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Abstract

We describe a simple pseudo-polynomial-time dynamic programming algorithm to solve the max-
imum weight stable set problem along with the weighted independent domination problem in some
classes of graphs, including equistable graphs. These classes, not contained in any nontrivial heredi-
tary class, are defined by the existence of a cost structure onthe vertices where maximal stable sets are
characterized by their costs. Our results are obtained within the wider context of Boolean optimization;
corresponding hardness results are also provided.

1 Introduction

In this paper, we present an approach to solving theMAXIMUM WEIGHT STABLE SET PROBLEM, as well as
theWEIGHTED INDEPENDENT DOMINATION PROBLEMin some graph classes for which these problems are
NP-hard, including the well-known class of equistable graphs. A lot of recent work focuses on solving such
problems on hereditary classes of graphs, typically using characterizations by forbidden induced subgraphs
(see, for example, [1, 2, 5, 8, 12] and the references therein). In contrast, the graph classes in this paper, such
as the class of equistable graphs, are not contained in any non-trivial hereditary class; therefore a different
approach becomes necessary.

Our results are based on the more general framework of Boolean optimization. LetV be a finite set
and f : BV → B a Boolean function, whereB = {0, 1}. Denote the set of thefalse pointsof f by
F(f) = {x ∈ BV : f(x) = 0}. Now consider the followingMAXIMUM WEIGHT FALSE POINT PROBLEM

with objective coefficients (weights)w ∈ R
V
+:

max w
⊤
x

s.t. x ∈ F(f) .
(1)
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The connection between Problem (1) and theMAXIMUM WEIGHT STABLE SET PROBLEM is provided
by the following definition:

Themaximal stability functionf : BV → B of a graphG = (V,E) takes the valuef(x) = 0 if and only
if x is the characteristic vector of a maximal stable set ofG, and takes the valuef(x) = 1 otherwise. Notice
that for such a functionf , (1) becomes the well-knownMAXIMUM WEIGHT STABLE SET PROBLEM for G.

Similarly to (1) one can define theMINIMUM WEIGHT FALSE POINT PROBLEM. When the function
f is the maximal stability function of some graph, this problem becomes theWEIGHTED INDEPENDENT

DOMINATION PROBLEM.

The key feature of our approach is to represent, when possible, the feasible set of (1) as the set of
solutions where, given a cost functionc : V → N on the variables, the total cost of variables taking value1
lies in some setT ⊂ R+:

F(f) = {x ∈ BV : c
⊤
x ∈ T}. (2)

In particular, we are interested in the following special cases:

Case 1.T consists of a single value:T = {t}.

Case 2.T is an interval:T = [a, b].

Case 3. The setT is given by a membership oracle, along with an upper boundM ∈ N satisfyingT ⊂ [0,M ].

Let us now recall the original definition ofequistable graphsby Payan in 1980 [13]: A graphG = (V,E)
is called equistable if and only if there exists a positive integert and a cost functionc : V → N on the
vertices ofG such that a subsetS ⊂ V is a maximal stable set ofG if and only if

∑

v∈S c(v) = t. In this
casec is called anequistable cost function, while the pair(c, t) is called anequistable cost structure.

In the recent years, equistable graphs have been receiving an increasing amount of attention (see for
example Chapter 14 in [9] and the papers [6, 7, 10, 14]). We remark that in the literature the costsc are
usually called weights; in order to avoid confusion with theweights related to theMAXIMUM WEIGHT

STABLE SET PROBLEMour paper does not follow this convention.

It is easy to observe that a graph is equistable if and only if its maximal stability function is of the type
described inCase 1above. Similarly, one can consider the graph class corresponding toCase 2:

Definition 1. A graphG = (V,E) is called interstableif and only if there exists an interval[a, b] ⊂ R+

and a cost functionc : V → N on the vertices ofG such that a subsetS ⊂ V is a maximal stable set ofG if
and only if

∑

v∈S c(v) ∈ [a, b]. In this casec is called aninterstable cost function, while the pair(c, [a, b])
is called aninterstable cost structure.

Interstable graphs are a natural generalization of equistable graphs. These classes have many interesting
structural properties of independent interest; for an overview including some recent results see [11].

