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Exponential stability of switched linear hyperbolic
initial-boundary value problems

Saurabh Amin, Falk M. Hante, and Alexandre M. Bayen,Member, IEEE

Abstract—We consider the initial-boundary value problem
governed by systems of linear hyperbolic partial differential
equations in the canonical diagonal form and study conditions for
exponential stability when the system discontinuously switches
between a finite set of modes. The switching system is fairly
general in that the system matrix functions as well as the bound-
ary conditions may switch in time. We show how the stability
mechanism developed for classical solutions of hyperbolic initial
boundary value problems can be generalized to the case in which
weaker solutions become necessary due to arbitrary switching.
We also provide an explicit dwell-time bound for guaranteeing
exponential stability of the switching system when, for each mode,
the system is exponentially stable. Our stability conditions only
depend on the system parameters and boundary data. These
conditions easily generalize to switching systems in the non-
diagonal form under a simple commutativity assumption. We
present tutorial examples to illustrate the instabilities that can
result from switching.

Index Terms—Distributed parameter systems; stability of hy-
brid systems; switched systems.

I. I NTRODUCTION

Switched systems are a convenient modeling paradigm for
a variety of control applications in which evolution processes
involve logical decisions. However, in contrast to their sim-
plicity on modeling grounds, the stability analysis of switched
systems is often non-trivial. An extensive body of literature
now exists for the case of switched (linear and non-linear)
ordinary differential equations (ODEs) and more generallyfor
differential algebraic equations (DAEs) in finite dimensional
spaces. As surveyed in [1] and [2], two different approaches
have been mainly considered in the literature: Either one
designs switching signals such that solutions of the switched
system decay exponentially (or otherwise behave ‘optimally’),
or one tries to identify conditions which guarantee exponen-
tial stability of the switched system for arbitrary switching
signals. The later approach is of particular interest when the
switching mechanism is either unknown or too complicated
for a more careful stability analysis [3], [4]. Stability un-
der arbitrary switching is mainly achieved by constructing
common Lyapunov functions or, more directly, by identifying
algebraic/geometric conditions on the involved parameters.
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During the past years, several attempts have been made
to also consider switched systems in the context of infinite
dimensional control theory. Mostly, the problem of designing
(optimal or stabilizing) switching control is considered for
problems in which the state equation is fixed and just the
controller is switched. For example, in [5], model reduction
together with control synthesis for the reduced finite dimen-
sional model is used to construct switching control for quasi-
linear parabolic equations. The design of boundary switching
control actions for semi-linear hyperbolic balance equations
using switching time sensitivities is considered in [6]. Analgo-
rithm to construct optimal switching control for abstract linear
systems on Hilbert spaces with switching control operator at
fixed switching times is proposed in [7]. Moreover, for the heat
equation, a systematic way of building switching control based
on variational methods is described in [8] and, in a similar
context, [9] gives conditions under which such switching
controls exist for the one dimensional wave equation.

Despite the aforementioned developments, much less is
known for problems when not only the controller, but also the
state equation is switched. Some general ideas are sketchedin
[10] and, for semi-linear hyperbolic equations with application
to transport networks, optimal open-loop and closed-loop
switching control is addressed in [11] and [12]. For prob-
lems concerning the stability of switched infinite dimensional
systems, the construction of common Lyapunov functions
gets very difficult when the state equation is switched, even
for abstract switched linear systems on Hilbert spaces. The
only available result appears to be [13], in which a com-
mon quadratic Lyapunov function is provided for the case
when the semigroup generators commute. This condition is,
however, too restrictive for some applications. Nevertheless,
it is interesting to note that without further restrictionson
the generators, common (not necessarily quadratic) Lyapunov
functions exist, even more generally for switched linear sys-
tems on Banach spaces [14]. Under constrained switching,
some algebraic conditions for stability of switched non-linear
systems on Banach spaces utilizing Lyapunov functions in
each mode are provided in [15].

In this article we are interested in the stability properties of
solutions to switched linear hyperbolic systems with reflecting
boundary conditions when the boundary conditions and the
state equation are switched arbitrarily. Let us first introduce the
following (unswitched) system ofn linear hyperbolic partial
differential equations (PDEs) defined for some interval[a, b] ⊂
R:

∂ξ

∂t
+ Λ(s)

∂ξ

∂s
+B(s)ξ = 0, s ∈ (a, b), t > 0, (1)
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where Λ(s) = diag(λ1(s), . . . , λn(s)) is a diagonal real
matrix function andB(s) is a n × n real matrix function on
[a, b]. Assuming appropriate regularity of the matrix functions
Λ(·) andB(·) and under the hyperbolicity assumption that for
some1 < m < n

λ1(s), . . . , λm(s) < 0 andλm+1(s), . . . , λn(s) > 0 (2)

uniformly in s ∈ [a, b], an-dimensional vector solutionξ(t, s)
of the system (1) with componentsξi(t, s) for i = 1, . . . , n,
arrayed as

ξI(t, s) = (ξ1(t, s), . . . , ξm(t, s))⊤

and
ξII(t, s) = (ξm+1(t, s), . . . , ξn(t, s))

⊤,

is uniquely determined on the time-space stripR+ × (a, b)
with the initial condition

ξ(0, s) = ξ̄(s), s ∈ (a, b), (3)

for specifiedRn-valued initial dataξ̄(s) and boundary condi-
tions

ξII(t, a) = GLξI(t, a), ξI(t, b) = GRξII(t, b), t ≥ 0 (4)

where GL, GR are constant matrices of dimensions
(n−m)×m and m× (n−m), respectively. A common
class of problems studied for initial-boundary value prob-
lems (1)–(4) is the stability and stabilization under boundary
control actions specified by the matricesGL andGR. These
problems are of interest because hyperbolic PDE systems can
model flows in networks that are monitored and controlled at
the boundary nodes [16]. Examples include transportation sys-
tems [17], [18], canal systems [19], and gas distribution sys-
tems [20]. The available results for this class of problems for
linear hyperbolic systems can be found in [21], [22], and more
generally for quasilinear hyperbolic systems in [23], [24], [25]
and [26].

