
CAT-SOOP: A Tool for Automatic
Collection and Assessment of

Homework Exercises
by

Adam J. Hartz
B.Sc. Computer Science and Engineering, M.I.T. 2011

Submitted to the Department of Electrical Engineering and Computer Science
in Partial Fulfillment of the Requirements for the Degree of

Master of Engineering in Electrical Engineering and Computer Science
at the

Massachusetts Institute of Technology

June 2012

@ 2012 Massachusetts Institute of Technology. All rights reserved.

A uthor:..............................
Department of Electrical Engineering and mputer Science

May 21, 2012

Certified By:. C Science and..
Tomis LozanIPerez

Professor of Computer Science and Engineering
Thesis Supervisor

Accepted By:
Professor Dennis M. Freeman

Chairman, Masters of Engineering Thesis Committee

CAT-SOOP: A Tool for Automatic Collection and

Assessment of Homework Exercises

by

Adam J. Hartz

Submitted to the Department of Electrical Engineering and Computer Science

on May 21, 2012, in partial fulfillment of the
requirements for the degree of

Master of Engineering in Computer Science and Engineering

Abstract

CAT-SOOP is a tool which allows for automatic collection and assessment of various
types of homework exercises. CAT-SOOP is capable of assessing a variety of exercises,
including symbolic math and computer programs written in the Python programming

language. This thesis describes the design and implementation of the CAT-SOOP
system, as well as the methods by which it assesses these various types of exercises. In

addition, the implementation of an add-on tool for providing novel forms of feedback

about student-submitted computer programs is discussed.

Thesis Supervisor: Tomis Lozano-P6rez
Title: Professor of Computer Science and Engineering

2

Acknowledgments

I would like to thank all of the people -students and staff alike -with whom I have

worked as part of MIT's 6.01: Introduction to EECS L Were it not for the experience

I gained through working with 6.01, I would not be the person I am today; at the

very least, I'd be submitting a different thesis!

In particular, I would like to thank Professors Leslie Kaelbling, Tom6s Lozano-

Perez, and Dennis Freeman, who have been fantastic mentors throughout my time at

MIT.

I would be remiss if I did not also thank all of the people whose code I borrowed,

or from whose code I drew inspiration, while working on this project. In particular,

I have to thank Armin Ronacher (whom I have never met, but whose Python AST

module was invaluable) and Phil Guo, whose Online Python Tutor made my work on

the Detective possible.

Additional thanks go to Chris Buenrostro, Seleeke Flingai, Nora Mallory, Abiy

Tasissa, and Adnan Zolj for their willingness to help, listen, and discuss, and for

putting up with my rants about programming and education over the years.

Last, but not least, I would like to thank my family for their continued support

in all of my endeavors.

3

4

Contents

1 Introduction 11

1.1 Background . 11

1.2 xTutor, tutor2, and CAT-SOOP . 15

1.3 O utline . 17

2 Design 19

2.1 Typical Interactions with CAT-SOOP 19

2.2 Choice of Languages and Libraries . 20

2.3 Data Structures 21

2.3.1 Questions . 21

2.3.2 Problem s . 22

2.3.3 Assignments and Courses . 23

2.3.4 Permissions . 25

2.3.5 Submissions and Results . 26

2.4 Grading and Impersonation . 27

3 Evaluating Symbolic Math 29

3.1 Mathematical Expressions . 29

3.1.1 Testing . 31

3.1.2 Feedback . 32

3.1.3 Looking Forward . 32

3.2 Ranges . 33

3.2.1 Testing . 33

5

3.2.2 Feedback .3

4 Evaluating Computer Programs 37

4.1 Subset of Python 37

4.2 Testing . 39

4.2.1 Security . 40

4.3 Feedback . 40

5 The Detective 41

5.1 Tracing and Visualization . 41

5.2 Error Analysis . 43

5.2.1 Common Run-time Errors . 45

5.2.2 Pitfalls . 46

5.3 Syntax Errors . 48

5.4 Statement Explanation . 48

5.4.1 (Pseudo-) Instruction-Level Resolution 49

5.5 Connecting with CAT-SOOP . 52

5.6 Looking Ahead . 54

6 Conclusions and Future Work 57

A Source Code Listings 61

A.1 CAT-SOOP . 61

A.1.1 expressionsast.py . 61

A.1.2 pysandbox-subprocess.py 66

A.1.3 Range.py . 69

A .2 Detective . 72

A.2.1 errors.py . 72

A.2.2 explainer.py . 76

A.2.3 hz...encoder.py . 79

A.2.4 hz...logger.py . 82

A.2.5 resolution.py . 88

6

35

A .2.6 trees.py . 95

7

8

List of Figures

1-1 6.01 Tutor Survey Results.....

2-1 Data Structure Dependencies . . .

2-2 Example Problem Specification . .

3-1 Display of Symbolic Math Problem

3-2 Range Checking in Tutor2

5-1 Detective's User Inferface

5-2 Run-Time Error Explanations

5-3 Error Message in Detective GUI

5-4 Python Code Explanations

5-5 Simple Resolution

5-6 Resolution with Error

5-7 Resolution of Calculating a Determinant

5-8 Connection Between CAT-SOOP and the Detective

6-1 6.003 Tutor Survey Results

. . . . 42

. . . . 43

. . . . 44

. . . . 50

. . . . 51

. . . . 52

. . . . 53

. . . . 54

58

9

14

21

24

30

34

10

Chapter 1

Introduction

CAT-SOOP is a tool designed to automate the collection and assessment of home-

work exercises for a variety of disciplines. This thesis focuses on the design and

implementation of CAT-SOOP, and on the methods by which it evaluates and pro-

vides feedback on submissions to different types of questions. Significant attention is

also given to the Detective, an add-on to CAT-SOOP designed to provide novel types

of feedback in response to student submissions to programming exercises.

Throughout, design decisions are considered in the context of other automatic

tutors, principles of software engineering, and educational research.

1.1 Background

The history of systems like CAT-SOOP 1 dates back to 1926, when Pressey[20], not-

ing the simplicity of many types of drilling exercises, presented a mechanical device

capable of posing multiple choice questions to users, as well as collecting and scoring

their submissions to said exercises.

Naturally, as technology has progressed since then, newer and more advanced

systems have been developed to accomplish this same task, but more efficiently and for

'I will refer to these systems, which comprise components of Intelligent Tutoring Systems and
Learning Management Systems, as "automatic tutors" throughout this document. Because this is
something of an umbrella term, encompassing numerous projects with differing goals and features, I
strive, when possible, to make clear the specific goals and features of the automatic tutor in question.

11

a broader range of problems. Checking of various types of problems is built into some

Learning Management systems (e.g., Moodle[5] and LON-CAPA[11]), which often,

in addition, take on the role of managing course materials, calendars, discussions,

grades, etc.

Modern technologies have also allowed automatic tutoring systems to move beyond

simple assessment of correctness, toward providing meaningful, conceptual feedback

in response to students' submissions in a variety of contexts.

Bloom[2] has long since shown that one-on-one tutoring has dramatic benefits over

traditional classroom instruction. Many automatic tutors thus attempt to recreate

the feeling of interaction with a human tutor. It is certainly worth noting that

such a system (i.e., an automatic tutor which accurately mimics a human tutor) has

tremendous potential to help both students and staff alike, even if it works only for

relatively simple concepts.

Since then, a wide variety of promising techniques have been attempted to improve

the feedback generated by these systems. Among these are:

" Measuring clues about the user's affect (emotional state) and using that infor-

mation to adjust the feedback presented[41

" Using machine learning techniques to automatically generate hints for program-

ming exercises[9]

" Recording a "trace" of submitted code as it is executed, and using this infor-

mation to provide additional feedback[211

" Attempting to create a conversational dialogue with the student[6]

" Creating an internal model of a student's understanding so as to individualize

feedback[1]

While automatic tutors are not a replacement for in-person instruction, they can

serve as an approximation thereof in a pinch, which can be invaluable to students.

Particularly in introductory computer programming courses (but also in other fields,

12

as well), students often begin with little-to-no relevant experience. A direct conse-

quence of this is that students spend a lot of time on assignments, getting stuck and

attempting to debug their solutions, but often with poor technique; many require a

lot of help in one-on-one or small group scenarios to get over these hurdles. Because

of this, most introductory courses (at least in post-secondary education) hold "office

hours," where professors or teaching assistants are available to help with homework

exercises or conceptual review. In most cases, students find these hours quite helpful,

but there are certainly limitations:

" Many problems that novices face are simple to diagnose and fix, but require a

nontrivial amount of time to explain. While these problems are certainly still

important to the students who face them, the teaching assistants' time may

be better spent helping to solve more complex problems, particularly if the

diagnosing and explanation of these errors can be automated.

" There are a limited number of hours in the day, and teaching assistants cannot

spend all of their time holding office hours, or even making themselves available

via e-mail. Frequently, students working late at night miss out on the benefit

of office hours.

" Not all teaching assistants are equal, and no single teaching assistant has seen

every problem that students will encounter. An automatic tutor that can pro-

vide feedback for a variety of common problems can help to create some sense

of uniformity with respect to the feedback students receive on their work.

Because of these reasons and more, automatic tutors have the potential to have

a really positive impact on students' learning experience, particularly for novices,

whose common errors tend to be easier to diagnose and fix.

What's more, students enjoy working with automatic tutors, and find them ben-

eficial 2 . Figure 1-1 shows the results from an end-of-term survey in MIT's 6.01 In-

troduction to EECS I, which shows that students, in general, found the assignments

2Buy-in on the part of the students should not be understated as a contributing factor to the
overall success of these systems, or of any pedagogical experiment.

13

0
3 4 5

Figure 1-1: Students' responses to end-of term survey question relating to tutor2 for
6.01, fall term 2011. Users were asked to rank their degree of agreement with the
statement, "The on-line tutor helped me learn the 6.01 material," on a scale from 1
(total disagreement) to 5 (total agreement), with 3 as a neutral point. A total of 46
data points were collected.

14

30

delivered through the automatic tutor in 6.01 to be helpful. Similar results from an

end-of-term survey in 6.003 Signals and Systems (discussed in chapter 6) show that

students also enjoy working with these types of software.

These results, along with the history, and the wide variety of available software

in this area, have informed CAT-SOOP's design philosophy, as well as its implemen-

tation. Before discussing the specifics of its design, however, it is important to place

CAT-SOOP in the context of the systems on which it is based, as well as to specify

its purpose and design goals.

1.2 xTutor, tutor2, and CAT-SOOP

CAT-SOOP is the sibling of tutor2, an automatic tutor currently used in 6.01. Both

were developed in parallela, but completely ignorantly of one another; as time has

gone on, however, certain parts of CAT-SOOP have found their way into tutor2, and

vice versa4.

In a sense, CAT-SOOP and tutor2 are both spiritual descendents of xTutor5 , an

automatic tutor widely used at MIT throughout the 2000's, in a number of courses in-

cluding 6.01, 6.042 Discrete Math for Computer Science, 6.034 Artificial Intelligence,

and the now-defunct 6.001 Structure and Interpretation of Computer Programs. Both

tutor2 and CAT-SOOP were designed as successors to xTutor in 6.01; however, where

tutor2 is essentially a port of xTutor to Python/Django, CAT-SOOP was started from

a clean slate.

xTutor and tutor2 differ from CAT-SOOP in a number of respects. Firstly, CAT-

SOOP is based on a design philosophy of simplicitly and minimalism. Thus, the

focus of CAT-SOOP is extremely limited. CAT-SOOP's goal is to automate the

collection and assessment of online homework exercises; intrinsically, this means that

3 CAT-SOOP was originally designed for use in 6.01; in fact, its name comes from the fact that
CAT-SOOP was designed as an Automatic Tutor for Six-Oh-One Problems.

'In particular, CAT-SOOP's symbolic math checking, which is described in chapter 3, was ported
into tutor2, and tutor2 and CAT-SOOP both currently use a scheme for checking Python code
(decribed in chapter 4) which is an amalgamation of the schemes originally used by the two.

5http://icampus.mit.edu/xTutor/

15

tasks such as managing a course calendar, or managing final grading and weighting

of various assignments, are not included in-and are not designed to be handled

by-CAT-SOOP 6 . While tutor2 and xTutor don't go the way of full-fledged Learning

Management Systems, both do include features beyond the assessment of student

submissions.

xTutor (at least the version used in 6.01 most recently) and tutor2 also have

a number of 6.01-specific details built directly into their core systems. While this

doesn't hinder the use of these tutors by other courses, it does mean that other courses

have to ignore these parts of the systems if they intend to use tutor2 of xTutor. One

major goal in CAT-SOOP's design was modularity, based on the belief that the core

system should be as minimal as possible, and any course-specific content should make

its way into the system via plug-ins or extensions. Teaching 6.01 using CAT-SOOP,

for example, would still involve writing a good deal of course-specific material, but

this material would live outside the core system. Because this course-specific material

still needs to be written, another design goal was to make the creation of new content

as easy as possible.

One additional point worth noting is that, while xTutor and tutor2 allow only

one course per instance (and thus require the installation of a new instance for each

course7), CAT-SOOP allows multiple courses to coexist in the same instance, in the

hopes of providing a centralized location for students to submit online homeworks for

multiple courses.

When considering the various components of CAT-SOOP in relation to other

automatic tutors, this thesis will primarily make reference and comparisons to tutor2,

and occasionally to xTutor (particularly in areas where xTutor and tutor2 differ

significantly).

6Currently, CAT-SOOP does per-problem scoring, but does not have any notion of how scores
from multiple problems should be combined to generate a final score. In an ideal system, the grading
scheme is something that should be easy to change, and thus not something that is hard-coded into
the core system.

7This has the additional downside that users need to create accounts on each instance separately.

16

1.3 Outline

The remainder of this thesis is structured as follows:

Chapter 2 discusses the design and implementation of the CAT-SOOP base sys-

tem.

Chapters 3 and 4 discuss the means by which CAT-SOOP assesses submissions to

symbolic math exercises and computer programming exercises, respectively.

Chapter 5 discusses the Detective, an add-on designed to provide a unique type

of additional feedback on students' submissions to computer programming exercises.

The design and implementation of the system, as well as the types of feedback it

generates and the means by which it does so, are all discussed in this chapter.

Finally, chapter 6 provides concluding remarks, as well as suggestions for future

research.

In addition, Appendix A contains complete source-code listings for select modules

from CAT-SOOP and the Detective.

17

18

Chapter 2

Design

2.1 Typical Interactions with CAT-SOOP

CAT-SOOP is designed with two separate groups in mind: students and instructors.

Thus, in designing the system, it was important to consider the ways in which each

of these groups would potentially want to interact with the system. The list of

instructors' desired features was gathered directly from instructors, but the list of

students' desired features was speculative.

Students were expected to interact with the system primarily by logging in, nav-

igating to a specific assignment, submitting answers, and viewing the resulting feed-

back, as well as viewing the solutions when they are made available. In addition, it

was anticipated that students would want to be able to view a concise summary of

their performance on a given problem or assignment 1 .

Instructors were expected to want to be able. to navigate, view, and complete

assignments just as students (for testing purposes), but without the restrictions of

completing the assignments within a certain range of dates. From an administrative

standpoint, instructors also wanted to be able to view a student's scores, or his entire

submission history for a problem; to update or modify scores; to make submissions

'While easy from a technical perspective, this presented an interesting issue, primarily because
of CAT-SOOP's philosophy on grading. It is easy for a student to get an incorrect impression that
the score being displayed to him is his actual score in the course; to minimize this possibility, scores
are explicitly reported as "Raw Scores," and no assignment averages are displayed.

19

for a student; and to edit problems, assignments, and course announcements.

2.2 Choice of Languages and Libraries

When beginning any new project, consideration must also be given to the tools on

which that project is built, and how they relate to that project's goals.

For CAT-SOOP, one of the main factors driving the choice of implementation was

ease of access and ease of use for students. The easiest way to ensure easy access to

CAT-SOOP for all students was to make it a web-based tool, so that any student

with a computer and an Internet connection can access the system without having to

install any additional software on his machine.

Beyond this, one hope was that executing and checking code written in the Python

programming language would be straightforward, and that the system would be easily

extensible. For these reasons, CAT-SOOP is written in the Python programming

language 2 (it is compatible with versions 2.6 and 2.7).

For reasons of familiarity, CAT-SOOP is built on the cherrypy web framework3 ,

and interacts with a MySQL database using the SQLAlchemy Python module4 .

Because it is designed for use primarily in technical subjects, the ability to display

mathematical formulae in the web browser is a crucial feature. Near its inception,

CAT-SOOP used a homebrew SVG-based system for rendering mathematical formu-

lae; currently, however, the MathJax JavaScript library' is used to render math, for

reasons of browser compatability and aesthetics.

The Detective add-on, described in detail in chapter 5, was written in PHP,

JavaScript (with jQuery), and Python, primarily because it was built as an extension

to a piece of software built on these technologies.

20

2http://python.org
3http://www.cherrypy.org/
4http://www.sqlalchemy.org/
5http://www.mathjax.org/

Figure 2-1: Graphical summary of the relationship between data structures in CAT-
SOOP. Each line represents a "has-a" relationship.

2.3 Data Structures

This section describes the data structures used within CAT-SOOP. At times, the

language in this section may shift back and forth between talking about objects in

Python, and talking about entries in a MySQL database; it is worth noting here that

each Python class described below (with the exception of the Question class) has an

exact analog in CAT-SOOP's MySQL database, and so the concerns in each of these

two realms will be lagely considered simultaneously.

2.3.1 Questions

Questions are central to the functionality of CAT-SOOP, as they represent requests

for user input. Questions in the system each belong to a certain question type. These

types are implemented as Python classes which inherit from a base Question class, and

live in a specific location in the server's filesystem. Questions are never instantiated

except as part of a Problem (see the following section regarding Problems), but CAT-

SOOP keeps track of which Question Types are available in the system at all times.

Example question types which have been implemented for CAT-SOOP include:

True/False, Multiple Choice, Short Answer, Numerical Answer, Symbolic Math (see

chapter 3), Python Programming (see chapter 4), and PDF Upload.

Creating a new Question type amounts to making a new Python class which

21

inherits from the base Question class, and has the following attributes and methods:

" attributes name, author, email, version, and date, which contain the prob-

lem's metadata, represented as strings.

" a method gethtml.template, which returns a template for displaying the prob-

lem to the user, and can display blank problems, as well as displaying a previous

submission back to a student.

" a method checker, which takes as input a solution and a submission, and re-

turns a tuple of four elements: the fraction of this problem's points the supplied

submission earned, feedback to be given back to the user, a header for the feed-

back, and a submission that should be referenced as the previous solution the

next time this problem is loaded6)

2.3.2 Problems

In the CAT-SOOP terminology, "Problems" are collections of Questions, accompanied

(potentially) by blocks of descriptive text, figures, formulae, or other resources.

