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ABSTRACT 
 
The control-function method is the most suitable tool to address endogeneity for several 
discrete choice models that are relevant in transportation research. The estimators 
obtained with the control-function method are consistent only up to a scale. In this paper 
we first depict the determinants of this change of scale by adapting an existing result for 
omitted orthogonal attributes in Logit models. Then, we study the problem of forecasting 
under these circumstances. We show that a procedure proposed in previous literature may 
lead to significant biases, and we suggest novel alternatives to be used with synthetic 
populations. We also discuss potential extensions of these results to other non-Logit 
discrete choice models. We use Monte Carlo experimentation and real data on residential 
location choice to demonstrate these results. The paper finishes summarizing the findings 
of this research and suggesting future lines of research in this area. 
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1 Introduction 
A discrete choice model suffers from endogeneity when the systematic part of the utility 
is correlated with the error term. This problem is common to several discrete choice 
models that are relevant in transportation research. It can be caused by errors in variables, 
simultaneous determination, or the omission of relevant attributes that are correlated with 
the observed ones. Endogeneity is a critical modeling failure that leads to the inconsistent 
estimation of model parameters. Intuitively, if a variable is endogenous, changes in the 
error term will be misinterpreted as resulting from changes of the endogenous variable, 
making impossible the consistent estimation of the model parameters. 

The problem of endogeneity is relevant, for example, in modeling the choice of 
residential location. Consider, for example, the case of two seemingly equal dwellings 
that differ only in that one has been recently renovated and consequently has a higher 
price. If the data on dwelling’s renovation is not available, observations of choices 
toward the dwelling with the higher price would lead to the erroneous conclusion that the 
sensitivity to price is smaller than it really is. Numerous empirical applications in 
residential location choice modeling have shown estimated coefficients of dwelling price 
that are non-significant or even positive when endogeneity is not taken into account 
(Guevara and Ben-Akiva, 2006; Bhat and Guo, 2004; Sermonss and Koppelman, 2001; 
Levine, 1998; Waddell, 1992; Quigley, 1976). 

Two main methods have been proposed to correct for endogeneity in discrete choice 
models when the endogenous variable is continuous: The BLP method (Berry et al., 
1995) and the control-function method (Heckman, 1978; Hausman, 1978). Other methods 
that have been proposed are 2SIV (Newey, 1985) and Amemiya’s (1978) method. The 
control-function method is particularly suitable to address endogeneity in several models 
that are relevant in transportation research.  

In this paper we study two methodological issues that arise in the application of the 
control-function method. We first study the problem of the change of scale that results 
from its application in Logit models. In this, we extend the analysis of Cramer (2007) and 
Daly (2008), on the change of scale produced by the omission of orthogonal attributes in 
Logit models. Then, we study the problem of forecasting with Logit models corrected for 
endogeneity using the control-function method. We show that a procedure proposed by 
Wooldridge (2002) may lead to significant biases and propose novel alternatives to use 
the control-function method with synthetic populations, making it applicable for 
microscopic integrated urban models such as UrbanSim (Wadell et al., 2008). We also 
discuss the potential extension of these results to other non-Logit discrete choice models. 
We use Monte Carlo experimentation and real data on residential location choice to 
demonstrate these results. 

The paper is structured as follows. This introduction is followed by a review of the 
fundamentals of the control-function method in the correction of endogeneity. Then, in 
sections 3 and 4 we study the problems of change of scale and forecasting with the 
control-function method in Logit models from a theoretical perspective. Then, in Section 
5 we use Monte Carlo experimentation to demonstrate the theoretical issues discussed 
previously. Finally, we analyze those issues in the light of an application of the control-
function method to real data on residential location from the city of Lisbon, Portugal. The 
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paper finishes highlighting the main findings of this research, and suggesting future lines 
of research in this area. 

2 Addressing Endogeneity with the Control-function Method 
The control-function method to address endogeneity was originally proposed by 
Hausman (1978) and Heckman (1978). Rivers and Vuong (1988) used this approach in 
binary Probit, and Petrin and Train (2002) extended it to Logit mixture models. The 
control-function method consists of the construction of an auxiliary variable, which when 
added to the systematic part of the utility function, the remaining error of the model will 
no longer be correlated with observed variables. 

To deploy the fundamentals of the control-function method, consider the problem 
described in Eq. (1), where a group of N agents (n) face the selection of an alternative i 
among the J elements in the choice-set Cn.  
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The agent n perceives a utility Uin from dwelling i. The utility depends linearly on 
variables pin, an attribute xin, and a zero mean error term εin, which can be decomposed 
into two parts ξin and ein that also have zero mean. For expositional purposes, we will 
denominate variable pin the price and will assume that this is the unique endogenous 
variable. Uin is a latent variable. The researcher observes variables xin, zin, pin and the 
choice yin, which takes value 1 if the alternative i has the largest utility among the 
elements in choice-set Cn, and zero otherwise. The price pin is determined as a linear 
function of variables zin, xin, and a zero mean error δin. This expression is termed the price 
equation. For notational purposes, it will be considered from this point that U, p, x, ε, ξ, e, 
z, δ and y are vectors compounded by the respective variables stacked by alternatives i 
and agents n. 

