
Computer Science and Artificial Intelligence Laboratory

Technical Report

m a s s a c h u s e t t s i n s t i t u t e o f t e c h n o l o g y, c a m b r i d g e , m a 0 213 9 u s a — w w w. c s a i l . m i t . e d u

MIT-CSAIL-TR-2013-003 February 12, 2013

A Plan for Optimizing Network-Intensive
Cloud Applications
Katrina LaCurts, Shuo Deng, and Hari Balakrishnan

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@MIT

https://core.ac.uk/display/10128844?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A Plan for Optimizing Network-Intensive Cloud
Applications

Katrina LaCurts, Shuo Deng, and Hari Balakrishnan
MIT Computer Science and Artificial Intelligence Lab, Cambridge, MA

{katrina, shuodeng, hari}@csail.mit.edu

ABSTRACT
A significant and growing number of applications deployed
on cloud infrastructures are network-intensive. These appli-
cations are frequently bottlenecked by the speed of network
connections between the machines on which they are de-
ployed. Due to the complexity and size of cloud networks,
such applications often run slowly or have unpredictable com-
pletion times and/or throughput, both of which can result in
increased cost to the customer. In this paper, we argue that
cloud customers should be able to express the demands and
objectives of their applications. We outline an architecture
that allows for this type of expression, and distributes appli-
cations within the cloud network such that the application’s
objectives are met. We discuss some of the key questions that
need to be addressed to implement the architecture, as well
as the interactions between optimizations done by clients and
by cloud providers. We also present preliminary results that
indicate that these types of systems are feasible and improve
performance.

1. INTRODUCTION

In recent years, datacenters and cloud computing infras-
tructures have become popular platforms for running network-
intensive applications. No longer simply a platform for
scaling web servers, these infrastructures must now sup-
port applications that transfer large amounts of data be-
tween machines in the cloud (see https://aws.amazon.
com/hpc-applications/ for some examples). Unfor-
tunately, networks in datacenters and public cloud infrastruc-
tures are complex, and path rates can vary significantly due
to cross traffic, differences in link qualities, oversubscription,
etc. [4]. Customers running network-intensive applications
on these networks can see slow and unpredictable run times,
which results in increased cost to the customer, and makes it
difficult to plan.

We posit that many of these problems could be mitigated
by doing a better job of distributing applications across ma-
chines in the cloud network. In today’s clouds, customers are
given access to a set of machines on the network, presumably
optimized for some purpose (for instance, the cloud provider
may provide machines near each other). Once the customer
has their set of machines, they may distribute their applica-

tion arbitrarily across them; we refer to this distribution as a
placement of the application. Unfortunately, there is no in-
terface in place for the customer to express the requirements
of their application to the provider; the cloud provider is ag-
nostic to the application when assigning the customer a set of
machines, and their machine assignment may not be aligned
with the needs of the application. Moreover, once assigned a
set of machines, there is no service available for the customer
to distribute their application across those machines in an
intelligent manner, perhaps to minimize cost or application
completion time.

We take the position that for network-intensive applica-
tions, the correct approach is for applications to concisely
express some set of attributes, and for the cloud provider to
take this information into account when returning a set of ma-
chines. Once assigned a set of machines, customers should
be able to invoke a service to best distribute their application
across these machines, such that some objective is met (e.g.,
minimizing cost). Such an architecture would improve per-
formance, and may also give us a better way to balance the
customer’s needs with the provider’s.

In this paper, we argue that the demands—especially the
network demands—of an application should be expressed in
such a way that placements can be found to satisfy a wide
variety of objectives, as a single objective is likely not suit-
able to all customers. We outline several challenges that need
to be met in order to design and deploy an architecture that
supports this functionality. Among them, determining the
correct granularity at which an application should express its
demands, scalably measuring the network, and determining
what information or APIs the cloud provider should export
to customer applications. We also present some potential
objectives that clients might want to optimize, as well as
preliminary results using Amazon EC2 that indicate that per-
formance can be substantially improved by taking application
demands into account.