We remark that allowing non-integer costs (i.e., considering cost functions of the formc : V → R+

instead ofc : V → N) does not change the set of representable functions and graphs. However, the
complexity considerations in the remainder of this paper are only applicable to the integer case or to cases
in which there is a specified common denominatorQ.
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The rest of the paper is structured as follows: we first introduce some necessary definitions and conven-
tions. Then in Section 2, we provide hardness results for theproblems under consideration and examine
the relationship between equistable graphs and hereditarygraph classes. In Section 3, we provide a pseudo-
polynomial-time algorithm based on dynamic programming that solves (1) in a general setting, and examine
the implications for theMAXIMUM WEIGHT STABLE SET PROBLEM in graphs. A variant of the method
provides a solution to theWEIGHTED INDEPENDENT DOMINATION PROBLEMin the graph classes under
consideration. In these results, we assume that the input graphs are given together with an equistable or
interstable cost structure. Finally, Section 4 examines some recognition problems associated with equistable
graphs.

Definitions and Notations

All graphs considered in this paper are finite, undirected, without loops or multiple edges. A class of graphs
is hereditary if it is closed under deletion of vertices. For a graphG, we denote byV (G) and E(G)
the vertex set and the edge set ofG, respectively. As usual,Pn and Kn denote the chordless path and
the complete graph onn vertices, respectively. The weight and cost of a subsetX ⊆ V are defined as
w(X) =

∑

x∈X w(x) andc(X) =
∑

x∈X c(x), respectively. Astable(or independent) setin a graph is a
set of pairwise non-adjacent vertices. TheMAXIMUM STABLE SET PROBLEM is that of finding, in a given
graph, a stable set of the maximum size. If each vertex of the graph is assigned a positive weight, the problem
generalizes to theMAXIMUM WEIGHT STABLE SET PROBLEM, which asks for a stable set of the maximum
total weight. Adominating setin a graph is a setD ⊆ V (G) such that every vertex outsideD is adjacent to
some vertex inD. An independent dominating setis a set that is both independent and dominating. (Note
that a set is an independent dominating set if and only if it isan (inclusion-wise) maximal stable set.) The
WEIGHTED INDEPENDENT DOMINATION PROBLEMis that of finding, in a given vertex-weighted graph, an
independent dominating set of minimum total weight.

We also use the following convention: for a functionv : V → R on a finite setV let v denote the
corresponding vector with coordinates indexed byV .

2 Hardness Results

First, we observe that theMAXIMUM WEIGHT FALSE POINT PROBLEM is NP-hard as it generalizes the
well-known subset sumproblem [4], which asks whether, given positive integersa1, . . . , an, b, there is a
subsetI ⊆ {1, . . . , n} such that

∑

i∈I ai = b.

Theorem 1. The problem
max w

⊤
x

s.t. x ∈ BV , c
⊤
x ∈ T .

is NP-hard, even whenT = {t} for somet ∈ N.

In view of this negative result, it is natural to ask whether the problem becomes easier if the false points
correspond to the maximal stable sets of a given graph. It turns out that this is not the case:
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Theorem 2. Finding a maximum weight stable set in an equistable graph isAPX-hard, even if the graph
is given together with an equistable cost structure. (This implies both inapproximability and strong NP-
completeness.)

Proof.We will carry out a transformation from the stable set problem in graphs, which is APX-hard.

Let G = (V,E) be an undirected graph with vertices{1, 2, . . . , n}. We will create an equistable graph
as follows.

Let G′ = (V ′, E′) be a graph created as follows:

• V ′ = {v1, . . . , vn} ∪ {w1, . . . , wn} ∪ {ue : e ∈ E}.

• For eachj = 1, . . . , n, there is an edgevjwj ∈ E′.

• For each edgee = ij ∈ E, there are edgesvivj, viue, andvjue in E′.

Property 1. A setS ⊆ {1, 2, . . . , n} is a stable set inV (not necessarily maximal) if and only if the
following set is a maximal stable set inV ′: {vj : j ∈ S} ∪ {wj : j 6∈ S} ∪ {uij : i 6∈ S , j 6∈ S}.

By Property 1, there is a one-to-one correspondence betweenstable sets inV and maximal stable sets
in V ′.

We will next assign costs to each vertex ofV ′ such that every maximal stable set ofV ′ has the same
costt and every other subset ofV ′ has a different cost.

Let b1, . . . , bn be integers whose values will be assigned shortly.

Let {ae : e ∈ E} be a set of integers whose values will be assigned shortly.

The cost of vertexvj is bj +3
∑

ij∈E aij . We refer tobj as theV -costof vj, and we refer to3
∑

ij∈E aij

as theE-costof vj .

