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Abstract

Nonlinear dynamical systems are known to be sensitive to input parameters. In
this thesis, we apply model order reduction to an important class of such systems
— one which exhibits limit cycle oscillations (LCOs) and Hopf-bifurcations. High-
fidelity simulations for systems with LCOs are computationally intensive, precluding
probabilistic analyses of these systems with uncertainties in the input parameters.

In this thesis, we employ a projection-based model redcution approach, in which
the proper orthogonal decomposition (POD) is used to derive the reduced basis while
the discrete empirical interpolation method (DEIM) is employed to approximate the
nonlinear term such that the repeated online evaluations of the reduced-order model
(ROM) is independent of the full-order model (FOM) dimension.

In problems where vastly different magnitudes exist in the unknowns variables,
the original POD-DEIM approach results in large error in the smaller variables. In
unsteady simulations, such error quickly accumulates over time, significantly reducing
the accuracy of the ROM. The interpolatory nature of the DEIM also limits its accu-
racy in approximating highly oscillatory nonlinear terms. In this work, modifications
to the existing methodology are proposed whereby scalar-valued POD modes are used
in each variable of the state and the nonlinear term, and the pure interpolation of
the DEIM approximation is also replaced by a regression via over-sampling of the
nonlinear term. The modified methodology is applied to two nonlinear dynamical
problems: a reacting flow model of a tubular reactor and an aeroelastic model of a
cantilevered plate, both of which exhibit LCO and Hopf-bifurcation. Results indicate
that in situations where the efficiency of the original POD-DEIM ROM is compro-
mised by disparate magnitudes in unknown variables or by the need to include large
sets of interpolation points, the modified POD-DEIM ROM accurately predicts the
system responses in a small fraction of the FOM computational time.

Thesis Supervisor: Karen E. Willcox
Title: Professor of Aeronautics and Astronautics
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Chapter 1

Introduction

1.1 Motivation

It is known that the outputs or responses of many systems in science and engineer-

ing are sensitive to slight variations in input parameters such as initial conditions,

system geometries and boundary forcing. A simplified example with viscous Burgers’

equation shown by Xiu in [87] demonstrates exactly such sensitivity: a 10% variation

in inflow boundary condition results in an O(1) change in the position of the final

steady-state solution.

Such sensitivities are particularly prevalent in nonlinear dynamical systems. An

important class of such systems is one that exhibits limit cycle oscillations (LCO), in

which the nonlinear mechanisms in the system ‘arrests’ the amplifying effect caused

by initial disturbances, bringing it to a self-sustained oscillations. Many engineering

systems exhibit LCO — a good representative in the area of aerospace engineering

is the aeroelastic response of an airplane wing operating above its flutter speed sub-

ject to an initial disturbance. LCO has been experienced on both military aircraft

such as F-16 and F-18 fighter jets [19] as well as civilian aircraft such as the Airbus

passenger jets [30]. The ‘initial disturbance’ could be induced by a gust encounter

or a sudden maneuver. The ensuing growth of vibrational amplitude is attenuated

by the aerodynamic and/or structural nonlinearity, resulting in the wing structure

oscillating in a sinusoidal manner at a finite amplitude. Even though the amplitude
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of such oscillation may not be large enough to cause catastrophic structural failure,

long-term exposure to LCO leads to structural fatigue which reduces the useful life

of the structure [33]. LCO also affects the operation of the aircraft in that once de-

veloped, it tends to persist until the operating conditions are substantially altered.

Moreover, LCO-induced motion not only results in a reduction in vehicle performance,

but also affects the performance of the aircrew from the human-factors perspective

[19]. Therefore, aeroelastic LCOs are generally considered an adverse effect in flight

and must be avoided in the design process. To that end, both LCO amplitude and

the location within the flight envelope where the onset of the LCO occurs must be

accurately predicted.

However, this is not an easy task since aeroelastic LCO response is known to be

extremely sensitive to the operating conditions as well as the geometric and material

properties of the wing. Variations in structural parameters such as the thickness,

bending and torsional stiffness of the wing result in variations in the natural fre-

quencies of the wing structure. As noted by the studies performed by Thomas et

al. on F-16 fighter jets in transonic flight [80], small changes in natural frequencies

can lead to substantial changes in the LCO amplitude and more importantly, a shift

in the Hopf bifurcation point manifesting in a reduction in flutter onset speed and

altitude. This study also observed a significant reduction in aircraft performance due

to LCO when slight modifications are made to the wingtip. Tang and Dowell [78]

investigated numerically the aeroelastic response of a delta wing in subsonic flight

and found strong effect of the angle of attack (AOA) on both the flutter boundary

and LCO amplitude. This finding was confirmed by experimental studies performed

by Bunton and Denegri [19]. Variations in the amount of control surface freeplay also

affects the LCO response – two identical aircraft flying through the same trajectory

may experience different magnitudes of LCO depending on the amount of freeplay as

noted by [33]. Due to the nonlinear nature of the LCO response, they are typically

not observed during wind tunnel tests (as the test prototypes are typically designed

based on linear aeroelastic concepts), only to be unveiled through extensive flight

tests which are both costly and dangerous [34, 31]. The safe flight envelopes thus
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established are not permanent however, as each modification in aircraft configuration

invalidates the previously acquired flutter and LCO information, requiring the flight

tests to be repeated. It is evident from these studies that it is essential to incorporate

the variations or uncertainties in the system parameters not only in the initial design

process of an aerial vehicle but also throughout its service life.

This however, proves to be a tremendous undertaking. As noted by many re-

searchers, simulations of aeroelastic LCO can be computationally expenesive even in

the deterministic setting due to the need to solve large systems of nonlinear equations

in both the fluid and structural domain at each time step [34, 31, 66]. In addition,

many time steps are typically required in an unsteady simulation before the limit

cycle fully develops. This is especially true for systems with configurations close to

the Hopf bifurcation point where the convergence towards a stable limit cycle can

be extremely slow. This challenge is magnified when the system is studied under

multi-query uncertainty quantification (UQ) or optimization settings as noted by a

number of studies such as [12, 88, 2].

As a result, aeronautical designs that accurately account for LCO are rare in lit-

erature. Often in practice, an empirical flutter safety margin is imposed. All U.S.

military aircraft must satisfy a 15% flutter margin, a requirement dating back to the

1960s [66]. For civilian aircraft, a 20% flutter margin must be demonstrated, as im-

posed by the Federal Aviation Administration (FAA) [7, 68]. Such conservatism is

testimonial to our lack of confidence in the level of fidelity of our model and inabil-

ity to adequately account for the uncertain environment in which the aerial vehicle

will operate. In the design and optimization of novel and unconventional aerial ve-

hicles with superior fuel-efficiency (i.e. light weight), such constraint will likely drive

the design process. A rational and reliable method to adjust such constraint will

likely result in substantial gains in performance of the new design. Therefore, effi-

cient computational methods are urgently needed to enable aeroelastic designs under

uncertainty.

The above exposition focuses on the LCO phenomenon that occurs in the aeronau-

tical context. However, LCO also exists in many other nonlinear dynamical systems.
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Another area where LCOs are frequently observed is chemically reacting flows [16, 43].

It is often of interest to predict the maximum oscillatory temperature attained at cer-

tain locations within the reactor (for example, the exit) under different flow and

reaction parameters. The LCO responses of reacting flows are known to be sensi-

tive to these input parameters. Hence all the computational difficulties previously

discussed in the aeroelastic LCO also exist in the case of reacting flows, requiring

efficient numerical methods to accelerate multi-query or time-sensitive tasks such as

optimal or real-time control of the reaction.

To alleviate the aforementioned computational burdens, model order reduction

techniques may be applied to construct efficient low-dimensional approximations of

the large-scale systems. In this work, we apply reduced order modeling to the two

particular nonlinear dynamical applications discussed above: aeroelastic and reacting

flow LCOs with the ultimate aim of accelerating the process of design and control.

Note that this work focuses on problems exhibiting LCO as it is a good repre-

sentative of nonlinear dynamical responses that include important dynamics such as

autonomous solutions and Hopf bifurcations which are sensitive to input parameters.

It should be stressed however, that the methods presented in this work are applicable

to general nonlinear dynamical problems.

1.2 Review of ExistingModel Reduction Techniques

1.2.1 Projection-Based Model Reduction

In this work, we focus on projection-based reduced-order models (ROM) in which

the governing equations of the system are projected onto a low-dimensional subspace

spanned by a small set of basis functions via Galerkin projection. It has been shown

that in many cases, most of the system information and characteristics can be effi-

ciently represented by linear combinations of only a small number of basis functions,

making it possible to accurately capture the input-output relationship of a large-scale

full-order model (FOM) via a reduced system with significantly fewer unknowns.

18



The first essential ingredient of all projection-based model reduction techniques is

the construction of the basis functions. To that end, a number of methods have been

developed such as balanced truncation [57, 58, 42], Krylov-subspace methods [35, 38,

41], reduced-basis methods [63, 64] and proper orthogonal decomposition (POD) [73,

46]. Originally, the Krylov-subspace methods and balanced truncation were developed

for linear time-invariant problems by the controls community, although recent years

have seen much progress on the extensions of these methods to nonlinear problems,

mostly in nonlinear circuits [14, 28].

Both reduced-basis methods and POD are ‘snapshot-based’ methods; that is, the

bases are derived from a set of the state solutions (the snapshots) obtained by solving

the FOM at selected points in its input parameter space. For the reduced-basis

method, the particular set of parameters at which the solution snapshots are generated

is obtained via a greedy algorithm in which the snapshots are adaptively added to

the reduced basis so as to minimize the maximum error bound of the output. The

snapshots are then orthonormalized using a Gram-Schmidt process and used directly

as reduced basis. Much work has been done on this method, most notably in [65, 56,

85, 84].

As opposed to using the snapshot set as the reduced basis directly, POD (also

knowns as the Karhunen-Lòeve expansion) [73, 46] applies singular value decomposi-

tion (SVD) to the snapshot set and retain the dominant left singular vectors corre-

sponding to the largest singular values as reduced basis. The basis thus extracted is

optimal in the sense that, for the same number of basis functions, no other bases can

represent the given snapshot set with lower least-squares error than the POD basis.

POD coupled with Galerkin projection (henceforth referred to as the ‘POD-Galerkin’

approach) has been applied successfully to many large-scale model reduction prob-

lems. In this thesis, the construction of ROM will be based on the POD-Galerkin

approach.

There are a number of factors that affect the effectiveness of POD-based model

reduction, first of which is the efficient sampling of the parameter space. Since it

derives the basis vectors from a set of snapshots, the quality of the POD reduced-
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order model depends strongly on the snapshots collected in the sampling process.

Snapshot sets must contain sufficient information about the essential dynamics of the

FOM. Primitive sampling schemes such as random sampling and uniform sampling

are not always optimal as they may miss important regions of the parameter space

and become too computationally expensive for problems with high input parameter

dimensions. To address this issue, a number of more sophisticated sampling tech-

niques have been developed in the model reduction community. Bui-Thanh et al.

[18] proposed a model-constrained sampling technique in which the computations for

the locations of the samples in the parameter space are formulated as an optimization

problem. This method is very similar to the greedy sampling method developed by

the researchers in the reduced-basis community [65, 56, 85, 84] and has been shown to

scale well to problems with large number of input parameters. A number of advanced

sampling methods (some specifically tailored towards certain applications) are men-

tioned in the review by [36]. For problems with small numbers of input parameters,

uniform sampling remains a popular method of generating snapshot sets in many

applications. For the work in this thesis, we will employ such technique in sampling.

However, we stress that it is possible to combine the model reduction methodology

presented in this thesis with one of the more advanced sampling techniques discussed

above to obtain more accurate ROMs.

The second factor, which is more relevant to the particular type of problems con-

sidered in this work is the efficient treatment of nonlinearities. Reduced-basis and

POD methods have been successfully applied to PDEs that are at most quadratically

nonlinear in state, such as the Euler and Navier-Stokes equations [51, 69, 79, 15],

since the special structures of the nonlinear terms in these equations allows for pre-

computations of reduced matrices, resulting in ROMs whose evaluations are indepen-

dent of the dimensions of the FOM. However, for general non-polynomial nonlineari-

ties, projection-based model reduction methods become inefficient and the attainable

speed-up over the FOM is significantly reduced. This is due to the fact that to

compute the reduced nonlinear term, one must first reconstruct the full-order state

solution from the basis vectors, evaluate the full-order nonlinear term before pro-
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jecting it onto a reduced subspace again. All of these operations are dependent on

the dimension of the FOM. Similar inefficiency exists in the formation of reduced

Jacobian. Therefore, for problems with general nonlinear terms, although the POD-

Galerkin approach may result in ROMs with significantly reduced dimensions, the

computational cost of evaluating the ROMs is still a function of the FOM dimen-

sion. Such inefficiencies have been noted by many researchers [8, 61, 37, 24] who have

deviced a number of techniques to address the nonlinearity issue in the projection-

based model reductions. A more detailed review of some of these techniques will be

provided in the next section.

Despite of these challenges, model reduction employing the POD-Galerkin ap-

proach has been applied to many areas of computational engineering such as fluid

mechanics and aerodynamics [51, 69, 79], structural mechanics [52, 49], circuit anal-

ysis [83, 44], reactive flows [74, 72], optimal control [50, 13] and even option pricing

[26].

In the particular context of the aeroelastic applications relevant to this thesis,

[22] and [86] applied POD to linearized aerodynamic and structural models to in-

vestigate the effects of compressor blade mistuning in turbomachinery. Dowell et

al. [34] applied POD to model the LCO of an airfoil with plunging and pitching

degrees of freedom and control surface freeplay in transonic flow modeled by Euler

equations. POD-based model reduction is applied to the aerodynamic domain only,

in which the special structure of the nonlinearity in the governing equations allows

the efficiency of the POD-Galerkin ROM to be preserved. Both flutter boundary

and LCO amplitudes at different operating conditions were predicted using ROM.

In this study, accuracy and speed-up of the ROM with respect to the FOM was not

presented. The ROM results were qualitatively found to be in good agreement with

experimental results. More recently, the POD-Galerkin approach has also been ap-

plied to model the aeroealstic response of complete fighter jet configurations in [54]

and [1], where ROM adaptation method based on interpolation in a tangent space

to a Grassmann manifold was developed to ‘correct’ the precomputed ROMs to new

operating conditions. However, since both the aerodynamic and structural models
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were linearized about some equilibrium points, nonlinearities that trouble the POD-

Galerkin method were not present. This also means aeroelastic LCO behaviors could

not be modeled by the ROM. Computational speed-up between factors of 10 and 16

were reported. It is particularly worthy to note in these works that the results of the

ROMs, constructed on linearized aeroelastic models, were not only compared to their

FOM counterparts (for which the agreement was found to be excellent), but were

also compared to the a FOM consisting of a fully nonlinear aero-structural model.

Significant discrepancies were reported. Certainly, it is not fair to compare the FOM

and ROM constructed based on models with different levels of fidelity. However, this

comparison does serve to highlight the need to have a ROM that can be computed

efficiently in the presence of nonlinearities such that these important effects can be

adequately modeled. Beran et al. applied the POD-Galerkin method to model the

aeroelastic LCO response of nonlinear panels in transonic and supersonic flow regimes

[11, 55]. The structural nonlinearity was modeled by the von Kármán strain. The

FOM with over 65,000 degrees of freedom was adequately represented using a ROM

with only 10 basis vectors. Although this corresponds to a 4 order-of-magnitude re-

duction in system dimension, the speed-up achieved by the ROM is only a factor of

4. In the design under uncertainties context, Stanford and Beran [75] applied POD in

conjunction with spectral element method in time to accelerate the realiability-based

optimization of a cantilevered nonlinear plate in supersonic flow. As in [11] and [55],

although the POD-based method succeeded in accelerating the model evaluations and

hence the optimization process, the true efficiency of the ROM was not realized due

to the lack of specialized methods to handle the nonlinearities.

1.2.2 Treatments for Nonlinearities

As mentioned in the previous section, the degradation of efficiency that the POD-

Galerkin approach suffers from is due to computational costs of forming the reduced

nonlinear term and Jacobian being functions of the FOM dimension rather than being

proporitional to the number of reduced variables. This deficiency has been noted by

a number of researchers. Specifically, in [24] and [37] detailed analysis of operation
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counts are presented and in [24] it has been shown that vanilla POD-Galerkin can be

even slower than the FOM due to such computations at each iteration of each time

step. To overcome this computational bottleneck, a number of procedures have been

developed to recover the efficiency of projection-based model reductions for nonlinear

problems.

Missing Point Estimation (MPE) was developed by Astrid et al. in [6] to improve

the efficiency of the POD-Galerkin model reduction of a nonlinear computational fluid

dynamic (CFD) model for a glass melting feeder. The basic idea behind MPE is to

select a subset of semi-discretized governing equations corresponding to a number of

grid points and apply the Galerkin projections for these equations only. In particular,

a restricted POD basis is formed by extracting the rows of the standard POD basis

vectors corresponding to the selected grid points. Subsequently, the subset of govern-

ing equations are projected onto the subspace spanned by these restricted POD basis

vectors. An key ingredient is then the choice of the aforementioned grid points. To

that end, two algorithms are presented in [6], based on the criterion of limiting the

condition number growth of the restricted POD basis matrix. Via such construction,

the formations of the computationally expensive full-order nonlinear term and Jaco-

bian as well as their respective projections to the reduced forms at each time step can

be avoided. Aside from the application considered in [6] and related publications such

as [5] and [4], the MPE technique has also been applied to model electrical circuits

[83], subsurface flow [20] and steady aerodynamics [82].

