v

View metadata, citation and similar papers at core.ac.uk brought to you byj: CORE

provided by DSpace@MIT

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. X, NO. X, DATE 1

Exponential stability of switched linear hyperbolic
Initial-boundary value problems

Saurabh Amin, Falk M. Hante, and Alexandre M. Baybtember, |[EEE

Abstract—We consider the initial-boundary value problem During the past years, several attempts have been made
governed by systems of linear hyperbolic partial differential to also consider switched systems in the context of infinite
equations in the canonical diagonal form and study conditions for dimensional control theory. Mostly, the problem of designi

exponential stability when the system discontinuously switches . S o . -
between a finite set of modes. The switching system is fairly (optimal or stabilizing) switching control is consideredr f

general in that the system matrix functions as well as the bound- Problems in which the state equation is fixed and just the
ary conditions may switch in time. We show how the stability controller is switched. For example, in [5], model reduatio

mechanism developed for classical solutions of hyperbolic initial together with control synthesis for the reduced finite dimen
boundary value problems can be generalized to the case in which sional model is used to construct switching control for guas

weaker solutions become necessary due to arbitrary switching. i boli fi The desi f bound ichi
We also provide an explicit dwell-time bound for guaranteeing N€@r parabolic equations. The design of boundary svatghi

exponential stability of the switching system when, for each mode, control actions for semi-linear hyperbolic balance edurei
the system is exponentially stable. Our stability conditions only using switching time sensitivities is considered in [6]. &lgo-
depend on the system parameters and boundary data. Theserithm to construct optimal switching control for abstraicelar
conditions easily generalize to switching systems in the non- systems on Hilbert spaces with switching control operator a
diagonal form under a simple commutativity assumption. We _. L . : .

fixed switching times is proposed in [7]. Moreover, for thahe

present tutorial examples to illustrate the instabilities that can ) . o b
result from switching. equation, a systematic way of building switching contraidsh

- . . on variational methods is described in [8] and, in a similar

Index Terms—Distributed parameter systems; stability of hy- . o : N
brid systems; switched systems. context, [9] gives conditions under which such switching
controls exist for the one dimensional wave equation.

Despite the aforementioned developments, much less is
) ) ] ] known for problems when not only the controller, but also the

Switched systems are a convenient modeling paradigm Qke equation is switched. Some general ideas are sketched
a variety of control applications in which evolution proses [10] and, for semi-linear hyperbolic equations with apafion
involve logical decisions. However, in contrast to theimsi ¢, transport networks, optimal open-loop and closed-loop
plicity on modeling grounds, the stability analysis of sd  g\yitching control is addressed in [11] and [12]. For prob-
systems is often non-trivial. An extensive body of literatu |omg concerning the stability of switched infinite dimemsib
now exists for the case of switched (linear and non-lineag)stems; the construction of common Lyapunov functions
ordinary differential equations (ODEs) and more generally a5 very difficult when the state equation is switched, even
differential algebraic equations (DAEs) in finite dimem&b for apstract switched linear systems on Hilbert spaces. The
spaces. As surveyed in [1] and [2], two different approachgsy available result appears to be [13], in which a com-
have been mainly considered in the literature: Either oRgon quadratic Lyapunov function is provided for the case
designs switching signals such that solutions of the swidch,nen the semigroup generators commute. This condition is,
system decay exponentially (or otherwise behave ‘optylall owever, too restrictive for some applications. Neverhs)
or one tries to identify conditions which guarantee expenef js interesting to note that without further restrictions
tial stability of the switched system for arbitrary swithdi {he generators, common (not necessarily quadratic) Lyapun
signals. The later approach is of particular interest wien trnctions exist, even more generally for switched lineas-sy
switching mechanism is either unknown or too complicated s on Banach spaces [14]. Under constrained switching,
for a more careful stability analysis [3], [4]. Stability Un some algebraic conditions for stability of switched narekir

der arbitrary switching is mainly achieved by constructingystemS on Banach spaces utilizing Lyapunov functions in
common Lyapunov functions or, more directly, by identifyin o5 mode are provided in [15].

algebraic/geometric conditions on the involved paranseter

I. INTRODUCTION

In this article we are interested in the stability propestid
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where A(s) = diag(Ai(s),...,A.(s)) is a diagonal real study, motivated by a simple PDE counterpart to this obser-
matrix function andB(s) is an x n real matrix function on vation, the following two specific problems for the switched
[a,b]. Assuming appropriate regularity of the matrix functionsystem (5) in Section III:

A(-) and B(-) and under the hyperbolicity assumption that for (A) Find conditions on the matrix functions?(-), Bi(-)

somel <m <n and the matrice§?, and G, that guarantee exponential
AL(5), . Am(s) < 0 and A, () >0 (2 stability for arbitrary switching signals.

1(s) (s) +1() () @ (B) Alternatively, characterize a (preferably large) slad
uniformly in s € [a, b], an-dimensional vector solutiog(t, s) switching signals for which exponential stability of all
of the system (1) with componengs(¢, s) for i = 1,...,n, subsystems is sufficient for exponential stability of the
arrayed as switched system.

€1(t,8) = (E1(4,8), .. Em(t,s)) T Our c_ontrlbutlo_n here is twofold. Flrstl_y, we sh_ow how the
techniques mainly developed for classical solutions (wWith
and . data) can be used for weaker solutions (wittf data) based
Er(t,s) = Emt1(t,s), .-+, 6ultys) on the geometric picture of propagation along charactesist

This is necessary because switching boundary conditiorys ma
introduce discontinuities into the solution. Secondly, sthew
how the switching enters the known stability mechanism such
€(0,5) = £(s), se€ (a,b), (3) that the decay rate obtained in this way is independent of the
switching signal (Theorem 1). Following from our analysis,
we also obtain an explicit dwell-time bound guaranteeing
exponential stability of the system under constrainedchiritg
€n(t,a) = Grér(t,a), €(t,b) = Grén(t,b), t>0 (4) when all subsystems satisfy the known stability condition
i i _individually (Corollary 1). In Section IV, we discuss how
where G, Gr are constant matrices of dimensiong - resyits for switched diagonal system (5) generalize to
(n—m) >xm and m x (n—m), respectively. A common gyitched hyperbolic systems in non-diagonal form under a
class of problems studied for initial-boundary value prolsymmytativity assumption (Proposition 1). In Sections ||
lems (1)-(4) is the stability and stabilization under boanyd 54 v/ we also provide illustrative examples of instatsit

control actions specified by the matricé§, and Gr. These \yhich can result from switching. Some final remarks are
problems are of interest because hyperbolic PDE systems ¢aflyiioned in Section V.