The cost of vertexwj is bj +2
∑

ij∈E aij. We refer tobj as theV -costof wj , and we refer to2
∑

ij∈E aij

as theE-costof wj .

The cost of vertexuij is aij, and we also call this value theE-costof uij .

Finally, let t =
∑n

i=1
bi + 5

∑

e∈E ae.

Lemma 1. Each maximal stable set inV ′ has costt.

Proof. Each maximal stable setS′ has either vertexvj or wj , but not both. The sum of theV -costs of the
vertices ofS is thus

∑n
i=1

bi. For eachij ∈ E, a maximal stable setS will contain exactly one of the
following:

• vi, wj, or

• wi, vj, or

• wi, wj, uij.
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All three stable sets contribute exactly5aij to theE-cost ofS. Thus the totalE-cost ofS′ is 5
∑

ij∈E aij ,
and the total cost of vertices ofS′ is t.

We now assign values to theb’s anda’s.

There aren + m different values we need to assign (wherem = |E|). The first integer is8, the second
is 82, the third is83, etc. After assigning these costs, the following lemma is true:

Lemma 2. A subset inV ′ has costt if and only if it is a maximal stable set.

Proof. We only need to show that every subset with costt must be a maximal stable set. We call a set
S ⊆ V (G′) vertex maximalif for every j, S containsvj or wj but not both. We say thatS is edge maximal
if for every edgeij ∈ E, S contains (1)vi andwj or (2)wi andvj or (3)wi, wj anduij. A stable setS is a
maximal stable set ofG′ if and only if it is vertex maximal and edge maximal.

For i ∈ {1, . . . , n}, let bi = 8i. Supposeaj is the value associated with thej-th edge. Letaj = 8n+j .
SupposeS has a cost oft. We will show that it is a maximal stable set. By considering values mod8j+1,
one can show thatS must contain vertexvj or vertexwj but not both; therefore,S is vertex maximal.
Now consider edgeij ∈ E, and suppose it is thek-th edge. The contribution due to edgeij in any vertex
maximal subsetS is either4aij , 5aij , 6aij or 7aij . By considering values mod8n+k+1, one can show that
the contribution of the edgeij must be5aij , and thusS has edge maximality with respect to thej-th edge,
and soS is also edge maximal. Thus,S is a maximal stable set ofG′.

ThereforeG′ is equistable, and an equistable cost structure ofG′ is given by the costs defined above.

We are now ready to complete the proof that the maximum weightstable set problem on equistable
graphs is NP-complete.

Consider the transformation given above, and let the weightof each vertexvj be 1, and the weight of
all other vertices is 0. Finding a maximum weight stable set in G′ is equivalent to finding a maximum
cardinality stable set inG, and this problem is APX-hard.

Theorem 3. Finding a maximum cardinality stable set in an equistable graph is APX-hard, even if the graph
is given together with an equistable cost structure.

Proof.Carry out the same transformation as in the proof of Theorem 2. However, in this case, replace each

vertexvj by Q identical copies ofvj , each with a cost of
(

bj + 3
∑

ij∈E aij

)

/Q. For eachij ∈ E, a

maximal stable setS′ in the transformed graphG′ will contain exactly one of the following:

• wj plus allQ copies ofvi, or

• wi plus allQ copies ofvj , or

• wi, wj, uij.

As before, every maximal stable set has the same costt and every other subset has a different cost.

Moreover, any stable setS of cardinalityK in G will induce a stable setS′ in G′ with

QK + n − K ≤ |S′| ≤ QK + n − K + m ,

found as follows:
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• For eachj ∈ S, all Q copies ofvj are inS′.

• For eachj ∈ V \S, wj ∈ S′.

• For all ij ∈ E with vi 6∈ S andvj 6∈ S, uij ∈ S′.

SupposeQ = (m + n)/ǫ for some fixedǫ > 0. Let S∗ be a maximum stable set inG. ThenG′ contains
a maximum stable set̂S such that|Ŝ| ≥ Q|S∗|. Suppose that one can guarantee a solution that is within a
factorc from optimality for the stable set problem on equistable graphs(c < 1). Then one could guarantee
a factorc− ǫ from optimality for the stable set problem in general graphs. Suppose that we have a stable set
S′ in the transformed equistable graphG′ such that|S′| ≥ c|Ŝ|. This set can be used to generate a stable set
S in the original graph with

|S| ≥
|S′| − (m + n)

Q
≥

c|Ŝ| − (m + n)

Q
≥ c|S∗| − ǫ|S∗| .

