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Abstract

In this thesis, we present an empirical rate-distortion study of a communication
scheme that uses compressive sensing (CS) as joint source-channel coding. We in-
vestigate the rate-distortion behavior of both point-to-point and distributed cases.

First, we propose an efficient algorithm to find the 4-norm regularization pa-
rameter that is required by the Least Absolute Shrinkage and Selection Operator
(LASSO) which we use as a CS decoder. We then show that, for a point-to-point
channel, the rate-distortion follows two distinct regimes: the first one corresponds to
an almost constant distortion, and the second one to a rapid distortion degradation,
as a function of rate. This constant distortion increases with both increasing channel
noise level and sparsity level, but at a different gradient depending on the distortion
measure. In the distributed case, we investigate the rate-distortion behavior when
sources have temporal and spatial dependencies. We show that, taking advantage of
both spatial and temporal correlations over merely considering the temporal correla-
tion between the signals allows us to achieve an average of a factor of approximately
2.5 times improvement in the rate-distortion behavior of the joint source-channel
coding scheme.
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Title: Professor of EECS
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Chapter 1

Introduction

Sampling has traditionally been dictated by Shannon's theorem, which states that

a bandwitdh-limited signal can be perfectly reconstructed without any aliasing if

it is sampled at the Nyquist rate, that is at twice the highest frequency present

in the signal. Compressive sensing (CS) - also referred to as compressed sensing,

compressive sampling, or sparse sampling - is a novel technique which allows to

reconstruct signals using much fewer measurements than such traditional sampling

methods by taking advantage of the sparsity of the signals to be compressed. As

explained in [1], a discrete-time signal, which we consider in this thesis, is said to be

sparse when its number of degrees of freedom is significantly smaller compared to its

finite length. As such, a signal can be sparse by itself, or it can be made sparse when

expressed in a proper basis.

As mentioned in [1], applications for CS cover data acquisition, data compression,

but also channel coding. It is this last application, which is extended to source and

channel coding, that we explore in the scheme we investigate.

1.1 Previous Work and Overall Goal

Previous work related to the rate-distortion analysis of CS have been focused on its

performance related to image compressing [2] and quantized CS measurements [3].

References [4], [5] and [6] derive bounds for the rate-distortion, while [7] presents a

11



rate-distortion analysis by representing the compressive sensing problem using a set

of differential equations derived from a bipartite graph.

The purpose of the work conducted for this thesis is to analyze empirically the

rate-distortion behavior of the coding scheme presented in [8]. This scheme, which

is explained in more details in Section 1.3, proposes to use CS for both source and

channel coding in wireless network with AWGN channels. In this Master of Engineer-

ing thesis, we first present an algorithm to find the e1-norm regularization parameter

central to the Least Absolute Shrinkage and Selection Operator (LASSO) we choose

as CS decoder. We then consider a point-to-point channel and a distributed setting

to illustrate how the rate-distortion varies as a function of channel noise level and

sparsity level of the original signals we investigate.

1.2 Rate-Distortion Theory

As explained in [9], rate-distortion theory studies how much compression can be

achieved using lossy compression methods. To explain it in the light of its use in this

thesis, we consider the simplified communication scheme illustrated in Figure 1-1.

X Source U V Source X
SouceEncoder CanlDecoder

Figure 1-1: Simplied communication scheme

A system designer's goal is to encode the source while minimizing the channel

capacity required for transmission and tolerating some average distortion between

the source output signal X and the decoder output X. What rate-distortion aims to

study is thus this fundamental trade-off between channel capacity and distortion.

For our rate-distortion study of CS, we consider two distortion measures: the

mean-squared error (MSE) and a scaled version of the percent root-mean-square

difference (PRD) often used to quantify errors in biomedical signals [10], which is

12



defined as follows:
N 1 X - il12

PRD = 1 -(1.1)

where X is the original signal of length N and X its reconstruction.

1.3 Joint Source-Channel Coding based on Com-

pressive Sensing

The main idea behind the work proposed in [8] is to take advantage of the inherent

redundancy of sources in a communication scheme in order to achieve a joint source-

channel-network coding scheme which is both power- and rate-efficient. While this

original scheme includes linear network coding, the scope of this thesis only includes

the joint source-channel coding.

In the framework presented in [8], we consider N sources that exhibit both tempo-

ral and spatial redundancies, which means that each signal from each source is sparse

(temporal) and that the difference between signals from different sources is also sparse

(spatial). A schematic view of the proposed scheme is illustrated in Figure 1-2.

