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ABSTRACT

The control-function method is the most suitablel to address endogeneity for several
discrete choice models that are relevant in tramapon research. The estimators
obtained with the control-function method are cetesit only up to a scale. In this paper
we first depict the determinants of this changasazle by adapting an existing result for
omitted orthogonal attributes in Logit models. Theme study the problem of forecasting
under these circumstances. We show that a procedopesed in previous literature may
lead to significant biases, and we suggest novelratives to be used with synthetic
populations. We also discuss potential extensidnthese results to other non-Logit
discrete choice models. We use Monte Carlo experiatieon and real data on residential
location choice to demonstrate these results. Bpermpfinishes summarizing the findings
of this research and suggesting future lines afaesh in this area.
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1 Introduction

A discrete choice model suffers from endogeneitgmvthe systematic part of the utility
is correlated with the error term. This problemc@mmon to several discrete choice
models that are relevant in transportation resedtrclan be caused by errors in variables,
simultaneous determination, or the omission ofvahé attributes that are correlated with
the observed ones. Endogeneity is a critical modédhilure that leads to the inconsistent
estimation of model parameters. Intuitively, if ariable is endogenous, changes in the
error term will be misinterpreted as resulting frehmanges of the endogenous variable,
making impossible the consistent estimation ofitloglel parameters.

The problem of endogeneity is relevant, for examptemodeling the choice of
residential location. Consider, for example, theecaf two seemingly equal dwellings
that differ only in that one has been recently v&ted and consequently has a higher
price. If the data on dwelling’s renovation is rmtailable, observations of choices
toward the dwelling with the higher price wouldde@® the erroneous conclusion that the
sensitivity to price is smaller than it really iBlumerous empirical applications in
residential location choice modeling have showmeded coefficients of dwelling price
that are non-significant or even positive when @eaeity is not taken into account
(Guevara and Ben-Akiva, 2006; Bhat and Guo, 20@m®nss and Koppelman, 2001;
Levine, 1998; Waddell, 1992; Quigley, 1976).

Two main methods have been proposed to correarfdogeneity in discrete choice
models when the endogenous variable is continudhs: BLP method (Berry et al.,
1995) and the control-function method (Heckman,81#fausman, 1978). Other methods
that have been proposed are 2SIV (Newey, 1985)Aanemiya’s (1978) method. The
control-function method is particularly suitablegddress endogeneity in several models
that are relevant in transportation research.

In this paper we study two methodological issued #rise in the application of the
control-function method. We first study the problemthe change of scale that results
from its application in Logit models. In this, wetend the analysis of Cramer (2007) and
Daly (2008), on the change of scale produced bythession of orthogonal attributes in
Logit models. Then, we study the problem of for&@oaswith Logit models corrected for
endogeneity using the control-function method. Wews that a procedure proposed by
Wooldridge (2002) may lead to significant biased anopose novel alternatives to use
the control-function method with synthetic popuwas, making it applicable for
microscopic integrated urban models such as Urlpar(8Vadell et al., 2008). We also
discuss the potential extension of these resultghter non-Logit discrete choice models.
We use Monte Carlo experimentation and real dataesidential location choice to
demonstrate these results.

The paper is structured as follows. This introduttis followed by a review of the
fundamentals of the control-function method in toerection of endogeneity. Then, in
sections 3 and 4 we study the problems of changscale and forecasting with the
control-function method in Logit models from a thetical perspective. Then, in Section
5 we use Monte Carlo experimentation to demonstfaetheoretical issues discussed
previously. Finally, we analyze those issues inlitjet of an application of the control-
function method to real data on residential locafirom the city of Lisbon, Portugal. The



paper finishes highlighting the main findings oisthesearch, and suggesting future lines
of research in this area.

2 Addressing Endogeneity with the Control-functionMethod

The control-function method to address endogen&rgs originally proposed by
Hausman (1978) and Heckman (1978). Rivers and V{»888) used this approach in
binary Probit, and Petrin and Train (2002) extendetb Logit mixture models. The
control-function method consists of the constructid an auxiliary variable, which when
added to the systematic part of the utility functithe remaining error of the model will
no longer be correlated with observed variables.

To deploy the fundamentals of the control-functimethod, consider the problem
described in Eq. (1), where a groupMfgents if) face the selection of an alternative
among thel elements in the choice-9@t.
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The agenn perceives a utilityJi, from dwellingi. The utility depends linearly on
variablespi,, an attribute,, and a zero mean error tegR which can be decomposed
into two partsé, ande, that also have zero mean. For expositional pugose will
denominate variabl@, the price and will assume that this is the unigndogenous
variable.Uj, is a latent variable. The researcher observeaasx,, z,, pin and the
choiceyin, which takes value 1 if the alternativehas the largest utility among the
elements in choice-s&t,, and zero otherwise. The pripg is determined as a linear
function of variableg, xin, and a zero mean err@f. This expression is termed the price
equation. For notational purposes, it will be cdased from this point thad, p, X, ¢, ¢, €,
z, 0 andy are vectors compounded by the respective variadtbesked by alternativas
and agents.