Variables x and z are exogenous, meaning that they are independent of all error terms 
ε, ξ, e, and δ of the model. Variable x is said to be a control because it is exogenous and it 
appears in the specification of the utility function. Variable z is a suitable instrument for 
price p because it is relevant (correlated with p) and valid (independent of ε). The fact 
that z does not appear in the utility function allows identification. Additionally, the error 
term e is independent of the observed variables p, x and z, and of the error term δ.  

Endogeneity problems arise when δ is correlated with ξ. In that case, p will be 
correlated with ξ and the standard estimation methods will fail to retrieve consistent 
estimators of model parameters. This problem may occur, for example, if ξ contains 
relevant attributes that are correlated with p, but cannot be measured by the researcher. 

The model described in Eq. (1) represents a triangular system. The latent and the 
instrumental variables are jointly independent, allowing the structural equation for the 
utility and the price equation to be recursive. Chesher (2010) showed that these are some 
of the possible forms to allow point identification, a critical requirement to be able to 
correct for endogeneity using instrumental variables. 
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Consider now the problem of constructing the control-function for the problem 
described in Eq. (1). The idea is to build an auxiliary variable, which when added to the 
systematic part of the utility function, will control for the endogenous component of the 
error term. It can be shown that the conditional expectation of ξ, given δ, can play this 
role (Wooldridge, 2002). Assuming then that ξ and δ are jointly Normal, this conditional 
expectation would be linear and then 

 ininin v+= δβξ δ , (2) 
where v will be independent of δ and will follow a Normal distribution with zero mean 
and a fixed variance 2

νσ . Under these conditions, the error term v will not be correlated 

with p or x. Therefore, assuming for the moment that δ is observed, the endogeneity 
problem can be solved if this decomposed ξ shown in Eq. (2) is replaced in the utility 
function as shown in Eq. (3). 
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Intuitively, the error of the price equation δ, captures the part of price that is correlated 
with the error term of the model and, when it is added to the systematic part of the utility, 
it controls for the endogeneity problem. 

The practical problem that δ is not observed can be addressed, for example, noting 

that δ can be consistently estimated by the residuals δ̂ of the ordinary-least-squares 

regression of p on x and z. Then, if δ̂  is inserted into the choice model, the consistency of 
the estimators of the model parameters would be guaranteed by the Slutsky theorem (see, 
e.g. Ben-Akiva and Lerman, 1985). This method to address endogeneity in discrete 
choice models is termed the two-stage control-function (2SCF) and is used, for example, 
by Rivers and Vuong (1988), Petrin and Train (2002) and Guevara and Ben-Akiva 
(2006). 

An alternative way to address the fact that δ is not observed is to consider jointly the 
likelihood of the price equation and the choice model in the estimation of the model 
parameters. This method is used by Villas-Boas and Winner (1999) and by Park and 
Gupta (2009), and can be seen as a full-information maximum-likelihood (FIML) version 
2SCF, which can be therefore seen as a limited-information maximum-likelihood (LIML) 
method. This FIML approach is also equivalent to consider that Eq. (2) corresponds to a 
structural equation and to treat ξ as a latent variable (Guevara, 2010). With some 
modifications, this approach is also equivalent to the methods used by Zimmer and 
Trivedi (2006) or by Bhat and Eluru (2009) to address endogeneity in discrete choice 
models.  

There is a trade-off in using LIML or FIML to address endogeneity. On the one hand, 
LIML is easier to estimate and can handle a broader range of joint distributions of ξ and δ 
but, on the other hand, FIML is usually more efficient and allows the direct calculation of 
standard errors though the evaluation of the inverse of the Fisher-information matrix. In 
this paper we study methodological issues that arise both with FIML and LIML (2SCF) 
approaches to address endogeneity with the control-function method. For expositional 
purpose, we will concentrate on the 2SCF method, but will describe the implications of 
extending the analysis to FIML when it is relevant. 
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3 Change of Scale in the Application of the Control-function Method 
The correction for endogeneity using the control-function method (both with FIML or 
LIML) produces consistent estimators of the model parameters but only up to a certain 
scale. That is, the ratios between the estimators are consistent estimators of the ratios of 
the parameters of the true model, but the actual estimators of the model parameters are 
inconsistent. This is also true, in general, for other methods to correct for endogeneity in 
discrete choice models, such as BLP (Berry et al., 1995), 2SIV (Newey, 1985) and 
Amemiya’s (1978) methods. 