Here we are interested in the stability properties of the
hyperbolic initial boundary value problem (1)–(4) whenΛ(·),
B(·), GL andGR are not fixed, but are known to satisfy

(Λ(·), B(·), GL, GR) ∈ {(Λj(·), Bj(·), Gj
L, G

j
R) : j ∈ Q}

at any timet > 0, whereQ = {1, . . . , N} is a finite set
of modes and, for allj ∈ Q, the dataΛj(·), Bj(·), Gj

L, G
j
R

is given. This is equivalent to studying the stability of the
switching system










∂ξ

∂t
+ Λσ(t)(s)

∂ξ

∂s
+Bσ(t)(s)ξ = 0,

ξII(t, a) = G
σ(t)
L ξI(t, a), ξI(t, b) = G

σ(t)
R ξII(t, b),

ξ(0, s) = ξ̄(s),

(5)

for the time-space strip[0,∞) × [a, b] where switching
occurs according to a piecewise-constant switching signal
σ(·) : R+ → Q. Preliminaries and wellposedness of the
switched system (5) will be discussed in Section II. Then,
recalling the classical observation in the finite dimensional
control theory of switched systems that exponential stability of
all subsystems does not necessarily guarantee an exponential
decay of the solution when the system is switched [3], we

study, motivated by a simple PDE counterpart to this obser-
vation, the following two specific problems for the switched
system (5) in Section III:

(A) Find conditions on the matrix functionsΛj(·), Bj(·)
and the matricesGj

L andGj
R that guarantee exponential

stability for arbitrary switching signals.
(B) Alternatively, characterize a (preferably large) class of

switching signals for which exponential stability of all
subsystems is sufficient for exponential stability of the
switched system.

Our contribution here is twofold. Firstly, we show how the
techniques mainly developed for classical solutions (withC1

data) can be used for weaker solutions (withL∞ data) based
on the geometric picture of propagation along characteristics.
This is necessary because switching boundary conditions may
introduce discontinuities into the solution. Secondly, weshow
how the switching enters the known stability mechanism such
that the decay rate obtained in this way is independent of the
switching signal (Theorem 1). Following from our analysis,
we also obtain an explicit dwell-time bound guaranteeing
exponential stability of the system under constrained switching
when all subsystems satisfy the known stability condition
individually (Corollary 1). In Section IV, we discuss how
our results for switched diagonal system (5) generalize to
switched hyperbolic systems in non-diagonal form under a
commutativity assumption (Proposition 1). In Sections III
and IV, we also provide illustrative examples of instabilities
which can result from switching. Some final remarks are
mentioned in Section V.

II. PRELIMINARIES

For an interval (a, b) ⊂ R and a measurable function
f : (a, b) → Rn, let

‖f‖∞ := ess sup
s∈(a,b)

i=1,...,n

|fi(s)|.

We callL∞((a, b);Rn) the space of all measurable functions
f : (a, b) → Rn for which ‖f‖∞ < ∞. For ann × n real
matrix M = (mij), we define

‖M‖∞ := max
1≤i≤n

n
∑

j=1

|mij |.

Also define the non-negative matrix ofM as |M | := (|mij |)
and for eigenvaluesλ1, . . . , λn of |M | define the spectral
radius of|M | asρ(|M |) = max1≤i≤n |λi|.

A switching signal σ(·) is a piecewise-constant function
σ(·) : R+ → Q. Here, we restrict admissible piecewise-
constant signals to those for which during each finite time
interval of R+, there are only finitely many switchesj y j′

to avoidZeno behavior. This assumption anticipated with the
accumulation of switching times is commonly made in the
field of switched and hybrid systems to obtain global existence
results; see for e. g. [27]. Thus, necessarily,σ(·) hasswitching
times τk ∈ R+ (k ∈ N) at whichσ(·) switches discontinuously
from one modejk−1 ∈ Q to another modejk ∈ Q. We denote
S(R+, Q) for the set of all such switching signalsσ(·).
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We say that for a givenσ(·) ∈ S(R+, Q) the system (5) is
exponentially stable (with respect to the norm‖ · ‖∞) if there
exist constantsc ≥ 1 andβ > 0 such that the solutionξ(t, ·)
satisfies

‖ξ(t, ·)‖∞ ≤ c exp(−βt)‖ξ(0, ·)‖∞, t ≥ 0. (6)

In view of problem (A), we say that the switched system (5) is
absolutely exponentially stable (with respect to a norm‖ ·‖∞)
if (6) holds for all σ(·) ∈ S(R+, Q) with constantsc ≥ 1
and β > 0 independently ofσ(·). In view of problem (B),
we say that a valueτ > 0 is a dwell-time of a switching
signalσ(·), if the intervals between consecutive switches are
no shorter thanτ , that is,τk+1 − τk ≥ τ for all k > 0 and
we letSτ (R+;Q) ⊂ S(R+;Q) denote the subset of switching
signals with dwell-timeτ .

III. D IAGONAL SWITCHING SYSTEM

For eachj ∈ Q, we have the diagonal subsystem






∂ξj

∂t
+ Λj(s)

∂ξj

∂s
+Bj(s)ξj = 0, s ∈ (a, b), t > 0

ξ
j
II(t, a) = G

j
Lξ

j
I(t, a), ξ

j
I(t, b) = G

j
Rξ

j
II(t, b), t ≥ 0

(7)
for which we impose the following assumptions:

(A1) The matrix functionΛj(s) = diag(λj
1(s), . . . , λ

j
n(s))

is such that the characteristic speedsλ
j
i (·) are uniformly

bounded, Lipschitz-continuous functions ofs ∈ [a, b] for
i = 1, . . . , n, and there existsmj such that for some
0 < mj < n, λj

r(s) < 0 (r = 1, . . . ,mj) andλ
j
l (s) > 0

(l = mj + 1, . . . , n); the matrix functionBj(s) is such
that Bj(·) : [a, b] 7→ Rn×n is bounded measurable with
respect tos.

(A2) For all j, j′ ∈ Q, mj = mj′ =: m.
It is well-known that under the hyperbolicity assumption

(A1) for any j ∈ Q, T > 0, and initial dataξj(0, ·) = ξ̄j(·)
where ξ̄j : (a, b) 7→ Rn is bounded measurable with respect
to s, a solutionξji of (7) in the broad sense can be defined
by the method of characteristics [28], [29]. In this method,for
eachi and each point(t∗, s∗), one uses that the ODE

d

dt
z
j
i (t) = λ

j
i (z

j
i (t)), z

j
i (t

∗) = s∗ (8)

has a unique Carathéodory solution, defined for allt. As
usual, we say that this solutiont 7→ z

j
i (t; t

∗, s∗) passing
through (t∗, s∗) is the i-th characteristic curve for the j-th
subsystem. The broad solutionξj(·, ·) is then defined as a
vector function with componentsξji , i = 1, . . . , n, that are
absolutely continuous and satisfy

d

dt
ξ
j
i (t, z

j
i (t; t

∗, s∗)) =

−

n
∑

k=1

b
j
ik(z

j
i (t; t

∗, s∗))ξjk(t, z
j
i (t; t

∗, s∗))
(9)

along almost every characteristic curvezji (t; t
∗, s∗). Here

b
j
ik(·) corresponds to thei-th row andk-th column ofBj(·).

Existence and uniqueness of such broad solutionsξj(·, ·)
with initial data and boundary conditions for the subsys-
tems (7) with ξj(t, ·) ∈ L∞((a, b);Rn) for all t can be

obtained on arbitrary finite time horizons using Banach’s fixed
point theorem. Uniqueness then has to be understood within
the usual Lebesgue almost everywhere equivalence class. For
further details on the existence and uniqueness of broad
solutions, we refer to the iteration method of [28], pages 470–
475, and to the text of Bressan [30], pages 46–50, though
noting that the latter does not treat boundary conditions. For
treatment of the boundary conditions see, instead, [29].