Variablesx andz are exogenous, meaning that they are independafiteyror terms
g, ¢, e ando of the model. Variabl& is said to be a control because it is exogenodstan
appears in the specification of the utility functio/ariablez is a suitable instrument for
price p because it is relevant (correlated wihand valid (independent @j. The fact
thatz does not appear in the utility function allowsntgcation. Additionally, the error
termeis independent of the observed varialges andz, and of the error ter

Endogeneity problems arise whenis correlated withé. In that casep will be
correlated with¢ and the standard estimation methods will fail étrieve consistent
estimators of model parameters. This problem magumdor example, if¢ contains
relevant attributes that are correlated vatlbut cannot be measured by the researcher.

The model described in Eqg. (1) represents a tri@nggystem. The latent and the
instrumental variables are jointly independentpwihg the structural equation for the
utility and the price equation to be recursive. sher (2010) showed that these are some
of the possible forms to allow point identificatjoa critical requirement to be able to
correct for endogeneity using instrumental variable



Consider now the problem of constructing the cdsftroction for the problem
described in Eg. (1). The idea is to build an aawjlvariable, which when added to the
systematic part of the utility function, will cootrfor the endogenous component of the
error term. It can be shown that the conditionglestation ofé, giveno, can play this
role (Wooldridge, 2002). Assuming then tldando arejointly Normal, this conditional
expectation would be linear and then

Ein = :Bcfdin +Vin , (2)
wherev will be independent of and will follow a Normal distribution with zero rae
and a fixed variancer?. Under these conditions, the error termill not be correlated

with p or x. Therefore, assuming for the moment thas observed, the endogeneity
problem can be solved if this decompogeshown in Eq. (2) is replaced in the utility
function as shown in Eq. (3).

Uin = Igppin +18xxin +£in :pr pin +ﬁxxin +1856in +Vin +Qn
pin :azzin ta,X +5in (3)
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Intuitively, the error of the price equation captures the part of price that is correlated

with the error term of the model and, when it isledl to the systematic part of the utility,
it controls for the endogeneity problem.

The practical problem thaik is not observed can be addressed, for examplagnot
that 0 can be consistently estimated by the residuatdf the ordinary-least-squares

regression op onx andz. Then, if d is inserted into the choice model, the consistericy
the estimators of the model parameters would beagteed by the Slutsky theorem (see,
e.g. Ben-Akiva and Lerman, 1985). This method tdrass endogeneity in discrete
choice models is termed the two-stage control-fionc2SCF) and is used, for example,
by Rivers and Vuong (1988), Petrin and Train (2068 Guevara and Ben-Akiva
(2006).

An alternative way to address the fact thas not observed is to consider jointly the
likelihood of the price equation and the choice elod the estimation of the model
parameters. This method is used by Villas-Boas \figher (1999) and by Park and
Gupta (2009), and can be seen as a full-informatiarimum-likelihood (FIML) version
2SCF, which can be therefore seen as a limitedamdtion maximume-likelihood (LIML)
method. This FIML approach is also equivalent tosider that Eq. (2) corresponds to a
structural equation and to tredtas a latent variable (Guevara, 2010). With some
modifications, this approach is also equivalentthie methods used by Zimmer and
Trivedi (2006) or by Bhat and Eluru (2009) to addreendogeneity in discrete choice
models.

There is a trade-off in using LIML or FIML to addseendogeneity. On the one hand,
LIML is easier to estimate and can handle a broeaigge of joint distributions af ando
but, on the other hand, FIML is usually more e#fidiand allows the direct calculation of
standard errors though the evaluation of the irevefsthe Fisher-information matrix. In
this paper we study methodological issues thae dah with FIML and LIML (2SCF)
approaches to address endogeneity with the cofutnction method. For expositional
purpose, we will concentrate on the 2SCF methotiwlill describe the implications of
extending the analysis to FIML when it is relevant.



3 Change of Scale in the Application of the Contrefunction Method

The correction for endogeneity using the controletion method (both with FIML or
LIML) produces consistent estimators of the modmlameters but only up to a certain
scale. That is, the ratios between the estimater£@nsistent estimators of the ratios of
the parameters of the true model, but the actuaha®rs of the model parameters are
inconsistent. This is also true, in general, fdreotmethods to correct for endogeneity in
discrete choice models, such as BLP (Berry et1#95), 2SIV (Newey, 1985) and
Amemiya’s (1978) methods.