Other techniques aim to provide efficient approximations specifically for the non-

linear terms. For weakly nonlinear problems, an effective approach is the trajectory

piecewise-linear (TPWL) method by Rewienski and White [67], in which the nonlin-

ear function is approximated by a piecewise-linear function obtained by linearizing

the system at selected points along its trajectory. This method has been applied in

conjunction with the POD-Galerkin projection to many problems in nonlinear circuit

simulations [9, 83]. However, for highly nonlinear problems, it is difficult to approx-

imate the nonlinear term accuractely with a piecewise-linear representation without

involving a large number linearized models along the trajectory. Furthermore, the se-
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lections of the training trajectories and linearization points remain an ad-hoc process

[39].

It is also possible to approximate the nonlinear term by a linear combination of

its basis vectors for which the expansion coefficients are determined using a small

set of interpolation points. This is the basic idea behind the methods such as the

Empirical Interpolation Method (EIM) [8] and the Best Point Interpolation Method

(BPIM) [62]. The set of basis vectors for the nonlinear terms can be generated using

the same method as the state basis. By using a small number of interpolation points,

the nonlinear term only needs to be evaluated over a subset of spatial grid points,

allowing the ROM to recover its efficiency. EIM and BPIM have been developed for

the same purpose but they differ in the algorithm with which the locations of the

interpolation points (interpolation indices) are selected. In EIM, a ‘greedy’ selection

process is employed to iteratively build the set of interpolation indices in such a way

that the n-th interpolation point is placed at the spatial location where the approx-

imation error of the n-th basis vector using the first n − 1 interpolation points and

basis vectors is the greatest. In constrast, BPIM builds the interpolation indices by

solving an n-dimensional optimization problem to minimize the least-squares error

between each of the collected nonlinear snapshots and their approximation using n

interpolation points. Therefore, these n points thus obtained are the ‘best’ interpola-

tion points to minimize the approximation error over all of the snapshots. It should

be noted that although the BPIM method results in a set of points that are ‘optimal’,

the nonlinear constrained optimization problem that must be solved makes it signif-

icantly more expensive to compute than the sub-optimal greedy procedure in EIM,

with only marginal improvement in approximation error, as reported in [37, 8]. Both

EIM and BPIM have been applied to many problems governed by nonlinear PDEs,

such as [77, 40, 61]. Galbally et al. [37] applied both POD-EIM and POD-BPIM

approaches to Bayesian inference in a highly nonlinear combustion problem governed

by a convection-diffusion-reaction (CDR) PDE. Very recently, the same POD-BPIM

framework was used by Kalashnikova and Barone in [47] to construct ROM for a non-

linear time-dependent CDR model of a tubular reactor known to exhibit bifurcation
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and LCO – the same application as the first model problem considered in this thesis.

The discrete variant of the EIM, the Discrete Empirical Interpolation Method

(DEIM) was introduced by Chaturantabut and Sorensen in [24] to be used with the

POD-Galerkin approach on the semi-discretized systems. This is in contrast to the

EIM and BPIM, whose formulations are based on a continuous framework, although

all three are implemented in a fully discrete setting. The POD-DEIM model reduction

methodology has been successfully applied to many engineering problems such as

multi-phase flow [23], neuron modeling [48], reactive flow [17], and MEMS switch

modeling [45]. Note that since DEIM operates at the semi-discrete level, it can be

more easily applied to existing FOM codes than its continuous counterpart, the EIM.

For this adaptability, we opt to use the POD-DEIM framework in this thesis.

1.3 Thesis Scope and Objectives

In this thesis, we study model reductions using the POD-DEIM methodology for

nonlinear dynamical systems. A particular focus is placed on an important class of

such systems involving LCOs as it is a good representative of nonlinear dynamical

responses that includes complex dynamics such as autonomous solutions and Hopf

bifurcations which are sensitive to input parameters.

In most cases, LCOs are typically caused by nonlinear interactions amongst multi-

ple unknown variables in the problem. Therefore, the models for problems with LCO

are typically vector-valued PDEs. In many applications, it is not always possible to

nondimensionalize the problem such that all the unknown variables are on the same

order of magnitude. Furthermore, existing FOM codes are not always nondimension-

alized. As shown in the following chapters, the relative magnitudes of the different

unknown variables have a strong effect on the accuracy of the standard POD-based

ROMs using ‘unified’ modes containing all unknown variables. An obvious solution

for this issue is to use individual POD basis for each unknown variable. However

whether this will lead to an unacceptable increase in the number of DEIM points is

an open question.
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In addition, POD-DEIM has so far only been applied to PDEs with nonlinear

terms that have ‘componentwise’ dependence on the state as referred to by the original

paper [24]. In other words, the nonlinear term at the i-th grid point is only a function

of the state at that point. There exists a wide range of problems, particularly in

structural mechanics where the nonlinear term at each grid point may depend on the

state solution at multiple nodes in its neighourhood. The number of state solutions

that must be reconstructed at each time step for the evaluation of the nonlinear term

may be significantly greater than the number of DEIM interpolation points, due to the

nodal connectivity. For aeroelastic LCO problems having nonlinear structural terms

with such ‘noncomponentwise’ dependence on the state, whether the POD-DEIM can

still be used for efficient model reduction remains to be seen.

Finally, the highly dynamic and oscillatory nature of many LCO problems pose

additional difficulties in approximating the nonlinear term using an interpolatory

method such as DEIM. Can POD-DEIM be modified to handle such challenging

problems?

All of the above are important research questions from the methodological stand-

point that must be addressed in order to improve the versatility and efficiency of the

POD-DEIM methodology for nonlinear dynamical systems.

From the applications standpoint, as discussed in Section 1.1, considerations for

aeroelastic LCO have a significant influence in the design and operation of aerial

vehicles. However, aircraft designs that accurately account for LCO are rare due to

their computational costs and sensitivities to model parameteres. Therefore, it is

expected that ROM will serve as an enabling technology towards UQ of aeroelastic

LCO as well as designs of safer and more efficient aerial vehicles. The works of

Stanford and Beran in [75] and Beran et al. in [11] and [55] have already made solid

steps in this direction by applying POD-based ROM to accelerate the analysis and

design for aerostructural systems exhibiting LCOs. As noted previously, these works

employ the vanilla POD-Galerkin approach which do not fully realize the efficiency of

the ROM in presence of nonlinearity. It is expected that the computational speed-up

can be significantly improved using the POD-DEIM methodology.
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In [24] where the methodology was originally proposed, POD-DEIM was applied to

model the LCO response in the FitzHugh-Nagumo system with fixed parameters. By

applying the POD-DEIM to the aeroelastic model problem with multiple uncertain

input parameters, we aim to demonstrate the efficacy of the method for complex

uncertain nonlinear dynamics involving LCOs and bifurcations.

In summary, the objectives of this thesis are to improve the POD-DEIM method-

ology to address more challenging nonlinear dynamical problems with following fea-

tures:

• Vector-valued PDEs with different orders of magnitudes in each unknown vari-

able

• Noncomponentwise dependence of nonlinear terms on state

• Complicated nonlinear terms that are difficult to approximate using the existing

DEIM approach

In particular, we demonstrate the efficacy of the improved POD-DEIM methodology

in handling complex uncertain nonlinear dynamics via two model problems: a CDR

model of a tubular reactor and an aeroelastic model of a cantilevered wing, both of

which possess Hopf bifurcation and exhibit LCO behavior.

1.4 Thesis Outline

The remainder of this thesis is organized as follows. In Chapter 2, the problem for-

mulation of the current POD-DEIM model reduction methodology is first presented

along with an online-offline computational procedure. Then a modified POD-DEIM

methodology is proposed combining the ideas of ‘scalar-valued’ POD modes and over-

sampling of DEIM points. In Chapter 3, the original POD-DEIM methodology is first

demonstrated for a 1-D CDR model of a tubular reactor with a variable Damköhler

number and equal magnitudes between the two unknown variables. The difference

in magnitudes is then increased while maintaining the same LCO response, and the
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performances of the original and modified POD-DEIM methods are compared. The

purpose of this chapter is to illustrate how to apply both POD-DEIM methodolo-

gies to a simple problem and investigate their relative performances for vector-valued

PDEs with large difference in magnitudes between different unknown variables. It

also demonstrates the ability of the POD-DEIM approach in characterizing uncertain

dynamics (by accurately predicting the bifurcation diagram, for example) with limited

number of samples. In Chapter 4, the modified POD-DEIM methodology is applied

to a more challenging problem involving the LCO response of a nonlinear plate in

supersonic flow. ROMs constructed using POD-DEIM are applied to enable efficient

computations of both the LCO response and the flutter boundary. Up to three un-

certain input parameters are considered in this problem. Finally, the conclusions and

recommendations for future work are presented in Chapter 5.
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Chapter 2

Nonlinear Model Reduction using

Proper Orthogonal Decomposition

and Discrete Empirical

Interpolation Method

This chapter presents a projection-based model reduction methodology based on

the proper orthogonal decomposition (POD) and the discrete empirical interpola-

tion method (DEIM), for nonlinear dynamical systems with parametric uncertainties.

Section 2.1.1 presents the model reduction using Galerkin projection and the POD

method for the generation of reduced basis vectors. The inefficiency of the POD-

Galerkin method for nonlinear problems is also discussed at the end of this section.

To address this issue, Section 2.1.2 introduces the DEIM technique for the reduction

of nonlinear terms. An efficient offline-online model reduction procedure using the

POD-DEIM methodology is presented in Section 2.1.3. To address the challenges

discussed in Section 1.3 (namely, vector-valued PDEs having highly oscillatory non-

linear terms with noncomponentwise dependence on the state), two modifications

to the current POD-DEIM methodology are introduced in Section 2.2. The use of

scalar-valued POD modes is discussed in Section 2.2.1 and the DEIM approximation
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with over-sampling is presented in Section 2.2.2.

2.1 Problem Formulation

Consider a dynamical system governed by a time-dependent nonlinear PDE with

parametric uncertainty. Its spatial discretization leads to to the following system of

N nonlinear ODEs:
du(t;µ)

dt
= R(u(t;µ), t;µ) (2.1)

with initial conditions

u(t = 0;µ) = u0, (2.2)

where

R(u(t;µ), t;µ) = Au(t;µ) + f(u(t;µ), t;µ), (2.3)

and u0 is the initial state, t ∈ R
+ is the time, u ∈ R

N is the discrete state vec-

tor of dimension N , µ ∈ R
Np is the vector of Np uncertain (input) parameters,

R(u, t;µ) ∈ R
N is the nonlinear residual, A ∈ R

N×N is a constant matrix aris-

ing from the discretization of linear differential operators in space, and f(u, t;µ) :

R
N × R

+ × R
Np 7→ R

N is a nonlinear function of state and input parameters. The

Jacobian of the nonlinear residual is:

J(u(t;µ), t;µ) =
∂R(u(t;µ), t;µ)

∂u
= A+ Jf (u(t;µ), t;µ), (2.4)

where

Jf ≡ ∂f

∂u
. (2.5)

For a finite difference discretization of a vector-valued PDE, the dimension N

is the product of the number spatial grid points (Nx) and the number of unknown

variables (Nv), which can be extremely large for high-fidelity simulations. Moreover,

for nonlinear dynamical systems, which are the focus of this work, implicit time in-

tegration schemes are often used. This leads to a system of nonlinear equations that

must be solved at each time step (using Newton’s method, for example), requiring the
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computationally expensive formation and inversion of the N × N Jacobian at each

sub-iteration. In addition, each forward evaluation of the model may involve many

hundreds of time steps before important time-asymptotic system behaviors such as

limit cycle oscillations begin to emerge. As a result, performing uncertainty propaga-

tion/quantification, which requires the evaluations of many thousands of realizations,

is computationally intractable. To alleviate this computational burden, we introduce

a projection-based model reduction methodology in the following sections.

2.1.1 Projection-Based Model Reduction via Proper Orthg-

onal Decomposition (POD)

The first step in deriving the projection-based ROM is to express the state u(t;µ) by

a linear combination of K basis vectors, where K ≪ N :

u(t;µ) ≈
K∑

i=0

ũi(t;µ)φi (2.6)

In matrix form:

u ≈ Φur (2.7)

where

Φ = [φ1,φ2, . . . ,φK ] ∈ R
N×K , ur = [ũ1, ũ2, . . . , ũK ] ∈ R

K×1 (2.8)

where ur ∈ R
K×1 is the ‘reduced’ state vector or vector of modal amplitudes and

Φ ∈ R
N×K is a matrix that contains K orthonormal basis vectors {φi}Ki=1 in its

columns. Note that to simplify the notation, we omit t and µ in (2.7) and from

this point on, with the understanding that both u and ur are functions of t and µ.

Substituting the expansion (2.7) into the governing equation (2.1):

Φ
dur

dt
= AΦur + f(Φur, t;µ) = R(Φur, t;µ) (2.9)

This results in an overdetermined system of N equations and K unknowns. To

arrive at a reduced system of K equations, we require the nonlinear residual to
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be orthogonal to a left subspace via projection. For Galerkin projection, this left

subspace is spanned by the columns of the matrix Φ = {φi}Ki=1. That is to say,

ΦTR(Φur, t;µ) = 0. In the specific context of (2.9):

dur

dt
= ΦTAΦ

︸ ︷︷ ︸
Ar

ur +ΦT f(Φur;µ)
︸ ︷︷ ︸

fr

(2.10)

where Ar = ΦTAΦ ∈ R
K×K and fr = ΦT f(Φur;µ) ∈ R

K×1. The initial condition

(2.2) is also projected onto the reduced basis:

ur(t = 0) = ΦTu0 (2.11)

Similarly, the reduced Jacobian is:

Jr(u, t;µ) = Ar +ΦTJf (u, t;µ)Φ (2.12)

Since K ≪ N , we have thus projected the large-scale governing equation (2.1) onto

a low-dimensional subspace, resulting in a system of ODEs with significantly smaller

number of unknowns. Certainly, the quality of such ROM is strongly dependent upon

the set of basis vectors {φi}Ki=1 used for projection. As discussed in Section 1.2.1,

there are a number of methods that can be used to construct these basis vectors. In

this work, we use the proper orthogonal decomposition (POD) method. POD, also

knowns as the Karhunen-Lòeve expansion, derives the basis vectors from an emsemble

of state solutions (or ‘snapshots’) obtained by solving the FOM at selected points in

its parametric input space. For model reduction of dynamical problems, the unsteady

simulations are either run for a prescribed number of time steps or until a final state

of interest is fully developed (steady state or stable LCO, for example). Therefore

at each parameter value, unsteady solution snapshots may be saved either at every

time step or intermittently at certain time intervals. All of these snapshots are then

compiled into a snapshot matrix. We denote U ∈ R
N×ns as the snapshot matrix which

contain as column vectors all ns solution snapshots: U = {ui}ns

i=1. POD formulates

the generation of basis vectors as a minimization problem. In particular, the K basis
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vectors Φ = {φi}Ki=1 are derived such that the sum of the least-squares approximation

errors of the ns snapshots is minimized:

Φ = arg min
{ϕi}Ki

ns∑

j=1

‖uj −
K∑

j=1

(uT
j ϕi)ϕi‖22, (2.13)

subject to ϕT
i ϕj = δij , for 1 ≤ i, j ≤ K, (2.14)

where δij is the Kronecker delta. Here we assume that the state dimension of the

problem is larger than the total number of snapshots: N > ns. It can be shown that

the solution to the minimization problem (2.14) is given by the left singular vectors

of the snapshot matrix U. We express the singular value decomposition (SVD) of U

as follows:

U = V ΣW T (2.15)

where V = [v1, . . . , vns
] and Σ = diag(σ1, . . . , σns

), σ1 ≥ σ2 ≥ . . . ≥ σK ≥ . . . ≥
σns
≥ 0. The POD modes are the first K dominant left singular vectors of the

snapshot matrix: Φ = {φi}Ki=1 = {vi}Ki=1. The sum of the least-squares errors in

approximating the ns snapshots using these K POD modes is given by

εPOD =
ns∑

j=1

‖uj −
K∑

j=1

(uT
j φi)φi‖22 =

ns∑

i=k+1

σ2
i (2.16)

This error can be thought of as the ‘omitted energy’ of the snapshots due to the

truncation of POD basis Φ = {φi}Ki=1 from V = {vi}ns

i=1, with
∑ns

i=1 σ
2
i being the

‘total energy’ of the snapshots. This provides guidance in the determination of K:

the number of POD basis vectors to retain from the set of left singular vectors. In

particular, K is chosen as the smallest integer such that the ‘relative omitted energy’

Ω is less than a certain threshold:

Ω = 1−
∑K

i=1 σ
2
i

∑ns

i=1 σ
2
i

< ǫ (2.17)

Note that this criterion does not provide any indication on the accuracy of the re-

sultant POD-Galerkin ROM when it is solved at an input parameter value that has
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not been sampled — solutions at a new point in the parameter space may not be in

the span of the original snapshot matrix U. As discussed in Section 1.2.1, advanced

sampling techniques such as [18] can be used to construct U such that the resultant

POD basis accurately approximates the entire solution space. For the work presented

here, we use the simple uniform sampling method. However, the methodology pre-

sented here can be combined with more advanced sampling techniques to obtain more

accurate ROMs.

