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Abstract

We describe a simple pseudo-polynomial-time dynamic @nogning algorithm to solve the max-
imum weight stable set problem along with the weighted irtejent domination problem in some
classes of graphs, including equistable graphs. Thesseslasot contained in any nontrivial heredi-
tary class, are defined by the existence of a cost structutiesovertices where maximal stable sets are
characterized by their costs. Our results are obtainedmiitie wider context of Boolean optimization;
corresponding hardness results are also provided.

1 Introduction

In this paper, we present an approach to solvingtAZIMUM WEIGHT STABLE SET PROBLEM, as well as
theWEIGHTED INDEPENDENT DOMINATION PROBLEMIN some graph classes for which these problems are
NP-hard, including the well-known class of equistable bsapA lot of recent work focuses on solving such
problems on hereditary classes of graphs, typically usiragaxcterizations by forbidden induced subgraphs
(see, for example, [1] 2] 5118,112] and the references thengicontrast, the graph classes in this paper, such
as the class of equistable graphs, are not contained in amyrin@l hereditary class; therefore a different
approach becomes necessary.

Our results are based on the more general framework of Bo@ptamization. LetV be a finite set
and f : BY — B a Boolean function, wher8 = {0,1}. Denote the set of théalse pointsof f by
F(f)={xe B : f(x)=0}. Now consider the followingi/AXIMUM WEIGHT FALSE POINT PROBLEM
with objective coefficients (weightsy € RY:

T
max W X
1)

st. xeF(f).
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The connection between Probleni (1) and thexiMuM WEIGHT STABLE SET PROBLEM is provided
by the following definition:

Themaximal stability functiory : BY — B of a graphG = (V, E) takes the valug (x) = 0 if and only
if x is the characteristic vector of a maximal stable se¥pnd takes the valug(x) = 1 otherwise. Notice
that for such a functiorf, (Il) becomes the well-knowmAXIMUM WEIGHT STABLE SET PROBLEM for G.

Similarly to () one can define th@INIMUM WEIGHT FALSE POINT PROBLEM. When the function
f is the maximal stability function of some graph, this prableecomes th&EIGHTED INDEPENDENT
DOMINATION PROBLEM.

The key feature of our approach is to represent, when pessihé feasible set of](1) as the set of
solutions where, given a cost function V' — N on the variables, the total cost of variables taking vdlue
lies in some seT’ C R.:

F(f)={xeBY : c'xeT}. 2)

In particular, we are interested in the following speciaes

Case 1.7 consists of a single valud = {t}.
Case 2.T is aninterval:T' = [a, b].

Case 3. The setl" is given by a membership oracle, along with an upper bauhd N satisfyingT" C [0, M].

Let us now recall the original definition efjuistable graphby Payan in 1980[13]: A grapfy = (V. E)
is called equistable if and only if there exists a positiveegert and a cost functiore : V' — N on the
vertices ofG such that a subset C V' is a maximal stable set @ if and only if > o c(v) = t. In this
casec is called arequistable cost functignwhile the pair(c, ¢) is called arequistable cost structure

In the recent years, equistable graphs have been receimifgceeasing amount of attention (see for
example Chapter 14 in[9] and the papérs]6, 7,10, 14]). Wearkrthat in the literature the costsare
usually called weights; in order to avoid confusion with thieights related to th&AXIMUM WEIGHT
STABLE SET PROBLEMour paper does not follow this convention.

It is easy to observe that a graph is equistable if and onlg ifnaximal stability function is of the type
described irCase labove. Similarly, one can consider the graph class cornebpg toCase 2

Definition 1. A graphG = (V, E) is calledinterstableif and only if there exists an intervad, b)) C R
and a cost functior : V' — N on the vertices off such that a subsef C V' is a maximal stable set @f if
andonly ify " ¢ c(v) € [a,b]. In this casec is called aninterstable cost functigrwhile the pair(c, [a, b))
is called aninterstable cost structure

Interstable graphs are a natural generalization of edpiéstiraphs. These classes have many interesting
structural properties of independent interest; for anweer including some recent results seel[11].