Xi ERN Al E RmixN E Rmi bi

Xi

A2 E RmixN bi Cannel CS Decoder

X2 (Temporal)

ANE ml x bi Network
Codixng) CS Decoder

XN

Figure 1-2: Schematic view of joint source-channel-network coding: in the original
scheme, the "Channel" block is replaced by a linear network coding block.

The joint channel-source coding is then performed in four steps, as following:

13



1. Temporal pre-coding: each source si projects its N-dimensional signal Xi to a

lower dimensional space by multiplying it by the random projection matrix Ai,

where A obeys the restricted eigenvalue condition [11].

2. Spacial pre-coding: each source si transmits with probability bi at each time.

Together with Step 1, this step represents the CS encoding.

3. Transmission through channel: The CS-encoded signals are transmitted through

a noisy or noiseless channel. In the original scheme, the CS-encoded signals are

then sent through a network, where the nodes in the network perform linear

network coding over the real field.

4. Decoding: Each receiver ri uses CS decoders (in this thesis, we consider a LASSO

decoder) to reconstruct the source signals.

1.4 Thesis Outline

In Chapter 2, we review prior results in compressive sensing, and introduce the no-

tation and parameters for our simulations. We also propose the cross-validation with

modified bisection algorithm to find the 1-norm regularization parameter required for

the CS reconstruction in our rate-distortion simulations. Rate-distortion results for

the joint source-channel coding scheme are presented in Chapter 3, for both the point-

to-point and the distributed settings. Finally, we conclude this thesis in Chapter 4,

where we also propose leads for future work.

14



Chapter 2

Background and Simulations Setup

The field of compressive sensing (CS) grew out of looking for sparse solutions for un-

determined systems of linear equations. Indeed, CS exploits the notion of recovering

sparse solutions from a number of measurements much lower than that required if

using traditional sampling methods.

As explained in [12], the algorithms used to solve CS problems have been drawn

from a variety of fields such geophysics, statistics, and theoretical computer science,

amongst others. Reconstructing a sparse signal through CS can, for example, be done

using greedy (e.g.: Orthogonal Matching Pursuit [13]) and combinatorial algorithms.

Another type of reconstruction algorithm, which is the one we focus on in this thesis,

is based on li-norm minimization, which can be expressed as convex optimizations,

for which there exist reliable solvers. An example of such fi-norm minimization

technique for CS is the Least Absolute Shrinkage and Selection Operator (LASSO),

which we use as our CS decoder.

2.1 Compressive sensing

As explained earlier, CS relies on the sparse nature of signals. By definition, a signal

X E RN is said to be k-sparse vector when k of its coefficients are non-zero, that is

I IXII, = k, where I|| - |I, represents the i,-norm of a given vector. Some signals are

naturally sparse, whereas others might need to be expressed in a particular basis to

15



become sparse. For example, in the domain of image compression, transforms such

as the wavelet transform [14] or the discrete cosine transform [15] are often used to

interpret images as sparse signals.

In the CS framework, we want to acquire m linear measurements from the sparse

signal X. In order to do so, we defined a CS measurement matrix <b E Rmx.

As such, this matrix <b, which we interchangeably refer to as a sensing or a CS

measurement matrix, represents a dimensionality reduction [12], which maps RN to

Rm, where m < N. Let Y. = DX be the noiseless observation vector, such that

Yn E Rm. The signal X can be recovered by using m measurements if <b obeys

the Restricted Eigenvalue (RE) Condition [8], or more restrictively the Restricted

Isometry Property [1, 12], which are both reproduced below.

Definition 1 (Restricted Eigenvalue Condition) Let <D E RmxN be a measure-

ment matrix and S be the support of a sparse vector X. Let C(S, a) be defined as the

subset

C(S, a) = {X E RN : lXscI|ei < aiXsI| 1}

where SC is the complement set of S. <D satisfies the restricted eigenvalue (RE) con-

dition over S with parameter (-y, a) if

1 2O I 12 ;>7y>0 (2.1)
||IX Il12

for all X E C(S, a) - {0}.