Although the ROM thus constructed results in a system of equations of reduced

dimension K, the computational cost of integrating the POD-Galerkin ROM (2.10)

forward in time is still a function of the FOM dimension N . This inefficiency can be

understood by examining the reduced nonlinear term fr and reduced Jacobian Jr:

fr(u, t;µ) = ΦT

︸︷︷︸
K×N

f(Φur, t;µ)
︸ ︷︷ ︸

N×1

(2.18)

Jr(u, t;µ) = Ar + ΦT

︸︷︷︸
K×N

Jf (u, t;µ)
︸ ︷︷ ︸

N×N

Φ
︸︷︷︸
N×K

(2.19)

For the reduced nonlinear term, the inefficiency arises from three sources. First,

the full-order state solution must be reconstructed from the N × K basis vectors

via the expansion Φur. Then the full-order nonlinear term is evaluated from the

reconstructed state at all of its N components. Finally, another matrix-vector mul-

tiplication involving the K ×N matrix ΦT is required to project the nonlinear term

onto the reduced basis. Similar inefficiency can be observed in the evaluation of the

reduced Jacobian in which the full N × N Jacobian of the nonlinear term Jf must

be constructed before being projected onto to the reduced basis. Therefore, even

though fr and Jr themselves are of low dimensions, the computational costs involved

in forming them are still dependent on the FOM dimension N . Such inefficiency is

particularly problematic for nonlinear dynamical problems solved using implicit time-

marching methods which require the evaluation of the nonlinear Jacobian multiple

times at each time step.

A method capable of computing fr and Jr at a computational cost that is inde-
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pendent of N is therefore required to fully realize the efficiency of the POD-based

ROM.

2.1.2 Discrete Empirical Interpolation Method (DEIM)

To avoid full evaluations of the nonlinear term and Jacobian matrix, the Empirical

Interpolation Method (EIM) was proposed in [8] to approximate these terms via

interpolation over a subset of points that are independent of the large-scale FOM

dimension N . In this work, we use the Discrete Empirical Interpolation Method

(DEIM), the discrete variant of the EIM, introduced by Chaturantabut and Sorensen

in [24].

The first step of the DEIM is to approximate the nonlinear term f(Φur, t;µ) using

a separate set of basis vectors Ψ that are different from those used for the state:

f(u, t;µ) ≈ Ψc(t;µ) (2.20)

where Ψ = [ψ1,ψ2, . . . ,ψM ] ∈ R
N×M ,M ≪ N are the basis vectors for the nonlinear

term and c ∈ R
M×1 the vector of expansion coefficients. The basis vectors Ψ =

{ψi}Mi=1 are derived from the snapshots of the nonlinear term F = {fi}ns

i=1, using the

same POD method as described for constructing the state basis vectors Φ = {φi}Ki=1.

The collection of these nonlinear snapshots do not incur additional computational cost

in sampling because the nonlinear terms are already evaluated during the sampling

of state snapshots U. Note that (2.20) represents an overdetermined system. To

compute c at a computational cost independent of N , we select M interpolation

points of f and enforce equality for the corresponding system of equations in (2.20).

This results in an M ×M system from which the coefficient vector c can be uniquely

determined:

f~z(u~z′ , t;µ) = Ψ~zc(t;µ) (2.21)

where ~z = [z1, . . . , zM ]T ∈ R
M×1 is a vector containing M interpolation indicies,

f~z ∈ R
M×1 is the nonlinear term evaluated at these M interpolation points, and
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Ψ~z ∈ R
M×M is the corresponding M rows of Ψ.

For nonlinear problems that do not have componentwise dependence on the state,

there may be multiple state components that must be reconstructed for the evaluation

of a single component of the nonlinear term. For example, in structures problems,

the nonlinear force at a given interpolation index fzi is determined by multiple gen-

eralized displacements (i.e. the state) at all the neighbouring elements. Therefore,

for a general nonlinear term with noncomponentwise state dependence, the set of the

indices of the state components that must be evaluated in order to compute the M

interpolation points f~z is different (and typically larger in size) than ~z. We denote

~z′ as such a set of M ′ ≥ M indices of the state components, and u~z′ as the state

evaluated at these M ′ points. ~z′ can typically be derived from ~z based on the nodal

connectivity of the discretized structure. The support of state on the nonlinear term

is often local; that is, M ≤M ′ ≪ N . Therefore, the DEIM approximation presented

next is still efficient.

Solving c from (2.21) and substituting it into the expansion (2.20), we obtain the

DEIM approximation of the nonlinear term:

f(u, t;µ) ≈ ΨΨ−1
~z f~z(u~z′ , t;µ) (2.22)

Projecting this approximation onto the reduced basis via (2.18) to obtain the DEIM

approximation of the reduced nonlinear term:

fr(ur, t;µ) = ΦTΨΨ−1
~z

︸ ︷︷ ︸
K×M

f~z(Φ~z′ur, t;µ)
︸ ︷︷ ︸

M×1

(2.23)

where u~z′ = Φ~z′ur is the state evaluated atM ′ points specified by ~z′ andΦ~z′ ∈ R
M ′×K

contains the corresponding M ′ rows of Φ. The DEIM approximation of the reduced

Jacobian can be derived from (2.23):

Jr(ur, t;µ) = Ar
︸︷︷︸

K×K

+ΦTΨΨ−1
~z

︸ ︷︷ ︸

K×M

Jf
~z,~z′(Φ~z′ur, t;µ)

︸ ︷︷ ︸

M×M ′

Φ~z′
︸︷︷︸

M ′×K

(2.24)
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where Jf
~z,~z′ denotes the Jacobian of the nonlinear term Jf ≡ ∂f

∂u
evaluated at M rows

prescribed by ~z and M ′ columns prescribed by ~z′. Note that the dimensions of all the

matrices in (2.23) and (2.24) are independent of N . DEIM therefore allows evaluation

of the reduced nonlinear term and reduced Jacobian at computational costs that are

only functions ofK, M andM ′. We defer the presentation of an efficient offline-online

procedure using such POD-DEIM methodology to the next subsection.

For the remainder of this section, we present and briefly discuss the algorithm

with which the set of interpolation indices ~z is selected. The original point selec-

tion algorithm was proposed in [8] for the reduced-basis-EIM framework. For this

work, we adopt the discrete variant of this algorithm, proposed by Chaturantabut

and Sorensen in [24] for semi-discrete systems. To keep our discussion self-contained,

we briefly summarize this point selection procedure in Algorithm 1. For detailed

discussions including DEIM error bounds, please refer to [24]. In this algorithm, a

‘greedy’ selection process is employed to iteratively build the set of interpolation in-

dices in such a way that the i-th interpolation point is placed at the spatial location

where the approximation error (|r|) of the i-th basis vector ψi using the first i − 1

interpolation points {zj}i−1
j=1, ∀ 2 ≤ i ≤ M and basis vectors {ψj}i−1

j=1, ∀ 2 ≤ i ≤ M is

the greatest.
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Algorithm 1: DEIM interpolation point selection algorithm

INPUT: {ψi}Mi=1 ∈ R
N×M

[|ρ|, z1] = max{|ψ1|}
Ψ = [ψ1],~z = [z1]

for i = 2 to M do

Solve Ψ~zc = (ψi)~z for c

r = ψi −Ψc

[|ρ|, zi] = max{|r|}
Ψ← [Ψ,ψi],~z← [~z, zi]

end

OUTPUT: ~z = [z1, . . . , zM ]T ∈ R
M×1

2.1.3 Offline-Online Algorithm

The ROM of the large-scale nonlinear dynamical system (2.1) constructed via the

POD-DEIM metholodgy can be expressed as:

dur

dt
= Ar

︸︷︷︸

K×K

ur + Br
︸︷︷︸

K×M

f~z(Φ~z′ur
︸ ︷︷ ︸

M ′×1

, t;µ)

︸ ︷︷ ︸
M×1

(2.25)

with initial condition:

ur(t = 0) = ΦTu0 (2.26)

and the corresponding reduced Jacobian:

Jr(ur, t;µ) = Ar
︸︷︷︸

K×K

+ Br
︸︷︷︸

K×M

Jf
~z,~z′(Φ~z′ur

︸ ︷︷ ︸

M ′×1

, t;µ)

︸ ︷︷ ︸

M×M ′

Φ~z′
︸︷︷︸

M ′×K

(2.27)

whereAr = ΦTAΦ ∈ R
K×K andBr = ΦTΨΨ−1

~z ∈ R
K×M are parameter-independent

matricies: they are constant in time and do not depend on the input parameters µ.
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Therefore they only need to be computed once as soon as the basis vectors of the

state and nonlinear term have been computed via POD. The collection of snapshots

of the state (U) and of the nonlinear term (F), the generation of the corresponding

basis vectors Φ and Ψ, the selection of the interpolation indices ~z, as well as the

precomputations of Ar and Br matrices can all be performed in an ‘offline’ phase.

The ROM constructed with such ‘one-off’ offline process enables efficient multi-

query ‘online’ computations for which the complexities are independent of the FOM

dimension N . Given a specific set of input parameters µ∗ and projected initial condi-

tion ur(t = 0), the reduced system (2.25) can be integrated forward in time. Here we

assume that an implicit time-marching scheme is used, which results in a system of

nonlinear equations to be solved at each time step, requiring multiple evaluations and

inversions of the reduced Jacobian. In the online phase, to compute the reduced non-

linear term fr(ur, t;µ) = Brf~z(Φ~z′ur, t;µ), one must first carry out the partial recon-

struction of the state vector u~z′ = Φ~z′ur at a cost of O(M ′K) floating point operations

(flops) before using it to evaluate the M components of f~z, which is then multiplied

with the Br matrix at a cost of O(KM) flops. Likewise, the online computation of

the reduced Jacobian of the nonlinear term Jf
r(ur, t;µ) = BrJ

f
~z,~z′(Φ~z′ur, t;µ)Φ~z′

consists of three steps: partial evaluation of the Jacobian Jf at only M rows and M ′

columns as required by ~z and ~z′ in order to form Jf
~z,~z′, multiplication between Jf

~z,~z′

and Φ~z′ at a cost of O(MM ′K) flops, before right-multiplying the result with Br at

a cost of O(MK2) flops. The inversion of the K × K reduced Jacobian Jr can be

performed at a cost of O(K3) flops. Therefore, the computational cost of the repeated

online evaluation of the ROM (2.25) constructed with the POD-DEIM methodology

is only a function of K,M,M ′ ≪ N .

The convergence of such online computation can be monitored by evaluating the

K×1 residual vector. For problems that experience LCO, time history of the state uz∗

at a particular spatial location z∗ can also be computed on-the-fly via an inexpensive

partial reconstruction uz∗ = Φz∗ur, which is simply a dot product with O(K) flops.

The computation is terminated if the time history shows satisfactory convergence of

the limit cycle amplitude.
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The offline-online procedure described above are summarized in Algorithm 2 and

3 below:

Algorithm 2: Offline Stage: Sampling, construction of basis vectors and pre-

computation of parameter-independent matrices

Offline Stage

1. Sample the input parameter space to form the snapshot matrices U = {ui}ns

i=1

and F = {fi}ns

i=1 for the state and nonlinear term, respectively.

2. Using the POD method as presented in Section 2.1.1, compute the state basis

vectors Φ = {φi}Ki=1 from U and the nonlinear basis vectors Ψ = {ψi}Mi=1 from

F.

K and M are determined based on a prescribed ‘relative omitted energy’

tolerance, as shown on (2.17).

3. Compute the M interpolation indices ~z = [z1, . . . , zM ]T using the point

selection procedure described in Algorithm 1; Infer the corresponding indices

for the state ~z′ from ~z based on nodal connectivity of the problem.

4. Form Ψ~z by extracting M rows of Ψ as specified by ~z;

Form Φ~z′ by extracting M ′ rows of Φ as specified by ~z′.

5. Precompute parameter independent matrices Ar = ΦTAΦ and

Br = ΦTΨΨ−1
~z .
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Algorithm 3: Online Stage: evaluating ROM at a particular set of input pa-

rameters µ∗

Online Stage

1. Determine the particular set of input parameters µ∗ for which the ROM is to

be evaluated and obtain the reduced initial condition via projection

ur(t = 0) = ΦTu0.

2. Evaluate fr(ur, t;µ
∗) = Brf~z(Φ~z′ur, t;µ

∗) and

Jr(ur, t;µ
∗) = Ar +BrJ

f
~z,~z′(Φ~z′ur, t;µ

∗)Φ~z′ given ur and µ
∗.

3. Solve ROM (2.25) forward in time using fr and Jr.

4. Compute residual and reconstruct state at selected location(s) of interest to

monitor convergence.

5. Repeat Step 2-4 until either steady state or LCO has been reached.

2.2 A Modified POD-DEIM Methodology

The last section presents the POD-DEIM model reduction methodology as proposed

in [24] with generalizations for vector valued PDEs and nonlinear terms with non-

componentwise dependence on state.

For a vector-valued PDE with Nv unknown variables, the N × 1 state vector

typically consists of a concatenation of Nv vectors each containing the Nx nodal

values, such that N = NvNx. In other words, all the unknown quantities at all spatial

grid points are ‘lumped’ together forming a ‘globalized’ solution vector. Therefore for

vector-valued PDEs, oftentimes a single globalized set of N ×K POD modes is used

to represent all the unknown variables, as presented in the previous section. This

is referred to as the ‘vector-valued POD modes’ by researchers in [69] and [47]. An
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alternative is to separate the globalized snapshot matrix into Nv smaller snapshot

matrices, one for each unknown variable. An individual set of ‘variable-separated

POD basis’ is then constructed for each of the Nv variables from their corresponding

snapshot matrices. These are referred to as the ‘scalar-valued POD basis’ in [69] and

[47].

The relative merits of the two approaches depend on the specific problems to

which they are applied. Some have shown that scalar-valued POD modes allow more

accurate approximations for each unknown variable [47, 23], while others have used

globalized or vector-valued modes with remarkable success [37, 17]. For problems in

which the variables are governed by dynamics with disparate time scales, scale-valued

POD modes should be used. Another key factor that determines whether the scalar-

valued basis should be used in place of vector-valued basis is whether the variables

have drastically different orders of magnitude. As demonstrated in Chapter 3, this

can significantly reduce the accuracy of the ROM constructed using vector-valued

POD modes.

Next we extend the POD-DEIMmethodology to include scalar-valued PODmodes.

Note that depending on the problem, one may use scalar-valued POD modes for either

or both of state and nonlinear term.

2.2.1 Scalar-valued POD modes

Separate the snapshot matrices for the state (U) and the nonlinear term (F) each into

Nv smaller scalar-valued matrices grouped by unknown variables.

U = [U1,U2, . . . ,UNv ], U
i ∈ R

Nx×ns (2.28)

F = [F1,F2, . . . ,FNv ], F
i ∈ R

Nx×ns (2.29)

where U
i and F

i contain ns snapshots of the i-th state variable and i-th variable of

the nonlinear term respectively, each evaluated at Nx grid points in space. Using the
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POD method, generate a set of basis vectors for each scalar-valued snapshot matrix:

Φ̃ = diag{Φ1,Φ2, . . . ,ΦNv}, Φi ∈ R
Nx×Ki (2.30)

Ψ̃ = diag{Ψ1,Ψ2, . . . ,ΨNv}, Ψi ∈ R
Nx×Mi (2.31)

where Φi contains as columns the Ki scalar-valued POD basis vectors for the i-th

state variable generated from U
i and Ψi contains as columns the Mi scalar-valued

POD basis vectors for the i-th variable of the nonlinear term generated from F
i.

Furthermore, Φ̃ ∈ R
N×K̃ with K̃ =

∑Nv

i=1Ki and Ψ̃ ∈ R
N×M̃ with M̃ =

∑Nv

i=1Mi.

Note that the numbers of state POD modes for each variable do not have to be the

same. Instead, they are determined by the ‘relative omitted energy’ criterion for each

variable as described in Section 2.1.1. The same applies to the POD modes for the

nonlinear term. Each unknown variable in the state and nonlinear term can then be

approximated individually using these scalar-valued POD modes as follows:

ui ≈ Φiui
r, i = 1, . . . , Nv (2.32)

f i ≈ Ψici, i = 1, . . . , Nv (2.33)

where ui ∈ R
Nx×1 is the discretized state evaluated at Nx grid points corresponding

to the i-th state variable in the PDE. f i ∈ R
Nx×1 is the discretized nonlinear term

evaluated at Nx grid points corresponding to the i-th nonlinear term in the PDE. ui
r

and ci are the expansion coefficients of corresponding discretized state and nonlinear

terms. Note that here both the state and nonlinear term can be re-assembled in the

‘vector-valued’ form such that:

u ≈ Φ̃ur (2.34)

f ≈ Ψ̃c (2.35)
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where

u =








u1

...

uNv







∈ R

N×1, ur =








u1
r

...

uNv
r







∈ R

K̃×1 (2.36)

and

f =








f1

...

fNv







∈ R

N×1, c =








c1

...

cNv







∈ R

M̃×1 (2.37)

To determine the expansion coefficients ci for each nonlinear variable, DEIM interpo-

lation point selection algorithm from Section 2.1.2 is applied to each scalar POD basis

for the nonlinear term Ψi, i = 1, . . . , Nv, generating Nv sets of interpolation indices

{~zi}Nv

i=1 ∈ R
Mi×1. Note that the ~zi indices are ‘local’ indices within f i, ranging from 1

to Nx (instead of from 1 to N = NxNv in the case of global POD modes). In order to

compute the Mi components of f i, one must determine based on the nodal connectiv-

ity of the problem, the indices of the state components that must be reconstructed. It

is important to note in this case that all Nv state variables situated around these Mi

points may be required for such computations — not only the i-th one. We determine

all necessary indices of all the state variables, translate them into ‘global’ index and

concatenate them together: ~zi 7→ (~z′i)g, where the subscript g denotes ‘global’. This

translation allows us to express the reconstruction of state components across all Nv

variables necessary to compute f i~zi succinctly as Φ̃(~z′i)g
ur. The DEIM approximation

of f i can then be expressed as follows:

f i ≈ Ψi(Ψi
~zi
)−1f i~zi(Φ̃(~z′i)g

ur) (2.38)

where f i~zi ∈ R
Mi×1 contains Mi components of f i specified by ~zi and Ψi

~zi
contains the

corresponding Mi rows of Ψ
i.

