not contribute, as they would

vanish at I +. Of course, to determine which terms contribute and which do not, one

must know the leading asymptotic forms of all quantities in the effective stress-energy

tensor.

In GR, as we shall see in Sec. 3.3, the only fields appearing in the effective stress-

energy tensor are the background metric ḡµν and derivatives of the metric perturbation

h̃µν . As one approaches I +, ḡµν ∼ ηµν in Cartesian coordinates, while |h̃µν | ∼ r−1 ∼

|∇ρh̃µν |. Curvature tensors scale as |Rµνδσ| ∼ r−3, since they quantify tidal forces.

For a theory that is a deformation away from GR, and far away from regions of strong

curvature, these asymptotic forms cannot change.
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Consider now terms in the general effective action at order O(ε2) that contain

background curvature tensors. Due to their ordering, they would contribute to the

effective stress-energy. One such term is

Sex.3 = ε2
∫

d4x
√
−ḡ ∇ρϕ̃

σ
1 ∇αϕ̃

β
2 R

ρ
βσκ ḡακ , (3.11)

where ϕ̃1, ϕ̃2 are the first-order perturbations to two fields in the theory (e.g. the met-

ric perturbation h̃µν and the CS scalar perturbation ϑ̃ that we introduce in Sec. 3.5).

Since there is no contribution to the effective stress-energy tensor from the varia-

tion of curvature quantities (see Sec. 3.2.2), the only contributions to the effective

stress-energy comes from

T eff,ex.3

µν = −2ε2

〈〈(
−1

2
ḡµν ḡ

ακ + δα(µδ
κ
ν)

)
∇ρϕ̃

σ
1︸ ︷︷ ︸

r−1

∇αϕ̃
β
2︸ ︷︷ ︸

r−1

R
ρ
βσκ︸ ︷︷ ︸

r−3

〉〉
, (3.12)

which has the same functional form as the integral. Note that the curvature tensor

always remains when varying with respect to ḡµν .

Combining this result with the asymptotic arguments above, such terms can be

ignored as one approaches I +. Each of the first-order fields possess a radiative part

that scales as r−1. The square of the first-order fields would then satisfy the r−2

scaling requirement for the flux integral. The curvature tensor, however, scales as

r−3, which implies that the term in Eq. (3.12) vanishes at I +.

We then conclude that terms in the action that contain background curvature

quantities at O(ε2) may be ignored in calculating the effective stress-energy tensor at

I +. As an immediate corollary to this simplification, we may also freely commute

background covariant derivatives if we are interested in the stress-energy tensor at

infinity only, since the commutator is proportional to background curvature tensors.

3.2.4 Imposing gauge in the effective action

We will choose as our dynamical field not h̃µν but rather h̃
µν

, where the underline

stands for the trace-reverse operation, and we take the “natural” position of the
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indices to be contravariant. The resulting stress-energy tensor is equal to the one

calculated using h̃µν after evaluating both of them on-shell, i.e. imposing the equations

of motion.

We also impose a gauge condition to simplify future expressions: the Lorenz gauge

condition,

∇µh̃
µν

= 0 . (3.13)

Typically one may not impose a gauge condition at the level of the action. However,

in our case, the gauge condition in Eq. (3.13) has the important property of having

all of the indices in their natural positions: the contraction of the indices does not

involve the metric.

Consider a term in the effective action that contains this divergence,

Sex.4 = ε2
∫

d4x
√
−ḡ Tβ ∇αh̃

αβ
, (3.14)

with Tβ some tensor expression at first order in ε. The α index that is contracted

above does not require the metric for such contraction. Therefore, ∇αh̃
αβ

always

remains upon variation,

T eff,ex.4

µν = −2ε2
〈〈(

−1

2
ḡµνTβ +

δTβ
δḡµν

)
∇αh̃

αβ
〉〉

. (3.15)

If we delayed imposing the Lorenz gauge condition until after the calculation of

the effective stress-energy tensor, we would find the same effective tensor as if we had

imposed the gauge condition at the level of the action. Having said that, one should

not impose the gauge condition when varying with respect to h̃
µν

as clearly ∇αh̃
αβ

must also be varied.

3.3 Effective Stress-Energy in GR

Let us now demonstrate the principles described in the previous section by deriv-

ing the standard Isaacson stress-energy tensor in GR. Consider the Einstein-Hilbert
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action,

SGR = κ

∫
d4x
√
−g R, (3.16)

where κ = (16πG)−1. Now perturb to second order to form the effective action,

Seff

GR = S
eff(0)
GR + S

eff(2)
GR , (3.17a)

S
eff(0)
GR = κ

∫
d4x
√
−ḡ R̄, (3.17b)

S
eff(2)
GR = ε2κ

∫
d4x Leff,1

GR + Leff,2
GR , (3.17c)

where

Leff,1
GR =

1

8

√
−ḡ
[
4R̄αβ

(
2h̃

α
µh̃

βµ − h̃αβh̃
)

+ R̄
(
h̃

2 − 2h̃αβh̃
αβ
)]

, (3.17d)

and

Leff,2
GR =

√
−ḡ

[
−h̃αβ∇α∇µh̃

µ

β −
1

8
(∇µh̃)(∇µ

h̃)−

(∇µh̃
µ

α)(∇ν h̃
να

) +
1

2
(∇ν h̃)(∇µh̃

µν
)− h̃αβ∇µ∇αh̃

µ

β

+
1

2
h̃∇µ∇ν h̃

µν
+ h̃

αβ
�̄h̃αβ −

1

4
h̃�̄h̃

−1

2
(∇µh̃να)(∇ν

h̃
µα

) +
3

4
(∇µh̃αβ)(∇µ

h̃
αβ

)

]
, (3.17e)

and (R̄µν , R̄) refer to the background Ricci tensor and scalar respectively. The in-

tegrands have been written in terms of the trace-reversed metric perturbation, h̃
µν

.

From Sec. 3.2.3, Leff,1
GR does not contribute at I + because it depends explicitly on

curvature quantities, so we ignore it. The variation and averaging of Leff,2
GR produces

the Isaacson stress-energy tensor.

By integrating by parts, all terms in Eq. (3.17e) can be written as (∇αh̃
ρσ

)(∇βh̃
κλ

)

(with indices contracted to form a scalar) rather than h̃
ρσ∇α∇βh̃

κλ
(again, with
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indices contracted). Leff,2
GR is thus rewritten in the more compact form

LMT =
√
−ḡ

[
1

2
(∇µh̃

να
)(∇ν h̃

µ
α)− 1

4
(∇µh̃αβ)(∇µ

h̃
αβ

) +
1

8
(∇µh̃)(∇µ

h̃)

]
, (3.18)

which is the expression that appears in MacCallum and Taub [92]. With this sim-

plified expression at hand, we can promote h̃
µν

to an independent dynamical field

in Eq. (3.17) and vary it with respect to both ḡµν and h̃
µν

to obtain the effective

stress-energy tensor and the first-order equations of motion respectively.

Let us first derive the first-order equations of motion. Varying Eq. (3.17) with

respect to h̃
µν

, we find

�̄h̃µν − 2∇α∇(µh̃ν)α −
1

2
ḡµν�̄h̃ = 0 , (3.19a)

whose trace is

2∇α∇βh̃
αβ

+ �̄h̃ = 0 . (3.19b)

We can now impose the Lorenz gauge on Eq. (3.19b), which then leads to �̄h̃ = 0. If

h̃ = 0 is further imposed on an initial hypersurface while maintaining Lorenz gauge,

then the evolution equation preserves the trace-free gauge [101]. The combination

of these two gauge choices (Lorenz gauge plus trace-free) is the transverse-tracefree

gauge, or TT gauge.

After commuting derivatives in Eq. (3.19a) and imposing TT gauge, the tensor

equation of motion reads

�̄h̃µν + 2R̄µανβh̃
αβ

= 0 , (3.19c)

where R̄µανβ is the background Riemann tensor. At I +, this equation reduces to

�̄h̃µν = 0, which leads to the standard dispersion relation for GWs, traveling at the

speed of light.

Let us now calculate the effective stress-energy tensor. Note that the first term

in LMT may be integrated by parts and covariant derivatives commuted to form the

Lorenz gauge condition, so the first term may be ignored. Varying the action with
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respect to ḡµν , we find

κGµν = −ε2κ
〈〈

1√
−ḡ

δ

δḡµν
LMT

〉〉
≡ 1

2
T eff

MTµν , (3.20a)

where

T eff

MTµν = 2ε2κ

〈〈
1

4
∇µh̃

αβ∇ν h̃αβ −
1

2
∇αh̃βµ∇

α
h̃ν

β

− 1

8
∇µh̃∇ν h̃+

1

4
∇αh̃µν∇

α
h̃

+
1

2
ḡµν(−ḡ)−1/2LMT

〉〉
, (3.20b)

which we refer to as the MacCallum-Taub tensor. Terms that depend on the trace

h̃
µ
µ in this tensor can be eliminated in TT gauge.

Let us now evaluate the MacCallum-Taub tensor on shell, by imposing the equa-

tions of motion [Eq. (3.19)]. When short-wavelength averaging, derivatives that are

contracted together can be converted into the d’Alembertian via integration by parts;

such terms vanish at I +. What results is the usual Isaacson stress-energy tensor,

T eff

GRµν = ε2
κ

2

〈〈(
∇µh̃

αβ
)(
∇ν h̃αβ

)〉〉
. (3.20c)

Notice that this expression is only valid at I + and in TT gauge. As mentioned

earlier, this tensor cannot be used to model energy-momentum loss through trapped

surfaces, since then curvature quantities cannot be ignored.

3.4 Chern-Simons Gravity

CS gravity is a modified theory introduced first by Jackiw and Pi [80] (for a recent

review see [6]). The dynamical version of this theory modifies the Einstein-Hilbert

action through the addition of the following terms:

S = SEH + SCS + Sϑ + Smat, (3.21)
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where

SEH = κ

∫
d4x
√
−g R ,

SCS =
α

4

∫
d4x
√
−g ϑ ∗RR ,

Sϑ = −β
2

∫
d4x
√
−g gµν (∇µϑ) (∇νϑ) ,

Smat =

∫
d4x
√
−g Lmat . (3.22)

The quantity κ = (16πG)−1 is the gravitational constant, while α and β are coupling

constants that control the strength of the CS coupling to the gravitational sector and

its kinetic energy respectively. In the non-dynamical version of the theory, β = 0 and

there are no dynamics for the scalar field, which is promoted to a prior-geometric

quantity.

The quantity ϑ is the CS field, which couples to the gravitational sector via the

parity-violating Pontryagin density, ∗RR, which is given by

∗RR := Rαβγδ
∗Rαβγδ =

1

2
εαβµνRαβγδR

γδ
µν , (3.23)

where the asterisk denotes the dual tensor, which we construct using the antisym-

metric Levi-Civita tensor εαβµν . This scalar is a topological invariant, as it can be

written as the divergence of a current

∗RR = 4∇µ

[
εµαβγΓσατ

(
1

2
∂βΓτγσ +

1

3
ΓτβηΓ

η
γσ

)]
. (3.24)

Equation (3.21) contains several terms that we describe below: the first one is

the Einstein-Hilbert action; the second one is the CS coupling to the gravitational

sector; the third one is the CS kinetic term; and the fourth one stands for additional

matter degrees of freedom. The CS kinetic term is precisely the one that distinguishes

the non-dynamical and the dynamical theory. In the former, the scalar field is a

priori prescribed, while in the dynamical theory, the scalar field satisfies an evolution

equation.
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The field equations of this theory are obtained by varying the action with respect

to all degrees of freedom:

Gµν +
α

κ
Cµν =

1

2κ

(
Tmat

µν + T (ϑ)
µν

)
, (3.25a)

β�ϑ = −α
4
∗RR , (3.25b)

where Tmat
µν is the matter stress-energy tensor and T

(ϑ)
µν is the CS scalar stress-energy:

T (ϑ)
µν = β

[
(∇µϑ)(∇νϑ)− 1

2
gµν(∇σϑ)(∇σϑ)

]
. (3.26)

The C-tensor Cµν is given by

Cαβ = (∇σϑ) εσδν(α∇νR
β)
δ + (∇σ∇δϑ) ∗Rδ(αβ)σ . (3.27)

Many solutions to these field equations have been found. In their pioneering work,

Jackiw and Pi showed that the Scwharzschild metric is also a solution in CS grav-

ity [80]. Later on, a detailed analysis showed that all spherically symmetric spaces,

such as the Friedman-Robertson-Walker metric, are also solutions [74]. Axially-

symmetric spaces, however, are not necessarily solutions, because the Pontryagin

density does not vanish in this case, sourcing a non-trivial scalar field. Specifically,

this implies the Kerr metric is not a solution.

A slowly-rotating solution, however, does exist in dynamical CS gravity. Yunes

and Pretorius [169] found that when the field equations are expanded in the Kerr

parameter a/M � 1 and in the small-coupling parameter ζ ≡ ξ/M4 = α2/(βκM4)�

1, then the CS field equations have the solution

ds̄2 = ds2
Kerr +

5

8
ζ
Ma

r4

(
1 +

12

7

M

r
+

27

10

M2

r2

)
sin2 θdtdφ ,

ϑ̄ =
5

8

α

β

a

M

cos θ

r2

(
1 +

2M

r
+

18M2

5r2

)
, (3.28)

to second order in a/M and to first order in ζ, assuming no matter sources. These

equations employ Boyer-Lindquist coordinates (t, r, θ, φ) and ds2
Kerr is the Kerr line
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element. The solution for ϑ may also include an arbitrary additive constant, but

this constant is unimportant, since only derivatives of ϑ enter the CS field equations.

Recently, the same solution has been found to linear order in a/M in the Einstein-

Cartan formulation of the non-dynamical theory [35].

The divergence of the field equations reduce to ∇µTmat
µν = 0. This is because

the divergence of the Einstein tensor vanishes by the Bianchi identities. Meanwhile,

the divergence of the C-tensor exactly cancels the divergence of the CS scalar field

stress-energy tensor, upon imposition of the equations of motion [Eq. (3.25b)]. There-

fore, test-particle motion in dynamical CS gravity is exactly geodesic4. This result

automatically implies the weak-equivalence principle is satisfied.

The gravitational perturbation only possesses two independent, propagating de-

grees of freedom or polarizations. Jackiw and Pi showed that this was the case in the

non-dynamical theory [80], while Sopuerta and Yunes did the same in the dynamical

version [137]. One can also show easily that a transverse and approximately trace-

less gauge exists in dynamical CS gravity. The trace of the field equations take the

interesting form

−R =
1

2κ

(
Tmat + T (ϑ)

)
, (3.29)

where R is the Ricci scalar and T is the trace of the stress-energy tensor. Notice that

the trace of the C-tensor vanishes identically.

In vacuum (Tmat
µν = 0) and when expanding to linear order about a Minkowski

background, Eq. (3.29) reduces to

�̄h̃ =
β

2κ
(∇σ

ϑ̄)(∇σϑ̄) . (3.30)

where h̃ ≡ ηµνhµν is the trace of the metric perturbation, �̄ is the d’Alembertian

operator with respect to the background metric and ϑ̄ is the background scalar field.

Since the latter must satisfy the evolution equation [Eq. (3.25b)], we immediately see

that ϑ ∝ α/β. This means that the right-hand side of Eq. (3.30) is proportional to

4This statement is true only in the absence of spins, since otherwise the CS effective worldline
action would contain new self-interaction terms.
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ζ. To zeroth order in the small-coupling approximation, h̃ then satisfies a free wave

equation and can thus be treated as vanishing. Deviations from the trace-free condi-

tion can only arise at O(ζ) and they are suppressed by factors of the curvature tensor,

as ϑ̄ must satisfy Eq. (3.25b). Approaching I +, the right hand side of Eq. (3.30)

vanishes. This allows one to impose TT gauge at future null infinity.

3.5 Effective Stress-Energy in CS Gravity

The perturbed Lagrangian for the Einstein-Hilbert action has already been calculated,

so here we need only consider the contribution from SCS. At O(ε2), there are a

large number of terms generated (we used the package xPert [94, 96, 95, 30, 164] to

calculate the perturbations). Many of these terms are irrelevant when considering

their contribution at I +.

Let us classify the types of terms that arise in SCS. At O(ε2), these are of two

types:

1. the second-order part of one field, or

2. the product of first-order parts of two fields.

As mentioned in Sec. 3.2.1, terms containing the second-order part of one field are

linear in a short-wavelength quantity, which vanishes under averaging. Thus we only

need to consider the latter case. There are five fields in SCS (
√
−g, ε, ϑ, R, and ∗R),

so one would at first think that there are
(

5
2

)
= 10 types of terms arising; however,

from the definition of the Levi-Civita tensor, we have

√
−g εαβµν = sign(g) [αβµν] , (3.31)

where [αβµν] is the Levi-Civita symbol, which is not a spacetime field. The combi-

nation
√
−g εαβµν therefore has no perturbation, and there are only three spacetime

fields which contribute. We are left with only
(

3
2

)
= 3 possibilities for the types of

terms that could appear, corresponding to two perturbed fields and one unperturbed
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one among the set (ϑ,Rαβσδ, Rαβσδ). Two of these possibilities are actually the same

by exchanging the two copies of Rαβσδ.

Therefore, we are left with only the following two types of terms in the CS La-

grangian density:

Lϑ̃R̃ ∼
√
−ḡ ε̄αβµν ϑ̃ R̃γ

δαβR̄
δ
γµν (3.32a)

LR̃R̃ ∼
√
−ḡ ε̄αβµν ϑ̄ R̃γ

δαβR̃
δ
γµν (3.32b)

where R̃γ
δαβ is the first-order perturbation to the Riemann tensor, in terms of h̃

µν
.

Variation of these terms with respect to the background metric yields the CS con-

tributions to the effective stress-energy tensor, while variation with respect to the

metric perturbation yields CS corrections to the first order equations of motion.

3.5.1 Variation with respect to the Perturbation

Just as in GR, the final expression for the stress-energy tensor must be put on-shell by

imposing the equations of motion. The first-order equations of motion of dynamical

CS gravity, in vacuum and at I +, are

�̄h̃µν = −1

κ
T̃ (ϑ)
µν +

α

κ

[
∇αϑ̄ ∇β�̄h̃γ(µ ε̄

αβγ
ν)

+∇α∇βϑ̄ ε̄
α
γδ(µ ∇

δ
(
∇ν)h̃

βγ −∇β
h̃ν)

γ
)]

. (3.33)

Imposing these equations of motion is easier when taking advantage of the weak-

coupling limit, ζGW � 1, where ζGW ≡ α∇ϑ/(κλGW) quantifies the size of the de-

formation away from GR. Let us then expand the metric perturbation in a Taylor

series

h̃µν =
∞∑
n=0

(ζGW)nh̃
(n)

µν . (3.34)

To zeroth-order, it is clear that Eq. (3.33) reduces to �̄h̃
(0)

µν = 0, which is the standard

GR equation of motion. To next order, the the leading-order piece of the right-hand
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side vanishes and one is then left with

�̄h̃
(1)

µν =
α

κ
∇α∇βϑ̄ ε̄

α
γδ(µ ∇

δ
(
∇ν)h̃

βγ

(0) −∇
β
h̃ν)

γ
(0)

)
− 1

κ
T̃ (ϑ)
µν . (3.35)

In the remainder of this section, we drop the superscripts that indicate ζGW-ordering.

3.5.2 Variation with respect to the Background

Let us first discuss terms of type Lϑ̃R̃ under variation with respect to ḡµν . From

Sec. 3.2.2, only total derivative terms arise from δR̄γ
δαβ, and these vanish upon av-

eraging. The remaining terms contain R̄γ
δαβ, which must vanish at I +. Thus, as

mentioned before, terms in the effective action which contain curvature tensors do

not contribute to the effective stress-energy tensor at I +.

We are then only left with LR̃R̃. Writing these in terms of h̃
µν

, the effective action

reads

S
eff(2)
CS = ε2

α

4

∫
d4x Leff,1

CS + Leff,2
CS , (3.36)

where

Leff,1
CS = +

√
−ḡ ε̄αβγδ ϑ̄ ∇ρ∇βh̃α

σ ∇δ∇ρh̃σγ , (3.37a)

Leff,2
CS = −

√
−ḡ ε̄αβγδ ϑ̄ ∇β∇ρh̃α

σ ∇σ∇δh̃
ρ
γ . (3.37b)

Naively, one might think that these expressions lead to an effective stress-energy

tensor at O(λ−4
GW). This is premature, however, as there can be a cancellation of λ−4

GW-

terms that lead to a less steep wavelength dependence. One should try to move as

many derivatives away from the perturbed quantities as possible before proceeding.

In fact, we know that this must be possible from [80]: the Pontryagin density can be

written as the divergence of a 4-current, so at least one derivative can be moved off

of h̃
µν

. This automatically implies that there cannot be λ−4
GW terms in the effective

stress-energy tensor, as shown explicitly by Yunes and Sopuerta [137].

Let us transform Leff,1
CS in the following way. The Levi-Civita tensor is contracted

onto two derivative operators (∇β and ∇δ). One may integrate by parts to move one
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of these derivative operators onto the remaining terms in Eq. (3.37a). This generates

two types of terms: one with three derivatives acting on the metric perturbation and

one with one derivative on the CS scalar (the term acting on the Levi-Civita tensor

or the determinant of the metric vanishes by metric compatibility). Let us focus

on the former first. Because of the contraction onto the Levi-Civita tensor, only

the antisymmetric part of the second derivative operator would contribute. Such a

combination is nothing but the commutator of covariant derivatives, which can be

written as the Riemann tensor, and thus vanishes at I +. The remaining term with

a covariant derivative of the CS scalar does not generically vanish. Dropping terms

proportional to the Riemann tensor, Leff,1
CS becomes

Leff,1
CS =

√
−ḡε̄αβγδ ∇αϑ̄ ∇

ρ
h̃β

σ∇δ∇ρh̃σγ . (3.38a)

Equation (3.37b) can be analyzed with the property discussed in Sec. 3.2.4: Lorenz

gauge may be imposed at the level of the action for the purposes of calculating the

effective stress-energy tensor. This means that if one integrates by parts, moving ∇σ

and ∇ρ onto remaining terms, the only term that survives is proportional to ϑ̄, as

the divergence of h̃
µν

vanishes (after commuting derivatives, dropping Riemann terms

and imposing Lorenz gauge). Thus Leff,2
CS becomes

Leff,2
CS =

√
−ḡε̄αβγδ ∇ρ∇σϑ̄ ∇αh̃β

σ∇γh̃δ
ρ . (3.38b)

With these simplified Lagrangian densities at hand, we can now compute the total

effective stress-energy tensor for GWs in CS gravity:

T eff

CSµν = T eff

MTµν + T eff,1
CSµν + T eff,2

CSµν , (3.39)
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where T eff,1
CSµν and T eff,2

CSµν are due to the variation of Leff,1
CS and Leff,2

CS respectively. These

expressions are

T eff,1
CSµν = −ε2α

2

〈〈
∇αϑ̄

[
ε̄αβγδ

(
∇(µh̃|β|

σ ∇ν)∇δh̃σγ

−∇ρ
h̃β(µ∇|δ|∇|ρ|h̃ν)γ

)
− 2ε̄α(µ

γδ∇ρ
h̃ν)σ∇δ∇ρh̃

σ
γ

]〉〉
(3.40a)

and

T eff,2
CSµν = −ε2α

〈〈
∇σ∇ρϑ̄ ε̄

α
(µ
γδ∇|α|h̃ν)

σ∇γh̃
ρ
δ

〉〉
. (3.40b)

3.5.3 Imposing the On-Shell Condition

The equation of motion may be imposed anywhere �̄h̃αβ may be formed in T eff
CSµν via

integration by parts. There is no contraction of derivative operators onto each other

in T eff,2
CSµν , so it remains unchanged. In the final two terms of T eff,1

CSµν , the derivative

operator ∇ρ may be moved onto ∇αϑ̄ ∇
ρ
h̃κλ. This would generally make two terms,

but the term proportional to ∇αϑ̄ �̄h̃κλ is O(ζ2
GW) relative to the Isaacson piece, so

we only keep one term. This gives

T eff,1
CSµν = −ε2α

2

〈〈
ε̄αβγδ

(
∇αϑ̄ ∇(µh̃|β|

σ ∇ν)∇δh̃σγ

+∇ρ∇αϑ̄ ∇
ρ
h̃β(µ∇|δ|h̃ν)γ

)
+ 2∇ρ∇αϑ̄ ε̄

α
(µ
γδ ∇ρ

h̃ν)σ∇δh̃
σ
γ

〉〉
. (3.41)

Let us now evaluate T eff
MTµν on shell. Since T eff

MTµν is O((ζGW)0), imposing the equa-

tion of motion Eq. (3.35) will introduce terms of O(ζGW), which are kept since they

are the same order as T eff,1
CSµν and T eff,2

CSµν . We can also impose a gauge condition. We

have already imposed the Lorenz gauge throughout at the level of the action. We may

further specialize this to the TT gauge. While the TT gauge may not be imposed

globally, it may be imposed at I +, where the effective stress-energy tensor is being
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evaluated. In TT gauge,

T eff

MTµν = ε2κ

〈〈
1

2
∇µh̃αβ∇ν h̃

αβ −∇ρh̃αµ∇
ρ
h̃ν

α

− 1

4
ḡµν∇ρh̃αβ∇

ρ
h̃
αβ
〉〉

(3.42a)

= T eff

GRµν + T eff,1
MTµν + T eff,2

MTµν ,

where

T eff,1
MTµν = −ε2κ

〈〈
∇ρh̃αµ∇

ρ
h̃ν

α
〉〉

(3.42b)

T eff,2
MTµν = −ε2κ

4

〈〈
ḡµν∇ρh̃αβ∇

ρ
h̃
αβ
〉〉

. (3.42c)

Integrating by parts, imposing the equations of motion Eq. (3.35), and integrating

by parts again where appropriate, these contributions to the effective stress-energy

tensor at I + are

T eff,1
MTµν = −ε2

〈〈
h̃
α

(µT̃
(ϑ)
ν)α

〉〉
− ε2α

2

〈〈
∇σ∇ρϑ̄ ∇

δ
h̃
α
µ ε̄

σ
γδ(α

(
∇ν)h̃

ργ −∇ρ
h̃ν)

γ
)

+ (µ↔ ν)
〉〉

(3.42d)

T eff,2
MTµν =

1

4
ḡµν ḡ

αβT eff,1
MTαβ . (3.42e)

Finally, we may write an expression for T eff
CSµν at I + after imposing the equations

of motion,

T eff

CSµν = T eff

GRµν + δT eff

CSµν (3.43a)

δT eff

CSµν = T eff,1
MTµν + T eff,2

MTµν + T eff,1
CSµν + T eff,2

CSµν , (3.43b)

where δT eff
CSµν contains the Chern-Simons correction at O(ζGW). The summands are

taken from Eqs. (3.40b), (3.41), (3.42d), and (3.42e). Putting them together for
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convenience, the final result is

δT eff

CSµν = −ε2
〈〈

h̃
α

(µT̃
(ϑ)
ν)α +

1

4
ḡµν h̃

αβ
T̃

(ϑ)
αβ

〉〉
− ε2α

2

〈〈
∇σ∇ρϑ̄

[
∇δ
h̃
α
µ ε̄

σ
γδ(α

(
∇ν)h̃

ργ −∇ρ
h̃ν)

γ
)

+∇δ
h̃
α
ν ε̄

σ
γδ(α

(
∇µ)h̃

ργ −∇ρ
h̃µ)

γ
)

+
1

2
ḡµν∇

δ
h̃
αβ
ε̄σγδ(α

(
∇β)h̃

ργ −∇ρ
h̃β)

γ
)

+ 2ε̄α(µ
γδ∇|α|h̃ν)

σ∇γh̃
ρ
δ

+ ε̄σβγδ∇ρ
h̃β(µ∇|δ|h̃ν)γ + 2ε̄σ(µ

γδ ∇ρ
h̃ν)σ∇δh̃

σ
γ

]
+ ε̄αβγδ∇αϑ̄ ∇(µh̃|β|

σ ∇ν)∇δh̃σγ

〉〉
. (3.44)

In the above, we have organized the terms by their scaling with powers of wave-

length. The first line contains terms which scale as λ0
GW and λ−1

GW; the first of these

corresponds to a “mass” term in the effective stress-energy tensor. Both of these scale

more slowly with inverse wavelength than the GR contribution, so they are subdom-

inant. The next three lines have the same scaling with inverse wavelength as GR,

λ−2
GW. The final line scales more strongly with inverse wavelength, λ−3

GW. This term in

principle could dominate over the GR term in the high frequency limit.