So, ac-approximation for the stable set problem in the equistablegraphs yields a(c− ǫ)-approximation for
the stable set problem in the original graph. This shows thatfinding a maximum cardinality stable set in an
equistable graph is APX-hard.

The argument used to prove Theorem 1 also shows that theMINIMUM WEIGHT FALSE POINT PROBLEM

is NP-hard. It turns out that the problem remains hard even for graphs with unit weights:

Theorem 4. Finding a minimum independent dominating set in an equistable graph is APX-hard, even if
the graph is given together with an equistable cost structure.

Proof. One can do exactly the same transformation as above, this time with Q = m2, except that one
replaces each of thevj vertices byQ copies ofvj and one replaces each of thewj vertices by2Q copies of
wj. Then any independent dominating set in the transformed graph will have allQ copies ofvj or it will
have all2Q copies ofwj .

Suppose that there is a maximum stable setS in G with K vertices. Then there is an independent
dominating setS′ in G′ with

QK + 2Q(n − K) ≤ |S′| ≤ QK + 2Q(n − K) + m .

That is,
2Qn − QK ≤ |S′| ≤ 2Qn − QK + m .

The maximum stable set problem is APX-hard even if restricted to instances in which the maximum
stable set size is strictly greater thann/2. We will show that any algorithm that guarantees a relative error
of at mostǫ for the minimum independent domination problem for equistable graphs will induce a solution
for the maximum stable set problem with a relative error of atmost3ǫ, restricted to instances withm > 1/ǫ
and such that the maximum stable set size is strictly greaterthann/2.

Consider such a graphG and letG′ be the transformed equistable graph. LetS∗ be a maximum stable
set inG. ThenG′ contains an independent dominating setŜ such that|Ŝ| ≤ 2Qn − Q|S∗| + m. Suppose
that we have an independent dominating setS′ in G′ such that|S′| ≤ (1 + ǫ)|Ŝ|. This set can be used
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to generate a stable setS in the original graph with|S| ≥ 2n − |S′|/Q. Since |S′| ≤ (1 + ǫ)|Ŝ| and
|Ŝ| ≤ 2Qn − Q|S∗| + m, it follows that |S| ≥ (1 + ǫ)|S∗| − 2ǫn − (1 + ǫ)m/Q. Furthermore, as
(1 + ǫ)m/Q < 2ǫ, we obtain

|S| ≥ (1 + ǫ)|S∗| − 2(n + 1)ǫ ≥ (1 + ǫ)|S∗| − 4ǫ|S∗| = (1 − 3ǫ)|S∗| .

Thus, if one could approximate the minimum independent domination problem in equistable graphs by a
factor better than1+ ǫ in polynomial time, then one could approximate the maximum stable set problem by
a factor better than1− 3ǫ. This proves that the minimum independent domination problem is APX-hard on
equistable graphs.

We conclude this section by examining the relationship between equistable graphs and hereditary graph
classes. As already observed by Payan [13], equistable graphs do not form a hereditary class of graphs. For
example, letA denote the graph obtained from a pathP on four vertices by introducing a new vertex and
joining it to the two middle vertices ofP . TheA graph is equistable and contains a non-equistableP4 as an
induced subgraph.

It is therefore natural to ask what is the largest hereditaryclass[ES]− of graphs contained in the class
of equistable graphs and, similarly, what is the smallest hereditary class[ES]+ of graphs that contains
equistable graphs. Combining the above observations with some existing results from the literature, we can
give a complete answer to these questions.

Proposition 1.
(i) [ES]− is the class ofP4-free graphs.
(ii) [ES]+ is the class of all graphs.

Proof. The proof of(i) is straightforward. On one hand, since the graphP4 is not equistable, the largest
hereditary class of graphs contained in the class of equistable graphs must be a subclass ofP4-free graphs.
On the other hand,P4-free graphs are equistable [9]. Therefore, it follows that[ES]− = {P4-free graphs}.

The reduction performed in the proof of Theorem 2 shows that every graph is an induced subgraph of an
equistable graph. Therefore, the smallest hereditary class that contains equistable graphs is the class of all
graphs. This establishes(ii).