model flows in networks that are monitored and controlled at
the boundary nodes [16]. Examples include transportagien s
tems [17], [18], canal systems [19], and gas distributios- sy
tems [20]. The available results for this class of probleors f For an interval(a,b) C R and a measurable function
linear hyperbolic systems can be found in [21], [22], andenot/ : (a,b) — R", let

generally for quasilinear hyperbolic systems in [23], [42P]

is uniquely determined on the time-space sflp x (a,b)
with the initial condition

for specifiedR™-valued initial data¢(s) and boundary condi-
tions

Il. PRELIMINARIES

and [26]. 1£llee = o) [£ils)-
Here we are interested in the stability properties of the i=1,....,n

hyperbolic initial boundary value problem (1)—(4) Wh&(-), e call L>°((a, b); R") the space of all measurable functions
B(-), G, andGpg are not fixed, but are known to satisfy £ (a,b) — R™ for which ||f]ls < oco. For ann x n real

(A(-), B(-),GL,Gr) € {(N ("), BI(-),G3,G%) : j € Q} matrix M = (m;;), we define
at any timet > 0, where@ = {1,...,N} is a finite set Ml e S N
of modes and, for allj € Q, the dataA?(-), Bi(-), G}, G% 1M : gﬁéLZ'm”"

is given. This is equivalent to studying the stability of the =
switching system Also define the non-negative matrix 8 as|M| := (|m;;])
o€ ¢ and for eigenvalues\,...,\, of |M| define the spectral
" A7 (s) =+ B7(s)¢ =0, radius of| M| as p(|M|) = maxi<i<n |Ail.
S

o) o) 5 A switching signal o(-) is a piecewise-constant function

5”0(75’61)__76& Gilta), &(4b) = Grtu(tb), © o(): Ry — Q. Here, we restrict admissible piecewise-

§(0,5) = &(s), constant signals to those for which during each finite time
for the time-space strig0,00) x [a,b] where switching interval of R, there are only finitely many switchgs~ j’
occurs according to a piecewise-constant switching sigrtal avoid Zeno behavior. This assumption anticipated with the
o(-): Ry — Q. Preliminaries and wellposedness of thaccumulation of switching times is commonly made in the
switched system (5) will be discussed in Section Il. Thefigld of switched and hybrid systems to obtain global existen
recalling the classical observation in the finite dimenalonresults; see for e. g. [27]. Thus, necessarilf) hasswitching
control theory of switched systems that exponential stslof times 7, € R, (k € N) at whicho(+) switches discontinuously
all subsystems does not necessarily guarantee an expalnefrtom one modgj,_; € @) to another modg;, € Q. We denote
decay of the solution when the system is switched [3], W&(R, @) for the set of all such switching signalg-).
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We say that for a givem(-) € S(Ry, Q) the system (5) is obtained on arbitrary finite time horizons using Banach'sdix
exponentially stable (with respect to the nornj - || ) if there point theorem. Uniqueness then has to be understood within
exist constantg > 1 and 8 > 0 such that the solutiog(¢,-) the usual Lebesgue almost everywhere equivalence class. Fo
satisfies further details on the existence and uniqueness of broad

solutions, we refer to the iteration method of [28], page@-47

I€CE Moo < cexp(=AHIE(0, )lloc, ¢ 0. ) 475, and to the text of Bressan [30], pages 46-50, though
In view of problem (A), we say that the switched system (5) igoting that the latter does not treat boundary conditioms. F
absolutely exponentially stable (with respect to a nornj-||.,) treatment of the boundary conditions see, instead, [29].
if (6) holds for all o(-) € S(R,Q) with constantsc > 1 We now justify the existence and uniqueness of solutions
and 8 > 0 independently ofs(-). In view of problem (B), for the switching system (5), which we need in deriving the
we say that a value > 0 is a dwell-time of a switching main stability result in Section Ill. Any switching signa(-) €
signal o(-), if the intervals between consecutive switches a®(R , Q) defines a modg, € @ for each intervalry, 74 11).
no shorter thanr, that is, 7,1 — 7, > 7 for all £ > 0 and For an initial condition{ := £(-) € L>((a,b); R™), we define
we letS; (Ry; Q) C S(Ry; Q) denote the subset of switching€(t) = £(t,-) where

signals with dwell-timer. .
9 E(t,) = €% (t,-), fort € [rn Tori]

[1l. DIAGONAL SWITCHING SYSTEM and ¢’ (t,-) is a solution of the subsystem corresponding to
For eachj € Q, we have the diagonal subsystem modej = ji, in (7) with the initial condition

& N2 - - ; =1y, ) if k>0,

4 AN () + B J =0 D). t>0 I (g, ) =42 .

o TA ()5 +B(5)87 =0, s € (ab), t> SHGD) {5(.) k=0

fﬂ(t,a) = GJLE}(LCL), f}(tv b) = Gg?,gf'l(tv b), t=0 .

(7) Thus, under Hypothesis ¢4 for everyo(-) € S(R4, @), by

for which we impose the following assumptions: construction there exists a unique broad solu§¢n with data

(A;) The matrix functionAd(s) = diag(M (s), ..., M.(s)) &) € L>((a,b);R™)) for all £ € R, of the switching system
is such that the characteristic speeds-) are uniformly (5). Again, uniqueness then has to be gnderstood within the
bounded, Lipschitz-continuous functions of [a,b] for Usual Lebesgue almost everywhere equivalence class.

i = 1,...,n, and there existsn; such that for some In the following, we denote by (t; ", 5*) thei-th char-
0<mj<n M(s)<0(@=1,...,m;)andN(s) >0 acteristic.path that passes through a potms*)_ € [0, 00) x
( = m; 4+ 1,...,n); the matrix functionB(s) is such [a, b] and is the concatenation of the characteristic cueyés
that BJ(-) : [a,b] — R™ " is bounded measurable withthrough switching times defined by the switching signé).
respect tos. When needed, we omit the dependencez;b(f)(t;t*,s*) on

(Az) Forallj,j’ € Q, m; =mj =:m. o(t) for notational convenience and simply writg(t; t*, s*).

It is well-known that under the hyperbolicity assumption Observe that, if (4) holds in addition to (A), each char-
(Ay) foranyj € Q, T > 0, and initial data¢’(0,.) = & (-) acteristic path can be classified into left- and right-godteg
where&i : (a,b) — R™ is bounded measurable with resped?€nding on the sign of the corresponding characteristiedpe
to s, a solution&? of (7) in the broad sense can be defined *; ($), independently of the switching signal-). Although

by the method of characteristics [28], [29]. In this methfaul, (A») is not required for the existence and uniqueness of the
eachi and each poinft*, s*), one uses that the ODE solution, it is crucial for the kind of stabilizing mechamis
d that we consider here. This is further discussed in Example 3