Notice that the effective stress-energy tensor presented here is applicable to both

the dynamical and the non-dynamical version of CS gravity. Also note that if ϑ were a

constant, rather than a function, the effective stress-energy tensor would be identical

to that of GR (which is expected, since, in that case, the modification to the action

is purely a boundary or topological term).

3.5.4 In dynamical CS gravity

From asymptotic arguments, we can argue that δT eff
CSµν does not contribute to dissipa-

tion laws at I + in the dynamical version of CS gravity. As mentioned in Sec. 3.2.3,

the dissipation of energy, linear and angular momentum of a system is computed by

integrating components of the stress-energy tensor on a 2-sphere at I +. Since the

area of the 2-sphere grows as r2, for the dissipation integrals to be finite, the com-

ponents of the stress-energy tensor must fall-off at least as r−2. In fact, only the r−2

part of the stress-energy contributes as one takes the r → ∞ limit. Therefore, any
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part of the stress-energy tensor that decays faster than r−2 does not contribute to

dissipation laws.

The CS correction to the effective stress-energy tensor, δT eff
CSµν , always falls off

faster than r−2 in the dynamical theory. To see this, we must analyze the behavior of

ϑ, which is restricted. This restriction comes from demanding that the field ϑ sourced

by an isolated system and in an asymptotically flat space contains a finite amount of

energy. The energy in ϑ is computed by integrating the time-time component of T
(ϑ)
µν

on a hypersurface of constant time and over all space. For the energy to be finite, the

integral
∫∞

(∇ϑ)2 r2dr (in an asymptotically flat, Cartesian spatial slice, appropriate

to I +) must be finite. This restricts ∇ϑ to fall off at least faster than r−3/2. We

then conclude that the CS correction to the energy-momentum tensor must vanish at

I +, as T eff,1
MTµν , T

eff,2
MTµν , T

eff,1
CSµν and T eff,2

CSµν decay at least as r−7/2 or faster.

The only contribution at I + to the effective stress-energy of GWs in dynamical

CS gravity which decays as r−2 is the GR part,

T eff

CSµν = T eff

GRµν . (3.45)

Again, we stress that this only accounts for the outgoing GW radiation. However,

the same argument as in Sec. 3.2.3 holds; the correction to the energy flux absorbed

by trapped surfaces is only important at the end of an inspiral, both in GR and

deformations away from GR. This is supported by the small velocity, small mass

ratio expansion of [99] (see also [174, 175]).

3.5.5 In non-dynamical CS gravity

In the dynamical theory, since the scalar field ϑ must carry a finite energy, we were

able to argue for the vanishing of δT eff
CSµν at I +. In the non-dynamical theory, there

is no such demand and no further simplification can be made beyond the vanishing

of T
(ϑ)
µν . However, for a particular choice of ϑ̄ field, the effective stress-energy tensor

may be evaluated. We demonstrate this below.
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In the canonical embedding

The canonical embedding of non-dynamical CS gravity is given by [80]

vµ ≡ ∇µϑ̄ =̇ (1/µ, 0, 0, 0) , (3.46)

in Cartesian coordinates in the asymptotically-flat part of the spacetime. Approach-

ing infinity, this yields

∇α∇βϑ̄ = 0 (3.47)

so by extension T eff,2
CSµν = 0, the first-order equation of motion becomes �̄h̃µν = 0 +

O(ζ2
GW), the final two terms of T eff,1

CSµν vanish, and T eff,1
MTµν = 0 = T eff,2

MTµν . Notice that here

there is no amplitude birefringence in flat spacetime as ϑ̈ = 0 [3, 2, 176, 168].

The first term of T eff,1
CSµν is the only O(ζGW) correction which survives. The to-

tal stress-energy tensor in the canonical embedding of non-dynamical Chern-Simons

gravity at I +, with this correction, is

T eff

CSµν = T eff

GRµν + δT eff

CSµν ,

δT eff

CSµν = −ε2α
2

〈〈
∇αϑ̄ ε̄

αβγδ∇(µh̃|β|
σ∇ν)∇δh̃σγ

〉〉
= +ε2

α

2µ

〈〈
ε̄ijk∇(µh̃|i|

σ∇ν)∇kh̃σj

〉〉
, (3.48)

where ε̄ijk is the Levi-Civita tensor on the 3-space orthogonal to (∂/∂t)µ, and the

sign change arises from the factor of sign(g) in Eq. (3.31).

From the form of the correction δT eff
CSµν , we can briefly mention the leading modi-

fication to radiation reaction in a binary inspiral at Newtonian order. At this order,

there is no modification to the trajectories of the two bodies from the ϑ̄ field. Since

the first-order equation of motion is identical to that of GR at order O(ζGW), the

leading solution to h̃µν is the same as in GR, h̃µν = h̃
GR

µν .

Inserting this solution in TT gauge into δT eff
CSµν , the energy, linear momentum, and

angular momentum radiated by the system can be computed. Adopting a Cartesian

coordinate system at asymptotic infinity, the correction to the radiated quantities is
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given by

δĖCS = −
∫

dΩ r2 δT eff

CS0jnj = +

∫
dΩ r2 δT eff

CS00 (3.49a)

δṖ CS

i = +

∫
dΩ r2 δT eff

CSijnj = −
∫

dΩ r2 δT eff

CSi0 (3.49b)

δJ̇CS

i = −
∫

dΩ r2 εijkxjδT
(−3)
CSkl nl , (3.49c)

where δT
(−3)
CSµν is the part of δT eff

CSµν which decays as r−3 [147]. In evaluating these

integrals, the only angular dependence is in factors of ni or xi. An angular integral

of an odd number of such factors vanishes, while an integral of an even number of

them reduces to a symmetrized product of Kronecker delta tensors. These factors

arise explicitly in the definitions of Eqs. (3.49) and from spatial derivatives acting on

h̃µν in T eff
µν . The most important difference between T eff

GRµν and δT eff
CSµν is the parity of

the number of derivatives, which leads to the following behaviour.

In GR, the leading contribution to ĖGR is from the (mass quadrupole)2 combina-

tion. Compare this with the same integral for δT eff
CS00, where the (mass quadrupole)2

term has an odd number of factors of ni, and thus vanishes. The leading contribution

is then from the product of the mass quadrupole and mass octupole.

The same situation takes place in calculating J̇i. In GR, the leading contribution

is from the product of mass quadrupole with itself. In the correction from CS gravity,

the mass quadrupole squared term has an odd number of factors of ni; the dominant

contribution is again from the mass quadrupole times the mass octupole.

Finally, the situation is different in the calculation of Ṗi. In GR, the quadrupole

squared contribution to Ṗi has an odd number of ni factors. The dominant contri-

bution is from the mass quadrupole times the mass octupole. However, for the CS

correction, the quadrupole squared term has an even number of factors of ni. Using

h̃
TT

ij =
1

8πκr
ÏTT

ij (t− r) , (3.50)
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this evaluates to

δṖ CS

i = − α

120πκ2µ
εijkI(3)

lj I
(4)
lk , (3.51)

where Iij is the reduced quadrupole moment of the matter, and I(n)
ij ≡ (d/dt)nIij.

For a binary in a circular orbit about the ẑ-axis with masses m1, m2, total mass

m = m1 + m2, symmetric mass ratio η = m1m2/m
2, separation d, and orbital fre-

quency ω, we find the momentum flux correction to be

δṖ CS

z = − 8α

15πκ2µ
(ηmd2)2ω7 , (3.52a)

or, in terms of the velocity v = ωd, with Kepler’s third law v2 = m/d,

δṖ CS

z = −128

15

(
α

κµm

)
η2v13 , (3.52b)

where notice that the quantity in parentheses is dimensionless. This is to be com-

pared with the leading momentum luminosity in GR, which is proportional to ṖGR
z ∝

η2v11δm/m, where δm = m1 −m2 [26]. Although the GR effect is two powers of v

stronger, it depends on the difference in masses, whereas the non-dynamical CS cor-

rection only depends on the total mass. This implies that in the limit of comparable

masses m1 ≈ m2, the recoil velocity would not asymptote to zero in CS gravity, as it

does in GR for non-spinning binaries.

A physical interpretation of this effect is related to the parity-violating nature of

the theory. When one chooses a canonical embedding, the action becomes parity-

violating as the Pontryagin density is parity odd. The embedding coordinate chooses

a (temporal) direction to which the modification to the Einstein equations can couple

to, inducing a new term in the stress-energy that is proportional to the curl of the

metric perturbation. Because kicks are predominantly generated during merger, the

CS modification is indeed dominant over the GR result, leading to the first, non-linear,

strong-field modification computed in CS gravity.
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3.6 Effective Stress-Energy Tensor of Modified Grav-

ity Theories

Let us now consider a broader class of modified gravity theories. There is an infinite

variety of GR modifications one could construct. However, there are several properties

that are desirable and that we require here:

1. Metric theories: the action depends on a symmetric metric tensor that controls

the spacetime dynamics.

2. Deformations of GR: analytically controllable and small corrections to the Einstein-

Hilbert action with a continuous GR limit.

3. High-Rank Curvature: corrections depend on quadratic or higher products of

the Riemann tensor, Ricci tensor, or Ricci scalar.

4. Minkowski stable: the theory must admit Minkowski spacetime as a stable vac-

uum solution, and future null infinity should be asymptotically flat for isolated

matter spacetimes.

Besides the metric, there may be new fields introduced which are considered part

of the “gravity sector”. This distinction means that said fields are not minimally

coupled, i.e. they may be coupled to connection and curvature quantities. These

additional fields may be of any spin: scalars, spinors, vectors, etc. For simplicity, we

will only consider scalar fields here, but the results may also be extended to higher spin

fields. Scalar fields are well-motivated from quantum completions of GR, e.g. moduli

fields are common appearances in string theoretical models [120].

3.6.1 Action

In defining a modified gravity theory, let us consider what terms may arise in the

action. These terms must include the Einstein-Hilbert and matter terms, along with
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modifications built from additional scalar fields and curvature invariants. Addition-

ally, it ought to contain a dynamical term for the scalars that couple to the curvature

invariants, as we will motivate in Sec. 3.6.2.

In principle, there are an infinite number of curvature invariants to consider. The

first few of these are simple to construct: Λ, R, R2, ∇µR∇µR, RµνR
µν , RαβµνR

αβµν , . . .,

where Λ is any scalar constant, e.g. the cosmological constant. These may be specified

by their rank, r, which is the number of curvature tensors which are contracted to-

gether, and by further specifying a list of r non-negative integers {λ1, . . . , λr}, where

λi specifies the number of derivatives acting on the ith curvature tensor. For a rank

r and case {λi}ri=1, there are a finite number of independent curvature invariants

corresponding to the number of ways to contract indices. Thus all curvature invari-

ants may be countably enumerated, assigning some number n to each independent

invariant.

We here consider only combinations of algebraic curvature invariants, i.e. λi = 0

for all cases. This means we do not allow modifications that depend on derivatives

of curvature tensors. Such a simplification is a good one, from the standpoint that it

automatically guarantees the field equations to be no higher than fourth-order.

Consider then a modified gravity theory defined by the action

S = SEH + Smat + Sint + Sϑ , (3.53a)

where Sϑ is the canonical kinetic term for ϑ,

Sϑ = −β
2

∫
d4x
√
−g gµν [(∇µϑ)(∇νϑ) + 2V (ϑ)] , (3.53b)
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with V an arbitrary potential function; and where Sint is the interaction term between

the scalar ϑ and some algebraic combination of curvature tensors, for example

Sint,0 = α0

∫
d4x
√
−g f0(ϑ)Λ (3.53c)

Sint,1 = α1

∫
d4x
√
−g f1(ϑ)R (3.53d)

Sint,2 = α2

∫
d4x
√
−g f2(ϑ)R2 , (3.53e)

or generally

Sint = α

∫
d4x
√
−g f(ϑ)R , (3.53f)

with f an arbitrary “coupling function” and R an algebraic combination of curvature

invariants. Alternatively, notice that we could have assigned each term proportional

to αi a separate ϑi coupling with its associated kinetic and potential terms. The

arguments presented below would also hold for such constructions.

3.6.2 Dynamical scalar fields

The requirement for the scalar ϑ to be dynamical arises from demanding diffeomor-

phism invariance in the theory. Consider the infinitesimal transformation of the ac-

tion under a diffeomorphism generated by the vector field vµ. Specifically, look at the

terms containing ϑ, i.e. the sum Smod = Sint + Sϑ. The infinitesimal transformation

under the diffeomorphism is

δSmod =

∫
d4x

(
δ

δgµν
Lint

)
Lvgµν +

(
δ

δϑ
Lint

)
Lvϑ

+

∫
d4x

(
δ

δgµν
Lϑ
)
Lvgµν +

(
δ

δϑ
Lϑ
)
Lvϑ , (3.54)

where Lint is the interaction Lagrangian density, Lϑ is the kinetic Lagrangian density,

and Lv stands for the Lie derivative along vµ.
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For a theory to be diffeomorphism invariant, the infinitesimal transformation in

the total action must vanish, δS = 0. Since Lvϑ may be arbitrary for some ϑ and

some vµ, the functional multiplying Lvϑ must vanish for δS to vanish. This means

δ

δϑ
(Lint + Lϑ) = 0 . (3.55)

When the scalar field ϑ has dynamics, i.e. β 6= 0, then Eq. (3.55) is identical to the

equations of motion of the field ϑ and is therefore automatically satisfied. However,

if the field is not dynamical, β = 0, then Eq. (3.55) gives

f ′(ϑ)R = 0 . (3.56)

Except in the case where f ′(ϑ) = 0, this is an additional constraint on the geometry

of spacetime, namely that R = 0. Given that the equations of motion already sat-

urate the number of equations for the degrees of freedom present, this would be an

overconstrained system. This is in fact the case in the non-dynamical version of CS

gravity, as discussed in [74, 180]. We therefore only admit dynamical scalar fields, or

terms with no scalar field dependence (f(ϑ) = const.).

3.6.3 Special cases: zeroth and first rank

Before doing a calculation for a general curvature invariant R, let us briefly discuss

some special cases. As we will see, curvature invariants of zeroth and first rank will

not be considered.

Zeroth rank

At zeroth rank, there is only one algebraic curvature invariant: a constant. The non-

constant part of f0(ϑ) may simply be reabsorbed into the potential V (ϑ). This gives

a minimally coupled scalar field, which may be absorbed into Smat. The constant part

of f0 leads to a “cosmological constant.” Since we are only considering theories which

are Minkowski stable and asymptotically flat, this cosmological part must vanish.
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First rank

There is only one algebraic curvature invariant of rank 1, the Ricci scalar R. If

we allow f to be a non-constant function, we would have a classical scalar-tensor

theory, akin to Brans-Dicke theory (see e.g. [159]). The effective GW stress-energy

tensor for scalar-tensor theory has been computed, for example in Brans-Dicke theory

(see [158]), so we do not consider it here. Since we already include the Einstein-Hilbert

term in Eq. (3.53a), there can be no additional term linear in R without affecting

Newton’s constant. Thus we only consider quadratic and higher rank curvature in-

variants.

3.6.4 Cubic and Higher Ranks

At cubic rank, one can easily show that there are five algebraic invariants that may

not be factored as products of lower rank invariants (Rµ
νR

ν
ρR

ρ
µ, R

µνRαβRµανβ,

Rαβ
µνR

µν
ρσR

ρσ
αβ, ∗RρσµνRκλ

µνRρσκλ, and ∗Rρσ
αβRρ

αR
σ
β) and four that may be fac-

torized (R3, RRµνR
µν , RRµναβR

µναβ, and R ∗Rρ
σ
µνRσ

ρµν). The arguments that fol-

low work for all of them, so for concreteness we choose just one: Rµ
νR

ν
ρR

ρ
µ. The

modification to the action arising from this term is

Sex.5 = α

∫
d4x
√
−g f(ϑ)Rµ

νR
ν
ρR

ρ
µ . (3.57)

The contribution from this term to the effective action at second order is

Seff(2)
ex.5 = ε2α

∫
d4x
√
−ḡ

[
h̃

2

(
f ′(ϑ̄)ϑ̃ R̄µ

νR̄
ν
ρR̄

ρ
µ + 3f(ϑ̄) R̃µ

νR̄
ν
ρR̄

ρ
µ

)
+ 3f ′(ϑ̄)ϑ̃ R̃µ

νR̄
ν
ρR̄

ρ
µ + 3f(ϑ̄)R̃µ

νR̃
ν
ρR̄

ρ
µ

]
. (3.58)

Immediately we see that all terms have at least one power of background curvature

tensors. This means that each term can be written similarly to an earlier example in

Sec. 3.2.3, in Eq. (3.11). When evaluating this effective stress- energy tensor at I +,

all of the background curvature tensors vanish. This automatically implies that cubic
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and higher rank terms in the action do not contribute to the effective stress energy

tensor at asymptotically-flat, future null infinity.

The stress-energy tensor is then given by the MacCallum-Taub tensor, Eq. (3.20b),

which need not be identical to the GR one yet, as one must first impose the first-order

equations of motion at I +. These equations could be modified by the introduction of

higher-order operators in the action. Let us analyze such equations again through the

example of Eq. (3.57). As the calculation depends only on the rank of the curvature

invariant appearing in the action and not on its specific form, the results shown below

extend to all cubic and higher rank algebraic curvature invariants as well.

The equation of motion arising from Eq. (3.57) is

κGµν + 3αf(ϑ)RµβR
β
γR

γ
ν −

α

2
gµνf(ϑ)Rα

βR
β
γR

γ
α

+
3α

2

[
gµν∇α∇β

(
f(ϑ)Rα

γR
γβ
)

+� (f(ϑ)RµγR
γ
ν)

−2∇β∇(µ

(
f(ϑ)Rγ

ν)R
β
γ

)]
= Tmat

µν + T (ϑ)
µν . (3.59)

The important feature to note is that all terms containing α, that is, all terms de-

forming away from GR, are cubic or quadratic in curvature tensors. This is a general

feature: from a term in the action of rank r, terms in the equations of motion will be

of rank r and rank r − 1.

Now consider evaluating the first-order equations of motion at asymptotically-flat,

future null infinity, which we need in order to put the MacCallum-Taub stress-energy

tensor on-shell. We will not write out the full first-order equations of motion; it

suffices to say that the modification terms (those terms containing α) are of rank r,

r − 1, and r − 2 in the first-order equations of motion. When going to I +, only the

terms of rank 0 survive, e.g. �̄h̃µν .

Immediately we see that the only modifications to the action that affect the first-

order equations of motion at I + are those of rank 2 and lower. Thus for modifications

that are cubic and higher, the first-order equations of motion at I + are simply those

of GR, �̄h̃µν = 0.
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Inserting this asymptotically-flat, on-shell condition into the MacCallum-Taub

stress-energy tensor yields the Isaacson stress-energy tensor. Cubic and higher rank

modifications to the Lagrangian do not modify the effective stress-energy tensor due

to GWs. We again emphasize that radiation reaction will still be different in a higher

order theory because of different motion in the strong field, additional energy carried

in the scalar field ϑ, and energy carried down horizons being different. But the energy

of a GW at I + is the same as in GR.

3.6.5 Quadratic terms

Let us now consider quadratic deformations to the action, as these are the only ones

left to study, and let us classify the types of modifications possible. There are two

important characteristics that we use for such a classification. The first depends on

the nature of the curvature quantity R. This quantity may either be topological or

not. A curvature quantity that is topological may be expressed as the divergence

of a current, R = ∇µKµ. As we mentioned in Sec. 3.4, Eq. (3.24), the Pontryagin

density, ∗RR, is a topological curvature invariant. In metric gravity, the only other

non-vanishing, algebraic, second rank curvature invariant that is topological is the

Gauss-Bonnet term,

G = RαβµνR
αβµν − 4RµνR

µν +R2 , (3.60)

as the Nieh-Yan invariant vanishes in torsion-free theories.

The second characteristic we can use to classify theories is the behaviour of the

scalar field ϑ, which depends on the potential V (ϑ). The two possibilities are a

potential that is flat, V (ϑ) = 0, or one that is non-flat, V varying with ϑ. A flat

potential does not choose out any preferred values of the scalar field, whereas a

non-flat potential must be bounded from below for stability, and thus has a global

minimum (or several minima). The presence or absence of a preferred field value is

important in the limit going to I +.

For non-flat potentials, without loss of generality, the global minimum can be

shifted to ϑ = 0 by simultaneously shifting the potential function and the coupling
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function f . Such a shift does not affect the derivative term in the kinetic term for ϑ,

since it simply adds a global constant to the field. The only problematic situation is

if the global minimum is in the limit ϑ→ ±∞, which we do not allow here.

We begin by discussing the asymptotic behaviour of ϑ, which satisfies the sourced

wave equation

β (�ϑ− V ′(ϑ)) = −αf ′(ϑ)R . (3.61a)

At I +, the right hand side vanishes. Furthermore, if we are interested in static or

quasistatic background solutions for ϑ̄ around which we can expand, time derivatives

in the d’Alembertian will vanish leaving only the Laplacian,

∇2
ϑ̄− V ′(ϑ̄) = 0 . (3.61b)

For a non-flat potential, V ′(ϑ) 6= 0, the zeroth order asymptotic solution will be ϑ̄

going to the minimum of the potential, which we have shifted to ϑ̄ = 0.

For a flat potential, the background equation of motion for ϑ, Eq. (3.61b), at I +

becomes

∇2
ϑ̄ = 0 . (3.61c)

There are two asymptotic solutions: ϑ asymptotes to a constant or ϑ asymptotes to a

function linear in Cartesian coordinates. The latter case would contribute a constant

stress-energy tensor T
(ϑ)
µν at I +. This would lead to an asymptotically de Sitter

spacetime, not an asymptotically flat spacetime. Therefore, we only consider the case

where ϑ asymptotes to a constant.

The equation of motion Eq. (3.61c) does not determine to what value ϑ̄ asymp-

totes. A boundary condition is required in this case. Again, without loss of generality,

for some given asymptotic value determined by some boundary condition, the field

and coupling function f(ϑ) may be shifted so as to redefine the asymptotic value to

be ϑ→ 0 without changing the physics.

A boundary condition is not required if the theory is “shift symmetric.” In a shift

symmetric theory, the translation operation ϑ→ ϑ+ c, where c is a constant, leaves
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the equations of motion invariant. Such a theory, therefore, must have equations of

motion that depend only on the derivative ∇µϑ. Such is the case, for example, if the

action depends on a topological term multiplied by some scalar field, f(ϑ)∇µKµ, as

then the action can be rewritten as (∇µf(ϑ))Kµ via integration by parts. Of course,

in this case, the potential must also be flat and f must be linear for the theory to be

shift-symmetric. Such types of corrections arise naturally in the low-energy limit of

string theory [8, 7, 68, 6].

Let us rewrite the action and split the interaction term into a dynamical and non-

dynamical part. Since we can always shift the field, potential, and coupling function

so that the asymptotic value is ϑ→ 0, let us define

α′ ≡ αf(0) (3.62a)

F (ϑ) ≡ f(ϑ)− f(0) . (3.62b)

Then, the interaction term in Eq. (3.53f) may be rewritten as

Sint = Sn-d + Sdyn (3.62c)

= α′
∫

d4x
√
−g R+ α

∫
d4x
√
−g F (ϑ)R .

The first term is the non-dynamical part, i.e. the part that does not couple to the

scalar field, while the second part is the dynamical part. IfR is a topological curvature

invariant, then the first term in Eq. (3.62c) does not contribute to the equations of

motion, as it is the integral of a total derivative.

Dynamical contribution

Let us perturb Sdyn to second order to calculate the contribution to the effective

action, keeping in mind that ˜̃ϑ and ˜̃h do not contribute. This part of the effective
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Field Asymptotic form Field Asymptotic form

ḡ O(1 + r−1) ∇ϑ̄ At least r−3/2

Γ̄ r−2 ϑ̄ At least r−1/2

R̄ r−3 F (ϑ̄) At least r−1/2

R̄ ∼ R̄2 r−6 F (n)(ϑ̄) O(1)

h̃, ∇(n)
h̃ r−1 ϑ̃, ∇(n)

ϑ̃ r−1

R̃ ∼ R̄(∇2
h̃) r−4 ˜̃R ∼ (∇2

h̃)2 r−2

Table 3.1: The asymptotic forms of fields appearing in the effective action for a rank-2
modification to the action. All tensor indices have been suppressed.

action is

S
eff(2)
dyn = ε2α

∫
d4x
√
−ḡ

[
F (ϑ̄) ˜̃R

+

(
h̃

2
F (ϑ̄) + F ′(ϑ̄) ϑ̃

)
R̃

+
1

8

(
h̃2 − 2h̃µν h̃µν

)
F (ϑ̄) R̄

+
1

2

(
h̃ F ′(ϑ̄)ϑ̃+ F ′′(ϑ̄) ϑ̃2

)
R̄
]
. (3.63)

To determine the contribution to the effective stress energy tensor at I +, again ana-

lyze the asymptotic form of all of the fields appearing in Eq. (3.63). The asymptotic

forms are summarized in Table 3.1.