The change of scale results from the fact thaether term with the control-function
correction in Eq. (3) i¥ + e, whereas the error term of the original model shanwEq.
(1) was onlye. Therefore, if the variance ofis not null, the control-function correction
will trigger a change of scale in the estimatedapaaters. This effect is analogous to that
of the omission of a relevant and orthogonal aitgbin discrete choice models, an
attribute that truly belongs to the systematic mdirthe utility, but is uncorrelated with
other observed attributes. The problem of the chasfgscale due to the omission of
relevant but orthogonal variables was originallydstd by Yatchew and Griliches (1985)
for the Probit model. Cramer (2007) extended tmalysis to the binary Logit model.
Here, we use their framework to study the changscafe caused by the application of
the 2SCF method in correcting for endogeneity igitmodels.

Consider the true model shown in Eg. (1) wh&ie observed, and assume that the
error e is distributed Extreme Value (0,). As with any Logit model, the scale is not

identifiable and normalization is required. The alswormalization is to set;, = .IThis
is equivalent to normalizing the variance of thi#elences ok across alternatives to be
equal too? = /3 (see, e.g., Ben-Akiva and Lerman, 1985). Consisv the model

corrected for endogeneity using the control-funttinethod described in Eg. (3). The
first problem in the determination of the changesoéle in this case is to depict the
distribution of the error term+e.

We will consider that +e follows, or can be approximated using an Extrera&u¥
distribution, such that the model with the confgiction correction also becomes a
Logit. This assumption might seem difficult to sistat first. In Eq. (2) we said that
followed a Normal distribution and the sum of Nolmad an Extreme Value distribution
does not follow an Extreme Value distribution. lact; there are no parametric
distributions ofe andv, which would result in that +e is distributed Extreme Value.
However if the sample is large enough, it is fpsissible to claim the Central Limit
Theorem to say that+e will be normally distributed. The argument is coetpd using
the results from Lee (1982) and Ruud (1983), whitdte that the approximation of a
Normal by an Extreme Value distribution causes omdgligible discrepancies. The
Monte Carlo experiments reported in Section 5 shibw that this approximation is also
valid in the study of the change of scale with #pplication of the control-function
method.

Considering thav +e is distributed Extreme Value, the usual normal@atior the
model shown in Eq. (3) would bg,,, = . However, this would imply thatr?,, = 772/3,

what is incompatible with the normalization assunied the model in Eq. (1). To
determine the compatible normalization, considest the ratio between the scales of the



two models. Since ande are uncorrelated by construction, this ratio dépend only on
the variances of ande as follows:

Hyve = Te = e = e = L
He Opre \/JVZ + 0-(3 + ZCOV(V' e) \/JVZ + Jj 1+ 0-5
o?
e

Then, if the normalization of the model in Eq. @§ = /3 is to be maintained, the
compatible scale of the model shown in Eqg. (3) &hbe

Uyeo =Y 14302/ 7. 4)

Therefore, the estimators obtained from a modelwias corrected for endogeneity using
the 2SCF will be smaller than those of the true ehatiown in Eq. (1).

This change of scale is unknown to the researcharpractical application because
the variance o¥ is not identifiable. This raises the natural gisesbf what is the cost of
the omission o in the estimation of the control-function methdidturns out that the
cost of this omission is negligible. First, it isually only the ratio between the
coefficients what is relevant and the ratios arde@d obtained consistently with the
change of scale that results from the applicatibthe control-function method. For
example, the metric that is relevant in a mode ahonodel is the subjective value of
travel time savings, which is calculated as thsrat the coefficients of travel time and
travel cost (see, e.g. Jara-Diaz and Guevara, 2@@8pnd, beyond the ratios, the other
thing that is important is the effect in aggregalisticities, the impact of this correction
in forecasting. In the next section we study thebf@m of simulation and forecasting
with the control function method. We show that soapmproaches that have been
proposed in previous literature are valid and somy cause significant biases.
Additionally, we propose novel methods to addréssissue with synthetic populations.

4 Simulation and Forecasting with the Control-functon Method

The impact on elasticities of the change of scakilting from the application of the

control-function method is also related with thelgem of omitted orthogonal attributes.
The first insight into this issue comes from Wodadr(2002, pp. 470), who proved that
the omission of an attribute that is uncorrelateth wther observed variables will not
change the expected value of the derivative ofctiece probability in a binary Probit

model. There is no equivalent analytical resultlfogit, but Cramer (2007), for binary

Logit, and Daly (2008), for multinomial Logit, usédonte Carlo experimentation to

show that the Average Sample Effect (ASE), the $araperage of the derivative of the
choice probability, differs insignificantly betweéme full model and a model that omits a
variable that is uncorrelated with other observadables.