The change of scale results from the fact that the error term with the control-function 
correction in Eq. (3) is v + e, whereas the error term of the original model shown in Eq. 
(1) was only e. Therefore, if the variance of v is not null, the control-function correction 
will trigger a change of scale in the estimated parameters. This effect is analogous to that 
of the omission of a relevant and orthogonal attribute in discrete choice models, an 
attribute that truly belongs to the systematic part of the utility, but is uncorrelated with 
other observed attributes. The problem of the change of scale due to the omission of 
relevant but orthogonal variables was originally studied by Yatchew and Griliches (1985) 
for the Probit model. Cramer (2007) extended this analysis to the binary Logit model. 
Here, we use their framework to study the change of scale caused by the application of 
the 2SCF method in correcting for endogeneity in Logit models. 

Consider the true model shown in Eq. (1) where ξ is observed, and assume that the 
error e is distributed Extreme Value (0,eµ ). As with any Logit model, the scale is not 

identifiable and normalization is required. The usual normalization is to set 1=eµ . This 

is equivalent to normalizing the variance of the differences of e across alternatives to be 
equal to 322 πσ =e  (see, e.g., Ben-Akiva and Lerman, 1985). Consider now the model 
corrected for endogeneity using the control-function method described in Eq. (3). The 
first problem in the determination of the change of scale in this case is to depict the 
distribution of the error term v +e.

 
We will consider that v +e follows, or can be approximated using an Extreme Value 

distribution, such that the model with the control-function correction also becomes a 
Logit. This assumption might seem difficult to sustain at first. In Eq. (2) we said that v 
followed a Normal distribution and the sum of Normal and an Extreme Value distribution 
does not follow an Extreme Value distribution. In fact, there are no parametric 
distributions of e and v, which would result in that v +e is distributed Extreme Value. 
However if the sample is large enough, it is first possible to claim the Central Limit 
Theorem to say that v +e will be normally distributed. The argument is completed using 
the results from Lee (1982) and Ruud (1983), which state that the approximation of a 
Normal by an Extreme Value distribution causes only negligible discrepancies. The 
Monte Carlo experiments reported in Section 5 will show that this approximation is also 
valid in the study of the change of scale with the application of the control-function 
method. 

Considering that v +e is distributed Extreme Value, the usual normalization for the 
model shown in Eq. (3) would be 1=+evµ . However, this would imply that 322 πσ =+ev , 

what is incompatible with the normalization assumed for the model in Eq. (1). To 
determine the compatible normalization, consider first the ratio between the scales of the 
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two models. Since v and e are uncorrelated by construction, this ratio will depend only on 
the variances of v and e as follows: 
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Then, if the normalization of the model in Eq. (1) 322 πσ =e  is to be maintained, the 

compatible scale of the model shown in Eq. (3) should be  

 22311 πσµ vev +=+ . (4) 

Therefore, the estimators obtained from a model that was corrected for endogeneity using 
the 2SCF will be smaller than those of the true model shown in Eq. (1). 

This change of scale is unknown to the researcher in a practical application because 
the variance of v is not identifiable. This raises the natural question of what is the cost of 
the omission of v in the estimation of the control-function method. It turns out that the 
cost of this omission is negligible. First, it is usually only the ratio between the 
coefficients what is relevant and the ratios are indeed obtained consistently with the 
change of scale that results from the application of the control-function method. For 
example, the metric that is relevant in a mode choice model is the subjective value of 
travel time savings, which is calculated as the ratio of the coefficients of travel time and 
travel cost (see, e.g. Jara-Diaz and Guevara, 2003). Second, beyond the ratios, the other 
thing that is important is the effect in aggregate elasticities, the impact of this correction 
in forecasting. In the next section we study the problem of simulation and forecasting 
with the control function method. We show that some approaches that have been 
proposed in previous literature are valid and some may cause significant biases. 
Additionally, we propose novel methods to address this issue with synthetic populations. 

4 Simulation and Forecasting with the Control-function Method 
The impact on elasticities of the change of scale resulting from the application of the 
control-function method is also related with the problem of omitted orthogonal attributes. 
The first insight into this issue comes from Wooldrige (2002, pp. 470), who proved that 
the omission of an attribute that is uncorrelated with other observed variables will not 
change the expected value of the derivative of the choice probability in a binary Probit 
model. There is no equivalent analytical result for Logit, but Cramer (2007), for binary 
Logit, and Daly (2008), for multinomial Logit, used Monte Carlo experimentation to 
show that the Average Sample Effect (ASE), the sample average of the derivative of the 
choice probability, differs insignificantly between the full model and a model that omits a 
variable that is uncorrelated with other observed variables.  