We now justify the existence and uniqueness of solutions
for the switching system (5), which we need in deriving the
main stability result in Section III. Any switching signalσ(·) ∈
S(R+, Q) defines a modejk ∈ Q for each interval[τk, τk+1).
For an initial condition,̄ξ := ξ̄(·) ∈ L∞((a, b);Rn), we define
ξ(t) = ξ(t, ·) where

ξ(t, ·) = ξjk(t, ·), for t ∈ [τk, τk+1]

and ξjk(t, ·) is a solution of the subsystem corresponding to
modej = jk in (7) with the initial condition

ξjk(τk, ·) =

{

ξjk−1(τk, ·) if k > 0,

ξ̄(·) if k = 0.

Thus, under Hypothesis (A1), for everyσ(·) ∈ S(R+, Q), by
construction there exists a unique broad solutionξ(·) with data
ξ(t) ∈ L∞((a, b);Rn)) for all t ∈ R+ of the switching system
(5). Again, uniqueness then has to be understood within the
usual Lebesgue almost everywhere equivalence class.

In the following, we denote byzσ(t)i (t; t∗, s∗) the i-th char-
acteristic path that passes through a point(t∗, s∗) ∈ [0,∞)×
[a, b] and is the concatenation of the characteristic curvesz

j
i (t)

through switching times defined by the switching signalσ(·).
When needed, we omit the dependence ofz

σ(t)
i (t; t∗, s∗) on

σ(t) for notational convenience and simply writezi(t; t∗, s∗).
Observe that, if (A2) holds in addition to (A1), each char-

acteristic path can be classified into left- and right-goingde-
pending on the sign of the corresponding characteristic speeds
λ
j
i (s), independently of the switching signalσ(·). Although

(A2) is not required for the existence and uniqueness of the
solution, it is crucial for the kind of stabilizing mechanisms
that we consider here. This is further discussed in Example 3.

Furthermore, for the switching system (5) we define

τ̄ :=
b− a

min
i=1,...,mj

s∈[a,b],j∈Q

|λj
i (s)|

+
b− a

min
i=mj+1,...,n

s∈[a,b],j∈Q

|λj
i (s)| (10)

Geometrically,τ̄ is an upper bound of the time in which the
slowest of all possible characteristic paths will have undergone
reflections at both boundaries.

Our motivation to study the stability of the diagonal switch-
ing system (5) is inspired a simple PDE counterpart to the
classical ODE observation [3] that exponential stability of all
subsystems isnot sufficient for the exponential stability of the
switching system.

Example 1: Let Q = {1, 2}, [a, b] = [0, 1], Λj =
diag(−1, 1), Bj = diag(0, 0), G

j
L = 1.5(j − 1), G

j
R =

1.5(2−j), and consider̄ξ(s) =
[

1 1
]⊤

for s ∈ (0, 1). For the
case of no switching, that is whenσ(t) = 1 or σ(t) = 2 for all
t ∈ R+, the solutionξ(·) of the system (5) is zero aftert > 2,
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Fig. 1. Instability by switching according to Example 1.

but the solution of the system with a switching signalσ(t)
that is defined over the switching timesτk = 0.5, 1.5, 2.5, . . .
and alternates between modes inQ starting withσ(0) = 2 is
not exponentially stable. Indeed,‖ξ(t)‖∞ is not bounded as
t → ∞, because the values on the right-going characteristic
emerging froms ∈ (0, 0.5) always increase by reflection of
the characteristics along the boundary; see Figure 1. Thus,
we can conclude that the instability due to switching can
occur for certain combinations between the characteristic
speeds and the switching times. (Note, however, that with a
switching signalσ(t) that is defined over the switching times
τk = 0.5, 1.0, 1.5, 2.0, . . . the system is exponentially stable.)
�

We now focus on conditions on the matrix functionsΛ(s)j ,
Bj(s) and the boundary dataGj

L, G
j
R under which the

switching system is absolutely exponentially stable. Our main
result, presented next, shows that if a spectral radius condition
is jointly satisfied for the left and right boundary data and all
pairs of modesj, j′ ∈ Q then a sufficiently small bound on
‖Bj(s)‖∞ exists such that the switching system is absolutely
exponentially stable with respect to the norm‖ · ‖∞.

Theorem 1: Assume Hypotheses (A1) and (A2) and sup-
pose that forj, j′ ∈ Q the following condition holds:

ρ

([

0 |Gj′

R |

|Gj
L| 0

])

< 1. (11)

Then there exists anǫ > 0 such that if‖Bj(s)‖∞ ≤ ǫ for all
s ∈ [a, b] and j ∈ Q, the switching system (5) is absolutely
exponentially stable with respect to the norm‖ · ‖∞.

Proof: We define the following constants in terms of
boundary data

K1 := max{1, K̃1}, K2 := max{1, K̃2}

K := max{K1,K2}
(12)

where

K̃1 = max
r=1,...,m

j∈Q

n
∑

l=m+1

∣

∣g
R,j
rl

∣

∣

and

K̃2 = max
l=m+1,...,n

j∈Q

{

m
∑

p=1

∣

∣g
L,j
lp

∣

∣

}

.

From the Lemma 2.1 of Li [23], we note that the condition
(11) implies

θ := max
j,j′∈Q

{∥

∥

∥

∣

∣G
j
L

∣

∣

∣

∣G
j′

R

∣

∣

∥

∥

∥

∞
,
∥

∥

∥

∣

∣G
j′

R

∣

∣

∣

∣G
j
L

∣

∣

∥

∥

∥

∞

}

= max
r=1,...,m

l=m+1,...,n

j,j′∈Q

{ m
∑

p=1

n
∑

k=m+1

∣

∣g
R,j′

rk

∣

∣

∣

∣g
L,j
kp

∣

∣,

n
∑

k=m+1

m
∑

p=1

∣

∣g
L,j
lp

∣

∣

∣

∣g
R,j′

pk

∣

∣

}

< 1,

(13)

whereGj
L = (gL,j

pq ) andGj′

R = (gR,j′

pq ). Let us define

Tmin :=
b− a

max
a≤s≤b

i=1,...,n

j=1,...,N

|λj
i (s)|

, Tmax :=
b− a

min
a≤s≤b

i=1,...,n

j=1,...,N

|λj
i (s)|

.

Thus,Tmin (resp.Tmax) is the time in which the fastest (resp.
slowest) of all possible characteristic paths will have traveled
the domain(a, b).