Cramer’'s and Daly’s results can be directly extentiethe case of the change of
scale caused by the application of the 2SCF meleoduse the error termacts as an
omitted orthogonal attribute in Eq. (3). Assumet thandetv are distributed (or can be
approximated) using an Extreme Value distributiberm:

E,n (i). The choice probability of alternativiecalculated using estimator;é from the
model shown in Eqg. (1), including variakién the utility, and



B (i): The choice probability calculated using estimat[?rs)f the model shown in Eq.

(3), including d and omittingy.
Then, the extension of Cramer’'s and Daly’s restdtthe analysis of the impact of the
application of the 2SCF method in the ASE of price,alternativei, in a Logit model,
can be summarized as follows:

A

ase, ()= 230 L3(18 )8 )5, L S0-R 003,

N n=1 apin N n=1 n=1
Intuitively, although the omission afin Eq. (3) makes the scale of that model to be

smaller (Eg. 4), and therefqég <,§p, this change of scale is compensated by the fact
that P (i) becomes closer to 0.5 thay{i), and thereforél— P (i ))F:’n (i)< (1— P (i ))I3n(i).

The fact that the combination of this two effeatsuits in a negligible change in the
sample has not been demonstrated only numerioadly.dgit by Crammer (2007) and
Daly (2008). Formally, this result can be seen mxension of Wooldridge’s (2002)
analytical result of for Probit, claiming Lee’'s @8 and Ruud’s (1983) approximation
results for Logit.

Formally, Eq. (5) shows the expression of the satad probabilities that would have
to be used for the problem described in Eq. (3ur@sng that the model is a Logit. In this

case the,é”s are the estimators obtained from the applicatibthe 2SCF method and

the superscript 1 is used to highlight tpandx vary in the forecasting phase, bdits
fixed.
~ 1 : 1 N eﬁpﬂ%"’ﬁx&%*’ﬁﬁ&ﬂ
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This expression for forecasting is suitable for 28€F method, the LIML version of
the control-function method. In the case the FIMérsion of the control-function
method, the equivalent expression to do forecastogesponds to the following
expression:

(5)
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where the superscript O is to indicate the data filee sample used for estimation.

The estimator in Eq. (5) of the choice probabsgitreay be impractical in some cases
because the data used to estimate the model mahben available for simulation,
making the use of the residuals in simulating pheg®ssible. This occurs, for example,
in microscopic integrated models of the urban systech as UrbanSim (Waddell et al.,
2008), where the choice models are estimated usiaf data on households and

dwellingsi, but are applied to synthetic populatiofisandi . We consider this problem
for the rest of the section.



Wooldridge (2002 pp. 475) proposed a differentnestor of the choice probabilities
that seems to overcome the limitations that arisssmulation with synthetic populations.

The idea is to avoid the need for calculatidgor the synthetic populations, addressing
the change of scale caused by its omission. Walgdrpresents the correction required
for Probit. The equivalent correction for Logit cée applied, following the same
derivation used before to arrive at Eq. (4), bydlhg the estimators with the factor

J1+3B262 ),
where g7 is the sample variance of the residuals of thet fitage of the 2SCF. This

estimator of the choice probabilities is shown ig. £6), where ~ denotes synthetic
households and dwellings, and the superscript Uised to denote values from the
forecasting phase.
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However, this estimator of the choice probabiliiesconsistent. The problem is that
Eq. (6) neglects the fact that is correlated withp when the model suffers from

endogeneity. Therefore, takin@ out of the systematic part of the utilities withpact

more those alternatives with higher prices, thasehwith lower prices. Taking out
will not be equivalent to add or to subtract anejpehdent error and, consequently,
cannot be compensated with a simple change of.S8&dewill explore the effect of this
problem later in Section 5 using Monte Carlo expentation.

Instead of using Eq. (6) for the case of synthptpulations, one alternative is to

construct a control-function for each synthetic tiwg i and householdi using the
following expression:

~

— n0 _ 0 _ 0
O = Prs — A, Z- — O X~

where the superscript zero indicates that the syiatldata used in the calculation of
should come from the base year.

If the dwellings available for estimation in thesti stage of the 2SCF are a random
sample from the population, this expression caeadbeulated using the estimatogsof
the first stage of the 2SCF. Otherwise, the coeffits @ could be calculated by re-

estimating the first stage of the 2SCF using thebates of synthetic dwellings and

the characteristics of synthetic househdfdsin both casesd-. has to be included then
as an auxiliary variable in the utility, as showrHq. (7).
1 N e(éppilﬁ*'éxxilﬁ'*ﬁd‘:% A

ﬁ®=ﬁ2
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The FIML version of Eq. (7) is equivalent, but ugithe respective estimators of the

choice model parameters and of the price equatefficients to calculate%rﬁ.