Cramer’s and Daly’s results can be directly extended to the case of the change of 
scale caused by the application of the 2SCF method because the error term v acts as an 
omitted orthogonal attribute in Eq. (3). Assume that e and e+v are distributed (or can be 
approximated) using an Extreme Value distribution. Term: 

( )iPn
ˆ̂

: 
The choice probability of alternative i calculated using estimators βˆ̂  from the 
model shown in Eq. (1), including variable ξ in the utility, and  
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( )iPn̂ : The choice probability calculated using estimators βˆ̂  of the model shown in Eq. 

(3), including δ̂ and omitting v. 
Then, the extension of Cramer’s and Daly’s results to the analysis of the impact of the 
application of the 2SCF method in the ASE of price, for alternative i, in a Logit model, 
can be summarized as follows: 
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Intuitively, although the omission of v in Eq. (3) makes the scale of that model to be 

smaller (Eq. 4), and therefore pp ββ ˆ̂ˆ < , this change of scale is compensated by the fact 

that ( )iPn̂  becomes closer to 0.5 than( )iPn
ˆ̂ , and therefore ( ) ( ) ( )( ) ( )iPiPiPiP nnnn

ˆˆ1ˆ̂ˆ̂1 −<




 − . 

The fact that the combination of this two effects results in a negligible change in the 
sample has not been demonstrated only numerically for Logit by Crammer (2007) and 
Daly (2008). Formally, this result can be seen as an extension of Wooldridge’s (2002) 
analytical result of for Probit, claiming Lee’s (1982) and Ruud’s (1983) approximation 
results for Logit. 

Formally, Eq. (5) shows the expression of the simulated probabilities that would have 
to be used for the problem described in Eq. (3), assuming that the model is a Logit. In this 
case the β̂ ’s are the estimators obtained from the application of the 2SCF method and 

the superscript 1 is used to highlight that p and x vary in the forecasting phase, but δ̂ is 
fixed. 
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This expression for forecasting is suitable for the 2SCF method, the LIML version of 
the control-function method. In the case the FIML version of the control-function 
method, the equivalent expression to do forecasting corresponds to the following 
expression: 
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where the superscript 0 is to indicate the data from the sample used for estimation. 
The estimator in Eq. (5) of the choice probabilities may be impractical in some cases 

because the data used to estimate the model might not be available for simulation, 
making the use of the residuals in simulating phase impossible. This occurs, for example, 
in microscopic integrated models of the urban system such as UrbanSim (Waddell et al., 
2008), where the choice models are estimated using real data on households n and 
dwellings i, but are applied to synthetic populations n~  and i

~
. We consider this problem 

for the rest of the section. 
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Wooldridge (2002 pp. 475) proposed a different estimator of the choice probabilities 
that seems to overcome the limitations that arise in simulation with synthetic populations. 

The idea is to avoid the need for calculating δ̂  for the synthetic populations, addressing 
the change of scale caused by its omission. Wooldridge presents the correction required 
for Probit. The equivalent correction for Logit can be applied, following the same 
derivation used before to arrive at Eq. (4), by dividing the estimators with the factor  

222 ˆˆ31 πσβ δδ+ , 

where 2ˆδσ  is the sample variance of the residuals of the first stage of the 2SCF. This 

estimator of the choice probabilities is shown in Eq. (6), where ~ denotes synthetic 
households and dwellings, and the superscript 1 is used to denote values from the 
forecasting phase. 
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However, this estimator of the choice probabilities is inconsistent. The problem is that 
Eq. (6) neglects the fact that δ is correlated with p when the model suffers from 

endogeneity. Therefore, taking δ̂  out of the systematic part of the utilities will impact 
more those alternatives with higher prices, than those with lower prices. Taking δ̂  out 
will not be equivalent to add or to subtract an independent error and, consequently, 
cannot be compensated with a simple change of scale. We will explore the effect of this 
problem later in Section 5 using Monte Carlo experimentation. 

Instead of using Eq. (6) for the case of synthetic populations, one alternative is to 
construct a control-function for each synthetic dwelling i

~
 and household n~  using the 

following expression:  