Each student is allotted a certain number of submissions per problem, as specified

in the problem's description. He may continue submitting new answers (and receiving

feedback on them) until he runs out of submissions, but may stop at any time before

reaching that point. A student's score on his most recent submission to a given

problem will be taken as his score for that problem (see section 2.3.5 for details about

how this information is stored).

2.3.2.1 Specification Language

Problems are specified using an XML markup language which is designed to be easy

to use. For the most part, this language is plain HTML, but with a few additional

tags added:
6This usually ends up being the submission currently being handled, but was necessary to prevent

some undesireable behavior in PDF upload problems. In future versions, this will be cleaned up,
and a nicer way to handle such situations will be found.

22

" The entire problem description must be surrounded by <problem></problem>

tags.

" Inline mathematical formulae are specified through the use of $$

tags.

* "Display" mathematical formulae are specified through the use of <dmath></dmath>

tags.

" Questions to be asked as part of a given problem are specified through the use

of <question></question> tags.

Figure 2-2 shows an example of a problem description specified in this markup

language. Note that options in the outer problem tag specify how many submits each

student is allotted for a given problem, and that options in the question tag specify

the number of points that a given question is worth, as well as a valid solution.

Problems can be edited within the browser 7 by individuals with proper permissions

(see section 2.3.4).

2.3.3 Assignments and Courses

Problems are further grouped into Assignments. Each Assignment contains a number

of problems, and has three dates associated with it, which control access to the

problems contained therein:

" A release date, after which problems in the assignment can be viewed and

submitted.

" A due date, after which time problems are marked as late.

" A solution date, after which time students can view solutions.

7 Currently, the only way to edit problems is through the browser; however, multiple instructors
have expressed interest in editing problems in their own favorite text editors. Thus, in future versions,
Problems may be removed from the database and instead live in the filesystem as plain-text files, so
as to allow for easy editing.

23

<problem title="Mystery Feedback" maxsubmits="5">

Consider the following feedback system where F is the
system functional for a system composed of just adders, gains, and
delay elements:

<center>

</center>

If $\alpha=1O$ then the closed-loop
system functional is known to be:

<dmath>\left.{Y\over X}\right|_{\alpha =10}=~~{1+R\over 2+R}</dmath>

Determine the closed-loop system functional when $\alpha=20$.

$\left.{Y\over X}\rightl _{\alpha =20} =$

<question type="expression" points="4">
<solution>(2+2R)/(3+2R)</solution>

</question>

</problem>

Figure 2-2: Example problem specification, including graphics, math, and a single
question.

24

Assignments are further grouped into courses. At its core, a course in CAT-SOOP

is little more than a collection of Assignments, just as an Assignment is a collection

of Problems. However, courses also have associated with them a set of ranks, which

define the actions that certain individuals associated with that course are allowed to

take, as well as a field containing announcements, which are displayed on a course's

main page within CAT-SOOP.

2.3.4 Permissions

User permissions are controlled on a per-course basis. Each course has its own set of

permissions levels ("ranks" in the CAT-SOOP terminology), and a user's rank in one

course in no way affects his rank (and, thus, his permissions) in another course. For

example, a student might be participating in one course as a TA, but in another as a

student; it is crucial that he is allowed to take certain actions in one course, but not

in another.

The CAT-SOOP system contains 8 different permissions bits, each of which can

be enabled or disabled independently of the others:

1. "View" allows a user to view course materials as they are released.

2. "View Always" allows a user to view all course materials, regardless of release

date. If a user's "view always" bit is set, his "view" bit is ignored.

3. "Submit" allows a user to submit solutions to problems, subject to release dates,

due dates, and submission limits.

4. "Submit Always" allows a user to submit solutions to problems, regardless of

time or submission limits. If a user's "submit always" bit is set, his "submit"

bit is ignored.

5. "Grade" allows a user to edit other users' scores, and impersonation of other

users (as described in section 2.4).

6. "Edit" allows a user to edit course materials, including release and due dates.

25

7. "Enroll" allows a user to add new users to a course, regardless of whether the

course registration is open.

8. "Admin" allows a user to edit other users' permissions within the course, and

open or close the course or registration.

Finally, each user has a single permissions bit (called the "in charge" bit) which,

if set, allows him to modify global system settings.

2.3.5 Submissions and Results

CAT-SOOP's main goal is to facilitate the automatic collection and assessment of

homework exercises. As such, it is important that the system keep a record of stu-

dents' submissions to problems. In CAT-SOOP, this is handled by means of the

Submission class.

Whenever a student makes a submission, a new instance of the Submission class is

created, which contains the student's entire submission. Thus, every answer he ever

submitted exists in the database in its entirety, along with the score he received on

it. This information is useful for reviewing a student's peformance on a problem over

time (for, e.g., assigning partial credit to a problem, or verifying a student complaint

about faulty checking8).

Each student may have multiple Submissions for each problem he opens. With

so many Submissions in the database, however, a need quickly arises for a sort of

summary of a student's performance on a given problem, to avoid searching through

numerous Submission objects to find the proper one, for scoring or for display of a

problem; this is where the Result object comes in.

Each user has one Result object per problem. This object contains a reference to

his most recent submission, as well as information about his current score. When he

81n systems where information about students' previous submissions is not stored, this can be
a real pain. Firstly, there is no way to verify whether a student is telling the truth, and secondly,
it can be very difficult to re-create (and subsequently fix) a checking error without knowing what
exactly was submitted.

26

opens a problem, this Result object is loaded, and his previous responses and score

(as gathered by loading his most recent submission, if any) are shown.

2.4 Grading and Impersonation

When an instructor views a student's submissions, he has the option of requesting only

the student's most recent submission for that problem, or the student's entire history

of submissions. He also has the ability to modify a student's score while viewing

that student's submissions. When he does so, the student's original score remains in

the database, but is augmented with information about the updated score, as well

as the user who assigned him that score. Thus, when a problem is loaded for which

a student has been specifically assigned a score by staff, that score will appear; for

problems for which he has not been assigned a specific score by staff, CAT-SOOP's

automatically-generated score will be displayed instead.

Staff may also want the ability to "impersonate" students. Impersonation is han-

dled very differently in CAT-SOOP than in xTutor and tutor2. Both xTutor and

tutor2 allow persistent impersonation in the sense that a user can impersonate a stu-

dent for some duration of time, during which the system will behave as though he

is the student he is impersonating. In xTutor, when one impersonates a student, a

complete copy of that student's data is created and used as the impersonator's data

until he is done impersonating the student. This gives the impersonator the freedom

to do as he pleases while masquerading as the student, with no possibility of impact-

ing the student's actual state in the system. In tutor2, when one impersonates a

student, the system simply treats all actions he takes as though they had been taken

by the student he is impersonating. This means that the impersonator can modify

a student's state in the system if he so desires (or by accident, if he is not careful).

Both of these schemes have positives and negatives associated with them, and neither

is a clear-cut "better" solution.

CAT-SOOP does not allow persistent impersonation. Instead, a staff member

may make submissions as a user if he needs to (or wants to). The staff member

27

does not "become" the student in the system's eyes, but any submission he makes

in this fashion will be treated as though it were made by the student (although the

submission is stored with additional information about who actually made it 9).

9Another design goal of CAT-SOOP worth mentioning is that all important actions should be
logged. Every submission, entry of grades, modification of problems, etc, should result in something
being logged to the database. Having this information makes retrospection (in the event of a
complaint, or a system failure) possible. xTutor keeps an even more detailed log, including every
page load. tutor2 does the same, but misses some important information when logging students'
submissions to problems.

28

Chapter 3

Evaluating Symbolic Math

CAT-SOOP underwent a pilot test in MIT's 6.003 Signals and Systems in fall term

2011, where it was used almost exclusively to assess students' responses to mathe-

matical questions. One easy way to approach this problem would have been to force

the instructors to phrase all of the questions they wanted to ask in forms already

allowed in the base system (e.g., instead of asking for a symbolic expression, ask for a

numerical answer corresponding to that expression evaluated with certain values for

each variable).

However, this seemed particularly restrictive, and so CAT-SOOP's symbolic math

checking routines came to be. Currently, the system is capable of checking two

main types of symbolic math: symbolic expressions, and numerical ranges, which

are discussed in detail in the following sections. An example of CAT-SOOP's display

during the solving of these types of problems can be seen in figure 3-1.

3.1 Mathematical Expressions

Appendix A (section A.1.1) contains the full source-code listing for expressions.ast .pyl,

which is responsible for handling symbolic expressions in CAT-SOOP.

'This style of checking is used in both CAT-SOOP and tutor2, so it exists as a stand-alone
module.

29

Problem Set 1: Geometric Sums

Previous Problem N~ext Problem

Your last score on this problem was: 12.0 out of 12 (submitted Monday, 14 May 2012, 08:51:23 PM)

Part a

Expand - in a power senes. Express your answer as a geometric sum.

power series: aan

correct

Your submission was parsed as:

a!

For what range of a does your answer converge?

Range ofa: ((-2,2)N(-1,G))U[O, 1)

Correct

Your submission was parsed as:

((-2.0,2.0)n (-1.0,0.0)) U [0.0,1.0)

Figure 3-1: Screenshot showing CAT-SOOP's display of a simple symbolic math
problem involving multiple parts.

30

3.1.1 Testing

The procedure for testing correctness of symbolic expressions has gone through several

iterations. At first, CAT-SOOP made use of a symbolic math library for correctness

checking. However, this approach was found to be lacking, particularly when check-

ing complicated expressions. For example, checks involving complex exponentials or

trigonometric functions tended to eat up a lot of CPU time (and could possible enter

infinite recursions, forcing a restart of the server), and were not always accurate2 .

Because of these limitations, and the general difficulty of symbolic equivalence

checking, CAT-SOOP currently does all its correctness checking numerically, which

has proven in practice to be very efficient and accurate when compared against the

symbolic approaches used before. The checking process unfolds as follows:

1. The given submission and solution are both parsed down into Python AST's3 .

2. Each variable that appears in at least one of the two expressions is assigned a

numerical value (a random complex number within a certain range) 4 .

3. Each AST is evaluated in the Python environment containing the variable bind-

ings created in step 2.

4. These numbers are compared to one another; if they are within a certain thresh-

old of one another, they are assumed to be equivalent expressions.

3.1.1.1 Errors in Checking

This method is not guaranteed to produce correct assessments, and both false posi-

tives (marking incorrect submissions as correct) and false negatives (marking correct

solutions as incorrect) are possible.

2These flaws were responsible for some student frustration early on in 6.003, when this checking
scheme was still in use.

31t is worth noting here that, while this step relies on expressions being specified using Pythonic
syntax, it is certainly possible to allow input languages other than Python, through the use of
pre-processors which translate from the desired input language into Python.

4Currently, four variable names are reserved, and assumed to have special meaning: j, e, abs,
and sqrt. If these variables appear within an expression, they are not assigned random values, but
are interpreted as the imaginary unit, the base of the natural logarithm, the absolute value function,
and the square root function, respectively.

31

Of the two types of errors, false positives are more likely, and could occur in the

case where the randomly-generated numbers happen to cause the evaluation of the

incorrect submission to be close enough to the evaluation of the correct solution.

In practice, this rarely occurs with a sufficiently wide distribution over values which

variables can take, even with threshold values as forgiving as 10-', and can be guarded

against by running the above procedure n times, and only marking solutions as correct

which pass all n tests (the false positive rate decays exponentially with n).

False negatives are also technically possible, but are extremely unlikely (even

compared to false positives), to the extent that they can be largely ignored. Since the

checker uses the same initial values for each variable, the only apparent way that a

correct submission's evaluated value can diverge from that of the solution is through

rounding error. While it is technically possible for this type of divergence to happen

(particularly with a small enough threshold value), it is not a practical concern 5 .

3.1.2 Feedback

Currently, the symbolic math system provides very limited feedback. The only type

of feedback currently offered is a I4TEX representation of the user's input (see figure

3-1), which is useful for catching entry errors, but not terribly useful for catching

conceptual errors.

3.1.3 Looking Forward

One idea for improving the feedback generated about students' submissions to sym-

bolic math questions is to use solution-specific feedback, wherein common incorrect

solutions to a problem are collected, and solution-specific canned responses are dis-

played to students whose answer takes one of those forms. The CyberTutor[17], an

automatic tutor for introductory physics, uses this idea of feedback, and also offers

feedback if the student's solution contains a variable not present in the solution, or

51n fact, tests involving exponentiation, as well as repeated multiplication and division, to try to
introduce rounding error were never able to introduce enough error to create a false negative (with
a threshold of 10-9) without first running into limitations in Python's parser, or overflow errors.

32

vice versa (e.g., "the solution does not depend on x").

The CyberTutor also makes use of a type of proactive feedback through hints.

Students are presented with a variety of hints, which are basically steps leading up

to the solution. The student may ignore the hints, but if he gets stuck, he may open

a hint, which could potentially push him in the right direction. An internal report by

Warnakulasooriya and Pritchard[22] suggests that these hints are beneficial.

Another idea would be to systematically apply deformations to the AST which re-

sults from parsing down a submitted expression, to see if the solution can be reached;

trees could be deformed, for example, by replacing nodes representing trigonomet-

ric functions with other trigonometric functions, or by negating nodes representing

numbers or variables. If any combination of these deformations (and, potentially,

other, more complex deformations) results in a tree that is equivalent to the solution,

then targeted feedback can be given (e.g., "check your signs" if a negation caused the

submission to become correct).

3.2 Ranges

In addition to checking symbolic expressions, CAT-SOOP is able to check numerical

ranges. These questions are often follow-ups to symbolic expression questions, as can

be seen in figure 3-1.

Appendix A (section A.1.1) contains the full source-code listing for Range.py,

which is responsible for handling ranges in CAT-SOOP.

3.2.1 Testing

As with the symbolic expression checker, the range checker has gone through a num-

ber of changes since it was first used. Initially, input was given as a Pythonic boolean

expression (for example, lx| = 2 could be specified as (abs (x) == 2), or as

(x == -2 or x == 2), among other possibilities). This syntax proved tedious, how-

ever, for people with little or no programming background, to whom it felt like an

unnatural way to represent ranges.

33

Regions

Answer the following questions about how the behaior of the system depends on the gain kc, when
T = 0.005 If you used empirical methods, make sure your answer is accurate to within 0.0001 of the
theoretical best answer.

" For what range of kc is the system monotonically convergent?
F- < F-

" For what range of kc is the system oscillatory and convergent?
< kc

Figure 3-2: Screenshot showing range checking in tutor2, which is similar to a previous
version of CAT-SOOP's range checking. Answers are given as two numbers: a lower
bound, and an upper bound.

In this original scheme, checking was accomplished by randomly sampling a large

number of points over some specified range, and checking whether each of those values

of the variable in question caused the solution and the submission to resolve to the

same answer (either True or False). If all of the points resulting in the submission and

the solution resolving the same answer, then the submission was marked as correct.

If they did not match, then the submission was marked as incorrect.

Obviously, this approach is not perfect; as with the method described for checking

expressions, it has the potential to generate false positives (in the sense that it may

mark incorrect submissions as correct), but will not mark any correct submissions

as incorrect. Despite its inelegance, this approach has proven to do an adequate job

of assessing student submissions in practice, and increasing the number of sampled

points are tested would increase the accuracy of the checker in general.

The next iteration of the range checker required two numerical inputs per range:

one for a lower bound, and one for an upper bound; a similar method is used in

tutor2, as can be seen in figure 3-2. The benefit with this method was that checking

was straightforward. However, phrasing questions in this manner limited the types of

ranges which could be specified and the freedom of the instructors to write arbitrary

problems.

Currently, the range checker uses the same testing methodology as the original

Pythonic range specification, but also checks the boundaries of each region specified

in either the solution or the submission. What has changed is the language used to

specify ranges. Currently, the checker accepts input in a simple language designed

34

for the sole purpose of representing regions of the number line. A single region is

represented in a typical fashion: as an ordered pair delimited by brackets, where

a round bracket implies that a boundary is exclusive, and a square bracket implies

that a boundary is inclusive; for example, (0,3] includes all positive real numbers x

such that 0 < x < 3. Positive and negative infinity are specified as INF and -INF,

respectively.

These regions can be combined through the use of two operators: N, which repre-

sents an intersection (n), and U, which represents a union (U).

This last method is CAT-SOOP's current method of choice, though from exam-

ining these three schemes, it should be apparent that each has its own strengths and

weaknesses. Depending on the context and the specific question being asked, any of

these three options might be favorable.

3.2.2 Feedback

Similarly to symbolic expressions, the only feedback CAT-SOOP currently gives about

a student's submission, aside from whether it is correct, is a I4ThX representation

(see figure 3-1) of the submission. Once again, while this is useful for detecting entry

errors, it offers little in the way of conceptual feedback.

The representation into which ranges are parsed is not as rich as an AST, and

so, unfortunately, many of the interesting ways to improve feedback for expressions

simply do not translate to ranges.

35

36

Chapter 4

Evaluating Computer Programs

One of CAT-SOOP's primary objectives is to automate the assessment of student-

submitted computer programs. Because CAT-SOOP was designed for use at MIT,

and Python is the language of choice in MIT's undergraduate curriculum, CAT-SOOP

is currently only capable of assessing programs written in the Python programming

language; despite this, the methods described in this chapter and the next will hope-

fully prove, at least to some extent, generally applicable, and extensible to other

programming languages.

4.1 Subset of Python

CAT-SOOP's current means of assessing and providing feedback on students' submis-

sions to programming exercises consists of a number of components, each of which

places some constraints on the subset of the Python language which can be success-

fully and completely assessed.

The core testing system, which is built into the CAT-SOOP system, allows for

almost the complete Python 2.7 language, with the exception of certain blacklisted

statements (see section 4.2.1). However, the myriad components of the Detective add-

37

on (described in the following chapter) create additional, more severe constraints'.

Explicitly allowed in the subset are:

" Booleans, Integers, Longs, Floats, and Complex Numbers

" Lists and Tuples

" Dictionaries

" For and While Loops

" Conditional Statements

" User-Defined Functions

Explicitly disallowed in the subset are:

" Multiple Assignment

" File Handling

" Yield Statements and Generators

" Imports

" Sets

" try/except/finally

" In-line conditional statements

" Slicing

Because the system really does consist of several disjoint pieces, the effects of

using some of the above statements may be more benign than others.

'The aim here is to create a rich subset of the Python programming language, while still keeping
it simple enough that meaningful feedback can be generated. Ideally, CAT-SOOP and the Detective
will eventually be able to allow a more complete subset of Python. If the additional feedback afforded
by the Detective is not a concern, the core system can still be used, which is capable of checking a
much more complete subset of the language; in this case, the allow/deny lists above may be ignored.