We remark that allowing non-integer costs (i.e., consigdgigost functions of the form : V" — R
instead ofc : V — N) does not change the set of representable functions anthgrapowever, the
complexity considerations in the remainder of this papercaly applicable to the integer case or to cases
in which there is a specified common denominaor
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The rest of the paper is structured as follows: we first inicedsome necessary definitions and conven-
tions. Then in Sectiohl2, we provide hardness results fopthblems under consideration and examine
the relationship between equistable graphs and heredjtaph classes. In Sectibh 3, we provide a pseudo-
polynomial-time algorithm based on dynamic programmirag folves((ll) in a general setting, and examine
the implications for themAXIMUM WEIGHT STABLE SET PROBLEM in graphs. A variant of the method
provides a solution to the/EIGHTED INDEPENDENT DOMINATION PROBLEMIn the graph classes under
consideration. In these results, we assume that the inpphgrare given together with an equistable or
interstable cost structure. Finally, Sectidn 4 examin@sesecognition problems associated with equistable
graphs.

Definitions and Notations

All graphs considered in this paper are finite, undirectathaut loops or multiple edges. A class of graphs
is hereditaryif it is closed under deletion of vertices. For a graph we denote by (G) and E(G)

the vertex set and the edge set@f respectively. As usualP,, and K,, denote the chordless path and
the complete graph on vertices, respectively. The weight and cost of a subSeC V' are defined as
w(X) = > exw(z)andce(X) = > .y c(x), respectively. Astable(or independentsetin a graph is a
set of pairwise non-adjacent vertices. TWexIMUM STABLE SET PROBLEM is that of finding, in a given
graph, a stable set of the maximum size. If each vertex oftyghgs assigned a positive weight, the problem
generalizes to th®IAXIMUM WEIGHT STABLE SET PROBLEM, which asks for a stable set of the maximum
total weight. Adominating sein a graph is a seb C V(&) such that every vertex outside is adjacent to
some vertex inD. An independent dominating sista set that is both independent and dominating. (Note
that a set is an independent dominating set if and only ifaniginclusion-wise) maximal stable set.) The
WEIGHTED INDEPENDENT DOMINATION PROBLEMIS that of finding, in a given vertex-weighted graph, an
independent dominating set of minimum total weight.

We also use the following convention: for a function: V' — R on a finite setl” let v denote the
corresponding vector with coordinates indexedihy

2 Hardness Results

First, we observe that theAXIMUM WEIGHT FALSE POINT PROBLEM is NP-hard as it generalizes the
well-known subset sunproblem [4], which asks whether, given positive integeys. . ., a,, b, there is a
subset/ C {1,...,n}suchtha®_,_;a; = 0.

Theorem 1. The problem

max WTX

st. xeBY,c'xeT.

is NP-hard, even whefi = {t¢} for somet € N.

In view of this negative result, it is natural to ask whether problem becomes easier if the false points
correspond to the maximal stable sets of a given graph.ristout that this is not the case:



Theorem 2. Finding a maximum weight stable set in an equistable graphHX-hard, even if the graph
is given together with an equistable cost structure. (Thiglies both inapproximability and strong NP-
completeness.)

Proof. We will carry out a transformation from the stable set prabia graphs, which is APX-hard.

Let G = (V, E) be an undirected graph with verticés, 2, ..., n}. We will create an equistable graph
as follows.

Let G’ = (V’, E’) be a graph created as follows:

o V' =Avy,...,vn} U{wr,...,wy} U{ue: e € E}
e Foreachj =1,...,n, there is an edge;w; € E'.
e For each edge = ij € E, there are edge§v;, vju., andv;u, in E’.

Property 1. A setS C {1,2,...,n} is a stable set in// (not necessarily maximal) if and only if the
following set is a maximal stable set¥i: {v; : j € S}U{w; : j &S} U{u;; : i ¢S, 5 &S}

By Property[ 1, there is a one-to-one correspondence betstable sets i’ and maximal stable sets
in V',

We will next assign costs to each vertex16f such that every maximal stable set16f has the same
costt and every other subset bf has a different cost.

Letby,...,b, be integers whose values will be assigned shortly.

Let{a. : e € E'} be a set of integers whose values will be assigned shortly.