The application of this simulator may still be cierdbme because it requires the
criteria used to build the instruments with thel réata to be valid for the synthetic
population. If the synthetic prices are reliable the validity of the criteria used to build
the instruments is uncertain or difficult to implemt for the synthetic data, it would still
be possible to generate a consistent estimatdreo$imulated probabilities by using the
Logit Mixture model shown in Eq. (8), whef@|p) is the conditional distribution aof
givenp.

A fm 1 N e/épp%ﬁ+ﬁx)%ﬁ+ﬁddn
P1(| ): jj
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In a practical application, the multifold integsthown in Eq. (8) can be calculated
using Monte Carlo integration, whef(@|p) can be inferred from the sample (provided it
is random) by estimating the auxiliary regression

Jin :y0+yppi?\+/1in1
where the superscript O indicates that this moslestimated using data from the base
year.

Then, for each synthetic dwelling and householdi , several draws of 6 should be
obtained using the expression

O :JA/O"'}A/ppigﬁ+‘9~

where pY is the price of the synthetic dwelling in the ewtion year, y are the
estimators of the auxiliary regression for, and & is a random draw distributed

Normal (0, 67), where &; is the sample variance of the residullof the auxiliary

regression. Then, the choice probability for eadasehold is obtained by averaging
across draws. Finally, the probability of each kgtit dwelling shown in Eq. (8) is

obtained by averaging across synthetic househdids. FIML version of Eq. (8) is

equivalent, but using the respective estimatorsthef parameters for depicting the
conditional distribution ob givenp.

Finally, regarding the extension of these resultsther non-Logit models, the effect
of the change of scale that occurs with the apfptinaof the 2SCF to Logit models also
occurs for Probit and other non-Logit models, saslthe Nested Logit. The invariance of
aggregate elasticities holds also for Probit, asvshby Wooldrige (2002). However, the
extension of this last principle to other non-Lamibdels, such as the Nested Logit is not
necessarily true. The analysis of this extensidefigor further research.

5 Monte Carlo Experiment

In this section we develop a Monte Carlo experintenainalyze the issues studied in
sections 3 and 4. The true model considered ingkperiment is a binary Logitl£2)
with a latent utility that depends linearly on faattributesx;, X;, p and¢, and an error
terme independent and identically distributett) Extreme Value (0,1). The coefficients
of each attribute are shown in Eq. (9).
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Uin = _2pin +lx].in +1X2in +1‘(in +Qn

Variablep (price) is defined as a function &fan instrumeng, and an error ternd
iid Uniform (-1,1), with the coefficients shown in §40). Variablesq, x,, £ andz were
generated asd Uniform (-3,3). The synthetic database consistsl=##,000 observations
and was generated 100 times.

pin = 5+ OSEm + OSZm + B_;n
Note that by virtue of Eq. (10) variablgsand ¢ are correlated. Therefore, dfis

omitted in the specification of the utility functipthe choice model will suffer from

endogeneity. In turn, sincg andx, are not correlated with other variables, the model

will not suffer from endogeneity ik; or x, are omitted. Note also that is, by
construction, a valid instrument. From Eq. (0% correlated witlp and independent of

(9)

(10)

To assess the impact of endogeneity in the estmaii the model parameters and to
evaluate the issues that arise in its correctiangughe control-function method, four
models were estimated for each repetition of theteldCarlo experiment: the true model,
a model whereg; is omitted, a model wheré is omitted, and a model whetewas
omitted but the problem was addressed using thé=28€thod.

For each model, the average, bias, mean squared(MBE) and the t-test against
the true values of the estimators of the modelrpatars are reported in Table 1. The use
of repetitions avoids the risk of dealing with agilar case that may bias the analysis
and avoids the need for correcting the standamremequired in the application two-
stage procedures.

Table 1 Monte Carlo Experiment: Change of Scale wit Omission of Attributes and

Endogeneity Correction

Metric B, B, B, fc B; 8,18,
< | Average | -1990 | 09960 | 09949|  0.9957 -1.98D
8 Bias 0.009561| -0.004032 -0.005127 -0.004288 0.02022
@ MSE | 0.008985| 0.003247 0.002755 0.002980 0.2148
F | ttesttrue | 0.014 | -0.07094| -0.09814 -0.07847 0.04366
o | Average | -1.122 05627 | 05641 -1.99¢
o Bias 0.8778 -04373|  -0.4359 0.002259
g MSE 0.7742 01923 | 0.1913 0.255
O | ttesttrue | 1453 1361 | -12.03 0.004473
w | Average | -0.7994 | 0.6675| 0.6689 1.213
2 Bias 1201 | -03325| -0.3311 0.7881
E MSE 1443 | 01119 | 01108 0.7276
© | ttesttrue | 2680 | -8873 | -9.359 2.415
Average | -1.563 | 07813 | 0.7825 1074  -1.992