2. REQUIREMENTS

Applications run directly on physical machines in some
cloud infrastructures and datacenters, while others use virtual-
ization (hypervisors), or offer particular frameworks, such as
Hadoop [10]. In this paper, we focus on the case where appli-
cations are run on virtual machines, without any frameworks

1

application

express objectives /
demands measure network

optimize

place application cloud

physical

hypervisor framework

framework

Figure 1: Applications (the balls in the figure) can be
run through various combinations of hypervisors, frame-
works (such as Hadoop), and physical machines.

involved (corresponding to the vertical-striped portions in
Figure 1). This type of technology is akin to that offered by
Amazon’s EC2. Although we use this mental model through-
out the paper, we expect that the architecture presented would
work with the other application-deployment technologies
shown in Figure 1.

2.1 Customer Objectives
Our proposed architecture should be able to satisfy a vari-

ety of customer objectives. For example:
• Minimizing application completion time. For applica-

tions that aren’t continually-running services (e.g., web
servers), customers are typically interested in the appli-
cation finishing as quickly as possible. For example, it
is common for MapReduce jobs to run for several hours.
With network-aware application distribution, we may be
able to significantly reduce completion time.
• Minimizing monetary cost. Cloud customers are typi-

cally charged for each machine launched, the amount of
network bandwidth used, the amount of storage used, etc.
These costs can vary considerably depending on the types
of machines and storage used, as well as the time the appli-
cation takes to run and how many machines are launched.
Reducing the cost to run a set of applications may be a
primary customer objective.
• Maximizing the total number of application runs given

a budget. A project may have part of its budget dedicated
towards analyzing some large dataset. In this case, the
project would like to analyze as many pieces of data as
possible without exceeding the budget.
• Minimizing the variance of application completion

time. Many companies use public clouds for software
testing or simulations; a typical scenario is running an
extensive set of tasks every night. In this case, it is not
so important that the tests finish as fast as possible, but
rather that the time they will take to finish is predictable.
This objective is also important when the application has
its own customers who expect it to meet some particular
objective.
• Fault-tolerance. Applications or services that need to

quickly recover from network failures often require differ-
ent components to be run on different parts of the network,
or for portions of their application to be replicated in dif-

ferent datacenters.
• Elasticity. A compelling use of public cloud infrastruc-

tures is to allow customers to quickly scale applications
(both “up” and “down”). Cloud providers typically of-
fer ways to automatically scale applications based on the
amount of CPU used per machine. Some applications may
prefer to scale based on network latency, not just CPU
demands.

In some cases, cloud users today try to achieve some of these
goals by using low-level mechanisms. For instance, in or-
der to “guarantee” that two virtual machines (VMs) have a
high throughput path between them, a user might request
that the VMs be placed on the same subnet. This is both too
restrictive—the VMs might be able to obtain enough through-
put between them even if they were on separate subnets—and
possibly incorrect—being on the same subnet does not guar-
antee a fast path, particularly in the face of cross traffic.

2.2 Provider Requirements
Cloud providers have their own objectives to satisfy. For

public cloud infrastructures, a primary goal is to maximize
revenue. Though this goal is simple to state, there are many
mechanisms put in place by cloud providers to achieve it. We
list two below.
• Migration. In order to avoid hotspots, fix various network

issues, etc., cloud providers with virtualized datacenters
often want the ability to migrate customer applications.
Being able to move customer applications allows for bet-
ter consolidation, which can ease the cost of managing
a datacenter. Any architecture for distributing customer
applications should allow and adapt to migration.
• Isolation. Though cloud providers make no hard guaran-

tees with respect to fairness, it is a reasonable goal for all
customers in the cloud to experience a similar level of per-
formance. Any architecture that prevents some users from
achieving reasonable network performance might be pro-
hibited or throttled by the cloud provider. Network-level
isolation is a relatively open problem for cloud infrastruc-
tures today.

In §4.5, we discuss the extent to which the requirements
of the customer and provider can both be satisfied in our
architecture.