The cost of vertex; isb; +3 3, p aij. We refer tob; as theV-costof v, and we refert@ >, ai;
as theE-costof v;.

The cost of vertexv; isb; +2 3, p aij. We refer tob; as theV-costof w;, and we refert@ > °,. » ai;
as theE-costof w;.

The cost of vertex;; is a;;, and we also call this value thié-costof u;;.
Finally, lett = >~ 1 b; + 53 cp de.

Lemma 1. Each maximal stable set i’ has cost.

Proof. Each maximal stable sét' has either vertex; or w;, but not both. The sum of thE-costs of the
vertices ofS is thus)_" | b;. For eachij € E, a maximal stable sef will contain exactly one of the
following:

® Vi, Wy, or
® Wy, Vj, or

® Wi, Wi, Ujj-



All three stable sets contribute exaclly;; to the E-cost of S. Thus the totalF-cost of S"is 53, .  aij,
and the total cost of vertices 6f is ¢. O

We now assign values to thés anda’s.

There aren + m different values we need to assign (whete= | E|). The first integer is}, the second
is 82, the third is83, etc. After assigning these costs, the following lemmatis:tr

Lemma 2. A subset irl’’ has cost if and only if it is a maximal stable set.
Proof. We only need to show that every subset with costust be a maximal stable set. We call a set
S C V(G') vertex maximaif for every j, S containsv; or w; but not both. We say thatt is edge maximal

if for every edgeij € E, S contains (1); andw; or (2) w; andv; or (3) w;, w; andu,;. A stable setS' is a
maximal stable set o’ if and only if it is vertex maximal and edge maximal.

Fori € {1,...,n}, letb; = 8'. Suppose:; is the value associated with theth edge. Let; = 8",
SupposeS has a cost of. We will show that it is a maximal stable set. By consideriradues mod’*!,
one can show tha$ must contain vertex; or vertexw; but not both; thereforey is vertex maximal.
Now consider edgej € E, and suppose it is the-th edge. The contribution due to edgein any vertex
maximal subses is eitherda;;, 5a;;, 6a;; or 7a;;. By considering values magi"+*+1, one can show that
the contribution of the edgg must be5a;;, and thusS has edge maximality with respect to tiji¢h edge,
and soS is also edge maximal. Thu§,is a maximal stable set @¥’. O

ThereforeGG’ is equistable, and an equistable cost structur@’a$ given by the costs defined above.

We are now ready to complete the proof that the maximum weitgdiile set problem on equistable
graphs is NP-complete.

Consider the transformation given above, and let the wesfletach vertex; be 1, and the weight of
all other vertices is 0. Finding a maximum weight stable sefi is equivalent to finding a maximum
cardinality stable set i, and this problem is APX-hard. O

Theorem 3. Finding a maximum cardinality stable set in an equistablepiris APX-hard, even if the graph
is given together with an equistable cost structure.

Proof. Carry out the same transformation as in the proof of Thedilehiavever, in this case, replace each
vertexv; by @ identical copies ofy;, each with a cost o(bj +3> iier aij) /Q. For eachij ¢ E, a
maximal stable sef’ in the transformed grapf’ will contain exactly one of the following:

e w; plus all@Q copies ofv;, or

e w; plus all@Q copies ofv;, or

® Wi, Wy, Uij-
As before, every maximal stable set has the samet@usd every other subset has a different cost.

Moreover, any stable sétof cardinality K in G will induce a stable se$’ in G’ with

QK +n—-K<|S <QK+n—-K+m,

found as follows:



e Foreachj € S, all Q copies ofv; are inS’.
e Foreachj € V\S,w; € 5.

e Forallij € Ewithv; ¢ Sandv; € S, u;; € 5.