Under the assumption of the theorem, we choose ac ≥ 1
such that

c :=
K

θ
, (14)

and we choose anω such thatθ < ω < 1, and select aβ > 0
such that

β :=
1

2Tmax
ln
(ω

θ

)

. (15)

We also choose anη > 0 such thatθ < ω < η < 1, and select
an ǫ > 0 such that

ǫ := min{ǫ1, ǫ2} (16)

where

ǫ1 =
θ

TminKω
ln
( η

ω

)

, ǫ2 =
θ(1− η)

2TmaxKη
ln
(ω

θ

)

.

We will show that under the aforementioned assumptions
and the choice of constants, if the bound

‖Bj(s)‖∞ ≤ ǫ (17)

holds fors ∈ [a, b] and for all j ∈ Q, then

‖ξ(t)‖∞ ≤ c exp(−βt)‖ξ̄‖∞, t ≥ 0 (18)

uniformly for all switching signalsσ(·) ∈ S(R+, Q). Note
that the chosenc, β, andǫ are independent ofσ(·) and only
depend on the boundary data and system parameters. We will
prove (18) using the method of characteristics and induction.
To this end, we will first prove the induction basis inPart A
and the induction step inPart B. We define

‖̂ξ(t)‖∞ := exp (βt)‖ξ(t)‖∞. (19)

Part A (Proof of the induction basis): We show that under
the chosen constantsβ > 0, c ≥ 1, ǫ > 0, (18) holds on the
domain[0, δ]× (a, b) whenδ satisfies0 ≤ δ < Tmin. For any
σ(·), let zi(t; t∗, s∗) denote thei-th characteristic path passing
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through the point(t∗, s∗) ∈ [0, δ]×(a, b), (i = 1, . . . , n). Then,
we have

dzi(t; t
∗, s∗)

dt
= λ

σ(t)
i (zi(t; t

∗, s∗))

zi(t
∗; t∗, s∗) = s∗.

For any fixedr = 1, . . . ,m, consider ther-th characteristic
pathzr(t; t∗, s∗) passing through(t∗, s∗). Under the assump-
tions (A1) and (A2), backwards in time,zr(t; t∗, s∗) either
intersectst = 0 within the interval [a, b] before hitting any
boundary (case A.1) or it intersects the lines = b (case A.2).
See Figure 2 for an illustration of both possible cases. The
point of intersection of the characteristic path with the bound-
ary of the domain is denoted by(0, zr(0; t∗, s∗)) for case A.1
and (tr(t∗, s∗), b) for case A.2 withzr(tr(t∗, s∗); t∗, s∗) = b.
Furthermore, letzl(t; tr(t∗, s∗), b) denote thel-th character-
istic path passing through(tr(t∗, s∗), b) (l = m + 1, . . . , n).
Then, sinceδ < Tmin, zl(t; tr(t

∗, s∗), b) intersects the line
t = 0 before hitting the lines = a. We denote the point of
intersection by(0, zl(0; tr(t∗, s∗), b)). For the ease of notation,
we will use tr for tr(t∗, s∗).

Estimate for paths with negative slope: We first obtain an
estimate ofeβt

∗

|ξr(t
∗, s∗)| for any (t∗, s∗) ∈ [0, δ]× (a, b) by

considering cases A.1 and A.2 for ther-th characteristic path
zr(t; t

∗, s∗) passing through(t∗, s∗) (r = 1, . . . ,m).
For case A.1: Usingj = σ(t) in (9), and integrating the

r-th equation from0 to t∗ for any r = 1, . . . ,m we get

ξr(t
∗, s∗) = ξr(0, s̃1)−

∫ t∗

0

n
∑

k=1

b
σ(t)
rk (zr(t))ξk(t, zr(t))dt

where we use the notatioñs1 for zr(0; t
∗, s∗) and zr(t) for

zr(t; t
∗, s∗). Using the bound (17), we obtain

|ξr(t
∗, s∗)| ≤ ‖ξ̄‖∞ + ǫ

∫ t∗

0

‖ξ(t)‖∞dt.

Multiplying both sides byeβt
∗

, and noting thatt∗ ≤ δ < Tmin,
we obtain

eβt
∗

|ξr(t
∗, s∗)| ≤ eβt

∗

‖ξ̄‖∞ + ǫ

∫ t∗

0

eβ(t
∗−t)‖̂ξ(t)‖∞dt

≤ C1‖ξ̄‖∞ + C2

∫ t∗

0

‖̂ξ(t)‖∞dt (20)

whereC1 = eβTmin andC2 = eβTminǫ.
For case A.2: Integrating ther-th equation fromtr to t∗ we

get

ξr(t
∗, s∗) = ξr(tr, b)−

∫ t∗

tr

n
∑

k=1

b
σ(t)
rk (zr(t))ξk(t, zt(t))dt.

Using ξr(tr, b) =
∑n

l=m+1 g
R,j
rl ξl(tr, b) with j = σ(tr),

|ξr(t
∗, s∗)| ≤

n
∑

l=m+1

|gR,j
rl ||ξl(tr, b)|+ ǫ

∫ t∗

tr

‖ξ(t)‖∞dt. (21)

Integratingl-th equation from0 to tr we get

ξl(tr, b) = ξl(0, s̃2)−

∫ tr

0

n
∑

k=1

b
σ(t)
lk (zl(t))ξk(t, zl(t))dt,

where we use the notatioñs2 for zl(0; tr(t∗, s∗), b) andzl(t)
for zl(t; tr, b). Again using the bound (17),

|ξl(tr, b)| ≤ ‖ξ̄‖∞ + ǫ

∫ tr

0

‖ξ(t)‖∞dt

Substituting this bound in equation (21), we obtain

|ξr(t
∗, s∗)|

≤ K̃1‖ξ̄‖∞ + ǫK̃1

∫ tr

0

‖ξ(t)‖∞dt+ ǫ

∫ t∗

tr

‖ξ(t)‖∞dt

≤ K1‖ξ̄‖∞ +K1ǫ

∫ t∗

0

‖ξ(t)‖∞dt

where K̃1 and K1 are defined in (12). Multiplying byeβt
∗

and noting again that sincet∗ ≤ δ < Tmin, we have

eβt
∗

|ξr(t
∗, s∗)| ≤ C3‖ξ̄‖∞ + C4

∫ t∗

0

‖̂ξ(t)‖∞dt (22)

with C3 = K1e
βTmin andC4 = K1ǫe

βTmin .
Combination of cases A.1, A.2.: From inequalities (20)

and (22) we obtain a combined estimate

eβt
∗

|ξr(t
∗, s∗)| ≤ C5‖ξ̄‖∞ + C6

∫ t∗

0

‖̂ξ(t)‖∞dt (23)

with C5 = K1e
βTmin andC6 = K1ǫe

βTmin .

Estimate for paths with positive slope: Similarly, we can
write an estimate ofeβt

∗

|ξl(t
∗, s∗)| (l = m + 1, . . . , n) for

(t∗, s∗) ∈ [0, δ]×(a, b) by considering the corresponding cases
for l-th characteristic pathzl(t; t∗, s∗) passing through(t∗, s∗)
(l = m+ 1, . . . , n). We have

eβt
∗

|ξl(t
∗, s∗)| ≤ C7‖ξ̄‖∞ + C8

∫ t∗

0

‖̂ξ(t)‖∞dt (24)

with C7 = K2e
βTmin and C8 = K2ǫe

βTmin , whereK2 is
defined in (12).