0
~~

0
~~

0
~~~~

ˆ̂
nixniznini

xzp ααδ −−= , 

where the superscript zero indicates that the synthetic data used in the calculation of δˆ̂  
should come from the base year.  

If the dwellings available for estimation in the first stage of the 2SCF are a random 
sample from the population, this expression can be calculated using the estimators α̂ of 
the first stage of the 2SCF. Otherwise, the coefficients α could be calculated by re-
estimating the first stage of the 2SCF using the attributes of synthetic dwellings i

~  and 

the characteristics of synthetic households n~ . In both cases, 
ni ~~

ˆ̂δ  has to be included then 
as an auxiliary variable in the utility, as shown in Eq. (7). 
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The FIML version of Eq. (7) is equivalent, but using the respective estimators of the 

choice model parameters and of the price equation coefficients to calculate 
ni ~~

ˆ̂δ . 

The application of this simulator may still be cumbersome because it requires the 
criteria used to build the instruments with the real data to be valid for the synthetic 
population. If the synthetic prices are reliable but the validity of the criteria used to build 
the instruments is uncertain or difficult to implement for the synthetic data, it would still 
be possible to generate a consistent estimator of the simulated probabilities by using the 
Logit Mixture model shown in Eq. (8), where f(δ|p) is the conditional distribution of δ 
given p. 
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In a practical application, the multifold integral shown in Eq. (8) can be calculated 
using Monte Carlo integration, where f(δ|p) can be inferred from the sample (provided it 
is random) by estimating the auxiliary regression  

ininpin p λγγδ ++= 0
0

ˆ , 

where the superscript 0 indicates that this model is estimated using data from the base 
year.  

Then, for each synthetic dwelling i
~  and household n~ , several draws r of δ should be 

obtained using the expression  

rniniprni
p ~~

0
~~0~~ ˆˆ εγγδ ++= , 

where 0
~~
ni

p  is the price of the synthetic dwelling in the estimation year, γ̂  are the 

estimators of the auxiliary regression for δ̂ , and 
rni ~~ε  is a random draw distributed 

Normal (0, 2ˆλσ ), where 2ˆλσ  is the sample variance of the residual λ  of the auxiliary 
regression. Then, the choice probability for each household is obtained by averaging 
across draws. Finally, the probability of each synthetic dwelling shown in Eq. (8) is 
obtained by averaging across synthetic households. The FIML version of Eq. (8) is 
equivalent, but using the respective estimators of the parameters for depicting the 
conditional distribution of δ given p. 

Finally, regarding the extension of these results to other non-Logit models, the effect 
of the change of scale that occurs with the application of the 2SCF to Logit models also 
occurs for Probit and other non-Logit models, such as the Nested Logit. The invariance of 
aggregate elasticities holds also for Probit, as shown by Wooldrige (2002). However, the 
extension of this last principle to other non-Logit models, such as the Nested Logit is not 
necessarily true. The analysis of this extension is left for further research. 

5 Monte Carlo Experiment 
In this section we develop a Monte Carlo experiment to analyze the issues studied in 
sections 3 and 4. The true model considered in this experiment is a binary Logit (J=2) 
with a latent utility that depends linearly on four attributes x1, x2, p and ξ, and an error 
term e independent and identically distributed (iid) Extreme Value (0,1). The coefficients 
of each attribute are shown in Eq. (9). 
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 inininininin exxpU ++++−= ξ1112 21  (9) 

Variable p (price) is defined as a function of ξ, an instrument z, and an error term δ~  
iid Uniform (-1,1), with the coefficients shown in Eq. (10). Variables x1, x2, ξ and z were 
generated as iid Uniform (-3,3). The synthetic database consists of N=2,000 observations 
and was generated 100 times. 

 inininin zp δξ ~
5.05.05 +++=  (10) 

Note that by virtue of Eq. (10) variables p and ξ are correlated. Therefore, if ξ is 
omitted in the specification of the utility function, the choice model will suffer from 
endogeneity. In turn, since x1 and x2 are not correlated with other variables, the model 
will not suffer from endogeneity if x1 or x2 are omitted. Note also that z is, by 
construction, a valid instrument. From Eq. (10) z is correlated with p and independent of 
e. 

To assess the impact of endogeneity in the estimation of the model parameters and to 
evaluate the issues that arise in its correction using the control-function method, four 
models were estimated for each repetition of the Monte Carlo experiment: the true model, 
a model where x1 is omitted, a model where ξ is omitted, and a model where ξ was 
omitted but the problem was addressed using the 2SCF method. 

For each model, the average, bias, mean squared error (MSE) and the t-test against 
the true values of the estimators of the model parameters are reported in Table 1. The use 
of repetitions avoids the risk of dealing with a singular case that may bias the analysis 
and avoids the need for correcting the standard errors required in the application two-
stage procedures. 

Table 1 Monte Carlo Experiment: Change of Scale with Omission of Attributes and 
Endogeneity Correction 

 Metric pβ̂
 1

ˆ
xβ

 2

ˆ
xβ

 ξβ̂
 δβ ˆ

ˆ
 2

ˆ/ˆ
xp ββ

 

Average -1.990 0.9960 0.9949 0.9957  -1.980 

Bias 0.009561 -0.004032 -0.005127 -0.004288  0.02022 