ﬁzz (t) = /\Z(ZZ (t)), ZZ (t*) = s* (8) Furthermore, for the switching system (5) we define
has a unique Caratiodory solution, defined for ali. As T = ,b_a , ,b_a ,
usual, we say that this solutioh — z/(t;t*,s*) passing P A7 (s)] iz,,L?}:{{___77,\)\3(5)\ (10)
through (t*, s*) is the i-th characteristic curve for the j-th s€la,b],jeQ s€la,b],j€Q
subsystem. The broad solutigi(-,-) is then defined as a geometrically,7 is an upper bound of the time in which the
vector function with components;, i = 1,...,n, that are g|oest of all possible characteristic paths will have ugdee
absolutely continuous and satisfy reflections at both boundaries.
gfj(t L (11, 5%)) = Our motivation to study the stability of the diagonal switch
dgiN iR T - ing system (5) is inspired a simple PDE counterpart to the
no o (9) classical ODE observation [3] that exponential stabilifyath
D CA GRS GEAES) subsystems isot sufficient for the exponential stability of the
k=1 switching system.
along almost every characteristic curvé(t;t*,s*). Here ~ Examplel: Let @ = {1,2}, [a,b] = [0,1], AV =

1
bl (-) corresponds to théth row andk-th column of Bi(-). diag(—1,1), B/ = diag(0,0), G, = 1.5(j — 1), G =
Existence and uniqueness of such broad solutigits -) 1.5(2—j5), and consideg(s) = [1 1]T for s € (0,1). For the
with initial data and boundary conditions for the subsyszase of no switching, that is wher{t) = 1 or o(¢) = 2 for alll
tems (7) with¢&i(t,-) € L*((a,b);R") for all ¢t can be t e R, the solutiong(-) of the system (5) is zero after> 2,
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From the Lemma 2.1 of Li [23], we note that the condition

(11) implies
P ¢ t 0 := max {H HG ’H }
J,j'eqQ
 max {Z Z il (13)
l:m+1 ..... p=1k= m+1
5.i'€Q
Z Z‘glijgpk }<1’

k=m+1 p=1

where G, = (gL7) and G, = (g%7"). Let us define

1 0 1 _ _
Stable Stable Unstable! T . = b a R b a
' . i X i min -« max ] ) max = : . .
Fig. 1. Instability by switching according to Example 1. a<s<b |AL(S)] a2a B X (s)]
i=1,...,n i=1,...,n
j=1,...,N j=1,...,.N

but the solution of the system with a switching signdl)
that is defined over the switching timegs = 0.5,1.5,2.5, ...
and alternates between modestinstarting witha(0) =2 is 4,4 domain(a, b).

not exponentially stable. Indeef¢(t)|| is not bounded as ; jer the assumption of the theorem, we choosea 1
t — oo, because the values on the right-going charactensgach that

emerging froms € (0,0.5) always increase by reflection of

the characteristics along the boundary; see Figure 1. Thus, ¢ = 5’ (14)
we can conclude that the instability due to switching can 0

occur for certain combinations between the characterish@d we choose am such that® < w < 1, and select & > 0
speeds and the switching times. (Note, however, that withsgch that

Thus, Ty, (resp.Tmax) is the time in which the fastest (resp.
slowest) of all possible characteristic paths will haverditad

switching signalo(t) that is defined over the switching times 1 w
7 = 0.5,1.0,1.5,2.0, ... the system is exponentially stable.) B = In (—) . (15)
‘:l 21—}11&)( 9

We now focus on conditions on the matrix functiohgs)’, We also choose an > 0 such that) < w <7 < 1, and select
Bi(s) and the boundary dat&‘, G% under which the ane > 0 such that
switching system is absolutely exponentially stable. Oaimm

result, presented next, shows that if a spectral radiusitond ¢ ;= min{er, &2} (16)
is jointly satisfied for the left and right boundary data atid &6
pairs of modesj, j/ € Q then a sufficiently small bound on
|| B’ (s)|l~ exists such that the switching system is absolutely € = 4 In (ﬁ)7 € = 0(1 —mn) In (g)
exponentially stable with respect to the nofim||.. TninKw 2TmaxKn — \0
Theorem 1:'A/ssume Hypotheses (A and (A) and sup-  \we will show that under the aforementioned assumptions
pose that forj, j/ € Q the following condition holds: and the choice of constants, if the bound
0 [G%l i
11 1B7(5)[oc < € 17
p ( Gl o ) (11)

. e holds fors € [a,b] and for allj € Q, then
Then there exists aa> 0 such that if|| B?(s)||« < € for all

s € [a,b] andj € @, the switching system (5) is absolutely €)oo < cexp(—pBt)|€]|oos t >0 (18)
exponentially stable with respect to the nofim||..

Proof: We define the following constants in terms ofiniformly for all switching signalss(-) € S(Ry, Q). Note
boundary data that the chosem, 5, ande are independent of () and only

depend on the boundary data and system parameters. We will

Ky »=max{1, K1}, K>:=max{l, K>} (12) Pprove (18) using the method of characteristics and indaoctio

K := max{K;, K»} To this end, we will first prove the induction basis Fart A
where ) and the induction step iRart B. We define
K= max >0 o] [ = exp (BOIERD e (19)
and e tmm Part A (Proof of the induction basis): We show that under

domain|0, é] x (a,b) whend satisfies) < 6 < Tpin. FOr any

} the chosen constant$s > 0,¢ > 1,¢ > 0, (18) holds on the
o(-), let z;(¢; t*, s*) denote the-th characteristic path passing

K, = max S [
27 =mt 1, Z‘gm ’

jeq p=1



AMIN, HANTE, BAYEN: STABILITY OF SWITCHED HYPERBOLIC SYSTEMS

through the poin{t*,
we have

s*) €
d ) t;t*7 * o % %
Bl O, )
zi(t*5 7, 8%) = s".

[0,6]x(a

,0), (@ .,n). Then,

For any fixedr = 1, ..., m, consider the-th characteristic
path z,.(¢; t*, s*) passing througlft*,
tions (A;) and (A), backwards in timez,(¢;t*, s*) either
intersectst = 0 within the interval[a, b] before hitting any
boundary (case A.1) or it intersects the line- b (case A.2).

See Figure 2 for an illustration of both possible cases. The

point of intersection of the characteristic path with theihd-
ary of the domain is denoted K9, z,.(0; t*, s*)) for case A.1
and (¢, (t*, s*),b) for case A.2 withz,(¢.(t*, s*);t*, s*) = b.
Furthermore, let;(¢;t,.(t*,s*),b) denote thel-th character-
istic path passing througty,.(t*,s*),b) ( = m+1,...,n).
Then, sinced < T, zi(t;t-(t*,s*),b) intersects the line

t = 0 before hitting the lines = a. We denote the point of

intersection by(0, z;(0; ¢, (t*, s*),b)). For the ease of notation,
we will uset,. for ¢,.(t*, s*).

Estimate for paths with negative slope: We first obtain an
estimate ok’ |¢,.(t*, s*)| for any (t*, s*) € [0, 6] x (a,b) by
considering cases A.1 and A.2 for theh characteristic path
zr(t; %, 8*) passing throughit*, s*) (r = 1,...,m).