3 The Dynamic Programming Algorithm

In this section we present a dynamic programming solution for the MAXIMUM WEIGHT FALSE POINT

PROBLEM (1). As special cases we obtain pseudo-polynomial-time algorithms for theMAXIMUM WEIGHT

STABLE SET and theWEIGHTED INDEPENDENT DOMINATION PROBLEMSin equistable and interstable
graphs (cf. Section 1), provided that the input graph is equipped with an equistable (resp. interstable) cost
structure. Note that in the following analysis we adopt the simplifying assumption that arithmetic operations
can be carried out inO(1) time.

Let V = {v1, . . . , vn} be a finite set,c : V → N an integer-valued cost function andw : V → R+ a
set of weights. According to the framework outlined in the introduction we are going to represent the set of
false points by requiring costs to fall within a prescribed subset ofR+, see (2).
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For a setT ⊂ R+ let fT : BV → B denote the function defined (via the set of false points) by
F(fT ) = {x ∈ BV : c

⊤
x ∈ T} and letM ∈ N be an integer satisfyingM ≥ sup(T ). Let us also

assume that there exists a membership oracle which for any givenk ∈ N determines whetherk ∈ T holds.

Theorem 5. LetV , c, w, T andM as above. Then theMAXIMUM WEIGHT FALSE POINT PROBLEM

max w
⊤
x

s.t. x ∈ F(fT )
(3)

can be solved in timeO(nM) usingM calls to the membership oracle.

Proof. For eachi ∈ {1, . . . , n} andj ∈ {0, 1, . . . ,M}, let us introduce the numberqi(j) as the maximum
possible weight of a subset of the firsti elements ofV whose total cost isj:

qi(j) = max {w(S) : S ⊆ {v1, . . . , vi} , c(S) = j} .

We can compute the values ofqi(j) in a recursive manner. Starting withi = 1, we have, for each
j ∈ {0, 1, . . . ,M}:

q1(j) =

{

w(1), if c(v1) = j;
−∞, otherwise.

Now let i > 1 and assume that the values of{qi−1(j) : j ∈ {0, 1, . . . ,M}} have already been computed.
If the cost ofvi exceedsj, then, since all the costs are positive, the elementvi cannot appear in any set that
attains the maximum inqi(j); we thus haveqi(j) = qi−1(j) in this case. Otherwise, a subset of{v1, . . . , vi}
achieving maximum weight can either containvi or not. Thus, for eachj ∈ {0, 1, . . . ,M}:

qi(j) =

{

max { w(i) + qi−1(j − c(vi)) , qi−1(j) }, if c(vi) ≤ j;
qi−1(j), otherwise.

Using the above recursive formula, we can compute all theqi(j) values in timeO(nM). The optimum
of (3) is now given bymax{qn(j) | j ∈ T}; since we already have theqn(j) values, we can easily find this
value in timeO(M) usingM calls to the membership oracle.

Notice that by replacing “max” with “ min” in the above algorithm, we can also solve theMINIMUM

WEIGHT FALSE POINT PROBLEM. Thus Theorem 5 provides a solution to theMAXIMUM andMINIMUM

WEIGHT FALSE POINT PROBLEMSfor the generic Boolean framework outlined inCase 3(Section 1). We
now specialize this result toCases 1and2, which leads to solving the corresponding graph problems.

Corollary 1 (Equistable graphs). Let G = (V,E) be a graph with an equistable cost structure(c, t). For
any weight functionw : V → R+ theMAXIMUM WEIGHT STABLE SET and theWEIGHTED INDEPENDENT

DOMINATION PROBLEMS for G can be solved in timeO(nt), wheren = |V |.

Proof. According to the definition of equistable graphs, for the setT = {t} the functionfT is the maximal
stability function ofG. Let M = t = sup(T ) and notice thatV , c, w, T andM satisfy the conditions of
Theorem 5. Since the membership oracle simply has to decide whetherk = t holds for a given integerk,
the claim immediately follows.
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Corollary 2 (Interstable graphs). Let G = (V,E) be a graph with an interstable cost structure(c, [a, b]).
For any weight functionw : V → R+ theMAXIMUM WEIGHT STABLE SET and theWEIGHTED INDEPEN-
DENT DOMINATION PROBLEMS for G can be solved in timeO(nb), wheren = |V |.

Proof. Let T = [a, b], andM = b = sup(T ). The claim follows similarly to the proof of Corollary 1.

4 Further Complexity Issues

For an equistable graphG, let us define

t(G) = min{t ∈ N : there is an equistable cost structure ofG with targett} .