o Bias 04372 | -0.2187| -0.2175 0.008215
Q MSE 0.1983 | 0.04955| 0.04884 0.2581

ttesttrue(*) | 5.161 | -5277 | -5531 13.09() 0.01617

100 RepetitionsN=2,000.J=2. (*) t-test against zero fo;@a

1C



The first row below the labels in Table 1 showsek@mators obtained from the true
model. In this case all estimators of the modebhpeters are statistically equal (with
95% confidence) to their true values.

The second row shows the estimators of the mod¢laimits variableg. This model
does not suffer from endogeneity becakses not correlated with other variables. The
estimators in this case are consistent, but onlyoup scale. It should be noted that the
ratio between the coefficients pfandx;, is statistically equal (with 95% confidence) to
its true value ). In turn, each coefficient is significantly siealthan from its respective
true value. This is explained by the change ofescalised by the addition of the variance
of x; to the error of the model. The change of scaleeolesl in Table 1 is of

approximately 0.56, a value that can be approxipai@culated by substitutingr? by

the variance ok; in Eq. (4). Finally it should be noted that, altlgb the omission af;

did not impacted the consistency of the estimatordid affected efficiency. There is a
loss of information whemy, which is truly relevant in the choice processnas used in
modeling it. This can be noted in the increasehef MSE of the estimator of the ratio
between the coefficients q@f andx, for this model, when compared to the respective
MSE of the true model.

The third row in Table 1 shows the estimators Hrat obtained whe# is omitted.
This model suffers from endogeneity becadsis correlated withp. In this case the
estimators are different from those of the true ehodut not only up to a scale. The
ratios between coefficients are also affected. &mand¢ are positively correlated, the
omission ofé causes a positive bias in the coefficientpofConsequently, the ratio
between the coefficients pfandx; is approximately1.2 instead of2, as it was in the
true model. Intuitively, the problem is that postishocks ofé on the utility are
confounded as the results of shockotausing a positive bias in the estimator of the
coefficient ofp.

Consider now the case of the model that oritbut is corrected using the 2SCF
method. Note first that the estimator of the aaxiylivariable is statistically different
(with 95% confidence) from zero. This correctly ions that endogeneity was present
in the model without the correction (Rivers and Wgp1988). Second, although the
model coefficients are not numerically equal tosthamf the true model, the ratios
between them are the same. Particularly, the tmtween the coefficient gf andx; is
again statistically equal (with 95% confidence)-20 The change of scale between the
estimators in this case is approximately 0.78,tshdt can be calculated by considering
the variance o/ in Eq. (4). Lastly, similarly to what occurred tvithe omission ok,
although the correction for endogeneity resultedansistent estimators up to a scale, the
fact that the terrr was omitted caused a reduction in efficiency. Tais be noted in the
increase of the MSE of the estimator of the ragomeen the coefficients @f andx, for
this model, when compared to the respective MStEefrue model.

The next step in the analysis of this Monte Cantpegiment is to show how the
different models behave in the forecasting or satioh phase. To do so, we use the
estimators of the different models to calculate Alggregated Direct Elasticity (ADE) of
price (Eg. 11), defined as the effect of an incnetalechange in price on the expected
share of the group choosing alternatiyBen-Akiva and Lerman, 1985, pp. 112).

11



ADE, ()= 22— @-R,()P,()p, 1)
S r()

The experiment was repeated 100 times. Table Zrteeioe average and standard
errors of ADE fori=1 across the repetitions. Additionally, we simeththe effect of
increasing the price of alternative 1 by 50% for rdé and calculated the average

probability of choosing alternative 1 across th@0R, observations, befordsf(i)) and
after (P'(i)) the price shift.

The first row in Table 2 shows the metrics obtainsthg the estimates that result
from consideringp, X1, X2 and ¢ in the specification of the systematic utility. éde
statistics act as a benchmark. Table 2 shows ti&at50% increase in the price of
alternative 1 results in a reduction of its chgrebability from approximately 50% to
19%, a 31% reduction. Additionally, the ADE is apygmately -1.6 for the true model.

The results of the model where variakjas omitted are shown in the second row of
Table 2. The results are concordant with the canehs attained by Cramer (2007) and
Daly (2008) about omitted orthogonal attributesLogit models. Although this model
resulted in an important change of scale (as it m@ed in Table 1), the forecasting
probabilities of the model are the same of the tnaelel. This can be noted in that the
ADE is statistically equal (with 95% confidence)that obtained with the true model.