3. PROPOSED ARCHITECTURE

Figure 2 depicts the proposed architecture for a system that
satisfies customer objectives, including some “black boxes”.
Each of these black boxes brings up various research ques-
tions to solve, which we discuss in more detail in §4.
• Expression. Each application must be able to detail its

demands and objectives in such a way that the system
can find a satisfactory placement for the application. This
expression should capture the network and CPU demands
(and perhaps others) at an appropriate level of granularity
such that they can be fed into the optimizer.
• Measurement. To determine a placement for a particular

objective, the system needs to know the state of the net-

2

express goals/
constraints

measure
network

optimize

place tasksapplication

cloud

application

express objectives /
demands measure network

optimize

place application cloud

physical

hypervisor framework

framework

Figure 2: Each of the black boxes are part of our pro-
posed architecture. Arrows show information flow be-
tween different parts of the architecture as well as the
application and the cloud network. Portions of the archi-
tecture to the right of the dotted line could potentially be
part of the cloud provider’s infrastructure; see §4.

work; for instance, the throughputs along various paths in
the network. The measurement module is responsible for
monitoring the network and reporting the appropriate data
to the optimization module.
• Optimization. Once the system knows the demands and

goals of an application, as well as the current state of the
network, it uses that information to determine a satisfying
placement, i.e., the appropriate way to distribute the ap-
plication across the machines such that the application’s
objective is met.
• Placement. Given a particular placement, the system must

actually distribute the application’s components (or “tasks”,
defined in the next section) in this manner and run it.

4. RESEARCH AGENDA

In this section, we give some proposals for the four “black
boxes” in Figure 2, and outline the set of questions that needs
to be resolved for each. Our focus is on articulating the
research challenges, rather than proposing specific solutions.

4.1 Expression
Many of the potential objectives in §2 can be expressed as

functions of the given demands (see §4.3). We imagine that
applications may express any or all of the following: network
demands, as the number of bytes to be transferred or a desired
sustained bandwidth; CPU demands, as percentage of CPU
cores needed; fault-tolerance demands, as sets of machines
that must exist in separate network locations and the desired
separation (e.g., different datacenters); elasticity demands,
as a function on which to scale machines (e.g., “launch a
new machine if the average network latency is greater than
200ms”); and cost constraints, as the customer’s budget in
dollars.

At what granularity should applications specify their de-
mands? Using the number of bytes transferred by an applica-
tion as an example, one could express this demand in any of
the following ways: as the total number of bytes transferred,
as the number of bytes transferred between pairs of physical

machines, or as the number of bytes transferred by every in-
dividual TCP connection or process. We believe that neither
of these is a particularly good abstraction for expressing net-
work demands. Instead, we propose expressing demands at
the granularity of tasks, where tasks are groups of individual
connections and processes, representing units of computation
that cannot be split across machines. A task can be made
up entirely of local computations, or it can transfer (receive)
data to (from) other tasks. Examples of tasks might include
an instance of a reduce task in MapReduce running on one
machine, or the computation associated with answering one
query (or set of queries) in a distributed database. Using
tasks to express demands is different from systems such as
Conductor [18], which coordinate cloud applications using
more coarse-grained specifications (e.g., the total amount of
data transferred by an application).

It is possible that an application may not be able to accu-
rately express its demands at this level of granularity. In this
case, either the application can express demands with less
accuracy, e.g., that two tasks need to transfer a lot of data vs.
a little, rather than specifying the exact number of bytes, or
the placement system could “sample” the application once
(i.e., run some portion of it) and measure the demands itself.
We do, however, believe that the application’s author could
correctly define the tasks of an application, perhaps via an
API exported by the cloud provider (see §4.5).

4.2 Measurement
The placement and optimization modules require measure-

ment data about the current state of the network. An obvious
question is how much data is needed, and how often does the
data need to be updated? Many of the objectives mentioned in
§2 require knowledge of the achievable rates along network
paths. But there is other data available from the network;
for instance, the network topology. How much effort does it
take to measure this type of information, and to what extent
does this extra information help? Related work [4] suggests
that to satisfy certain objectives—in particular, to improve
predictability—knowledge of the network topology may be
necessary.