Estimate for all paths: From (23) and (24), by taking the
maximum overr-th andl-th characteristic paths (r = 1, . . . ,m
and l = m + 1, . . . , n) respectively, and taking the essential
supremum overs∗ ∈ (a, b) we obtain the estimate

̂‖ ξ(t∗) ‖∞ ≤ C9‖ξ̄‖∞ + C10

∫ t∗

0

‖̂ξ(t)‖∞dt (25)

with C9 = KeβTmin andC10 = KǫeβTmin , whereK is defined
in (12).

Now, by usingc as defined in (14) and noting thatTmin <

2Tmax, we can write

̂‖ ξ(t∗) ‖∞ ≤ C11‖ξ̄‖∞ + C12

∫ t∗

0

‖̂ξ(t)‖∞dt (26)

with C11 = cθe2βTmax and C12 = KǫeβTmin . By applying
Gronwall’s lemma, we obtain the inequality for any(t∗, s∗) ∈
[0, δ]× (a, b)

‖̂ξ(t∗)‖∞ ≤ C11 exp(C12Tmin)‖ξ̄‖∞, (27)
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s s0
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τ3
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δ

a
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zr(t; t∗, s∗)

zr(0; t∗, s∗)

zl(t; tr(t
∗, s∗), b)

(t∗, s∗)
b

tr(t∗, s∗)

zl(0; tr(t
∗, s∗), b)

Fig. 2. Illustration of case A.1 (left) and case A.2 (right) for the proof of induction basis.

for all σ(·). With the β > 0 and ǫ > 0 chosen according
to (15) and (16) respectively, we note that

θ exp(2βTmax) exp (KǫTmin exp(βTmin))

≤ ω exp
(

KTminǫ1
ω

θ

)

= η < 1.

Then by expanding the right-hand-side of inequality (27) we
obtain that

‖̂ξ(t∗)‖∞
≤ c [θ exp(2βTmax) exp (KǫTmin exp(βTmin))] ‖ξ̄‖∞

< c‖ξ̄‖∞

holds on (t∗, s∗) ∈ [0, δ] × (a, b) for all switching signals
σ(·) ∈ S(R+, Q). Finally, using the definition (19), we obtain
that

‖ξ(t)‖∞ ≤ c exp (−βt)‖ξ̄‖∞, 0 ≤ t ≤ δ < Tmin.

This completes the proof of the induction basis.

Part B (Proof of the induction step): We will now show that
under the chosen constantsβ > 0, c ≥ 1, ǫ > 0, if (18) holds
on the domain[0, T ] × (a, b), then it still holds on domain
[0, T + Tmin]× (a, b). Let T > 0 and assume that (18) holds
on [0, T ] × (a, b). In this case we have to distinguish three
cases as illustrated in Figure 3.

Proceeding as before, for any fixedr = 1, . . . ,m, the
r-th characteristic pathzr(t; t∗, s∗) passing through(t∗, s∗)
considered backward in time, either intersectst = 0 within the
interval[a, b] before hitting any boundary (case B.1) or it inter-
sects the lines = b (case B.2); the points of intersection with
the boundary of the domain are denoted by(0, zr(0; t

∗, s∗))
and (tr(t

∗, s∗), b) respectively, wherezr(tr(t∗, s∗); t∗, s∗) =
b. Furthermore, thel-th characteristic pathzl(t; tr(t∗, s∗), b)
passing through(tr(t∗, s∗), b) (l = m + 1, . . . , n) either
zl(t; tr(t

∗, s∗), b) intersects the linet = 0 before hitting the
line s = a (case B.2(i)) or it hitss = a (case B.2(ii)). The
point of intersection is denoted by(0, zl(0; tr(t∗, s∗), b)) for
case B.2(i) and(trl(t∗, s∗), a) for case B.2(ii). We will again
usetr for tr(t∗, s∗) and trl for trl(t∗, s∗).

Estimate for paths with negative slope: We first obtain an es-
timate ofeβt

∗

|ξr(t
∗, s∗)| for any (t∗, s∗) ∈ [T +Tmin]× (a, b)

by considering the above three cases for ther-th characteristic
pathzr(t; t∗, s∗) passing through(t∗, s∗) (r = 1, . . . ,m).

For case B.1: Usingj = σ(t) in (9), and integrating the
r-th equation from0 to t∗ for any r = 1, . . . ,m, and using
the bound (17),

|ξr(t
∗, s∗)| ≤ ‖ξ̄‖∞ + ǫ

∫ t∗

0

‖ξ(t)‖∞dt

≤

(

1 +
ǫc

β

)

‖ξ̄‖∞ + ǫ

∫ t∗

T

‖ξ(t)‖∞dt

where the second inequality is obtained using the assumption
that (18) holds on[0, T ] × (a, b). Multiplying both sides by
eβt

∗

, using definition (19); and noting that for the present
situation (case B.1), we havet∗ ≤ Tmax, then T ≤ Tmax,
and for t∗ ∈ [T, T + Tmin], t ∈ (T, t∗) then (t∗ − t) ≤ Tmin,
we obtain

eβt
∗

|ξr(t
∗, s∗)| ≤ C13‖ξ̄‖∞ + C14

∫ t∗

T

‖̂ξ(t)‖∞dt (28)

with C13 = (1 + ǫc
β
)eβTmax andC14 = ǫeβTmin .

For case B.2: Again integrating ther-th equation fromtr
to t∗, and using thatξr(tr, b) =

∑n

l=m+1 g
R,j
rl ξl(tr, b) with

j = σ(tr),

|ξr(t
∗, s∗)| ≤

n
∑

l=m+1

|gR,j
rl ||ξl(tr, b)|+ ǫ

∫ t∗

tr

‖ξ(t)‖∞dt. (29)

For case B.2(i): Integratingl-th equation from0 to tr and
using the bound (17) we have

|ξl(tr, b)| ≤ ‖ξ̄‖∞ + ǫ

∫ tr

0

‖ξ(t)‖∞dt

Substituting this bound in equation (29), we obtain

|ξr(t
∗, s∗)|

≤ K̃1‖ξ̄‖∞ + ǫK̃1

∫ tr

0

‖ξ(t)‖∞dt+ ǫ

∫ t∗

tr

‖ξ(t)‖∞dt

≤ K1‖ξ̄‖∞ +K1ǫ

∫ t∗

0

‖ξ(t)‖∞dt

≤ K1

(

1 +
ǫc

β

)

‖ξ̄‖∞ +K1ǫ

∫ t∗

T

‖ξ(t)‖∞dt,
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Fig. 3. Illustration of case B.1 (left), case B.2(i) (center) and case B.2(ii) (right) for the proof of induction step.

where the last inequality is obtained using the assumption
that (18) holds on[0, T ] × (a, b). Noting that for the present
situation (case B.2(i)),t∗ ≤ 2Tmax thenT ≤ 2Tmax, and for
t∗ ∈ [T, T +Tmin], t ∈ (T, t∗) then(t∗− t) ≤ Tmin we obtain

eβt
∗

|ξr(t
∗, s∗)| ≤ C15‖ξ̄‖∞ + C16

∫ t∗

T

‖̂ξ(t)‖∞dt (30)

with C15 = K1

(

1 + ǫc
β

)

e2βTmax andC16 = K1ǫe
βTmin .