The simplest way to see that the dynamical part of the effective action does not

contribute at I + is to examine the asymptotics of R̄, R̃, and ˜̃R. Since curvature

tensors R̄αβµν are tidal tensors, they goes as r−3; since R̄ contains two curvature

tensors, it scales as r−6. The slowest decaying (i.e. leading) part of R̃ roughly comes

from R̄R̃ (with indices suppressed); the leading part of R̃ is ∇2
h̃, which, being radia-

tive, goes as r−1. This means that R̃ ∼ r−4. Similarly, the leading part of ˜̃R goes as

(∇2
h̃)(∇2

h̃), so ˜̃R ∼ r−2.

Examining the effective action, Eq. (3.63), we see that there are no terms that

decay as r−2, which are the only ones that can contribute to the GW effective stress-

energy tensor at I +. Any term with R̄ or R̃ already decay too quickly; only terms
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with ˜̃R could remain, and only if they were multiplied by terms that asymptote as

O(1).

Having performed the splitting into the dynamical and non-dynamical parts, ˜̃R

is multiplied by
√
−ḡF (ϑ̄) in the effective action. This splitting was specifically

constructed so that F (0) = 0. Since F must be differentiable at ϑ = 0, F (ϑ̄) must go

to zero at least as fast as ϑ̄ goes to zero, which is at least r−1/2.

We have thus shown that the dynamical part of the interaction term does not

contributed to the effective stress-energy tensor at I + directy. However, it could still

contribute indirectly through the imposition of the first order field equations. We

examine this in a later section.

Non-dynamical contribution

Let us now consider Sn-d in Eq. (3.62c). This term generically contributes to the

effective stress-energy tensor of GWs at I +. To show this contribution, consider the

general rank 2 modification as the linear combination of the four independent rank 2

curvature invariants

αR ≡ α1R
2 + α2RµνR

µν + α3RαβµνR
αβµν + α4

∗RR , (3.64a)

and absorb f(0) into the coefficients α′i in the non-dynamical part,

α′R ≡ α′1R
2 + α′2RµνR

µν + α′3RαβµνR
αβµν + α′4

∗RR . (3.64b)

Note that this form also includes the Weyl squared invariant, which is a dependent

linear combination of the above terms, CαβµνCαβµν = R2/3−2RαβRαβ +RαβµνRαβµν ,

which is considered in [107, 106]. The Pontryagin density ∗RR, being a topological

invariant, does not contribute to the action in Sn-d, so we may drop the final term.

Similarly, if the linear combination is proportional to the Gauss-Bonnet (or Euler)

invariant, which has α1 = 1 = α3, α2 = −4, then R would be topological and there
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would be no contribution to Sn-d and hence no contribution to the effective stress-

energy tensor of GWs.

The calculation of the effective action for the non-dynamical term is straightfor-

ward but long, so we do not show the steps here. An outline of the calculation is to

perturb
√
−gR to second order; the only parts that may contribute to an effective

stress-energy tensor at I + are of the form
√
−ḡR̃R̃, where again we have suppressed

indices on the perturbed curvature tensor R̃. This is calculated in terms of the trace-

reversed metric perturbation h̃
µν

. As before, Lorenz gauge may be imposed at the

level of the action. All terms that remain will be of the form ∇α∇βh̃
µν ∇κ∇λh̃

ρσ
with

all indices contracted to form a scalar. If any derivative is contracted onto h̃
µν

, by

integrating by parts and commuting covariant derivatives, one may form the Lorenz

gauge condition ∇µh̃
µν

= 0 and ignore the term in the effective action. Thus the only

surviving terms have derivatives contracted together, which can be put into one of

two forms, �̄h̃
µν
�̄h̃µν and �̄h̃ �̄h̃. After the explicit calculation, the prefactors are

found and

S
eff(2)
n-d =

ε2

4

∫
d4x
√
−ḡ

[
(α′1 − α′3) �̄h̃ �̄h̃+ (α′2 + 4α′3) �̄h̃

µν
�̄h̃µν

]
. (3.65)

Note again that α4 does not appear, and if α1, α2, α3 are in the Gauss-Bonnet ratio,

then the effective action of Eq. (3.65) vanishes.

Putting all indices in their natural positions, so as to expose implicit metric de-

pendence, and varying the effective action of Eq. (3.65) with respect to ḡµν , the

contribution to the effective stress-energy tensor is

T eff

n-dµν = ε2
〈〈

(α′1 − α′3) �̄h̃
(
�̄h̃µν −∇µ∇ν h̃

)
+ (α′2 + 4α′3)

(
�̄h̃αµ �̄h̃ν

α − �̄h̃αβ ∇(µ∇ν)h̃
αβ
)〉〉

. (3.66)

We then find that the effective stress-energy tensor of GWs at I + is given by the

MacCallum-Taub stress-energy tensor (coming from the Einstein-Hilbert action) plus

the direct contribution from the non-dynamical part of the rank 2 interaction term,
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T eff
n-dµν ,

T eff

µν = T eff

MTµν + T eff

n-dµν . (3.67)

The only remaining part of the calculation is to put the stress-energy tensor on-shell,

that is, to impose the first-order equations of motion at I +.

First-order equations of motion

We need the first-order equations of motion at I + of the full theory, including both

the dynamical and non-dynamical terms of the action. At I +, however, ϑ̄ and ∇µϑ̄

decay at least as r−1/2 and r−3/2. The only remaining dependence on ϑ̄ is through

f(ϑ̄)→ f(0).

The general zeroth and first-order equations of motion are quite long, so we do

not reproduce them here, but they do simplify as r → ∞. These equations are

linear in h̃µν and ϑ̃, which are both radiative and decay as r−1. This r−1 scaling is

the asymptotic scaling of the first-order equations of motion, as there are terms of

the form �̄h̃µν that appear with no curvature tensors or background scalar field ϑ̄

multiplying them. However, all terms containing ϑ̃ have curvature tensors multiplying

them, so they decay faster than the leading behaviour of r−1.

Keeping only the terms that go as r−1, the first-order equation of motion in Lorenz

gauge at asymptotically-flat, future null infinity is

κ�̄h̃µν = − (2α1 + α2 + 2α3) f(ϑ̄)
(
∇µ∇ν�̄− ḡµν�̄�̄

)
h̃

− (α2 + 4α3) f(ϑ̄)�̄�̄h̃µν , (3.68a)

and the trace of this equation is

κ�̄h̃ = 2 (3α1 + α2 + α3) f(ϑ̄)�̄�̄h̃ . (3.68b)

Again we see that if the α coefficients are in the Gauss-Bonnet ratio, the GR equation

of motion is recovered at I +.

127



This wave equation can be seen to be a massive wave equation for the auxiliary

variable r̃µν ≡ �̄h̃µν , with mass m ∼ 1/λ̄, where λ̄2 ∼ |αi|f(0)/κ. In the weak

coupling limit, λ̄/λGW � 1, the equations simplify considerably. This simplification

comes from treating the solution to the full theory as a deformation away from GR;

this means expanding the fields as power series in a small parameter, namely ζ̄ =

(λ̄/λGW)2. As in Eq. (3.34), we impose

h̃µν =
∞∑
n=0

ζ̄nh̃
(n)

µν , (3.69)

and similarly for other fields, where the zeroth field h̃
(0)

µν is the GR solution. Inserting

this expansion in the first-order equation of motion Eq. (3.68) and matching order by

order gives

κ�̄h̃
(n+1)

µν = − (2α1 + α2 + 2α3) f(ϑ̄)

×
(
∇µ∇ν�̄− gµν�̄�̄

)
h̃

(n)

− (α2 + 4α3) f(ϑ̄)�̄�̄h̃
(n)

µν , (3.70a)

for all orders n ≥ 0, and

�̄h̃
(0)

µν = 0 , (3.70b)

for the GR solution. Substituting Eq. (3.70b) into Eq. (3.70a) and iteratively solving

the field equations one order at a time, we find at all orders that

�̄h̃
(n)

µν = 0 . (3.70c)

This is the GR first-order equation of motion, and just as in GR, we may specialize

the Lorenz gauge to the TT gauge at I +5. This expansion has discontinuously turned

the massive wave equation into a massless one by killing the massive modes in the

5To prove that the TT gauge exists at I + for this theory, the proof in Appendix A of Flana-
gan and Hughes (FH) [63] must be extended. Their Eq. (A.12) must be replaced by our (3.68a)
and a small coupling expansion performed. The result will again be (3.70c), which is identical to
FH’s Eq. (A.12).
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limit of m → ∞. Such an order-reduction procedure, where certain solutions are

eliminated through perturbative constraints, has been shown to select the physically

correct ones in all studied cases [65, 162, 169].

We can now evaluate the complete effective stress-energy tensor of GWs at I +.

As shown in Sec. 3.6.5, there is no direct contribution from the dynamical part of the

interaction term. Section 3.6.5 showed that the non-dynamical part does contribute

directly, but imposing Eq. (3.70c) forces this contribution to also vanish. Since the

MacCallum-Taub tensor on-shell is equal to the Isaacson tensor, we then have

T eff

µν =
(
T eff

MTµν + T eff

n-dµν

) ∣∣∣
(�̄h̃αβ=0)

= T eff

GRµν . (3.71)

That is, the effective GW stress-energy tensor is identical to the Isaacson one at I +

for this wide class of modified gravity theories.

3.7 Conclusions

We have here addressed the energy content of GWs in a wide class of modified grav-

ity theories. We focused on theories that are weak deformations away from GR

and calculated the effective stress-energy tensor where GWs are extracted: in the

asymptotically-flat region of spacetime.

The main calculation tool we employed was the perturbed Lagrangian approach.

We demonstrated the calculation explicitly for GR, recovering the Isaacson effective

stress-energy tensor. We also explicitly calculated this effective tensor in dynamical

modified CS gravity, where again the result at I + reduces to the Isaacson tensor. The

features of CS gravity that lead to the effective stress-energy tensor being identical to

the one in GR are the dynamical nature of the scalar field and the topological nature

of the curvature correction to the action.

We then generalized this finding to all action modifications of a similar nature:

a dynamical scalar field coupled to a scalar curvature invariant of rank 2 or higher

in a spacetime that is asymptotically flat. For scalar curvature invariants of rank
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3 or higher, we showed that there is no modification to the stress-energy tensor or

the equations of motion at I +. For rank 2, we calculated the contribution to the

effective stress-energy tensor and to the first-order equation of motion. In the weak

coupling limit, the only solutions to the first-order equations of motion satisfy the GR

first-order equations of motion at I +, namely �̄h̃µν = 0. Evaluating the effective

stress-energy tensor on-shell with these solutions leads, again, to the Isaacson stress-

energy tensor.

A few caveats are in order. As we have stressed before, this result is evaluated

at asymptotically-flat, future null infinity, so it does not apply to cosmological space-

times, e.g. de Sitter spacetime. Not all of the energy that is lost by a system is

carried away by GWs to I +: there is also radiation in the scalar field (which is

calculated straightforwardly from T
(ϑ)
µν ), and both GWs and the scalar field radiation

are lost to trapped surfaces. All of these effects must be accounted for in calculating

the radiation-reaction of a system. Finally, we did not address modifications to the

action of the form f(ϑ)R, which reduce to a classical scalar-tensor theory.

There are several avenues open for future work. Considering classical scalar-tensor

modifications is one possible extension. The work should also be extended to the next

simplest spacetimes, those that are asymptotically de Sitter. This is appropriate for

calculating GWs from inflation, for example. Extending this approach to calculating

energy lost to trapped surfaces is another possibility.

The most natural application of this work is in tests of GR with pulsar binaries

and with GWs emitted by EMRIs. The former problem requires performing a post-

Keplerian expansion of the motion of bodies orbiting each other. The latter requires

knowing the BH spacetime (background) solution in the class of modified gravity

theories and the geodesic or non-geodesic motion on that spacetime. Both of these

programs require knowledge of radiation-reaction in GWs at I +, which we have here

computed for a large class of modified gravity theories.
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Chapter 4

Non-Spinning Black Holes in

Alternative Theories of Gravity†

Abstract

We study two large classes of alternative theories, modifying the action through alge-
braic, quadratic curvature invariants coupled to scalar fields. We find one class that
admits solutions that solve the vacuum Einstein equations and another that does
not. In the latter, we find a deformation to the Schwarzschild metric that solves the
modified field equations in the small coupling approximation. We calculate the event
horizon shift, the innermost stable circular orbit shift, and corrections to gravitational
waves, mapping them to the parametrized post-Einsteinian framework.

4.1 Introduction

Although black holes (BHs) are one of the most striking predictions of General Rel-

ativity (GR), they remain one of its least tested concepts. Electromagnetic observa-

tions have allowed us to infer their existence, but direct evidence of their non-linear

gravitational structure remains elusive. In the next decade, data from very long-

baseline interferometry [55, 61] and gravitational wave (GW) detectors [58, 161, 16,

83, 2, 12, 137, 134, 179, 178, 9, 136, 100, 176, 138, 149, 54, 102] should allow us to

†This chapter originally appeared as Yunes, N., Stein, L. C. (2011), Nonspinning black holes in
alternative theories of gravity, Phys. Rev. D 83 104002 [171]. A typographical error which occured
in print in Eq. (4.5b) has been corrected here.
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image and study BHs in detail. Such observations will test GR in the dynamical,

non-linear or strong-field regime, precisely where tests are currently lacking.

Testing strong-field gravity features of GR is of utmost importance to physics and

astrophysics as a whole. This is because the particular form of BH solutions, such as

the Schwarzschild and Kerr metrics, enter many calculations, including accretion disk

structure, gravitational lensing, cosmology and GW theory. The discovery that these

metric solutions do not accurately represent real BHs could indicate a strong-field

departure from GR with deep implications to fundamental theory.

Such tests require parametrizing deviations from Schwarzschild or Kerr. One such

parameterization at the level of the metric is that of bumpy BHs [44, 153, 152], while

another at the level of the GW observable is the parameterized post-Einsteinian (ppE)

framework [170, 167]. In both cases, such parameterizations are greatly benefited from

knowledge of specific non-GR solutions, but few, 4D, analytic ones are known that

represent regular BHs (except perhaps in dynamical Chern-Simons (CS) gravity [169,

6] and Einstein-Dilaton-Gauss-Bonnet (EDGB) gravity [84, 150, 85, 121, 112]).

Most non-GR BH solutions are known through numerical studies. In this ap-

proach, one chooses a particular alternative theory, constructs the modified field

equations and then postulates a metric ansatz with arbitrary functions. One then

derives differential equations for such arbitrary functions that are then solved and

studied numerically. Such an approach was used, for example, to study BHs in

EDGB gravity [84, 150, 85, 121, 112].

Another approach is to find non-GR BH solutions analytically through approx-

imation methods. In this scheme, one follows the same route as in the numerical

approach, except that the differential equations for the arbitrary functions are solved

analytically through the aid of approximation methods, for example by expanding

in (a dimensionless function of) the coupling constants of the theory. Such a small-

coupling approximation [37, 46, 169] treats the alternative theory as an effective and

approximate model that allows for small GR deformations. This approach has been

used to find an analytic, slowly-rotating BH solution in dynamical CS modified grav-

ity [169, 6].
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But not all BH solutions outside of GR must necessarily be different from stan-

dard GR ones. In fact, there exists many modified gravity theories where the Kerr

metric remains a solution. This was the topic studied in [129], where it was explicitly

shown that the Kerr metric is also a solution of certain f(R) theories, non-dynamical

quadratic gravity theories, and certain vector-tensor gravity theories. Based on these

fairly generic examples, it was then inferred that the astrophysical observational veri-

fication of the Kerr metric could not distinguish between GR and alternative theories

of gravity.

Such an inference, however, is not valid, as it was later explicitly shown in [169].

Indeed, there are alternative gravity theories, such as dynamical CS modified grav-

ity, where the Kerr metric is not a solution. This prompted us to study what class

of modified gravity theories admit Kerr and which do not. We begin by consider-

ing the most general quadratic gravity theory with dynamical couplings, as this is

strongly motivated by low-energy effective string actions [38, 27, 73, 72, 34]. When

the couplings are static, we recover the results of [129], while when they are dynamic

we find that the Kerr metric is not a solution. In the latter case, we find how the

Schwarzschild metric must be modified to satisfy the corrected field equations. We

explicitly compute the shift in the location of the event horizon and innermost stable

circular orbit.

Such modifications to the BH nature of the spacetime induce corrections to the

waveforms generated by binary inspirals. We compute such modifications and show

that they are of so-called second post-Newtonian (PN) order, i.e. they correct the GR

result at O(v4) relative to the leading-order Newtonian term, where v is the orbital

velocity. We further show that one can map such corrections to the parameterized

post-Einsteinian (ppE) framework [178], which proposes a model-independent, wave-

form family that interpolates between GR and non-GR waveform predictions. This

result supports the suggestion that the ppE scheme can handle a large class of mod-

ified gravity models.

The remainder of this paper is organized as follows. Sec 4.2 defines the set of

theories we will investigate and computes the modified field equations. Sec. 4.3 solves
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for BH solutions in this class of theories. Sec. 4.4 discusses properties of the solution

and Sec. 4.5 studies the impact that such BH modifications will have on the GW

observable. Sec. 4.6 concludes by pointing to future possible research directions. For

the remainder of this paper, we use the following conventions: latin letters in index

lists stand for spacetime indices; parentheses and brackets in index lists stand for

symmetrization and antisymmetrization respectively, i.e. A(ab) = (Aab + Aba)/2 and

A[ab] = (Aab − Aba)/2; we use geometric units with G = c = 1.

4.2 Quadratic Gravity

Consider the wide class of alternative theories of gravity in 4-dimensions defined

by modifying the Einstein-Hilbert action through all possible quadratic, algebraic

curvature scalars, multiplied by constant or non-constant couplings:

S ≡
∫
d4x
√
−g
{
κR + α1f1(ϑ)R2 + α2f2(ϑ)RabR

ab + α3f3(ϑ)RabcdR
abcd

+ α4f4(ϑ)Rabcd
∗Rabcd − β

2
[∇aϑ∇aϑ+ 2V (ϑ)] + Lmat

}
, (4.1)

where g is the determinant of the metric gab, (R,Rab, Rabcd,
∗Rabcd) are the Ricci scalar

and tensor, the Riemann tensor and its dual [6] respectively, Lmat is the Lagrangian

density for other matter, ϑ is a scalar field, (αi, β) are coupling constants and κ =

(16πG)−1. All other quadratic curvature terms are linearly dependent, e.g. the Weyl

tensor squared. Theories of this type are motivated from fundamental physics, such

as in low-energy expansions of string theory [27, 73, 72, 34].

Let us distinguish between two different types of theories: non-dynamical and

dynamical. In the former, all the couplings are constant (f ′i(ϑ) = 0) and there is

no scalar field (β = 0). Varying Eq. (4.1) with respect to the metric and setting

fi(ϑ) = 1, we find the modified field equations

Gab +
α1

κ
Hab +

α2

κ
Iab +

α3

κ
Jab =

1

2κ
Tmat

ab , (4.2)
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where Tmat
ab is the stress-energy of matter and

Hab ≡ 2RabR−
1

2
gabR

2 − 2∇abR + 2gab�R , (4.3a)

Iab ≡ �Rab + 2RacbdR
cd − 1

2
gabRcdR

cd +
1

2
gab�R−∇abR , (4.3b)

Jab ≡ 8RcdRacbd − 2gabR
cdRcd + 4�Rab − 2RRab +

1

2
gabR

2 − 2∇abR , (4.3c)

with ∇a, ∇ab = ∇a∇b and � = ∇a∇a the first and second covariant derivatives and

the d’Alembertian, and using the Weyl identity 4Ca
cdeCbcde = gabCcdefC

cdef , with

Cabcd the Weyl tensor.

The dynamical theory is specified through the action in Eq. (4.1) with fi(ϑ) some

function of the dynamical scalar field ϑ, with potential V (ϑ). For simplicity, we

restrict attention here to functions that admit the Taylor expansion fi(ϑ) = fi(0) +

f ′i(0)ϑ+O(ϑ2) about small ϑ, where fi(0) and f ′i(0) are constants. The ϑ-independent

terms, proportional to fi(0), lead to the non-dynamical theory, and we thus ignore

them henceforth. Let us then concentrate on fi(ϑ) = ciϑ, where we reabsorb the

constants ci = f ′i into αi, such that αifi(ϑ)→ αiϑ. The field equations are then

Gab +
α1

κ
H(ϑ)
ab +

α2

κ
I(ϑ)
ab +

α3

κ
J (ϑ)
ab +

α4

κ
K(ϑ)
ab =

1

2κ

(
Tmat

ab + T
(ϑ)
ab

)
, (4.4)

where T
(ϑ)
ab = β

2

[
∇aϑ∇bϑ− 1

2
gab (∇cϑ∇cϑ− 2V (ϑ))

]
is the scalar field stress-energy

tensor and∗

H(ϑ)
ab ≡ −4v(a∇b)R− 2R∇(avb) + gab (2R∇cvc + 4vc∇cR)

+ ϑ

[
2RabR− 2∇abR−

1

2
gab
(
R2 − 4�R

)]
, (4.5a)

I(ϑ)
ab ≡ −v(a∇b)R− 2vc

(
∇(aRb)c −∇cRab

)
+Rab∇cv

c

− 2Rc(a∇cvb) + gab
(
vc∇cR +Rcd∇cvd

)
+ ϑ

[
2RcdRacbd −∇abR +�Rab + 1

2
gab
(
�R−RcdR

cd
)]
, (4.5b)

∗Equation (4.5b) had an error in print. The error has been corrected here.
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J (ϑ)
ab ≡ −8vc

(
∇(aRb)c −∇cRab

)
+ 4Racbd∇cvd

− ϑ
[
2
(
RabR− 4RcdRacbd +∇abR− 2�Rab

)
− 1

2
gab
(
R2 − 4RcdR

cd
)]
, (4.5c)

K(ϑ)
ab ≡ 4vcεc

d
e(a∇eRb)d + 4∇dvc

∗R(a
c
b)
d , (4.5d)

with va ≡ ∇aϑ and εabcd the Levi-Civita tensor. Notice that α4Kab = αCSCab, where

αCS and Cab are the CS coupling constant and the CS C-tensor [6]. The dynamical

quadratic theory includes dynamical CS gravity as a special case. Variation of the

action with respect to ϑ yields the scalar field equation of motion

β�ϑ− βdV
dϑ

= −α1R
2 − α2RabR

ab − α3RabcdR
abcd − α4Rabcd

∗Rabcd . (4.6)

Both the non-dynamical and dynamical theories arise from a diffeomorphism in-

variant action, and thus, they lead to field equations that are covariantly conserved,

i.e. the covariant divergence of Eq. (4.2) identically vanishes, while that of Eq. (4.4)

vanishes upon imposition of Eq. (4.6), unlike in non-dynamical CS gravity [6].

4.3 Non-Spinning Black Hole Solution

4.3.1 Non-dynamical Theories

The modified field equations of the non-dynamical theory have the interesting prop-

erty that metrics for which the Ricci tensor vanishes are automatically solutions.

One can see that if Rab = 0, then Eqs. (4.3a)-(4.3c) vanish exactly, thus satisfying

the modified field equations in Eq. (4.2). This generalizes the result in [129], as we

here considered a more general action.

The reason for this simplification is the Gauss-Bonnet and Pontryagin identities.

The integral of the Gauss-Bonnet term G ≡ R2−4RabR
ab+RabcdR

abcd is proportional

to the Euler characteristic E , while that of the Pontryagin density Rabcd
∗Rabcd is

proportional to the Chern number C. Thus, the RabcdR
abcd and the Rabcd

∗Rabcd terms
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can be removed from the action in Eq. (4.1) in favor of E and C. Since the variation

of these constants vanishes identically, the field equations can be rewritten to depend

only on the Ricci tensor and its trace.

This feature has a natural generalization for a wider class of alternative theories

of gravity. If an action for an alternative theory contains the Riemann tensor or its

dual only in a form that can be rewritten in terms of topological invariants (with no

dynamical couplings), then the field equations will be free of Riemann, and thus, all

vacuum GR solutions will also be solutions of such modified theories. Therefore, any

action built from powers of the Ricci scalar or products of the Ricci tensor, possibly

coupled to dynamical fields, and with Riemann tensors entering only as above, admits

all vacuum GR solutions.

These results have important consequences for attempts to test GR in the strong

field. Electromagnetic GR tests that aim at probing the Kerr nature of BHs would

be insensitive to such modified theories. On the other hand, observations that probe

the dynamics of the background, such as GW observations [161, 16, 83, 2, 12, 137,

134, 179, 178, 9, 136, 100, 176, 138, 149, 54, 102], would be able to constrain them.

4.3.2 Dynamical Theories

The modified field equations in the dynamical theory, however, are not as simple, as

clearly they are not satisfied whenRab = 0. This is because J (ϑ)
ab depends on∇cvdRabcd

and K(ϑ)
ab depends on ∇dvc

∗R(a
c
b)
d. Let us search for small deformations away from

the GR Schwarzschild metric that preserve stationarity and spherical symmetry. The

only relevant term here then is J (ϑ)
ab , asK(ϑ)

ab vanishes in spherical symmetry, as already

analyzed in [169].

We thus pose the ansatz

ds2 = −f0 [1 + εh0(r)] dt2 + f−1
0 [1 + εk0(r)] dr2 + r2dΩ2 , (4.7)

and ϑ = ϑ̄ + εϑ̃, where f0 ≡ 1 − 2M0/r, with M0 the “bare” or GR BH mass

and (t, r, θ, φ) are Schwarzschild coordinates, while dΩ2 is the line element on the
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2-sphere. The free functions (h0, k0) are small deformations from the Schwarzschild

metric, controlled by a function of the coupling constants (αi, β) that we define below;

ε is a book-keeping parameter.

Before we solve the field equations, let us discuss the scalar field potential V (ϑ).