MSE 0.008985 0.003247 0.002755 0.002990  0.2148 

T
ru

e 
M

od
el

 

t-test true 0.1014 -0.07094 -0.09814 -0.07867  0.04366 

Average -1.122  0.5627 0.5641  -1.998 

Bias 0.8778  -0.4373 -0.4359  0.002259 

MSE 0.7742  0.1923 0.1913  0.2550 

O
m

itt
in

g 
x 1

 

t-test true 14.53  -13.61 -12.03  0.004473 

Average -0.7994 0.6675 0.6689   -1.212 

Bias 1.201 -0.3325 -0.3311   0.7881 

MSE 1.443 0.1119 0.1108   0.7276 

O
m

itt
in

g 
ξ
 

t-test true 26.80 -8.873 -9.359   2.415 

Average -1.563 0.7813 0.7825  1.078 -1.992 

Bias 0.4372 -0.2187 -0.2175   0.008215 

MSE 0.1983 0.04955 0.04884   0.2581 2S
C

F
 

t-test true(*) 5.161 -5.277 -5.531  13.09(*) 0.01617 

100 Repetitions. N=2,000. J=2. (*) t-test against zero for  
δβ̂  
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The first row below the labels in Table 1 shows the estimators obtained from the true 

model. In this case all estimators of the model parameters are statistically equal (with 
95% confidence) to their true values.  

The second row shows the estimators of the model that omits variable x1. This model 
does not suffer from endogeneity because x1 is not correlated with other variables. The 
estimators in this case are consistent, but only up to a scale. It should be noted that the 
ratio between the coefficients of p and x2 is statistically equal (with 95% confidence) to 
its true value (-2). In turn, each coefficient is significantly smaller than from its respective 
true value. This is explained by the change of scale caused by the addition of the variance 
of x1 to the error of the model. The change of scale observed in Table 1 is of 
approximately 0.56, a value that can be approximately calculated by substituting 2

vσ  by 

the variance of x1 in Eq. (4). Finally it should be noted that, although the omission of x1 
did not impacted the consistency of the estimators, it did affected efficiency. There is a 
loss of information when x1, which is truly relevant in the choice process, is not used in 
modeling it. This can be noted in the increase of the MSE of the estimator of the ratio 
between the coefficients of p and x2 for this model, when compared to the respective 
MSE of the true model. 

The third row in Table 1 shows the estimators that are obtained when ξ is omitted. 
This model suffers from endogeneity because ξ is correlated with p. In this case the 
estimators are different from those of the true model, but not only up to a scale. The 
ratios between coefficients are also affected. Since p and ξ are positively correlated, the 
omission of ξ causes a positive bias in the coefficient of p. Consequently, the ratio 
between the coefficients of p and x2 is approximately -1.2 instead of -2, as it was in the 
true model. Intuitively, the problem is that positive shocks of ξ on the utility are 
confounded as the results of shocks of p, causing a positive bias in the estimator of the 
coefficient of p. 

Consider now the case of the model that omits ξ, but is corrected using the 2SCF 
method. Note first that the estimator of the auxiliary variable is statistically different 
(with 95% confidence) from zero. This correctly confirms that endogeneity was present 
in the model without the correction (Rivers and Vuong, 1988). Second, although the 
model coefficients are not numerically equal to those of the true model, the ratios 
between them are the same. Particularly, the ratio between the coefficient of p and x2 is 
again statistically equal (with 95% confidence) to -2. The change of scale between the 
estimators in this case is approximately 0.78, shift that can be calculated by considering 
the variance of v in Eq. (4). Lastly, similarly to what occurred with the omission of x1, 
although the correction for endogeneity resulted in consistent estimators up to a scale, the 
fact that the term v was omitted caused a reduction in efficiency. This can be noted in the 
increase of the MSE of the estimator of the ratio between the coefficients of p and x2 for 
this model, when compared to the respective MSE of the true model. 

The next step in the analysis of this Monte Carlo experiment is to show how the 
different models behave in the forecasting or simulation phase. To do so, we use the 
estimators of the different models to calculate the Aggregated Direct Elasticity (ADE) of 
price (Eq. 11), defined as the effect of an incremental change in price on the expected 
share of the group choosing alternative i (Ben-Akiva and Lerman, 1985, pp. 112). 
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The experiment was repeated 100 times. Table 2 reports the average and standard 
errors of ADE for i=1 across the repetitions. Additionally, we simulated the effect of 
increasing the price of alternative 1 by 50% for all n’s and calculated the average 

probability of choosing alternative 1 across the 2,000 observations, before (( )iP0ˆ ) and 

after ( ( )iP1ˆ ) the price shift. 

The first row in Table 2 shows the metrics obtained using the estimates that result 
from considering p, x1, x2 and ξ in the specification of the systematic utility. These 
statistics act as a benchmark. Table 2 shows that the 50% increase in the price of 
alternative 1 results in a reduction of its choice probability from approximately 50% to 
19%, a 31% reduction. Additionally, the ADE is approximately -1.6 for the true model. 

The results of the model where variable x1 is omitted are shown in the second row of 
Table 2. The results are concordant with the conclusions attained by Cramer (2007) and 
Daly (2008) about omitted orthogonal attributes in Logit models. Although this model 