The question of how much information this system will re-
quire is closely related to the question of who should be doing
the measurement. In today’s public clouds, any detailed infor-
mation about the network has to be inferred by the customer’s
application (or perhaps by an additional service available to
the customer). At the other end of the spectrum, one can
imagine the cloud provider doing all of the measurement, and
simply taking customer applications and placing them such
that their objectives were satisfied (customers would have to
trust that their applications were being placed correctly).

A third option is for cloud providers to export an API to
allow clients to get some measurement information directly,
i.e., without having to actively measure themselves. Note that
there may be some information about the network that only
cloud providers have access to—for instance, the physical
topology, and information about the cross traffic of other

3

users—and cloud providers may not want to allow customers
access to all of this information.

Regardless of who performs the measurements, we must
address scalability. Measuring network paths often involves
sustained TCP transfers. But cloud networks are large; with
sustained transfers, the network can change substantially be-
tween the time when the first and last paths are measured.
With too long a delay, we cannot be confident that the place-
ments our system finds are still optimal. Moreover, measure-
ment traffic will interfere with traffic from real users, which is
likely unacceptable to most providers. How can we measure
cloud networks quickly and accurately? We explore some of
these concerns in §5.4.

4.3 Optimization
Once our system has an expression of an application’s

objective(s) and demands, how can it determine a satisfying
assignment? Many, if not all, of the objectives listed in §2
can be formulated as convex programs. After formulating the
appropriate problem, the system can simply use off-the-shelf
optimization software such as CPLEX [8] to solve it. To
illustrate this idea, we give a few examples of optimization
problems for various objectives. In all examples, we are
trying to place J tasks on M machines.

Minimizing completion time. Here, the CPU demands
are expressed as a matrix CRJ×1, where CR j is the CPU
demand for task j. Network demands are expressed as BJ×J ,
where Bi j is the amount of data task i needs to transfer to
task j. The available CPU on each machine is expressed as
CM×1, and the bandwidth on each path is expressed as RM×M .
Given these variables, a placement of the J tasks onto the M
machines is an indicator matrix X (X jm = 1 if task j is placed
on machine m), such that:

∑M
m=1 X jm = 1,∀ j ∈ [1,J] (1)

That is, each task must be placed on exactly one machine. In
addition, the placement of tasks on each machine must obey
CPU constraints, i.e.,

∑J
j=1 CR j ·X jm ≤Cm,∀m ∈ [1,M] (2)

To minimize completion time is equivalent to solving
min maxm,n Dmn/Rmn,

where D = XT BX , and Dmn gives the amount of data to be
transferred between machines m and n in a particular place-
ment, assuming that the completion time is bottlenecked by
the network.

We have implemented a system that solves this particular
optimization problem on public cloud infrastructures. On
Amazon’s EC2 network, we observed an average 21% - 31%
reduction in application completion times compared to other
placement strategies, which we show in §5.

Fault-tolerance. A customer can express their fault-
tolerance constraints by stating the tasks that must be located
on separate physical machines, across datacenters, or multi-
ple hops away. As a simple example, to prevent two tasks i
and j from being placed on the same machine m, we use the
following constraint:

Xim +X jm ≤ 1 ∀m ∈ [1,M]

This constraint can easily be extended for multiple pairs of
tasks that cannot be placed on the same machine.

Minimizing Cost. The cost to run machines in a cloud
network comes from launching VMs, keeping the VMs up
for a certain time period, and transferring data between VMs.
Suppose launching VMs costs Cl dollars per VM, running
VMs costs Cc dollars per second per CPU, and network trans-
fers costs Ct dollars per byte. The total number of VMs
launched is n = ∑M

m=1 (∏J
j=1 X jm). The total completion time

for a particular placement is t = maxm,n(Dmn/Rmn). The total
amount of data transmitted between VMs is:

d = ∑J,J
i=1, j=1 ∑M

m=1 Bi jXim(1−X jm)

Here, Xim(1−X jm) ensures that we only consider the data
transmitted between VMs. If two tasks are placed on the
same VM, then there is only data exchange via disk I/O. The
problem now is to solve:

min(n ·Cl + t ·Cc +d ·Ct)

while satisfying (1) and (2).