There are two distinct choices for this potential: a flat (V ′(ϑ) = 0) or non-flat

(V ′(ϑ) 6= 0) potential. For the non-flat case, the potential must be bounded from

below for the theory to be globally stable, and thus it will contain one or more min-

ima. The scalar field would tend towards the minimum of the potential, where the

latter could be expanded as a quadratic function about the minimum (assumed here

to be at zero): V ≈ 1
2
m2
ϑϑ

2. One might treat the flat potential as the limit mϑ → 0

of the above non-flat potential, but this limit is not continuous at the point mϑ = 0.

The massive case must thus be treated generically and it turns out to be sufficiently

complicated that we restrict our attention only to the massless (flat) case1.

With this ansatz, we can solve the modified field equations and the scalar field’s

equation of motion order by order in ε. Through the small-coupling approximation,

we treat α = O(ε) and β = O(ε). To zeroth-order in ε, the field equations are

automatically satisfied because the Schwarzschild metric has vanishing Ricci tensor.

To this order, the scalar field equation can be solved to find

ϑ̄ =
α3

β

2

M0r

(
1 +

M0

r
+

4

3

M2
0

r2

)
. (4.8)

This is the same solution found in [38] for dilaton hair sourced in EDGB gravity. The

scalar field depends only on α3, since the term proportional to α4 vanishes identically

in a spherically symmetric background.

We can use this scalar field solution to solve the modified field equations to O(ε).

Requiring that the metric be asymptotically flat and regular at r = 2M0, we find the

unique solution h0 ≡ F(1 + h̃0) and k0 ≡ −F(1 + k̃0), where F ≡ −(49/40) ζ (M0/r)

1It is worth noting, however, that the potential must respect the symmetries inherited from the
fundamental theory that the effective action derives from. A large class of such theories, such as
heterotic string theory in the low-energy limit, is shift symmetric, which then forbids the appearance
of mass terms.
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and

h̃0 =
2M0

r
+

548

147

M2
0

r2
+

8

21

M3
0

r3
− 416

147

M4
0

r4
− 1600

147

M5
0

r5
, (4.9)

k̃0 =
58

49

M0

r
+

76

49

M2
0

r2
− 232

21

M3
0

r3
− 3488

147

M4
0

r4
− 7360

147

M5
0

r5
,

and where we have defined the dimensionless coupling function ζ ≡ α2
3/(βκM

4
0 ) =

O(ε). This solution is the same as that found in EDGB gravity [98]. Our analysis

shows that such a solution is the most general for all dynamical, algebraic, quadratic

gravity theories, in spherical symmetry.

The demand that the metric deformation be regular everywhere outside the hori-

zon has led to a term that changes the Schwarzschild BH mass, i.e. there is a cor-

rection to gtt and grr that decays as 1/r at spatial infinity. We can then define the

physical mass M ≡ M0[1 + (49/80)ζ], such that the only modified metric compo-

nents become gtt = −f(1 + h) and grr = f−1(1 + k) where h = ζ/(3f)(M/r)3h̃ and

k = −(ζ/f)(M/r)2k̃, and

h̃ = 1 +
26M

r
+

66

5

M2

r2
+

96

5

M3

r3
− 80M4

r4
, (4.10)

k̃ = 1 +
M

r
+

52

3

M2

r2
+

2M3

r3
+

16

5

M4

r4
− 368

3

M5

r5
, (4.11)

and where f ≡ 1−2M/r. Physical observables are related on the renormalized mass,

not the bare mass. This renormalization was not performed by [98].

In fact, one need not fix the single constant of integration which appears in finding

this solution. Any value of the integration constant, after renormalization, is absorbed

into the renormalized mass. Rather than a family of spacetimes, there is a unique

spacetime after renormalization.

The sign of the coupling constant can be determined by computing the energy

carried by the scalar field in Eq. (4.8). The energy is E(ϑ) ≡
∫

Σ
T

(ϑ)
ab t

atbγ1/2d3x,

where Σ is a t = const. hypersurface outside of the horizon (so that it is spacelike

everywhere), ta = (∂/∂t)a and γ is the determinant of the metric intrinsic to Σ. We
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find that E(ϑ) = (9/7)ζκπM . For stability reasons, we require that E(ϑ) ≥ 0, which

then implies ζ ≥ 0 and α2
3/β ≥ 0.

Although we here considered non-spinning BHs, our analysis can be generalized to

spinning ones, by separating the theory and its solutions into parity-even and parity-

odd sectors. A parity transformation consists of the reflection xi → −xi, which for a

spinning BH metric implies a→ −a, where |Si| = M |a| is the magnitude of the spin

angular momentum. Expanding the spinning BH solution as a power series in a/M , we

see that the Kretschmann scalar RabcdR
abcd has only even powers of a/M (even parity

sector), while the Pontryagin density ∗RR has only odd powers of a/M (odd parity

sector). These quantities source the ϑ equation of motion, therefore driving even and

odd metric perturbations respectively. The solution found here is of even parity and

corresponds to the O(a0) part of the metric expansion for a slowly-spinning BH in

dynamical quadratic gravity. The next order, O(a1), is parity odd and is sourced

only by the Pontryagin density, since R2, RabR
ab, and RabcdR

abcd are all even under

parity. The solution sourced by just the Pontryagin density is identical to that in

dynamical Chern-Simons gravity (all αi = 0 except for α4) and was found in [169].

From the parity arguments presented here, we see that the exact same modification

arises at O(a1) in the more general dynamical quadratic gravity considered here.

Therefore, to O(a1), the modification in dynamical quadratic gravity is simply the

linear combination of the O(a0) solution found here and the O(a1) solution found

in [169].

4.4 Properties of the Solution

The solution found is spherically symmetric, stationary, asymptotically flat, and regu-

lar everywhere except at r = 0. It represents a non-spinning BH with a real singularity

at the origin, as evidenced by calculating the Kretschmann scalar expanded to O(ζ):

K ≡ RabcdR
abcd = K̄ − 32ζM3/r7K̃, where K̄ = 48M2/r6 and

K̃ = 1 +
M

2r
+

72M2

r2
+

7M3

r3
+

64

5

M4

r4
− 840M5

r5
. (4.12)
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The location of the event horizon, i.e. the surface of infinite redshift, can be computed

by solving gtt = 0 to find rEH/M = 2 − (49/40)ζ. The metric remains Lorentzian

(i.e. sgn(g) < 0) everywhere outside rEH provided ζ is sufficiently small (specifically,

0 < ζ < (120/361)).

One can also study point-particle motion in this background. Neglecting internal

structure and spins, test-particle motion remains geodesic [71] and the equation of

motion reduces to ṙ2/2 = V GR
eff +δVeff, where the overhead dot stands for differentiation

with respect to proper time and

V GR

eff =
E2

2
− L2

2r2
f − f

2
, δVeff = −1

2
E2h− 1

2
V GR

eff k , (4.13)

where (E,L) are the conserved quantities induced by the timelike and azimuthal

Killing vectors, i.e. the particle’s energy and angular momentum per unit mass.

One can solve for the energy and angular momentum for circular orbits [155]

through the conditions ṙ = 0 and V ′eff = 0 to find E = EGR + δE and L = LGR + δL,

where EGR = f(1− 3M/r)−1/2, LGR = (Mr)1/2EGR/f and

δE = − ζ

12

M3

r3

(
1− 3M

r

)−3/2(
1 +

54M

r
+

198

5

M2

r2
+

252

5

M3

r3
− 2384

5

M4

r4
+

480M5

r5

)
,

(4.14)

δL = −ζM
4

M3/2

r3/2

(
1− 3M

r

)−3/2(
1 +

100

3

M

r
− 30M2

r2
+

16

5

M3

r3
− 752

3

M4

r4
+

320M5

r5

)
.

(4.15)

From this expression, we can find the modified Kepler law by expanding ω ≡ L/r2 in

the far field limit:

ω2 = ω2
GR

[
1− ζ

2

(
M

r

)2
]

(4.16)

where ω2
GR = M/r3[1 +O(M/r)]. If in addition to the above circular orbit conditions

one evaluates the marginal stability condition V ′′eff = 0, one finds that the shift in the

ISCO location is
rISCO

M
= 6− 16297

9720
ζ . (4.17)
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4.5 Impact on Binary Inspiral GWs

As evidenced above, such a modified theory will introduce corrections to the binding

energy of binary systems. Consider a binary with component masses m1,2 and total

mass m = m1 +m2. The binding energy, to leading O(m/r, ζ), can be obtained from

EGR and δE in Eq. (4.14) by the transformation m1m2 → m2η and expanding in

M/r � 1. This trick works to leading order in ζ and in m/r only and it leads to

Eb(r) = −m
2η

2r

[
1 +

ζ

6

(m
r

)2
]
. (4.18)

Using the modified Keplerian relation of the previous Section, this becomes

Eb(F ) = −1

2
(2πmF )2/3 − 1

6
mηζ (2πmF )2 , (4.19)

to leading O(mF, ζ), where F is the orbital frequency and η = m1m2/m
2 is the

symmetric mass ratio. Such a modification to the binding energy will introduce

corrections to the binary’s orbital phase evolution at leading, Newtonian order.

A calculation of the phase and amplitude waveform correction that accounts only

for the leading-order binding energy modification is incomplete. First, higher O(m/r)

terms in Eb are necessary for detailed GW tests. These terms, however, are not

necessary to find the leading-order, functional form of the waveform correction; this

is all one needs to map these modifications to the ppE scheme.

To be consistent, we must also consider the energy flux carried by the scalar field.

This program involves solving for the perturbation on top of the background solution

given in Eq. (4.8). The solution can be found using post-Newtonian integration

techniques and is in preparation [166].† The modification to radiation reaction due

to the scalar field is subdominant (of much higher post-Newtonian order) compared

to the modification to the binding energy calculated here, as will be shown in a

forthcoming paper [166].†

†The work originally referenced here came to be the following Chapter, Chap. 5.
†Ibid.
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Let us now compute the orbital phase correction due to modifications to the

binding energy. The orbital phase for a binary in a circular orbit is simply

φ(F ) =

∫ F

(E ′) (Ė)−1ω dω , (4.20)

where ω = 2πF is the orbital angular frequency, E ′ ≡ dE/dω and Ė = −(32/5)η2m2r4ω6

is the loss of binding energy due to radiation. This expression for Ė is the GR

quadrupole form, which was shown [138] to be valid in the small-coupling limit in

asymptotically flat spacetimes when the action is of the form we use. Neglecting Ė(ϑ)

and to leading O(mω, ζ), the orbital phase

φ = φGR

[
1 +

25

3
ζ (2πmF )4/3

]
, (4.21)

where the GR phase is φGR = −1/(32η)(2πmF )−5/3. The leading order correction

is of so-called 2PN order, as it scales with (m F )4/3 (down by 1/c4) relative to the

leading-order GR result.

Similarly, we can compute the correction to the frequency-domain GW phase in

the SPA, by assuming that its rate of change is much more rapid than the GW

amplitude’s. This phase is (see e.g. [173])

ΨGW = 2φ(t0)− 2πft0 , (4.22)

where t0 satisfies the stationary phase condition F (t0) = f/2, with f the GW fre-

quency. Neglecting Ė(ϑ) and to leading O(mω, ζ), we find that

ΨGW = ΨGR

GW

[
1 +

50

3
ζη−4/5u4/3

]
, (4.23)

where u ≡ πMf is the reduced frequency andM = η3/5m is the chirp mass. Similarly,

the Fourier-domain amplitude scales as |h̃| ∝ Ḟ (t0)−1/2, which then leads to

|h̃| = |h̃|GR

[
1 +

5

6
ζu4/3η−4/5

]
, (4.24)
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where |h̃GR| is the GW amplitude in GR. In principle, there could be additional

corrections to |h| from modifications to the first order equations of motion, but [138]

has shown that these vanish in the small coupling approximation.

The modifications introduced to the inspiral waveforms can be mapped to parametrized

waveform models that facilitate GR tests. In the ppE framework [170], the simplest

parameterization is

h̃ = |h̃|GR(1 + αηcua) exp[iΨGR

GW(1 + βηdub)] , (4.25)

where (α, a, β, b, c, d) are ppE parameters. Our results clearly map to this parame-

terization with α = (5/6)ζ, β = (50/3)ζ, a = 4/3 = b and c = −4/5 = d. Since the

radiation carried by the scalar field is of higher post-Newtonian order, including it

will not change these ppE parameters. Future GW constraint on these parameters

could be translated into a bound on the class of alternative theories considered here.

Preliminary studies suggest that GW detectors, such as LIGO, could place in-

teresting constraints on the parameter β. Given a signal-to-noise ratio of 20 for a

comparable mass binary inspiral signal, one might be able to constrain β . 10−1

when b = 4/3 [47]. This bound would translate to a ζ-constraint of ζ . 10−2, which

should be compared to the current double binary pulsar constraint ζ . 107 [167].

Since the effect calculated here occurs at 2PN order, systems with strong gravity are

required to probe it. 2PN effects are unimportant in describing the spacetime of the

solar system and known binary pulsars. GWs sourced in the strong field could place

much stronger constraints on non-linear strong field deviations from GR relative to

current solar system and binary pulsar bounds.

4.6 Future Work

The study presented here shows that there is a wide class of modified gravity theories

where Schwarzschild and Kerr are not solutions, yet their waveform modifications can

be mapped to the ppE scheme. This study could be extended by investigating higher-
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order in v, PN corrections to the waveform modifications. Such a calculation would

require one to solve for the two-body metric in this specific class of theories. Although

this can in principle be done within the PN scheme, in practice the calculation will

be analytically quite difficult, due to the non-linear terms introduced by the modified

theory.

Another possible extension is to investigate the effect of different potential terms

to the results presented here. For example, one could postulate a cosine potential and

see how this modifies the solutions found. Such cosine potentials arise naturally due

to non-linear interactions in effective string actions. The inclusion of such a potential

will probably render the problem non-analytic, forcing us to solve the equations of

motion for the scalar field numerically.

One other avenue of future research is to find analytic, closed form solutions for

BHs rotating arbitrarily fast in dynamical quadratic gravity. The analysis presented

here applies only to non-rotating BHs, and we have discussed how it would be mod-

ified when considering slowly rotating BHs. Exact, closed form solutions for rapidly

rotating BHs, however, remain elusive. One might have to integrate the equations

numerically to find such solutions. One possible line of attack is to evolve the field

equations in a 3 + 1 decomposition, starting with a dense and rotating scalar field

configuration. Upon evolution, this scalar field will collapse into a rapidly rotating

BH, yielding a numerical representation of the solution one seeks.
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Chapter 5

Post-Newtonian, Quasi-Circular

Binary Inspirals in Quadratic

Modified Gravity†

Abstract

We consider a general class of quantum gravity-inspired, modified gravity theories,
where the Einstein-Hilbert action is extended through the addition of all terms
quadratic in the curvature tensor coupled to scalar fields with standard kinetic energy.
This class of theories includes Einstein-Dilaton-Gauss-Bonnet and Chern-Simons mod-
ified gravity as special cases. We analytically derive and solve the coupled field equa-
tions in the post-Newtonian approximation, assuming a comparable-mass, spinning
black hole binary source in a quasi-circular, weak-field/slow-motion orbit. We find
that a naive subtraction of divergent piece associated with the point-particle approxi-
mation is ill-suited to represent compact objects in these theories. Instead, we model
them by appropriate effective sources built so that known strong-field solutions are
reproduced in the far-field limit. In doing so, we prove that black holes in Einstein-
Dilaton-Gauss-Bonnet and Chern-Simons theory can have hair, while neutron stars
have no scalar monopole charge, in diametrical opposition to results in scalar-tensor
theories. We then employ techniques similar to the direct integration of the relaxed
Einstein equations to obtain analytic expressions for the scalar field, metric perturba-
tion, and the associated gravitational wave luminosity measured at infinity. We find
that scalar field emission mainly dominates the energy flux budget, sourcing electric-
type (even-parity) dipole scalar radiation and magnetic-type (odd-parity) quadrupole

†This chapter originally appeared as Yagi, K., Stein, L. C., Yunes, N., Tanaka, T. (2012),
Post-Newtonian, Quasi-Circular Binary Inspirals in Quadratic Modified Gravity, Phys. Rev. D
85 064022 [165].
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scalar radiation, correcting the General Relativistic prediction at relative −1PN and
2PN orders. Such modifications lead to corrections in the emitted gravitational waves
that can be mapped to the parameterized post-Einsteinian framework. Such modifi-
cations could be strongly constrained with gravitational wave observations.

5.1 Introduction

The validity of Einstein’s theory in the strong-gravity regime will soon be put to the

most stringent tests yet, through the observation of gravitational waves (GWs) from

compact object binary inspirals [159, 134, 136]. Such waves carry detailed information

about their source and the underlying gravitational theory in play. This information

is primarily encoded in the evolution of the GW frequency, which in turn depends

directly on the rate of energy transport away from the binary [116]. In general

relativity (GR), this transport is performed exclusively by GWs. In modified gravity

theories, however, additional (scalar, vectorial or tensorial) degrees of freedom can

also carry energy and angular momentum away as they propagate.

Calculating how gravitational waves are corrected in modified gravity theories

can be a gargantuan task as the modification can increase the number of propagating

degrees of freedom and the non-linearity of the equations that control their propaga-

tion. For example, the amount of energy-momentum transported away from a binary

system must be computed both from the GWs excited by the corresponding sources,

as well as any additional waves associated with extra degrees of freedom [101]. The

sources that drive such waves can depend both on derivatives of the metric perturba-

tion and the extra degrees of freedom, which, in turn, are specified by the solution to

their own equations of motion. The situation worsens if these are non-linearly cou-

pled, e.g. a scalar field equation of motion that depends on the metric tensor, whose

evolution in turn depends on derivatives of the scalar field.

Such calculations, however, are feasible if one treats any GR deviations as small de-

formations [177], which can be formalized through the small-coupling approximation,

a common technique in perturbation theory to isolate physically relevant solutions in

higher-derivative theories [36, 163, 45]. This is a reasonable approximation given that
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GR has passed a large number of tests, albeit in the weak-gravity regime. Even in the

GW regime, signals will slowly transition from sampling weak fields to moderately

strong fields during a full binary inspiral. The strongest GW events will not be able

to sample anywhere close to the Plank regime, where one would expect completely

new physics. The largest gravitational fields experienced by binaries occur when these

merge, and even then, the metric curvature cannot exceed m−2, where m is the total

mass of the binary. Earth-based detectors, such as LIGO [89], VIRGO [154] and

LCGT [88], and future space-borne detectors, such as LISA [90], will only be able to

sample gravitational fields up to this strength.

Of the plethora of modified gravity theories, we choose to focus on a general class

that is characterized by the addition of quadratic curvature invariants to the action,

coupled to scalar fields with standard kinetic terms (see e.g. Eq. (5.1). Such theories

are motivated from loop quantum gravity [13, 131] and heterotic string theory [119],

arising generically upon four-dimensional compactification in the low-energy limit.

Disjoint sub-classes of quadratic theories reduce to Einstein-Dilaton-Gauss-Bonnet

(EDGB) theory [103, 112] and Dynamical Chern-Simons (CS) modified gravity [80, 5].

From a phenomenological standpoint, such quadratic gravity theories are also

interesting as straw-men to study small deviations from GR. This is because the

new quadratic terms are always small relative to the Einstein-Hilbert term when

considering merging binaries. In such systems, the maximum radius of curvature is

always much larger than the new scale introduced by the scalar fields. If this were not

the case, astrophysical observations would already have constrained quadratic gravity

deviations.

Quadratic gravity introduces an equation of motion for the scalar field and mod-

ifies the metric field equations. The former is a driven wave equation, whose sources

are quadratic curvature invariants. The latter contains new terms that depend on the

product of the scalar field and its derivatives with the Riemann tensor, Ricci tensor,

Ricci scalar and their derivatives. As such, one might worry that higher derivative

terms in the field equations could render the system unstable. One must remember,

however, that the action is a truncation (at quadratic order in the present case) of
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an effective theory derived by integrating out heavy degrees of freedom contained in

a more complete theory. Since we truncate the effective action, its validity is limited

only to leading-order in the coupling parameters. Accounting for higher-order terms

in the coupling would require the inclusion of higher-order terms (cubic, quartic, etc.)

in the action [163]. Therefore, the modified field equations should not be considered

as an exact system, but rather as an effective one.

Given the above and using the small-coupling approximation, the field equations

become driven differential equations for the metric deformation and the scalar field.

The source of the latter depends only on derivatives of the GR metric perturbation,

while the source of the former depends both on the GR metric perturbation and the

scalar field. We solve these equations in the post-Newtonian (PN) limit, where in

particular we consider comparable-mass, spinning black hole (BH) binaries (electro-

magnetically uncharged), spiraling in a quasi-circular orbit. This forces the driven

differential equations into driven wave equations, which can be studied with PN tech-

niques [50, 142, 143, 22, 20, 23, 21] and then solved via retarded Green function

methods.

A complication arises when attempting to solve these equations, as one must

choose a prescription to describe BHs and neutron stars (NSs). In standard PN

theory and up to a certain high PN order, one can choose a point-particle prescription,

essentially because the exterior gravitational field of a compact object is the same as

that induced by a point-particle. In modified quadratic gravity, however, both non-

spinning [172] and spinning [177], strong-field BH solutions differ from that generated

by simple point particles with a mass-monopole and a current-dipole moment; BHs in

these theories have additional scalar multipole moments. One can take these effects

into account by constructing an effective point-particle source that reproduces known,

strong-field solutions to leading order in the weak-field region, sufficiently far away

from the compact objects. With this effective point-particle prescription, we can then

evaluate the source of the driven wave equations and analytically solve them to find

the radiative part of the scalar field and metric perturbation.
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Executive Summary of Results

Given the length of this paper, let us summarize the main results. We have devised a

framework in the small-coupling approximation to solve for compact binary inspirals

in modified quadratic gravity theories. One of the key ingredients in this framework

is the calculation of effective source terms that allow us to use the point-particle ap-

proximation even for theories where such approximation is not valid. We applied this

to modified quadratic gravity to find that both NSs and BHs have scalar hair, which

leads to dipolar emission. EDGB and CS gravity are exceptions, where although BHs

retain scalar monopole and dipole charge, respectively, NSs shed the scalar monopole

charge. Therefore, BHs in EDGB generically contains dipolar GW emission, while

CS gravity leads to modified quadrupolar emission.

The presence of scalar monopole and dipole hair, and in particular the flux of

energy-momentum carried by this hair, leads to a modification in the rate of change

of the binary’s binding energy. The even-parity sector of the theory leads to scalar

hair, which modifies the energy flux at −1PN order relative to the GR quadrupole

flux. Of course, such a modification is proportional to the coupling parameter of

the theory, which is assumed small. The odd-parity sector leads to dipole hair for

spinning BH binaries, which modifies the energy flux at 2PN relative order. If the

BH binary components are non-spinning, they have no dipole hair but the binary

orbital interaction generates a modification in the energy flux that enters at relative

7PN order. Figure 5-1 shows the energy flux carried by the even-parity scalar field

(long dashed line), odd-parity scalar field (dot-dashed for spinning binaries and short

dashed line for non-spinning binaries), and the GR quadrupole flux (solid line) as

a function of orbital velocity. Observe that when one assumes that BHs are non-

spinning, the scalar emission is greatly suppressed.

These energy flux corrections translate into changes to the waveform observables.

We explicitly calculate these and map them to the parametrized post-Einsteinian

(ppE) framework [178, 48]. Using the results of Cornish et al. [48] we estimate that

GW observations could constrain the new length scale introduced in quadratic gravity
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Figure 5-1: Comparison of the energy flux carried by scalar fields of even-parity
(dashed red), odd-parity and sourced by spinning BHs (blue dot-dashed) and odd-
parity and sourced by non-spinning BHs (short dashed) relative to the GR prediction
(solid black) as a function of orbital velocity. We here consider a quasi-circular,
BH inspiral with (m1,m2) = (8, 20)M�, normalized spins Ŝi1 ≡ |Si1|/m2

1 = −Ŝi2 ≡
−|Si2|/m2

2 perpendicular to the orbital plane, |SiA| = m2
A and coupling constants

ζ3 = 6.25× 10−3 = ζ4.
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(related to the coupling constants of the theory) to roughly the BH horizon scale.

With a typical Ad. LIGO stellar-mass BH inspiral observation, one should be able to

constrain the even-parity sector to roughly O(10) km. With a typical LISA extreme-

mass ratio inspiral (EMRI) observation, one should be able to constrain the odd-

parity sector to roughly O(100) km. Such projected constraints are much stronger

than current Solar System bounds [4, 135, 176, 11].

This paper is organized as follows: Section 5.2 describes the action that will be

considered in this paper and reviews the associated modified field equations and the

scalar field equation of motion. Section 5.3 expands the field equations in the small-

deformation approximation. Sections 5.4 and 5.5 study the scalar field and metric

deformation evolution, analytically solving the modified field equations. Section 5.6

computes the energy flux carried by the scalar field and the metric deformation. Sec-

tion 5.7 considers the impact that such fluxes would have on gravitational waveform

phase. Section 5.8 concludes and points to future research.

We have deferred many details of the computational techniques to the appendices.

Appendix A shows the NSs in EDGB theory have no scalar monopole charge. Ap-

pendix B discusses specific integration techniques. Appendix C estimates the order of

the metric correction from the regularized contribution for non-spinning BHs in the

odd-parity sector of the modified theory. Appendix D discusses particular integrals

that appear when solving the field equations.

Henceforth, we follow mostly the conventions of Misner, Thorne and Wheeler [101]:

Greek letters stand for spacetime indices; Latin letters in the middle of the alpha-

bet i, j, . . ., stand for spatial indices only. Parenthesis, square brackets and angled

brackets in index lists denote symmetrization, antisymmetrization and the symmetric

and trace free (STF) operator, respectively. Capital Latin letters usually refer to a

multi-index, such as xQ = xijk..., where xijk... = xixjxk . . .. Partial derivatives are

denoted with ∂iA = A,i = ∂A/∂xi, while covariant derivatives are denoted with the

nabla ∇iA, for any quantity A. Deformations are labeled with the order-counting

parameter ς. Finally, we use geometric units, where G = c = 1, except when denot-
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ing the order of certain terms in the PN approximation. Throughout, we performed

analytic calculations with the xTensor package for Mathematica [95, 30].

5.2 Modified gravity theories

In this Section, we introduce the class of modified gravity theories that we study, by

writing down its action and equations of motion. We then proceed to define the small

deformation approximation more precisely.