For case A.1: Using = o(t) in (9), and integrating the
r-th equation fromD to ¢* for anyr =1,...,m we get

t* n

= £.(0,5) / Zb““

where we use the notatiofy for 2 (0; %,
zr(t; 17,

& (7, £)Ex(t, 2 ())dt

s*) and z,.(t) for
s*). Using the bound (17), we obtain

— lt*
667,57 < lElloo + € / 16 ot

Multiplying both sides by?*", and noting that* < § < Tnin,
we obtain

et

.
c / Al
0
— t* —_—
<Cildle+Co [ TEW
whereC; = e/Tmin and Oy = e Tmine,

For case A.2: Integrating theth equation from,. to t* we
get

) < e |1€lloo + ONE) o dt

dt  (20)

t* ' n

=& (tr,b) — /Zb"(“ 20 (£)Ex(t, 2 (t))dt.

tr g=1

& (7,

Using & (t,,b) = Eln—m.t,_l grf fl(trab) with j = o(t,),

.
<3 ol bl +e [

l=m+1 tr
Integratingi-th equation from0 to ¢, we get

it b) = &(0,52) /be’”

& (8

§(t)]lodt.  (21)

fk t Zl( ))dt

s*). Under the assump-

where we use the notatiof for z;(0;¢,.(t*, s*),
for z(t; t-,b). Again using the bound (17),

b) and z(t)

tr
6t D) < Wl e [ €0t
Substituting this bound in equation (21), we obtain
€ (t", 5™)]
o B ty t*
< Rl + e [Nt e [ 0]t
0 t,

< Kil|éll + Kne / &) [oodt
0

where K; and K, are defined in (12). Multiplying by:?*"
and noting again that sinagé < ¢ < Ty, We have

t* e
e (15N < Cull +Cr [ €Dt @2)
0
with Cg KleﬁT‘m“ and Cy = K1€6ﬂTmi“.
Combination of cases A.1, A.2.: From inequalities (20)
and (22) we obtain a combined estimate

t*/\
1, (%, 5] < Cs €l + C / E@ldt  (23)

with Cy = Kle'BTmi“ and Cs = K1666T’““‘.

Estimate for paths with positive slope: Similarly, we can
write an estimate ob”*"|&(t*,5*)| (I = m + 1,...,n) for
(t*,s*) € [0, ] % (a,b) by considering the corresponding cases
for I-th characteristic path;(¢; t*, s*) passing througlt*, s*)
(l=m+1,...,n). We have

t* P
a5 < Crlfl+ Cs [ et @)
0
with C; = KyefTmin and Cy = KaeePTmin | where K is
defined in (12).

Estimate for all paths: From (23) and (24), by taking the
maximum overr-th andl-th characteristic paths = 1,...,m
and! = m + 1,...,n) respectively, and taking the essential
supremum oves* € (a,b) we obtain the estimate

—_— _ t* —_—
IEE) | < CollEle + Cio / EDldt  (25)
with Cg
in (12).

Now, by usingc as defined in (14) and noting th@t,;, <
2T max, WE can write

= KePTmin gndCyg = KeePTmin | whereK is defined

1€ Il (26)

t* P
< Curllfloe + Cra [ €]t
0
with C1; = cfe?$Tmax and Cp, = KeePTin, By applying
Gronwall’s lemma, we obtain the inequality for afy, s*) €

[0, 6] x (a, b)

IEE) | < Ch1 exp(CraToin) €]l oo, 27)
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T,

min

- | (t*,s")

z1(ttr (%, 8%), b)

tr(t*, s*)

T2

V)
V)

a zr(0;%,5%) b a  z(0;tr(t%,57),b) b

Fig. 2. lllustration of case A.1 (left) and case A.2 (righty the proof of induction basis.

for all o(-). With the 5 > 0 and e > 0 chosen according by considering the above three cases forsthl characteristic

to (15) and (16) respectively, we note that path z,.(t; t*, s*) passing througtit*, s*) (r = 1,...,m).
_ . For case B.1: Using = o(t) in (9), and integrating the
0 exp(2BTmax) exp (K elmin eXp(ﬂTmmZJ) r-th equation from0 to ¢t* for anyr = 1,...,m, and using
<wexp (KTminq§> =n<Ll the bound (17),
Then by expanding the right-hand-side of inequality (27) we et 5| < € /t*
i ril = 0o T € E()||sodt
b e 6t 50 < €l +¢ | €I
U "
€t ) < (145) 1+ [ leem
<c [0 eXp(QﬁTmax) €xp (Kﬁﬂnin eXp(/BTmin))] ||£||oo T
< )|l where the second inequality is obtained using the assumptio

.. o _ that (18) holds on0,T] x (a,b). Multiplying both sides by
holds on (¢*,5*) € [0,0] x (a,b) for all switching signals .s5t" ysing definition (19); and noting that for the present
o(-) € S(R4, Q). Finally, using the definition (19), we obtaingjiyation (case B.1), we hawe < Tiax, then T < Tiax,

that and fort* € [T, T + Twin), t € (T,t*) then (t* — t) < Tiin,
[€Wllse < cexp(=B0)[Eloc: 0 <t <5< Ty W ODIAIN
t* P
This completes the proof of the induction basis. P&, (5% < Cusl|€]loe + 014/ €] dt  (28)
T

Part B (Proof of the induction step): We will now show thatwith Chs = (1 + €)efTmex and Cpy = eePTmin,

under the chosen constanifs> 0,c¢ > 1,¢ > 0, if (18) holds 4 c4qe B 2:Again integrating theth equation fromt,
on the domain[0, 7] x (a,b), then it still holds on domain t*, and using that, (t,,b) = S0 ., gpﬁ’j&(tr,b) with
[0,T 4 Tin] % (a,b). Let T > 0 and assume that (18) holdsj — o(t)), me e
on [0,7] x (a,b). In this case we have to distinguish threé
cases as illustrated in Figure 3. % - R,j

Proceeding as before, for any fixed = 1,...,m, the & (7,57 < Z 19707161t D) +€/t,
r-th characteristic path,.(¢;t*,s*) passing throught*, s*) f=mtd '
considered backward in time, either intersects 0 within the ~ For case B.2(i): Integratingth equation from0 to ¢, and
interval [, b] before hitting any boundary (case B.1) or it intertising the bound (17) we have
sects the lines = b (case B.2); the points of intersection with - tr
the boundary of the domain are denoted (Byz,(0; t*, s*)) 1€t 0)| < €lloe + 6/ 1€(8) || odt
and (¢,.(t*, s*),b) respectively, where,.(t,(t*, s*); t*, s*) = o . _ 0 _
b. Furthermore, thd-th characteristic path (¢;t,(t*, s*),b) Substituting this bound in equation (29), we obtain
passing through(¢,(¢*,s*),b) (I = m + 1,...,n) either 1€, (", %))
z1(t; 6. (t*, %), b) intersects the ling = 0 before hitting the . o
line s = a (case B.2()) or it hitss = a (case B.2(ii)). The < Kl +€f(1/ ||€(t)||oodt+€/ IE(t) oot
point of intersection is denoted by, z;(0;¢,.(t*, s*),b)) for 0 tr