Instead, the results are very different when véegighs omitted. In this case there is
an underestimation of approximately 10% of the geaim the probability of choosing
alternative 1 when its price is raised by 50%. AR is also significantly affected.

Table 2Monte Carlo Experiment: Forecasting with Endogeneiy Correction

Model ADEL(1) Po(1) P(1)
-1.608 0.5009 0.1850
True Model
(0.05922)| (0.00896)| (0.008616)
" -1.600 0.5013 0.1871
Omitting x;
(0.05868)| (0.007275) (0.008294)
" -0.962 0.5010 0.2865
Omitting ¢
(0.04520)| (0.007406) (0.01007)
~ -1.608 0.5013 0.1852
2SCF Adding 0
(0.07726)| (0.008182) (0.01076)
. -1.362 0.5012 0.2260
2SCF Scale Adjustment |
(0.05051)| (0.008292) (0.009275%)
o -1.613 0.5013 0.1844
2SCF Logit Mixture
(0.07539)| (0.007791) (0.01058)

Standard errors in parenthesis. 100 Repetitidng,000.J=2.

Consider now the model corrected for endogeneged by the omission g@fusing
the 2SCF method. Three forecasting methods wergzathin this case. Table 2 shows
that when thes used for estimation is also included as an auyiliaariable during
forecasting (Eg. 5), the results of the simulatdrthe 2SCF are indistinguishable from
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those of the true model. In turn, whe# is not included in forecasting, but the scale is
adjusted (Eg. 6) there is a significant bias in fibrecast. In this case the effect of the
price shift in the choice probabilities is undeirested by approximately 4% and the
elasticity is underestimated by approximately Qri&stead, when the Logit Mixture
method described in Eg. (8) is used for forecastithg results for the simulated
probabilities before and after the price shift again statistically equal (with 95%
confidence) to those obtained with the true mo@lleé same occurs with the ADE.

In summary, this Monte Carlo experiment showedt fiteat the omission of an
orthogonal attribute causes a change of scaleeirestimated coefficients but it does not
impact the ratio between the coefficients nor tired¢asting properties of the model. This
same result holds also for the application of ti®CE method in correcting for
endogeneity. It was shown that the best alterndtivéorecasting with the 2SCF method
is to include the residuals estimated in the ftsige into the utility. In cases where the
residuals are unavailable, they can be calculatah fespective instruments using the
estimators of the first stage of the 2SCF, or satad using the expression shown in Eg.
(8). Instead, the alternative of simply adjustihg scale when the residuals are omitted in
forecasting was shown to have poor simulation piogse

6 Application to Real Data

The final step corresponds to the use of real atiemonstrate the issues investigated in
this paper. Since the true scale is not known iragplication with real data, only the
impact in forecasting is studied in this sectioheTase study corresponds to a residential
location choice model for the Portuguese munidisli of Lisbon, Odivelas and
Amadora, which are located at the center of thbdmsMetropolitan Area (LMA).

The data to estimate the model was constructed tisencombination of two sources.
The first source was a small convenience onlingesu(SOTUR) conducted in 2009 by
Martinez et al. (2010) in the LMA. The second seucorresponds to a snapshot of the
dwellings that were advertised for sale in Febr2§7 within the LMA’s municipalities
of Lisbon, Odivelas and Amadora (Martinez and V&ga009). The details on the
construction of the database by matching both esuace described by Guevara (2010).
The database used for estimation is compounded 601 alternatives, from which only
63 correspond to chosen dwellings.

We are interested in modeling the choice of dwgllimade by households in the
LMA. We considered that this model can be well espnted by a Logit where
households chose the observed dwelling among thef de1,501 alternatives available.
The systematic utility is considered to be linear the following variables: dwelling
price in 100,000 Euros (€), the distance from thvelting to the workplace of the head-
of-the-household in kilometers (Km), the log of diimg area in square meters Jmand
the log of dwelling age in years (+1). Dwelling q&iwas interacted with household
income, which was stratified in three levels defity the thresholds of 2,000 and 5,000
Euros per month (€/M).

This residential choice model is very likely to fenfof endogeneity because of the
omission of relevant dwelling attributes that aoerelated with price. For example, the
quality of the construction, the quality of the g&p the type of neighbors, or the layout of
a dwelling are relevant attributes considered ia thoice process that are likely to
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impact dwellings’ prices. Therefore, the impossipibf measuring such attributes by the
researcher should cause endogeneity.