Before applying (2.34), (2.35) and (2.38) to the POD-DEIM ROM (2.25), attention

must be paid to the increase of computational cost due to this approach. Firstly, the

total number of DEIM points is now M̃ =
∑Nv

i=1Mi, typically much greater than
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the M points in the approach using ‘vector-valued POD modes’ discussed in Section

2.1.2. Secondly, the set of indices of all the state variables that must be reconstructed

online to compute f i~zi , i = 1, . . . , Nv is now (~z′)g =
⋃Nv

i=1(~z
′
i)g. Although certain points

in {~zi}Nv

i=1 may be spatially close enough to one another that they partially share the

same support of the state, the set (~z′)g typically still may represent a substantial

portion of the FOM dimension N . This is particularly true for problems in which the

nonlinear term at a given grid point is a function of the state solution at many adjacent

grid points, such as problems in nonlinear structures, as will be seen in Chapter 5. For

such problems, the need to ‘almost’ fully reconstruct the state solution significantly

compromises the efficiency of the POD-DEIM ROM.

Furthermore, within each variable, the nonlinear term may be highly oscillatory,

making it difficult to approximate using an interpolatory method like DEIM. This

results in the need to use large numbers of DEIM points in each variable of the

nonlinear term (M̃ ∼ N), which again gives rise to the abovementioned increase in

computational cost.

2.2.2 Over-sampling

In the DEIM procedure described thus far (including the scalar-valued approach in

(2.38)), the expansion coefficients ci of the nonlinear basis vectors are determined

uniquely by having exactly Mi DEIM modes and Mi interpolation points. Instead

of enforcing the approximation for f i to be exact at the interpolation indicies ~zi, one

may evaluate each nonlinear variable f i at more sample points, and in so doing obtain

more sample points (M̂i) than the number of POD modes (Mi) within each nonlinear

variable:

f i
ẑi
∈ R

M̂i×1, Ψi
ẑi
∈ R

M̂i×Mi, Mi < M̂i ≪ N (2.39)

where f i
ẑi
is a vector of M̂i components of the i-th nonlinear variable and Ψi

ẑi
contains

M̂i rows of the scalar-valued POD basis matrix Ψi with Mi basis vectors of the i-

th nonlinear variable. This results in an overdetermined system for the expansion
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coefficients ci:

argmin
ci
‖Ψi

ẑi
ci − f i

ẑi
‖2 ⇒ ci = (Ψi

ẑi
)+f i

ẑi
, i = 1, . . . , Nv (2.40)

⇒ f i ≈ Ψi(Ψi
ẑi
)+f i

ẑi
(2.41)

Therefore, the pure interpolation of the original DEIM approximation has been re-

placed by a least-squares regression via over-sampling of the nonlinear term. Note

that for a purely interpolatory method, although the approximation of f i is exact

at the interpolation points, the error can still be large between these points if the

nonlinear term is highly oscillatory [81], and increasing the number of interpolation

points does not necessarily reduce the approximation error [71]. In unsteady simula-

tions where such error can accumulate over time, this is unacceptable. A regression

with over-sampling on the other hand, minimizes the approximation error over all

components of f i in a least-squares sense [81]. It is also known to be less sensitive

to perturbations in sample points. This can be particularly advantageous for the

current methodology in which sample points in f i are affected by the errors in the

reconstruction of necessary state components.

However, attention must be paid to ensure such over-sampling is performed effi-

ciently — blindly increasing the sample points in each nonlinear variable will cause the

computational cost to grow quickly, compromising the efficiency of the ROM. Note

that typically, to compute a single nonlinear variable at a given grid point f iz∗i , all

other Nv − 1 nonlinear variables (f jz∗j
, j = 1, . . . , Nv, j 6= i) must also be computed (as

is the case in nonlinear structures, for example). However, using the original DEIM

approximation, the additional Nv − 1 values (f jz∗j , j = 1, . . . , Nv, j 6= i) computed for

the i-th nonlinear variable are not used in the approximation of other Nv−1 nonlinear
variables {f j}Nv

j=1,j 6=i. The idea behind this modification is to utilize the extra infor-

mation provided by the other Nv−1 nonlinear variables that are previously not used.

To that end, we perform ‘node-based’ selection rather than the previously discussed

‘index-based’ selection. In short, we select sample points of the nonlinear term by

the entire information available at a given node. More specifically, if one nonlinear
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variable is selected at a particular node, then all other Nv − 1 nonlinear variables

residing on the same node are also selected as sample points. The sample indices of

all Nv nonlinear variables are now the same and is the union of ~zi, i = 1, . . . , Nv:

ẑ =

Nv⋃

i=1

~zi ∈ R
M̂×1 (2.42)

By doing so, there are more sample points (M̂) than the number of POD modes (Mi)

within each nonlinear variable:

f i
ẑ
∈ R

M̂×1, Ψi
ẑ
∈ R

M̂×Mi, Mi < M̂ ≪ N (2.43)

where f i
ẑ
is a vector of M̂ components of the i-th nonlinear variable and Ψi

ẑ
contains

M̂ rows of the scalar-valued POD basis matrix Ψi with Mi basis vectors of the i-

th nonlinear variable. This results in an overdetermined system for the expansion

coefficients ci:

argmin
ci
‖Ψi

ẑ
ci − f i

ẑ
‖2 ⇒ ci = (Ψi

ẑ
)+f i

ẑ
, i = 1, . . . , Nv (2.44)

⇒ f i ≈ Ψi(Ψi
ẑ
)+f i

ẑ
(2.45)

The modified POD-DEIM ROMwith scalar-valued PODmodes and over-sampling

is:

dur

dt
= Âr

︸︷︷︸

K̃×K̃

ur + B̂r
︸︷︷︸

K̃×NvM̂

fẑ(Φ̃(ẑ′)gur
︸ ︷︷ ︸

M̂ ′×1

, t;µ)

︸ ︷︷ ︸

NvM̂×1

(2.46)
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where

Âr = Φ̃
T
AΦ̃ ∈ R

K̃×K̃ , (2.47)

B̂r = Φ̃
T
diag{Ψ1(Ψ1

ẑ
)+,Ψ2(Ψ2

ẑ
)+, . . . ,ΨNv(ΨNv

ẑ
)+} ∈ R

K̃×NvM̂ (2.48)

fẑ =








f1
ẑ

...

fNv

ẑ







∈ R

NvM̂×1 (2.49)

and (ẑ′)g contains the global indices of the all the state variables that must be re-

constructed online as determined from ẑ based on nodal connectivity. The reduced

Jacobian of the nonlinear term is:

Jf
r = B̂r

︸︷︷︸

K̃×NvM̂

Jf
ẑ,(ẑ′)g(Φ̃(ẑ′)gur

︸ ︷︷ ︸

M̂ ′×1

, t;µ)

︸ ︷︷ ︸

NvM̂×M̂ ′

Φ̃(ẑ′)g (2.50)

Note that both Âr and B̂r can be constructed during an offline stage as described

in Section 2.1.3. Including the complete nodal information does not incur any ad-

ditional computational cost from the original DEIM approximation with the same

number of interpolation points because all Nv components of the nonlinear term at a

given node must be computed as long as one of them is required. Therefore, the NvM̂

components of fẑ are computed at the same cost of computing just M̂ components.

In (2.46), the compuational cost of the matrix-vector multiplication B̂rfẑ is a

factor ofNv higher than the original POD-DEIM ROM in (2.25). A similar increase in

computational cost can be seen in the online evaluation of Jf
r by (2.50). Such increase

is typically moderate when the total number of variables Nv is small. For problems

with large Nv, instead of employing one set of POD modes for each variable, one may

group the variables with similar orders of magnitudes and use one scalar-valued POD

basis for each of these groups. This however, requires some prior knowledges of the

problem.
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Chapter 3

Limit Cycle Oscillations in a

Tubular Reactor

This chapter applies the original and modified POD-DEIM model reduction method-

ologies presented in Chapter 2 to a 1-D tubular reactor model which exhibits limit

cycle oscillations (LCO). The problem set-up is described in Section 3.1.1 while the

numerical method used to solve the governing equations forward in time to obtain

time-asymptotic outputs such as LCO amplitudes and equilibrium positions is pre-

sented in Section 3.1.2. In Section 3.2, two reduced-order models of the system are

derived using the original and modified POD-DEIM model reduction approaches.

The performances of these two reduced-order models are assessed in Section 3.3 via

two test cases. In the first one, the full-order system with equal magnitudes in both

unknown variables is considered, whereas the second test case involves unknown vari-

ables with disparate magnitudes.

3.1 Full Order Model

In [43], Heinemann and Poore investigated the dynamics of a 1-D non-adiabatic tubu-

lar reactor with a single A → B reaction and axial mixing. In particular, they dis-

covered multiple regions in the input parameter space that exhibit Hopf-bifurcation

and limit cycle oscillations.
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3.1.1 Governing Equations

The coupled system of time-dependent convection-diffusion-reaction (CDR) equations

that governs the dynamics of the tubular reactor described above can be expressed

in dimensionless form as follows:

∂y

∂τ
=

1

Pe

∂2y

∂s2
− ∂y

∂s
−Df(y, θ),

∂θ

∂τ
=

1

Pe

∂2θ

∂s2
− ∂θ

∂s
− β(θ − θ0) +

BD
µ

f(y, θ)

, s ∈ (0, 1), τ ≥ 0 (3.1)

with Arrhenius type nonlinear reaction term: f(y, θ) = yeγ−
γ
θ . s and τ are the non-

dimensional length and time respectively. y and θ represent the non-dimensional

concentration and temperature respectively. Pe is the Péclet number. γ, B, β and

θ0 are known constants of the system. D is the Damköhler number which controls

the dynamics of the system as will be seen. For this work, we have introduced an

additional scaling parameter µ which controls the relative magnitudes between the

concentration and temperature variables — when µ = 1, the two state variables have

equal magnitude of O(1). Derivation of the system above from the dimensional form

and its detailed analysis under parametric variations can be found in [43]. Robin

boundary condition is imposed at the left boundary (s = 0) while the Neumann

condition is given at the right boundary (s = 1):

∂y

∂s

∣
∣
∣
∣
s=0

= Pe(y|s=0 − µ)

∂θ

∂s

∣
∣
∣
∣
s=0

= Pe(θ|s=0 − 1)

∂y

∂s

∣
∣
∣
∣
s=1

= 0

∂θ

∂s

∣
∣
∣
∣
s=1

= 0

, τ ≥ 0 (3.2)

The initial conditions are:

y(s, τ = 0) = yin, θ(s, τ = 0) = θin, s ∈ [0, 1] (3.3)
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Note that in this problem, the Damköhler number D acts as an important control pa-

rameter for the system response. In particular, it is shown in [43] that when Pe = 5,

γ = 25, B = 0.5, β = 2.5 and θ0 = 1, the system exhibits a Hopf-bifurcation with

respect to D in the range D ∈ [0.16, 0.17]; that is, there exists a critical Damköhler

number D∗ = 0.165 such that for D < D∗ the unsteady solution eventually converges

to a non-trivial steady state, as shown on Figure 3-1(a). For D > D∗, as shown on

Figure 3-1(b), the system will tend towards a stable limit cycle, oscillating about a

non-trivial equilibrium position, the amplitude of which is controlled by D. In this

work, we take the LCO amplitude to be the amplitude of the temperature oscillation

at the reactor exit: θ(s = 1, t). Such system responses can be summarized by a bifur-

cation diagram as shown on Figure 3-2 where a Hopf-bifurcation about D∗ = 0.165

can be observed.

Note that to generate such a response curve, the governing equations (3.1), (3.2)

and (3.3) must be solved forward in time so that time-asymptotic outputs such as

LCO amplitudes and equilibrium solutions can be obtained. In the next subsection,

we present the necessary numerical methods for solving this system of equations.
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Figure 3-1: Time histories of exit temperature in the steady-state regime (a) and
LCO regime (b)
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Figure 3-2: Bifurcation diagram of the tubular reactor model with respect to the
Damköhler number D for Pe = 5, γ = 25, B = 0.5, β = 2.5 and θ0 = 1. The LCO
amplitude at a given D value is the difference between the maximum exit temperature
(green diamond) and the equilibrium position (blue asterisk). For D < 0.165, the
maximum exit temperatures and the equilibrium positions coinside, signifying steady
state solutions. For D > 0.165, stable oscillatory solutions with increasing LCO
amplitudes are obtained.
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3.1.2 Solution Method

The problem is discretized in the spatial domain with a resolution ∆s = 1
N+1

, where

N is the number of interior grid points. Furthermore, a discretized state vector u

containing the concentration and temperature evaluated at the interior grid points is

defined such that

u(τ) =




y(τ)

θ(τ)



 ∈ R
2N×1, with y =








y1(τ)
...

yN(τ)







∈ R

N×1, and θ =








θ1(τ)
...

θN(τ)







∈ R

N×1

where yi(τ) = y(si, τ) and θi(τ) = θ(si, τ), with si = i∆s. To approximate the

diffusion and convection terms, second-order centered difference is applied in the

interior of the domain. Second-order forward and backward difference schemes are

used for the inflow and outflow boundary conditions respectively. The semi-discrete

form of the governing equations can be written as follows:

du

dτ
= Au+ b+ F (u;D) = R(u, τ ;D) (3.4)

where

A =




AD −AC 0

0 AD −AC − βI



 ∈ R
2N×2N

with

AD =
1

Pe(∆s)2














AD
1,1 AD

1,2

1 −2 1
. . .

. . .
. . .

1 −2 1

AD
N,N−1 AD

N,N














∈ R
N×N
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AC =
1

2∆s














AC
1,1 AC

1,2

−1 0 1
. . .

. . .
. . .

−1 0 1

AC
N,N−1 AC

N,N














∈ R
N×N

AD
1,1 =

4

3 + 2Pe∆s
− 2 AC

1,1 =
4

3 + 2Pe∆s

AD
1,2 = −

1

3 + 2Pe∆s
+ 1 AC

1,2 = −
1

3 + 2Pe∆s
− 1

AD
N,N−1 =

2

3
AC

N,N−1 =
4

3

AD
N,N = −2

3
AC

N,N = −4
3

b =




by

bθ



 ∈ R
2N×1, with by =











b0µ

0
...

0











∈ R
N×1, bθ =











b0

βθ0
...

βθ0











∈ R
N×1

and b0 =
2 + Pe∆s

∆s(3 + 2Pe∆s)

F (u) =




−Df (u)
BD
µ
f (u)



 ∈ R
2N×1, with f(u) =








f(y1, θ1)
...

f(yN , θN )







∈ R

N×1,

and f(yi, θi) = yie
γ− γ

θi

Note that AD
1,1, A

D
1,2, A

D
N,N−1, A

D
N,N , A

C
1,1, A

C
1,2, A

C
N,N−1, A

C
N,N , and b0 arise due to

one-sided finite-difference approximations at the two boundaries. The system of ordi-

nary differential equations (ODEs) (3.4) can be integrated forward in time using any

time-marching schemes. In this work, the explicit fourth-order Runge-Kutta (RK-4)
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method with a constant stepsize ∆τ is used:

ūn+ 1

2

= un +
1

2
∆τRn (3.5)

ûn+ 1

2

= un +
1

2
∆τR̄n+ 1

2

(3.6)

ũn+1 = un +
1

2
∆τR̂n+ 1

2

(3.7)

un+1 = un +
1

6
∆τ [Rn + 2(R̄n+ 1

2

+ R̂n+ 1

2

) + R̃n+1] (3.8)

where

Rn = R(un, n∆τ) (3.9)

R̄n+ 1

2

= R

(

ūn+ 1

2

, (n+
1

2
)∆τ

)

(3.10)

R̂n+ 1

2

= R

(

ûn+ 1

2

, (n+
1

2
)∆τ

)

(3.11)

R̃n+1 = R (ũn+1, (n+ 1)∆τ) . (3.12)

Starting with the initial conditions

u0 =




yin

θin



 , (3.13)

the solution is time-integrated until the time-asymptotic behaviours such as steady

states and LCO solutions are suitably established. To that end, a convergence crite-

rion is imposed such that the absolute differences between the last and the second-last

peaks as well as the last and third-last peaks of the exit temperature history is be-

low a certain tolerance ǫLCO. For this study, ǫLCO = 10−3 is used. Note that the

semi-discrete system (3.4) is of dimension 2N and that to evolve the solution forward

in time using the RK-4 scheme, the nonlinear residual must be evaluated 4 times at

each time level.
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3.2 POD-DEIM Reduced Order Model

In this section, we apply both the original and modified POD-DEIM model reduction

methodologies to the full-order model (FOM) in Section 3.1.2. Note that the POD-

based reduced-order models (ROM) of this particular tubular reactor system have

previously been studied by Beran et al. in [10] using the POD-Galerkin approach

and Kalashnikova and Barone in [47] using POD with the best point interpolation

method (BPIM).