In view of the aboveO(nt) algorithm and the NP-hardness result of Section 2, it is natural to expect that
there exist equistable graphs onn vertices such thatt(G) is not bounded by any polynomial. Indeed, it turns

out that there are equistable graphs onn vertices for whicht(G) = Ω
(

2n/2

√
n

)

.

We start with two preliminary observations.

For a graphG, we denote byS(G) the set of all maximal stable sets ofG, and byT (G) the set of all
other nonempty subsets ofV (G).

Proposition 2. Let G be a graph, and letc : V (G) → R+. Then,c is not an equistable cost function of
G if and only if eitherc(S1) 6= c(S2) for someS1, S2 ∈ S(G), or c(S) = c(T ) for someS ∈ S(G) and
T ∈ T (G).

Proof. Let c : V (G) → R+. Clearly, if not all maximal stable sets have the same cost, or if the cost of
a non-maximal-stable set coincides with the cost of a maximal stable set, thenc is not an equistable cost
function.

Conversely, suppose thatc(S1) = c(S2) for all S1, S2 ∈ S(G). Then all maximal stable sets have the
same cost, sayt. If, in addition,c(S) 6= c(T ) holds for everyS ∈ S(G) andT ∈ T (G), then the only sets
of costt are maximal stable sets, and the pair(c, t) is an equistable cost structure ofG.

We say that a finite setA of positive numbers has thedistinct-subset-sums(DSS) property if and only if
all the sums of the form

∑

a∈A′ a, whereA′ ranges over all subsetsA′ ⊆ A, are distinct.

Let Gn denote a disjoint union ofn copies ofK2. The graphsGn areP4-free, and thus equistable [9].
Also, we remark that the maximal stable sets ofGn are precisely the sets obtained by choosing one vertex
from each copy ofK2.

Proposition 3. Let Gn denote a disjoint union ofn copies ofK2, and letc : V (Gn) → R+. Then,c is an
equistable cost function ofGn if and only if the following two conditions are satisfied:

(i) For everyu, v ∈ V (Gn), c(u) = c(v) if and only ifu = v or u, v ∈ E(Gn).

(ii) The set of costs{c(v) : v ∈ V (Gn)} has the distinct-subset-sums property.
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Proof.Let V (Gn) = {v1, v
′
1, . . . , vn, v′n} so thatE(Gn) = {v1v

′
1, . . . , vnv′n}.

First, we show necessity of the two conditions.

Consider an equistable cost structure(c, t) of Gn. Let uv be an edge ofGn, and letS be a maximal
stable set inGn such thatu ∈ S. Thenv /∈ S, and the setS′ obtained by replacingu by v in S is again
maximally stable. Since all maximal stable sets have the same cost, we conclude thatc(u) = c(v).

Conversely, suppose thatc(u) = c(v) for two verticesu andv such thatu 6= v anduv /∈ E(Gn). Let S
be a maximal stable set inGn such thatu ∈ S andv /∈ S. The setS′ obtained by replacingu by v in S is
of the same cost asS, and thus maximally stable. It follows that the unique neighbor v′ of v in Gn does not
belong toS′. But thenS ∩{v, v′} = ∅, contradicting the fact thatS is a maximal stable set. This settles(i).

For (ii), suppose that the set of costs{c(v) : v ∈ V (Gn)} does not have the DSS property. Also, letci

be the cost assigned to the verticesvi andv′i, for i ∈ {1, . . . , n}. Assume for contradiction that there exist
two distinct nonempty subsetsI, J ⊆ {1, . . . , n} such that

∑

i∈I ci =
∑

j∈J cj (without loss of generality,
I andJ can be assumed to be disjoint). Then, the set

U := {vi : i ∈ I} ∪ {v′i : i ∈ I} ∪ {vi : i ∈ {1, . . . , n}, i 6∈ I ∪ J}

is a non-stable subset ofV (Gn) of total costt, contradicting the fact thatc is an equistable cost function of
Gn with targett. This settles(ii) and with it the necessity of the two conditions.