resulted in an important change of scale (as it was noted in Table 1), the forecasting 
probabilities of the model are the same of the true model. This can be noted in that the 
ADE is statistically equal (with 95% confidence) to that obtained with the true model. 

Instead, the results are very different when variable ξ is omitted. In this case there is 
an underestimation of approximately 10% of the change in the probability of choosing 
alternative 1 when its price is raised by 50%. The ADE is also significantly affected. 

Table 2 Monte Carlo Experiment: Forecasting with Endogeneity Correction 

Model ADEp(1)
 

( )1ˆ 0P  ( )1ˆ1P  

-1.608 0.5009 0.1850 
True Model 

(0.05922) (0.00896) (0.008616) 

-1.600 0.5013 0.1871 
Omitting x1 

(0.05868) (0.007275) (0.008294) 

-0.962 0.5010 0.2865 
Omitting ξ 

(0.04520) (0.007406) (0.01007) 

-1.608 0.5013 0.1852 
2SCF Adding δ̂  

(0.07726) (0.008182) (0.01076) 

-1.362 0.5012 0.2260 
2SCF Scale Adjustment 

(0.05051) (0.008292) (0.009275) 

-1.613 0.5013 0.1844 
2SCF Logit Mixture 

(0.07539) (0.007791) (0.01058) 

Standard errors in parenthesis. 100 Repetitions. N=2,000. J=2. 

 
Consider now the model corrected for endogeneity caused by the omission of ξ using 

the 2SCF method. Three forecasting methods were analyzed in this case. Table 2 shows 
that when the δ̂  used for estimation is also included as an auxiliary variable during 
forecasting (Eq. 5), the results of the simulation of the 2SCF are indistinguishable from 
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those of the true model. In turn, when  δ̂  is not included in forecasting, but the scale is 
adjusted (Eq. 6) there is a significant bias in the forecast. In this case the effect of the 
price shift in the choice probabilities is underestimated by approximately 4% and the 
elasticity is underestimated by approximately 0.2. Instead, when the Logit Mixture 
method described in Eq. (8) is used for forecasting, the results for the simulated 
probabilities before and after the price shift are again statistically equal (with 95% 
confidence) to those obtained with the true model. The same occurs with the ADE. 

In summary, this Monte Carlo experiment showed first that the omission of an 
orthogonal attribute causes a change of scale in the estimated coefficients but it does not 
impact the ratio between the coefficients nor the forecasting properties of the model. This 
same result holds also for the application of the 2SCF method in correcting for 
endogeneity. It was shown that the best alternative for forecasting with the 2SCF method 
is to include the residuals estimated in the first stage into the utility. In cases where the 
residuals are unavailable, they can be calculated from respective instruments using the 
estimators of the first stage of the 2SCF, or simulated using the expression shown in Eq. 
(8). Instead, the alternative of simply adjusting the scale when the residuals are omitted in 
forecasting was shown to have poor simulation properties.  

6 Application to Real Data 
The final step corresponds to the use of real data to demonstrate the issues investigated in 
this paper. Since the true scale is not known in an application with real data, only the 
impact in forecasting is studied in this section. The case study corresponds to a residential 
location choice model for the Portuguese municipalities of Lisbon, Odivelas and 
Amadora, which are located at the center of the Lisbon Metropolitan Area (LMA).  

The data to estimate the model was constructed using the combination of two sources. 
The first source was a small convenience online survey (SOTUR) conducted in 2009 by 
Martinez et al. (2010) in the LMA. The second source corresponds to a snapshot of the 
dwellings that were advertised for sale in February 2007 within the LMA’s municipalities 
of Lisbon, Odivelas and Amadora (Martinez and Viegas, 2009). The details on the 
construction of the database by matching both sources are described by Guevara (2010). 
The database used for estimation is compounded of 11,501 alternatives, from which only 
63 correspond to chosen dwellings. 

We are interested in modeling the choice of dwelling made by households in the 
LMA. We considered that this model can be well represented by a Logit where 
households chose the observed dwelling among the set of 11,501 alternatives available. 
The systematic utility is considered to be linear for the following variables: dwelling 
price in 100,000 Euros (€), the distance from the dwelling to the workplace of the head-
of-the-household in kilometers (Km), the log of dwelling area in square meters (m2), and 
the log of dwelling age in years (+1). Dwelling price was interacted with household 
income, which was stratified in three levels defined by the thresholds of 2,000 and 5,000 
Euros per month (€/M).  

This residential choice model is very likely to suffer of endogeneity because of the 
omission of relevant dwelling attributes that are correlated with price. For example, the 
quality of the construction, the quality of the pipes, the type of neighbors, or the layout of 
a dwelling are relevant attributes considered in the choice process that are likely to 
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impact dwellings’ prices. Therefore, the impossibility of measuring such attributes by the 
researcher should cause endogeneity. 

To correct for endogeneity we use the 2SCF method. As instruments for price we 
consider the prices of similar dwellings located within certain geographic vicinity. The 
argument to sustain the suitability of such type of instruments is equivalent to the one 