+*

E(t)[[ocdt.  (29)

case B.2(i) andt,;(t*, s*),a) for case B.2(ii). We will again _ &
uset, for ¢,(t*,s*) andt, for t,(t*, s*). < Kiéllos + K16/0 1€ [|odt
.
_ Estimate for paths with negative slope: We first obtain an es- < K, (1 + 60) 1€]l00 + Kle/ 1€(8) || sodt,
timate ofeft” |¢,.(t*, s*)| for any (t*, s*) € [T 4 Tmin] X (a, b) B T
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t t t
T+Tmin
(t*, s* tr(t*, s*)
it —— =4 "z -
(& s 2(t (8, 5%),b) (%57
it —— =N ————4 = — —
zr(t; %, s%)
T
T x4 == — — R — % % 7/_ _______
trr(t*, s*)
0 s S s
a zr(05t*,8%) b a  z(0;tr(t7,57),0) b a b

Fig. 3. lllustration of case B.1 (left), case B.2(i) (ceftand case B.2(ii) (right) for the proof of induction step.

where the last inequality is obtained using the assumptifor any (¢t*,s*) € [T 4+ Tmin] X (a,b) by considering the

that (18) holds or{0,T] x (a,b). Noting that for the present corresponding cases for tixth characteristic path; (¢;t*, s*)

situation (case B.2())lt* < 2T ,ax thenT < 2T,,.x, and for passing throught*,s*) (I = m + 1,...,n), for ¢ chosen
€ [T, T+ Tmin], t € (T,t*) then(t* —t) < Ty, We obtain according to (14), and( defined in (12)

t* P . _ t* P
e 1,(t,5%)| < Cusll€lloo + Cio / E@ludt (30) e Ja(t',s%) < Corl|élloe + Cao /T [EDldt.  (33)
T

with Ci5 = K1 (1 + %‘ e28Tmax gnd O = KqeefTmin, with Co1 = ¢ (9 + %) 2P max, Cgy = KeePTmin,
For case B.2(ii): We have ) )
Estimate for all paths: We now combine (32) and (33) by
&t 0) = &(tw, a / Zbo() )En(t, z1(1))dt. taking the maximum over-th and I-th characteristic; paths
[ (r=1,...,mandl =m+1,...,n) respectively, taking the

] m y I essential supremum ovet € (a,b) to obtain the estimate
Using &ty a) = Y0 g1 & (tn,a) with j' = o(t,), we

nave . t [ < Coslloe + o / [0l it (39)
1t b)] < 3 1057 16y (bt )] + € / €(8) ot

where 623 = C§9+IEE 62’8T‘“ax, C24 = KG@BT‘”“‘. By

Substituting this bound in equation (29), and using the (mduapplylng Granwall's lemma, we obtain the inequality

tion hypothesis, we obtain ||?(E||(><> < Chz exp(Caa(t* — T[]l (35)
(8", 57)| < Bee ™ €]+ K [ ol forany (s7,#%) € [T, T+ Tiuin] x (a,0) and thus
r - [€() )| o < Ca3 exp(CaTrmin))|1€]lso

Kie _ —
< (0+ é) 13 +K1€/T 1€®)[ldt  for all o(-). Using (34), plugging in the expressions f6';

. . ) ) ~and Cy4, given the expression of in (15) we obtain the
with # as in (13). Again, noting that far € [T, T + Tyin], in inequality

the present situation (case B.2(i))< ¢, < T andT —t,; <

9T, We obtain €|, < e (9 v Ij;) %exp (Ke mm) I€llse. (36)
t* P
PV E (17, 5%)] < Crrll€lloe + 018/ 1€(t)]|.dt  (31) With 3 ande given by (15) and (16) respectively, we have
T
Ke\ w w

with C7 = ¢ (60 + % e2PTmax and Cg = K;eeBTmin, (9 + B) 9 exp (Kengin>

Combination of cases B.1, B.2(i) and B.2(ii): From inequal- Keo\ w
ities (28), (30) and (31) and th& defined in (12), we obtain < <9 3 > 7 oxpP (K51 0 mln) =1,

Bt 1€,(t%, )| < ChollE]loe + Coo /t* m dt,  (32) and using this in the right hand side of (36) we obtain

1EE) o < ell€loo

holds on(t*,s*) € [T, T + Tmin] X (a,b) for all switching
signalso(-) € S(R, Q). Finally, from (19) we obtain that

with Cig = ¢ (9 + %) 28Tmax and Cyy = KeePTmin,

Estimate for paths with positive slope: By using similar B
arguments, we also obtain an estimate ef” | (t*, s*)| 1€ |oo < cexp (=B)|I€]loc, 0 <t < T+ Thnin.
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This completes the proof of the induction step. [ ]

Remark 1. From the proof of Theorem 1 we see that with
K and# given by (12) and (13) respectively, and the constant:
w and n chosen such thal < w < 5 < 1, equation
(16) gives a concrete value effor which the conditions of
Theorem 1 guarantee exponential stability for all switghin
signals. That is, (18) holds uniformly for all switching sagjs
o(-) € S(Ry, Q) with ¢ and 3 given by (14) and (15) respec-
tively. We then see that the so obtained bound|@H (s) ||
satisfiess — 0 asf — 1. Similar conditions are known for the
unswitched case, where such systems with sufficiently sma
inhomogeneities are called ‘almost conservative’ [31].

For an illustration of the decay estimate and the size o
¢ obtained by Theorem 1 and Remark 1 we provide the o 2z 4 6 8 10 12 14 16 18 2
following example.

Example 2. Consider a switched system of the form (5

l6t) oo

Lig. 4. The exponential bound fdf¢(t)||- obtained in Theorem 1 (solid

with two modes Q = {1’ 2}) and [a, b_]. = [07 1]' The line) and the observed decay for three different switchiigmals (dashed
parameters and boundary data are specified as lines) of solutions for the system considered in Example 2.
R e A B [70005 0
S 0 18]’ o 0 —0.005]" A consequence of our results is that, when the only stabi-

0 14 0.005 0 sign of the eigenvalues of cannot be ruled out a-priori, the
decay of the solution can in general not be concluded from the
1 _ 1 _ 2 _ 2 _
Gr =061, G =115 GL =042, G =1.21. rate of decay at the boundary (for e.g., in terms of condition

In this example the hypotheses;(Aand (A) of Theorem 1 (11) of Theorem 1).