For case B.2(ii): We have

ξl(tr, b) = ξl(trl, a)−

∫ tr

trl

n
∑

k=1

b
σ(t)
lk (zl(t))ξk(t, zl(t))dt.

Using ξl(trl, a) =
∑m

p=1 g
L,j′

lp ξp(trl, a) with j′ = σ(trl), we
have

|ξl(tr, b)| ≤

m
∑

p=1

|gL,j′

lp ||ξp(trl, a)|+ ǫ

∫ tr

trl

‖ξ(t)‖∞dt

Substituting this bound in equation (29), and using the induc-
tion hypothesis, we obtain

|ξr(t
∗, s∗)| ≤ θce−βtrl‖ξ̄‖∞ +K1ǫ

∫ t∗

trl

‖ξ(t)‖∞dt

≤

(

θ +
K1ǫ

β

)

ce−βtrl‖ξ̄‖∞ +K1ǫ

∫ t∗

T

‖ξ(t)‖∞dt

with θ as in (13). Again, noting that fort∗ ∈ [T, T +Tmin], in
the present situation (case B.2(ii)),0 ≤ trl ≤ T andT − trl ≤
2Tmax, we obtain

eβt
∗

|ξr(t
∗, s∗)| ≤ C17‖ξ̄‖∞ + C18

∫ t∗

T

‖̂ξ(t)‖∞dt (31)

with C17 = c
(

θ + K1ǫ
β

)

e2βTmax andC18 = K1ǫe
βTmin .

Combination of cases B.1, B.2(i) and B.2(ii): From inequal-
ities (28), (30) and (31) and theK defined in (12), we obtain

eβt
∗

|ξr(t
∗, s∗)| ≤ C19‖ξ̄‖∞ + C20

∫ t∗

T

‖̂ξ(t)‖∞dt, (32)

with C19 = c
(

θ + Kǫ
β

)

e2βTmax andC20 = KǫeβTmin .

Estimate for paths with positive slope: By using similar
arguments, we also obtain an estimate ofeβt

∗

|ξl(t
∗, s∗)|

for any (t∗, s∗) ∈ [T + Tmin] × (a, b) by considering the
corresponding cases for thel-th characteristic pathzl(t; t∗, s∗)
passing through(t∗, s∗) (l = m + 1, . . . , n), for c chosen
according to (14), andK defined in (12)

eβt
∗

|ξl(t
∗, s∗)| ≤ C21‖ξ̄‖∞ + C22

∫ t∗

T

‖̂ξ(t)‖∞dt, (33)

with C21 = c
(

θ + Kǫ
β

)

e2βTmax , C22 = KǫeβTmin .

Estimate for all paths: We now combine (32) and (33) by
taking the maximum overr-th and l-th characteristic paths
(r = 1, . . . ,m and l = m+ 1, . . . , n) respectively, taking the
essential supremum overs∗ ∈ (a, b) to obtain the estimate

‖̂ξ(t∗)‖∞ ≤ C23‖ξ̄‖∞ + C24

∫ t∗

T

‖̂ξ(t)‖∞dt (34)

where C23 = c
(

θ + Kǫ
β

)

e2βTmax , C24 = KǫeβTmin . By
applying Gronwall’s lemma, we obtain the inequality

‖̂ξ(t∗)‖∞ ≤ C23 exp(C24(t
∗ − T ))‖ξ̄‖∞ (35)

for any (s∗, t∗) ∈ [T, T + Tmin]× (a, b) and thus

‖̂ξ(t∗)‖∞ ≤ C23 exp(C24Tmin))‖ξ̄‖∞

for all σ(·). Using (34), plugging in the expressions forC23

and C24, given the expression ofβ in (15) we obtain the
inequality

‖̂ξ(t∗)‖∞ ≤ c

(

θ +
Kǫ

β

)

ω

θ
exp

(

Kǫ
ω

θ
Tmin

)

‖ξ̄‖∞. (36)

With β and ǫ given by (15) and (16) respectively, we have
(

θ +
Kǫ

β

)

ω

θ
exp

(

Kǫ
ω

θ
Tmin

)

≤

(

θ +
Kǫ2

β

)

ω

θ
exp

(

Kǫ1
ω

θ
Tmin

)

= 1,

and using this in the right hand side of (36) we obtain

‖ξ̂(t∗)‖∞ ≤ c‖ξ̄‖∞

holds on(t∗, s∗) ∈ [T, T + Tmin] × (a, b) for all switching
signalsσ(·) ∈ S(R+, Q). Finally, from (19) we obtain that

‖ξ(t)‖∞ ≤ c exp (−βt)‖ξ̄‖∞, 0 ≤ t ≤ T + Tmin.
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This completes the proof of the induction step.
Remark 1: From the proof of Theorem 1 we see that with

K andθ given by (12) and (13) respectively, and the constants
ω and η chosen such thatθ < ω < η < 1, equation
(16) gives a concrete value ofǫ for which the conditions of
Theorem 1 guarantee exponential stability for all switching
signals. That is, (18) holds uniformly for all switching signals
σ(·) ∈ S(R+, Q) with c andβ given by (14) and (15) respec-
tively. We then see that the so obtained bound on‖Bj(s)‖∞
satisfiesǫ → 0 asθ → 1. Similar conditions are known for the
unswitched case, where such systems with sufficiently small
inhomogeneities are called ‘almost conservative’ [31].

For an illustration of the decay estimate and the size of
ǫ obtained by Theorem 1 and Remark 1 we provide the
following example.

Example 2: Consider a switched system of the form (5)
with two modes (Q = {1, 2}) and [a, b] = [0, 1]. The
parameters and boundary data are specified as

Λ1 =

[

−1.2 0
0 1.8

]

, B1 =

[

−0.005 0
0 −0.005

]

,

Λ2 =

[

−0.8 0
0 1.4

]

, B2 =

[

0 0.005
0.005 0

]

,

G1
L = 0.61, G1

R = 1.15, G2
L = 0.42, G2

R = 1.21.