Suppose&) = (m + n)/e for some fixedk > 0. Let S* be a maximum stable set @. ThenG’ contains
a maximum stable sef such thaiS| > Q|S*|. Suppose that one can guarantee a solution that is within a
factor ¢ from optimality for the stable set problem on equistablephsdc < 1). Then one could guarantee
a factorc — e from optimality for the stable set problem in general gragigppose that we have a stable set
S’ in the transformed equistable graghsuch thatS’| > ¢|S|. This set can be used to generate a stable set
S in the original graph with

S| = (m+n) _ S|~ (m+n)
Q B Q
So, ac-approximation for the stable set problem in the equistgbdg@hs yields &c — ¢)-approximation for

the stable set problem in the original graph. This showsfthding a maximum cardinality stable set in an
equistable graph is APX-hard. O

5] > > 57| — |7

The argument used to prove Theorgim 1 also shows thatith@ UM WEIGHT FALSE POINT PROBLEM
is NP-hard. It turns out that the problem remains hard evegrphs with unit weights:

Theorem 4. Finding a minimum independent dominating set in an equistgbaph is APX-hard, even if
the graph is given together with an equistable cost strgctur

Proof. One can do exactly the same transformation as above, théswiith Q = m?, except that one
replaces each of the; vertices by copies ofv; and one replaces each of the vertices by2@) copies of
w;. Then any independent dominating set in the transformephgnall have all@ copies ofv; or it will
have all2Q) copies ofw;.

Suppose that there is a maximum stable $eh G with K vertices. Then there is an independent
dominating sef’ in G’ with

QK +2Q(n—K) <[5 <QK +2Q(n—K)+m.

That is,
2Qn — QK < |5 <2Qn — QK +m.

The maximum stable set problem is APX-hard even if restli¢gteinstances in which the maximum
stable set size is strictly greater thay2. We will show that any algorithm that guarantees a relativere
of at moste for the minimum independent domination problem for eqbitayraphs will induce a solution
for the maximum stable set problem with a relative error ahast3e, restricted to instances with > 1/¢
and such that the maximum stable set size is strictly gréaden /2.

Consider such a grapfi and letG’ be the transformeg equistablq graph. Kétbe a maximum stable
setinG. ThenG’ contains an independent dominating Setuch that S| < 2Qn — Q|S*| + m. Suppose
that we have an independent dominating Setn G’ such that|S’| < (1 + ¢€)|S|. This set can be used
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to generate a stable sgtin the original graph with.S| > 2n — 1S'1/Q. Since|S’| < (1 + ¢)|S| and
|S| < 2@Qn — Q|S*| + m, it follows that |S| > (1 + €)|S*| — 2en — (1 + ¢)m/Q. Furthermore, as
(14 €)m/Q < 2¢, we obtain

1S > (14 €)IS7| = 2(n + L)e > (14 €)[S7| — 45| = (1 — 30)|5".

Thus, if one could approximate the minimum independent dation problem in equistable graphs by a
factor better than + ¢ in polynomial time, then one could approximate the maximtable set problem by
a factor better thath — 3e. This proves that the minimum independent domination okl APX-hard on
equistable graphs. O

We conclude this section by examining the relationship betwequistable graphs and hereditary graph
classes. As already observed by Payan [13], equistabl&égdpnot form a hereditary class of graphs. For
example, letd denote the graph obtained from a pdtlon four vertices by introducing a new vertex and
joining it to the two middle vertices aP. The A graph is equistable and contains a non-equist&hlas an
induced subgraph.

It is therefore natural to ask what is the largest hereditdags|ES|~ of graphs contained in the class
of equistable graphs and, similarly, what is the smalleseditary class€S]t of graphs that contains
equistable graphs. Combining the above observations witteexisting results from the literature, we can
give a complete answer to these questions.

Proposition 1.
(1) [ES]™ is the class of?s-free graphs.
(ii) [ES]T is the class of all graphs.

Proof. The proof of(:) is straightforward. On one hand, since the grdfhs not equistable, the largest
hereditary class of graphs contained in the class of edpistaaphs must be a subclassiyffree graphs.
On the other handP;-free graphs are equistable [9]. Therefore, it follows {a&|~ = { P,-free graphs.