5.2.1 ABC of quadratic gravity

Consider the following 4-dimensional effective action:

S ≡
∫
d4x
√
−g
{
κR + α1f1(ϑ)R2 + α2f2(ϑ)RµνR

µν + α3f3(ϑ)RµνδσR
µνδσ

+ α4f4(ϑ)Rµνδσ
∗Rµνδσ − β

2
[∇µϑ∇µϑ+ 2V (ϑ)] + Lmat

}
. (5.1)

Here, g stands for the determinant of the metric gµν . R, Rµν , Rµνδσ and ∗Rµνδσ are

the Ricci scalar and tensor, the Riemann tensor and its dual [6], respectively, with the

latter defined as1 ∗Rµ
νδσ = (1/2)εδσ

αβRµ
ναβ and with εµνδσ the Levi-Civita tensor.

The quantity Lmat is the external matter Lagrangian, ϑ is a field, (αi, β) are coupling

constants and κ = (16π)−1. This action contains all possible quadratic, algebraic

curvature scalars with running (i.e. non-constant) couplings, where we assumed that

all quadratic terms are coupled to the same field. All other quadratic curvature terms

are linearly dependent, such as the Weyl tensor squared.

The theory defined by the action above is different from f(R) theories on several

counts. First, f(R) theories depend only on the Ricci scalar, while the action above

depends on the Ricci tensor, the Riemann tensor and a dynamical field ϑ. Second,

f(R) theories are usually treated as exact, while the action presented above is an

effective theory , truncated to quadratic order in the Riemann tensor. The consequence

of this is insisting on the use of order-reduction in the field equations, where we treat

1This definition is correct, in agreement with [6], and fixing an inconsequential typo in [137].
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all quantities that depend on αi perturbatively. Such order reduction then leads to

the absence of additional polarization modes [137, 138], such as the longitudinal scalar

mode that arises in f(R) theories.

The field equations of dynamical quadratic gravity can be obtained by varying

the action with respect to all fields. For simplicity, we restrict attention to coupling

functions fi(ϑ) that admit the Taylor expansion fi(ϑ) = fi(0) +f ′i(0)ϑ+O(ϑ2) about

small ϑ, where fi(0) and f ′i(0) are constants, and we assume that the asymptotic

value of θ at spatial infinity vanishes. Let us further reabsorb fi(0) into the coupling

constants α
(0)
i ≡ αifi(0) and f ′i(0) into the constants α

(1)
i ≡ αif

′
i(0). Equation (5.1)

then becomes S = SGR + S0 + S1:

SGR ≡
∫
d4x
√
−g {κR + Lmat} , (5.2)

S0 ≡
∫
d4x
√
−g
{
α

(0)
1 R2 + α

(0)
2 RµνR

µν + α
(0)
3 RµνδσR

µνδσ
}
, (5.3)

S1 ≡
∫
d4x
√
−g
{
α

(1)
1 ϑR2 + α

(1)
2 ϑRµνR

µν + α
(1)
3 ϑRµνδσR

µνδσ

+α
(1)
4 ϑRµνδσ

∗Rµνδσ − β

2
[∇µϑ∇µϑ+ 2V (ϑ)]

}
, (5.4)

where clearly SGR is the Einstein-Hilbert plus matter action. Notice that S0 defines a

GR correction that is decoupled from θ. The term proportional to α
(0)
4 can not affect

the classical field equations since it is topological, i.e. the second Chern form, so we

have omitted it. Similarly, if α
(0)
i are chosen to reconstruct the Gauss-Bonnet invari-

ant, (α
(0)
1 , α

(0)
2 , α

(0)
3 ) = (1,−4, 1)αGB, then these will not modify the field equations.

On the other hand, S1 defines a modification to GR with a direct (non-minimal)

scalar field coupling, such that as the field goes to zero, the modified theory reduces

to GR. We here restrict attention to the case α
(0)
i = 0. From this point forward, we

will drop the superscript from α
(1)
i .

The action above defines a class of modified gravity theories that contains well-

known GR extensions. For example, when α4 = −1
4
αCS and all other αi = 0, quadratic

gravity reduces to dynamical CS gravity, where αCS is the CS coupling parameter (see

e.g. [6]). Alternatively, when α4 = 0, while (α1, α2, α3) = (1,−4, 1)αEDGB, quadratic

155



gravity reduces to Einstein-Dilaton-Gauss-Bonnet theory (see e.g. [112]). Both of

these theories are motivated from fundamental physics; they unavoidably arise as

low-energy expansions of heterotic string theory [72, 73, 7, 34]. Dynamical CS gravity

also arises in loop quantum gravity when the Barbero-Immirzi parameter is promoted

to a field in the presence of fermions [144, 97, 67].

Variation of the action with respect to the metric yields the modified field equa-

tions:

Gµν +
α1ϑ

κ
H(0)
µν +

α2ϑ

κ
I(0)
µν +

α3ϑ

κ
J (0)
µν

+
α1

κ
H(1)
µν +

α2

κ
I(1)
µν +

α3

κ
J (1)
µν +

α4

κ
K(1)
µν

=
1

2κ

(
Tmat

µν + T (ϑ)
µν

)
, (5.5)

where we have defined the short-hands2‡

H(0)
µν ≡2RRµν −

1

2
gµνR

2 − 2∇µνR + 2gµν�R , (5.6a)

I(0)
µν ≡�Rµν + 2RµδνσR

δσ − 1

2
gµνR

δσRδσ +
1

2
gµν�R−∇µνR , (5.6b)

J (0)
µν ≡8RδσRµδνσ − 2gµνR

δσRδσ + 4�Rµν − 2RRµν +
1

2
gµνR

2 − 2∇µνR , (5.6c)

H(1)
µν ≡− 4(∇(µϑ)∇ν)R− 2R∇µνϑ+ gµν

[
2R�ϑ+ 4(∇δϑ)∇δR

]
, (5.6d)

I(1)
µν ≡− (∇(µϑ)∇ν)R− 2∇δϑ∇(µRν)δ + 2∇δϑ∇δRµν +Rµν�ϑ

− 2Rδ(µ∇δ∇ν)ϑ+ gµν
(
∇δϑ∇δR +Rδσ∇δσϑ

)
, (5.6e)

J (1)
µν ≡− 8

(
∇δϑ

) (
∇(µRν)δ −∇δRµν

)
+ 4Rµδνσ∇δσϑ , (5.6f)

K(1)
µν ≡− 4

(
∇δϑ

)
εδσχ(µ∇χR σ

ν) + 4(∇δσϑ)∗R(µ
δ
ν)
σ , (5.6g)

where∇µ is the covariant derivative,∇µν ≡ ∇µ∇ν , and� = ∇µ∇µ is the d’Alembertian

operator. The ϑ field’s stress-energy tensor is

T (ϑ)
µν = β

[
(∇µϑ)(∇νϑ)− 1

2
gµν
(
∇δϑ∇δϑ− 2V (ϑ)

)]
. (5.7)

2This corrects an error in Eq. (5b) of [172].
‡The aforementioned error has been corrected in the previous Chapter.
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Variation of the action with respect to ϑ yields the ϑ equation of motion:

β�ϑ− βdV
dϑ

= −α1R
2 − α2RµνR

µν − α3RµνδσR
µνδσ − α4Rµνδσ

∗Rµνδσ . (5.8)

Notice that when the spacetime is curved by some mass distribution, the right-hand

side will be proportional to this mass squared.

The parity of the field ϑ can be inferred from its equation of motion. Since terms

of the form R2 are even-parity, while terms of the form Rµνδσ
∗Rµνδσ are odd-parity, the

field ϑ is of mixed parity. Note however that the even and odd-parity couplings tend

to have different origins from an underlying theory. In this paper we will consider the

even and odd-parity cases separately.

The inclusion of dynamics for the ϑ field in the action guarantees that the field

equations are covariantly conserved without having to include any additional con-

straints, i.e. the covariant divergence of Eq. (5.5) identically vanishes, upon imposi-

tion of Eq. (5.8). This is a consequence of the action being diffeomorphism invariant.

Such invariance is in contrast to the preferred-frame effects present in a non-dynamical

theory [80], i.e. in the theory defined by the action in Eq. (5.4) but with β = 0. In

the latter, the field ϑ must be prescribed a priori . Moreover, the theory requires the

existence of an additional constraint ( ∗RR = 0), which is an unphysical consequence

of treating ϑ as prior structure [180, 74].

Before proceeding, let us further discuss the scalar field potential V (ϑ). This

potential allows us to introduce additional couplings, such as a mass term, to drive

the evolution in Eq. (5.8). However, there are reasons one might restrict such a

potential. If the mass is much larger than the inverse length scale of the system

that we concern, the effect of such a field on the dynamics of binaries is strongly

suppressed. To the contrary, if the mass is much smaller, the presence of mass does

not give any significant effects. Therefore we cannot expect to observe the effects of

a finite mass without fine tuning. No mass term may appear in a theory with a shift

symmetry, which is invariance under ϑ → ϑ + const. Such theories are common in

4D, low-energy, effective string theories [27, 73, 72, 38, 34], such as dynamical CS and
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EDGB. For these reasons, and because the assumption makes the resulting equations

analytically tractable, we will henceforth assume V (ϑ) = 0.

5.2.2 Small deformations

The “unreasonable” accuracy of GR to explain all experimental data to date suggests

that it is an excellent approximation to nature in situations where the gravitational

field is very weak and velocities are very small relative to the speed of light. GW

detectors will be sensitive to events in situations where the field is stronger than ever

previously sampled. This, however, does not imply that GWs will ever sample the

Planck/string regime, where one could expect large deviations from GR.

We will here be interested in binary compact object coalescences up until the

binary reaches the innermost stable circular orbit (ISCO). Even during merger, the

largest curvature that GWs will sample will be limited to the scale determined by

the horizon sizes, proportional to m−2. Such scales are far removed from high-energy

ones, like the electroweak one, as GW detectors will not be sensitive to mergers of

compact objects with masses below a solar mass. Even then, however, GWs can and

will probe the strong field , which has not been tested before. One is then justified in

modeling GWs that may contain deviations from GR as small deformations .

The small deformation scheme is also appealing for theoretical reasons. As men-

tioned earlier, the theories we consider are effective, valid only up to the truncation

order. There are higher-order terms that we have here neglected in the action, such as

cubic and quartic curvature combinations. Thus, one should not treat these theories

as exact nor insist on solving the equations of motion to higher orders in αi. If this

is desired, then higher-order curvature terms should also be included in the action.

One might be worried that such effective theories are unstable, since they lead

to field equations with derivatives higher than second order. Such derivatives could

lead to instabilities or ghost modes if the Hamiltonian is not bounded from below.

Linearization in the coupling parameter, however, has the effect of recasting the field

equations in Einstein form with an effective stress-energy tensor that depends on the
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GR solution, thus stabilizing the differential equations [36]. Linearization removes

modes besides the two that arise in GR [137, 138].

Small deformations can be treated similarly to how one models BH perturbations.

That is, we expand the metric as

gµν = gGR

µν + ς hµν +O(ς2) , (5.9)

where the GR superscript is to remind us that this quantity is a GR solution, while

hµν is a metric deformation away from GR. The order-counting parameter ς is kept

around only for book-keeping purposes and is to be set to unity in the end.

Applying such an expansion to Eq. (5.8), one finds

β�ϑ = −αi S(R2
GR) +O(ς) , (5.10)

where S(R2
GR) stands for all source terms evaluated on the GR background gGR

µν . The

solution to this equation will obviously scale as ϑ ∝ αi/β. Applying the decomposition

and expansion of Eq. (5.9) to Eq. (5.5) in vacuum, one finds

Gµν [hµν ] = −αi
κ
Cµν [ϑ, g

GR

µν ] +
1

2κ
T (ϑ)
µν [ϑ] , (5.11)

where the O(ς0) terms automatically vanish, as gGR
µν satisfies the Einstein equations,

and we have grouped modifications into the tensor Cµν . This tensor and T
(ϑ)
µν are to

be evaluated on the GR metric and act as sources for the metric deformation. Notice

that, as a differential operator acting on hµν , the principal part of these differential

equations continues to be strongly hyperbolic, as it is still given by the Gµν differential

operator, with the higher derivatives in Cµν and the T
(ϑ)
µν acting as sources. Given

this, the metric deformation is proportional to ξi ≡ α2
i /(βκ), which is our actual

perturbation parameter.

Proper perturbation or deformation parameters should be dimensionless, but the

ξi are dimensional. The dimensions of α and β, of course, depend on the choice of

dimensions for the scalar field. We here take the viewpoint that ϑ is dimensionless,
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which then forces β to be dimensionless as well as κ, and α to have dimensions of

length squared. Then, the deformation parameter ξ has units of length to the fourth

power, which is why we define the dimensionless

ζi ≡ ξi/m
4 = O(ς) , (5.12)

as our proper deformation parameter. One could choose different units for the scalar

field, but in all cases one arrives at the conclusion that ζi is the proper deformation

parameter [177].

5.3 Expansion of the field equations

Let us decompose the GR metric tensor into a flat background plus a metric pertur-

bation:

gGR

µν = ηµν + hµν . (5.13)

We emphasize here that throughout this paper, hµν denotes the metric perturbation

in GR while hµν is the metric deformation away from GR.

In expanding the modified field equations, we will also find it useful to define the

standard trace-reversed metric perturbation in GR as

h̄µν ≡ ηµν −
√
−gGRg

µν
GR . (5.14)

In particular, notice that when the background is flat h̄µν = hµν − 1
2
hηµν and hµν =

h̄µν − 1
2
h̄ηµν to linear order in GR. We also define the deformed trace reversed metric

perturbation as

h̄µν ≡
(
ηµν −

√
−ggµν

)
− h̄µν . (5.15)

The harmonic gauge condition reduces to h̄µν,ν = 0 and h̄µν,ν = 0. Throughout this

paper, we only study the GR deformation up to O(αi/β) for ϑ and O(ζi) for hµν .
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5.3.1 Scalar field

The evolution equation for the scalar field at leading order in the metric perturbation

becomes

�ηϑ = −α1

β

(
1

2κ

)2

T 2
mat −

α2

β

(
1

2κ

)2

T µνmatT
mat
µν

−2α3

β
(hαβ,µνh

α[β,µ]ν + hαβ,µνh
µ[ν,α]β)

−2α4

β
εαβµνhαδ,γβhν

[γ,δ]
µ , (5.16)

with relative remainders of O(h). Here, εµνδσ is the Levi-Civita symbol with conven-

tion ε0123 = +1, and we have used the harmonic gauge condition.

5.3.2 Metric perturbation

Let us now perturb the metric field equations [Eq. (5.5)] about ς = 0. The deformed

metric wave equation at linear order in hµν becomes

κ

2
�ηhµν =α1ϑH̃(0)

µν + α2ϑĨ(0)
µν + α3ϑJ̃ (0)

µν

+ α1H̃(1)
µν + α2Ĩ(1)

µν + α3J̃ (1)
µν + α4K̃(1)

µν

− 1

2
δTmat

µν −
1

2
T (ϑ)
µν , (5.17)

where the tensors on the right-hand side are given by

H̃(0)
µν = − 4

(
hρ

[σ,ρ]
σµν − ηµν�ηhρ[σ,ρ]

σ

)
, (5.18)

Ĩ(0)
µν =�ηhν[ρ,µ]

ρ −�ηhρ[ρ,µ]ν − 2hρ
[σ,ρ]

σµν + ηµν�ηhρ
[σ,ρ]

σ , (5.19)

J̃ (0)
µν = 4

(
−�ηhν[µ,ρ]

ρ −�ηhρ[ρ,µ]ν − hρ[σ,ρ]
σµν

)
, (5.20)

H̃(1)
µν = − 8hρ

[σ,ρ]
σ(µϑ,ν) − 4hρ

[σ,ρ]
σϑ,µν + 4ηµν

(
2hρ

[σ,ρ]
σδϑ

,δ + hρ
[σ,ρ]

σ�ηϑ
)
, (5.21)

Ĩ(1)
µν = − 2hρ

[σ,ρ]
σ(µϑ,ν) − 2

(
hδ [ρ,(ν]µ)

ρ − hρ[ρ,(ν]µ)
δ
)
ϑ,δ − 2

(
h(ν[µ),ρ]δ

ρ + hρ[ρ,(µ]ν)δ

)
ϑ,δ

− 2
(
hδ [ρ,(µ]

ρϑ,ν)δ − hρ[ρ,(µ]
δϑ,ν)δ

)
+ ηµν

{
2hρ

[σ,ρ]
σδϑ

,δ +
(
hσ [ρ,δ]

ρ − hρ[ρ,δ]σ
)
ϑ,σδ
}

+�ηϑ

(
h(µ

δ
,ν)δ −

1

2
�ηhµν −

1

2
h,µν

)
, (5.22)

161



J̃ (1)
µν = − 8

(
hδ [ρ,(ν]µ)

ρ + hρ[ρ,(ν]µ)
δ − 1

2
h,µν

δ +
1

2
�ηhµν

,δ

)
ϑ,δ + 4

(
hσ[µ,δ]ν − hν[µ,δ]σ

)
ϑ,σδ ,

(5.23)

K̃(1)
µν =ϑ,δ,σηναε̄

ασβγ
(
hµ[γ,β]δ + hδ[β,γ]µ

)
− 2ϑ,δεδσχµh

σ
[α
,αχ

ν] + (µ↔ ν) , (5.24)

where �η is the d’Alembertian of flat spacetime, h = hµ
µ, and T

(ϑ)
µν is given as

T (ϑ)
µν = β

(
ϑ,µϑ,ν −

1

2
ηµνϑ,δϑ

,δ

)
. (5.25)

The quantity δTmat
µν stands for the perturbation to the energy-momentum tensor for

matter. Even when dealing with BHs, δTmat
µν 6= 0 because we treat BHs as distribu-

tional point particles and their trajectories are generically modified at O(ς). However,

in this paper we concentrate on the dissipative sector of the theory only, and not on

modifications to the shape of the orbits (conservative dynamics). The latter does

modify the GW phase evolution [172, 177], as we discuss in Sec. 5.8.

The evolution equation for the metric perturbation takes on the same form (a

sourced wave equation) as that for the scalar field. The source terms in both of these

equations depend on the GR metric perturbation, which we here assume to be that

of a compact binary quasi-circular inspiral in the PN approximation, i.e. moving at

small velocities relative to the speed of light and producing weak gravitational fields.

We provide explicit expressions for the GR metric perturbation in the subsequent

subsection.

5.3.3 Post-Newtonian metric and trajectories

In this subsection, we provide explicit expressions for the linear metric perturbation in

GR that we use to evaluate all source terms. We are here interested in a binary system,

composed of two compact objects with masses m1 and m2 and initially separated by
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a distance r12 ≡ b. The objects’ trajectories can be parameterized via

x1 ≡ xi1 = +
m2

m
b [cosωt, sinωt, 0] , (5.26)

x2 ≡ xi2 = −m1

m
b [cosωt, sinωt, 0] , (5.27)

where m ≡ m1 + m2 is the total mass and where we have assumed they are located

on the x–y plane. Throughout this paper, vectors are sometimes denoted with a

boldface. We also define

x12 ≡ xi12 = xi1 − xi2, (5.28)

n12 ≡ ni12 = (xi1 − xi2)/b, (5.29)

nA ≡ niA = (xi − xiA)/rA, (5.30)

where we follow the conventions of [21], with

rA ≡ |xi − xiA|. (5.31)

We further assume these objects are on a quasi-circular orbit with leading-order an-

gular velocity ω = (1/b)(m/b)1/2 and orbital velocity v = (m/b)1/2. The orbital

separation b is assumed constant, as its time-evolution is driven by GW emission at

high-order in v/c.

The GR spacetime metric for such a binary is expanded as in Eq. (5.13). In the

near zone, the metric perturbation is given by

h00 = 2U1 + (1↔ 2) +O(v4) , (5.32)

h0i = −4V1i + (1↔ 2) +O(v5) , (5.33)

hij = 2U1δij + (1↔ 2) +O(v4) , (5.34)

where O(vA) stands for an (A/2)PN remainder, i.e. a term of O((v/c)A), and the

notation +(1↔ 2) means that one should add the same terms with the labels 1 and
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2 interchanged. The potentials UA and VAi with A = (1, 2) are defined as

UA =

∫
ρ′A

|x− x′|
d3x′ , VAi =

∫
ρ′Av

′
Ai

|x− x′|
d3x′ , (5.35)

where ρA and viA ≡ ẋiA are the density and the center of mass velocities of the

respective objects, with the overhead dot standing for time differentiation. Field

variables associated with a prime, e.g. ρ′A, are to be evaluated at x′. In the point-

particle limit, the metric becomes

h00 =
2m1

r1

+ (1↔ 2) , (5.36)

h0i = −4m1

r1

vi1 + (1↔ 2) , (5.37)

hij =
2m1

r1

δij + (1↔ 2) , (5.38)

with remainders of relative O(v2). We have kept the PN leading terms in the metric

that are proportional to mA only, but higher-order terms can be found in [25], while

terms proportional to the spin of each BH can be found in [141].

5.4 Scalar field evolution

In this section, we solve the evolution equation for the scalar field both for field points

in the far and near-zones, as defined in Sec. 5.4.1. The former will allow us to evaluate

the energy flux carried by the scalar field at infinity, while the latter will be essential

to find effective source terms that reproduce the known strong field solutions and to

solve the evolution equations for the metric deformation.

5.4.1 Zones

As shown in Fig. 5-2, let us decompose the geometry into three regions: an inner zone

(IZ), a near zone (NZ) and a far zone (FZ); see e.g. [10, 183, 82] for further details.

The IZs are centered at each object with radii RIZ. These radii are defined as the

boundary inside which either Tmat
µν 6= 0 or the usual PN approximation breaks down
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Figure 5-2: We consider three zones, inner zone (IZ), near zone (NZ) and far zone
(FZ). The IZs are centered at each object and their radii RIZ satisfy RIZ � b. The
NZ is centered at the center of mass of the two bodies and the radius RNZ satisfies
RNZ ∼ λGW, where λGW is the GW wavelength.

due to strong-gravity effects. We here take them to be sufficiently larger than mA

and much less than b. The NZ is centered at the binary’s center of mass with radius

RNZ and excluding the IZs. This radius is defined as the boundary outside which

time-derivatives cannot be assumed to be small compared with spatial derivatives

due to the wave-like nature of the metric perturbation. We here take this boundary

to be roughly equal to λGW, where λGW denotes the GW wavelength. The FZ is also

centered at the binary’s center of mass, but it extends outside RNZ.

One can only apply the PN formalism when the gravitational field is weak and

velocities are small. When we deal with strong field sources like BHs and NSs, there-

fore, one can use the PN scheme in the NZ and FZ only. In the IZs, one may not

be able to use PN theory, since the gravitational field may be too strong. In this

case, we have to asymptotically match our PN solution in the NZ with the strong

field solutions valid in the IZs, inside some buffer regions that overlap both NZ and

each IZ (see Refs. [53, 148, 50] for a description of how to carry this out in GR). The

strong field solution for BHs was found in Refs. [172] and [177] in the class of theories

considered here.
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5.4.2 Near zone solutions

Since the NZ is in the weak field regime, we can apply the PN formalism to compact

binary systems. Let us consider the even and odd-parity sectors separately.

Even-parity sector

The evolution equation for the even-parity sector is

�ηϑ = −64π2α1

β
ρ2 − 64π2α2

β
ρ2 − 2α3

β

(
hαβ,µνh

α[β,µ]ν + hαβ,µνh
µ[ν,α]β

)
, (5.39)

with ρ ≡ ρ1 + ρ2 and remainders of O(h3).

First, let us consider weakly-gravitating objects, i.e. not BHs or NSs, in which

case the PN expansion is valid also in the IZ. By substituting the GR PN metric of

Eqs. (5.32)-(5.34), the NZ solution to the above wave equation at leading PN order

becomes

ϑ = 16π
α1

β

∫
M
ρ′2

d3x′

|x− x′|
+ 16π

α2

β

∫
M
ρ′2

d3x′

|x− x′|

+
1

π

α3

β

∫
M

(
2U ′,ijU

′
,ij +�ηU

′�ηU
′) d3x′

|x− x′|
, (5.40)

again with remainders of O(h3), with U ≡ U1+U2 andM denoting the constant-time,

NZ+IZ hypersurface. We can safely neglect the contribution from the FZ, since the

fall-off of the source term is sufficiently fast.

The solution in Eq. (5.40) can be simplified by integrating by parts several times

and using that �U = −4πρ and �|x− x′|−1 = −4πδ(3)(x− x′) to obtain

ϑ = 16π
α1

β

∫
M
ρ′2

d3x′

|x− x′|
+ 16π

α2

β

∫
M
ρ′2

d3x′

|x− x′|

+48π
α3

β

∫
M
ρ′2

d3x′

|x− x′|

−8
α3

β

∫
M
ρ′U ′,i

(
1

|x− x′|

)
,i

d3x′

−4
α3

β

∫
M
U ′,iU

′
,iδ

(3)(x− x′)d3x′ . (5.41)
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Expanding this solution in terms of particles 1 and 2, we arrive at

ϑ = ϑself + ϑcross , (5.42)

with

ϑself =
16π

β
(α1 + α2 + 3α3)

∫
M
ρ′21

d3x′

|x− x′|

−8
α3

β

∫
M
ρ′1U

′
1,i

(
1

|x− x′|

)
,i

d3x′

−4
α3

β
U1,iU1,i + (1↔ 2) , (5.43)

and

ϑcross = −8
α3

β

[∫
M

(
ρ′1U

′
2,i + ρ′2U

′
1,i

)( 1

|x− x′|

)
,i

d3x′ + U1,iU2,i

]
. (5.44)

ϑself is the part of ϑ that can be evaluated by considering a single object only, while

ϑcross is the part that depends on the fields of both bodies.

The integrals that define both ϑself and ϑcross have support in the IZs only, and

thus, the NZ integral operator is homogeneous (source-free). When we discuss the NZ

behavior of fields associated with compact objects, such as BHs or NSs, we cannot

directly evaluate such IZ integrals. These are derived under the assumption that the

PN expansion is valid everywhere, which fails for compact objects in the IZs. Instead,

we need to determine these homogeneous solutions through asymptotic matching.

Before doing so, it is helpful to study the meaning of each term for weakly-gravitating

objects.