38

4.2 Testing

Checking arbitrary programs for correctness in an absolute sense is an extremely

difficult task, and so CAT-SOOP falls back on a method commonly used in automatic

programming tutors: test cases. In particular, the code checking in CAT-SOOP is

largely based off of similar systems used in the xTutor and tutor2 automatic tutors.

Although details are ommitted here, appendix A (section A.1.2) contains the complete

source-code listing for pysandbox-subprocess.py, which houses most of the code

described in this section.

When a student's submission is checked for accuracy, it is run through a number

of test cases, and the results of these executions are compared against the results of

running a solution through the same test cases. Assuming an adequate battery of

tests and a correct solution, then any submission which passes all the same test cases

as the solution can be considered a correct submission.

Each programming question specifies a list of test cases, as well as (optionally)

a block of code to be executed before running the submitted code (e.g., to define

functions or variables which can be used in the student's submission). Each test case

consists of an arbitrary number of statements, which ultimately set a variable ans,

which is the end result of the test case. Once the student's code and the test case

have been run, a string representation of ans is stored in a specific location. This

process is repeated for each test case, and for the solution code.

Once all test cases have been run on both the student's code and the solution, the

results of each test case are compared against one another. By default, the strings

are compared against one another verbatim, but an arbitrary Python function may

be used to compare the two (e.g., by converting each to a Python object, and then

comparing those objects), which increases the variety and complexity of the checks

which CAT-SOOP can perform.

39

4.2.1 Security

Allowing arbitrary pieces of code to run on a public web server is a dangerous prospect.

CAT-SOOP's approach to avoiding executing dangerous code involves simply checking

whether the submitted code contains any of a number of "blacklisted" statements,

which are deemed dangerous either to the state of CAT-SOOP system, or of the

machine on which it is running. This check is performed after stripping away all

comments and whitespace (as well as the line continuation character \), so that

formatting tricks cannot allow these statements to pass through.

Any code which contains any of these statements is not executed, and causes an

e-mail to be sent to any user whose "Admin" bit (see section 2.3.4 for a discussion of

permissions within CAT-SOOP) is set for the course in question; this e-mail contains

the raw code submitted to the system, as well as the username of the individual who

submitted the code.

To guard against infinite loops, Python's resource module is used to limit each

test's running time to two seconds. Any code running for longer than two seconds is

assumed to have entered an infinite loop.

While these measures certainly do not constitute a perfect means of sandboxing

user-submitted code, they should provide a reasonable level of security nonetheless.

4.3 Feedback

The core system provides very simple feedback, letting the user know whether his code

passed each of the test cases. However, Michael[14] suggests that students learning to

solve problems benefit from feedback beyond a simple assessment of the correctness of

their answer. Automatically generating meaningful feedback for arbitrary programs

submitted by students is, in general, a very difficult problem, but one which CAT-

SOOP seeks to address through the means of an add-on called the Detective.

The following chapter describes this system, which is aimed toward increasing stu-

dents' understanding of how the state of a program evolves during a single execution,

in detail.

40

Chapter 5

The Detective

CAT-SOOP focuses mainly on providing feedback about a single execution of a stu-

dent's program. To this end, the Detective was developed. The Detective is a piece

of software designed to provide detailed information about how the state of the exe-

cution environment changes as a program runs, as well as to provide insight into why

and when errors occur during execution.

The use of run-time tracing in automatic tutors has been investigated by Striewe

and Goedicke[21], who suggest that tracing in automatic tutors can be beneficial (in

particular because it allows for easily generating certain valuable types of feedback

which would be very difficult to generate without tracing), but also that there is

much room for improvement in this regard. The goal of the Detective is to use run-

time trace data, as well as syntactic information, to generate meaningful, concrete

feedback about students' submissions to introductory programming exercises, and

thereby increase students' power to solve programming exercises autonomously.

5.1 Tracing and Visualization

At the Detective's core is a visualization of the evolution of a program's environment

as it is executed. This visualization is based on (and uses much of the original code

for) Philip Guo's Online Python Tutor'. Guo's Tutor contains a tracer (pg.logger

'http://people.csail.mit. edu/pgbovine/python/

41

L L L Iv
CAT-SOOP Detective

Use left and right arrow keys to step through this code:

1 #Code Executed By Our Checker Before Your Code:
pass

" #Your code:
5 def square(x):

return **2

#Test (Expected output is: 4):
9 ans = square(2)

[' qast I Aboutto do step 4 of 5 [oaaIiFn

Program output

A1

2 Local variables for square:

x 2

Global variables:

square function (id=1)

&his is a retrn statement Python
will evaluate the given expression,
and yield that value as the result of

this function call.

The expression in question
resolves as follows:

X**2

Loading variable x|

2**2

4Exponentaio

4

Figure 5-1: The user interface to the Detective, showing (1) the submitted code,
(2) the current local and global variables, (3) the output from the program so far,
(4) and an explanation of the current line's purpose.

42

(i)

Type of Error Example Explanation
Name not defined This message means that the program is trying to access a vari-

able called f oo. However, there is no such variable in the current
scope. If this is the correct variable name, make sure it has been
initialized first. If not, did you mean to use one of the following
variables? Foo, f00

Object unsubscriptable Grabbing a single element from a collection using square brack-
ets ([) is referred to as subscripting. This message means that
the program is trying to subscript something that can't be sub-
scripted (a function). If you intended to call this function, you
should use parentheses instead of square brackets.

Object not callable Executing the code stored within a function using round brackets
(parentheses) is referred to as calling that function. This message
means that the program is trying to call something that can't
be called (a list). If you intended to index into this list, you
should use square brackets ([]) instead of parentheses.

Operation not supported This message means that the program is trying to combine two
objects using an operator, but doesn't know how to do so. Specif-
ically, this line is trying to combine an int and a str using the

+ operator, which is not supported.

Figure 5-2: The Detective's explanations of various types of run-time errors.

by name), which logs information about the evolution of local and global variables, as

well as information relating to Python exceptions, over the course of a single execution

of a program.

Guo's Tutor allows users to "step" through the program's execution line-by-line

and observe how the program's internal state evolves.

The Detective uses a slightly-modified version of Guo's tracer (dubbed hzlogger),

which includes syntactic information in the form of partial AST's, to augment this vi-

sualization with interpretations of error messages (as described in section 5.2), as well

as expanded explanations of program behavior (section 5.4) and more finely-grained

resolution information (section 5.4.1).

5.2 Error Analysis

While valuable to the expert programmer who has learned to interpret them, error

messages present a challenge to the novice programmer. Most error messages are

43

Use left and right arrow keys to sop through this code: Lclalus o qae
Local variables for square:

#Code Executed By Our Checker Before Your Code:
pass x 2

4 #Your code: Global variables
5 do square(s): square function (id=l)

return sum(a)

#Test (Expected output is: 4): APython erroroccurred:
1S ans = square(2) NameError: global name 'y'

About to do stop 5 of 6is not defined

This message moans that the program
is "yo to access a variable called y.
However, there is ano such variable Is

Program output: me current scope. this is the correct

Figure 5-3: A screenshot of the Detective displaying an error message, along with an
interpretation of that error message.

strangely worded, and even the more straightforward error messages are often buried

in a pile of red text which can be intimidating, particularly to those just beginning

with programming.

Many students have trouble interpreting these error messages, and thus require

explanation as to what an error message means before they are able to go about

trying to fix it.

The error analyzer tries to alleviate this problem by providing simple explanations

of common error messages in plain English. The original error message generated by

Python is still displayed, but is augmented by a simple explanation of what the

error message means, in the hopes that students will begin to connect the simple

explanation with the error message that Python generates, so that they will be better

able to interpret such error messages when they are no longer working within the

Detective.

The method by which these responses are generated is rather simplistic, but still

provides meaningful, relevant interpretations of error messages; these messages are

generated by considering the error message generated by Python, as well as the state

of the local and global variables when the error occurred. Using this information, the

Detective fills in an explanation template specific to the type of error encountered.

Sample explanations for a few common types of errors can be seen in figure 5-2.

44

What follows is a description of several common errors students make, as well as

the ways in which the Detective identifies and explains them. Some of these items

are the Python equivalents of common Java mistakes enumerated by Hristova, et

al[7] and Lang[12]; others on this list came from personal experience interacting with

novice programmers, and from several semesters worth of xTutor's logfiles.

The complete source-code listing of errors. py, which contains the code for inter-

preting error messages, can be found in Appendix A, section A.2.1.

5.2.1 Common Run-time Errors

1. Misspelled Variable Names - Misspelling variable names is one common

error. Even for an experienced programmer, a slip of the finger can result in a

Python NameError stemming from a typographical error. For a novice, these er-

rors are likely to be harder to understand, and to diagnose (for example, the idea

that Foo and f oo are different names in Python takes a little getting used to).

When the Detective encounters a "name not defined" error, it displays a canned

response explaining that the variable in question is not defined in the current

scope. In addition, the system searches in the current scope (including Python's

built-in variables and functions) for names that closely resemble the name the

user typed in. These variable names are found by iterating through the cur-

rent scope (+ built-ins), and computing the Damerau-Levenshtein distance[3]

between the specified variable name, and each variable actually defined in the

current scope. A list of those variables whose Damerau-Levenshtein distance to

the specified variable name is less than or equal to two is displayed back to the

user, as can be seen in figure 5-3.

2. Incorrect Choice of Braces - Novices will often confuse square brackets with

parentheses, attempting to call a function with the syntax f oo [x] or to index

into a list with the syntax f oo (ix). The detective catches these types of errors

by investigating certain TypeErrors (specifically those which are accompanied

by an error message stating that a certain object is not subscriptable, or is not

45

callable). If a user tries, for example, to subscript a function object using

square brackets, the Detective offers a suggestion to use parentheses instead of

square brackets. Similarly, attempting to call a list, tuple, or dict object

using parentheses will result in the Detective suggesting to use square brackets

instead.

3. Unsupported Operations - Another common error is confusing types. This

usually manifests itself when the user tried to perform some operation on an

object, which its type forbids. One common error of this kind is attempting to

add together two objects of differing types (e.g., 24 + '2.0'). This error can

manifest itself as an "unsupported operand types" error message2 . In this case,

the Detective gives a canned response, with some information injected about

this specific instance of the error message.

4. Index Out of Range - When just starting with programming, most people

are used to counting from one, and so Python's zero-indexing of lists and tuples

can be a stumbling point, even if it is not a conceptually difficult concept. The

Detective responds to "index out of range" errors with a simple canned response,

a reminder about counting from zero and valid indices.

5.2.2 Pitfalls

The Detective's error checking goes beyond reporting actual exceptions to warn users

about common mistakes in Python which don't necessarily cause exceptions, but

might lead to unexpected behavior. Because they don't necessarily cause Python

exceptions to occur, these cases are handled separately from other error reporting.

Python has a few of these "pitfalls" (to borrow terminology from Lang), some of

which are enumerated below:

2These errors can also manifest themselves in other ways, with a wide variety of error messages,
depending on which of the operands is given first. Additionally, AttributeErrors might arise from
misunderstanding types. As a proof-of-concept, the Detective currently only explains those errors
of this kind which give rise to this specific error message; however, it could easily be extended to
account for those other cases.

46

1. Exponentiation Syntax - Novices with backgrounds in mathematics, as

well as experiences programmers who are new to Python's syntax, tend to want

to use a caret (^) to denote exponentiation, when in Python this represents

bit-wise exclusive or (XOR). Since students are more likely to be called to use

exponentiation than XOR in introductory programming exercises, the Detective

gives a warning whenever this operator is used. An example of such a warning

is:

This line contains a caret (^), which represents a bitwise XOR operation. If you

intended to use exponentiation, use two asterisks (**) instead.

2. Overwriting or Hiding Built-in with Variable - One subtle pitfall is the

possibility of overwriting or hiding built-in objects in Python through assign-

ment statements. Many built-ins have names which are desirable for variable

names; in particular, the type names (among them list, str, dict), as well as

max and min, tend to be overwritten frequently, and this is a common occur-

rance for other built-in variables as well. Any time the Detective encounters an

assignment statement which gives a warning whenever an assignment overwrites

or hides a built-in variable. An example of such a warning is:

This line contains an assignment to a variable named int. However, int is

also the name of an object built in to Python. This assignment will "hide" the

built-in object, so that it will not be accessible from within this function.

Additional pitfalls were considered, including leading zeros on integers (which are

interpreted as octal numbers in Python), and using & and I instead of and and or in

boolean expressions. However, both of these concepts are difficult to explain concisely

without assuming a background in mathematics or computer science, and so are not

considered in the current version of the Detective.

47

5.3 Syntax Errors

Syntax errors in Python are particularly hard to diagnose and fix. Novices tend

to make a lot of mistakes when programming, which cause Python to be unable

to execute their code. Many novice errors are greeted with a familiar (and really

unhelpful) message: SyntaxError: invalid syntax. Because of this, novices tend

to spend a lot of time staring at code that will not run, trying to figure out where

their errors lie.

Thus, an ideal automatic tutor would be able to provide insight into why syntax

errors, in addition to run-time errors, occur. However, the problem of identifying the

causes of syntax errors is intrinsically more difficult than analyzing run-time errors,

if for no other reason than that syntax errors disallow the possibility of investigating

Abstract Syntax Trees, forcing consideration instead back to the level of textual source

code.

As it currently stands, the Detective does not make any attempt to analyze or

explain syntax errors, although such analysis is certainly a goal for future versions,

as the potential gains are substantial.

5.4 Statement Explanation

In addition to the providing interpretations of error messages, the Detective also

incorporates a system which attempts to explain what each line of a student's program

is doing as it executes. This system, hereafter referred to as the explainer, is very

simplistic, but may provide some clarity (or at least a useful reminder) as to what a

given line will actually do when executed; this information is likely most useful for

people just getting started with programming.

The explainer basically maps AST node types to canned explanations, with some

small variation depending on the structure of the AST rooted at the node in question.

For example, a return statement with no return value specified will generate an

explanation similar-but not identical-to a return statement with a return value

48

specified. Announcements are also made when entering (via a function call) or exiting

(via a return statement or reaching the end of a function's definition) a function.

This scheme is admittedly simplistic, but should at least serve as a proof-of-concept

for future systems. Table 5-4 shows examples of generated explanations for several

types of Python statements.

When appropriate, these simple explanations are augmented by more finely-grained

information about how a given expression resolves; these messages, and the method

by which they are generated, are described in detail in the following section.

5.4.1 (Pseudo-) Instruction-Level Resolution

When a student's program begins producing unexpected results, he is often pointed

to a specific line of code where the error occurred, but from there, he is left on his

own to figure out where, specifically, his error lies. Often, a line of code consists of

several instructions; because of this, it can be difficult to determine when during that

line's execution the program started to deviate from what the programmer intended.

This is particularly true in cases when a program runs successfully (in the sense that

it runs through to completion without generating a Python error) but nonetheless

produces incorrect results.

For this reason, the Detective seeks to provide finely-grained information about

how a given expression resolves. Other program visualizations (such as jEliot[16])

accomplish similar goals by investigating a program's bytecode. However, a quick

inspection of Python's compiler showed that it makes some optimizations at compile

time that could prevent the Detective from giving a complete picture of how a line

resolves3 .

As an alternative, the Detective uses a system which resolves Abstract Syntax

Trees step-by-step. This method I call (pseudo-) Instruction-Level Resolution (here-

after pILR). The underlying idea is that by resolving an AST step-by-step in a sys-

3 While the only optimization I directly observed involved pre-computing additions (e.g., 2+3

compiled to LOAD-CONST (5)), seeing this early on made me wary of using bytecode, which might
make use of other optimizations that could potentially impede the Detective's ability to show every
step of a resolution.

49

Type of AST Node Example Explanation
Assign This is an assignment statement. Python will evaluate the expres-

sion on the right-hand side of the equals sign, and will store the
resulting value in variable x.

Break This is a break statement. If it is given inside of a loop, this state-
ment will cause Python to jump outside the loop, skipping the rest
of the code block for this iteration and all subsequent iterations. If
given outside of a loop, this statement will cause an error.

Continue This is a continue statement. If it is given inside of a loop, this
statement will cause Python to jump to the top of the loop, skipping
the rest of the code block for this iteration. If given outside of a
loop, this statement will cause an error.

For This is a for loop. Python will run the given code block once for
each element in f oo, each time setting a variable i equal to the
next element in f oo.

FunctionDef This is a function definition statement. Python will store this func-
tion in variable f oo so that it may be called later.

If This is an if statement. Python will evaluate the given expression.
If it evaluates to True, Python will jump to line x; if it evaluates
to False, Python will jump instead to line y

Pass This is a pass statement, which tells Python to do nothing.

Print This is a print statement. Python will evaluate the given expression,
and display it to the console.

Return This is a return statement. Since no expression was given, Python
will yield None as the result of this function call.

While This is a while loop. Python will evaluate the given expression.
If it evaluates to True, Python will jump to line x, execute the
code in that block, and return here to check the expression again.
If it instead evaluates to False, Python will skip this code block
altogether.

Figure 5-4: The Detective's explanations of supported types of Python statements.

50

dMsion dd~tnn
OX -- _> AL ._>)

3 /3 8.0

4 0.5

Figure 5-5: pILR trace of 3 + 4 / 0.5, depicted as partial AST's

tematic manner, one can mimic the process by which Python would evaluate an

expression, and explore the evolution of that expression as it resolves. Figure 5-5

shows an example of a simple pILR trace.

Each type of AST node4 resolves in a specific way, and provides a specific message

stating what is being done as it resolves (for example, a Name node, which represents

loading a variable, is accompanied by a message "Loading variable x."). The specifics

of each type's resolution, which are naturally motivated by the ways in which Python

evaluates different types of expressions, will not be discussed here in detail, but Ap-

pendix A (section A.2.5) contains a complete source-code listing for resolution.py,

which contains the pILR code.

As mentioned before, the main motivation in developing the pILR system was

to provide information to students about when, specifically, errors occur during the

resolution of a line of code. Thus, the pILR scheme must have a means of dealing with

Python errors which occur mid-line, and still be able to provide a partial trace when

these types of errors occur. To this end, the pILR system makes use of a special Error

node during resolution. In the case where an error occurs when resolving a sub-tree,

the error node replaces whatever node would have resulted in the case of a successful

resolution. Different types of AST nodes check for errors in subtree resolution at

different times, but the ultimate end result is that the Error node propagates up

the tree; this may preclude the resolution of sibling nodes, but will not interfere with

those resolutions which were completed successfully before the error occurred. Figure

5-6 shows an example of this behavior in a simple context.