(37)

In this example the hypotheses (A1) and (A2) of Theorem 1
are clearly satisfied. We haveK = 1.21 and

θ = max
j,j′∈Q

ρ

([

0 |Gj′

R |

|Gj
L| 0

])

= 0.7381 < 1. (38)

Following Remark 1, we chooseω = 0.87 and η = 0.88
to obtain that‖B1,2‖∞ = 0.0050 < ǫ = 0.0054. Therefore,
according to Theorem 1, the switched system is absolutely
exponentially stable. Moreover, for equation (18), we obtain
c = 1.6393 and β = 0.0658 from equations (14) and (15)
respectively. For initial datāξ(s) =

[

1 1
]⊤

on s ∈ (0, 1), the
exponential bound in (18) is plotted together with the observed
decay of‖ξ(t)‖∞ for three different switching signalsσ(·) in
Figure 4. The solution approximations are computed using the
two-step Lax-Friedrichs finite difference scheme from [32].�
In general, assumption (A2) is necessary for exponential sta-
bility under arbitrary switching as evident from the following
example.

Example 3: Let Q = {1, 2}, [a, b] = [0, 1], Λ1 =
diag(−1, 1, 1), Λ2 = diag(−1,−1, 1), Bj = diag(0, 0, 0)
and let G1

L, G2
R, G2

L, and G1
R be any boundary data of

appropriate dimensions. It is clear that this example satisfies
assumption (A1) but does not satisfy (A2). Now consider initial
data ξ̄(s) =

[

1 1 1
]⊤

on s ∈ (0, 1), and a switching
signalσ(t) defined over the switching timesτk = 0.5k, where
k = 0, 1, 2, . . . andσ(τ0) = 1, σ(τ1) = 2, σ(τ2) = 1 and so
on. For the second component of the solutionξ(t), we then
have ξ2(t, s) = 1 for s almost everywhere on the interval
(0, 0.5) and t = 1, 2, 3, . . .. Hence, the solution‖ξ(t)‖∞
cannot decay exponentially irrespective of the decay that might
be imposed onξ1(t, s), ξ2(t, s) and ξ3(t, s) by the boundary
data. �

0 2 4 6 8 10 12 14 16 18 20

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

t

‖ξ
(t

)‖
∞

Fig. 4. The exponential bound for‖ξ(t)‖∞ obtained in Theorem 1 (solid
line) and the observed decay for three different switching signals (dashed
lines) of solutions for the system considered in Example 2.

A consequence of our results is that, when the only stabi-
lizing mechanism is at the boundary and arbitrary changes of
sign of the eigenvalues ofΛ cannot be ruled out a-priori, the
decay of the solution can in general not be concluded from the
rate of decay at the boundary (for e. g., in terms of condition
(11) of Theorem 1).

Remark 2: The condition (11) implies the following spec-
tral radius condition to hold for the subsystems (7) withj ∈ Q

fixed:

ρ

([

0 |Gj
R|

|Gj
L| 0

])

< 1. (39)

Under this assumption, classical solutions of (7) are known
to be exponentially stable [23]. However, assumption (39) for
all j ∈ Q is not sufficient for the switching system to be
exponentially stable. Note thatGj

L, G
j
R in Example 1 satisfy

(39) but not (11) forj = 1, 2, i. e.,

ρ

([

0 1.5
0 0

])

= ρ

([

0 0
1.5 0

])

= ρ

([

0 0
0 0

])

= 0,

but

ρ

([

0 1.5
1.5 0

])

= 1.5.

Nevertheless, as shown next in Corollary 1, the switched
system satisfying (39) in every modej can be stabilized by
switching slow enough. Note that Corollary 1 does not require
assumption (A2) to hold.

Corollary 1: (Dwell-Time) Under the hypotheses (A1),
there exists anǫ > 0 such that if ‖Bj(s)‖∞ < ǫ for all
s ∈ [a, b] and j ∈ Q, the switching system in diagonal
form (5) is exponentially stable with respect to the norm‖·‖∞
for all switching signals inSτ (R+;Q) for which the dwell-
time τ > τ̄ (τ̄ given by (10)) if the condition (39) holds for
all j ∈ Q.

Proof: From the definition of̄τ in (10) it is easy to see
that if τ > τ̄ , then in case B.2(ii),tr and trl lie in the same
inter switching interval and all the required estimates canbe
made using ãθ defined similar to (13) but where the maximum
is only taken overj ∈ Q.
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IV. N ON-DIAGONAL SWITCHING SYSTEM

We now focus on non-diagonal systems. Suppose that the
system switches among non-diagonal subsystems






∂uj

∂t
+Aj(s)

∂uj

∂s
+ B̃j(s)uj = 0, s ∈ (a, b), t > 0

D
j
Lu

j(t, a) = 0, D
j
Ru

j(t, b) = 0, t ≥ 0
(40)

where, for eachj ∈ Q, Aj(s), Bj(s) aren × n dimensional
matrix functions on(a, b) andDj

L, Dj
R are constant matrices

of appropriate dimensions. Each subsystem can be written in
the diagonal form (7) under certain assumptions. For instance,
if we impose that for eachj ∈ Q,

(A∗
1) The matrix function Aj(·) : [a, b] 7→ Rn×n is
Lipschitz-continuous such that for alls ∈ [a, b], there
exists mj such that 0 < mj < n and Aj(s) has
mj negative and(n − mj) positive eigenvaluesλj

i (s)
with n corresponding linearly independent left (resp.
right) eigenvectorslji (s) (resp. rji (s)), i = 1, . . . , n all
Lipschitz-continuous functions ofs. The matrix func-
tion B̃j(·) : [a, b] 7→ Rn×n is bounded measurable with
respect tos. Furthermore, the following two rank condi-
tions hold forDj

L ∈ R(n−mj)×n andDj
R ∈ Rmj×n

rank
[

(Dj
L)

⊤
∣

∣l
j
1(a)

∣

∣ · · ·
∣

∣ljmj
(a)
]

= n

rank
[

(Dj
R)

⊤
∣

∣l
j
mj+1(b)

∣

∣ · · ·
∣

∣ljn(b)
]

= n.

Under the assumption (A∗1) the matrix functionsSj(·) =
[lj1(·)

∣

∣ . . .
∣

∣ljn(·)]
⊤ and S−1

j (·) = [rj1(·)
∣

∣ . . .
∣

∣rjn(·)]
⊤ are

Lipschitz-continuous functions with partial derivativesde-
fined a. e. We refer the reader to the text by Bressan [30],
pages46− 50, for the details about assumption (A1)∗.