Neglecting the size of the weakly-gravitating objects, the first term in Eq. (5.43)

in the NZ is evaluated as

∫
M
ρ′1

2 d3x′

|x− x′|
≈ 1

r1

∫
M
ρ′1

2d3x′ , (5.45)
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with remainders of relative O(m/r), while the second term becomes

∫
M

ρ′1 U ′1,i

(
1

|x− x′|

)
,i

d3x′ ≈ ni1
r2

1

∫
M
ρ′1U

′
1,id

3x′

= −n
i
1

r2
1

∫
M
ρ1(x′)

(∫
M
ρ1(y)

x′i − yi

|x′ − y|2
d3y

)
d3x′

= 0 . (5.46)

The last equality can be shown by exchanging the integration variables3. Thus, one

can approximate ϑself as

ϑself =
q1

r1

− 4
α3m

2
1

βr4
1

+ (1↔ 2) , (5.47)

with the scalar monopole charge defined by

qA ≡
16π

β
(α1 + α2 + 3α3)

∫
IZ

ρ′A
2d3x′ , (5.48)

with A = (1, 2). Here we put “IZ” to the integral to emphasize that the integration

can be restricted to both IZs because the integrand is localized.

The first term in Eq. (5.47) represents the monopole field around object 1. These

monopole fields give the leading PN contribution in the NZ unless both monopole

charges q1 and q2 vanish. This is indeed the case in EDGB theory, where (α1, α2, α3) =

(1,−4, 1)αEDGB. We will later show that this cancellation does really survive even

if we consider NSs. If this cancellation occurs, the higher order terms of O(m2/r2)

in the expansion of Eq. (5.45) become the dominant contribution to ϑ. The second

term in Eq. (5.47) is much higher PN order compared with the first term and hence

sub-dominant in the NZ.

Let us now consider ϑself for compact objects, where the IZ integrals must be

treated carefully. Since the PN expansion is no longer valid in the IZ, one cannot use

the simple extrapolation of the above result. In Sec. 5.4.3, we match the NZ solution

3In fact, this integral vanishes to all orders in x. This is because (ρ1U1,i),i is spherically sym-
metric, and thus, when it acts as a source to a wave equation, the solution should either scale as 1/r
or it should vanish identically. We have here shown that there is no 1/r part.
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to the one obtained for isolated BHs in the strong-field [172, 177]. We will not discuss

the matching for NSs in this paper, but the order of magnitude estimate

qA =
3∑
i=1

qi,A =
3∑
i=1

αi
β
O
(
m2
A

R3
A

)
(5.49)

should still be valid, where RA is the radius of the Ath NS. When α1 +α2 + 3α3 = 0,

the cancellation observed in the weakly gravitating objects may still persist even for

NSs. However, the cancellation will not in general be exact, except for the EDGB

subcase. In EDGB theory, the NS scalar monopole charge vanishes independently

of the equation of state. Mathematically speaking, this is because the monopole

charge is given by the integral of the Gauss-Bonnet invariant RGB ≡ R2− 4RµνR
µν +

RµνρσR
µνρσ, which vanishes for any simply-connected, asymptotically flat geometry.

A more explicit proof is given in Appendix A.

Let us now return to the ϑcross contribution and consider first weakly-gravitating

objects. To evaluate Eq. (5.44), one can use point-particle expansions of the potentials

and the density, i.e. ρA = mAδ
(3)(x−xA) and UA = mA/rA. Simple substitution leads

to

ϑcross ≈ 8
α3m1m2

βm4

[
m4

(
nj1
r2

1

nj2
r2

2

+
nj12

b2

nj2
r2

2

− nj12

b2

nj1
r2

1

)
+O

(
m5

r5

)]
. (5.50)

The first term in parentheses comes from the term U1,iU2,i in Eq. (5.44). The remain-

ing two terms come from the integral in Eq. (5.44). The second and third terms in

parentheses look like scalar dipole moments for bodies 2 and 1 respectively. However,

a Taylor expansion about the center of mass of each body, shows that the 1/r2
A piece

of ϑcross cancels, which implies that there is no scalar dipole.

Let us now consider ϑcross for compact objects. As discussed in the previous para-

graph, one might expect a scalar dipole charge induced by the acceleration of object

1 due to the gravitational field of object 2 (∝ U2,i(x1)). In GR, however, accelera-

tion is understood as geodesic motion in a perturbed geometry. The deviation of the

local geometry from the unperturbed isolated geometry originates due to tides, and
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this is a relative 4PN effect. This is much smaller than the scalar monopole charge

contribution from ϑself.

To summarize, the dominant contribution to ϑ comes from the monopole charge

associated with each object, which depends on its internal structure.

Odd-parity sector

In the odd-parity case, the scalar field evolution equation is

�ηϑ = −2α4

β
εαβµνhαδ,γβhν

[γ,δ]
µ , (5.51)

plus terms of O(h3). Again, we first consider weakly gravitating objects. At leading

PN order, the above equation becomes

�ηϑ =
2α4

β
εijk(h00,mihk0,jm + h0l,jmhkl,im)

= −32
α4

β
εijkU,imVk,jm , (5.52)

with remainders of relative O(v2). As in the even-parity case, we write the solution

to this wave equation as

ϑ = ϑself + ϑcross , (5.53)

where

ϑself =
8

π

α4

β
εijk

∫
M
U ′1,imV

′
1k,jm

d3x′

|x− x′|
+ (1↔ 2) , (5.54)

and

ϑcross =
8

π

α4

β
εijk

∫
M
U ′1,imV

′
2k,jm

d3x′

|x− x′|
+ (1↔ 2) . (5.55)
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Let us first consider self-interaction terms ϑself. Integrating by parts several times,

we find

ϑself = −16
α4

β
εijk

[ ∫
M
ρ′1V

′
1k,j

(
1

|x− x′|

)
,i

d3x′

+

∫
M
U ′1,iρ

′
1v
′
1k

(
1

|x− x′|

)
,j

d3x′

+

∫
M
U ′1,iV

′
1k,jδ

(3)(x− x′)d3x′ + (1↔ 2)

]
, (5.56)

where we have used the relations �U1 = −4πρ1, �V k
1 = −4πρ1v

k
1 and �|x− x′|−1 =

−4πδ(3)(x − x′). The third term vanishes when we take the point-particle limit4,

i.e. ρA = mAδ
(3)(x− xA), UA = mA/rA and VAi = mAvAi/rA.

Let us evaluate the first and the second terms in the NZ. Keeping only the leading

PN term in the NZ, we find

ϑself = 16
α4

β
εijk

n1,i

r2
1

∫
M
ρ′1(V ′1k,j − U ′1,jv′1k)d3x′ + (1↔ 2)

=
n1,i

r2
1

µ
(1)
i + (1↔ 2) , (5.57)

where we have defined

µ
(A)
i ≡ 32

α4

β
εijk

∫
IZ

ρ′AV
′
Ak,jd

3x′ . (5.58)

This leading-order PN term in ϑself represents a magnetic-type dipole.

As in the even-parity case, to extend this result to compact objects we have to

determine the value of µ
(A)
i by matching the NZ solution in Eq. (5.57) to a strong

field solution. This will be carried out in Sec. 5.4.3 for the BH case. For NSs, we just

present an order of magnitude estimate based on a simple extrapolation of weakly-

4 The vanishing of this term is a general consequence of the symmetry of the system. The source
term contains an εijk symbol, which must be contracted with other vectors to produce a scalar. We
here have only two possible vectors to contract with, i.e. the velocity vi1 and the unit vector ni1 from
object 1. Hence, any contraction with the Levi-Civita symbol should vanish.
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gravitating results:

µi(A) =
α4

β
O
(
mAS

i
A

R3
A

)
, (5.59)

where SiA is the spin angular momentum of the object. Following the procedure

in Appendix A, we can show that NSs cannot have scalar monopole charge in the

dynamical CS case.

Next, we consider the cross term ϑcross in the weakly-gravitating case. Integrating

by parts several times, we find

ϑcross = −16
α4

β
εijk

[ ∫
M
ρ′1V

′
2k,j

(
1

|x− x′|

)
,i

d3x′

+

∫
M
U ′1,iρ

′
2v
′
2k

(
1

|x− x′|

)
,j

d3x′

+

∫
M
U ′1,iV

′
2k,jδ

(3)(x− x′)d3x′ + (1↔ 2)

]
.

(5.60)

One can take the point-particle limit of this expression without any trouble to obtain

ϑcross = −16
α4m1m2

βm4
εijkv12k

[
m4

(
ni12n

j
1

r2
1b

2
+
ni12n

j
2

r2
2b

2
+
ni1n

j
2

r2
1r

2
2

)
+O

(
m5

r5

)]
. (5.61)

These terms are of relative O(v5) compared to the leading-order term of ϑself.

As for compact objects, the results found in the even-parity case also apply here.

Terms proportional to 1/r2
A in the above expression suggest that each object has

a dipole component induced by the companion. When we expand this expression

around rA � b, however, the terms proportional to 1/(r2
Ab

2) cancel each other, as in

the even-parity case, leading to no induced dipole moment. Even if this were not the

case, however, the corrections to the dipole moment would be higher order than the

contributions from ϑself.

To conclude, the dominant contribution to ϑ is clearly that of ϑself given in

Eq. (5.61), which again depends on the structure of the source and thus violates

the effacement principle.
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5.4.3 Matching near zone and strong-field solutions and find-

ing the effective source terms

In alternative theories of gravity, the point-particle limit is not always valid and the

multipole moments of compact objects may depend on the internal structure of the

source. In the previous subsections, we found that the dominant contributions to

the scalar field come from self-interaction terms, which in turn depend on certain

structure constants. In this subsection, we determine these constants by matching

the ϑ solution to that of an isolated BH.

Even-parity sector

In the even-parity case, the monopole charges q1 and q2 in Eq. (5.47) must be de-

termined by matching to a BH solution. An isolated BH sources a scalar field [172],

whose leading PN behavior is

ϑYS =
2α3

βm2
A

mA

rA
. (5.62)

Matching this solution to the NZ solution of Eq. (5.47) we obtain

qA =
2α3

βmA

. (5.63)

Notice that this monopole charge does not depend on (α1, α2), as for pure BH space-

times, these coupling constants appear in combination with the Ricci scalar and ten-

sor, which vanishes. This is to be contrasted with the NS case, in which qA depends

on α1 and α2 as well as α3 and vanishes in EDGB theory. Interestingly, BHs do not

have scalar hair in more traditional (Brans-Dicke type) scalar-tensor theories, while

NSs do possess them. This situation is reversed in EDGB theory.

The matching carried out above dealt with the monopole part of ϑ. That is, we

have ignored any tidal deformation of either BH induced by its binary companion. In

BH perturbation theory, one can calculate the deformation of the isolated BH metric

to find that it depends on the sum of electric and magnetic tidal tensors, leading to a
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metric deformation that scales as (r1/b)
2(m2/b) for r1 � b [10, 183, 93, 117, 182, 82].

Thus, in the IZ of object 1, tidal deformations lead to corrections of O(m3/b3), which

are much smaller than the effects considered here. Therefore, it suffices in this section

to consider an isolated BH when matching the scalar fields.

With this at hand, we can now treat BHs in even-parity, quadratic modified gravity

as delta function sources of matter energy density, and with effective scalar density

ρϑ = qAδ
(3)(x− xA). (5.64)

In the PN expansion such sources reproduce the BH solution found by Yunes and

Stein [172] at leading order.

Let us make a few observations about the effective source term approach. First,

notice that the scalar field diverges as mA → 0, which violates the small-coupling

approximation. This is related to the fact that as one shrinks a BH, the radius

of curvature at the horizon also goes to zero, probing increasingly shorter length

scales. When the small-coupling approximation is violated, one can no longer neglect

the scalar field’s stress-energy tensor and the (Hµν , Iµν ,Jµν ,Kµν) tensors that would

dominate over the Einstein tensor. Of course, one cannot take this limit seriously,

as we are considering here a low-energy effective theory, which is missing higher-

curvature terms that would need to be included. Notice also that this is different from

the behavior of scalar fields in traditional scalar-tensor theories, where the scalar field

vanishes in the mA → 0 limit.

Odd-parity sector

In the odd-parity case, the dipole charges of the respective objects in Eq. (5.57) are

to be determined by matching against the appropriate BH solutions. An isolated

non-spinning BH in the odd-parity case does not support a scalar field. By con-

trast, a spinning BH does, and in the slow-rotation limit, neglecting higher order PN
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corrections, it is given by [177]

ϑYP = −5

2

α4

βr2
A

niAχ
i
A , (5.65)

where χA ≡ SiA/m
2
A is the normalized spin angular momentum vector of the Ath BH.

Matching this solution to the NZ ϑself in Eq. (5.57), we obtain

µiA =
5

2

α4

β
χiA . (5.66)

With this at hand, we can now treat BHs in odd-parity, quadratic modified gravity

as distributional sources of matter energy density and effective scalar density

ρϑ = −µiAδ(3)(x− xA),i .

In the PN expansion, such sources reproduce the BH solution found by Yunes and

Pretorius [177] at leading order.

Let us make a few observations about this solution. First, notice that the pseudo-

scalar dipole charge is well behaved in the limit mA → 0, because there is a maximum

BH spin |χiA| < 1. Second, notice that in the |χiA| → 0 limit, this dipole charge van-

ishes, which is a consequence of Birkhoff’s theorem holding in CS gravity [180, 74, 6].

Namely, non-spinning BHs in CS theory are the same as BHs in GR (i.e. Schwarzschild

BHs). Therefore, in this case the point-particle limit is well-justified and the metric

deformation or the scalar field does not depend on the internal structures of non-

spinning sources.

5.4.4 Far-zone field point solutions

Let us assume that we have the wave equation

�ηϑ = τ(t, x) , (5.67)
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where τ denotes the source term. The far-zone field point solution to this wave

equation is given as [160, 114]

ϑFZ = − 1

4π

∞∑
m=0

(−1)m

m!
∂M

[
1

r

∫
M
τ(u, x′i)x′M

]
, (5.68)

with u ≡ t − r. By using u,i = −ni and by keeping only terms proportional to

1/r, the above solution reduces to

ϑFZ = − 1

4π

1

r

∞∑
m=0

1

m!

∂m

∂tm

∫
M
τ(u, x′i)

(
njx

′j)m d3x′ . (5.69)

Here, the region M denotes the hypersurface of t − r = const. In the following, we

apply these formulas to the even and odd parity cases separately.

Even-parity sector

Following the discussion in Sec. 5.4.2, the evolution equation for the scalar field is

dominantly

�ηϑ = −4πq1δ
(3)(x− x1) + (1↔ 2) . (5.70)

From Eq. (5.69), this wave equation can be solved as

ϑFZ =
1

r

∑
m

1

m!

∂m

∂tm

∫
M
q1δ

(3)(x′ − x1)(nj x
′j)md3x′

+ (1↔ 2) . (5.71)

The m = 0 term gives

ϑFZ =
q

r
, (5.72)

where we have defined the total scalar monopole charge q ≡ q1 + q2. Recall that this

monopole charge q refers to the scalar field, and not to an electromagnetic one. For

a BH binary or a NS binary in a quasi circular orbit, q only changes during merger,

as mass is carried away in radiation. Thus, monopole radiation is inefficient and

suppressed.
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For the m = 1 case, we find

ϑFZ =
Ḋin

i

r
, (5.73)

where we have defined the total scalar dipole moment as

Di ≡ q1x
i
1 + q2x

i
2 . (5.74)

When we evaluate this for circular orbits, we find

ϑFZ =
1

r

(
q1
m2

m
− q2

m1

m

)
v12in

i , (5.75)

where we have defined the relative velocity vk12 ≡ vk1 − vk2 .

The m = 1 term clearly leads to dipole radiation in the FZ, which is less relativistic

than GR quadrupole radiation, becoming stronger at smaller velocities. Of course,

this term is proportional to the coupling constants of the theory, which are assumed

much smaller than one. . Reference [172] failed to recognize such dipolar emission

because they considered the motion of test particles that had no scalar charge. We

cannot think of any mechanism that would suppress such dipolar radiation.

Odd-parity sector: spinning bodies

As in the previous Section, the evolution equation for the scalar field is dominantly

�ηϑ = 4πµi1δ
(3)(x− x1),i + (1↔ 2) . (5.76)

By using Eq. (5.68), the far-zone field point solution is obtained as

ϑFZ = −
∞∑
m=0

(−1)m

m!
∂M

[
1

r

∫
M
µi1δ

(3)(x′ − x1),ix
′Md3x′ + (1↔ 2)

]
. (5.77)

When m = 0 there is obviously no contribution to the scalar field. When m = 1,

∫
M
δ(3)(x− x1),ix

jd3x = −δij , (5.78)
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and thus

ϑFZ =
µin

i

r2
+
µ̇in

i

r
, (5.79)

with µi ≡ µ1i + µ2i. Notice that we recover the solution of Yunes and Pretorius [177]

for the first term of the above equation with µiA given as in Eq. (5.66). These terms

will not strongly radiate because µ̇i is non-vanishing only for spin-precessing systems.

Even then, such radiation would be suppressed by the ratio of the orbital timescale

to the precession timescale.

The m = 2 contribution, by contrast, depends on the much shorter orbital

timescale. We look for terms of O(r−1) since they are the only ones that contribute

to the energy flux at infinity. Keeping in mind that the function being differentiated

depends on retarded time, we can rewrite Eq. (5.77) as

ϑFZ = − 1

r

∑
m

1

m!

∂m

∂tm

∫
M
µi1δ

(3)(x′ − x1),i(nk x
′k)md3x′

+ (1↔ 2) . (5.80)

When m = 2, we have that

µi1

∫
M
δ(3)(x− x1),ix

pxqd3x+ (1↔ 2) = −2µpq , (5.81)

where the pseudo-tensor quadrupole moment (not to be confused with µiµj) is defined

as

µij ≡ x
(i
1 µ

j)
1 + x

(i
2 µ

j)
2 . (5.82)

The m = 2 contribution becomes

ϑFZ =
1

r
µ̈ijn

ij = −1

r
ω2µijn

ij , (5.83)

where the final equality is evaluated on a circular orbit. Notice that such a scalar

field will strongly radiate because µij depends on the orbital timescale.
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Odd-parity sector: non-spinning bodies

When both objects are non-spinning, the self-interaction terms produced by the ef-

fective source identically vanish. One is then left with the source term constructed

from the product of the gravitational fields of objects 1 and 2. These terms will be

proportional to m1m2. As we will see, there are many contributions that turn out

to vanish upon NZ integration. For pedagogical reasons, we will show here explicitly

how this happens and eventually arrive at contributions that do not vanish.

The evolution equation for the scalar field to leading PN order is

�ηϑFZ = −32
α4

β
εijkm1m2v12k

(
1

r1

)
,im

(
1

r2

)
,jm

, (5.84)

where we substituted the NZ metric components in the point-particle approximation.

The leading order term of the solution to this differential equation, i.e. the m = 0

term in the sum of Eq. (5.69), is evaluated as

ϑFZ =
8

π

α4

β
m1m2εijk

vk12

r

∫
M

(
1

r1

)
,im

(
1

r2

)
,jm

d3x

= −16
α4

β
m1m2εijk

vk12

r
∂

(1)
i ∂

(2)
j ∂(1)

m ∂(2)
m Y = 0 . (5.85)

Here we integrated over the NZ+IZ hypersurfaceM without taking any care of the

strong gravity region in the IZs. One can easily show that the contribution from the

IZs is not large in the present case. In the second line, we replaced partial derivatives

with respect to xi acting on 1/rA with (minus the) particle derivatives with respect

to xiA:
∂

∂xi
→ − ∂

∂xiA
≡ −∂(A)

i , (5.86)

with A = (1, 2). We commuted these particle derivatives with the integral, and finally

obtained a typical NZ integral, discussed in Appendix B. From Eq. (B.4), we know

that Y = b, and by taking all particle derivatives, the last equality is established.

We could have inferred that the m = 0 term in the sum does not contribute for

non-spinning BHs without any explicit calculations. The argument here is similar to
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that in footnote 4. Possible vectors to contract with the Levi-Civita symbol include

the velocities viA and the unit vectors niA, but not spin vectors SiA, as we here consider

non-spinning BHs. In particular, for the m = 0 case, there cannot be any FZ vectors

ni present. Thus, all vectors that can be contracted onto the Levi-Civita symbol must

lie in the same orbital plane and this obviously vanishes. This argument should be

true at all PN orders5.

Let us then consider the next-order term. This will arise from the leading-order

source term [right-hand side of Eq. (5.84)] with m = 1 in the NZ sum:

ϑFZ =
8

π

α4

β

m1m2

r
npεijkv

k
12

∂

∂t

∫
M

(
1

r1

)
,im

(
1

r2

)
,jm

xpd3x

= −16
α4

β

m1m2

r
npεijkv

k
12

∂

∂t
∂

(1)
i ∂

(2)
j ∂(1)

m ∂(2)
m Yp , (5.87)

where we have used Eq. (B.3), which defines Yp. By direct evaluation, one can show

that this term also identically vanishes. The first non-vanishing contribution coming

from an m = 1 term must then be O(v3) smaller than the ordering of the m = 0

term.

Finally, let us consider the (next)2-order term. This can arise only from the

leading-order source term with m = 2 in the NZ sum:

ϑFZ =
4

π

α4

β

m1m2

r
npqεijk

∂2

∂t2
vk12

∫
M

(
1

r1

)
,im

(
1

r2

)
,jm

xpxqd3x

= −8
α4

β

m1m2

r
npqεijk

∂2

∂t2
vk12∂

(1)
i ∂

(2)
j ∂(1)

m ∂(2)
m

(
Y〈pq〉 +

1

3
δpqS

)
, (5.88)

which simplifies to

ϑFZ = 16
α4

β

1

r

ηmδm

b
εijknipω

2vk12n
jp
12 , (5.89)

where we have defined the mass difference δm ≡ m1−m2 and the symmetric mass ratio

η ≡ m1m2/m
2. We have here used Kepler’s law and expanded the STF tensors. This

5One may think that one can construct a vector that does not lie in the orbital plane by taking
the cross product of two vectors that lie on this plane, e.g. n12 × v12. However, since GR is parity
even, such a vector cannot be present in the PN metric.
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is the dominant FZ behavior of the scalar field, which as we see is much suppressed

relative to the odd-parity solution we found for spinning BHs.

5.4.5 Summary of this section

Let us summarize the results found so far for later use. In the even-parity case,

generically at least one of the binary component objects will have a scalar monopole

charge. Since the scalar field excitation due to the induced monopole is dominant, we

neglect all the other less important contributions. Weakly gravitating objects need

not have a scalar monopole charge if α1 + α2 + 3α3 = 0, and BHs have no scalar

monopole charge if α3 = 0. In EDGB theory, NSs have no scalar monopole charge.

In the odd-parity case, the dominant contribution is the magnetic-type scalar dipole

moment induced by spins. Generically, astrophysical objects will possess spin, but

we will continue to include non-spinning results to compare with previous work.

In the NZ, we can parametrize the leading PN terms of the scalar field as

ϑNZ =
A

ra1b
b

+
B

rc1r
d
2

+ (1↔ 2) , (5.90)

where (A,B, a, b, c, d) are given in Table 5.1 and for compactness of the Table we

define

σpqNZ ≡ −16
α4

β
ηm2εpqsv

s
12 . (5.91)

In the FZ, we can parametrize the scalar field as

ϑFZ =
C

r
, (5.92)

where C is also given in Table 5.1 and we define

σpqFZ ≡ 16
α4

β
ηmδm

ω2

b
εqjkv

k
12n

jp
12 , (5.93)
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A B C a b c d

Even-P q1 0 Ḋin
i 1 0 − −

Odd-P, Spins µi1n
i
1 0 µ̈in

ij 2 0 − −
Odd-P, No Spins σpqNZn

p
12n

q
1

1
2
σpqNZn

p
1n

q
2 σpqFZn

pq 2 2 2 2

Table 5.1: Scalar field parameters, as defined in Eqs. (5.90) and (5.92). The quantities
q1 and µi1 are defined in Eqs. (5.63) and (5.66), while σpqNZ is defined in Eq. (5.91).
The quantities Di and µi are defined in Eqs. (5.74) and (5.77), while σpqFZ is given in
Eq. (5.93).

5.5 Metric evolution

In this section, we solve the evolution equations for the metric deformation in the

FZ, so that we can calculate the gravitational energy flux at infinity. Note that

throughout, we use the Newtonian relationship v2 = m/b (and similarly for the

acceleration). This relationship must be corrected at higher PN order or at O(ς).

As we mentioned earlier, here we do not take into account the corrections to the

orbital motion due to the conservative force at O(ς). These conservative effects do

not interfere at O(ς) with the radiative effects that we are concerned with in this

paper. Therefore the corrections to the GW waveform become a simple summation

of these two different types of effects.

For the FZ field points, the solution to the metric deformation equation of motion

[Eq. (5.17)] can be read from Eq. (5.69):

hij = −8

r

∞∑
m=0

1

m!

∂m

∂tm

∫
M
C̃ij (nkx′k)md3x′ +O

(
r−2
)
, (5.94)

where we have defined the source term as

C̃ij =α1

(
ϑH̃(0)

ij + H̃(1)
ij

)
+ α2

(
ϑĨ(0)

ij + Ĩ(1)
ij

)
+ α3

(
ϑJ̃ (0)

ij + J̃ (1)
ij

)
+ α4K̃(1)

ij −
1

2
T

(ϑ)
ij . (5.95)

Notice that this corresponds to an IZ+NZ integration for FZ field points, where we

have neglected the FZ integration because it is subdominant.

182



The integrals presented above have to be carried out also in the IZ, where the PN

expansion is not valid anymore. In GR, however, such divergences can be ignored,

using a regularization scheme. Since both the true solution and an appropriately

regularized solution satisfy the field equations in the NZ, their difference due to the

IZ contribution is only through a homogeneous solution. Such homogeneous solutions

are regular in the NZ and FZ, but can be divergent in the IZ. They are characterized

by the multipole moments of the respective objects, which can be determined by

studying tidal perturbations around a strongly gravitating object. One can then

perform matching of the metric solution, as for the scalar solution, but the metric

matching is beyond the scope of this paper. In what follows, we only consider the

regularized contribution, following Hadamard partie finie (FP) regularization [24].

We comment more on the divergent contribution at the end of this Section.

5.5.1 Even-parity sector

Let us focus on the metric perturbation in the even-parity sector first. The leading

order term both in the PN and 1/r expansion at infinity is formally given by

hij = hTij + hJij , (5.96)

hTij ≡
4

r

∫
M
T

(ϑ)
ij d

3x , (5.97)

hJij ≡ −
8α3

r

∫
M
J̃ijd3x , (5.98)

where we have defined J̃ij ≡ ϑJ̃ (0)
ij + J̃ (1)

ij . The source terms H̃µν and Ĩµν do not

contribute to this expression since they identically vanish in the NZ where Rµν = 0.