Not only is pILR capable of creating finely-grained traces of the resolution of a

4Currently supported are BinOp, Bool0p, Compare, Dict, List, Name, Num, Str, Subscript,
Tuple, and Unary0p.

51

dodnion addition ERO

3 /3 ERROR

4 cat'

Figure 5-6: pILR trace of 3 + 4 / 'cat', depicted as partial AST's, and demon-
strating the propagation of an ERROR node.

number of different Python expressions, but is seems to have an additional benefit

over creating these traces from compiled Python bytecode: pILR maintains, at all

times, an explicit representation of the current state of the resolution, in the form

of a Python AST. This representation is currently used to create the Detective's

visualization of pILR traces; the Detective walks these partially-resolved AST's to

create Python code which, when parsed, would generate the AST in question; this

Python code is then used in the Detective's visualization.

The Detective uses the jsPlumb JavaScript library5 to connect the partially-

resolved AST's, and to give brief descriptions of what each step in the trace is doing;

figure 5-7 shows the resolution of a more complicated example as it appears within the

Detective, from a student's (correct) submission to a question asking for a program

to compute the roots of a quadratic expression.

5.5 Connecting with CAT-SOOP

Because the Detective exists as a stand-alone web application, some care had to be

given to connecting it with CAT-SOOP in a reasonable way.

The connection is made through a modified version of the Python Code question

type6 , called PythonCodeViz. When a PythonCodeViz question is submitted, the

submission is checked for correctness in the usual manner, as described in section

4.2. In addition, several versions of the code (one for each test case) are sent via

HTTP POST request to a CGI front-end to hz-logger, which generates a JSON

5http: //j splumb. org/j query/demo.html
asee chapter 4 for a discussion of this question type, and section 2.3.1 for a general discussion of

question types within CAT-SOOP

52

(b**2 - (4 * a) * c)**0. 5

Loading kariable b

(91A*2 - (4 aa) " c)**0.5

Expnentiation

(8281 - (4 * a) * c) **0. 5

Loading yariable a

(8281- (4 * -7) *c)**0.5

(8281 - -28 * c)**G.5

Loading variable c

(8281- -28 *29)**0.5

(8281- -812)**0.5

9093"**. 5

Exponentiation

95. 3572231139

Figure 5-7: The pILR trace of calculating a determinant, as visualized in the Detec-
tive.

53

Your code passed 3 of 3 tests.

Test case: squa re (2)
SOkefon. 4
Result: 4

feedback, including bu~tsasttonau~s.wihoe ntne fteDtcie

Test case: squwre(- a. 7)
Sokf: 0. 49
Rest 0. 49

Test case: uquasre (3)
Sokfton: 9
Resut. 9

Fiure 5-8 Screenshot showing a student's response to a question and the associated
feedback, including buttons which open instances of the Detective

object representing each program execution's trace. These JSON representations are

hidden in the HTML source of the page that displays the results of the checking.

In addition to the normal feedback he receives about his program's feedback (which

test cases his code passes, as well as any solution-specific feedback as described in

section 4.3) , the student is presented with buttons which offer him the ability to

visualize any of the given test cases using the Detective. When one of these buttons

is pressed, the corresponding test case's trace is pushed into a hidden form, which

is submitted to open a new instance of the Detective for visualizing that test case's

execution. An example of this interface is shown in figure 5-8.

5.6 Looking Ahead

In its current form, the Detective plays the role of a disseminator of knowledge, and as

an interpreter of Python's internal state as well as the messages the Python interpreter

generates. Missing, however, from this setup is a sense of interactivity. As it currently

stands, a student's interaction with the Detective is limited to passively absorbing the

54

det square(x):
return xx

explanations and interpretations the Detective provides. Looking toward the future,

there is potential to improve the interactivity of students' use of the Detective.

Hundhausen, et al[8] suggest that the type and quality of a user's interaction

with a software visualization is more important than the content of the visualization

itself. This supports the principle of active learning, whose techniques have proven

effective[151 across disciplines and degrees of mastery. The ideas that follow are

centered around actively engaging the user through the detective, based on the fact

that such engagement has proven effective over the years.

Inspired by Ko and Myers[10], one idea is to incorporate questions and answers

into the Detective, allowing users to ask questions about different elements in the

visualization and receive automatically-generated answers in response. In this same

vein, Myller[18] suggests that incorporating "prediction"-type questions into a soft-

ware visualization can increase the benefit students receive from interacting with that

visualization, and that this task can be automated.

Certain types of questions (e.g., "what does this line do?", "how does this ex-

pression resolve?", and "what does this error message mean?") would be relatively

easy to incorporate into the Detective in its current form, as the answers to these

questions are already generated by the explainer, the pILR system, and the error

analyzer, respectively. Answering additional types of questions, such as "why did

variable x have value y at this time?" seems feasible, by searching backward in time

through execution trace.

The inclusion of both predictive and summative questions has the potential to

greatly increase the feeling of interactivity elicited from the Detective; this is desirable

in that these questions could force the student to think about the issues with his

program (thus potentially realizing them on his own) before being presented with

information about it.

It is also worth noting that, in its current form, the Detective has no knowl-

edge whatsoever of the problem the student is trying to solve, nor of the instructor's

solution to that problem. If this extra knowledge were to be incorporated into the De-

tective, it is easy to imagine comparing students' submissions to instructors' solutions

55

to provide additional information about relative complexity or style. For example, the

cyclomatic complexity[13] or running time of the student's code might be compared

against the solution to give students an idea not only of whether the submitted code

is correct, but also about how efficient it is.

Beyond even this, one can imagine tailoring the Detective's responses to individu-

als, based on an estimate of each student's level of understanding of various program-

ming practices and syntactic structures. In its current form, the Detective generates

feedback that is almost exclusively geared toward novices, but the argument could be

made that an ideal automatic tutor would be able to cater to a broader audience.

It is well-established that novices and experts in a given domain view problems in

that domain differently; at the very least, experts tend to notice more patterns and

abstractions not noticed by novices, and have a deeper understanding of how these

patterns and abstractions relate to the problem being solved[19]. Thus, it makes sense

that an ideal automatic tutor would (much like a human tutor) use different language

and examples to explain concepts to students with various levels of understanding

and ability.

Implicitly, the Detective assumes that its users are very new to programming as a

discipline, using text to describe how statements are interpreted at a very low level,

but not providing insight above that level. It is feasible that the templates the Detec-

tive uses to generate explanations of error messages and statements could be modified

based on an estimate of an individual's understanding of various concepts. Beck, et

al[1] describe a method for gathering such an estimate from students' responses to var-

ious exercises in an intelligent tutoring system for middle-school-level mathematics,

which could potentially be extended to the domain of computer programming.

56

Chapter 6

Conclusions and Future Work

The CAT-SOOP system has proven to be a success in its initial pilot test, and early

surveys have provided insight into valuable areas of future work.

Results from 6.003's end-of-term survey for fall 2011 suggest that, in general, stu-

dents enjoyed using CAT-SOOP to submit their homework assignments, and informal

qualitative feedback corroborates with this. Figure 6-1 contains a graph of the raw

data collected from this survey.

Despite the fact that feedback was generally positive, some of the most interesting

feedback received took the form of negative comments. Quoting from the survey

results:

a "The tutor encourages obsession over the correct answer. Due to lack of feed-

back about why an answer was wrong, you don't learn anything better than

from just handing in paper."

e "The tutor should give more feedback, such as ... being off by a constant."

e "Try looking into using it differently, though, so students don't use it as a

crutch."

The comments suggest that, for these types of systems to provide maximal benefit

over paper assignments, the feedback they provide must not only be immediate, but

most go beyond assessment of a submission's correctness. In addition, the comments

57

11

10

9

8

I
0

0

12

10

9

I6

2 3
Ran~k

(a) "I liked the 6.003 tutor."

2 R

(b) "The most important feature of the 6.003 tutor is that it pro-
vides immediate feedback."

Figure 6-1: Students' responses to end-of term survey questions relating to CAT-
SOOP for 6.003, fall term 2011. Users were asked to rank their degree of agreement
with the above statements on a scale from 1 (total disagreement) to 5 (total agree-
ment), with 3 as a neutral point. A total of 25 data points were collected for each
question.

58

*

1
O'

also seem to suggest that this limited feedback may result in the students themselves

focusing more on correctness than on conceptual understanding'. Thus, it certainly

seems that a valuable line of future research in automatic tutoring lies in investigating

additional forms of conceptual feedback, as well as the means by which they may be

automatically generated from student submissions (chapter 3 discusses a few such

possibilities, and many more certainly exist).

Unfortunately, the Detective has not been rigorously tested2 ; however, its unique

type of feedback (objective data about the program's exeuction, augmented by in-

terpretations of common Python statements and error messages, garnered and in-

terepreted through relatively simple means) provides an interesting alternative to

other methods of feedback currently being investigated. Thus, future plans include

thorough testing of the Detective, as well as incorporating some of the additional

feedback measures discussed in chapter 5.

While it still remains to be seen whether, and to what extent, CAT-SOOP and

the Detective will prove beneficial to students in the future, early results show that

students in 6.003 saw it as helpful, and suggest that this benefit could be carried

over to 6.01, or other courses, with relative ease. In addition, although it has not

been thoroughly tested, the Detective provides a proof-of-concept for an interesting

integration between run-time traces and automatic tutors, and suggests that more

research along these lines may yield positive results.

'Indeed, through my experience with 6.01, I have noticed (in some students) a tendency to focus
on attaining full marks on online problems, with little regard for the underlying concepts. Often this
limited thinking manifests itself as an inability on the part of the student to explain the process by
which he solved the problem, and an inability to abstract important concepts away from a particular
problem and apply them in another context. Whether this is simply natural behavior on a student's
part, or whether automatic tutors (and the immediate feedback they provide) contribute to this
attitude, remains to be seen.

2Nor has the checking of Python code within CAT-SOOP, but since tutor2 and CAT-SOOP share
essentially the same checking code for programming exercises, it is likely just fine.

59

60

Appendix A

Source Code Listings

A.1 CAT-SOOP

A.1.1 expressions-ast.py

1 # expressions.ast.py

2 # new module for checking symbolic expressions in CAT-00P/tutor2

3 #

4 # 2 march 2012, adam j hartz <hartz~alum.mit.edu>

5

6 import ast # Python 's parser

7 import math, cmath

8 import random

9

10 def parse.expr(string):

11

12 Parse down an expression into a Python AST

13 """

14 node - ast.parse(string)

15 return node.body[0].value # ast parser gives us a 'module'; first object in it is the expression

16

17 def compile.ast(tree):

18 """

19 Compile an AST tree into a Python code object to be run

20

21 expr - ast.Expression(tree)

22 expr.lineno - 1

23 expr.coloffset = 0

24 return compile(expr,"<CAT-SOOP>", "eval")

25

26 def get-all-names(tree):

27

28 Given an AST, return a list of all variable names contained within it.

29 For now, ignores attributes , slices , etc.

30

31 if isinstance(treeast.Name):

32 return [tree.id]

33 out = [

61

34 for child in ast.iter-child-nodes(tree):

35 out.extend(get-all-names(child))

36 return out

37

38 def getvarvalues(names):

39

40 Assign random values to each variable name the list passed in.

41

42 Uses complex type for all numbers. Always give the following values:

43 'j ' is complez(0,1)

44 'e' is math.e

45 'sqrt ' is cmath. sqrt function

46 'abs ' is built-in absolute value function

47

48 out = dict([(name.complex(random.uniform(-20,20))) for name in names])

49 out.update({'j':complex(O,1),'e':math.e.'sqrt' :cmath.sqrt,'abs':abs}) # reserved names

50 return out

51

52 def get-numerical-value(tree,varcache):

53 #varcache is a dictionary mapping variable names to numerical value

54 t - compile-ast(tree)

55 return eval(tvarcache)

56

57 def check(submission. solution, threshold-le-4):

58

59 Compare a student 's submission to a solution by parsing down into an

60 AST, generating numerical values for each variable, and evaluating the

61 AST

62

63 returns a dictionary with two keys:

64 'ok' maps to a Boolean, whether the two submissions match

65 'msg' maps to a message to be displayed back to the user

66

67 try:

68 p - parseexpr(submission)

69 except:

70 return {'ok':False,'msg': 'This expression contains a syntax error'}

71 pa = parse-expr(solution)

72 vars = {}

73 wars .update (get-var-values (get-all-names (p)))

74 vars.update(get-var-values (get-all-names(pa)))

75 1 - get-latex(p)

76 v = get-numerical-value(p.vars)

77 va - get-numerical-value(pa.vars)

78 ok = abs(v-va) < threshold

79 meg = "Your expression was parsed as:
<dmath>Xs</dmath>" % 1
80 return {'ok':ok,'msg':msg}

81

82 def check-n(n, submission,solution,threshold-ie-4):

83 tests - [check(submissionsolutionthreshold.werbose) for i in xrange(n)]

84 return ('ok': all([i['ok'] for i in tests]), 'msg':tests[O]['msg']}

85

86

87

88 #

89 #AST-to-LaTeX

90 # Most of this code is by Geoff Reedy (http://tackoverflow.com/users/166955/geoff-reedy)

91 # Found at http://stackoverflow.com/questions/3867028/converting-a-python-numeric-expression-to-latex

92 #

93

94 import ast

62

95

96 #Greek letters: input-to-output mapping

97

98 GREEKLETTERS = ['alpha', 'beta', 'gamma', 'delta', 'epsilon', 'zeta', 'eta', 'theta', 'iota',

99 'kappa', 'lambda', 'mu', 'nu', 'xi', 'omicron', 'pi', 'rho', 'sigma', 'tau',

100 'upsilon', 'phi', 'chi', 'psi', 'omega']

101 GREEKDICT - {

102 for i in GREEKLETTERS:

103 GREEKDICT[i] - "\\Xs" X i

104 GREEKDICT i.upper()] - "\\Xs" X i.title()

105

106

107 class LatexVisitor(ast.SodeVisitor):

108

109 def prec(self, n):

110 return getattr(self, 'prec.'+n. _class_._name_, getattr(self, 'generic-prec'))(n)

111

112 def visitCall(self, a):

113 fuanc - self.visit(n.func)

114 args - ', '.join(sap(self.visit, n.args))

115 if func -- 'sqrt':

116 return r'\sqrt{Xs}' X args

117 ellf fanc -- 'abs':

118 return r'\leftl Xs \rightl'

119 else:

120 return r'\operatorname{Xs}\left(Xs\right)' % (func, args)

121

122 def precCall(self, n):

123 return 1000

124

125 def visitName(self, n):

126 1 - n.id

127 s - i.split("_")

128 if len(s) > 2:

129 return "".join(s)

130 elIf len(s) -- 2:

131 If len(s[1) > 1 or len(s[i) == 0:

132 return "".join(s)

133 else:

134 return "Xs_%s" % (GREEKDICT.get(s[0],s[0]),s[1])

135 else:

136 return GREEKtDICT.get(ii)

137

138 def precName(self, n):

139 return 1000

140

141 def visitUnary0p(self, n):

142 if self.prec(n.op) > self.prec(n.operand):

143 return r'Xs \left(Xs\right)' % (self .visit(n.op), self.visit(n.operand))

144 else:

145 return r'Xs Xe' % (self.visit(n.op), self.visit(n.operand))

146

147 def precUnaryop(self, n):

148 return self.prec(n.op)

149

150 def visitBin0p(self, n):

151 If self.prec(n.op) > self.prec(n.left):

152 left - r'\left(Xs\right)' % self.visit(n.left)

153 else:

154 left - self.visit(n.left)

155 If self.prec(n.op) > self.prec(n.right):

63

156 right - r'\left(%s\right)' % self .visit(n.right)

157 else:

158 right - self.visit(n.right)

159 If isinstance(n.op, ast.Div):

160 try:

161 1 - get-numerical-value(n.left,{})

162 r - get-numerical-value(n.right.{})

163 except: #this branch means there 'a a variable involved

164 return r'\frac{Xs}{Xs}' X (self.visit(n.left), self. visit(n.right))

165 If isinstance(1.int) end isinstance(r, int): # if both inta, explicitly show floor division

166 return r'\left\lfloor\frac{Xa}{Xs}\right\rfloor" X (self.visit(n.left). self .visit(n.right))

167 else:

168 return r'\frac{%s}{Xs}' X (self.visit(n.left). self.visit(n.right))

169 elif isinstance(n.op, ast.FloorDiv):

170 return r'\left\lfloor\frac{Xs}{Xs}\right\rfloor' X (self.visit(n.left). self.visit(n.right))

171 elif isinstance(n.op. ast.Pov):

172 return r'Xs^{Xs}' X (left. self.visit(n.right))

173 else:

174 return r'Xs %s %s' % (left, self.visit(n.op), right)

175

176 def precBinOp(self, n):

177 return self.prec(n.op)

178

179 def visitSub(self. n):

180 return

181

182 def precSub(self, n):

183 return 300

184

185 def visitAdd(self, n):

186 return '+'

187

188 def precAdd(self, n):

189 return 300

190

191 def visit_Mult(self, n):

192 return '\\cdot'

193

194 def prec-Mult(self, n):

195 return 400

196

197 def visitMod(self. n):

198 return '\\bmod'

199

200 def prec_Mod(self. n):

201 return 500

202

203 def precPow(self, n):

204 return 700

205

206 def precDiv(self, n):

207 return 400

208

209 def precFloorDiv(self, n):

210 return 400

211

212 def visitLShift(self, n):

213 return '\\operatorname{shiftLeft}'

214

215 def visitRShift(self, n):

216 return '\\operatorname{shiftRight}'

64

217

218 def visitBit0r(self, n):

219 return '\\operatorname{or}'

220

221 def visit_BitXor(self, n):

222 return '\\operatorname{xor}'

223

224 def visitBitAnd(self, n):

225 return '\\operatorname{and}'

226

227 def visitInvert(self, n):

228 return '\\operatorname{invert}'

229

230 def precInvert(self. n):

231 return 800

232

233 def visitNot(self, n):

234 return '\\neg'

235

236 def precNot(self. n):

237 return 800

238

239 def visitUAdd(self, n):

240 return '+'

241

242 def precUAdd(self, n):

243 return 800

244

245 def visitUSub(self, n):

246 return

247

248 def precUSub(self, n):

249 return 800

250 def visitNum(self. n):

251 return str(n.n)

252

253 def precNun(self, n):

254 return 1000

255

256 def generic-visit(self, n):

257 if isinstance(n, ast.AST):

258 return r'' % (n. _class_ _name_, '.join(map(self.visit. [getattr(n. f) for f In n._fields])))

259 else:

260 return str(n)

261

262 def generic-prec(self, n):

263 return 0

264

265 def get-latex(tree):

266 return LatexVisitor().visit(tree)

65

A.1.2 pysandboxsubprocess.py

1 #!/usr/bin/python

2 #

3 # File: pysandbozxsubprocess. py

4 # Date: 30-Aug-11

5 # Author: Adam Hartz <hartz~alum. mit. edu>

6

7

8 01

9 # run code in sandbox and return strings

10

11 import subprocess

12 import re

13 import resource

14 import os

15

16 DANGEROUSCODES - ["mysqldb". "_mysql" "sqlalchemy" ,"importos", "fromosimport",\

17 "importsys","fromsysimport","open(","file.__init__",\

18 "code. _init__",".__subclasses-" ,"subprocess","fork(","multiprocessing",\

19 "threading","builtins"]

20

21 def removecomments(code):

22

23 Remove all comments from a piece of code

24 """

25 lines - code.splitlines()

26 for lineno in xrange(len(lines)):

27 line - lines[lineno)

28 ix = line.find("#")

29 if ix >- 0:

30 lines[linenoa - line[:ix]

31 return "\n".join([line for line in lines if line.stripO''])

32

33 def is-safe(code):

34 """

35 Rudimentary means of checking whether submitted code is an attempt to muck with the system

36

37 code = remove-.comments(code).replace(" ","").replace(\t","")\

38 .replace("\\","").replace("\n","")

39 for c in DANGEROUS-CODES:

40 if code.find(c) >= 0:

41 return False

42 return True

43

44 def mangle-code(codeargv):

45

46 #if code contains blacklisted statement, don't run it

47 if not issafe(code):

48 return code, False

49

50 #otherwise, prepare code for execution

51

52 # mangle code to change os.getenv(foo) to EVVfool

53 code = re.sub('os\.getenv\(([a-z-9\'\"]+)\)','ENV[\\1',code)

54 code - re.sub("os\.fdopen\(3, 'w'\)".'log.output, code)

55

56 # remove import os

57 code - code.replace('import os','')

58

59 # remove f. close()

66

60 code - code.replace('f.close)','')

61

62 # remove sys. exit (0)

63 code - code.replace('sys.exit(0)','')

64

65 # clean up CR's

66 code - code.replace('\r','')

67

68 head - "import sys\noldpath - sys.path\nsys.path - ['/usr/lib/python2.6', '/home/tutor2/tutor/python-lib/

lib601 ' , '/home/tutor2/tutor/python-lib']\n\n"

69 head +- "from cStringIO import String10\nlog-output = StringIOO()n\n"

70 head +- "ENV - Xs\n\n" % repr(argv)

71

72 footer - "\n\nprint \"!LOGOUTPUT\"\n" # our magic keyword

73 footer +- "print log-output.getvalueO\n" # values to compare

74 code - head + code + footer

75 return code, True

76

77 def setlimits():

78

79 Helper to set CPU time limit for check-code, so that infinite loops

80 in subnitted code get caught instead of actually running forever.