For all s ∈ [a, b], we have

Sj(s)A
j(s)S−1

j (s) = Λj(s). (41)

with Λj(s) as in (A1). By applying a transformationuj(t, s) =
S−1
j (s)ξj(t, s), D̃j

L = D
j
LS

−1
j (a) and D̃

j
R = D

j
RS

−1
j (b) and

using the representation

Bj(s) = Sj(s)

(

Aj(s)
∂

∂s
S−1
j (s) + B̃j(s)S−1

j (s)

)

,

D̃
j
L = [D̃j

L,I

∣

∣D̃
j
L,II ], D̃

j
R = [D̃j

R,I

∣

∣D̃
j
R,II ], (42)

G
j
L = −(D̃j

L,II)
−1D̃

j
L,I , G

j
R = −(D̃j

R,I)
−1D̃

j
R,II ,

with D̃
j
L,I ∈ R(n−mj)×mj , D̃

j
L,II ∈ R(n−mj)×(n−mj),

D̃
j
R,I ∈ Rmj×mj , D̃j

R,II ∈ Rmj×(n−mj), Gj
L ∈ R(n−mj)×mj

andGj
R ∈ Rmj×(n−mj), the system corresponding to (40) and

initial data ū(s) corresponding to modej becomes (7) with
initial data ξ̄j(s) = Sj(s)ū(s).

Now observing that the switching system in the non-
diagonal form for a switching signalσ(·) ∈ S(R+, Q)











∂u

∂t
+Aσ(t)(s)

∂u

∂s
+ B̃σ(t)(s)u = 0, s ∈ (a, b), t > 0

D
σ(t)
L u(t, a) = 0, D

σ(t)
R u(t, b) = 0, t ≥ 0

u(0, s) = ū(s), s ∈ (a, b)
(43)

can be written as a switching system in the diagonal form with
discontinuous resets at the switching timesτk for k = 1, 2, . . .
andτ0 = 0, i. e.,






















∂ξ

∂t
+ Λσ(t)(s)

∂ξ

∂s
+Bσ(t)(s)ξ = 0, t ∈ [τk, τk+1]

ξII(t, a) = G
σ(t)
L ξI(t, a), ξI(t, b) = G

σ(t)
R ξII(t, b),

ξ(0, ·) = ξ̄(·) = Sσ(τ0)(·)ū(·),
ξ(τk, ·) = Sjk(·)S

−1
jk−1

(·) lim
t→τk,t<τk

ξ(τk, ·), k > 0,

(44)
the existence and uniqueness of solutions can be argued as
before.

Our next proposition is a very simple consequence of
simultaneous diagonalization.

Proposition 1: Under hypotheses (A∗1)-(A2) and under the
pairwise commutativity assumption that for alls ∈ [a, b] and
for all j, j′ ∈ Q

Aj(s)Aj′(s) = Aj′(s)Aj(s), (45)

and let Gj
L, G

j
R and Bj(s) are given by (42). Then, if

condition (11) holds for allj, j ∈ Q, there exists anǫ > 0
such that if‖Bj(s)‖∞ < ǫ for all s ∈ [a, b] and j ∈ Q,
the switching system in non-diagonal form (43) is absolutely
exponentially stable in‖ · ‖∞.

Furthermore, if the condition (39) holds for allj ∈ Q, there
exists anǫ > 0 such that if‖Bj(s)‖∞ < ǫ for all s ∈ [a, b]
and j ∈ Q, the system (43) is exponentially stable in‖ · ‖∞
for all switching signals inSτ (R+;Q) for which the dwell-
time τ > τ̄ and τ̄ given by (10).

Proof: Recall that a set of diagonalizable matrices are
simultaneously diagonalizable if (and only if) they commute.
Thus, system (43) can be transformed into a switching system
in diagonal form (44) with a common diagonalizing matrix
functionSj(·) ≡ S(·). The assertion then follows.

Though the commutativity assumption in Proposition 1
seems very strong, we include an example showing that it
is in general necessary for conditions such as in Section IIIto
be sufficient for absolutely exponential stability.

Example 4: Consider a non-diagonal switching system of
form (43) with two modes (Q = {1, 2}) and initial datāu(s) =
[

1 1
]⊤

on s ∈ (a, b), for an alternating switching signalσ(·)
with switching timesτk = 0.5k wherek = 0, 1, 2, 3, . . . and
σ(τ0) = 1, σ(τ1) = 2, σ(τ2) = 1 and so on. The parameters
and boundary data are specified as

A1 =

[

−1 0
0 +1

]

, A2 =

[

−1 −4
0 +1

]

, B1,2 =

[

0 0
0 0

]

D1
L =

[

− 3
2 1

]

, D2
L =

[

− 3
4 −1

]

,

D1
R =

[

1 − 1
4

]

, D2
R =

[

1 7
4

]

The non-diagonal system so specified satisfies (A∗
1)-(A2) but

does not satisfy the commutativity condition (45)(A1A2 6=
A2A1). With

S1 =

[

1 0
0 1

]

, S2 =

[

1 2
0 1

]

,

and doing a change of variables by this transformation, both
the constituting subsystems of the non-diagonal switching
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Fig. 5. The observed blowup of‖u(t)‖∞ for the system considered in
Example 4 under switching.

system reduce to the same diagonal subsystem

∂ξ

∂t
+

[

−1 0
0 1

]

∂ξ

∂s
= 0,

ξ2(t, 0) =
3

2
ξ1(t, 0), ξ1(t, 1) =

1

4
ξ2(t, 1),

(46)

which satisfied the spectral radius condition

ρ

([

0 1
4

3
2 0

])

= 0.6124 < 1,

implying that the solution of the subsystem (46) starting with
initial condition for ξ̄(s) =

[

1 1
]⊤

, s ∈ (0, 1) decays
exponentially fort → ∞. However, following the represen-
tation (44), we observe that for the non-diagonal switching
system‖u(t)‖∞ is not bounded ast → ∞. See Figure 5 for
the growth of‖u(t)‖∞ where the solutionu is again obtained
by using a two-step Lax-Friedrichs scheme as in Example 2.
�

V. FINAL REMARKS

We present a generalization of a well-known mechanism for
stability of hyperbolic PDE systems [23] to the case in which
the switching occurs among a set of systems that may differ in
the system matrix function and/or boundary conditions. When
constituent PDEs are in the canonical diagonal form, we derive
a sufficient condition for exponential stability under arbitrary
switching signals. For the case in which the system matrix
functions are not diagonal, the result holds when they are
jointly diagonalizable. This results in a commutativity condi-
tion that has a counterpart in the switched ODE literature [3].

It is also clear that, although the switching signal represents
joint switching of the boundary conditions and system matri-
ces, the results apply for switching the boundary conditions
or system matrices individually by introducing appropriate
auxiliary modes, which is just a matter of notational conve-
nience. Thus, the treatment presented in this article mightbe of
interest in control settings under abruptly changing boundary
conditions and operating regimes such as the opening and

closing of gates in a cascade of open-canal pools, the dynamics
of which are classically modeled by the linearized Saint-
Venant equations [31].

A limitation of the results obtained here is that they are
valid only for almost conservative systems (see Remark 1).
Thus, it will be interesting to investigate if, possibly by
using different methods, other conditions can be found that
guarantee absolute exponential stability for less conservative
systems. In particular, our results motivate a Lyapunov theory
for switching infinite dimensional systems.
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