3.2.1 Original POD-DEIM methodology

In this section, the offline-online model reduction strategy outlined in Section 2.1.3

is applied to the semi-discrete form of the governing equations (3.4), employing the

original POD-DEIM approach. Firstly, the snapshot matrices U = {ui}ns

i=1 for the

state and F = {F i}ns

i=1 for the nonlinear term are formed by performing the FOM

simulations at selected values of the Damköhler number within its range of varia-

tions D ∈ [Dmin,Dmax]. Using the POD method presented in Section 2.1.1, the state

basis vectors Φ = {φi}Ki=1 are computed from U and the nonlinear basis vectors

Ψ = {ψi}Mi=1 from F, in which K,M ≪ 2N are determined based on their respec-

tive prescribed ‘relative omitted energy’ tolerances, as shown on (2.17). Next, the

M interpolation indices ~z = [z1, . . . , zM ]T are computed using the point selection

procedure described in Algorithm 1 in Section 2.1.2. The corresponding M ′ indices

of ~z′ ∈ R
M ′×1 for the state are then derived from ~z based on nodal connectivity of

the problem. In this particular problem, the nonlinear reaction term at a given grid

point depends on both state components at that point. Therefore, M ′ ≤ 2M . The

equality holds only when all of the M interpolation points reside on different grid

points. To construct the ROM of the system, the state u is first approximated as a

linear combination of its basis functions:

u ≈ Φur (3.14)
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where

Φ = [φ1,φ2, . . . ,φK ] ∈ R
2N×K , ur = [ũ1, ũ2, . . . , ũK ] ∈ R

K×1 (3.15)

Substituting the approximation above into the FOM (3.4) and apply Galerkin pro-

jection, the POD-Galerkin ROM is obtained as follows:

dur

dτ
= ΦTAΦ

︸ ︷︷ ︸

Ar

ur +ΦTb
︸︷︷︸

br

+ΦTF (Φur;D)
︸ ︷︷ ︸

F r

(3.16)

where Ar = ΦTAΦ ∈ R
K×K, br = ΦTb ∈ R

K×1 and F r = ΦTF(Φur;D) ∈ R
K×1.

The initial condition (3.13) is also projected onto the reduced basis:

ur(τ = 0) = ΦTu0 (3.17)

To obtain an efficient ROM, we further approximate the reduced nonlinear term

using DEIM as shown in (2.23). The POD-DEIM reduced-order model can then be

expressed as:
dur

dτ
= Ar

︸︷︷︸

K×K

ur + br + Br
︸︷︷︸

K×M

F ~z(Φ~z′ur
︸ ︷︷ ︸

M ′×1

;D)

︸ ︷︷ ︸
M×1

(3.18)

where

Br = ΦTΨΨ−1
~z ∈ R

K×M (3.19)

and F ~z is the nonlinear term evaluated at M interpolation points specified by ~z, Ψ~z

contains the corresponding M rows of Ψ. Φ~z′ contains M ′ rows of Φ specified by

~z′. Given a particular Damköhler number D, the ROM (3.18) can be time-integrated

forward using the explicit RK-4 method described in Section 3.1.2. Note that the

parameter independent matrices Ar and Br are both formed in the offline phase,

immediately after theΦ, Ψ and ~z have been computed from the snapshots. The online

computation of the reduced nonlinear term involves the evaluations ofM out of a total

of 2N components of the full-order nonlinear term. To do so, M ′ components of the
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state solution must also be reconstructed online. Since K,M,M ′ ≪ 2N , the online

evaluation of the K-dimensional ROM (3.18) constructed with the original POD-

DEIM methodology can be performed efficiently at a computational cost independent

of the FOM dimension.

3.2.2 Modified POD-DEIM methodology

A different ROM can be constructed using the modified POD-DEIM methodology

outlined in Section 2.2 with scalar-valued POD modes and DEIM over-sampling.

The snapshot matrices for the state (U) and the nonlinear term (F) can be populated

in the same manner as discussed in the previous section by simulating the FOM.

U and F are then separated into 2 smaller scalar-valued matrices for each unknown

variable:

U ∈ R
2N×ns 7−→ U

y,Uθ ∈ R
N×ns (3.20)

F ∈ R
2N×ns 7−→ F

y,Fθ ∈ R
N×ns (3.21)

Scalar-valued POD modes for the state and the nonlinear term are generated from

these snapshot matrices using the POD method:

U
y 7−→ Φy ∈ R

N×Ky , U
θ 7−→ Φθ ∈ R

N×Kθ (3.22)

F
y 7−→ Ψy ∈ R

N×My , F
θ 7−→ Ψθ ∈ R

N×Mθ (3.23)

where the numbers of POD basis vectors for the state (Ky and Kθ) and the nonlinear

term (My and Mθ) are all determined by their respective ‘relative omitted energy’

criterion (2.17). The state u as defined in Section 3.1.2 can be approximated as

follows:

u ≈ Φ̃ur (3.24)
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where

Φ̃ = diag{Φy,Φθ} ∈ R
2N×K̃ (3.25)

ur =




uy

r

uθ
r



 ∈ R
K̃×1 (3.26)

and K̃ = Ky + Kθ. To formulate an efficient approximation of the nonlinear term,

the DEIM interpolation point section algorithm from Section 2.1.2 is applied to each

scalar-valued POD basis for the nonlinear terms Ψy and Ψθ, generating two sets of

interpolation indices:

Ψy 7−→ ~zy ∈ R
My×1, Ψθ 7−→ ~zθ ∈ R

Mθ×1 (3.27)

Using the ‘node-based’ selection method described in Section 2.2.2, we require both

components of the nonlinear term at a particular node to be selected as long as one

of them is selected by either ~zy or ~zθ. Therefore, the interpolation indices for both

variables of the nonlinear term are:

ẑ = ~zy
⋃

~zθ ∈ R
M̂×1 (3.28)

where My,Mθ ≤ M̂ ≪ 2N , resulting in more sample points than the number of POD

modes within each variable of the nonlinear term. The nonlinear term F can then be

approximated under the over-sampling framework (Section 2.2.2) as follows:

F =




F y

F θ



 ≈




Ψy(Ψy

ẑ
)+F y

ẑ

Ψθ(Ψθ
ẑ
)+F θ

ẑ



 =




Ψy(Ψy

ẑ
)+ 0

0 Ψθ(Ψθ
ẑ
)+








F

y
ẑ

F θ
ẑ



 (3.29)

Substituting the approximations (3.24) and (3.29) into the FOM (3.4) and performing

Galerkin projection, the modified POD-DEIM ROM with scalar-valued POD modes

59



and over-sampling is:

dur

dτ
= Âr

︸︷︷︸

K̃×K̃

ur + b̃r + B̂r
︸︷︷︸

K̃×2M̂

F ẑ(Φ̃(ẑ′)gur
︸ ︷︷ ︸

M̂ ′×1

;D)

︸ ︷︷ ︸

2M̂×1

(3.30)

where

Âr = Φ̃
T
AΦ̃ ∈ R

K̃×K̃ (3.31)

B̂r = Φ̃
T
diag{Ψy(Ψy

ẑ
)+,Ψθ(Ψθ

ẑ
)+} ∈ R

K̃×2M̂ (3.32)

b̃r = Φ̃
T
b ∈ R

K̃×1 (3.33)

F ẑ =




F

y
ẑ

F θ
ẑ



 ∈ R
2M̂×1 (3.34)

and (ẑ′)g ∈ R
M̂ ′×1 contains the global indices of the all the state variables that must

be reconstructed online as determined from ẑ based on nodal connectivity. Note that

in this problem, both components of the nonlinear term at a given node are only a

function of the two state components at that node. Therefore, M̂ ′ = 2M̂ . The cost of

the online evaluation of this ROM is a function of K̃, M̂ ≪ 2N . This ROM is to be

compared with the original POD-DEIM ROM (3.18) derived in the last subsection.

In the next section, we compare the performances of the two ROMs for problems with

equal and disparate magnitudes in the two unknown variables.
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3.3 Numerical Results

In this section, both the original and modified POD-DEIM methodologies derived in

Section 3.2 are applied to perform model reduction on the nonlinear CDR system

described in Section 3.1. Two test cases are considered here. In the first case, the

ROM is constructed for a system with equal magnitudes in both unknown variables

(µ = 1). In the second test case, the scaling parameter µ is set to 10−4, making the

temperature variable (θ) four orders of magnitude larger than the concentration (y).

In both cases, the system parameters Pe = 5, γ = 25, B = 0.5, β = 2.5 and θ0 = 1

are held constant while the Damköhler number D varies in the range [0.16, 0.17]. The

spatial domain is discretized into 100 equal intervals, resulting in the FOM dimension

of 2N = 198. A constant step-size of ∆τFOM = 2.5 × 10−4 for the FOM is used for

the RK-4 time-marching scheme, in order to maintain numerical stability.

The accuracies of both ROMs are quantified by comparing its outputs of interest

— the LCO amplitudes and equilibrium positions with those of the FOM. To that

effect, we compute the absolute relative error as:

|ǫrel| =
|ℓROM − ℓFOM |
|ℓFOM | (3.35)

where ℓ denotes an output of interest.

3.3.1 Unknown variables with equal magnitudes (µ = 1)

The ROMs (3.18) and (3.30) are constructed with two sets of snapshots obtained by

simulating the FOM at the two extreme points of its parameter domain: D = 0.16

and 0.17. For each unsteady simulation, the FOM is time-marched using the RK-4

scheme at ∆τFOM = 2.5 × 10−4 until the solution converges to either a steady state

or a stable limit cycle. The snapshots of the state and nonlinear term are stored at

every 1000 time steps. For the original POD-DEIM ROM, a tolerance on the relative

omitted energy ǫu = 10−11 is imposed for the state while ǫf = 10−10 is given for the

nonlinear term, resulting in the inclusions of K = 10 state POD modes and M = 10
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POD modes for the nonlinear term. For the modified POD-DEIM ROM, the relative

omitted energy levels imposed for the scalar-valued POD modes of the state and the

nonlinear term are: ǫyu = ǫθu = 10−11 and ǫyf = ǫθf = 10−10. As a result, Ky = 8,Kθ = 7,

My = 10, and Mθ = 10. A ‘D-sweep’ is performed in which the FOM and the ROMs

are solved at 20 equi-spaced D values in the interval D ∈ [0.16, 0.17]. Note that due to

the truncation of high-frequency modes, a larger stepsize of ∆τROM = 1.0× 10−2 can

be used in the time-integration of the two ROMs. Figure 3-3 shows the maximum exit

temperatures and equilibrium positions at each D value computed using FOM and the

original POD-DEIM ROM. A Hopf-bifurcation can be observed around D∗ = 0.165.

For D > D∗, stable oscillatory solutions are obtained. The LCO amplitude is the

difference between the maximum exit temperature and the equilibrium position. The

FOM and ROM results are observed to be in excellent agreement for all points within

D ∈ [0.16, 0.17], even though the ROM is generated only with snapshots taken at

D = 0.16 and 0.17. Figure 3-4(a) shows that all outputs except for the two closest

to the bifurcation point are computed with relative errors below 10−4. The errors are

slightly higher aroundD∗ = 0.165 because the convergence towards a stable limit cycle

at these points takes many thousands of time steps to achieve, giving rise to long-time

integration errors in the ROM. The ROM constructed using the original POD-DEIM

methodology reduces the computational time by two orders of magnitude from the

FOM, as shown on Figure 3-4(b). Note that the ability to use a larger step-size

(∆τROM = 40∆τFOM) for the explicit time-marching scheme is a major contributor

to the speed-up in this problem. The speed-up effected by the reductions in system

dimensions (2N = 198 in FOM vs. K = 10 in ROM) is less significant as the FOM

dimension is already rather small.

Note that in this test case, both ROMs yield the same order of accuracy with the

modified POD-DEIM ROM having marginally lower speed-up factors. For simplicity,

only the comparison results between the FOM and the original POD-DEIM ROM are

shown here. We defer the comparisons involving the modified POD-DEIM ROM for

the next test case in which the difference in performance between the two ROMs is

more apparent.
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Figure 3-3: Comparison between the bifurcation diagrams computed using the FOM
(µ = 1) and the original POD-DEIM ROM (K = 10,M = 10) for the tubular reactor
system with Pe = 5, γ = 25, B = 0.5, β = 2.5 and θ0 = 1, in D ∈ [0.16, 0.17]
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Figure 3-4: Relative error and speed-up over FOM (µ = 1) in computing the LCO
amplitudes and equilibrium positions, using the original POD-DEIM ROM with K =
10 and M = 10.
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3.3.2 Unknown variables with different magnitudes (µ = 10−4)

In this test case, the scaling parameter µ is set to 10−4, resulting in four orders

of magnitude difference between the temperature and concentration variables. The

snapshots are collected in the same manner as described in the previous test case.

The numbers of POD modes for the state and the nonlinear term for both ROMs

are also the same as the first test case. The degradation of accuracy in the original

POD-DEIM ROM is shown on the bifurcation diagram on Figure 3-5 where signifi-

cant discrepancies between the FOM and ROM results are apparent, especially in the

predicted equilibrium positions. Comparing the accuracy of the original POD-DEIM

ROM in the equal-magnitude case (µ = 1) in Figure 3-6(a) to the µ = 10−4 case

in Figure 3-6(b), it can be observed that the relative errors increase two orders of

magnitude due to the disparate magnitudes between the temperature and concen-

tration. The speed-up factors are the same as the first test case (see Figure 3-4(b))

since the same step-size and numbers of POD modes are used. On the other hand,

the results obtained using the modified POD-DEIM ROM are in excellent agreement

with those of the FOM, as shown on Figure 3-7. The relative errors, as shown on

Figure 3-8(a) are all of O(10−4) — the same order as the equal-magnitude case. Fig-

ure 3-8(b) shows that the speed-up factors of O(102) are achieved for all points tested,

only marginally lower than the original POD-DEIM ROM (see Figure 3-4(b)). This

test case demonstrates that the modified POD-DEIM ROM with scalar-valued POD

modes and over-sampling is more robust for problems in which disparate magnitudes

exist among unknown variables.
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Figure 3-5: Comparison between the bifurcation diagrams computed using the FOM
(µ = 10−4) and the original POD-DEIM ROM (K = 10,M = 10) for the tubular
reactor system with Pe = 5, γ = 25, B = 0.5, β = 2.5 and θ0 = 1, in D ∈ [0.16, 0.17]
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Figure 3-6: Relative errors in computing the LCO amplitudes and equilibrium posi-
tions using the original POD-DEIM ROM for the equal-magnitude case (µ = 1) and
the different-magnitude case (µ = 10−4)
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Figure 3-7: Comparison between the bifurcation diagrams computed using the FOM
(µ = 10−4) and the modified POD-DEIM ROM (Ky = 8, Kθ = 7, My = 10, Mθ = 10)
for the tubular reactor system with Pe = 5, γ = 25, B = 0.5, β = 2.5 and θ0 = 1, in
D ∈ [0.16, 0.17]
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Figure 3-8: Relative error and speed-up over FOM (µ = 10−4) in computing the
LCO amplitudes and equilibrium positions, using the modified POD-DEIM ROM
with Ky = 8, Kθ = 7, My = 10 and Mθ = 10.
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Chapter 4

Aeroelastic Limit Cycle

Oscillations

This chapter applies the modified POD-DEIM model reduction methodology devel-

oped in the Chapter 2 to an aeroelastic system that exhibits limit cycle oscillations

(LCO). The problem set-up and governing equations are described in Section 4.1.1.

An implicit time-integration scheme is presented in Section 4.1.2 to solve the equa-

tions of motion to obtain time-asymptotic values such as the LCO amplitudes and

equilibrium positions. In Section 4.1.3, the ‘direct flutter computation’ is introduced

to obtain the flutter points via eigen-analysis of the aeroelastic system. Section 4.2

applies the modified POD-DEIM model reduction approach to reduce the compu-

tational costs of the two aforementioned tasks. Finally, numerical results involving

systems with fixed parameters, as well as one, two and three parameters are presented

in Section 4.3.
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4.1 Full Order Model

To simulate the aeroelastic LCO behaviour, a simplified aero-structural model con-

sisting of a rectangular cantilevered plate in quasi-steady supersonic flow is considered

in this work. Figure 4-1 shows a schematic of the model. The rectangular plate has

a uniform thickness of h, a width (chord length) c and a length (semi-span) L in

the x and y directions respectively. The incoming supersonic flow is along the x di-

rection. This is the same model that has been considered in the works by [32] and [75].

Figure 4-1: Cantilevered plate in supersonic flow
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4.1.1 Governing Equations

The equations of motion that govern the out-of-plane displacement w of a thin plate

are [29]:

ρsh
∂2w

∂t2
+D∇4w =

12D

h2

[

(εxx+νεyy)
∂2w

∂x2
+2(1−ν)εxy

∂2w

∂x∂y
+(εyy+νεxx)

∂2w

∂y2

]

+paero

(4.1)
∂

∂x
(εxx + νεyy) + (1− ν)

∂εxy
∂y

= 0 (4.2)

∂

∂y
(εyy + νεxy) + (1− ν)

∂εxy
∂x

= 0 (4.3)

where ρs is the density of the plate, D = Eh3/(12(1 − ν2)) is the plate rigidity, E

is the modulus of elasticity, h is the plate thickness, ν is the Poisson’s ratio, paero is

the external loading exerted by aerodynamic pressure, and εxx, εyy and εxy are the

internal strains. As discussed in Section 1.1, for the system to exhibit LCO behaviour,

nonlinearities in the flow and/or the structure must be present to limit the growth

of vibrational amplitude after an initial disturbance. In this model, such nonlinear

mechanism is represented by the von Kármán strains in the plate which couple the

in-plane and out-of-plane deformations as follows:

εxx =
∂u

∂x
+

1

2

(
∂w

∂x

)2

(4.4)

εyy =
∂v

∂y
+

1

2

(
∂w

∂y

)2

(4.5)

εxy =
1

2

(
∂v

∂x
+

∂u

∂y
+

∂w

∂x

∂w

∂y

)2

(4.6)

where u, v and w are displacements in the x, y and z directions respectively.