A% {—0.8 0 ] B { 0 0.005] (37) lizing mechanism is at the boundary and arbitrary changes of

are clearly satisfied. We hav§ = 1.21 and Remark 2: The condition (11) implies the following spec-
tral radius condition to hold for the subsystems (7) with Q
0 |Gh fixed:
0 = max p 4 R =0.7381 < 1. (38)
5,5 €Q IG%] 0

J

oy () < (39
Following Remark 1, we choose = 0.87 and = 0.88 , SR _
to obtain that|| B1?|« = 0.0050 < ¢ = 0.0054. Therefore, Under this asspmptlon, classical solutions of (7).are known
according to Theorem 1, the switched system is absolutdf/ e €xponentially stable [23]. However, assumption (89) f
exponentially stable. Moreover, for equation (18), we obtad!l J € @ IS not sufficient for the switching system to be
¢ — 1.6393 and 8 — 0.0658 from equations (14) and (15) exponentially stable.. Note th.ﬂ]L,G%{ in Example 1 satisfy
respectively. For initial dat&(s) = [1 1]T ons € (0,1), the (39) but not (11) forj = 1,2, I.e.,
exponential bound in (18) is plotted together with the obsér ([0 1.5]> _ ([ 0 OD _ ([0 OD _0
decay of||£(t)||« for three different switching signats(-) in 0 0 15 0 P{lo o ’
Figure 4. The solution approximations are computed usieg tht
two-step Lax-Friedrichs finite difference scheme from [3P] ) ({ 0 1.5]) 15
In general, assumption A is necessary for exponential sta- 1.5 0 o

bility under arbitrary switching as evident from the follmy  Nevertheless, as shown next in Corollary 1, the switched
example. system satisfying (39) in every modecan be stabilized by
Example 3: Let Q = {1,2}, [¢,0] = [0,1], A' = switching slow enough. Note that Corollary 1 does not rezuir
diag(—1,1,1), A*> = diag(—1,—-1,1), B/ = diag(0,0,0) assumption () to hold.
and let G, G%, G%, and G be any boundary data of Corollary 1: (Dwell-Time) Under the hypotheses (A
appropriate dimensions. It is clear that this example fédis there exists anr > 0 such that if||B’(s)|.. < € for all
assumption (A) but does not satisfy (4. Now consider initial s ¢ [a,b] and j € @, the switching system in diagonal
data(s) = [1 1 1]T on s € (0,1), and a switching form (5) is exponentially stable with respect to the ndrii
signalo(t) defined over the switching timeg = 0.5k, where for all switching signals inS, (R, ; Q) for which the dwell-
k=0,1,2,... ando(r) =1, o(m1) = 2, o(r2) = 1 and so time r > 7 (¥ given by (10)) if the condition (39) holds for
on. For the second component of the solutg(m), we then all j € Q.
have &(t,s) = 1 for s almost everywhere on the interval Proof: From the definition ofr in (10) it is easy to see
(0,0.5) andt = 1,2,3,.... Hence, the solution|£(t)||- that if 7 > 7, then in case B.2(ii){, andt,; lie in the same
cannot decay exponentially irrespective of the decay thglm inter switching interval and all the required estimates ban
be imposed ort; (¢, s), &2(t, s) and&3(t, s) by the boundary made using & defined similar to (13) but where the maximum
data. O is only taken overj € Q. |
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IV. NON-DIAGONAL SWITCHING SYSTEM can be written as a switching system in the diagonal form with
t%igcontinuous resets at the switching timgdor £ = 1,2,...

We now focus on non-diagonal systems. Suppose that D7y — 0, 1.

system switches among non-diagonal subsystems

: : 9 | oty %€ | pot)oye _
% j % RJ i _ E‘FA (8)5> + B (s)§ =0, t € [Tk, Tit1]
{ ot fAJ(S) os jjBJ (,S)uj =0, se(ab), t>0 eulta) = G t)s&(ta)’ er(t,b) = XD (t,b),
Diwl(t,a) =0, Dhul(t,b)=0, t>0 0, = () = Sy (Yal-),
(40) | ém) =5, ()8,1 ()l €(ma), k>0,

where, for eaclyj € @, A7(s), B’(s) aren x n dimensional
matrix functions on(a,b) and D7, D7, are constant matrices _ 4 uni ¢ soluti b (44) q
of appropriate dimensions. Each subsystem can be Writtentrﬁ‘? existence and unigueness of solutions can be argued as

the diagonal form (7) under certain assumptions. For imstan €€ L .
if we impose that for eachi € Q Our next proposition is a very simple consequence of

(A1) The matrix function A7(): [a, ] Rxn simultaneous diagonalization.
1 )18, = Proposition 1: Under hypotheses (A-(A») and under the
Lipschitz-continuous such that for all € [a,b], there D yp ?-(A2)

. , airwise commutativity assumption that for alle [a, 5] and
exists m; such that0 < m; < n and A’(s) has P Y P la, b}

.
m; negative and(n — m;) positive eigenvalues\’ (s) forallj.j e @

with n corresponding linearly independent left (resp. Al (s) A7 (s) = AT (s) A7 (s), (45)
right) eigenvectord?!(s) (resp.r/(s)), i = 1,...,n a A : , _ _
Lipschitz-continuous functions of. The matrix func- a@nd letG7, Gy, and B/(s) are given by (42). Then, if
tion B7(-): [a,b] — R™*" is bounded measurable withcondition (11) holds for allj, j € Q, there exists ar > 0

respect tos. Furthermore, the following two rank condi-SUch that if|[B7(s)[l« < ¢ for all s € [a,b] andj € @,
tions hold forDJL c R(=m3)xn and Dg% c R™Mi X0 the switching system in non-diagonal form (43) is absojutel

exponentially stable iff - |-

rank (D7) |1 (a)] -+ |1}, (a)] =n Furthermore, if the condition (39) holds for glic Q, there
PNT 14 B . exists ane > 0 such that if||B’(s)||.c < € for all s € [a,b
rank((Dp) [, 41 (0)] -+ [ (0)] = n. andj € Q, the system (43)|| is (ex)gonentially stable||ir[-1 Hoj
Under the assumption (A the matrix functionss;(-) = for all switching signals inS.(R ;@) for which the dwell-
HOL - [FOIT and 575) = [A{()]. | ()] are fimer>Tandr ghenby (10). |
Lipschitz-continuous functions with partial derivativete- Proof: Recall that a set of diagonalizable matrices are
fined a. e. We refer the reader to the text by Bressan [3§]multaneously diagonalizable if (and only if) they comeut
pagesi6 — 50, for the details about assumption (A. us, system (43) can be transformed into a switching system
For all s € [a, ], we have in diagonal form (44) with a common diagonalizing matrix
function S7(-) = S(-). The assertion then follows. [ |
S;i(s)A7(5)S5 1 (s) = M (s). (41)  Though the commutativity assumption in Proposition 1
‘ . seems very strong, we include an example showing that it
with A’(s) as in (A). By applying a transformatiow’ (¢, s) = s in general necessary for conditions such as in Sectioto I1|
S; ()€ (t, s), D], = D755 " (a) and D}, = D%S; ' (b) and  pe sufficient for absolutely exponential stability.
using the representation Example 4. Consider a non-diagonal switching system of
' 9 o form (43) with two modes@® = {1, 2}) and initial datau(s) =
Bl (s) = Sj(s) (AJ(S)&SSjl(S) + BJ(S)Sjl(S)) ; 1 1]T ons € (a,b), for an alternating switching signal(-)
- PR g Py with switching timesr, = 0.5k wherek = 0,1,2,3,... and
Dy = [DL,I‘DL,H]’ Dp = [DRJ’DR,H]’ (42) o(19) =1, o(m1) =2, o(12) = 1 and so on. The parameters
Gy =—(D] ;;)"'D} ;. Gp=—(D% ) "D}y and boundary data are specified as

wih b, € Bo-mm, by, e Roomoxeemo g R0 0] e [T e [0
Diy € Bmxms, Dl € Rm¥inom), G € Rinmen,