4.4 Placement
Once a placement has been found, the application’s tasks

need to be distributed across the recommended machines.
To do this placement, cloud providers could export an API
that specifies a Task class, which customers can incorporate
into their applications. Like a traditional Thread class, indi-
vidual Tasks could be run independently—i.e., on different
machines—but the units of computation comprising a single
task could not.

In addition, cloud providers may need to support tagging
network connections belonging to the same application, re-
gardless of the specific machines they are running between.
For better network isolation and to make application com-
pletion times more predictable, these tags, which allow an
application to specify a “bundle” of connections, could be
used for better network-level scheduling.

4.5 Understanding Interactions
The cloud provider’s goal of maximizing revenue seems at

odds with allowing customers to optimize their network place-
ments. After all, these placements may frequently lead to
customers spending less time using the cloud network, which,
at first glance, results in a loss of money for the provider.
However, deploying such a system would likely result in
more satisfied customers, better load balancing on the net-
work, and possibly better performance for customers who
weren’t using the system. All of these results could increase
revenue for the cloud provider.

There is also the question of how the optimizations of
individual customers will affect the cloud provider’s network
as a whole, as well as the provider’s objective of maximizing
revenue. Is it possible that individual customer optimization
could detrimentally affect the network on a global scale?
If the cloud provider were in charge of finding placements
for each individual customer, they could optimize multiple

4

customers together; how much improvement would we get
from such a strategy?

5. PRELIMINARY RESULTS

To test the potential of our proposed architecture, we ran
some preliminary experiments on EC2. In these experiments,
we measured the path throughputs on an EC2 topology,1

and determined the optimal placement for the minimizing
completion time of a particular workload. We then compared
the time it took for this placement to complete against the time
it would take for a variety of other placements to complete.

5.1 Workloads
For our experiments, we would like to be able to test on

some common distributed-application workloads, and also to
abstract the important properties of a workload out, so that
we can run these abstracted workloads under multiple con-
figurations (different topologies, varying numbers of tasks,
etc.). There is little published information on application-
level traffic patterns in cloud computing applications, but we
were able to classify some workload abstractions based on
prior work.
• Arbitrary Pairs. This workload simulates arbitrary pairs

of tasks transferring data, similar to how scientific com-
puting applications and database joins work. There, data
is transferred between a fraction f of pairs of tasks. This
abstraction is similar to the elephant-and-mice workloads
that appear in many datacenter papers [2, 3, 9].
• One-to-many. This workload represents a backup of a

filesystem, where each node transfers one copy of its data
to some number of distinct servers. In our experiments,
each client makes three copies, as in [5], a pattern which
is similar to other network-intensive cloud applications [7,
14].
• All-to-all. Here, data is transferred between every pair

of tasks in the network, similar to an all-to-all shuffle in
Hadoop [2, 9, 16]. Generally, this workload is referenced
by shuffling machine memory to machine memory (rather
than from one task to another task), however it actually
occurs at the application layer; see [16]. This workload is
equivalent to an arbitrary pairs workload where f = 1.
• All-to-all Multi-user. Again, data is transferred between

every pair of tasks in the network. The difference between
this workload and the all-to-all workload is that in this
workload, we simulate multiple users running all-to-all
transfers. Generally, we imagine there being more ma-
chines than users (e.g., ten machines with two users, each
user with five tasks).

Note that, except in the all-to-all workload, it is not the case
that all pairs of tasks in the workload will transfer data to one
another. We will refer to the pairs of tasks that do transfer
data as transferring pairs.

1By “EC2 topology” we mean a collection of Amazon EC2 in-
stances (typically ten instances in our experiments) under the control
of the same user.