The aerodynamic pressure paero is modeled by the linearized supersonic piston

theory originally formulated by Ashley and Zartarian in [3]:

paero =
2ρ∞U2

∞
√

M2
∞ − 1

∂w

∂x
+

2ρ∞U∞(M2
∞ − 2)

(M2
∞ − 1)3/2

∂w

∂t
(4.7)
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where ρ∞, U∞ andM∞ are freestream flow density, velocity and Mach number respec-

tively. Spatial discretization using the finite element method results in the following

system of nonlinear second-order ODEs:

Mü+Csu̇+ f (u) = faero(u, u̇) (4.8)

where the plate is discretized into triangular elements. Each node on the computa-

tional grid contains 6 degrees of freedom (DOF). Therefore the generalized displace-

ment vector is organized such that

u =








u1

...

u6







∈ R

6N×1 (4.9)

where ui ∈ R
N×1 and N is the number of finite element nodes. Note that for

the generalized displacement, these 6 DOFs correspond to the displacements from

undeflected position in the x, y and z directions and the rotations about the x, y and

z axes. In particular, for the i-th DOF, ui contains the generalized displacement of

that DOF evaluated at allN grid points. Within each triangular element, the in-plane

response is modeled by the linear strain triangle (LST) while the out-of-plane bending

response is modeled by the discrete Kirchhoff triangle (DKT). Thus discretized, M

is the resultant consistent mass matrix, Cs is the structural damping matrix. In this

structural model, proportional damping is assumed such that Cs = βsM , where βs

is the structural damping coefficient. f(u) is a vector of nonlinear internal forces

due to the von Kármán strains which couple the in-plane stretching and out-of-plane

bending responses as shown in (4.4)–(4.6). It is assembled as a global vector from N
nodal forces in the same manner as the state u:

f =








f1

...

f6







∈ R

6N×1 (4.10)
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where f i ∈ R
N×1. The 6 DOFs of f correspond to the forces in the x, y and z

directions and the moments about the x, y and z axes.

The aerodynamic pressure force vector faero(u, u̇) can be approximated from

(4.7) as:

faero(u, u̇) = −
2ρ∞U2

∞
√

M2
∞ − 1

Ax

︸ ︷︷ ︸

Kaero

u− 2ρ∞U∞(M2
∞ − 2)

(M2
∞ − 1)3/2

At

︸ ︷︷ ︸

Caero

u̇ (4.11)

where Ax and At are matrices that approximate the gradient and time derivative

terms in (4.7) at the center of each triangular element and distribute the integrated

pressure at each node. Moreover, Kaero and Caero are defined as the aerodynamic

stiffness and damping matrices. Substituting (4.11) into (4.8), the equations of motion

can be expressed as:

Mü+ (Cs +Caero)u̇+Kaerou+ f(u) = 0 (4.12)

The above equation of motion was used in the design-for-reliability study by [75] to

model the same supersonic plate problem in which the incoming flow was assumed

to be parallel to the undeformed plate. This numerical model can be extended to

include the effect of a steady angle of attack2 (αo) by the addition of the following

constant aerodynamic forcing term:

fα = −Kα
aeroαo (4.13)

where Kα
aero is a matrix that projects the aerodynamic forces onto the vertical axis

through an angle αo. Note that the angle of attack here is assumed to be small

and that fα is a constant forcing vector at a given αo. The equation of motion of

a nonlinear cantilevered plate in supersonic flow inclined at a small steady angle of

attack is:

Mü+ (Cs +Caero)u̇+Kaerou+ fα + f(u) = 0 (4.14)

2initial angle of attack of the undeformed plate
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It is worthwhile to point out the functional dependence of the terms in the equation

above on various flow and structural parameters. First, we introduce the following

non-dimensional parameters:

λ =
2ρ∞U2

∞c3

Do

√

M2
∞ − 1

(4.15)

µ =
2ρ∞c

ρsho

(4.16)

where λ is the non-dimensional dynamic pressure parameter and µ is the mass ratio.

Note that Do = Eh3
o/(12(1−ν2)) is the plate rigidity defined based on a fixed baseline

uniform plate thickness ho. Using these non-dimensional parameters, the functional

relationships of different terms in (4.14) can be expressed as follows:

M,Cs = f(h, ρs, β) (4.17)

Kaero, Caero = f(M∞, λ, µ, c) (4.18)

f(u) = f(D,u) (4.19)

Note that the nonlinear internal force f(u) is a function of both plate rigidity D and

state u. The latter is in turn dependent on all other flow and structural parameters.

As will be shown in the following sections, the LCO amplitude of the plate is a function

of the λ parameter. In particular, when all other system parameters are held constant,

there exists a critical dynamic pressure λ∗, also known as the Hopf-bifurcation point

or the flutter point, which marks the change of stability. For λ < λ∗, the ensuing

oscillation after an initial disturbance will eventually damp out to a steady state,

establishing a static equilibrium. For λ > λ∗, the system will tend towards a stable

limit cycle, the amplitude of which is controlled by λ. In this work, we take the LCO

amplitude to be the amplitude of the vertical deflection δw at the trailing-edge tip

node. Figure 4-2 shows a typical time history of such LCO behaviour.

Note that to compute the LCO amplitude at a given λ, the equations of motion

(4.14) must be integrated forward in time. In the next subsection, we present the a

‘generalized-α’ time-marching scheme for this purpose.
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Figure 4-2: Time history of the vertical displacement of the trailing-edge tip node
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4.1.2 Solution Method

To solve for the long-term dynamics of a structures problem such as (4.14), time-

integration methods with numerical dissipations are typically required to eliminate

the high-frequency modes so as to maintain numerical stability. To that end, a

popular family of methods for structural dynamic problems is that of Newmark [60].

However, Newmark algorithms are known to be too dissipative for low-frequency

modes and therefore only first-order accurate. In this work, we use instead the second-

order accurate, unconditionally stable generalized-α method formulated by Chung

and Hulbert in [27]. Let un, u̇n and ün denote the generalized displacement, velocity

and acceleration vectors at time level n respectively. Between the time levels n and

n+1, the equations of motion can be expressed at the ‘generalized mid-point’ n+1−αm

as follows:

Mün+1−αm
+ (Cs +Caero)u̇n+1−αm

+Kaeroun+1−αm
+ fα + fn+1−αm

(un+1−αm
) = 0

(4.20)

where the ‘generalized mid-point’ displacement (un+1−αf
), velocity (u̇n+1−αf

), accel-

eration (ün+1−αm
) and nonlinear internal forces (fn+1−αf

(un+1−αm
)) are:

un+1−αf
= (1− αf)un+1 + αfun (4.21)

u̇n+1−αf
= (1− αf)u̇n+1 + αf u̇n (4.22)

ün+1−αm
= (1− αm)ün+1 + αmün (4.23)

fn+1−αf
(un+1−αm

) = (1− αf)f (un+1) + αff (un) (4.24)

Expressing the displacement u̇n+1 and velocity ün+1 as functions of a single unknown

un+1 via the Newmark approximations [60]:

u̇n+1 =
γ

β∆t
(un+1 − un)−

γ − β

β
u̇n −

γ − 2β

2β
∆tün (4.25)

ün+1 =
1

β∆t2
(un+1 − un)−

1

β∆t
u̇n −

1− 2β

2β
ün (4.26)
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Substituting (4.25) and (4.26) into (4.22) and (4.23), the generalized mid-point ve-

locity and acceleration can be expressed in terms of the values at time-level n and

n+ 1:

u̇n+1−αm
=

(1− αf )γ

β∆t
(un+1 − un)−

(1 − αf )γ − β

β
u̇n −

(1 − αf )(γ − 2β)

2β
∆tün (4.27)

ün+1−αm
=

1− αm

β∆t2
(un+1 − un)−

(1− αm)

β∆t
ün −

1− αm − 2β

2β
ün (4.28)

where αm, αf , β and γ are algorithmic damping parameters, which can be derived

in terms of the spectral radius ρ of the amplification matrix arising from stability

analysis of the algorithm as follows:

αm =
2ρ− 1

ρ+ 1
(4.29)

αf =
ρ

ρ+ 1
(4.30)

β =
1

4
(1− αm + αf)

2 (4.31)

γ =
1

2
− αm + αf (4.32)

It has been shown in [27] that αm, αf , β and γ which satisfy the above relations

produce optimal algorithmic damping with low dissipation on low-frequency modes

and high dissiplation on high-frequency modes. In this work, ρ = 0.2 is used. The

generalized-α method thus constructed is second-order accurate and unconditionally

stable. For detailed analysis of this method and the derivations of these relations,

the readers are referred to [27]. Substituting (4.27), (4.28), (4.21) and (4.24) into

the governing equation (4.20), the equation of the residual which is nonlinear in the

unknown displacement un+1 is obtained:

R(un+1) = Aun+1 + (1− αf)f (un+1) +Q(un) = 0 (4.33)

75



where

A =
1− αm

β∆t2
M +

(1− αf )γ

β∆t
(Cs +Caero) + (1− αf)Kaero (4.34)

Q(un) = (1− αm)M

[
1

β∆t2
(−un −∆tu̇n)−

1− 2β

2β
ün

]

+ αmMün

+(1− αf)(Cs +Caero)

[ −γ
β∆t

un −
γ − β

β
u̇n −

γ − 2β

2β
∆tün

]

+αf (Cs +Caero)u̇n + αfKaeroun + αff(un) + fα (4.35)

Note that Q is a function of un only and is therefore a constant matrix at time-level

n + 1. A is a constant matrix throughout the simulation. The nonlinearity in the

residual is due to the internal force f(un+1). At time-level n+1, to solve the nonlinear

residual for the unknown displacement un+1, we use Newton’s method. The Jacobian

of the residual must then be computed:

J(u) =
∂R(u)

∂u
= A+ (1− αf )J

f(u) (4.36)

where

Jf (u) =
∂f (u)

∂u
(4.37)

and Jf is the Jacobian of the nonlinear force, also known as the tangent stiffness

matrix in computational mechanics. Knowing the displacement at time level n, one

can solve (4.33) iteratively for un+1 using Newton’s method as follows:

J(up
n+1)(u

p+1
n+1 − up

n+1) = −R(up
n+1) (4.38)

where p denotes the number of sub-iterations. At p = 0, an initial guess for up=0
n+1

is required. In this work, we use the solution at the previous time step such that

u
p=0
n+1 = un. Furthermore, the sub-iterations are terminated when the magnitude of

the residual R has been reduced by a specific order of magnitude from its initial

value, such that:
‖R(up

n+1)‖2
‖R(up=0

n+1)‖2
≤ ǫ (4.39)

76



where ǫ is a small number between 10−5 to 10−10 depending on the desired level of

convergence.

Note that at each time level, to solve the nonlinear residual equation (4.33) via

Newton iterations (4.38), the nonlinear force f (u) and Jacobian J(u) must be formed

multiple times. At each sub-iteration, the Jacobian matrix must also be inverted

to solve for up
n+1. For large-scale problems in which long-term dynamics must be

simulated, this can be very computationally intensive. If the effects of parametric

variabilities are to be studied, it becomes a computationally prohibitive task. In

Section 4.2, we apply the POD-DEIM model reduction approach presented in Section

2.2 to alleviate such computational burden.

To start the time-integration, the initially undeflected plate (un=0 = 0) is given

an updwards velocity u̇n=0. The initial acceleration ün=0 can be computed as:

ün=0 = −M−1 [(Cs +Caero)u̇n=0 +Kaeroun=0 + fα + f(un=0)] (4.40)

The solution can then be time-marched forward by solving (4.33) iteratively. The

time-integration proceeds until a stable limit cycle is fully developed for the trailing-

edge tip vertical displacement. To that end, a convergence criterion is imposed such

that the absolute differences between the last and the second-last peaks as well as the

last and third-last peaks of the displacement history (see for example, Figure 4-2) is

below a certain tolerance ǫLCO. For this study, ǫLCO = 10−2 is used.
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4.1.3 Direct Flutter Computation

The generalized-α method presented in Section 4.1.2 can be used to integrate the

equations of motion forward in time to obtain time-asymptotic informations such as

the LCO amplitude and equilibrium positions. Another crucial characteristic of the

system that is often of interest for aeroelastic designs is the Hopf-bifurcation point or

the flutter speed.

The generalized-α method can be used to bracket the flutter point within a small

interval by solving the unsteady governing equations at discrete λ values. However,

if the flutter point must be predicted at high accuracy, this method becomes ineffi-

cient as simulations near the true flutter point may take extremely long to converge.

Therefore, to predict the flutter point, a direct method which does not involve time-

integration is desired. In this section, we present a direct flutter computation method

via eigen-analysis of the system based on the works of [76] and [59].

The flutter point (λ∗) or Hopf-bifurcation point is a point above which the aeroe-

lastic system loses stability to infinitesimal disturbances, resulting in time-dependent

responses such as LCO instead of settling back to an equilibrium position. Mathe-

matically, such ‘exchange of stability’ which occurs when λ is increased beyond the

flutter point, is due to a pair of complex conjugate eigenvalues of the system (4.14)

crossing the imaginary axis of the complex plane. That is, at the flutter point, a single

pair of complex eigenvalues becomes purely imaginary while all other eigenvalues of

the system have negative real parts. In particular, define γ(λ) such that it is the real

component of the eigenvalue with the largest real part:

γ(λ) = max(Re(βj)) (4.41)

where βj is the j-th eigenvalue of the system. The task of predicting λ∗ is then

equivalent to solving for γ(λ∗) = 0 such that the eigenvalue associated with the least

stable eigenmode has a vanishing real part. To that end, Newton’s method can be
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used to solve for λ∗ iteratively:

∂γ(λn)

∂λ
(∆n+1λ) = −γ(λn) (4.42)

where ∆n+1λ = λn+1 − λn and λn is the non-dimensional dynamic pressure at the

n-th step. To improve convergence, a relaxation parameter ωhopf = 0.8 is used in the

Newton update:

λn+1 = λn + ωhopf∆
n+1λ (4.43)

To examine the stability of the aeroelastic system at a given λ value and compute the

associated eignvalues, the equations of motion (4.14) are re-written in the first-order

form as follows:




IN×N 0

0 M








u̇

ü



+




0 −IN×N

λK̃aero Cs +
√
λC̃aero








u

u̇



+




0

f(u)



+




0

fα



 = 0 (4.44)

where IN×N is the N ×N identity matrix and λ is factored out of the aerodynamic

stiffness and damping matrices such that Kaero = λK̃aero and Caero =
√
λC̃aero.

Furthermore, define:

q =




q1

q2



 =




u

u̇



 (4.45)

The first-order equations of motion (4.44) can then be expressed as follows:

Aq̇ = Bq + f(q) (4.46)

where

A =




IN×N 0

0 M



 , B =




0 IN×N

−λK̃aero −(Cs +
√
λC̃aero)



 , f(q) =




0

−fα − f(u)





(4.47)

The generalized eigenvalue problem associated with this system is:

B̃P j = βjAP j (4.48)
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where

B̃ =




0 IN×N

−λK̃aero −(Cs +
√
λC̃aero)



+




0 0

−Jf (ueq) 0



 (4.49)

and P j is the right eigenvector corresponding to the j-th eigenvalue βj and J
f (ueq) is

the Jacobian of the nonlinear force (as defined in (4.37)) evaluated at the equilibrium

solution ueq. Take the derivative with respect to λ on both sides and multiply by the

left eigenvector Qj associated with the j-th eigenvalue βj:

QT
j

∂B̃

∂λ
P j =

∂βj

∂λ
QT

j AP j (4.50)

The derivative of the j-th eigenvalue with respect to λ can be expressed as:

∂βj

∂λ
=
QT

j
∂B̃
∂λ
P j

QT
j AP j

(4.51)

where the term ∂B̃
∂λ

can be derived analytically:

∂B̃

∂λ
=




0 0

−K̃aero − C̃aero

2
√
λ



 (4.52)

Let the eigenvalues βj be arranged in the order of descending magnitude of their real

parts such that Re(β1) > . . . > Re(β2N ). The gradient term in (4.42) is simply:

∂γ(λn)

∂λ
= Re

(
∂βj=1(λ

n)

∂λ

)

(4.53)

Equations (4.42), (4.43), (4.48) and (4.53) can then be used in tandem to solve for

the flutter point λ∗. Specifically, starting from an initial guess λn=0, the generalized

eigenvalue problem of the system (4.48) is solved for βj=1, P j=1 and Qj=1 with which

the gradient term of (4.42) can be evaluated via (4.53). The Newton update (4.43)

is then computed and the process repeated until λ converges to a certain prescribed

tolerance ǫfp such that |∆n+1λ| < ǫfp. Note that as λn → λn+1 in Newton iterations

(4.42), the equilibrium position (ueq) is non-trivial for plates at non-zero angles of
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attack (αo 6= 0), and varies from one iteration to another. Therefore for each λ, a

new equilibrium position must be established in order to update the tangent stiffness

matrix Jf in (4.49). To that end, the following nonlinear equilibrium equations must

also be solved iteratively at each step n using Newton’s method for ueq:

λnK̃aerou+ fα + f(u) = 0 (4.54)

with the corresponding Jacobian:

J(u) = λnK̃aero + J
f(u), Jf =

∂f (u)

∂u
(4.55)

The solution of (4.54) involves multiple evaluations and inversions of the 2N × 2N

nonlinear Jacobian in the same manner as the inner iterations of generalized-α method

presented in Section 4.1.2. This process and the solution of the generalized eigenvalue

problem (4.48) can both be computationally intensive for large-scale problems.
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4.2 POD-DEIM Reduced Order Model

As discussed in Section 4.1.2, to time-integrate the equation of motion (4.14) using the

implicit generalized-α algorithm, the resultant nonlinear system of equations at each

time step must be solved iteratively by Newton’s method. For large-scale systems, this

is typically a computationally intensive task and therefore precludes any multi-query

tasks such as uncertainty quantifications and optimizations.