' 1 __3 2 _[_3 _
andG?, € R™:*(n=m3) the system corresponding to (40) and Dp=[-3 1. Dr=[-} 1

initial data @(s) corresponding to modg becomes (7) with Dp=[1 —%]. D=0 I
initial data&’(s) = 5j(s)u(s). _ The non-diagonal system so specified satisfie§)A.) but
Now observing that the switching system in the Norypes not satisfy the commutativity condition (46} Ay #

diagonal form for a switching signai(-) € S(R, Q) A Ay). With

% +A0<t>(s)3is‘ +B°O(s)u=0, s € (ab), t>0 5, - {1 0} S, — {1 2}

0 1)’ 0 1)’
DIDu(t,a) =0, DI Pu(t,b)=0, t >0
u(0,5) = u(s), sé& (a,b) and doing a change of variables by this transformation, both

(43) the constituting subsystems of the non-diagonal switching
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closing of gates in a cascade of open-canal pools, the dgsami
of which are classically modeled by the linearized Saint-
Venant equations [31].

A limitation of the results obtained here is that they are
valid only for almost conservative systems (see Remark 1).
Thus, it will be interesting to investigate if, possibly by
using different methods, other conditions can be found that
guarantee absolute exponential stability for less comasiers
systems. In particular, our results motivate a Lyapunoorthe
for switching infinite dimensional systems.

[[(£) [l
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Fig. 5. The observed blowup dfu(t)||o for the system considered in
Example 4 under switching.

system reduce to the same diagonal subsystem

0& -1 0] 0¢
Sat+[o 1]85:?’ (46)
2 1 1 2
5 (t,O) = 55 (t50)7 5 (tv 1) = 15 (tv 1)’ 1
which satisfied the spectral radius condition
0 1 [2]
p<[3 3}) =0.6124 < 1,
2 [3]

implying that the solution of the subsystem (46) startinghwi
initial condition for {(s) = [1 1]T, s € (0,1) decays
exponentially fort — oco. However, following the represen-
tation (44), we observe that for the non-diagonal switchingd®l
system|ju(¢)|| is not bounded as — co. See Figure 5 for

the growth of{|u(¢)||~ where the solutiom is again obtained [g]
by using a two-step Lax-Friedrichs scheme as in Example 2.
O

V. FINAL REMARKS 7]

We present a generalization of a well-known mechanism for
stability of hyperbolic PDE systems [23] to the case in whic
the switching occurs among a set of systems that may differ i)
the system matrix function and/or boundary conditions. When
constituent PDEs are in the canonical diagonal form, weveeripg;
a sufficient condition for exponential stability under ardiy
switching signals. For the case in which the system matrix
functions are not diagonal, the result holds when they )
jointly diagonalizable. This results in a commutativitynci>-
tion that has a counterpart in the switched ODE literatute [%12]

It is also clear that, although the switching signal repnese
joint switching of the boundary conditions and system matri
ces, the results apply for switching the boundary conditiof!3]
or system matrices individually by introducing appromiat[14]
auxiliary modes, which is just a matter of notational conve-
nience. Thus, the treatment presented in this article ntigtuf
. . . : [15]
interest in control settings under abruptly changing beauypd
conditions and operating regimes such as the opening and

valuable feedback and comments.

REFERENCES

R. Shorten, F. Wirth, O. Mason, K. Wulff, and C. King, “Sifity criteria
for switched and hybrid systemsJAM Review, vol. 49, no. 4, pp. 545—
592, 2007.

H. Lin and P. J. Antsaklis, “Stability and stabilizalyliof switched linear
systems: A survey of recent result$EEE Transactions on Automatic
Contral, vol. 54, no. 2, pp. 308-322, 2009.

D. Liberzon, Switching in Systems and Control.  Volume in series
Systems and Control: Foundations and Applications, Birkkgu2003.
A. S. Morse, “Supervisory control of families of linear tgmoint
controlles. part 1: Exact matchinglEEE Transactions on Automatic
Control, vol. 41, no. 10, pp. 1413-1431, 1996.

N. H. El-Farra and P. D. Christofides, “Coordinating fbadk and
switching for control of spatially distributed processeSpmputers and
Chemical Engineering, vol. 28, pp. 111-128, 2004.

F. M. Hante and G. Leugering, “Optimal boundary control of
convention-reaction transport systems with binary contomictions,”
in Hybrid Systems: Computation and Control, ser. Lecture Notes in
Computer Science 5469, R. Majumdar and P. Tabuada, Eds. Berlin
Heidelberg: Springer-Verlag, 2009, pp. 209-222.

O. V. Iftime and M. A. Demetriou, “Optimal control of switcke
distributed parameter systems with spatially scheduledatmts)” Auto-
matica J. IFAC, vol. 45, no. 2, pp. 312-323, 2009.

8] E. Zuazua, “Switching control,J. Eur. Math. Soc. (JEMS), vol. 13,

no. 1, pp. 85-117, 2011.

M. Gugat, “Optimal switching boundary control of a stritig rest in
finite time,” ZAMM - Journal of Applied Mathematics and Mechanics,
vol. 88, pp. 283-305, 2008.

T. I. Seidman, “Feedback modal control of partial difieial equations,”
in Optimal Control of Coupled Systems of Partial Differential Equations,
K. Kunisch, G. Leugering, J. Sprekels, and Follzsch, Eds. Basel:
Birkhauser, 2009, pp. 239-254.

F. M. Hante, G. Leugering, and T. I. Seidman, “Modelingl @amalysis of
modal switching in networked transport systemighpl. Math. Optim.,,
vol. 59, no. 2, pp. 275-292, 2009.

——, “An augmented BV setting for feedback switching aoht
Journal of Systems Science and Complexity, vol. 23, no. 3, pp. 456—
466, 2010.

A. Sasane, “Stability of switching infinite-dimensidreystems,”Auto-
matica, vol. 41, no. 1, pp. 75-78, 2005.

F. M. Hante and M. Sigalotti, “Converse Lyapunov theunse for
switched systems in Banach and Hilbert spac&AM Journal on
Control and Optimization, vol. 49, no. 2, pp. 752-770, 2011.