The reduction performed in the proof of Theoréim 2 shows thettyegraph is an induced subgraph of an
equistable graph. Therefore, the smallest hereditary ¢het contains equistable graphs is the class of all
graphs. This establishési). O

3 The Dynamic Programming Algorithm

In this section we present a dynamic programming solutianttie MAXIMUM WEIGHT FALSE POINT
PROBLEM (). As special cases we obtain pseudo-polynomial-timerdkgns for theMAXIMUM WEIGHT
STABLE SET and thewEIGHTED INDEPENDENT DOMINATION PROBLEMSIN equistable and interstable
graphs (cf. Sectiohl 1), provided that the input graph isgugd with an equistable (resp. interstable) cost
structure. Note that in the following analysis we adopt ihepdifying assumption that arithmetic operations
can be carried out in(1) time.

LetV = {vy,...,v,} be afinite setc : V' — N an integer-valued cost function and: V' — R, a
set of weights. According to the framework outlined in thigEdduction we are going to represent the set of
false points by requiring costs to fall within a prescribetdset ofR ., see[(R).
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For a setT” ¢ Ry let fr : BY — B denote the function defined (via the set of false points) by
F(fr) = {x € BY : c¢'x € T} and letM ¢ N be an integer satisfying/ > sup(7). Let us also
assume that there exists a membership oracle which for aay gic N determines whethér € T" holds.

Theorem 5. LetV, ¢, w, T'and M as above. Then theAXIMUM WEIGHT FALSE POINT PROBLEM

max WTX

st x e F(fr) ®)

can be solved in tim@(nM) using M calls to the membership oracle.

Proof. Foreachi € {1,...,n}andj € {0,1,..., M}, let us introduce the number(j) as the maximum
possible weight of a subset of the fiistlements ol whose total cost ig:

qi(j) = max{w(S) : § S {vr,...,vi}, () =j}.

We can compute the values gf(j) in a recursive manner. Starting with= 1, we have, for each
je{0,1,...,.M}:
) w(l), if e(vy) =j;
Q1(j) :{ ( ) ( 1) J

—o0, oOtherwise.

Now leti > 1 and assume that the values{af_1(j) : j € {0,1,..., M}} have already been computed.
If the cost ofv; exceedg, then, since all the costs are positive, the elemgotannot appear in any set that
attains the maximum ig;(j); we thus have;(j) = ¢;—1(j) in this case. Otherwise, a subsef{of, ..., v;}
achieving maximum weight can either contajror not. Thus, for each € {0,1,..., M}:

o max { w(i) +qi—1(j —c(v)) , qi—1(J) }, 0 c(vi) < 7
() = { ¢i-1(J), e B otherwiset.7

Using the above recursive formula, we can compute alythg values in timeO(nM). The optimum
of () is now given bymax{q,(j) | 7 € T'}; since we already have thg(;j) values, we can easily find this
value in timeO (M) using M calls to the membership oracle. O

Notice that by replacingitiax” with “min” in the above algorithm, we can also solve thexiMuMm
WEIGHT FALSE POINT PROBLEM Thus Theorerl5 provides a solution to thexiMvum andMINIMUM
WEIGHT FALSE POINT PROBLEMSfor the generic Boolean framework outlined@ase 3(Sectior1). We
now specialize this result ©Gases land2, which leads to solving the corresponding graph problems.

Corollary 1 (Equistable graphs)LetG = (V, E') be a graph with an equistable cost structyre¢). For
any weight functionv : V' — R theMAXIMUM WEIGHT STABLE SET and thewEIGHTED INDEPENDENT
DOMINATION PROBLEMS for G can be solved in tim@(nt), wheren = |V,

Proof. According to the definition of equistable graphs, for theBet {t¢} the functionf is the maximal
stability function ofG. Let M = ¢ = sup(7’) and notice thal’, ¢, w, 7" and M satisfy the conditions of
Theoren{b. Since the membership oracle simply has to dedid¢herk = ¢ holds for a given integet,
the claim immediately follows. O



Corollary 2 (Interstable graphs)LetG = (V, E) be a graph with an interstable cost structuie [a, b]).
For any weight functionv : V' — R the MAXIMUM WEIGHT STABLE SET and thewEIGHTED INDEPEN
DENT DOMINATION PROBLEMS for G can be solved in timé&(nb), wheren = |V|.