We can estimate the order of magnitude of both hJij and hTij as follows:

hTij ∼ O
(
β
m

r
v−2ϑ2

)
= ζ3

m

r
v2 ×O (1) , (5.99)

hJij ∼ O
( α3

m2

m

r
v4ϑ
)

= ζ3
m

r
v2 ×O

(
v4
)
. (5.100)
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Here we factored out v2 in the final expressions, since the GR leading quadrupolar field

is also proportional to v2. Clearly, the dominant contribution comes from Eq. (5.99).

Let us now make this computation more precise. The stress-energy tensor will

contain self-interactions of the form ϑA,iϑA,j and cross terms of the form ϑ1,iϑ2,j. The

former case leads to divergent integrals, which must be determined by strong-field

matching, so we do not consider them here. Let us concentrate on the latter, which

take the form

T
(ϑ)
ij = β

(
ϑ,iϑ,j −

1

2
δijϑ,µϑ

,µ

)
(5.101)

≈ βq1q2

[
2

(
1

r1

)
,(i

(
1

r2

)
,j)

− δij
(

1

r1

)
,k

(
1

r2

)
,k

]
, (5.102)

which sources the metric perturbation

hij =
4

r

∫
M
T

(ϑ)
ij d

3x ,

= −4π

r
βq1q2

(
2∂

(1)
i ∂

(2)
j b− δij∂(1)

k ∂
(2)
k b
)

+ (1↔ 2) ,

= −16π

r
β
q1q2

b
nij12 , (5.103)

where we used an integration formula for the triangle potential given in Appendix B.

We can see that this correction is 0PN relative to the radiative metric perturbation

in GR, just as we predicted in Eq. (5.99). However, this correction turns out to be

still smaller in the energy flux than the dipole scalar radiation, which gives a -1PN

correction.

5.5.2 Odd-parity sector

We now focus on the odd-parity sector, for which the solution is given by the term

proportional to α4 in Eq. (5.94), namely

hij = hTij + hKij , (5.104)

hKij ≡ −8α4

r

∫
M
K̃(1)
ij d

3x . (5.105)
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The stress-energy contribution hTij is the same as in Eq. (5.101).

The K contribution to Eq. (5.104) is more involved. The leading-order behavior

of the K tensor is

K̃(1)
ij = ϑ̇,kεjklh00,il + ϑ̇,kεjlm(him,lk + hlk,im)

+ϑ,klεjlm(hi0,mk + hmk,i0 − hk0,im − him,k0)

−ϑ,kεikl(2h0[m,j]lm − 2ḣl[j,m]m − ḣ00,jl)

−2ϑ̇εiklhk[j,m]lm + (i↔ j) . (5.106)

Other terms are of higher PN order. By applying the Lorenz or harmonic gauge

condition hµν,ν = 0, substituting hij = h00δij into Eq. (5.106), and using εjklh
µν,kl =

εjklϑ,kl = 0, we get

K̃(1)
ij = 2ϑ̇,kεjklh00,il − 2ϑ,kmεjklh0[m,i]l

− 2ϑ,kεjklh0[m,i]lm + 2ϑ,kεjklḣ00,il + (i↔ j) . (5.107)

The K̃ij term in Eq. (5.104) is then a sum of four terms, namely

hKij =
4∑

n=1

h
(n)
ij , (5.108)

where we have defined

h
(1)
ij = − 16α4

r

∫
M
ϑ̇,kεjklh00,ild

3x+ (i↔ j) , (5.109)

h
(2)
ij = +

16α4

r

∫
M
ϑ,kmεjklh0[m,i]ld

3x+ (i↔ j) , (5.110)

h
(3)
ij = +

16α4

r

∫
M
ϑ,kεjklh0[m,i]lmd

3x+ (i↔ j) , (5.111)

h
(4)
ij = − 16α4

r

∫
M
ϑ,kεjklḣ00,ild

3x+ (i↔ j) . (5.112)

185



When we substitute the PN metric into the above terms, the right-hand sides

depend on the velocity vectors viA (which depend on time only). The field ϑ is

given in Eq. (5.90) and its derivative can be computed simply from that equation.

Since this field is a NZ one, it depends on time through the positions of the objects,

which implies that its time derivative can be converted into a spatial derivative via

∂tf(r1) = −vi1∂if(r1).

Let us begin by making a simple order of magnitude estimate of how large the

regularized contribution is. For this, it suffices to look at Eqs. (5.99) and (5.109):

hTij ∼ O
(
β
m

r
v−2ϑ2

)
, (5.113)

hKij ∼ O
( α4

m2

m

r
v5ϑ
)
. (5.114)

The ϑ field here is that of the NZ, and hence

hTij ∼ ζ4
m

r
v2 ×O

(
χ2v4 + ηχv9 + η2v14

)
, (5.115)

hKij ∼ ζ4
m

r
v2 ×O

(
χv7 + ηv12

)
, (5.116)

where χ stands for the magnitude of χi1 and χi2. From this analysis, hTij is clearly

larger for rapidly spinning objects, leading to a 2PN effect.

For the non-spinning case, one might expect the K contribution to lead to a 6PN

effect, but as we explain in Appendix C, these leading-order effects actually vanish.

This cancellation can also rather easily be seen by integrating by parts in Eqs. (5.109)-

(5.112). After discarding boundary terms (taking into account the boundary term

is equivalent to adding homogeneous solutions, corresponding to deformed multipole

moments of compact objects), we obtain expressions of the form εjkl ϑh00,kl..., which

obviously vanishes by the antisymmetry of the Levi-Civita tensor. We carry out a

more careful analysis in Appendix C, where we explicitly show that the leading and

first sub-leading order terms vanish.6 The first non-vanishing term is then of O(v2)

6In Appendix C, we only show this for non-spinning BHs, but a similar calculation can be
performed for spinning BHs to O(χ).
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smaller than the order of magnitude estimates in Eqs. (5.115) and (5.116), leading to

7PN and 4.5PN contributions at O(χ0) and O(χ1), respectively.

Since the largest contribution seems to arise for spinning BHs from the hTij term,

let us consider this in more detail. Two possible contributions are generated here:

one that depends only on self-interaction terms, and one that depends on the cross-

interaction. The former leads to divergent integrals, which need to be matched from

strong-field solutions, and we do not consider these here. The latter leads to the

metric deformation

hTij = −4π

r
βµk1µ

l
2

(
2∂

(1)
ik ∂

(2)
jl Y − δij∂

(1)
pk ∂

(2)
pl Y

)
+ (1↔ 2)

=
8πβ

rb3

{
2µ

(i
1 µ

j)
2 − 12n

(i
12µ

j)
1

(
nk12µ2k

)
+ 3nij12

[
5
(
nk12µ1k

) (
nl12µ2l

)
− µ1kµ

k
2

]}
+ (1↔ 2) , (5.117)

which is clearly of the order predicted in Eq. (5.115), i.e. 2PN order relative to GR.

This is of the same order as the energy flux correction carried by the pseudo-scalar

radiation.

5.5.3 Multipole moments

In this Subsection, we discuss the additional contribution from the IZs, which enter as

additional homogeneous solutions in the NZ and FZ, These contributions are homoge-

neous in the sense that they arise from sources that have support only in the IZs, and

thus they vanish in the NZ and FZ (see e.g. the discussion prior to Eq. (5.45)). The

homogeneous solutions are characterized by the mass and current multipole moments

of the strong-field bodies, which must be determined by matching to strong gravity

solutions in the IZ. When we solve the non-linear equations of motion iteratively, the

source terms in general can be classified into two pieces: a self-interaction part and

a cross-interaction part, as in the case of ϑ in Sec. 5.4. The cross-interaction part is

sourced by the companion, while the self-interaction part is not.
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The self-interaction part is rather easy to handle because matching involves only

a single isolated object. As described in Sec. 5.4.2, these self-interaction terms can

be thought of as homogeneous solutions that have support only in the IZ. As such,

in the small-coupling approximation, they satisfy homogenous field equations that

take Einstein form. If the spin of the object is neglected, the only possible linear

perturbation to such a homogeneous solution that is compatible with asymptotic

flatness is a shift of the body’s mass (in the 1/r piece of the (t, t) and diagonal parts

of the metric). In essence, this is a consequence of Birkhoff’s theorem, which holds for

homogeneous solutions. Such a shift is consistent with the strong-field, non-spinning

BH solution in EDGB theory found in [172]. In that case, the mass shift is simply

mA → (49/80)ζ3mA.

For spinning objects, one expects there to be higher multipole moments in the

strong-field solution. However, one should be able to absorb current dipole moment

modifications by a redefinition of the spin parameter, while the mass dipole moment

will be absorbed by the redefinition of the position of the center of mass. Therefore,

the leading-order corrections that survive are the mass quadrupole moment, which

produces a metric perturbation in the NZ proportional to 1/r3. As we will see, when

we consider FZ solution, there is an additional factor of v2 that enters.

Therefore, contributions to the energy flux from the quadrupole or higher multi-

pole moments are at least 3PN order relative to that from the GR quadrupole formula.

We will later find that corrections to the energy flux due to scalar radiation appear at

-1PN and 2PN relative order for the even and odd-parity cases, respectively. Hence,

the contributions from the multipole moments that we discussed here are definitely

smaller than those introduced by scalar radiation in the even-parity case, and at most,

the same order in the odd-parity case.

Let us take a look at spinning BHs in the odd-parity sector in more detail. AtO(χ)

there is freedom in adding a homogeneous solution proportional to 1/r2 in the h0i

component. This corresponds to a freedom in shifting the Kerr parameter measured

at infinity. Reference [177] set this homogeneous solution to zero so that there is no

shift in the Kerr parameter. At O(χ2), there should be corrections proportional to
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1/r3 in hij which shifts the quadrupole moment. Since there is no parameter in the

Kerr geometry that can absorb this correction in the quadrupole moment, this 1/r3

correction cannot be eliminated.

The effective source term that reproduces this correction should look like

�hij = −4πQ1uiuj(δkl − 3Ŝ1,kŜ1,l)δ
(3)(x− x1),kl + (1↔ 2) , (5.118)

where QA = O(ζ4mAa
2
A) and ŜA,k ≡ SiA/m

2
A is a unit spin angular momentum vector.

The solution of this wave equation at O(1/r) is given by

hij =
1

r

∞∑
m=0

1

m!

∂m

∂tm
uiuj(δkl − 3Ŝ1,kŜ1,l)Q1

∫
M
δ(3)(x− x1),kl(n · x)md3x+ (1↔ 2) .

(5.119)

The leading-order contributions at m = 0 (2PN) and m = 1 (2.5PN) vanish, leading

to the first non-zero contribution at m = 2

hij = O
(

1

r
Qω2v2

)
= ζ4

m

r
v2 ×O

(
χ2v6

)
, (5.120)

which is 3PN relative to GR. Therefore, the self-interacting correction in the metric

at O(χ2) is smaller compared to the corrections in the energy flux carried by the

scalar field and the metric field with regularized modification.

The cross-interaction part is more complicated. In this case, we have to consider

the induced multipole moments due to the presence of the secondary object. Thus,

even if we consider non-spinning objects, higher multipole moments might be induced.

Another important difference is that neither the mass monopole nor the spin dipole

can be simply absorbed by a redefinition of the mass and spin of each object. This is

because the shifts of these multipole moments depend on the orbital parameters, such

as separation b. Notice, however, that the effects of the secondary object propagate

only through the scalar field or the gravitational tidal force.

The order of magnitude of the former scalar field effect is more complicated to

estimate and it depends on the situation. In the even-parity case, ϑ sourced by the

189



secondary body at the position of the primary body is proportional to 1/b. In EDGB

theory, since ϑ has shift symmetry within the context of the classical theory, the

effects are suppressed by the gradient of the field, i.e. they are proportional to 1/b2.

In the odd-parity case, there is again shift symmetry and the monopole scalar charge

is absent. Because of these two reasons, the suppression is proportional to 1/b3 in CS

theory. These suppressions will be sufficient to conclude that the effects are relatively

at least 1PN and 3PN in the even and odd-parity cases respectively, which is smaller

than the effects induced by scalar radiation.

In the odd-parity non-spinning case, the latter gravitational tidal force domi-

nates over the scalar propagation effect. To calculate this tidal force properly re-

quires asymptotic matching between the IZ solution and a strong-field, perturbed

Schwarzschild solution in CS gravity. Perturbations of the Schwarzschild space-

time can be decomposed as a sum over electric and magnetic tidal tensors (see

e.g. [117]). The former scale as 1/b3(1 + v + v2 + . . .), while the latter scales as

v/b3(1 + v + v2 + . . .) [82]. Such tidal deformations will induce gravitational waves

that will scale as the second-time derivatives of the electric and magnetic quadrupole

deformations, i.e. they will scale as ω2/b3(1+v+v2 + . . .) and ω2v/b3(1+v+v2 + . . .).

In GR, the leading order effect is induced by the electric quadrupole moment and

it scales as ω2/b3, a 5PN order effect. In CS, we expect the magnetic quadrupole

moment to provide the leading-order deformation, and the results of Pani, et al. [113]

suggest that this scales as a 6PN order effect.

5.6 Energy flux

The inspiral of a compact binary system is controlled by the system’s change in

binding energy and angular momentum. The binding energy changes according to

the dissipation of energy carried by all dynamical fields, which here includes the

metric perturbation and the scalar field. The stress-energy tensor (SET) associated

with each field quantifies the density and flux of energy and momentum. The energy

loss is calculated as the integral of the energy flux through a 2-sphere of radius r in
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the limit r → ∞ and in the direction of the sphere’s outward unit normal ni. That

is, for some field ϕ (be it hij, hij, or ϑ) with SET T
(ϕ)
µν ,

Ė(ϕ) = lim
r→∞

∫
S2
r

〈
T

(ϕ)
ti ni

〉
ω
r2dΩ , (5.121)

where the angle brackets with subscript ω stand for orbit averaging.

The total energy flux can be ordered in powers of ς as

Ė = ĖGR + ς δĖ +O(ς2) . (5.122)

The GR energy flux ĖGR is given by the GR metric perturbation only, without any

contributions from the scalar field at O(ς0), as there is no scalar field in GR. For

circular orbits, this is

ĖGR = −32

5
η2v10 . (5.123)

The O(ς) correction, δĖ, can be decomposed into

δĖ = δĖ(ϑ) + δĖ(h) , (5.124)

where the first term is the scalar field contribution and the second term is the con-

tribution of the deformed metric perturbation.

The scalar field contribution is calculated with the SET given by Eq. (5.7):

δĖ(ϑ) = β lim
r→∞

∫
S2
r

〈
ϑ̇ ni ∂iϑ

〉
ω
r2dΩ . (5.125)

Since we are taking the r →∞ limit, ϑ must be that valid in the FZ.

The metric deformation contribution to the energy flux is slightly more subtle.

This modification to the GR flux can have three distinct sources: (i) the effective

SET in terms of hij and hij may be functionally different, but as shown in [138],

this is not so for the class of theories we consider here7; (ii) The orbital equations of

7Reference [138] showed that the TT gauge exists in quadratic gravity as r →∞. Any non-TT
propagating mode that is sourced in the NZ vanishes in the FZ at all orders. This is in contrast
to scalar-tensor theories in the Jordan frame, where the scalar “breathing” mode is present in the
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motion, and the associated relations m/b = v2 and ω = v3/m, might be modified at

O(ς), as was partially calculated in [172]; (iii) The generation mechanism of the FZ

metric perturbation is modified, i.e. the radiative part of the metric perturbation is

deformed. We consider here only the dissipative modifications introduced by (iii), as

(ii) would require an analysis of the equations of motion, which is beyond the scope

of this paper8.

Letting Hαβ = hαβ + ςhαβ +O(ς2), the effective SET of GWs is given by [138]

T (H)
µν =

1

32π

〈
HTT

αβ,(µH
αβ
TT ,ν)

〉
λ
, (5.126)

where the angle brackets with a subscript λ stand for a quasi-local average over several

wavelengths and TT stands for the transverse-traceless projection

HTT

ij = Λij,klHkl , Λij,kl = PikPjl −
1

2
PijPkl , (5.127)

with Pij = δij − nij the projector onto the plane perpendicular to the line from the

source to a FZ field point. Expanding this SET in orders of ς, the O(ς0) part leads

to ĖGR, while the O(ς) part is

T (h)
µν =

1

16π

〈
hTT

αβ,(µh
αβ
TT,ν)

〉
λ
, (5.128)

which leads to

δĖ(h) =
1

16π
lim
r→∞

∫
S2
r

〈〈
hTT

αβ,(th
αβ
TT,i)

〉
λ
ni
〉
ω
r2dΩ . (5.129)

metric. This difference comes from the way the metric deformation and the scalar field couple in
the field equations. In the quadratic gravity case, ϑ does not multiply Gµν in the field equations
(the Einstein-Hilbert sector of the action is unmodified), while the opposite is true in scalar-tensor
theories in the Jordan frame. Therefore, in the former hµν and ϑ decouple in the r →∞ limit and
there is no breathing mode. In contrast, in the latter the coupling between hµν and ϑ remains in the
limit r →∞, leading to a non-vanishing breathing mode and a modification to the effective SET.

8The distinction between (ii) and (iii) can be ambiguous at higher PN order, because how the
orbital parameters are modified depends on the gauge choice. However, as long as we impose the
harmonic gauge condition on both GR and the deformed metric perturbations, we do not have to
worry about this gauge issue at least up to next-to-leading PN order.
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As before, the hαβ and hαβ are those valid in the FZ.

5.6.1 Scalar field correction to the energy flux

Even-parity sector

In the even-parity case, ϑFZ is dominated by the dipole component [Eq. (5.73)], which

we repeat here for convenience: ϑFZ = Ḋin
i/r, where Di is the NZ dipole given in

Eq. (5.74). This is inserted into the energy loss formula, Eq. (5.125). Since the FZ

scalar field depends on retarded time, both time and spatial derivatives can be written

as time derivatives of the NZ moments. This gives

δĖ(ϑ) = −β
∫
S2
∞

〈
D̈iD̈jn

ij
〉
ω
dΩ = −4π

3
β
〈
D̈iD̈i

〉
ω
, (5.130)

which for circular orbits gives

δĖ(ϑ) = −4π

3
βω4|D|2 = −4π

3

β

m4
(m2q1 −m1q2)2v8 . (5.131)

Note that here, as before, the m → 0 limit diverges, because the effective theory

breaks down on short length scales and ς � 1 is violated.

When the compact bodies are BHs, their scalar monopole charges are given by

Eq. (5.63), qA = 2α3/(βmA), which then leads to

δĖ(ϑ) = −1

3
ζ3

1

η2

δm2

m2
v8 . (5.132)

Comparing this with the GR energy flux, we find

δĖ(ϑ)

ĖGR
=

5

96
ζ3

1

η4

δm2

m2
v−2 , (5.133)

a relative -1PN effect. That is, the energy lost to the scalar field due to dipole

radiation would enter as a lower-order in v effect than the energy loss in GR. If one

takes the limit m2 → ∞ while keeping (m1, v) fixed, then the above ratio scales as

m−4
1 ; i.e. the energy flux ratio is sensitive to the smallest horizon scale of the system.
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The effect is of a similar size for comparable stellar-mass binary and EMRI system.

A SMBH-SMBH binary experiences the smallest effect.

Odd-parity sector: spinning bodies

The scalar field ϑFZ is here dominated by the quadrupole component [Eq. (5.83)],

which we repeat here for convenience ϑFZ = µ̈ijn
ij/r = −ω2µijn

ij/r, where the

quadrupole tensor µij is defined in Eq. (5.82). Inserting this into the energy loss

formula [Eq. (5.125)] gives

δĖ(ϑ) = − β
∫
S2
∞

〈...
µ ij

...
µ kln

ijkl
〉
ω
dΩ ,

= − 4π

15
β
〈[

2
...
µ ij

...
µ ij +

(...
µ ii
)2
]〉

ω
. (5.134)

Let us evaluate this for quasi-circular orbits with non-precessing spins. The third

time derivative of the quadrupole tensor µij becomes

...
µ ij = b−3

(
m1v

(i
12µ

j)
2 −m2v

(i
12µ

j)
1

)
, (5.135)

and the total energy flux is

δĖ(ϑ) = − 5

48
ζ4

[
∆̄2 + 2

〈
(∆̄ · v̂12)2

〉
ω

]
v14 , (5.136)

where v̂12 is the unit vector in the direction of the relative velocity and the dimen-

sionless quantity ∆̄ is defined as

∆̄i ≡ m2

m
χ1Ŝ

i
1 −

m1

m
χ2Ŝ

i
2 . (5.137)

Notice that δĖ(ϑ) in Eq. (5.136) is finite in the EMRI limit. Note also that when

both spins are perpendicular to the orbital plane, ∆̄ is as well, and the second term

of δĖ(ϑ) vanishes. Comparing Eq. (5.136) with GR,

δĖ(ϑ)

ĖGR
=

25

1536
ζ4

1

η2

[
∆̄2 + 2

〈
(∆̄ · v̂12)2

〉
ω

]
v4 , (5.138)
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hence scalar radiation in the odd-parity sector is clearly a relative 2PN effect. This

effect was not included in the work of Pani et al. [113], who found a 7PN correction,

since their simulations did not include spins. If one takes the limit m2 → ∞ while

keeping (m1, v) fixed, then the above ratio scales as m−2
1 m−2

2 ; i.e. the energy flux

ratio is sensitive to the geometric mean of the two horizon scales in the system. This

implies that the effect is greatest for comparable stellar-mass binaries.

Odd-parity sector: non-spinning bodies

The odd-parity ϑFZ in Eq. (5.89) can be used to evaluate the energy loss in Eq. (5.125):

δĖ(ϑ) = − 256κζ4δm
2η2
(m
b

)8
∫
S2
∞

dΩ
[
∂t
(
εijknipvk12n

jp
12

)]2
= − 256κζ4η

2 δm
2

m2

(m
b

)10
∫
S2
∞

dΩ
(
εijknipvkp12n

j
12

)2

= − 64

15
ζ4η

2 δm
2

m2

(m
b

)12

. (5.139)

Compared to the GW radiation in GR [Eq. (5.123)], this scalar radiation becomes

δĖ(ϑ)

ĖGR
=

2

3

δm2

m2
ζ4 v

14 , (5.140)

which shows that this is a relative 7PN effect. In contrast with the cases of even-

parity and odd-parity with spins, this effect is dominantly controlled by the total

mass, rather than the mass ratio. The effect is greatest for a system of stellar-mass

BHs.

The above result can be compared to numerical calculations recently performed

by Pani et al. [113]. They estimated the effect of scalar radiation in dynamical

CS gravity [6] for non-spinning, circular EMRIs. They numerically solved the master

perturbation equations on a Schwarzschild background to obtain the time evolution of

the scalar field and the metric perturbation, caused by a non-spinning point particle.

Figure 5-3 compares their results to ours, found in Eq. (5.140). Observe that the

numerical results of Pani et al. are in excellent agreement with our post-Newtonian
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Figure 5-3: Comparison of Eq. (5.140) to the numerical results of Pani et al. [113]. The
latter can be mapped to the generic quadratic gravity action of Eq. (5.4) by letting
α4 = −αCS/4, which then implies that ζ4 = −ζCS/16. We here used ζ4 = 6.25× 10−3,
which is equivalent to their parameter ζCS = 0.01. Observe that at low velocities, in
the regime where the PN approximation is valid, the two curves agree.

calculation, which extends it to comparable mass-ratios (notice the factor of δm/m).

5.6.2 Metric deformation correction to the energy flux

For the even-parity case, the correction to the energy flux that arises from the de-

formation to the gravitational metric perturbation is at least of 0PN order relative

to GR. This is higher PN order compared to the scalar dipole radiation found in

Sec. 5.6.1, and thus, we will not consider it further.

For the odd-parity case with spinning BHs, one of the leading contribution comes

from the metric correction sourced by T
(ϑ)
ij , which is given in Eq. (5.117). Inserting

this metric perturbation into Eq. (5.129), the energy flux correction relative to GR
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becomes

δĖ(h)

ĖGR
=

75

16

ζ4

η
χ1χ2

〈
Ŝi1Ŝ

j
2

(
2v̂12

ij − 3n12
<ij>

)〉
ω
v4 , (5.141)

which is of relative 2PN order, just as the contribution due to scalar radiation in

Eq. (5.138). Notice that both the metric deformation and scalar field corrections to

the energy flux are of O(χ2), but the latter is larger by a factor of O(η−1).

We expect O(χ) corrections to the energy flux due to the metric deformation to

be higher PN order. For very slowly spinning binaries, however, they may give larger

corrections compared to the O(χ2) 2PN ones presented here.

In the odd-parity sector with non-spinning objects, the regularized contributions

to the metric deformation can only provide energy flux corrections of at least 7PN

order. However, as explained in Sec. 5.5.3, we expect that matching strong-field

solutions to the non-regular NZ ones may generate 6PN corrections in the energy

flux, similar to those found by Pani et al. [113].

5.7 Impact on gravitational wave phase

How do all these modifications to the energy flux affect the GW observable? To

answer this question, we compute the Fourier transform of the phase of the GW

response function in the stationary phase approximation (SPA), where we assume

the GW phase changes much more rapidly than the GW amplitude [57].

We begin by parameterizing all the corrections to the energy flux that we have

studied so far via the following power law:

Ė = ĖGR(1 + Ava) , (5.142)

where (A, a) are summarized in Table 5.2 for the four different sectors considered.
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With the generic energy flux parameterization, the orbital phase for a quasi-

circular inspiral becomes

φ(F ) =

∫ F dE

dω

(
dE

dt

)−1

ωdω

= φGR(F )

[
1 +

5

a− 5
A(2πmF )a/3

]
, (5.143)

where F and ω = 2πF are the linear and angular orbital frequency, φGR = −1/(32η)(2πmF )−5/3

is the GR orbital phase and E(ω) = −(µ/2)(mω)2/3 is the binary’s binding energy

to Newtonian order. Recall here that m = m1 + m2 is the total mass of the binary,

while µ = m1m2/m is the reduced mass and η = µ/m is the symmetric mass ratio.

Equation (5.143) is not valid when a = 5 (a 2.5PN correction), as then the integrand

becomes proportional to ω−1, which leads to a log term.

Before we compute the Fourier phase, we must first define t0, the time at which

the stationary phase condition is satisfied F (t0) = f/2, where f is the GW frequency.

This condition can be solved to yield

t0 = t0,GR

(
1− 8

8− a
A(πmf)a/3

)
, (5.144)

where t0,GR is the GR t0. Again, this expression is not valid at a = 8, because once

more the correction to t0(f) would be a log term.