There are also some additional parameters defined in §4.3
shared by all of the workloads. The variable B describes the
amount of data sent between transferring pairs. We modeled
B both in the uniform case (all transferring pairs transfer the
same amount data) and as a Zipf distribution, where all pairs
transfer an amount of data drawn independently from a Zipf
distribution with α = 1. The variable C represents the CPU
demand of a task, given by the percentage of the CPU used.
In any particular experiment, we set C to be equal for all
tasks, but we explore the effects of different values of C.

5.2 Alternate Placement Strategies
To understand the improvement that clients would get from

an optimal placement, we compared the time it took for the
optimal placement to complete against three alternate place-
ments, none of which is network-aware. Whenever we speak
of a placement, we mean a valid placement (one that satisfies
CPU constraints), but not an necessarily optimal one.
• Random. Here, tasks are placed randomly on machines.
• Min-Max CPU. This placement simulates CPU load-

balancing, where a roughly equal percentage of the CPU
is used on all machines. If the CPU requirements of each
task are equivalent, this placement will effectively place
tasks on machines in a round-robin fashion.
• Min Num Machines. This placement simulates minimiz-

ing the number of physical machines used. For example, a
set of eight tasks that each need 25% of the CPU can be
placed entirely on two physical machines. Minimizing the
number of physical machines used is desirable for clients
who want to save money as well as cloud providers who
want to fully utilize each machine [1].
In each experiment, we must define two more parameters:

M and J. M is the number of machines in the topology;
unless specified, we use M = 10. J is the number of tasks
in the workload. We use values of both J = 5 and J = 10.
Values of J much higher than M are somewhat unreasonable
in network-intensive applications. If J >> M, we have many
tasks transferring data while using very little CPU, which
indicates that tasks are transferring data but not processing
most of it.

We tested these placement methods on a variety of Amazon
EC2 topologies. In our experiments, all transferring tasks
send data to one another. Consequentially, our results reflect
the improvement our system can gain in the face of actual
path rate variations, unknown topological bottlenecks, etc.

5.3 Results
For a particular configuration (defined by the workload

type, B, J, etc.), we first measure an EC2 topology (we used
packet trains for these measurements; see §5.4). We then
calculate the optimal placement and run the tasks in that
placement; this run gives us a workload completion time topt .
We then take the alternate placement and run the tasks in
that placement; this run gives us a time talt . The measured
performance improvement is 1− topt/talt .

Figure 3 shows two CDFs. The first (Figure 3(a)) shows

5

C
D

F

Percent Improvement

Vs. Random
Vs. Min Num Machines

Vs. Min Max CPU
 0

 0.2

 0.4

 0.6

 0.8

 1

-40 -20 0 20 40 60 80

(a) Performance improvements on arbitrary pairs workloads.

C
D

F

Percent Improvement

Vs. Random
Vs. Min Num Machines

Vs. Min Max CPU
 0

 0.2

 0.4

 0.6

 0.8

 1

-40 -20 0 20 40 60 80

(b) Performance improvements across structured workloads.

Figure 3: Performance improvements across all workloads. Figure 3(a) displays the improvement on arbitrary-pairs
workloads, for varying f ’s (divided equally between .3 and .7), as well as all-to-all workloads where traffic was Zipf-
distributed with α = 1. Figure 3(b) displays improvement on the more structured workloads: both types of all-to-all
with tasks transferring equal amounts of data, and one-to-many.

the percent improvement across all instances of arbitrary
pairs workloads. The second (Figure 3(b)) shows the perfor-
mance improvement across the more structured workloads
(one-to-many, all-to-all, all-to-all multi-user). We ran 514
experiments, each on a different EC2 topology.

5.3.1 Performance on Arbitrary Pairs Workloads
Figure 3(a) shows a significant performance improvement

of our system over all other methods. The mean (median) per-
formance improvement is 29.3% (30.4%) over random place-
ment, 31.1% (33.5%) over min-max CPU, and 19.4% (15.4%)
over the min-num machines. Where does this performance
improvement come from? One feature that our system takes
advantage of is packing pairs of transferring tasks on the same
machine, thus effectively using intra-machine links (this phe-
nomenon can only occur in experiments where C < 100%).
We saw improvement in almost all instances when the num-
ber of network transfers that the optimal placement used was
fewer than the number that the alternate placement used.