A. N. Michel, Y. Sun, and A. P. Molchanov, “Stability agais of
discontinuous dynamical systems determined by semigroug&E
Transactions on Automatic Control, vol. 50, no. 9, pp. 1277-1290, 2005.



AMIN, HANTE, BAYEN: STABILITY OF SWITCHED HYPERBOLIC SYSTEMS

[16] G. Leugering and J.-P. G. Schmidt, “On the modeling andilssation
of flows in networks of open canals3AM Journal of Control and
Optimization, vol. 37, no. 6, pp. 1874-1896, 2002.

[17] B. Haut and G. Bastin, “A second order model of road jumrtsi
in fluid models of traffic networks,AIMS Journal on Networks and
Heterogeneous Media (NHM), vol. 2, no. 2, pp. 227-253, 2007.

[18] A. M. Bayen, R. L. Raffard, and C. J. Tomlin, “Adjoint-bed control
of a new eulerian network model of air traffic floWFEE Transactions
on Control Systems Technology, vol. 14, no. 5, pp. 804-818, sep. 2006.

[19] X. Litrico, P.-O. Malaterre, J.-P. Baume, and J. Ribat#Bo, “Conver-
sion from discharge to gate opening for the control of iniyacanals,”

11

Falk M. Hante received the Diploma in Mathe-
matics in 2006 and his Doctorate in Mathematics
in 2010, both from the University of Erlangen-
Nuremberg, Germany. In fall 2007 he was visiting
researcher at the Department of Civil and Envi-
ronmental Engineering, University of California at
Berkeley, USA, and he spent the year 2010 as a
research fellow of INRIA Nancy Grand-Est at the
Institut Elie Cartan, France. Since 2011 he is a
research fellow of the Mathematics Center of Hei-
delberg (MATCH), Germany. His research centers

Journal of Irrigation and Drainage Engineering, vol. 134, no. 3, pp. on switched systems and hybrid systems with modes governed il pa

305-314, 2008.

[20] M. K. Banda, M. Herty, and A. Klar, “Gas flow in pipeline teorks,”
AIMS Journal on Networks and Heterogeneous Media (NHM), vol. 1,
no. 1, pp. 41-56, 2006.

[21] J. Rauch and M. Taylor, “Exponential decay of solutisashyperbolic
equations in bounded domairiridiana University Mathematics Journal,
vol. 24, no. 1, pp. 79-86, 1974.

[22] T. Besson, A. Tchousso, and C.-Z. Xu, “Exponential itghof a class
of hyperbolic PDE models from chemical engineering, Froceedings
of the 45th IEEE Conference on Decision & Control, San Diego, USA,
2006, pp. 3974-3978.

[23] T. T. Li, Global classical solutions for quasilinear hyperbolic systems.
Research in Applied Mathematics, Masson and Wiley, Paridarili
Barcelona, 1994.

[24] J. de Halleux, C. Prieur, B. Andrea-Novel, and G. BastBoundary
feedback control in networks of open channel&iftomatica, vol. 39,
no. 8, pp. 1365-1376, 2003.

[25] J. M. Coron, G. Bastin, and B. D’Andrea-Novel, “Dissipwa boundary
conditions for one dimensional nonlinear hyperbolic systerSsAM
Journal on Control and Optimization, vol. 47, no. 3, pp. 1460-1498,
2008.

[26] C. Prieur, J. Winkin, and G. Bastin, “Robust boundarptcol of systems
of conservation laws Math. Control Sgnals Systems, vol. 20, no. 2, pp.
173-197, 2008.

[27] J. Zhang, K. H. Johansson, J. Lygeros, and S. Sastryyd'Zgbrid sys-
tems,” International Journal of Robust and Nonlinear Control, vol. 11,
no. 5, pp. 435-451, 2001.

[28] R. Courant and D. HilbertMethods of Mathematical Physics, Part Il:
Partial Differential Equations. Interscience, New York, 1962.

[29] O. Kreiss, “Initial boundary value problems for hypelibopartial
differential equations,Comm. on Pure and Appl. Math., vol. 23, no. 3,
pp. 277-298, 1970.

differential equations.

Alexandre M. Bayen received the Engineering De-
gree in applied mathematics from the Ecole Poly-
technique, France, in July 1998, the M.S. degree
in aeronautics and astronautics from Stanford Uni-
versity in June 1999, and the Ph.D. in aeronautics
and astronautics from Stanford University in Decem-
ber 2003. He was a Visiting Researcher at NASA
Ames Research Center from 2000 to 2003. Between
January 2004 and December 2004, he worked as
the Research Director of the Autonomous Naviga-
tion Laboratory at the Laboratoire de Recherches

[30]

(31]

(32

A. Bressan,Hyperbolic Systems of Conservation Laws. The One-

Dimensional Cauchy Problem. Oxford University Press, 2000.

G. Bastin, J. M. Coron, and B. d'Anda-Novel, “Using hyperbolic
systems of balance laws for modeling, control and stabilitglysis

of physical networks,” inLecture notes for the Pre-congress workshop

on complex embedded and networked control systems, 17th IFAC World

Congress, Seoul, Korea, 2008.

L. F. Shampine, “Solving Hyperbolic PDEs in Matlab&ppl. Numer.

Anal. & Comput. Math., no. 2, pp. 346-358, 2005.

Saurabh Amin received his Ph.D. in Civil and Envi-

Balistiques et Aerodynamiques, (Ministere de la Defensenie France),
where he holds the rank of Major. He has been an Assistane$of in the
Department of Civil and Environmental Engineering at UC Blakesince
January 2005, and an Associate Professor since 2010. Bagmauihored
over 100 articles in peer reviewed journals and conferendess the recipient
of the Ballhaus Award from Stanford University, 2004, of tRAREER

award from the National Science Foundation, 2009 and he i®\&ANTop

10 Innovators on Water Sustainability, 2010. His projectebie Century
and Mobile Millennium received the 2008 Best of ITS Award fBest

Innovative Practice, at the ITS World Congress and a TRANNYaal from

the California Transportation Foundation, 2009. Bayerhésrecipient of the
Presidential Early Career Award for Scientists and Engm@eECASE) award
from the White House, 2010. Mobile Millennium has been feadualready
more than 100 times in the media, including TV channels and rsi@ittons
(CBS, NBC, ABC, CNET, NPR, KGO, the BBC), and in the populaeg®
(Wall Street Journal, Washington Post, LA Times).

ronmental Engineering with a designated emphasis
in Communication, Computation, and Statistics in
2011, from the University of California, Berke-

PLACE ley. He obtained M.S.E. degree in Transportation
PHHE%TEO Engineering from the University of Texas, Austin

in 2004, and B.Tech degree in Civil Engineering
from the Indian Institute of Technology, Roorkee
in 2002. His research focuses on the design and
implementation of control algorithms for networked
infrastructure systems, with the emphasis on their

reliability and security. The applications of his reseainblude SCADA
systems for water distribution, transportation, and enengyagement.