Now, we show sufficiency. Suppose thatc : V (Gn) → R+ satisfies the conditions(i) and(ii) but is not
an equistable cost function. Since the maximal stable sets of Gn are precisely the sets obtained by choosing
one vertex from each copy ofK2, condition(i) implies that they all have the same cost. By Proposition 2
we conclude that there existS ∈ S(G) andT ∈ T (G) such thatc(S) = c(T ). Clearly, we may assume
thatS = {v1, . . . , vn}. Furthermore, we may assume by(i) that for everyi ∈ {1, . . . , n}, we havevi ∈ T
wheneverv′i ∈ T (since otherwise we can replacev′i with vi to obtain a set inT (Gn) of the same cost). Let
I = {i : i ∈ {1, . . . , n} , vi, v

′
i ∈ T}, andJ = {j : j ∈ {1, . . . , n} , vj ∈ S\T}. By definition, the setsI

andJ are disjoint. Moreover, since all the costs are positive,c(S) = c(T ) implies that neither of the setsS,
T is contained in the other one, and thusI andJ are non-empty. Finally, the conditionc(S) = c(T ) implies
that

∑

i∈I ci = c(T\S) = c(S\T ) =
∑

j∈J cj . This contradicts the property(ii) and completes the proof
of the proposition.

Theorem 6. LetGn denote a disjoint union ofn copies ofK2. Then,t(Gn) = Ω
(

2n
√

n

)

.

Proof. Consider an equistable cost structure(c, t) of Gn. By Proposition 3, the set of costs{c(v) : v ∈
V (Gn)} has the DSS property. As shown by Erdős and Moser in [3], the maximum element of anyn-

element set of positive integers with the DSS property must be of orderΩ
(

2n
√

n

)

. Therefore, it follows that

t ≥ max{c(v) : v ∈ V (Gn)} = Ω
(

2n
√

n

)

and the proof is complete.

We conclude the paper with another hardness result. Whetherequistable graphs can be recognized in
polynomial time is an interesting, and to the best of our knowledge still open, question.1 However, the
theorem below seems to indicate that any potential polynomial recognition algorithm would have to rely on

1As mentioned in [7], referring to a remark by Igor Zverovich,there is an exponential-time algorithm to recognize an equistable
graph.
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the structural properties of equistable graphs, as even the‘correctness’ of equistable cost functions is hard
to verify.

Theorem 7. Given a graphG and a cost functionc : V (G) → N, it is co-NP-complete to determine
whetherc is an equistable cost function ofG.

Proof.The problem is in co-NP, since by Proposition 2 we can exhibita certificate (verifiable in polynomial
time) which shows thatc is not an equistable cost function.

To show NP-hardness, we use a reduction from the following NP-complete problem calledweak parti-
tion [15, 16, 17]:

Instance:A finite setA and a sizes(a) ∈ N for eacha ∈ A.

Question:Are there disjoint non-empty subsetsA1, A2 ⊆ A such that
∑

a∈A1
s(a) =

∑

a∈A2
s(a)?

Consider an instance of the weak partition problem consisting of a setA and sizes(s(a) : a ∈ A).

We may assume that all the sizess(a) are distinct (since otherwise the answer to the weak partition
problem isyes). We construct a graphG = (V,E) and a cost functionc : V (G) → N as follows:

• V = A ∪ A′ whereA′ = {a′ : a ∈ A} is a disjoint copy ofA,

• E = {aa′ : a ∈ A},

• c(a) = c(a′) = s(a) for everya ∈ A.

Note thatG is isomorphic to the graphGn (with n = |A|) from Proposition 3. By Proposition 3,c is
an equistable cost function ofG if and only if the set{c(v) : v ∈ V (Gn)} has the distinct-subset-sums
property. Clearly, this is the case if and only if the answer to the weak partition problem isno, and any
algorithm for determining whether a given cost function is an equistable cost function of a given graph can
be used to solved the weak partition problem. This completesthe proof.

5 Conclusion

In this paper, we provided hardness results and simple pseudo-polynomial-time algorithms for theMAX -
IMUM WEIGHT STABLE SET and theWEIGHTED INDEPENDENT DOMINATION PROBLEMSin equistable
graphs equipped with an equistable cost structure. The pseudo-polynomial algorithms are based on a dy-
namic programming approach and can be applied within the more general framework of Boolean optimiza-
tion.

The problem of recognizing equistable graphs in polynomialtime is still open. One of the results in this
paper shows that verifying whether a given cost function on the vertices of a graph defines an equistable cost
structure is a hard problem, indicating that any polynomialtime recognition algorithm of equistable graphs
would most probably have to rely on the structural properties of equistable graphs. This provides additional
motivation for further investigation of the structural properties of equistable graphs, initiated for particular
graph classes in [6, 7, 10, 14] and continued for general equistable graphs in [11].
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