5.3.2 Structured Workloads
We are also interested in what happens when many network

paths have to be used. This case typically corresponds to
the highly-structured workloads, such as all-to-all, all-to-all
multi-user, and one-to-many. In these structured workloads,
because many tasks are transferring data (in some cases, all
tasks), many paths in the network need to be used; when
there is one task per machine, and as many machines as tasks,
all paths must be used. When the majority of paths in the
network have to be used, there is little room for improvement
for any placement scheme.

We can see in Figure 3(b) that the min-max CPU algorithm
does as well as the optimal placement scheme; each of these
placement methods do a good job of spreading load around

different paths. For any network-aware scheme, putting mul-
tiple connections on one path generally increases the com-
pletion time more than placing the connections on separate
paths, even if one of the paths is somewhat slow. The min-
max CPU method, while not taking the network into account,
does a reasonable job of balancing network load by virtue of
distributing tasks across machines.

In contrast, the other two placement schemes—random
and min-num machines—do a relatively poor job in these
workloads. Note that min-num machines is designed to not
spread load across the network. Networks with more skew
in the path-rate distribution will generally see more room for
improvement in these types of workloads.

5.4 Scalability
Though these results are preliminary, we expect that they

will scale to clients running more VMs on larger networks.
In these cases, it is possible that the optimization problems
in §4.3 will occasionally be difficult to solve efficiently. To
address this concern, we have experimented with a greedy
network-aware strategy, which attempts to use the fastest
paths first, but takes into consideration the effect of placing
multiple transfers on the same path. Though this strategy is
not always optimal, in many cases it performs comparably
to the optimal algorithm. More research should be done to
determine when the greedy algorithm is appropriate.

Additionally, we also explored how to measure cloud
networks more efficiently. We chose to use the well-known
method of packet trains [12], finding that they were relatively
accurate in cloud networks (roughly 6% error). Further
results on packet trains in cloud networks are out of the
scope of this paper.

6

6. RELATED WORK

The idea that one should allow application expression in
cloud networks has not received much attention. Many sys-
tems aim to improve performance in datacenter networks,
but without taking input from the customers. FairCloud [15]
proposes a mechanism for handling the tradeoff between pro-
viding bandwidth guarantees and sharing the network. Okto-
pus [4] allows for more predictable application run times in
certain topologies. VL2 [9] and Hedera [2] present different
flow scheduling systems for achieving scalability and max-
imizing utilization. There have also been proposals to use
software-defined networking [11] to achieve such gains.

Orchestra [6] proposed a scheduling mechanism for
Hadoop, aiming to improve the transfer times of commu-
nication patterns such as broadcast and shuffle. Their design
tries to find the best time to start a transfer given that the job
placements are fixed, while our system tries to find the best
placement of jobs.

A few systems allow customer expression in some form.
Conductor [18] allows customers to specify coarse-grained
facts about their applications, and uses this information to
choose particular cloud resources (e.g., local storage vs. off-
site storage). The architecture that we have proposed is
complementary to Conductor; it allows clients to describe
applications with a much finer granularity, and deals with op-
timally placing an application once a service has been chosen.
Moreover, it works with a variety of datacenter technologies;
currently Conductor is limited to MapReduce frameworks.
Mohammadi, et al. [13] allow applications to express their
network requirements, but it is not clear how well this sys-
tem will operate in a complex topology such as a datacenter
network. Webb, et al. [17] allow topology switching in dat-
acenter networks, with the goal of using the best available
topology for a particular application, but do not allow for a
fine-grained specification of application demands.

In contrast to these works, our proposed architecture al-
lows for a much more descriptive specification from cloud
customers and multiple objectives to be met in a variety of
frameworks. We do not force a particular framework on the
client, nor require changing routing schemes, nor knowing the
topology; it is likely that control over routes and/or topology
could benefit our system.