Proof. LetT = [a,b], andM = b = sup(T’). The claim follows similarly to the proof of Corollaty 1. [

4  Further Complexity Issues

For an equistable grapH, let us define

t(G) = min{t € N : there is an equistable cost structure@fwith targett} .

In view of the above) (nt) algorithm and the NP-hardness result of Sedtion 2, it israhita expect that
there exist equistable graphsewertices such that &) is not bounded by any polynomial. Indeed, it turns

out that there are equistable graphsovertices for whicht(G) = Q (2\’7; )

We start with two preliminary observations.

For a graphG, we denote byS(G) the set of all maximal stable sets @f and by7 (G) the set of all
other nonempty subsets Bf(G).

Proposition 2. Let G be a graph, and let : V(G) — R,. Then,c is not an equistable cost function of
G if and only if eithere(S1) # ¢(S2) for someSy, So € S(G), or ¢(S) = ¢(T) for someS € S(G) and
T € T(G).

Proof. Letc : V(G) — R,. Clearly, if not all maximal stable sets have the same casf, the cost of
a non-maximal-stable set coincides with the cost of a malxgtadle set, thewr is not an equistable cost
function.

Conversely, suppose thatS,) = ¢(S2) for all 51,52 € S(G). Then all maximal stable sets have the
same cost, say If, in addition, ¢(S) # ¢(T') holds for everyS € S(G) andT € 7(G), then the only sets
of costt are maximal stable sets, and the gairt) is an equistable cost structure Gf O

We say that a finite set of positive numbers has thstinct-subset-sum®SS) property if and only if
all the sums of the formy_ . ., a, whereA’ ranges over all subset$ C A, are distinct.

Let GG,, denote a disjoint union of copies ofK>. The graphs7,, are P;-free, and thus equistablel [9].
Also, we remark that the maximal stable sets5f are precisely the sets obtained by choosing one vertex
from each copy of<s.

Proposition 3. Let G, denote a disjoint union of copies ofKy, and letc : V(G,,) — Ry. Thencis an
equistable cost function a@f,, if and only if the following two conditions are satisfied:

(i) Foreveryu,v € V(G,), c(u) = c(v) ifand only ifu = v or u,v € E(Gy,).

(i7) The set of costéc(v) : v € V(Gy,)} has the distinct-subset-sums property.



Proof.Let V(G,,) = {v1, v}, ..., vn, v} sothatE(G),) = {viv], ... ,v,0)}.
First, we show necessity of the two conditions.

Consider an equistable cost structgeet) of G,,. Let uv be an edge of7,,, and letS be a maximal
stable set in,, such thatu € S. Thenv ¢ S, and the set’ obtained by replacing by v in S is again
maximally stable. Since all maximal stable sets have theesanst, we conclude thafu) = c(v).

Conversely, suppose thatu) = c(v) for two verticesu andv such that: # v anduv ¢ E(G,,). LetS
be a maximal stable set {fi,, such that. € S andv ¢ S. The setS’ obtained by replacing by v in S is
of the same cost a$, and thus maximally stable. It follows that the unique nbiyh/’ of v in G,, does not
belong toS’. But thenS N {v,v'} = 0, contradicting the fact tha is a maximal stable set. This settlg$.

For (ii), suppose that the set of cogigv) : v € V(G,,)} does not have the DSS property. Also,det
be the cost assigned to the vertieggsaind/, fori € {1,...,n}. Assume for contradiction that there exist
two distinct nonempty subsefs.J C {1,...,n} suchthad ., c; = > .. ¢; (without loss of generality,
I andJ can be assumed to be disjoint). Then, the set

jeJ

Ui={v:ielfu{vi:iel}U{v;:ie{l,...,n}igTUJ}

is a non-stable subset bf(G,,) of total costt, contradicting the fact thatis an equistable cost function of
G, with targett. This settlegii) and with it the necessity of the two conditions.