To correct for endogeneity we use the 2SCF metAgdinstruments for price we
consider the prices of similar dwellings locatedhivi certain geographic vicinity. The
argument to sustain the suitability of such typanstruments is equivalent to the one
used by Hausman (1996) and Nevo (2001) in othetegtsn On the one hand, it is argued
that dwellings within certain vicinity share someanginal costs, which make them
correlated and therefore relevant. On the othed hiarnis argued that demand shocks are
independent beyond certain vicinity, what sustéies validity and allows identification.
Further argumentation, formal statistical tests sumgest that such instruments are valid,
and detailed results from the estimation of thisdlelpcan be found in and Guevara and
Ben-Akiva (2011).

Table 3 reports the ADE (Eq. 11) for the four dwellattributes considered in this
residential location choice model. The dwellingdises reference for these calculations
corresponds to the dwelling chosen by the firstsebold in the sample. We report first
the ADE that would result from a model that was notrected for endogeneity and
compare it with three alternatives to calculate A¥E in the model estimated using the
2SCF method.

Table 3 Lisbon’s Logit Model: Forecasting with Endaeneity Correction

Without 2SCE 2SCF 2SCF
Measure Endogeneity ~ | Scale Adjustment | Logit Mixture
c . Adding O
orrection
Price (in 100,000 €) -3.813 -5.679 -5.457 -5.679
ADE(1) Distance to Workplace (in Km) -11.40 -13.73 -13.19 -13.73
Log[Area (in m?)] 4.475 12.08 11.61 12.08
Log[Age (in years)+1] -0.3853 -0.5024 -0.4828 -0.5025

Consider first the ADE of the model that was natected for endogeneity, with that

of the 2SCF in which thdis included in forecasting phase using Eq. (5¢ah be noted
that the sensitivity of the model to dwelling’s ggs was significantly increased by the
correction for price endogeneity. Interestinglye tADE of other variables was also
affected by the correction of price endogeneitytipalarly that of dwelling area. This is
because dwelling area and price are highly coedlé&torrelation = 0.7013) compared to
other attributes, and then, the impact of priceogedeity is significantly transferred to
dwelling area. In general, the correction for prcelogeneity resulted in a model that is
more sensitive, not only to changes in price, aa to changes in area, age, and distance
to workplace. This demonstrates the importanceoafecting for endogeneity on policy
analysis. It shows that the misspecified model grghificantly underestimate the impact,
not only of a pricing policy, but also the impaétpolicies that may affect other attributes
of dwelling-units.

Consider now the model that was corrected for eadeiy using the 2SCF method,
but where the ADE was calculated with an adjustnoéistale using Eq. (6). Concordant
with what was found in the Monte Carlo experimeittsan be noted that the ADE of this
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model is similar to that obtained when using Eq, it there is a downward bias that
makes unadvisable the use of the change of scadegure in forecasting.

Finally, the last column of Table 3 shows that tlogit mixture approach (Eg. 9) to
do forecasting results in values of ADE that armaat indistinguishable to those

obtained with the model wher@is included in forecasting phase. This confirmg the
use of a Logit mixture approach, where the cond#liodistribution ofd, givenp, is
depicted from the sample, is a suitable tool toutite the choices in synthetic
populations.

7 Conclusion

In this paper, we analyzed two methodological isghat arise in the application of the
control-function method for the correction of endogity in Logit models. The first issue
analyzed was related with the change of scale ee@rfirom the application of the control-
function method. Extending a result from CramerO@0and Daly (2008), we used
Monte Carlo experimentation to show that the chasfgeeale produced with the control-
function method is harmless since it does neitlfflectithe forecasting characteristics or
the model nor the ratio of the estimators. Addiiyy regarding simulation and
forecasting, it was shown that a simple adjustnoérgcale (Wooldridge, 2002) is not
suitable and that, instead, the inclusion the od#fitmction correction in forecasting
phase is better. In the case of simulation withtsstic populations, we proposed a novel
method that will be relevant in applications of misimulation models such as
UrbanSim. Lastly, the application to real data esidential location from the city of
Lisbon gave further empirical evidence of the intpafcendogeneity in this field and on
the importance of using suitable procedures tocsewith the control-function method.

Finally, several potential lines of further resémaitc this area can be identified. First,
it would be interesting to assess the impact ofntie¢hodological advances under other
circumstances, including diverse type of spatiadiod models, and real databases. It
would also be interesting to study the way to deedasting with the control-function
correction with other non Logit models, such as Nested Logit. Finally, it would be
interesting to analyze the impact in welfare analg$ using the control-function method
to correct for endogeneity. Finally, it would betresting to test the impact of this
research in modeling complex systems, such as latgn areas. This might be achieved
by applying these advancements in the frameworkamwf operational microscopic
integrated urban model such as UrbanSim (Waddell €2008).
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