7. CONCLUSION

This paper discussed the need for cloud users to be able to
express the demands and objectives of their applications to
the infrastructure for better performance. We outlined some
key research questions that need to be addressed to imple-
ment such a system, and gave preliminary results indicating
that these ideas can improve application performance. We
believe that such a system is feasible, and would benefit both
customers and cloud providers.

8. REFERENCES
[1] ABOULNAGA, A., SALEM, K., SOROR, A. A., MINHAS,

U. F., KOKOSIELIS, P., AND KAMATH, S. Deploying
Database Appliances in the Cloud. In IEEE Data Engineering
Bulletin (2009).

[2] AL-FARES, M., RADHAKRISHNAN, S., RAGHAVAN, B.,
HUANG, N., AND VAHDAT, A. Hedera: Dynamic Flow
Scheduling for Data Center Networks. In NSDI (2010).

[3] ALIZADEH, M., GREENBERG, A., MALTZ, D. A., PADHYE,
J., PATEL, P., PRABHAKAR, B., SENGUPTA, S., AND
SRIDHARAN, M. Data Center TCP (DCTCP). In SIGCOMM
(2010).

[4] BALLANI, H., COSTA, P., KARAGIANNIS, T., AND
ROWSTRON, A. Towards Predictable Datacenter Networks. In
SIGCOMM (2011).

[5] BLANAS, S., PATEL, J. M., ERCEGOVAC, V., RAO, J.,
SHEKITA, E. J., AND TIAN, Y. A Comparison of Join
Algorithms for Log Processing in MapReduce. In SIGMOD
(2010).

[6] CHOWDHURY, M., ZAHARIA, M., MA, J., JORDAN, M. I.,
AND STOICA, I. Managing Data Transfers in Computer
Clusters with Orchestra. In SIGCOMM (2011).

[7] Cisco Data Center Infrastructure 2.5 Design Guide.
http://www.cisco.com/univercd/cc/td/doc/
solution/dcidg21.pdf.

[8] IBM ILOG CPLEX Optimizer. http://cplex.com.
[9] GREENBERG, A., HAMILTON, J. R., JAIN, N., KANDULA,

S., KIM, C., LAHIRI, P., MALTZ, D. A., PATEL, P., AND
SENGUPTA, S. VL2: A Scalable and Flexible Data Center
Network. In SIGCOMM (2009).

[10] Apache Hadoop. http://hadoop.apache.org.
[11] HANDIGOL, N., FLAGSLIK, M., SEETHARAMAN, S.,

JOHARI, R., AND MCKEOWN, N. Aster*x: Load-Balancing
as a Network Primitive. In ACLD (Poster) (2010).

[12] JAIN, R., AND ROUTHIER, S. A. Packet Trains:
Measurements and a New Model for Computer Network
Traffic. IEEE Journal on Selected Areas in Communications 4
(1986), 986–995.

[13] MOHAMMADI, E., KARIMI, M., AND HEIKALABAD, S. R.
A Novel Virtual Machine Placement in Cloud Computing.
Australian Journal of Basic and Applied Sciences (2011).

[14] MORETTI, C., BULOSAN, J., THAIN, D., AND FLYNN, P.
All-pairs: An Abstraction for Data-intensive Cloud
Computing. In IPDPS (2008).

[15] POPA, L., KRISHNAMURTHY, A., RATNASAMY, S., AND
STOICA, I. FairCloud: Sharing the Network in Cloud
Computing. In HotNets (2011).

[16] RASMUSSEN, A., PORTER, G., CONLEY, M.,
MADHYASTHA, H. V., MYSORE, R. N., PUCHER, A., AND
VAHDAT, A. TritonSort: A Balanced Large-Scale Sorting
System. In NSDI (2011).

[17] WEBB, K. C., SNOEREN, A. C., AND YOCUM, K. Topology
Switching for Data Center Networks. In HotIce (2011).

[18] WIEDER, A., BHATOTIA, P., POST, A., AND RODRIGUES,
R. Conductor: Orchestrating the Clouds. In LADIS (2010).

7