To alleviate the computational burden, we apply the POD-DEIM methodology

described in Chapter 2 to construct a reduced-order model (ROM) from from the

system (4.14), the full-order model (FOM).

This model problem possesses the three challenging features discussed in Section

1.3. Firstly, the nonlinear term has a noncomponentwise dependence on the state. In

particular, each grid point is surrounded by 6 triangular elements. The 6 DOFs of the

nonlinear force at a particular node are computed not only using the 6 generalized

displacements at the same node but also using the 36 generalized displacements at

the 6 adjacent nodes. In addtion, the 6 DOFs in the nonlinear force f (u) have vastly

different orders of magnitude in both the initial transient and the quasi-steady regions

of the simulation as shown on Figure 4-3(a) . Note that DOF 3, which represents

the dominant out-of-plane bending response is at least 6 orders of magnitude larger

than the DOF 6, the moment about the z-axis. Furthermore, the singular values

corresponding to each DOF do not decay in the same manner. This is illustrated by

Figure 4-4, in terms of the ‘omitted energy’ in (2.17). The dashed line shows that

to achieve the same level of accuracy across all 6 DOFs, different numbers of POD

modes must be used for the DOFs of the nonlinear term. On the other hand, the

difference in the magnitudes of the state DOFs are much more moderate as shown

on Figure 4-3(b).

In Section 2.2, two modifications to the existing POD-DEIM methodology are

developed to address the abovementioned challenges. Firstly, to construct the ROM,

we use vector-valued state POD modes and scalar-valued ones for the nonlinear force;

that is, a single, ‘globalized’ set of modes is used for u while the one set of scalar-
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(a) Nonlinear Term
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(b) State

Figure 4-3: Evolution of the magnitudes of different DOFs of the nonlinear term and
state over time
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Figure 4-4: Omitted energy in each DOF of the nonlinear term as a function of the
number of POD modes

valued POD modes is used for each of the 6 DOFs of f .

As outlined in Chapter 2, we first approximate the state solution as a linear

combination of state POD basis vectors:

u ≈ Φur (4.56)
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where

Φ = [φ1,φ2, . . . ,φK ] ∈ R
N×K , ur = [ũ1, ũ2, . . . , ũK] ∈ R

K×1 (4.57)

Substituting the expansion into the FOM (4.14) and project it onto the reduced

space using the POD-Galerkin procedure outlined in Section 2.1.1:

M rür +Cru̇r +K
aero
r ur + f

α
r + f r(Φur) = 0 (4.58)

where

M r = ΦTMΦ ∈ R
K×K (4.59)

Cr = ΦT (Cs +Caero)Φ ∈ R
K×K (4.60)

Kaero
r = ΦTKaeroΦ ∈ R

K×K (4.61)

fα
r = ΦTfα ∈ R

K×1 (4.62)

f r(ur) = ΦTf(Φur) ∈ R
K×1 (4.63)

The inefficiencies of the POD-Galerkin ROM due to the online computation of the

reduced nonlinear term (4.63) and its Jacobian have been discussed in detail in Section

2.1.1. To recover the ROM efficiency, we apply the DEIM approximation to the

nonlinear force term. Furthermore, we employ the two modifications to the POD-

DEIM methodology presented in Section 2.2; that is, we use scalar-valued POD modes

as well as DEIM over-sampling for the nonlinear term. The resultant ‘modified POD-

DEIM’ ROM is as follows:

M rür +Cru̇r +K
aero
r ur + f

α
r + B̂rfẑ(Φ(ẑ′)gur) = 0 (4.64)

where

B̂r = ΦTdiag{Ψ1(Ψ1
ẑ
)+,Ψ2(Ψ2

ẑ
)+, . . . ,ΨNv(ΨNv

ẑ
)+} ∈ R

K×NvM̂ (4.65)

fẑ = [f1
ẑ
, f2

ẑ
, . . . , fNv

ẑ
]T ∈ R

NvM̂×1 (4.66)
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and Nv = 6 in this problem, for the 6 DOFs of the generalized nonlinear force at

each grid point. Ψi is the scalar-valued POD mode for the i-th DOF of the nonlinear

force f i. f i
ẑ
and Ψi

ẑ
contain the corresponding M̂ rows of f i and Ψi specified by the

interpolation indices ẑ ∈ R
M̂×1. (ẑ′)g contains the M̂ ′ global indices of the all the

state variables that must be reconstructed online as determined from ẑ based on nodal

connectivity. This reduced system of equations can now be integrated forward in

time using the implicit generalized-α method outlined in Section 4.1.2. The resultant

nonlinear residual equation that must be solved at each time step for un+1
r is:

Rr(u
n+1
r )

︸ ︷︷ ︸
K×K

= Aru
n+1
r + (1− αf )B̂r fẑ(Φ(ẑ′)g

︸ ︷︷ ︸

M̂ ′×K

un+1
r )

︸ ︷︷ ︸

6M̂×1

+Q(un
r ) = 0 (4.67)

where

Ar =
1− αm

β∆t2
M r +

(1− αf)γ

β∆t
Cr + (1− αf )K

aero
r (4.68)

Q(un
r ) = (1− αm)M r

[
1

β∆t2
(−un

r −∆tu̇n
r )−

1− 2β

2β
ün

r

]

+ αmM rü
n
r

+(1− αf)Cr

[ −γ
β∆t

un
r −

γ − β

β
u̇n

r −
γ − 2β

2β
∆tün

r

]

+αfCru̇
n
r + αfK

aero
r un

r + αff r(u
n
r ) + f

α
r (4.69)

The reduced system of nonlinear residual equation can be solved using Newton’s

method:

J r(u
n+1
r

∣
∣
p
)(un+1

r

∣
∣
p+1
− un+1

r

∣
∣
p
) = −Rr(u

n+1
r

∣
∣
p
) (4.70)

where the reduced Jacobian of the residual is:

J r(u
n+1
r

∣
∣
p
) = Ar + (1− αf )B̂r J

f
ẑ,(ẑ′)g(Φ(ẑ′)g u

n+1
r

∣
∣
p
)

︸ ︷︷ ︸

6M̂×M̂ ′

Φ(ẑ′)g (4.71)

Note that systems (4.67) and (4.71) are simply reduced formulations of (4.33) and

(4.36) respectively. However, as will be shown by numerical results for various test
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cases in Section 4.3, such formulations result in substantial computational savings

over the FOM. This is largely due to the fact that M̂ ≪ N which means only a

small fraction of the triangular elements in the computational domain needs to be

reconstructed online for the necessary rows of fẑ and Jf
ẑ,(ẑ′)g . Also, as K ≪ N , the

inversion of J r in each Newton iteration can be performed much more rapidly than

its FOM counterpart.

Finally, to efficiently monitor the convergence towards a stable limit cycle, the

time history of the vertical displacement in the trailing edge tip node is computed

on-the-fly via an inexpensive partial state reconstruction uz∗ = Φz∗ur, where z∗ is

the index corresponding to the desired state DOF.

The POD-DEIM model reduction methodology can also be applied to the equa-

tions that need to be solved in the direct flutter point computation presented in

Section 4.1.3. In particular, the reduced-order version of the generalized eigenvalue

problem (4.48) of the aeroelastic system is

B̃rP
j
r = βj

rArP
j
r (4.72)

where

Ar =




IK×K 0

0 M r



 (4.73)

B̃r =




0 IK×K

−λK̃aero

r −(Cs
r +
√
λC̃

aero

r )



+




0 0

−Jf
r(u

eq
r ) 0



 (4.74)

and IK×K is the K×K identity matrix, P j
r is the right eigenvector corresponding to

the j-th eigenvalue βj
r of the ROM and Jf

r is the reduced Jacobian of the nonlinear

force:

Jf
r(u

eq
r ) = B̂rJ

f
ẑ,(ẑ′)g(Φ(ẑ′)gu

eq
r )Φ(ẑ′)g (4.75)

To obtain the equilibrium solution ueq
r , the reduced version of (4.54) that must be
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solved for each λn value during the Newton iterations (4.42) is as follows:

λnK̃
aero

r ur + f
α
r + B̂rfẑ(Φ(ẑ′)gur) = 0 (4.76)

with the corresponding reduced Jacobian:

J r(ur) = λnK̃
aero

r + Jf
r(ur) (4.77)
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4.3 Numerical Results

In this section, the modified POD-DEIM methodology is applied to perform model

reduction on the aeroelastic system described in Section 4.1. A total of four numerical

test cases are considered here. In the first test case, the ROM is constructed for a

system with fixed parameters. The second test case considers the same system with

the non-dimensional dynamic pressure λ as the sole input parameter while the plate

thickness h is introduced as an additional input parameter in the third test case.

Finally, the last test case considers the system with three input parameters: λ, h,

and steady angle of attack αo.

4.3.1 Problem Setup

In all cases considered in this work, the time-integration of the equations of motion

is performed using the generalized-α method with a time step of 0.001s. The time-

dependent aeroelastic response is initiated by prescribing an upwards velocity initial

condition as described in Section 4.1.2, simulating a sudden gust encounter. For

the spatial discretization of the FOM, 49 spatial grid points are used in both x and

y directions, resulting in 4608 triangular finite elements and a total of N = 14112

unknowns.

Table 4.1 below summarizes the fluid and structural parameter values that are

used in all four test cases in this section:

Parameter Symbol Value

chord c 0.3m
semi-span L 0.3m

nominal plate thickness ho 0.001m
plate density ρs 2800kg/m3

modulus of elasticity E 70GPa
Poisson’s ratio ν 0.3

structural damping coefficient βs 20
mass ratio µ 0.2

freestream Mach number M∞ 2.0

Table 4.1: Flow and structural parameters for the aeroelastic system

88



The accuracy of the ROM is quantified by comparing its outputs of interest —

LCO amplitude and flutter point with those of the FOM. In particular, for solutions

in the LCO region as well as the direct flutter point computations, we calculate the

absolute relative error as:

|ǫrel| =
|ℓROM − ℓFOM |
|ℓFOM | (4.78)

where ℓ denotes an output of interest. For LCO amplitudes that are damped out to

trivial solutions (cases with αo = 0◦), absolute error is computed instead to avoid

divisions by small numbers:

|ǫ| = |ℓROM − ℓFOM | (4.79)

4.3.2 Fixed Parameter Case

In this section, we apply the modified POD-DEIM methodology presented in Sec-

tion 4.2 to an aeroelastic simulation with fixed input parameters. The dynamic

pressure parameter λ which controls the LCO amplitude is set to 90. The plate is

cantilevered with zero steady angle of attack (αo = 0) while its thickness is held at

the nominal value of 0.001m. The goal of this exercise is not to merely reproduce

the results of a single time-dependent FOM simulation, but rather to benchmark this

modified POD-DEIM methodology for the simplest model reduction task and com-

pare its performance against ROMs constructed using the orignial POD-DEIM and

the POD-only3 methodologies.

As shown on Figure 4-5, FOM solution converges to a stable limit cycle in 0.46

seconds, producing 460 snapshots for the state and nonlinear force. These snapshots

are used to construct the modified POD-DEIM reduced-order model following the

prodecures outlined in Section 4.2. The ROM is then evaluated at the same set of

intput parameters to reproduce the FOM result. K = 25 vector-valued state POD

modes are used, corresponding to the relative omitted energy Ωu of 6.1 × 10−13 in

the approximating the state snapshots. A tolerance of ǫf = 10−9 in relative omitted

3POD-only methodology: refers to the POD-Galerkin method presented in Section 2.1.1 with no
special treatment for nonlinearity
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energy Ωf is imposed on all 6 scalar-valued POD modes for the nonlinear term. As

a result, the nonlinear term and its Jacobian at M̂ = 79 out of a total of 2352

nodes on the computational domain must be evaluated on-line from the M̂ ′ = 2200

reconstructed state components (out of a total of N = 14112 components). Figure 4-5

shows that the time histories of the vertical displacement of the trailing-edge tip node

computed using the FOM and ROM are in excellent agreement. Furthermore, the

LCO amplitude is computed at a 0.24% relative error with the ROM. The speed-up

of the ROM over the FOM in performing the same simulation is a factor of 40.

It is possible to trade off speed-up for higher accuracy by imposing more stringent

tolerance values ǫf on the relative omitted energy of the POD modes for the nonlinear

term, as shown on Figure 4-6. The previous result is the left-most data point on this

plot with ǫf = 10−9. By decreasing the tolerance to ǫf = 10−11, marked by the right-

most point on the plot, it is possible to reduce the relative error in LCO amplitude

by a factor of 10 at the cost of a lower speed-up factor of 28. At this point, M̂ = 114

and M̂ ′ = 3138.

Note that f and J are assembled by their corresponding elemental force vectors

and Jacobian matrices. To evaluate selected rows of f and J in the DEIM approxi-

mation, all triangular finite elements directly adjacent to the the required nodes on

the computational domain must be evaluated. Therefore the number of elemental

vector and matrices that must be evaluated online directly affects speed-up of this

POD-DEIM ROM, as shown on Figure 4-6.

The advantage of the modified POD-DEIM methodology over the original POD-

DEIM and POD-only methodologies is demonstrated by Figure 4-7. The existence

of disparate magnitudes in different DOFs of the nonlinear term as well as its highly

oscillatory nature in this problem makes the nonlinear term and its Jacobian difficult

to approximate using the original DEIM methodology. As a result, a large number

of interpolation points must be used – so large that almost all the components of

the nonlinear term and all of the state components must be evaluated in the online

process (i.e. M̂ ∼ N, M̂ ′ = N). This reduces the efficiency of the original POD-DEIM

methodology to that of the POD-only approach whose limitations in the presence of
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nonlinearities are discussed in Section 2.1.1. Consequently, both approaches only

achieve a speed-up factor of approximately 3 over the FOM. In comparison, the

modified POD-DEIM methodology with ǫf = 10−11 achieves speed-up factors between

25 to 30 for all six dimensions of the ROM examined, as shown on Figure 4-7.
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Figure 4-5: Time history of the vertical displacement of the trailing-edge tip node of
the plate
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4.3.3 1-Parameter Case: Variable Dynamic Pressure λ

In this section, we examine the performance of the modified POD-DEIM ROM on the

same aeroelastic system with a single input parameter λ, which is allowed to vary in

the interval λ ∈ [60, 120]. All other parameters are the same as the fixed-parameter

case. It is of particular interest to assess the efficacy of the ROM at ‘intermediate

points’ within this range of variation at which no snapshots have been collected during

sampling.

As discussed before, if λ is above the flutter point λ∗, it controls the LCO ampli-

tude. For all λ < λ∗, the solution will eventually damp out to a trivial equilibrium

solution for αo = 0, after an initial transient.

The ROM is constructed with 3 sets of snapshots obtained by simulating the FOM

at λ = 60, 90 and 120. For each simulation, the time-integration is performed until ei-

ther the steady state solution or a stable limit cycle has been established. A tolerance

on the relative omitted energy ǫu = 10−12 is imposed, resulting in the inclusion of

K = 31 state POD modes. For the scalar-valued POD modes of the nonlinear term,

ǫf = 10−9 is imposed. As a result, M̂ = 96 and M̂ ′ = 2904, requiring the evaluation of

9.4% of all the triangular elements in the online stage. A ‘λ-sweep’ is then performed

to solve both FOM and ROM at λ values in the interval [60, 120] at increments of

∆λ = 5. A bifurcation diagram showing the thickness-normalized LCO amplitudes

at each λ value are plotted on Figure 4-8. Excellent agreement is obtained between

the FOM and ROM results. It can also be observed from the figure that a bifurcation

or flutter point exists between λ = 65 and λ = 70. This flutter point is solved by the

direct flutter computation using both FOM and ROM as outlined in Sections 4.1.3

and 4.2 respectively and plotted on Figure 4-8 (λ∗
FOM = 69.02, λ∗

ROM = 69.05). The

relative errors in LCO amplitudes for λ > λ∗ is plotted on Figure 4-9(a). Note that

for all points far away from the flutter point (λ > 70), the relative error is O(10−3).

The error is high at λ = 70 because it is very close to the Hopf bifurcation point.