81 """

82 resource.setrlimit(resource.RLINITCPU , (2, 2))

83

84 def sandbox.run-code(codeargv):

85 ""

86 Riun code, returning stdout, stderr, and output.log.

87

88 argy should be a dict, giving the initial virtual environnent. We use it for

89 passing argument valies , ie argvl, argv2, ... to the code being run

90

91

92

93 (code, code-ok) - mangle-code(codeargv)
94

95 if not code-ok:

96 return('','BAD CODE - this will be logged'.'')

97

98

99 python - subprocess.Popen(["python"] ,stdin - subprocess.PIPE.\

100 stdout - subprocess.PIPE,\

101 stderr - subprocess.PIPE.\

102 preexec-fn - setlimits)

103 output - python.communicate(code)

104

105 out,err - output

106

107 n - out.split("!LOGOUTPUT") # separate output from variables we want to compare

108

109 if len(n) -- 2: #should be this

110 out,log n

111 elif len(n) -- 1: #code didn't run to cornpletion

112 if err.strip() -- :

113 err - "Your code did not run to completion, but no error message was returned."

114 err +- "\nThis normally means that your code contains an infinite loop or otherwise took too long to

run."

115 log -

116 else: #soneone is trying to game the systen?

117 out -

418 log -

67

119 err = "BAD CODE - this will be logged"

120 if len(out) >- 500: #truncate long code output

121 out - out[:500]+"\n\n...OUTPUT TRUNCATED..."

122

123 return outerr.log

68

A.1.3 Range.py

1 # range.py

2 # hartz 2011

3

4 from __future-_ import division

5 Import re

6 import sys

7 import random

8 from Question import Question

9

10 class Range(Question):

11 name - "Range"

12 author - "Adam Hartz"

13 email - "hartzCmit.edu"

14 version - "2.1"

15 date - "29 December 2011"

16

17 def checker(self, submit solutionuserlastsubmit)

18 try:

19 sub - parse(submit)

20 sol - parse(solution)

21 msg - "Your submission was parsed as:
\[%s\]" % str(sub)

22 except:

23 return (0.0. ("Your submission could not be parsed:
<tt>Xs</tt>" % submit,), "Error", submit)

24 ok - random-check.range(subsol) and check-key-nums(sub.sol)

25 if ok -- True:

26 bigmag - "Correct"

27 else:

28 bigmsg - "Incorrect"

29 return (1.0eok, (msg,), bigmag, submit)

30

31 def get-html-template(self):

32 return """%if LASTSUBMIT != None:

33 <input type='text' size='60' name='%s' value='${LAST.SUBMT}' />

34 %%else:

35 <input type='text ' size='60' name='%s' value='%s ' />

36 %%endiAn""" % (self .name ,self. name, self. default)

37

38 def random-check-range(r1,r2,1o--10000,hi-10000.num-int(le)):

39 for i in xrange(num):

40 check - random.uniform(lo.hi)

41 if rl.contains(check) !- r2.contains(check):

42 return False

43 return True

44

45 def checkkey.nums(sub.sol):

46 for check in get-interesting-points(sol) .union(get- interesting-points(sub)):

47 if sub.contains(check) !- sol.contains(check):

48 return False

49 return True

50

51 def str-torange(s):

52 m - list(Interval.matcher.finditer(s.strip())

53 if m is None or len(m) -- 0:

54 return None

55 g - m[01.groups()
56 if g[1].strip() m- "INF":

57 left - float('inf')

58 elif g[l].strip() -- "-INF":

59 left - float('-inf')

69

60 else:

61 1 = ("1.0*%" X g[i])

62 left - eval(1)

63 if g[2].strip() - "INF":

64 right - float('inf')

65 elif g[23.strip() = "-INF":

66 right - float('-inf')

67 else:

68 r - ("1.0*Xs" % g[2])

69 right = eval(r)

70

71

72 il - g[O].strip() ==

73 ir = g[3].strip() =]

74 return Interval (left,right, il, ir)

75

76 class Interval(object):

77 matcher - re.compile(r"([\[(J)(?!\((.?)\s*,\s*(.*?)([\3\)])")

78

79 def __init__(self,1eft~right,incl~incr):

80 assert right >- left
81 self.left = left

82 self.right - right

83 self.incl - inci

84 self.incr = incr

85

86 def __str__(self):

87 return ("[" if self.incl else "(") +

88 str(self.left)+" "+str(self.right) +

89 (]" if self.incr else ")")

90

91 def __repr__(self):

92 return self .__str_()

93

94 def contains(selfnum):

95 return (self.left < num < self.right) or \

96 (self.left == nun and self.incl) or \

97 (self.right == num and self.incr)

98

99 class Intersection:

100 def __init__(elfone.two):

101 self.one - one

102 self.two - two

103

104 def contains(self,num):

105 return self .one.contains(nun) and self .two.contains(nun)

106

107 def __str__(self):

108 1 - str(self.one) If isinstance(self.one.Interval) else ("(Ms)" X str(self.one))

109 r - str(self.two) If isinstance(self.two,Interval) else ("(Xs) X str(self.two))

110 return "%s \\cap s % (1.r)

I1

112 def __repr__(self):

113 return self.__str__()

114

115

116 class Union:

117 def __init__(self.one,two):

118 self.one = one

119 self.two = two

120

70

121 def contains(self,num):

122 return self.one.contains(num) or self .two.contains (num)

123

124 def _str_(self):

125 1 - str(self.one) if isinstance(self.one,Interval) else ("(%s)" % str(self.one))

126 r - str(self.two) if isinstance(self.tvo,Interval) else ("(%s)" X str(self.two))

127 return "Xs \\cup %s" % (l,r)
128

129 def __repr__(self):

130 return self.__str__()

131

132 def find-matching-paren(stringdir-1):

133 print string

134 match - ')' If dir - 1 else '('

135 this - '(' if dir -- 1 else ')'

136 tally - 0

137 ix O 0

138 while ix < (len(string)):

139 m - re.match(Interval.matcher,stringEix:)

140 if m:

141 ix +- m.end()

142 continue

143 if tally -- 0 and string[ix] -- match:

144 return ix

145 elif string[ix] this:

146 tally -- 1

147 elif string[ix] == match:

148 tally += 1

149 ix +- 1

150 return None
151

152 def get-interetingpoints(thing):

153 If isinstance(thing.Interval):

154 return set([thing.left.thing.right.sys.maxint,-sys.maxint - 1,0])

155 else:

156 return get-interesting-points(thing.one).union(get-interestingpoints(thing.two))

157

158 classmap - {'U':Union, 'N':Intersection}

159

160 def parsetsingle(string):

161 m - re.match(Interval.matcher,string)

162 if a is not None:

163 return str-to-range(string),string[m.end():)

164 elif string.startswith("("):

165 next - find-matching-paren(string[1:3)

166 return parse-helper(string[1:1+next]) [0],string [2+next:]

167 else:

168 raise Exception(string)

169

170 def parse-helper(string):

171 resi,newt - parse-single(string)

172 if newt -- "":

173 return rest,""

174 op - newi0]

175 res2,new2 - parse-single(newl[1:])

176 return classmap[op](res,res2),new2

177

178

179 def parse(string):

180 return parso-helper(string) [0)

71

A.2 Detective

A.2.1 errors.py

1 # ERRORS.PY

2 # Simple interpretation of error messages

3 # hartz 2012

4

5 # This file is a part of CAT-93OP Detective

6 # CAT-SXOP Detective is copyright (C) 2012 Adam Hartz.

7 #

8 # This program is free software: you can redistribute it and/or modify

9 # it under the terms of the GNU General Public License as published by

10 # the Free Software Foundation, either version 3 of the License, or

11 # (at your option) any later version.

12 #

13 # This program is distributed in the hope that it will be useful,

14 # but WT17OUT ANY WARRANIY; without even the implied warranty of

15 # MERCFIANTABUfTY or FITNESS FOR A PARTICULAR PURPOE. See the

16 # GNU General Public License for more details.

17 #

18 # You should have received a copy of the GNU General Public License

19 # along with this program. If not, see <http://um.gnu.org/licenses/>.

20

21 Import re

22 import ast

23 from trees import dovnvard-search

24

25 ## BEGIN Pitfall Analysis

26 def node-specific-search(astnode.test-func):

27 if isinstance(astnade,ast.If) or isinstance(astnode ,ast.While):

28 return downward-search(astnode.test.test-func) is not None

29 if isinstance(astnodeast.Assign):

30 return downward- search(astnode.valuetest-func) is not None

31 if isinstance(astnode.ast.Print):

32 n = [downward-search(i.test-func) for i in astnode.values)

33 return len([1 for i in n if i is not None]) > 0

34 if isinstance(astnode,ast.Return):

35 return astnode.value is not None and downward-search(astnode.value,test_func) is not None

36

37 def pitfalls(astnode ,code-linesfname):

38

39 Explanation of Python programming pitfalls. Future versions will consider more pitfalls.

40

41 # ^ vs **

42 if node-specific-search(astnode, lambda n: isinstance(n,ast.Bin0p) and isinstance(n.op,ast.Bitlor)):

43 out " "This line contains a caret (<tt>"</tt>), which is the syntax for a bitwise XOR operation."

44 out + " If you want exponentiation, use two asterisks (<tt>**</tt>) instead."

45 return out

46 # overwriting or hiding built-in variable

47 if isinstance (astnode ,ast. Assign) and (isinstance (astnode .targets [0] ,ast .Name) and astnode. targets [0] .id in

-builtins_) :

48 name - astnode. targets [0] . id

49 if fname -= '<module>':

50 #in the global scope... overwritten

51 out = "This line contains an assignment to a variable named <tt>%s</tt>. " % name
52 out + "However, <tt>%s</tt> is also the name of an object built in to Python. " % name

53 out += "This line will overwrite the built-in object so it can no longer be accessed."

54 else:

72

55 #inside of a function, so just hidden

56 out = "This line contains an assignment to a variable named <tt>Xs</tt>. " % name

57 out + "However, <tt>%s</tt> is also the name of an object built in to Python. " % name

58 out += "This assignment will ''hide'' the built-in object, so that it will not be accessible"

59 out + " from within this function."

60 return out

61 ## END Pitfall Analysis

62

63 # BEGI Run-time Error Analysis

64 def explain(error-message,localsglobals):

65 for i in d:

66 1 - list(d[i][0.finditer(error-message))

67 if len(l) -m 0:

68 continue

69 m- 1[0]
70 return {'msg':"A Python error occurred:<p>" +

71 "<tt>Xs</tt>" % ":".join(error.message.split(":")[1:1) +

72 "<p>" + d[il [1) (m,localsglobals)}

73

74

75 #functions to generate interpretations of specific error messages.

76

77 def namenotdefined-message(matchlocals,globals):

78 varname - match.groups([0]

79 meg - "This message means that the program is trying to access a variable called <tt>Xs</tt>. " K

varname
80 msg +- "However, there is no such variable in the current scope. If this is the correct

81 meg +- " variable name, make sure it has been initialized first."

82 current-scope - {}

83 current-scope.update(globals)

84 if len(locals) > 0:

85 current-scope.update(locals)

86 current-.acope.update(__builtins__) #we want to look at built-in names as well.

87 dist - sorted([(edit.distance(1,varname),1) for i in currentscope])

88 close - [j[1] for j in diet if j [0) <- 2]

89 if len(close) > 1:

90 msg +- " If not, did you mean to use one of the following variables?

91 msg +- "<p> X" % "
\n".join(["<tt>Xs</tt>" % i for i in close])

92 elif len(close) -- 1:

93 mg += " If not, did you mean to use the name <tt>Xs</tt>?" % close[0]

94 else:

95 #if no variable names are close enough, pick those that are closest.

96 #this will probably do a solid job for long-enough variable names

97 nearest - [j[1) for j in dist if j[0) -- min([k[0) for j in dist])

98 if lenu(nearest) > 1:

99 msg += " If not, did you mean to use one of the following variables?

100 meg + "<p> %s" X "
\n".join(["<tt>Xs</tt>" K i for i in nearest])

101 else:

102 meg +- " If not, did you mean to use the name <tt>Xs</tt>?" K nearest[O)

103 return meg

104

105 def invalidoperation-message(match,locals,globals):

106 op,typeltype2 - match.groups()

107 if typel -- type2:

108 plural-thing - ("two <tt>Xs</tt>s" K typel)

109 else:

110 plural-thing - "%s and %s" % (indefinite..article(type1).indefinite.article(type2))

it1

112 msg - "This message means that the program is trying to combine

113 meg + "two objects using an operator, but doesn't know how to do so."

114 msg + "<p>Specifically, this line is trying to combine %s using the <tt>Xs</tt> operator, which " (

73

plural-thing.op)

115 mug +- "is not supported."

116 return mug

117

118 def notsubscriptable-meusage (match, locals globals):

119 typ - match.groups()[0

120 mug - "Grabbing a single element from a collection using square brackets (<tt>[]</tt>)"

121 mug + " is referred to as <i>subscripting</i>. This message means that the program is trying to subscript

122 mug + "something that can't be subscripted (%s)" X indefinite-article(typ)

123

124 if typ == 'function':

125 mug + "<p>If you intended to call this function, you should use parentheses"

126 mug +- " instead of square brackets."

127 return mug

128

129 def notcallablemessage(match,locals,globals):

130 typ - match.groups() [0]

131 mug - "Executing the code stored within a function using round brackets (parentheses)"

132 mug +- " is referred to as <i>calling</i> that function. This message means that the program is trying to

call "

133 mug += "something that can't be called (Xs)" % indefinite.article(typ)

134

135 If typ In ('list','tuple''.dict'):

136 mug +- "<p>If you intended to index into this Xe, you should use" X typ

137 mug +- " square brackets (<tt>[]</tt>) instead of parentheses."

138 return msg

139

140 def notiterable-message(match,locals,globals):

141 typ - match.groups() (0

142 mug - "Looping over the elements within a collection"

143 msg + " is referred to as <i>iterating over</i> that collection. This message means that the

144 mug +- "program is trying to iterate over something "

145 mug +- "something that can't be iterated over (Xe)" X indefinitearticle(typ)

146 return mug

147

148 # UTILITY AEIJHOD USED ABOVE

149

150 def indefinite.article(string):

151 ""

152 Prepend an appropriate indefinite article to the start of a string.

153 00"

154 article - "an" If string.strip().lowerO[OJ ln ('a','e', 'i''o','u') else "a"

155 return "Xe <tt>Xs</tt>" X (article, string.stripo)

156

157 def edit-distance(seql, seq2):

158 """

159 Find the Darneroa-Levenshtein distance between two strings.

160

161 This code is written by Michael Honer, discovered at

162 http://rnt. geek. nz/2009/04/26/python-daeru-levenshtein-distance/

163 """

164 oneago - None

165 thisrow - range(1, len(seq2) + 1) + [0)

166 for x In xrange(len(seqI)):

167 twoago. oneago, thisrow - oneago, thisrow, [0) e len(seq2) + [x + 1)

168 for y in xrange(len(seq2)):

169 delcost - oneago[y] + 1

170 addcost - thisrow[y - 1] + 1

171 subcost - oneago[y - 1] + (seq1[x] !- seq2[y])

172 thisrou[y) - min(delcost, addcost, subcost)

173 # This block deals with transpositions

74

174 If (x > 0 and y > 0 and seq[x] -- seq2Ey -1]

175 and seqi tx-i) -- seq2 [y) and seqi [x - seq2 y)):

176 thisrow[y] - min(thisrow[y], twoagoCy - 2) + 1)

177 return thisrow[len(seq2) - 1]

178

179

180 dm{

181 'namenotdefined': (re.compile(r"NameError:(?: global)? name '(.*?)' is not defined"),

182 namenotdefined-message),

183

184 'zerodivision': (re.compile(r"ZeroDivisionError: (.*)"),

185 lanbda mlg: "This message means that the program is trying to divide by zero, which

would yield an undefined result. Look carefully for places in this vicinity where

you are using division (<tt>/</tt>) or modulo (<tt>%</tt>); the second argument to

these operators cannot be zero."),

186

187 'invalidoperation': (re.compile(r"TypeError: unsupported operand type\(s\) for (.*?): '(.*?)' and 'C.*?)