With this at hand, we can now compute the Fourier phase in the SPA:

ΨGW = 2φ(t0)− 2πft0

= ΨGR

[
1− 40

(a− 5)(a− 8)
Aη−a/5(πMf)a/3

]
, (5.145)

where ΨGR ≡ (3/128)(πMf)−5/3, and where M = η3/5m is the chirp mass. Again,

these expressions are not valid when a = 5 or a = 8, for the reasons described above.

The corrections to the GW phase found here map directly to the parameterized

post-Einsteinian (ppE) framework [178]. In that framework, one postulates that

modified gravity theories affect the Fourier phase of the GW response function in the
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Sector A a

Even-Parity 5
96
ζ3

1
η4

δm2

m2 −2

Odd-P, Spins (ϑ) 25
1536

ζ4
1
η2

[
∆̄2 + 2

〈
(∆̄ · v̂12)2

〉
ω

]
+4

Odd-P, Spins (h) 75
16
ζ4

1
η
〈Si1S

j
2

(
2v̂12

ij − 3n12
<ij>

)
〉ω +4

Odd-P, No Spin 2
3
ζ4
δm2

m2 +14

Table 5.2: Coefficients of the relative energy flux.

SPA via

ΨppE

GW = ΨGR + βppE (πMf)bppE , (5.146)

where (βppE, bppE) are ppE parameters. We see that this is identical to the corrections

introduced by a change in the energy flux, with the mapping

βppE = −15

16

A

(a− 5)(a− 8)
η−a/5 , bppE =

a− 5

3
. (5.147)

This is not surprising, as the ppE framework was in part motivated by studying

power-law (in velocity) modifications to the energy flux and the binding energy [178].

We have then found that a large number of energy flux corrections associated with

extra gravitational and scalar field emissions can be mapped to the ppE framework.

In the even parity case, the leading-order frequency exponent bppE = −7/3, while

in the odd-parity case bppE = −1/3, unless the binary is non-spinning in which case

bppE = +3.

The results found in this paper could help in the generalization of the ppE frame-

work to more generic quasi-circular inspirals. The original framework considered only

non-spinning, equal mass inspirals, while recently Cornish et al. [48] generalized it

to non-spinning, unequal mass systems through A → Aηc. In this paper we have

found that A does not only depend on a simple power law of η, but also on the mass

difference δm/m =
√

1− 4η and on combinations of the spins. For single detections,

however, such a generalization is not needed as one only measures a single number,

βppE, and one cannot extract the dependencies on η, δm/m, and the spins.
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Although we currently lack any GW detections, we can still estimate the pro-

jected constraints that such detections would place on quadratic gravity. Accord-

ing to Table 5.2, the even-parity sector leads to the strongest deviations from GR,

since a is the most negative. Therefore, we consider EDGB theory, (α1, α2, α3, β) =

(1,−4, 1, α−1
EDGB)αEDGB, as a simple sub-case of the even-parity sector. Let us first

imagine that we have detected a GW with Ad. LIGO and signal-to-noise ratio (SNR)

of 20 that is consistent with GR and that originates from a non-spinning BH bi-

nary with masses (m1,m2) = (6, 12)M�. Given such a detection, Cornish et al. [48]

estimated the projected bound |βppE| . 5 × 10−4 for bppE = −7
3
, which implies

|αEDGB|1/2 . 4 × 105 cm. Let us now assume that we have detected a GW with

LISA classic with and SNR of 879 and still consistent with GR, but that originates

from a non-spinning BH binary with masses (m1,m2) = (106, 3 × 106)M� at z = 1.

Given such a detection, Cornish et al. [48] estimated a bound on |βppE| . 10−6 for

the same value of bppE as before, which leads to α
1/2
EDGB . 1010 cm. In both cases,

notice that these projected bounds are consistent with the small-coupling require-

ment ζi � 1; i.e. saturating the projected Ad. LIGO and LISA constraints we have

ζAd. LIGO ∼ 3 × 10−2 and ζLISA ∼ 10−5 for those particular binary systems, which is

clearly much less than unity.

Comparing these results with the current constraint obtained by the Cassini satel-

lite, |αEDGB|1/2 < 1.3× 1012cm [11], we see that Ad. LIGO and LISA could constrain

αEDGB much more strongly. Unfortunately, it seems difficult to put constraints on

EDGB with binary pulsar observations, since NSs have no scalar monopole charge in

this theory. We emphasize again that this is opposite to the expectation from scalar-

tensor theories, in which NSs have scalar monopole charges while BHs do not. Finally,

one cannot estimate the bounds one could place on dynamical CS gravity, since one

would have to properly account for modifications to the conservative equations of

motion, which we have not calculated here.
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5.8 Conclusions and discussions

We have studied the binary inspiral problem in a wide class of quadratic gravity

theories in the slow-motion, weak-gravity regime. The structure of a compact object

in such theories affects the exterior scalar field sourced by the object. Despite this,

we can model a compact object by an effective scalar field source characterized by

its scalar monopole and dipole moments. The scalar monopole charge is enhanced

inversely proportional to the mass of the object, while the dipole charge is independent

of the mass for a fixed dimensionless spin parameter. With this effective source, we

then derived and solved the modified field equations for the scalar field and metric

deformation.

We find that the scalar field generically emits dipole radiation in the even-parity

sector, and quadrupole radiation in the odd-parity sector. Such radiation affects the

rate of change of the binary energy at relative −1PN order in the even-parity case

and relative 2PN order in the odd-parity case. The quadrupole contribution depends

quadratically on the BH spins, and thus it is suppressed for non-spinning binaries.

In that case, the odd-parity contribution becomes of relative 7PN order, as found

numerically in [113]. We have found excellent agreement between their numerical

results and our analytical calculations.

We have also calculated the metric perturbation in the FZ and its associated

energy flux. In the even-parity sector, the dominant metric contribution leads to a

0PN relative correction in the energy flux, which is smaller than the -1PN correction

induced by scalar dipolar radiation. In the odd-parity sector and for spinning BHs,

the metric perturbation leads to a 2PN modification to the energy flux, which is of the

same order as that induced by quadrupolar scalar radiation. In the odd-parity sector

and for non-spinning BHs, we expect the energy flux correction due to the metric

deformation is suppressed to at least of 6PN order, as found by Pani et al. [113].

Whether these corrections can be measured or constrained depends on whether

they are degenerate with GR terms in the physical observable, i.e. the waveform. A

−1PN effect cannot be degenerate, as there are no such terms predicted in GR. A 2PN
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effect, however, could be degenerate with a spin-spin interaction for quasi-circular

inspirals with aligned or counter-aligned spin components. That is, a renormalization

of the spin magnitudes of both bodies can eliminate this 2PN effect, assuming one

truncates the waveform at that order. If higher-order PN waveforms are used, or if the

orbit is more generic (i.e. if there is precession or eccentricity), then this degeneracy

can be broken.

We also calculated the effects of such energy flux modifications on the gravitational

waveform. The waveform phase depends sensitively on the rate of change of the orbital

frequency, which in turn is governed by the rate of change of energy. We calculated

the corrections that would be induced in the waveform and mapped them to the ppE

framework. We then used a recent ppE study [48] to estimate the constraints that

Ad. LIGO and LISA could potentially place on quadratic gravity theories. Given a

GW detection, we found that the magnitude of the new length scale introduced by

quadratic gravity theories (associated with a ratio of their coupling constants) could

constrain at a level controlled by the smallest length-scale probed in the inspirals,

i.e. the size of the smallest compact object’s event horizon or surface. The best

projected bounds achievable with Ad. LIGO will thus come from stellar-mass BH or

NS inspirals, while LISA will benefit the most from EMRIs. Since NSs have no scalar

monopole charge in EDGB theory, this theory cannot be constrained from binary

pulsar observations. This property is diametrically opposite to scalar-tensor theories

where BHs have no hair.

There are several possible avenues for future work. Since we here mainly con-

sidered corrections due to the dissipative sector of the theory, one possibility is to

calculate the non-dissipative corrections that would modify the binding energy and

the equations of motion. There are two effects that should be accounted for: new

scalar-scalar forces and metric deformations. Let us consider the former first. In the

even parity case, compact objects have an associated scalar monopole charge, and

thus, there is an additional scalar force with a 1/r potential that should lead to a

relative 0PN correction in the equations of motion. Similarly, in the odd-parity case,

a spinning compact body possesses a current dipole charge, and hence, dipole-dipole
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interactions should arise. Since the dipole potential is proportional to 1/r2, while the

dipole charge couples to the first derivative of the potential, the equations of motion

should be corrected at relative 2PN order.

Another non-dissipative modification is induced by deformations of the back-

ground metric tensor. In the even-parity sector, such corrections enter at relative

0PN order, as found by Yunes and Stein [172]. In the odd-parity sector, there is no

metric deformation for isolated non-spinning BHs, but for spinning ones there is a

correction proportional to r−4 to the (t, i) components [177], which then leads to a

4.5PN correction in the equations of motion when we consider boosted BHs. This then

implies the following: (i) in the even-parity case, the conservative corrections to the

equations of motion do not affect the leading-order modification to the waveforms,

since this is dominated by the −1PN scalar radiation effect; (ii) in the odd-parity

case, the conservative corrections from the metric deformation can be neglected, but

those due to the scalar-scalar force will contribute at the same order as the effect

calculated here. A complete analysis of the waveform observable would thus require

the calculation of such a scalar-scalar, conservative effect.

Another possibility could be to study modified quadratic gravity in the context

of BH perturbation theory. This would be a tremendous effort that would have

to be split into separate parts. First, one would have to find an analytic, strong-

field solution for arbitrarily-fast rotating BHs in quadratic gravity. This has only

been found in the slow-rotation limit both in the even-parity [172] and odd-parity

sectors [177]. Once this is accomplished, one would have to study the evolution of

metric perturbations away from this solution. Such evolution equations would have

to be decoupled in terms of some master function to derive Teukolsky-like master

equations. Finally, with these equations at hand, one would have to solve them

numerically, when the perturbations are sourced by a small object in a tight orbit.

Such an analysis would be interesting because one would be able to derive not only the

corrections to the energy flux carried out to infinity, but also that which is absorbed

by the BH horizons and which we ignored in this paper.
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A final follow-up would be to study how NS solutions are modified in quadratic

gravity [111] and how the energy flux from NS binaries is modified. This could then

lead to direct constraints on quadratic gravity theories from double binary pulsar

observations. Such constraints could be stronger , relative to current Solar System

constraints, as they could potentially provide constraints of roughly the order of

magnitude of the NS radius. Of course, in the case of EDGB theory or dynamical

CS gravity, these constraints might not be stronger as NSs have no scalar monopole

charge in such theories.
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Chapter 6

Outlook

Let us recall where we started and see how far we’ve come. The overarching goal

was to investigate and develop tests and probes of strong gravity. Whereas the rest

of physics has been developed from a closed loop between experiment and theory,

there has not been any feedback in the realm of gravity. We simply haven’t had the

opportunity to probe the regime where the predictions of GR may break down, or

haven’t been lucky enough for nature to present these systems to us. To close the

loop, we must know how to probe strong gravity.

These probes can be broken down into two types: discovery/serendipity/null tests,

and targeted tests. Null tests are constructed to look for any deviations from observ-

ables in GR; targeted tests are designed to find, for some particular class of BGR

theory, which systems show the greatest potential deviation from a GR observable.

Chapter 2 worked towards null tests: it focused on improving our ability to make

predictions from EMRIs in GR. To use EMRIs as a probe of strong gravity will require

not only understanding all of the relevant physics, but also numerical methods which

are sufficiently precise that they are faithful to the continuum limit. The simulation

must not contaminate the observable signature through noise or an unfaithful disper-

sion relationship. The exponential convergence and phase relationship convergence

are good steps in this direction. But much more work remains, most importantly,

inclusion of the source term, which will require domain decomposition.
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Chapters 3, 4, and 5 worked towards targeted tests in a large class of BGR theories.

To perform gravitational wave tests of BGR theories, one needs to know the properties

of gravitational waves, the corrections to compact object structure, the corrections

to the motions of objects, and the radiation which they generate.

Chap. 3 studied the properties of GWs near asymptotically flat space in BGR

theories: the available polarizations, their propagation, and their energy content. The

conclusions are surprisingly simple for the class of theories studied: that gravitational

waves look much the same as they do in GR. However, there are BGR theories which

do not fall into the category of theories considered here, and the real universe is not

asymptotically flat. Both of these points are potential future refinements of this work.

Chap. 4 found the strong-field correction to Schwarzschild in a class of BGR

theories. However, for the foreseeable future, pulsar tests will be more powerful than

black holes, using radio timing. One potential future avenue of study is the correction

to the strong-field structure of neutron stars, making it possible to constrain BGR

theories through radio pulsar timing.

Chap. 5 built on the previous two pieces of work and, using the post-Newtonian

formalism, calculated the correction to the gravitational observables of the comparable

mass-ratio inspiral in a class of BGR theories. This is a very large problem and also

paves the way for future work. Most importantly, this work only considered circular

orbits, but eccentric orbits are observed in radio pulsar timing. Calculating the

same observables for eccentric orbits is very important for constraining these theories.

The dominant contribution will be very straightforward, but surprisingly, currently

nobody knows how to calculate the angular momentum carried by gravitational waves

out at spatial infinity in any theories except for GR. This is not only an important

calculation for constraining BGR theories, but also of fundamental importance to our

understanding of the structure of theories of gravity.

Can we yet ask nature how gravity acts? Maybe, if we learn to speak her language.

So far we are just children, learning basic building blocks. Our vocabulary may be

sufficient to ask for simple things, the bare necessities: how compact objects orbit in

the post-Newtonian expansion; approximate EMRI trajectories. But we are learning
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at an astounding rate and will soon be able to form full sentences: enough to use pulsar

timing to constrain BGR theories; hopefully, in the near future, we can generate self-

consistent EMRI waveforms. These ideas are so close at hand that we are compelled

to continue to study nature’s language, in the hopes of understanding her. If nature

is kind, and we continue our studies, we will understand her very soon.
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Appendix A

The Balding of Neutron Stars in

EDGB Gravity

In this appendix, we consider the scalar field equation in EDGB gravity for isolated

NSs. Integrating the evolution equation, we find

∫ √
−g�ϑd4x ∝

∫ √
−gR2

GBd
4x , (A.1)

where we have defined the Gauss-Bonnet invariantR2
GB ≡ R2−4RµνR

µν+RµνδσR
µνδσ.

Since the Gauss-Bonnet combination is a topological invariant, the right-hand side

identically vanishes for any simply-connected, asymptotically flat spacetime. More-

over, since we are considering isolated NSs, these must be stationary, and so the time

integration can be removed.

With all of this and using Stokes’ theorem, Eq. (A.1) becomes

∫ √
−g(∂iϑ)nidS =

∫ √
−g(∂rϑ)dS = 0 , (A.2)

where ni is the radial unit vector and the integral is performed over the 2-sphere at

spatial infinity. Notice that
√
−g ∼ r2, while the scalar field must decay at infinity

for it to have a finite energy.
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Equation (A.2) does not vanish at spatial infinity for all scalar field solutions,

i.e. if we model ϑ = ϑn/r with ϑn a constant, then Eq. (A.2) leads to the unique

solution ϑn = 0. This is a physicists’s proof that the EDGB scalar field cannot have

scalar monopole charge for a spherically symmetric NS. Similarly, one can show that

NSs cannot have scalar monopole charge in dynamical CS gravity; the proof laid

out above carries through with the replacement R2
GB → ∗RR, since ∗RR is also a

topological invariant.
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Appendix B

Integration techniques

In this appendix, we provide some useful integration techniques. When computing

near-zone integrals, we are faced many times with integrals of the form

∫
d3x

x〈L〉
r1r2

. (B.1)

When the point-particle approximation is valid, such near-zone integrals can be

Hadamard regularized by keeping only the finite part. Let us then define [19]

Y〈L〉(x1,x2) = − 1

2π
FP
B=0

∫
d3x|x̃|B

x〈L〉
r1r2

, (B.2)

to be evaluated in the near-zone and where FPB=0 stands for the finite part operator

(in the limit B → 0) and |x̃| is an analytic continuation factor [19]. The solution to

this integral is

Y〈L〉 =
b

l + 1

l∑
q=0

x
〈L−Q
1 x

Q〉
2 . (B.3)

The first few Y〈L〉 are simply

Y0 =Y = b , Yi =
b

2

(
xi1 + xi2

)
, (B.4)

Y〈ij〉 =
b

3

(
x
〈ij〉
1 + x

〈i
1 x

j〉
2 + x

〈ij〉
2

)
, (B.5)

Y〈ijk〉 =
b

4

(
x
〈ijk〉
1 + x

〈ij
1 x

k〉
2 + x

〈i
1 x

jk〉
2 + x

〈ijk〉
2

)
. (B.6)
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The solution to the Y〈L〉 integral can also be derived by using certain Poisson

integral identities [114]:

P (f,ig,i) = −1

2
[fg + P (fg,ii) + P (gf,ii)− Bp(fg)] , (B.7)

where we have defined

P (f) ≡ 1

4π

∫
M

f(t, x′)

|x− x′|
d3x′ , (B.8)

and the boundary term is

Bp(g) ≡ 1

4π

∮
∂R

[
g(t, x′)

|x− x′|
∂′r ln [g(t, x′)|x− x′|]

]
r′=R
R2dΩ′ . (B.9)

As usual, we retain only those terms that are independent of the boundary R.

Finally, there is yet another type of integral that commonly appears in near-zone

integration: ∫
M

d3x′

|x′ − x1||x′ − x2||x′ − x|
. (B.10)

Let us then define the so-called triangle potential [115]

G(x1,x2,x3) ≡ 1

4π

∫
M

d3x′

|x′ − x1||x′ − x2||x′ − x3|
. (B.11)

It is a bit of a miracle that the above integral has the closed-form solution G(xA,xB,xC) =

1− ln ∆(ABC), with ∆(ABC) ≡ |xA − xB|+ |xB − xC |+ |xC − xA|.

One can show that the triangle potential satisfies a set of relations, including [115]

∂
(1)
i ∂

(2)
i G(x1,x2,x) =

1

2

[
1

b

(
1

r1

+
1

r2

)
− 1

r1r2

]
,

∂
(1)
il ∂

(2)
jl G(x1,x2,x) = −1

2

[
ni1n

j
2

r2
1r

2
2

+
ni12n

j
2

b2r2
2

− nj12n
i
1

b2r2
1

+ 3
n
〈ij〉
12

b3

(
1

r1

+
1

r2

)]
, (B.12)
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and more generally

∂
(B)
i ∂

(C)
j G(ABC) =

1

∆(ABC)2
(niAB − niBC)(njAC + njBC)

+
1

rBC∆(ABC)
(δij − niBCn

j
BC) , (B.13)

where G(ABC) ≡ G(xA,xB,xC).
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Appendix C

Odd-Parity, Non-Spinning,

Regularized Contribution in the

Metric Correction

We consider here the odd-parity sector for non-spinning binaries, where, for the scalar

field, the magnetic-type dipole moment vanishes, µiA = 0, since χA = 0. For the

regularized contribution, we only need to consider the cross-interaction terms since the

isolated non-spinning BH solution in the odd-parity case is simply the Schwarzschild

metric. The K̃
(1)
ij source term gives the largest contribution and one is then left only

with the pseudo-scalar generated by interaction terms, as given in Eq. (5.61).

The metric deformation is given by Eq. (5.94), the m = 0 piece of which can be

split as in Eqs. (5.109)-(5.112). Before tackling each of these terms separately, let us

point out that many of them identically vanish. For example, one of the contribution
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in Eq. (5.109) is proportional to

Iijqn ≡m1εjkl

∫
M
∂

(1)
qnk

(
1

r1

)
∂

(1)
il

(
1

r1

)
d3x

+m2εjkl

∫
M
∂

(1)
qnk

(
1

r1

)
∂

(2)
il

(
1

r2

)
d3x

= − 2πm1εjkl lim
2→1

∂
(1)
qnk∂

(2)
il Y (x1,x2)

− 2πm2εjkl∂
(1)
qnk∂

(2)
il Y (x1,x2) = 0 . (C.1)

It is critical in this calculation and in the calculations that follow to replace the xi

derivatives by particles derivatives, i.e. derivatives with respect to xi1 and xi2.

Let us then tackle the first contribution to the dissipative metric deformation.

Equations (5.109)-(5.112) can then be rewritten as

h
(1)
ij = 2048π

α2
4

β

m2
1m2

r

[
bω2 (I1ij + I2ij)

− v1n(I3ijn + I4ijn)− v2n(I5ijn + I6ijn)

+ (i↔ j)
]

+ (1↔ 2) , (C.2)

h
(2)
ij = − 4096π

α2
4

β

m2
1m2

r
v1[n

[
I3i]jn + I4i]jn

+ I5i]jn + I6i]jn + (i↔ j)
]

+ (1↔ 2) , (C.3)

h
(3)
ij = 4096π

α2
4

β

m2
1m2

r
v1[n

×
[
I7i]jn + I8i]jn + (i↔ j)

]
+ (1↔ 2) , (C.4)

h
(4)
ij = − 2048π

α2
4

β

m2
1m2

r
v1n

×
[
I7ijn + I8ijn + (i↔ j)

]
+ (1↔ 2) , (C.5)
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where we have defined

I1ij ≡ εjklεpqsn12sJ
(1)
pk,q,il ,

I2ij ≡ εjklεpqsn12sJ
(1)
p,qk,il ,

I3ijn ≡ εjklεpqsv12sJ
(1)
pkn,q,il ,

I4ijn ≡ εjklεpqsv12sJ
(1)
pn,qk,il ,

I5ijn ≡ εjklεpqsv12sJ
(1)
pk,qn,il ,

I6ijn ≡ εjklεpqsv12sJ
(1)
p,qkn,il ,

I7ijn ≡ εjklεpqsv12sJ
(1)
pk,q,iln ,

I8ijn ≡ εjklεpqsv12sJ
(1)
p,qk,iln ,

(C.6)

and

J
(p)
A,B,C = lim

3→p
∂

(1)
A ∂

(2)
B ∂

(3)
C G(ABC) , (C.7)

with A,B,C denoting the multi-index lists. We provide a more detailed discussion

of J tensors in Appendix D. One can then show through explicit computation that

the two terms combine to give I1ij + I2ij = 0, I3ijn + I4ijn = 0, I5ijn + I6ijn = 0, and

I7ijn + I8ijn = 0. Therefore h
(1···4)
ij = 0 at leading order.

Let us now look at contributions that are smaller by O(v). Such a correction

can arise from two different terms: (i) the O(v) correction to the source term with

m = 0 in the sum of Eq. (5.94), or (ii) the O(v0) correction to the source term with

m = 1 in the sum of Eq. (5.94). For case (i), the next-order terms consist of two

time derivatives and one factor of h0i (or three time derivatives and one factor of

hij), which when combined are O(v2) smaller than the O(v0) contribution shown to

vanish previously. Also, the next-order terms in the PN metric appears at O(v2)

higher relative to the leading-order terms. Finally, ϑNZ in Eq. (5.55) expanded as in

Eq. (2.27) of [160] with m = 1 in the sum, gives an O(v) relative contribution to ∂kϑ,
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but explicit calculation shows that

ϑNZ =
8

π

α

β
m1m2εijk

∂

∂t

[
v12k

∫
M

(
1

r1

)
,il

(
1

r2

)
,jl

d3x

]
=

8

π

α

β
m1m2εijk

∂

∂t

[
v12k∂

(1)
il ∂

(2)
jl

∫
M

1

r1

1

r2

d3x

]
= 16

α

β
m1m2εijk

∂

∂t

[
v12k∂

(1)
l ∂

(2)
ijl b

]
= 0 . (C.8)

For case (ii), the resulting ḣij contains one ni vector. The correction to the energy

flux consists of ḣij multiplied by hTT
ij and averaged over a 2-sphere. However, since

the leading contribution in hTT
ij contains even numbers of ni vectors, the correction

only contains angular integrals of odd numbers of ni’s which vanish exactly upon

integration.

Since there is no O(G3, v) relative contribution to ∂thij, the first, non-vanishing

contribution must be at least O(v2) smaller than what we computed in Eqs. (C.2)-

(C.5), which amounts to a 7PN correction to the energy flux carried by the metric

deformation, in the odd-parity, non-spinning case.
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Appendix D

Evaluating J tensors

Recall that the definition of the J tensors is

J
(p)
A,B,C = lim

3→p
∂

(1)
A ∂

(2)
B ∂

(3)
C G(ABC) . (D.1)

The limit 3 → p which appears must be taken with care. There may be terms

proportional to

lim
3→p

1

rp3
, (D.2)

which have no finite part. In the evaluation of the J tensors, only the finite part of

the limit is kept. That is, a function can be expanded as a Laurent series about these

points, and the finite part scales as (rp3)0 in the limit as 3→ p.

Another type of problematic limit is

lim
3→p

nip3 or lim
3→p

nijp3 , (D.3)

which does not formally exist, since it depends on the path taken as we describe

below. Parameterize the path that particle 3 takes to the location of particle p by the

continuously differentiable path γ(λ), with λ a parameter of path length and λ = 0

the location of particle p. There are an infinite number of paths one could choose,

and each can be parameterized in two senses. Taking the limit along this path “from
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below” (i.e. from smaller values of λ to larger values) yields

lim
3→p, γ−

nip3 → −v̂iγ(0) , (D.4)

where v̂γ is the tangent vector to the curve γ. Taking the limit from above, we find

lim
3→p, γ+

nip3 → +v̂iγ(0) . (D.5)

The limit depends on the path’s tangent at the point of particle p, and the direction

in which the limit is taken. Clearly, the final answer must be unique, which implies

the limit must vanish.

A unique prescription to this problem is formalized as Hadamard regulariza-

tion [18]. This can be summarized as follows. All possible paths are considered,

with tangent vectors v̂γ. The average is then taken by integrating, e.g.

lim
3→p
· · ·nijp3 · · · =

∫
dΩ(v̂γ)

4π
· · · v̂ijγ · · · . (D.6)

The first few such limits, for example, are

lim
3→p

nip3 = 0 , (D.7)

lim
3→p

nijp3 =
1

3
δij . (D.8)
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[63] É. É. Flanagan and S. A. Hughes. The basics of gravitational wave theory. New
Journal of Physics, 7:204–+, September 2005.

[64] E. E. Flanagan, S. A. Hughes, and U. Ruangsri. Resonantly enhanced and
diminished strong-field gravitational-wave fluxes. 2012. Forthcoming.
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