used by Hausman (1996) and Nevo (2001) in other contexts. On the one hand, it is argued 
that dwellings within certain vicinity share some marginal costs, which make them 
correlated and therefore relevant. On the other hand, it is argued that demand shocks are 
independent beyond certain vicinity, what sustains their validity and allows identification. 
Further argumentation, formal statistical tests that suggest that such instruments are valid, 
and detailed results from the estimation of this model, can be found in and Guevara and 
Ben-Akiva (2011). 

Table 3 reports the ADE (Eq. 11) for the four dwelling attributes considered in this 
residential location choice model. The dwelling used as reference for these calculations 
corresponds to the dwelling chosen by the first household in the sample. We report first 
the ADE that would result from a model that was not corrected for endogeneity and 
compare it with three alternatives to calculate the ADE in the model estimated using the 
2SCF method. 

Table 3 Lisbon’s Logit Model: Forecasting with Endogeneity Correction 

Measure 

Without 

Endogeneity  

Correction 

2SCF 

Adding δ̂  

2SCF 

Scale Adjustment 

2SCF 

Logit Mixture 

Price (in 100,000 €)
 

-3.813 -5.679 -5.457 -5.679 

Distance to Workplace (in Km)
 

-11.40 -13.73 -13.19 -13.73 

Log[Area (in m2)]
 

4.475 12.08 11.61 12.08 
ADE(1) 

Log[Age (in years)+1]
 

-0.3853 -0.5024 -0.4828 -0.5025 

 
Consider first the ADE of the model that was not corrected for endogeneity, with that 

of the 2SCF in which the δ̂ is included in forecasting phase using Eq. (5). It can be noted 
that the sensitivity of the model to dwelling’s prices was significantly increased by the 
correction for price endogeneity. Interestingly, the ADE of other variables was also 
affected by the correction of price endogeneity, particularly that of dwelling area. This is 
because dwelling area and price are highly correlated (correlation = 0.7013) compared to 
other attributes, and then, the impact of price endogeneity is significantly transferred to 
dwelling area. In general, the correction for price endogeneity resulted in a model that is 
more sensitive, not only to changes in price, but also to changes in area, age, and distance 
to workplace. This demonstrates the importance of correcting for endogeneity on policy 
analysis. It shows that the misspecified model will significantly underestimate the impact, 
not only of a pricing policy, but also the impact of policies that may affect other attributes 
of dwelling-units. 

Consider now the model that was corrected for endogeneity using the 2SCF method, 
but where the ADE was calculated with an adjustment of scale using Eq. (6). Concordant 
with what was found in the Monte Carlo experiments, it can be noted that the ADE of this 
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model is similar to that obtained when using Eq. (5), but there is a downward bias that 
makes unadvisable the use of the change of scale procedure in forecasting. 

Finally, the last column of Table 3 shows that the Logit mixture approach (Eq. 9) to 
do forecasting results in values of ADE that are almost indistinguishable to those 

obtained with the model where δ̂ is included in forecasting phase. This confirms that the 
use of a Logit mixture approach, where the conditional distribution of δ, given p, is 
depicted from the sample, is a suitable tool to simulate the choices in synthetic 
populations.  

7 Conclusion 
In this paper, we analyzed two methodological issues that arise in the application of the 
control-function method for the correction of endogeneity in Logit models. The first issue 
analyzed was related with the change of scale derived from the application of the control-
function method. Extending a result from Cramer (2007) and Daly (2008), we used 
Monte Carlo experimentation to show that the change of scale produced with the control-
function method is harmless since it does neither affect the forecasting characteristics or 
the model nor the ratio of the estimators. Additionally, regarding simulation and 
forecasting, it was shown that a simple adjustment of scale (Wooldridge, 2002) is not 
suitable and that, instead, the inclusion the control-function correction in forecasting 
phase is better. In the case of simulation with synthetic populations, we proposed a novel 
method that will be relevant in applications of micro-simulation models such as 
UrbanSim. Lastly, the application to real data on residential location from the city of 
Lisbon gave further empirical evidence of the impact of endogeneity in this field and on 
the importance of using suitable procedures to forecast with the control-function method. 

Finally, several potential lines of further research in this area can be identified. First, 
it would be interesting to assess the impact of the methodological advances under other 
circumstances, including diverse type of spatial choice models, and real databases. It 
would also be interesting to study the way to do forecasting with the control-function 
correction with other non Logit models, such as the Nested Logit. Finally, it would be 
interesting to analyze the impact in welfare analysis of using the control-function method 
to correct for endogeneity. Finally, it would be interesting to test the impact of this 
research in modeling complex systems, such as large urban areas. This might be achieved 
by applying these advancements in the framework of an operational microscopic 
integrated urban model such as UrbanSim (Waddell et al., 2008). 
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