188 invalidoperationmessage),

189

190 'notsubscriptable: (re.compile(r"TypeError: '(.*?)' object is not subscriptable"),

191 notsubscriptable-message).

192

193 'notcallable': (re.compile(r"TypeError: '(.*?)' object is not callable"),

194 notcallablemessage),

195

196 'indexoutofrange': (re.compile(r"list index out of range"),

197 larnbda n.l.g: "This message means that the program is trying to grab the element at

index <i>n</i> in a sequence, but there is no such item. Remember that valid

indices range from <tt>O</tt> to <tt>len(s)-i</tt> (or from <tt>-l</tt> to <tt>-

len(s)</tt>) inclusive, where <tt>s</tt> is the sequence in question.")

198 }

199 $#EfVD Run-time Error Analysis

75

A.2.2 explainer.py

1 # EXPLA1NER.PY

2 # Simple explanation of lines of Python code

3 # hartz 2012

4

5 # This file is a part of CAT,900P Detective

6 # CAT-SP Detective is copyright (C) 2012 Adam Hartz.

7 #

8 # This program is free software: you can redistribute it and/or modify

9 # it under the terms of the GNU General Public License as published by

10 # the Free Software Foundation, either version 3 of the License, or

11 # (at your option) any later version.

12 #

13 # This program is distributed in the hope that it will be useful,

14 # but WTlhOUT ANY WARRANTY; without even the implied warranty of

15 # MERCHANTABLITY or FITNESS FOR A PARTICULAR PURPOSE. See the

16 # GNU General Public License for more details.

17 #

18 # You should have received a copy of the GNU General Public License

19 # along with this program. If not, see <http://umu.gnu.org/licenses/>.

20

21 from resolution import resolve

22 from trees import HTMLVisitor

23 Import json

24 Import ast

25 import traceback

26

27 def explain (node . locals , globals ,f cache-None, eventtype- ' name' '):

28 fcache = {} if fcache is None else fcache

29 a - HTMLVisitor()

30 out {}

31

32 if event-type -- 'return' and fname != "<module>":

33 out['msg'] = "The function <tt>%s</tt> is about to return." X fname

34

35 elif isinstance(node.ast.Assign):
36 #only support single assignment for now

37 i = node.targets[O

38 out['msg'] = "This is an <i>assignment</i> statement. Python will evaluate the expression"

39 out['msg'] += " on the right-hand side of the equals sign, and will
40 if isinstance(i.ast.Name):

41 out['msg') += "store the resulting value in variable Xs." X HTMLVisitoro.visit(i)

42 elif isinstance(i.ast.Subscript):

43 d - HTMLVisitorO.visit(i.value)

44 x - HTMLVisitor().visit(i.slice.value) # assume slice is a single Index

45 out['msg') + "attempt to store the resulting value in variable %s at index Xs" X (dx)

46 else:

47 out['msg'] += "attempt to store the resulting value."

48

49 try:

50 r - resolve(node.value,locals,globalsfcache)

51 out['res'] - [((a.visit(x) if x !- 'ERROR' else "<tt>ERROR!</tt>"),y) for (x

,y) In r)

52 except:

53 out['res'] - None

54

55 if out['res'] is not None:

56 out['imsg'] +- "<p>The expression in question resolves as follows:"

57

58

76

59 elif isinstance(node, ast.FunctionDef):

60 1 - node.name

61 if event-type - 'call':

62 out['msg'] - "This is a <i>function definition</i> statement. Python will store this function

63 out['msg') + "in variable <tt>Xs</tt> so that it may be called later." X i

64 else:

65 out['msg'] - "The function <tt>Xs</tt>, which was defined earlier, is now being called." % i

66 out['msg') +- " Execution will now jump to line %d" % node.body[].lineno

67

68 elif isinstance(node, ast.Return):

69 v - node.value

70 if v is not None:

71 out['msg'] - "This is a <i>return</i> statement. Python will evaluate the given expression, and

72 out['msg') + "yield that value as the result of this function call."

73 try:

74 r - resolve(node.valuelocals.globals.fcache)

75 out['res'] - [((a.visit(x) if x !- 'ERROR' else "<tt>ERROR!</tt>"),y)

for (x.y) in r]

76 except:

77 out['res'] - None

78 if out['res'] is not None:
79 out['msg') +- "<p>The expression in question resolves as follows:"

80 else:

81 out['msg'] = "This is a <i>return</i> statement. Since no expression was given, Python will

82 out['msg'] +- "yield <tt>None</tt> as the result of this function call."

83 out['res'] - None

84

85 ellf isinstance(nodeast.Delete):

86 ± - node.nane

87 out['msg'] - "This is a <i>deletion</i> statement."

88

89 elif isinstance(node,ast.Print):

90 out['msg'] - "This is a <i>print</i> statement."

91 v - node.values

92 if len(v) -- 0:

93 out['msg'] +- " Since no value was given, to be printed this will display a blank line."

94 if len(v) -- 1:

95 out['msg'] +- " Python will evaluate the given expression, and display it to the console."

96 try:

97 r - resolve(v[0],locals,globals,fcache)

98 out['res'] - [((a.visit(x) if x !- 'ERROR' else "<tt>ERROR!</tt>"),y)

for (x,y) in r]

99 except:

100 out['res'] - None

101 if out['res'J is not None:

102 out['msg'] +- "<p>The expression in question resolves as follows:"

103 else:

104 out['msg'] +- " Python will evaluate the given expressions, and display them to the console,

separated by a space."

105 try:

106 r - resolve(v.locals,globals.fcache)

107 out['res'] - [((a.visit(x) if x !- 'ERROR' else "<tt>ERROR!</tt>"),y)

for (x,y) In r)

108 except:

109 out['res'] - None

110 if out['res'] is not None:

111 out['msg') +- "<p>The values in question resolve as follows:"

112

113

114 elif isinstance(nodeast.If):

115 t - node.body[O].lineno

77

116 try:

117 f - node.orelse[O.lineno

118 except:

119 f - None

120 out['msg'] "This is an <i>if</i> statement. Python will evaluate the given expression."

121 out['msgl +- " If it evaluates to <tt>True</tt>, Python will jump to line %d. " X t

122 if f is not None:

123 out['msg'] +- "If it evaluates to <tt>False</tt>, Python will jump instead to line d." % f

124

125 try:

126 r - resolve(node.testlocalsglobals.fcache)

127 out['res' - [((a.visit(x) if x !- 'ERROR' else "<tt>ERROR!</tt>"),y) for (x

,y) in r]

128 except:

129 out['res'] - None

130 if out['res'] is not None:

131 out['msg'] += "<p>The expression in question resolves as follows:"

132

133 elif isinstance(nodeast.For):

134 iterable - HTMLVisitor().visit(node.iter)

135 target - HTMLVisitor(.visit(node.target)

136 out['msg] - "This is a <i>for</i> loop. Python will run the given code block once for each element in

137 out['msg'] + "<tt>%s</tt>, each time setting a variable <tt>Xs</tt> equal to the next

element in <tt>Xs</tt>." % (iterable target,iterable)

138

139 elif isinstance(node,ast.While):

140 t - node.body[0].lineno

141 out['msg'] - "This is a <i>while</i> loop. Python will evaluate the given expression."

142 out['msg] + " If it evaluates to <tt>True</tt>. Python will jump to line %d, execute the " % t

143 out['msg'j + " code in that block, and return here to check again."

144 out['msg'] += " If it instead evaluates to <tt>False</tt>, Python will skip this code block altogether."

145

146 try:

147 r - resolve(node.test.locals,globals,fcache)

148 out['res') - (((a.visit(x) if x !- 'ERROR' else "<tt>ERROR!</tt>"),y) for (x

,y) in r]

149 except:

150 out['res'] - None

151 if out['res'j is not None:
152 out['msg'J +- "<p>The expression in question resolves as follows:"

153

154 elif isinstance(node,ast.Break):

155 out['msg'] - "This is a <i>break</i> statement. If it is given inside of a loop, this statement will

cause Python to jump outside the loop, skipping the rest of the code block for this iteration and

all subsequent iterations. If given outside of a loop, this statement will cause an error."

156

157 elif isinstance(node,ast.Continue):

158 out['msg'] - "This is a <i>continue</i> statement. If it is given inside of a loop, this statement will

cause Python to jump to the top of the loop, skipping the rest of the code block for this iteration.

If given outside of a loop, this statement will cause an error."

159

160 elif isinstance(node,ast.Pass):

161 out['msg'] - "This is a <i>pass</i> statement, which tells Python to do nothing."

162

163

164 else:

165 out['msg'J -

166

167 return out

78

A.2.3 hz-encoder.py

1 # hZ 7WWDER.PY

2 # encode/decode output from hz-logger, etc

3 # hartz 2012

4

6 # Most of the code in this file is taken directly from pg.encoder:

7 # Online Python Tutor

8 # Copyright (C) 2010-2011 Philip J. Guo (philipOpgbovine.net)

9 # ht tps:// github .com/pgb ovine/OnlinePythonTutor/

10 #!!!!!!!!!!!!!!!

11

12 # This file is a part of CAT-9OP Detective

13 # CAT-SOOP Detective is copyright (C) 2012 Adam Hartz.

14 #

15 # This program is free software: you can redistribute it and/or modify

16 # it under the terms of the GNU General Public License as published by

17 # the Free Software Foundation, either version 3 of the License, or

18 # (at your option) any later version.

19 #

20 # This program is distributed in the hope that it will be useful,

21 # but W171HXJTANYWARRANTY; without even the implied warranty of

22 # MERCIANTAMJATY or FITNESS FOR A PARTICULAR PURPOSE. See the

23 # GNU General Public License for more details.

24 #

25 # You should have received a copy of the GNU General Public License

26 # along with this program. If not, see <http://wuw.gnu.org/licenses/>.

27

28

29 # Given an arbitrary piece of Python data, encode it in such a manner

30 # that it can be later encoded into JSON.

31 # http://json.org/

32 #

33 # We use this function to encode run-time traces of data structures

34 # to send to the front-end.

35 #

36 # Format:

37 # * None, int, long, float, str, bool - unchanged

38 # (json.dumps encodes these fine verbatim)

39 # * list - ['LIST', unique-id, elt1 , elt2, elt3, ... , eltNJ

40 # * tuple - ['TUPLE', unique..id, elt1 , elt2, elt3, ... , eltNJ

41 # * set - ['SET', unique.id, elt1 , elt2, elt3, ... , eltNJ

42 # * dict - ['DICT', unique-id, Ikeyl, valuel], [key2, value2], . keyN, valueN]]

43 # * instance - ['NSTANCE', class name, unique-id, [attrn, value1], [attr2, value2], ... , [attrN, valueN]]

44 # * class - ['CLASS', class name, unique.id, [list of superclass names], [attr1, valuel], Jattr2, value2],

... , [attrN, valueN]]

45 # * circular reference - ['C1RCULARJUF', unique..id]

46 # * other - f<type name>, unique.id, string representation of object]

47 #

48 # the unique.id is derived from id(), which allows us to explicitly

49 # capture aliasing of compound values

50

51 # Key: real ID from id()

52 # Value: a small integer for greater readability, set by cur-small-id

53 real-tosmall-IDs {}

54 cur-small-id - 1

55

56 import re, typesast

57 typeRE = re.compile("<type '(.*)'>")

58 classRE - re.compile("<class '(.*)'>")

79

59

60 def encode(dat, ignore-id-False):

61 def encode-helper(dat, compoundobj-ids):

62 # primitive type

63 If dat Is None or\

64 type(dat) In (int, long, float. str, bool):

65 return dat

66 # compound type

67 else:

68 my-id - id(dat)

69

70 global cur-small-id

71 If my-id not in real-to-smallIDs:

72 If ignore-id:

73 real-to-smallIDs[my_id] = 99999

74 else:

75 real-to-smallIDs[my-id] = cur-small-id

76 cur-small-id += 1

77

78 if my-id in compound-obj-ids:

79 return ['CIRCULARREF', real-to-small-IDs[my-idI]

80

81 newvcompound-obj-ids - compound-obj-ids.union([my-id)

82

83 typ = type(dat)

84

85 my-small-id = real-to-smallIDs[myid]

86

87 if typ =w list:

88 ret = ['LIST', my-small-id]

89 for * In dat: ret.append(encode-helper(e, newcompound-obj-ids))

90 elif typ -- tuple:

91 ret - ['TUPLE', my-small-id)
92 for e in dat: rot.append(encode-helper(e, neowcompound-obj-ids))

93 elif typ -- set:

94 ret ['SET', my_szall_id)
95 for In dat: ret.append(encode-helper(e. neowcompound-obj-ids))

96 elif typ -- dict:

97 ret = ['DICT'. my_small-id)
98 for (k,v) In dat.iteritemsO:

99 # don't display some built-in locals

100 if k not in ('--module__'. '__return__'):

101 ret.append([encode-helper(k, nev-compound-obj-ids), encodehelper(v, new-compound-obj-ids)])

102 elIf typ In (types.InstanceType, types.ClassType, types.TypeType) or \

103 classRE.match(str(typ)):

104 # ugh, classRE match is a bit of a hack :(

105 if typ =- types.InstanceType or classRE.match(str(typ)):

106 ret = ['INSTANCE', dat. _class_.__name__ my-small-id]

107 else:

108 superclass.names - [e.__name__ for a in dat.__bases__]

109 ret - ['CLASS', dat.__name__ myysmall-id, superclass-names]

110

111 # traverse inside of its .. dict.. to grab attributes

112 # (filter out useless-seeming ones):

113 user-attra = sorted([e for a In dat.__dict_ .koys()

114 if e not In ('__doc__', '__module__', '-return..')])

115

116 for attr in user-attra:

117 rot.append([encode-helper(attr, new-compound-objids), encode-helper(dat.__dict__[attr],

new-compoundaobj-ids)])

118 else:

80

119 typeStr - str(typ)

120 m - typeRE.match(typeStr)

121 assert m, typ
122 ret - [m.group(1), my-small-id, str(dat)]

123

124 return ret

125

126 return encodehelper(dat. setO)

127

128

120 #hartz 2012

130 def decode(encoded): #will not work for user-defined claaes, but we're okay with that for now...

131 out - None

132 if type(encoded) != list:

133 out - encoded #encoded is just a python literal

134 else:

135 typ - encoded[0]

136 if typ=='LIST':

137 out - [decode(i) for i in encoded[2:]]

138 elIf typ--'TUPLE':

139 out - tuple(decode(i) for i in encoded[2:])

140 elIf typ--'SET':

141 out = set([decode(i) for i in encoded[2:]])

142 elif typ=='DICT':

143 out - dict([(decode(k),decode(v)) for (kv) in encoded[2:]])

144 elif typ--'complex':

145 out - eval(encoded[-1)

146 return out

147

148 #hartz 2012

149 def encode-ast(p):

150 if type(p) in (int.long.float.complex):

151 out - ast.Num()

152 out.n - p

153 elif type(p) == str:

154 out = ast.Str()

155 out.8 - p

156 elif type(p) -- list:

157 out - ast.List()

158 out.elts - [encode-ast(i) for i in p]

159 elif type(p) == tuple:

160 out - ast.Tuple()

161 out.elts [encode-ast(i) for i in p]

162 elif type(p) -- dict:

163 out = ast.Dict()

164 keys - p.keys()

165 values - [p[k] for k in keys]

166 out.keys = [encode-ast(i) for i in keys]

167 out.values = [encode-ast(i) for i in values]

168 elif type(p) -- set:

169 out - ast.Call()

170 out.func - ast.Name()

171 out.func.id = 'set'

172 out.args = [encode-ast(list(p))]

173 elif type(p) -- bool:

174 out - ast.Name()

175 out.id - str(p)

176 else:

177 return None

178 out.ctx - ast.Load()

179 return out

81

A.2.4 hz-logger.py

1 # HZLOGGER. PY

2 # trace an execution of a Python script

3 # hartz 2012

4

5 # !!!!!!!!!!!!!!!

6 # Most of the code in this file is taken directly from pg.logger:

7 # Online Python Tutor

8 # Copyright (C) 2010-2011 Philip J. Guo (philipOpgbovine. net)

9 # https://github. com/pgbovine/OnlinePythonTutor/

10 #

11

12 # This file is a part of CAT-SOP Detective

13 # CAT,900P Detective is copyright (C) 2012 Adam Hartz.

14 #

15 # This program is free software: you can redistribute it and/or modify

16 # it under the terms of the GNU General Public License as published by

17 # the Free Software Foundation, either version 3 of the License, or

18 # (at your option) any later version.

19 #

20 # This program is distributed in the hope that it will be useful,

21 # but WTIHOUTANYWARRANTY; without even the implied warranty of

22 # MERMIANTAB1lTY or FITNESS FOR A PARTICULAR PURPSE'. See the

23 # GNU General Public License for more details.

24 #

25 # You should have received a copy of the GNU General Public License

26 # along with this program. If not, see <http://wus.gnu.org/licenses/>.

27

28 import y.

29 import bdb # the IEY import here!

30 import as

31 import re

32 import traceback

33

34 import cStringIO

35 import trees

36 import hz-encoder

37 import errors

38 import resolution

39 import explainer

40 import ast

41 import pickle

42

43 # upper-bound on the number of executed lines, in order to guard against

44 # infinite loops

45 MAXEXECUTEDLINES = 200

46

47 def set-max-executed-lines(m):

48 global MAIXEXECUTEDLINES

49 MAXEXECUTEDLINES = a
50

51 IGNORE.VARS = set(('__stdout_' , '._builtins-_', '__name._', '_exception__'))

52

53 def get-user-stdout(frame):

54 return frame.f-globals'__stdout__'].getvalue()

55

56 def get-user-globals(frame):

57 d - filter-var-dict(frame.f-globals)

58 # also filter out .. return.. for globals only, but NOT for locals

59 if '_return__' In d:

82

60 del d['__return__']

61 return d

62

63 def get-userlocals(frame):

64 return filter.var-dict(frame.f-locals)

65

66 def filter-var-dict(d):

67 ret{}

68 for (k. v) In d. iteritems :

69 if k not in IGNOREVARS:

70 ret[k] - v

71 return ret

72

73

74 class HZLogger(bdb.Bdb):

75

76 def __init__(self. finalizer-func, ignoreid-False):

77 bdb.Bdb.__init__(self)

78 self .mainpyfile '

79 self ._wait-for-mainpyfile = 0

80

81 # a function that takes the output trace as a parameter and

82 # processes it

83 self .finalizer-func - finalizer-func

84

85 # each entry contains a dict with the information for a single

86 # executed line

87 self.trace - []

88

89 # don't print out a custom ID for each object

90 # (for regression testing)

91 self.ignore-id = ignoreid

92

93

94 def reset(self):

95 bdb.Bdb.reset(self)

96 self .forget()

97

98 def forget(self):

99 self.lineno - None

100 self.stack - []

101 self.curindex - 0

102 self.curframe - None

103

104 def setup(self. f. t):

105 self.forget()

106 self.stack, self.curindex s uelf.get-stack(f. t)

107 self .curframe -self.stack[self.curindex][0]

108

109

110 # Override Bdb methods

111

112 def user-call(self, frame, argument-list):

113 """This method is called when there is the remote possibility

114 that we ever need to stop in this function."""