Now, we show sufficiency. Suppose that V' (G,,) — R satisfies the conditiong) and (i) but is not
an equistable cost function. Since the maximal stable $&t5, @re precisely the sets obtained by choosing
one vertex from each copy df5, condition (i) implies that they all have the same cost. By Proposltion 2
we conclude that there exist € S(G) andT € 7(G) such thate(S) = ¢(T'). Clearly, we may assume
thatS = {v1,...,v,}. Furthermore, we may assume @y that for everyi € {1,...,n}, we havey; € T
wheneven € T (since otherwise we can replacgewith v; to obtain a set ir? (G,,) of the same cost). Let
I={i:ie{l,...,n},v,v,eT} andJ ={j : je{l,...,n}, v; € S\T}. By definition, the set$
and.J are disjoint. Moreover, since all the costs are posiii¥s, = ¢(71") implies that neither of the sefs
T is contained in the other one, and thiuand.J are non-empty. Finally, the conditietiS) = ¢(7') implies
that) ., c; = c¢(T\S) = ¢(S\T) = >_,c;¢j- This contradicts the propertyi) and completes the proof
of the proposition. O

Theorem 6. LetG,, denote a disjoint union of copies ofK,. Thent(G,,) = Q (%)
Proof. Consider an equistable cost structyeet) of GG,,. By Propositio B, the set of cos{g(v) : v €
V(Gp)} has the DSS property. As shown by Erdés and Moserlin [3], tagimum element of any.-

element set of positive integers with the DSS property masiflorder(2 (%) Therefore, it follows that

t > max{c(v) :v e V(Gp)} =N (\2/—%) and the proof is complete. O
We conclude the paper with another hardness result. Whethestable graphs can be recognized in

polynomial time is an interesting, and to the best of our Kedge still open, questicﬁh. However, the

theorem below seems to indicate that any potential polyabracognition algorithm would have to rely on

*As mentioned in[i7], referring to a remark by Igor Zverovitiere is an exponential-time algorithm to recognize angtghle
graph.
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the structural properties of equistable graphs, as eveftthesctness’ of equistable cost functions is hard
to verify.

Theorem 7. Given a graphG and a cost functiorc : V(G) — N, it is co-NP-complete to determine
whetherc is an equistable cost function 6f.

Proof. The problem is in co-NP, since by Propositidn 2 we can exhilirtificate (verifiable in polynomial
time) which shows that is not an equistable cost function.

To show NP-hardness, we use a reduction from the followinechifAplete problem calledieak parti-
tion [15,[16, 171]:

Instance:A finite setA and a sizes(a) € N for eacha € A.
Question:Are there disjoint non-empty subsets, As C Asuchthad_ ., s(a) =>4, s(a)?

Consider an instance of the weak partition problem comgjsif a setd and sizegs(a) : a € A).

We may assume that all the size@:) are distinct (since otherwise the answer to the weak partiti
problem isye9. We construct a grapy = (V, E') and a cost functior : V(G) — N as follows:

e V=AUA whered’ ={d : a € A} is adisjoint copy ofA4,
e F=1{ad : a € A},

e c(a) = c¢(d') = s(a) for everya € A.

Note thatG is isomorphic to the grapty,, (with n = |A|) from Propositiori 3. By Propositidd 8, is
an equistable cost function @f if and only if the set{c(v) : v € V(G,,)} has the distinct-subset-sums
property. Clearly, this is the case if and only if the answeethie weak partition problem iso, and any
algorithm for determining whether a given cost functionnsegjuistable cost function of a given graph can
be used to solved the weak partition problem. This complteproof. O

5 Conclusion

In this paper, we provided hardness results and simple psgoignomial-time algorithms for th&ax -
IMUM WEIGHT STABLE SET and thewEIGHTED INDEPENDENT DOMINATION PROBLEMSIN equistable
graphs equipped with an equistable cost structure. Thedpsgolynomial algorithms are based on a dy-
namic programming approach and can be applied within the meneral framework of Boolean optimiza-
tion.

The problem of recognizing equistable graphs in polynotiria¢ is still open. One of the results in this
paper shows that verifying whether a given cost functiorhenvertices of a graph defines an equistable cost
structure is a hard problem, indicating that any polynoriiak recognition algorithm of equistable graphs
would most probably have to rely on the structural propsmieequistable graphs. This provides additional
motivation for further investigation of the structural pesties of equistable graphs, initiated for particular
graph classes in [6] [7, 110,114] and continued for generak&hle graphs in[11].
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