The convergence to a stable limit cycle at λ = 70 takes over 1500 time steps for both

FOM and ROM. The accumulation of approximation error during such long-time in-
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tegration process results in high ROM error. Since λ = 60 and λ = 65 correspond to

damped trivial solutions, the absolute errors are computed and plotted on Figure 4-

9(a) instead to avoid division by near-zero numbers. Indeed, ROM correctly predicts

these damped solutions. Figure 4-9(a) also shows that between the LCO and damped

solutions, the flutter point is predicted at a relative error below 10−3. Finally, Figure

4-9(b) shows that the ROM in this case is a factor of 30 to 40 times faster than the

FOM in computing the LCO amplitudes at various λ values.
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Figure 4-8: Comparison between the bifurcation diagrams with respect to the non-
dimensional dynamic pressure λ, computed using the FOM and the modified POD-
DEIM ROM (K = 31, M̂ = 96, M̂ ′ = 2904) via time-integrations. Also plotted are
the flutter points computed using the FOM (×, λ∗

FOM = 69.02) and ROM (⋄, λ∗
ROM =

69.05) via the direct flutter computation
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Figure 4-9: Error and speed-up over the FOM in computing LCO amplitudes, using
the modified POD-DEIM ROM with K = 31, M̂ = 96, and M̂ ′ = 2904
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4.3.4 2-Parameter Case: Variable Dynamic Pressure λ and

Plate Thickness h

In this section, we introduce a second input parameter — the plate thickness h and

allow it to vary ±15% from the nominal thickness ho. λ varies between 60 and 120 as

before while all other system parameters remain the same as the fixed-parameter case.

At different plate thicknesses, the flutter point λ∗ shifts, forming a flutter boundary,

as illustrated on the 2-D input parameter space on Figure 4-10. The tasks for the

ROM in this case are to efficiently compute the bifurcation diagram with respect to

λ at various h values as well as predicting the flutter boundary.

The ROM is constructed by 9 sets of unsteady solution snapshots uniformly spaced

in the parameter domain, marked by the blue crosses on Figure 4-10. A tolerance

on the relative omitted energy of ǫu = 10−13 is imposed, resulting in the inclusion of

K = 49 state POD modes. For the scalar-valued POD modes of the nonlinear term,

ǫf = 10−11 is imposed. As a result, M̂ = 198 and M̂ ′ = 5544, requiring the evaluation

of 19.6% of all the triangular elements in the online stage. λ-sweeps at three thickness

values: h = 0.9ho, 1.0ho and h = 1.1ho are performed using both FOM and ROM in

which they are solved at λ values in the interval [60, 120] at increments of ∆λ = 5.

For each thickness value, the thickness-normalized LCO amplitudes at each λ value

are plotted on Figure 4-11. Note that for all three thickness values, the bifurcation

diagrams computed using the ROM are in excellent agreement with those computed

by the FOM. Errors in LCO amplitudes in the three cases are presented on Figure

4-12(a). As in the 1-parameter case, relative errors are computed for LCO solutions

while the absolute errors are computed for the damped trivial solutions. Note that

for the thin-plate case (h = 0.9ho), all 13 points correspond to LCO solutions, since

λ∗ < 60 at this thickness. The relative errors for solutions far away from the flutter

points are all O(10−3), the same as the 1-parameter case. Larger errors are again

observed near the flutter points of the h = 1.0ho and h = 1.1ho cases, as marked on

Figure 4-12(a), due to long-time integration. Figure 4-12(b) shows that the speed-up

over the FOM for all three thickness values are mostly between 13 to 20 times – half
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as high as the 1-parameter case. This reduction is a result of having to integrate

over twice as many triangular elements online than the 1-parameter case (9.4% vs.

19.6%).

Next, the same ROM is applied to compute flutter points at different thickness

values in the range [0.85ho, 1.15ho]. The resultant flutter boundary is plotted on

Figure 4-13 with the FOM results and are observed to be in excellent agreement.

Figure 4-14(a) shows that the relative errors in predicting all the points on the flutter

boundary are just below 10−4. The speed-up over the FOM at these points are all

around 130 times. The speed-up is significantly higher than all other cases considered

thus far because the plate is held at zero steady angle of attack. Consequently, the

equilibrium solution required at every iteration of the direct flutter computation is

always a trivial one (ueq = 0) and the solutions of the nonlinear equilibrium equations

(4.54) and its ROM counterpart (4.76) are not necessary. That is to say, once the

ROM is constructed, the ensuing root-finding problem (4.42) solving γ(λ∗) = 0 is

linear with respect to the state and therefore the online complexity is only a function

of K = 49≪ N and not of M̂ or M̂ ′.
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Figure 4-10: Flutter boundary in 2-D input paramter space. The locations of the 9
sets of unsteady solution samples used to generate the ROM are marked by the blue
crosses

97



60 80 100 120 140

0

5

10

15

λ

LC
O

 A
m

pl
itu

de

Bifurcation Diagram

 

 

FOM
ROM

h=1.0h
o

h=0.9h
o

h=1.1h
o

Figure 4-11: Comparison between the bifurcation diagrams with respect to λ at three
thickness values: h = 0.9ho, 1.0ho and 1.1ho, computed using the FOM and the
modified POD-DEIM ROM (K = 49, M̂ = 198, M̂ ′ = 5544) via time-integrations.
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Figure 4-12: Relative error and speed-up over FOM in LCO amplitude at three
thickness values using the modified POD-DEIM ROM (K = 49, M̂ = 198, M̂ ′ =
5544)
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Figure 4-13: Comparison of the flutter boundaries computed by the FOM and the
modified POD-DEIM ROM (K = 49, M̂ = 198, M̂ ′ = 5544) via the direct flutter
computations. The locations of the 9 sets of unsteady solution samples used to
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Figure 4-14: Relative error and speed-up over FOM in predicting flutter boundary
using the modified POD-DEIM ROM (K = 49, M̂ = 198, M̂ ′ = 5544)
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4.3.5 3-Parameter Case: Variable Dynamic Pressure λ, Plate

Thickness h and Steady Angle of Attack αo

In this section, the third input parameter is added to the system — the steady angle of

attack αo of the plate. It is allowed to vary between 0◦ and 0.3◦. The plate thickness

h is allowed to vary between ho and 1.15ho. The range of variation for λ remains

the same as the 2-parameter case, namely λ ∈ [60, 120]. Figure 4-15 shows the 3-D

parameter space. The variations of the three input parameters are confined within

the gray box.

To construct the ROM, 12 sets of unsteady snapshots are obtained by simulating

the FOM until the convergence to a steady state or a stable limit cycle is achieved.

The locations of these 12 sets of samples are marked by blue crosses on Figure 4-

15. A tolerance on the relative omitted energy ǫu = 10−14 is imposed, resulting in

the inclusion of K = 55 state POD modes. For the scalar-valued POD modes of

the nonlinear term, ǫf = 10−9 is imposed. As a result, M̂ = 160 and M̂ ′ = 4566,

requiring the evaluation of 15.8% of all the triangular elements in the online stage.

An αo-sweep is performed at constant dynamic pressure (λ = 110) and plate

thickness (h = 1.05ho) in which both the FOM and ROM are solved at 11 equi-

spaced αo values in the interval [0◦, 0.3◦] at increments of ∆αo = 0.03◦. The results

are plotted on Figure 4-16. Note that the response also exhibits Hopf-bifurcation

with respect to the variations in αo. For αo > 0.185◦, the solution damped out to

a non-trivial equilibrium (static aeroelastic deflection), whereas for αo < 0.185◦, the

solution oscillates on a stable limit cycle about a non-zero equilibrium position. For

the equilibrium positions, the FOM and ROM results are in excellent agreement.

For the LCO solutions, noticeable discrepancy for the maximum tip deflection exists

between the FOM and ROM results at αo = 0.18◦ — the closest of the 11 test points to

the bifurcation point, due to the long-time integration problem discussed in previous

test cases. As shown on Figure 4-17(a), all other points are computed by the ROM

at relative errors of O(10−3). Note that the equilibrium position corresponding to

αo = 0◦ appears to have a high relative error, which is due to the division by the
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FOM result that is almost zero. The absolute error at this point is O(10−7). The

speed-up over FOM, as shown on Figure 4-17(b) is between 14 and 22 times.

Next, the ROM is applied to predict the flutter boundary at various αo. Note that

at increasing αo values, the flutter boundary shifts towards higher dynamic pressures,

forming a curved surface as shown on Figure 4-18. The flutter boundaries computed

by the FOM and ROM are observed to be in good agreement within the parameter

bounds represented by the gray box. Indeed, Figure 4-19(a) shows that for αo ≤ 0.2◦,

the flutter boundaries are predicted with O(10−3) relative error. The errors for large

αo cases are higher and the discrepancies between the two surfaces are observable

on Figure 4-18. This is because the flutter points (λ∗) at higher αo values are much

higher than the maximum λ of 120 considered in constructing the ROM. As a result,

when attempting to converge to these flutter points, the ROM must operate outside

the pre-defined parameter bounds. The state and nonlinear terms at these points

are less likely to be in the spans of their respective POD modes, giving rise to large

approximation errors. The speed-up factors over the FOM for all αo cases except

for αo ≤ 0.3◦ are found to be between 12 and 14. The speed-up factors achieved

by the largest αo case is lower because it takes more iterations for these points to

converge under the influence of high approximation errors. Note that in this case,

unlike the 2-parameter case, the nonlinear equilibrium equations (4.54) and its ROM

counterpart (4.76) must be solved at each iteration of the direct flutter computation.

The online complexity depends not only on K but also on M̂ and M̂ ′. Consequently,

the speed-up is similar to the bifurcation case involving time-integration.

Note that in this study, the maximum steady angle of attack considered is only

0.3◦. The need to restrict to such a small range is mainly due to the thinness of the

plate — 1/300-th of the length and the width of the plate. At larger αo values, the

plate deflections are too large for the linear supersonic theory in the aerodynamic

forcing as well as the plate equations to be valid. If one uses a thicker plate, one may

then widen the range of αo and obtain characteristically similar responses in both

bifurcation and flutter boundary as shown above. However, for thicker plates, the

absolute tip displacements of the plate are again too large for the aerodynamic and
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structural models to be valid. A more sophisticated aero-structural model is required

to examine thicker plates with larger angles of attack.

Figure 4-15: 3-D input parameter space. The locations of the 12 sets of unsteady
solution samples used to generate the ROM are marked by the blue crosses
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Figure 4-16: Comparison of bifurcation diagrams with respect to αo at λ = 110
and h = 1.05ho, computed using the FOM and the modified POD-DEIM ROM with
K = 55, M̂ = 160 and M̂ ′ = 4566, via time-integrations
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Figure 4-17: Relative error and speed-up over FOM in computing LCO amplitudes,
using the modified POD-DEIM ROM with K = 55, M̂ = 160 and M̂ ′ = 4566
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Figure 4-18: Comparison of flutter boundaries in the 3-D parameter space, computed
using the FOM and the modified POD-DEIM ROM (K = 55, M̂ = 160 and M̂ ′ =
4566) via the direct flutter computations
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Figure 4-19: Relative error and speed-up over FOM in predicting flutter boundaries
at various αo values using the modified POD-DEIM ROM (K = 55, M̂ = 160 and
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Chapter 5

Conclusions and Future Work

5.1 Summary of Results and Contributions

The work presented in this thesis is focused on model order reduction for nonlinear

dynamical systems with parametric uncertainties. In particular, an important class

of such systems — one which exhibits limit cycle oscillations (LCO) is considered.

LCO problems possess complex nonlinear dynamics such as autonomous periodic so-

lutions and Hopf bifurcations which are known to be sensitive to input parameters.

High-fidelity LCO simulations are typically a computationally intensive task owing

to the large systems of nonlinear equations that must be solved at each time step

and the long-time integrations required to fully establish the time-asymptotic system

responses. Such challenges are intensified when the system is studied under a proba-

bilistic setting, taking into account the effects of the uncertain input parameters.

The model reduction method used in this work is a projection-based approach, in

which the proper orthogonal decomposition (POD) is used to derive the reduced basis

while the discrete empirical interpolation method (DEIM) is employed to approximate

the nonlinear term such that the repeated online evaluations of the reduced-order

model (ROM) are independent of the full-order model (FOM) dimension. To address

the new challenges introduced by the LCO-type nonlinear problems considered in

this thesis (namely, vector-valued PDEs having highly oscillatory nonlinear terms

with noncomponentwise dependence on the state), two modifications to the original
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POD-DEIM methodology are proposed. The first involves the use of scalar-valued

POD modes both for the state and the nonlinear term. The second replaces the pure

interpolation of the DEIM approximation with a regression via over-sampling of the

nonlinear term.

Both original and modified POD-DEIM methodologies are applied to model the

LCO behaviour of a nonlinear tubular reactor problem with an uncertain Damköhler

number. The results show that when the unknown variables are of approximately

equal magnitudes, the ROMs constructed by both methodologies accurately predict

the FOM response. In particular, uncertain dynamics over the entire range of varia-

tion of the Damköhler number are accurately characterized by the ROMs at relative

errors of O(10−4) via the bifurcation diagram, even though only two sets of samples,

one at each end of the 1-D input parameter domain, are used in constructing the

ROMs. Furthermore, the ROMs reduce the computational time for each unsteady

simulation by two orders of magnitude from the FOM. In the case with disparate

magnitudes among unknown variables, it is demonstrated that the ROM constructed

by the modified POD-DEIM methodology using scalar-valued POD modes and DEIM

oversampling is capable of maintaining its accuracy and speed-up while the original

POD-DEIM ROM suffers significant degradation in accuracy due to its biase towards

large-magnitude variables.

The second application considered in this work is the LCO of an aeroelastic sys-

tem which consists of a nonlinear cantilevered plate in supersonic flow. This problem

is challenging in that the nonlinear internal force term due to aerodynamic forcing

is highly oscillatory in both space and time with noncomponentwise dependence on

state. Furthermore, up to 3 uncertain input parameters are considered (dynamic pres-

sure, plate thickness and steady angle of attack). The numerical results demonstrate

that while the original POD-DEIM ROM requires such a large set of interpolation

points that its efficiency is reduced to that of the POD-Galerkin approach, the mod-

ified POD-DEIM ROM yields accurate results with substantial speed-up over the

FOM. In particular, the modified methodology is capable of predicting the LCO re-

sponse and flutter boundary with relative errors of O(10−4)−O(10−3) and speed-up
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factors between 10 to 40 over the FOM for all cases considered.

5.2 Future Work

A number of extensions of the POD-DEIM model reduction methodology presented in

this thesis are envisioned to further improve its versatility and efficiency in addressing

nonlinear dynamical problems.

Firstly, a more advanced sampling strategy in forming the snapshot matrices can

be used in conjuction with the model reduction methodology developed here. In this

work, uniform sampling is used in all test cases which is not necessarily optimal in

that it does not concentrate sample points in important regions of the parameter

space. For example, in the aeroelastic LCO test case, it is observed that the number

of the requisite DEIM interpolation points to maintain satisfactory output accuracy

of the ROM is driven by its poor performance in the high angle-of-attack region of

the parameter space. Therefore, to improve the accuracy of the ROM, the placement

of sample points should be biased towards this region. This can be achieved by

replacing the uniform sampling with a more advance sampling technique such as the

model-constrained sampling method proposed by Bui-Thanh et al. in [18] in which

the computations for the sample locations in the parameter space are formulated as

an optimization problem.

Secondly, the scalar-valued POD modes can be generalized to include multiple

unknown variables (and the corresponding nonlinear terms). Currently, a set of

scalar-valued POD modes is derived for each unknown variable. For systems with

large numbers of unknowns, such as chemical reaction problems which may involve

tens or even hundreds of species, having one set of POD modes for each unknown

variable reduces the efficiency in both offline and online phases of the methodology.

Instead, one may group the variables with similar orders of magnitude and use one

scalar-valued POD basis for each of these groups. To that end, how to perform such

‘clustering’ without assuming prior knowledge of the full-order system is an important

research question.
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In addition, we note that the DEIM approximation is not a similarity transform

in that the resultant reduced matrices do not preserve the stability properties of

their full-order counterparts. In the aeroelastic LCO problem, although the tangent

stiffness matrix of the FOM is positive definite (as it should be, since the plate is

dynamically stable without aerodynamic forcing), it is observed that when insuffi-

cient number of DEIM interpolation points are used, the reduced tangent stiffness

matrix fails to remain positive definite. This manifested in non-optimal search di-

rections when the nonlinear system at each time level is solved by Newton’s method

and quickly results in convergence problems. Therefore, in addition to maximizing

accuracy of snapshot approximations, the derivation of DEIM interpolation points

should also be made with preserving the stability properties of the system in mind.

To that effect, Petrov-Galerkin projection and the structure-preserving model reduc-

tion techniques presented by Carlberg et al. in [21] may be used in conjunction with

the current methodology.

Finally, it is important to note that although appreciable reductions in compu-

tational times are achieved in the aeroelastic LCO problem, each unsteady evalu-

ation of the ROM still requires several minutes on a dual-core (2.67GHz per core)

desktop. This precludes the ROM from being used for probabilistic analyses with

sampling-based uncertainty quantification (UQ) methods in which the model must

be evaluated many thousands of times to obtain time-asymptotic statistics. Stochas-

tic spectral methods using polynomial chaos expansion (PCE) constructs efficient

representations of the solution in the random domain of the problem, fully replac-

ing sampling-based UQ methods. Although the spectral expansion on each element

of the state vector results in a much larger system of expansion coefficients to be

solved forward in time, such computation only needs to be performed once before

the time-dependent statistics can be recovered. In particular, Le Mâıtre et al. [53]

recently developed a PCE formulation with asynchronous time integration (A-PCE)

which has been shown to be a promising technique in characterizing uncertain oscil-

latory dynamics. An interesting future direction to explore is the hybridization of the

POD-DEIM and A-PCE methods whereby the spectral expansions of the A-PCE are
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applied to the vector of reduced unknowns of the POD-DEIM ROM instead of the full

state vector. Such hybrid would inherit the strength of A-PCE in that the expansion

coefficients need only be solved once before essential time-dependent statistics can

be extracted. At the same time, the resulting expansion of the system dimension is

also likely to be moderate owing to the low-dimensional representation of the state

achieved by the POD-DEIM.
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