115 If self._vaitfor-sainpyfile:

116 return

117 if self.stop-here(frame):
118 self.interaction(frame, None. 'call')

119

120 def user-line(self, frame):

83

121 """This function is called when we stop or break at this line."""

122 if self._vait-for-mainpyfile:

123 if (self.canonic(frame.f _code.co_filename) !- "<string>" or

124 frame.f-lineno <= 0):

125 return

126 self._vait-for-mainpyfile - 0

127 self .interaction(frame, None, 'step-line')

128

129 def user-return(self, frame, return-value):

130 """ This function is called when a return trap is set here."""

131 frame. f _locals [' _return_-') = return-value

132 self.interaction(frame, None, 'return')

133

134 def user-exception(self, frame, exc-info):

135 exc-type, exc-value, exc-traceback - exc-info

136 """This function is called if an exception occurs,

137 but only if we are to stop at or just below this level."""

138 frame.f-locals['__exception__') - exctype, exc-value

139 if type(exc-type) type(''):

140 exc-type-name - exc-type

141 else: exc-type-name - exc-type.__name__

142 self .interaction (frame, exc-traceback, 'exception')

143

144

145 # General interaction function

146

147 def interaction(self, frame, traceback, event-type):

148 self.setup(frame, traceback)

149 tos = self.stack[self.curindex)

150 lineno = tos[13

151

152 # each element is a pair of (function name, ENCOD locals dict)

153 encoded-stack-locals = [

154

155 encoded-locals - gone

156 encoded-globals - None

157

158 # climb up until you find '<module>', which is (hopefully) the global scope

159 1 = self.curindex

160 while True:

161 cur-frame - self .stack[i][0)

162 cur-name = cur-frame.f-code.co-name

163 If cur-name == '<module>':

164 break

165

166 # special case for lambdas - grab their line numbers too

167 If cur-name == '<lambda>':

168 cur-name = 'lambda on line I + str(cur.frame.f-code.coafirstlineno)

169 elif cur-name -- '':

170 cur-name - 'unnamed function'

171

172 # encode in a JSON-friendly format now, in order to prevent ill

173 # effects of aliasing later down the line ...

174 encoded-locals = {}

175 for (k, v) In get-user-locals(cur-frame).iteritems(:

176 # don't display some built-in locals ...

177 If k != '__module__':

178 encoded-locals[k] - hzencoder.encode(v, self.ignoreid)

179

180 encoded-stack-locals.append((cur-name, encoded_locals))

181 1 -= 1

84

182

183 # encode in a JSON-friendly format now, in order to prevent ill

184 #d effects of aliasing later down the line ...

185 encoded-globals - {}

186 for (k. v) In get-user-globals(tos([0].iteritems():

187 encoded-globals[] - hzencoder.encode(v, self.ignorejid)

188

189

190 #this seems a little convoluted, but i think i like it better than just making a copy

191 #hartz 2012

192 real-locals - dict([(k,hz-encoder.decode(v)) for (kv) In (encoded-locals or {}).iteritems())

193 real-globals - dict([(k,hzencoder.decode(v)) for (k.v) in (encodedglobals or {}).iteritems(YI)

194 cur-node - trees.downward-search(self.treelambda n: n.lineno -- lineno)

195

196 trace-entry - dict(line-lineno,

197 event-event-type.

198 func-name-tos[0.f-code.co-name,

199 globals-encoded-globals.

200 stackjlocals-encodedstack-locals,

201 stdout-getjuser-stdout(tos[0))

202

203 # if there 's an exception, then record its info:

204 If event-type -- 'exception':

205 # always check in f-locals

206 exc - frame.f-locals['__exception..']

207 trace-entry['exceptionmsg'] - exc[0].__name__ + ': ' + str(exc[1])

208 trace-entry['explanation'] - errors.explain(trace-entry['exception-msg' ,real-locals,realglobals) #hz

209 else:

210 trace.entry['explanation'] - explainer.explain(cur-node ,real-locals ,real-globals ,event-type-event-type,

fname-trace-entry['func-name']) #hz

211

212 # hz 2012

213 try:

214 trace-entry['warnings'] - errors.pitfalls(cur-nodesself.scriptstr ,trace-entry['func-name')

215 except:

216 trace-entry['warnings'] - None

217 # /hz 2012

218

219 self .trace.append(trace-entry)

220

221 if len(self.trace) >- MAX_EXECUTEDLINES:

222 self.trace.append(dict(event-' instruction_limitsreached", exceptionssg-' (stopped after ' + str(

MAIXEXECUTEDLINES) + ' steps to prevent possible infinite loop)'))

223 self. force-terminate)

224

225 self.forget()

226

227 def _runscript(self, script-str):

228 # Whien bdb sets tracing, a number of call and line events happens

229 # BEFORE debugger even reaches user's code (and the exact sequence of

230 # events depends on python version). So we take special measures to

231 # avoid stopping before we reach the main script (see user-line and

232 # user.call for details).

233 self._wait-for-mainpyfile - 1

234

235 script-str - script-str.replace("\r""")

236

237 # ok, let 's try to sorta 'sandbox' the user script by not

238 # allowing certain potentially dangerous operations:

239 user-builtins - {}

240 for (k.v) in __builtins__.iteritemsO:

85

241 if k in ('reload', 'input'. 'apply'. 'open'. 'compile'.

242 'file', 'eval', 'execfile', '_import-',

243 'exit', 'quit', 'raw-input',

244 'dir', 'globals', 'locals', 'vars',

245 'compile'):

246 continue

247 user-builtins[k) - v

248

249 # redirect stdout of the user progran to a nenory buffer

250 userustdout - cStringIO.StringlO()

251 sys.stdout - userustdout

252

253 user-globala - {"_name_" : "-main__",

254 "__builtins_" : user-builtins,

255 "__stdout.." : userastdout}

256

257 # BEGN hartz 2012

258 # store this as an instance variable so we can inspect it later ...
259 self.script-str - script-str.splitlines()

260

261 # parse the input script down into an AST; we'll use this later when

262 # generating explanations, etc.

263 self.tree - ast.parse(script-.str)

264

265 #END hartz 2012

266

267 try:

268 self.run(scriptustr, user-globals, user-globals)

269 # sys.exit ...

270 except SystenExit:

271 sys.exit(O)

272 except:

273 traceback.print-exc() # uncomment this to see the REAL exception msg

274

275 trace-entry - dict(event='uncaught-exception')

276

277 exc - sys.excinfo([I]

278 if hasattr(exc, 'lineno'):

279 traceentry['line'] - exc.lineno

280 if hasattr(exc, 'offset'):

281 trace_entry['offset'] - exc.offset

282

283 if hasattr(exc, 'msg') or hasattr(exc, 'message'): # hartz 2012 ('message' would be nice, too)

284 try:

285 m - exc.msg

286 except:

287 m - exc.message

288 trace-entry['exception-msg'] - "Error: " + (m)

289 else:

290 trace-entry['exception msg'] - "Unknown error"

291

292 self.trace.append(trace-entry)

293 self.finalize()

294 sys.exit(0) # need to forceably STOP execution

295

296 def force-terminate(self):

297 self. finalize ()

298 sys.exit(O) # need to forceably STOP execution

299

300

301 def finalize(self):

86

302 sys.stdout - sys.__stdout__

303 assert len(self.trace) <- (MAXEXECUTEDLINES + 1)

304

305 # filter all entries after 'return' from '<module>', since they

306 # seem extraneous:

307 res - []

308 for * in self.trace:

309 res.append(e)

310 if e['event'] -- 'return' and e['func-name'] -- '<module>':

311 break

312

313 # another hack: if the SEX)ND to last entry is an 'exception'

314 # and the last entry is return from <module>, then axe the last

315 # entry, for aesthetic reasons

316 If len(res) >- 2 and \

317 res[-2]['event'] -- 'exception' and \

318 rem[-1]['event'] == 'return' and res[-1]['func name'] '<module>':

319 res.pop()

320

321 self.trace - res

322

323 #for e in self.trace: print e
324

325 self.finalizerfunc(self.trace)

326

327

328 # the MAIN meaty function!!!

329 def execmacript str(scriptmstr, finalizer-func, ignoreid=False):

330 logger - HZLogger(finalizerfunc, ignorejid)

331 logger._runscript(scriptmstr)

332 logger. finalize (

333

334

335 def exectfile-and-pretty-print(mainpyfile):

336 import pprint

337

338 if not os.path.existm(mainpyfile):

339 print 'Error:', mainpytile. 'does not exist'

340 sys.exit(l)

341

342 def pretty-print(outputjlt):

343 for e in outputjlst:

344 pprint.pprint(e)

345

346 outputjist - exec-9criptmstr(open(mainpyfile).readO. pretty-print)

347

348

349 if __name_ -- ' main__':

350 # need this round-about import to get .. builtins- to work :0

351 import hz-logger

352 hz-logger.exec-file-andpretty-print(sys.argv[1])

87

A.2.5 resolution.py

1 # RESOLUTION.PY

2 # (pseudo-) instruction-level resolution of Python programs

3 # hartz 2012

4

5 # This file is a part of CAT-0OP Detective

6 # CAT-SOOP Detective is copyright (C) 2012 Adam Hartz.

7 #

8 # This program is free software: you can redistribute it and/or modify

9 # it under the terms of the GNU General Public License as published by

10 # the Free Software Foundation, either version 3 of the License, or

11 # (at your option) any later version.

12 #

13 # This program is distributed in the hope that it will be useful,

14 # but WTIHOUT ANY WARRANTY; without even the implied warranty of

15 # MAERCIANTA.BE17Y or FITNESS FOR A PARTICULAR PURPOSE. See the

16 # GNU General Public License for more details.

17 #

18 # You should have received a copy of the GNU General Public License

19 # along with this program. If not, see <http://ua.gnu.org/licenses/>.

20

21

22 import ast

23 import traceback

24 from hz-encoder import decode encode-ast
25 import sys
26

27 def set-lineno(treerecursive-True):

28 tree.lineno = 1

29 tree.coloffset = 1

30 if recursive:
31 for i in ast.iter-child-nodes(tree):

32 set-lineno(i)

33

34 def evaluate-tree(tree,localsglobals):

35

36 Given an AST node and a set of variables, return the value to which

37 the given node would resolve in the specified environment.

38

39

40 set-lineno(treerecursive-True)

41 e - ast.Expression(tree)

42 code compile(e,"<submitted code>","eval")

43 out eval(codeglobals,locals)

44 return out

45

46 #AST Class -> English mapping

47 operators = {ast.Add:'Addition', ast.Sub:'Subtraction', ast.Mult:'Multiplication', ast.Div: 'Division'

48 ast.Mod:'Modulo', ast.Pow:'Exponentiation', ast.LShift:'Left-shift',

49 ast.RShift:'Right-shift', ast.Bit0r:'Bit-wise OR', ast.BitXor:'Bit-wise XOR',

50 ast.BitAnd:'Bit-wise AND',ast.FloorDiv: 'Floor (integer) division'}

51

52 unary-operators - {ast.Invert:"Bit-wise Inversion", ast.Not:"Logical NOT",

53 ast.USub:"Unary Subtraction (Negation)". ast.UAdd:"Unary Addition (Identity)"}

54

55 compaoperators = {ast.Eq:"'Equal' Comparison". ast.NotEq:"'Not-equal' Comparison".

56 ast.Lt:"'Less-than' Comparison", ast.LtE:"'Less-than-or-equal-to' Comparison".

57 ast.Gt:"'Greater-than' Comparison", ast.GtE:"'Greater-than-or-equal-to' Comparison".

58 ast.Is:"'Is' Comparison (Object Identity)".

59 ast.IsNot:"'Is-not' Comparison (Object Identity)",

88

60 ast.In:"'In' Comparison", ast.Notin:"'Not-in' Comparison"}

61

62 DEBUG = True

63

64 def resolve(node.locals,globals.function~cache-None): #assume globals,locals have been decoded by here...

65

66 Return a list of tuples (state,action), where state is the current state (an AST Node)

67 is the state of the resolution, and action (a string) is a description of the action

68 taken to reach that state from the previous one.

69

70 if function-cache is None:

71 function-cache = {}

72

73 out = None

74

75 if isinstance(nodeast.Kum) or isinstance(nodeast.Str):

76 out = [(nodeNone)]

77

78 elif isinstance(nodeast.Name):

79 1 - node.id

80 mag - "Loading variable <tt>Xs</tt>" % i
81 try:

82 internal = evaluate-tree(node.localsglobals) #might throw exception, be ready to catch.

83 except:

84 return [(node,None),('ERROR',msg)]

85 out - [(node,None),(encode-ast(internal).msg)]

86

87 elif isinstance(node.ast.List):

88 out = [(nodeNone)]

89 #resolve each element in turn

90 for ix in xrange(len(node.elts)):

91 If out[-1][O -- 'ERROR':

92 break

93 rem = resolve(node.elts[ix].locals,globals)
94 last - out[-1][0].elts

95 front = last[:ix]

96 back = last[ix+1:]

97 for i in res[1:]:

98 a,msg = i

99 if a == 'ERROR':

100 out.append(i)

101 break

102 1 - ast.List()

103 l.ctx = ast.Load()

104 l.elts - front + [a] + back

105 out.append((l,msg))

106

107 elif isinstance(node.ast.Tuple):

108 #as with lists , resolve each element in turn

109 out - [(node,None)]

110 for ix in xrange(len(node.elts)):

111 if out[-1][0) == 'ERROR':

112 break

113 rem - resolve(node.elts[ix],locals.globals)

114 last = out[-1][0].elts

115 front - last[:ix]

116 back = last[ix+1:]

117 for i in res[1:]:

118 amsg = i

119 if a == 'ERROR':

120 out.append(i)

89

121 break

122 1 - ast.Tuple()

123 l.ctx = ast.Load()

124 l.elts - front + [a] + back

125 out.append((l,msg))

126

127 elif isinstance(node,ast.Dict):

128 # really tedious, but... resolve each key->val pair

129 out = [(node.None)]

130 for ix in xrange(len(node.keys)):

131 If out[-1][0] == 'ERROR':

132 break

133 last = out[-1)[0]

134 front-keys = last.keys[:ix)

135 back-keys - last.keys[ix+1:3

136 front-vals - last.values[:ix]

137 back-vals - last.values[ix+1:]

138 #resolve the key step-by-step

139 reskey = resolve(nods.keys[ix), locals, globals)

140 reaval - resolve(nods.values[ix], locals, globals)

141 for jx In xrange(1.len(reskey)):

142 a,msg = raskey[jx)

143 if a 'ERROR':

144 out.append(reskey[jx])

145 break

146 d = ast.Dict()

147 d.ctx = ast.Load()

148 d.keys = front-keys+[a]+back_keys

149 d.values = last.values[:]

150 out.append((d,msg))

151 #once ute've resolved the key, resolve the associated value

152 last - out[-1][0]

153 if out[-1][O] -- 'ERROR':

154 break

155 for i in resval[1:):

156 a,msg = i

157 if a == 'ERROR':

158 out.append(i)

159 break

160 d - ast.Dict()

161 d.ctx = ast.Load()

162 d.keys last.keys[:]

163 d.values = front-vals + [a] + backvals

164 out.append((dmsg))

165

166 elif isinstance(node,ast.Bin0p):

167 # resolve left side of tree

168 out = [(node.None)]

169 for i In resolve(node.left,localsglobals) [1:]:

170 if 1[0] -- 'ERROR':

171 out.append(i)

172 break

173 new = ast.BinOp()

174 new.op = out[-1][0].op

175 new.ctx = ast.Load()

176 new.left = 1[0]

177 new.right - out[-1][O.right

178 out.append((nevi[1]))

179 if out[-1][0) -- 'ERROR':

180 return out

181 #resolve right side of tree

90

182 for i In resolve(node.rightlocals.globals) [1:]:

183 If 1[0] -= 'ERROR':

184 out.append(i)

185 break

186 new - ast.Bin0p()

187 new.op - out[-1][0].op

188 new.ctx - ast.Load()

189 new.left - out[-1][O].left

190 new.right - 1[0]
191 out.append((new,i[1]))

192 #if we've mode it this far, resolve the operation itself

193 sag - operators[out[0][0].op._.class__J

194 try:

195 pythonic - evaluate-tree(out[-1][0],}.{})

196 except:

197 out.append(('ERROR' ,sg))

198 return out

199 out.append((encode-ast(pythonic),msg))

200

201 elif isinstance(nodeast.Bool0p):

202 out = [(nodeNone)]

203 #NVeed to be careful here...

204

205 #first consider the AND operator

206 If isinstance(node.op,ast.Lnd):

207 for ix In xrange(len(node.values)):

208 #resolve each value in turn

209 If out[-1][0] == 'ERROR':

210 break

211 rea = resolve(node.values[ix],locals,globals)

212 last - out[-1]0].values

213 front = last[:ix]

214 back = last[ix+1:]

215 for i In res[1:]:

216 a,msg - i

217 if a 'ERROR':

218 out.append(i)

219 break

220 1 - ast.BoolOp()

221 l.op = out[0][O.op

222 1.ctx ast.Load()

223 l.values = front + [a] + back

224 out.append((1,ssg))

225 pythonic = evaluatetr.e(a,{},{})

226 bval = bool(pythonic)

227 #if one of the fully-resolved values isn 't a boolean,

228 #cast it to one for clarity

229 if not isinstance(pythonic.bool):
230 new - bool(pythonic)

231 a = encode-ast(new)

232 1 = ast.BoolOp()

233 1.op = out[O][O].op

234 1.ctx = ast.Load()

235 1.values = front + [a] + back

236 out.append((1."Casting to <tt>bool</tt> type"))

237 #if we hit a False, the whole BoolOp is going to resolve to False,

238 #W17HOUT CM'0C 7lE 01ER VALUE9

239 If bval - False:

240 break

241 If not bval:

242 out.append((encode-ast(False),"'And' operator"))

91

243 else:

244 out.append((encode-ast(True) ,"'And' operator"))

245

246 1OR is exactly analogous

247 elif isinstance(node.op.ast.Or):

248 for ix in xrange(len(node.values)):

249 #resolve each value in turn

250 if out[-1J[0] -- 'ERROR':

251 break

252 res - resolve(node.values[ix].locals,globals)

253 last - out[-1][O].values

254 front - last[:ix]

255 back = last[ix+l:]

256 for i in res[1:J:

257 a,msg - i

258 if a == 'ERROR':

259 out.append(i)

260 break

261 1 - ast.BoolOp()

262 1.op - out [0) [0].op

263 1.ctx = ast.Load()

264 1.values - front + [a] + back

265 out.append((1,msg))

266 pythonic - evaluate-tree(a,{},{})

267 bval - bool(pythonic)

268 #if one of the fully-resolved values in 't a boolean,

269 #cast it to one for clarity

270 if not isinstance(pythonic,bool):

271 now - bool(pythonic)

272 a - encode-ast(new)

273 1 - ast.BoolOp()

274 1.op = out[0)[O.op

275 1.ctx = ast.Load()

276 1.values - front + [a] + back

277 out.append((1."Casting to <tt>bool</tt> type"))

278 #if we hit a True, the whole BoolOp is going to resolve to True,

279 #OVIMOUT CH7ECKQC TI 07151R VALUES

280 if bval -- True:

281 break

282 if not bval:

283 out.append((encode-ast(False),"'Or' operator"))

284 else:

285 out.append((encode-ast(True),"'Or' operator"))

286

287 elif isinstance(node,ast.Compare):

288 out - [(node.Kone)]

289 for i in resolve(node.left,localsglobals)[1:):

290 if 1[0] -- 'ERROR':

291 out.append(i)

292 break

293 new - ast.CompareO

294 new.ops - out[-1][0].ops

295 new.ctx - ast.Load()

296 new.left - 1[0]

297 new.comparators - out[-1][03.comparators

298 out.append((new,i[1]))

299 if out[-1][0] -- 'ERROR':

300 return out

301 for ix in xrange(len(out[-1][0).comparators)):

302 if out[-1][0] - 'ERROR':

303 break

92

304 front - out[-1][0].comparators[:li)

305 back - out [-1] [0] .comparators ix+1:]

306 for i in resolve(node.comparators [ix] ,localsglobals) [1:):

307 if 1[0] -- 'ERROR':

308 out.append(i)

309 break

310 now - ast.Compare()

311 new.ops - out[-1][0].ops

312 new.ctx - ast.Load()

313 new.left - out[-1][0].left

314 new.comparators - front + [1[0]] + back

315 out.append((nev,i[1]))

316 Esg w comp-operators[out[0][0.op[0].__class__] If len(out[0][0).ops) == 1 else "Multiple Comparisons"

317 try:

318 pythonic w evaluate-tree(out [-1] [0 ,}.{})

319 except:

320 out.append(('ERROR'.mag))

321 return out

322 out.append((encode-ast(pythonic),msg))

323

324 elif isinstance(node.ast.Unary0p):

325 out - [(node.None)]

326 for i In resolve(node.operand,locals. globals) [1:):

327 If 1[0] -- 'ERROR':

328 out.append(i)

329 break

330 new - ast.UnaryOp()

331 new.op - out[-1][0].op

332 nev.ctx = ast.Loado

333 nev.operand - 1[0]

334 out.append((nev,i[1]))

335 mg w unary-operators[out[0)0.op.__class__J

336 try:

337 pythonic - evaluatetree(out [-1] 0) ,}.{})

338 except:

339 out.appnd(('ERROR',msg))

340 return out

341 out.append((encodeast(pythonic).msg))

342

343 elif isinstance(nodeast.Subscript): #subscript, but ossuine only single Index

344 out - [(node.None)]

345 #not sure how best to deal with this. show whole collection? for now i'll

346 #avoid that.

347 for i in resolve(node.slice.valuelocals.globals) [1:):

348 If 1[0] -- 'ERROR':

349 out.append(i)

350 break

351 now w ast.Subscript()

352 nev.ctx - ast.Load()

353 new.value - out[0)0.value

354 new.slice - ast.Index()

355 new.slice.ctx - ast.Load()

356 new.slice.value - 1[0]
357 out.append((new,i[1]))

358 try:

359 pythonic - evaluate-tree(out[-1[0],localsmglobals) #need vars here!

360 except:

361 out.append(('ERROR',msg))

362 return out

363 msg - 'Subscripting'

364 out.append((encode-ast(pythonic),mag))

93

365

366 return out

94

A.2.6 trees.py

1 # TREES.PY

2 # utilities for dealing with trees

3 # hartz 2012

4

5 # This file is a part of CAT-.90P Detective

6 # CAT-SOOP Detective is copyright (C) 2012 Adam Hartz.

7 #

8 # This program is free software: you can redistribute it and/or modify

9 # it under the terms of the GNU General Public License as published by

10 # the Free Software Foundation, either version 3 of the License, or

11 # (at your option) any later version.

12 #

13 # This program is distributed in the hope that it will be useful,

14 # but WTIHOUT ANYWARRANTY; without even the implied warranty of

15 # MERCIANTABHIY or FITNESS FOR A PARTICULAR PURPOSM. See the

16 # GNU General Public License for more details.

17 #

18 # You should have received a copy of the GNU General Public License

19 # along with this program. If not, see <http://uw.vgnu.org/licenses/>.

20

21 Import ast

22

23 def downward-search(tre,test-func):

24

25 Search down an AST for a node n such that test.func(n) is True.

26 Return that node, or None if no such node exists in the tree.

27

28 try:

29 If test-func(tree):

30 return tree

31 except:

32 pass

33 for child in ant.iter-child_nodes(tree):

34 n - dovnward-search(child,teet_func)

35 if n:

36 return n

37 return None
38

39 class HTMLVisitor(ast.NodeVisitor):

40

41 Visitor which walks an AST and returns an IHIM Representation of it.

42

43 Borrowed structure from Geoff Reedy (http://stackoverflow.com/users/166955/geoff-reedy)

44 Found at http://stackoverflow.com/questions/3867028/converting-a-python-numeric-expression-to--latex

45

46 Precedence based on 5.15 at http://docs.python. org/reference/expressions. html

47

48

49 def prec(self, n):

50 return getattr(self, 'prec_ '+n. _class-_.__name_, getattr(self , 'generic-prec'))(n)

51

52 #Prepare yourself for an obnoxious enumeration of Classes...

53

54 def visitCall(self, n):

55 func - self.visit(n.func)

56 arga - ', '.join(map(self.visit, n.args))

57 return r'Xs<tt>(</tt>%s<tt>)</tt>' X (func, args)

58

59 def precCall(self, n):

95

60 return 1000

61

62 def visitName(self, n):

63 return "<tt>Xs</tt>" X n.id if n.id not in ('True','False') else "<tt>Xs</tt>" X n.id

64

65 def precName(self, n):

66 return 1000

67

68 def visitUnary0p(self, n):

69 If self.prec(n.op) > self.prec(n.operand):

70 return r'Xs <tt>(</tt>Xs<tt>)</tt>' % (self.visit(n.op), self.visit(n.operand))

71 else:

72 return r'Xs %s' % (self.visit(n.op). self .visit(n.operand))

73

74 def precUnary0p(self, u):

75 return self .prec(n.op)

76

77 def visitBin0p(self, n):

78 if self.prec(n.op) >- self.prec(n.left):

79 left - r'<tt>(</tt>Xs<tt>)</tt>' % self.visit(n.left)

80 else:

81 left - self.visit(n.left)

82 If self.prec(n.op) >= self .prec(n.right):

83 right - r'<tt>(</tt>Xs<tt>)</tt>' % self.visit(n.right)

84 else:

85 right - self.visit(n.right)

86 If isinstance(n.op, ast.Div):

87 return r'Xs <tt>/</tt> %s' X (left, right)

88 elif isinstance(n.op, ast.FloorDiv):

89 return r'Xs <tt>//</tt> %s' % (left, right)

90 ellf iminstance(n.op, ast.Pow):

91 return r'Xs<tt>**</tt>Xs' % (left, right)

92 else:

93 return r'Xs %s Xs' % (left, self .visit(n.op), right)

94

95 def visitBool0p(self,n):

96 opstr = self.visit(n.op)

97 vals - U

98 for i in n.values:

99 if self.prec(i) < self.prec(n.op):

100 thingy - r'<tt>(</tt>Xs<tt>)</tt>' K self.visit(i)

101 else:

102 thingy - self.visit(i)

103 vals.append(thingy)

104 return (I '+opstr+' ').join(vals)

105

106 def precBin0p(self, n):

107 return self .prec(n.op)

108

109 def visitSub(self, n):

110 return '<tt>-</tt>'

I1

112 def precSub(self, n):

113 return 8

114

115 def visitAdd(self. n):

116 return '<tt>+</tt>'

117

118 def precAdd(self, n):

119 return 8

120

96

121 def visitMult(self. n):

122 return '<tt>*</tt>'

123

124 def precMult(self, n):

125 return 9

126

127 def visitMod(self, n):

128 return '<tt>XX</tt>'

129

130 def prec_Mod(self. n):

131 return 9

132

133 def precPow(self, n):

134 return 11

135

136 def prec_Div(self, n):

137 return 9

138

139 def precFloorDiv(self. n):

140 return 9

141

142 def visitLShift(self, n):

143 return '<tt>X1It;Xt;</tt>'

144

145 def precLShift(self.n):

146 return 7

147

148 def visitRShift(self, n):

149 return '<tt>kgt;kgt;</tt>'

150

151 def precRShift(self,n):

152 return 7

153

154 def visitBit0r(self, n):

155 return '<tt>I</tt>'

156

157 def precBit0r(self,n):

158 return 5

159

160 def visitBitXor(self, n):

161 return '<tt>-</tt>'

162

163 def precBitXor(self.n):

164 return 6

165

166 def visitBitAnd(self. n):

167 return '<tt>k</tt>

168

169 def precBitknd(self.n):

170 return 6.5

171

172 def visitInvert(self, n):

173 return '<tt>-</tt>'

174

175 def precInvert(self, n):

176 return 10

177

178 def visitAnd(self, n):

179 return '<tt>and</tt>'

180

181 def precAnd(self. n):

97

182 return 2

183

184 def visitOr(self, n):

185 return '<tt>or</tt>'

186

187 def prec_Or(self, n):

188 return 1

189

190 def visitNot(self, n):

191 return '<tt>not</tt>'

192

193 def precNot(self. n):

194 return 3

195

196 def visitUAdd(self, n):

197 return

198

199 def precUAdd(self. n):

200 return 10

201

202 def visitUSub(self, n):

203 return '<tt>-</tt>'

204

205 def precUSub(self, a):

206 return 10

207

208 def visitNu(self, n):

209 return "<tt>%s</tt>" X str(n.n)

210

211 def precNum(self. n):

212 return 1000

213

214 def visitList(selfl):

215 return '<tt>[</tt>' + "<tt>. </tt>".join([self.visit(i) for i In l..lts]) + '<tt>]</tt>'

216

217 def precList(self,l):

218 return 1000

219

220 def visitTuple(self,1):

221 If len(l.elts) -- 0:

222 return "tuple()"

223 return '<tt>(</tt>' + "<tt>, </tt>".join([self.visit(i) for i In 1.elts]) + "<tt>, </tt>" If len(l.elts)

> 1 else "" + '<tt>)</tt>'

224

225 def precTuple(self,l):

226 return 1000

227

228 def visitDict(selfd):

229 return '<tt>{</tt>' + "<tt>, </tt>".join(["Xs<tt>: </tt>%s" % (self.visit(k),self.visit(v)) for (k.v) In

zip(d.keys,d. values)) + '<tt>}</tt>

230

231 def precDict(selfl):

232 return 1000

233

234 def visitCompare(selfc):

235 return self .visit(c.left) + " " + " ".join(["Xs Xs" X (self.visit(a).self.visit(b)) for (ab) in zip(c.

ops ,c. comparators))

236

237 def precCompare(self,n):

238 return 4

239

98

240 precLt - precLtE - precGt = precGtE = precEq = precNotEq = precIs precIsNot precIn precNotIn

precCompare

241

242 def visitLt(selfn):

243 return "<tt><</tt>"

244

245 def visitLtE(self,n):

246 return "<tt><-</tt>"

247

248 def visit_.t(selfn):

249 return "<tt>></tt>"

250

251 def visitCtE(selfn):

252 return "<tt>>=</tt>"

253

254 def visitEq(self,n):

255 return "<tt>--</tt>"

256

257 def visitjNotEq(self,n):

258 return "<tt>!=</tt>"

259

260 def visitI(selfn):

261 return "<tt>is</tt>"

262

263 def visit_IsNot(selfn):

264 return "<tt>is not</tt>"

265

266 def visitIn(self.n):

267 return "<tt>in</tt>"

268

269 def visitNotIn(self,n):

270 return "<tt>not iu</tt>"

271

272 def visitStr(self,m):

273 return "<tt>%s</tt>" X repr(s.s)

274

275 def visitSubscript(self,s):

276 return "%s<tt>[</tt>Xs<tt>]</tt>" (self.visit(a. value).self.visit(s.slice.value))

277

278 def precSubscript(selfn):

279 return 1000

280

281 def precStr(self.n):

282 return 1000

283

284 def generic-visit(self, n):

285 If isinstance(n. ast.AST):

286 return r'%s<tt>(</tt>Xs<tt>)</tt>' % (n. __class__._-name_, '<tt>, </tt>'.join(map(self.visit.

getattr(n, f) for f In n._fieldsJ)))

287 else:

288 return str(n)

289

290 def generic-prec(self, n):

291 return 0

99

100

Bibliography

[1] Joseph Beck, Mia Stern, and Beverly Park Woolf. Using the student model
to control problem difficulty. In In Proceedings of the Seventh International
Conference on User Modeling, pages 277-288. Springer, 1997.

[2] Benjamin S Bloom. The 2 sigma problem: The search for methods of group
instruction as effective as one-to-one tutoring. Educational Leadership, 41(8):4-
17, 1984.

[3] Fred J. Damerau. A technique for computer detection and correction of spelling
errors. Commun. ACM, 7(3):171-176, March 1964.

[4] Sidney D'Mello, Rosalind W. Picard, and Arthur Graesser. Toward an affect-
sensitive autotutor. IEEE Intelligent Systems, 22(4):53-61, July 2007.

[5] Martin Dougiamas and Peter Taylor. Moodle: Using learning communities to
create an open source course management system. In David Lassner and Carmel
McNaught, editors, Proceedings of World Conference on Educational Multimedia,
Hypermedia and Telecommunications 2003, pages 171-178, Honolulu, Hawaii,
USA, 2003. AACE.

[6] Arthur C. Graesser, Kurt Vanlehn, Carolyn P. Ros, Pamela W. Jordan, and
Derek Harter. Intelligent tutoring systems with conversational dialogue. AI
Magazine, 22:39-51, 2001.

[7] Maria Hristova, Ananya Misra, Megan Rutter, and Rebecca Mercuri. Identify-
ing and correcting Java programming errors for introductory computer science
students. In Proceedings of the 34th SIGCSE technical symposium on Computer
science education, SIGCSE '03, pages 153-156, New York, NY, USA, 2003. ACM.

[8] Christopher D. Hundhausen, Sarah A. Douglas, and John T. Stasko. A meta-
study of algorithm visualization effectiveness. Journal of Visual Languages and
Computing, 13(3):259 - 290, 2002.

[9] Wei Jin, Lorrie Lehmann, Matthew Johnson, Michael Eagle, Behrooz Mostafavi,
Tiffany Barnes, and John C Stamper. Towards automatic hint generation for a
data-driven novice programming tutor. In 17th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, 2011.

101

[10] Andrew J. Ko and Brad A. Myers. Debugging reinvented: asking and answering
why and why not questions about program behavior. In Proceedings of the 30th

international conference on Software engineering, ICSE '08, pages 301 - 310,
New York, NY, USA, 2008. ACM.

[11] Gerd Kortemeyer, Guy Albertelli, Wolfgang Bauer, Felicia Berryman, Bow-

ers Matthew Hall, William F. Punch, Er Sakharuk, Cheryl Speier, and Gerd
Kortemeyer. The LearningOnline Network with Computer-Assisted Personal-

ized Approach (LON-CAPA), 2003.

[12] Bob Lang. Teaching new programmers: a Java tool set as a student teaching aid.
In Wizard V. Oz and Mihalis Yannakakis, editors, Proceedings of the Inaugural

Conference on the Principles and Practice of programming, 2002 and Proceedings
of the second workshop on Intermediate Representation Engineering for Virtual

Machines 2002, pages 95 - 100. National University of Ireland, 2002.

[13] T.J. McCabe. A complexity measure. IEEE Transactions on Software Engineer-

ing, 2:308-320, 1976.

[14] J A Michael. Students' misconceptions about perceived physiological responses.
Advances in Physiology Education, 274(6):S90-8, 1998.

[15] Joel Michael. Where's the evidence that active learning works? Advances in

Physiology Education, 30(4):159-167, December 2006.

[16] Andr6s Moreno, Niko Myller, Erkki Sutinen, and Mordechai Ben-Ari. Visualizing
programs with Jeliot 3. In Proceedings of the working conference on Advanced

visual interfaces, AVI '04, pages 373-376, New York, NY, USA, 2004. ACM.

[17] Elsa-Sofia Morote, David Kokorowski, and David Pritchard. Cybertutor, a so-
cratic web-based homework tutor. In Margaret Driscoll and Thomas C. Reeves,
editors, Proceedings of World Conference on E-Learning in Corporate, Gov-

ernment, Healthcare, and Higher Education 2002, pages 2711-2712, Montreal,
Canada, 2002. AACE.

[18] Niko Myller. Automatic generation of prediction questions during program vi-

sualization. Electronic Notes in Theoretical Computer Science, 178(0):43 - 49,
2007.

[19] Committee on Developments in the Science of Learning with additional mate-

rial from the Committee on Learning Research and National Research Council
Educational Practice. How People Learn: Brain, Mind, Experience, and School:

Expanded Edition, chapter 2. The National Academies Press, 2000.

[20] S.L. Pressey. A simple device which gives tests and scores - and teaches. School

and Society, 23:373-376, 1926.

102

[21] Michael Striewe and Michael Goedicke. Using run time traces in automated
programming tutoring. In Proceedings of the 16th annual joint conference on
Innovation and technology in computer science education, ITiCSE '11, pages
303-307, New York, NY, USA, 2011. ACM.

[22] Rasil Warnakulasooriya and David E. Pritchard. Hints really help! Available at
http://relate .mit . edu/wp-content/uploads/2012/02/hints . pdf.

103