Definition 2 (Restricted Isometry Property) Let Ek = { : I lxi I, k} be the

set of all k-sparse signal. A matrix (b satisfies the restricted isometry property (RIP)

of order k if there exists a 6k E (0, 1), such that

(1- k)|IIX|12 < IXI12 < (1 + jk) IIXI1 2  (2.2)

holds for all X E Bk. In other words, an equivalent definition of the RIP is that all

subsets of k columns of (b are nearly orthogonal.
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As explained in [1], the RIP is important in the field of CS because it guarantees

a robustness to noise. Also, having the CS measurement matrix D obey the RIP -

and thus the RE condition - is a sufficient condition for reconstruction algorithms to

reconstruct successfully a sparse signal from noisy measurements [12].

Some examples of sensing matrices I E RmxN that satisfy the RIP are derived

through its connection with the Johnson-Lindenstrauss lemma [16, 17]. Amongst

others, such matrices include the random matrices whose entries #ij are independent

realization of Gaussian random variables:

013 jV 07
#( ~ M,- , (2.3)

matrices whose entries are independent realizations of Bernoulli random variables

(also known as Rademacher matrices):

1 f-1
1+1

with probability 0.5,

with probability 0.5,

as well as related distributions, such as

-0f5

#ij :=0

with probability 1/6,

with probability 1/3,

with probability 1/6.

Given the RIP and the RE condition, it is thus possible to also consider noisy

measurements and expect to still obtain a reconstruction of the sparse signal X. In

this case, the measurement vector Y is expressed as

Y = Yn + Z = <bX+ Z (2.6)

where Z is a noise vector characterized by IZ |t2 <; : . We assume that zi is distributed

17
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as a zero-mean random Gaussian variable with variance u2 .

The CS reconstruction, or decoding, consists of finding a solution X which solves

the following linear program

X = arg min IIXII, subject to ||Y - <DX|[e ; (2.7)
x

It was shown in [18] that the CS reconstruction in (2.7) can be formulated as a Least

Absolute Shrinkage and Selection Operator (LASSO) problem, which is expressed as

1
5 = arg min ||Y - <bX|| 2 + AlIXI|, (2.8)

x 2m f

where A > 0 is the e1-norm regularization parameter. By definition, given a vector X

and a solution X, the LASSO problem involves a e1-penalization estimation, which

shrinks the estimates of the coefficients of X towards zero relative to their maximum

likelihood estimates [18]. Equation (2.8) thus outputs a solution X that is desired to

have a number of non-zero coefficients close to k, while maintaining a high-fidelity

reconstruction of the original signal. Thus, as A increases, so does the number of

coefficients forced to zero.

In the next section, we propose an algorithm to choose A, based on work presented

in [19] and [20].

2.2 Cross-validation with modified bisection

[19] and [20] have demonstrated the effective use of the cross-validation method

in choosing the fl-norm regularization parameter A . As explained in [21], cross-

validation is a statistical technique which allows to choose a model which best fits a

set of data. It operates by dividing the available data into a training set to learn the

model and a testing set to validate it. The goal is then to select the model that best

fits both the training and testing sets.

In our case, we use a modified version of this algorithm to choose the value the

value of A which minimizes the energy of the relative error between some original signal

18



and its reconstruction. As such, the m x N sensing matrix 4) in (2.8) is separated

into a training and a cross-validation matrix, as shown in (2.9),

P-- (2.9)

where 4D, and D, are, respectively, mtr x N and mv x N matrices, and mt, +

m, = m. In order for the cross-validation algorithm to work properly, 4,tr and 'IC

must be adequately normalized and have the same distribution as oJ. There is a

strong correlation and a trade-off between the performance of the algorithm and a

higher number of cross-validation measurements chosen [20]: indeed, the larger mv

is, the higher the robustness to additive measurement or channel noise. However,

as the number of training measurements mtr decreases, so does the reconstruction

performance of the algorithm. Hence it is necessary to find a reasonable consensus

between m, and mtr.

2.2.1 Details of the algorithm

For the coding scheme we are considering, we fix the number of cross-validation mea-

surements at 10% of the total number of measurements, so me = L0.1 ml, which pro-

vide a reasonable trade-off between complexity and performance of the algorithm [19].

L- denotes the closest integer operator.

Algorithm 1 summarizes the cross-validation technique used to find the best value

of A for the rate-distortion simulations.

We are given an original signal X, a cross-validation matrix (D, and a training

matrix Jtr. The cross-validation algorithm is initiated by first generating the cross-

validation and the training measurement vectors Y, and Ytr, which are corrupted

by the zero-mean Gaussian noise vector, which represents the channel noise (Lines

1 and 2 of Algorithm 1). It is important to note that the noise vectors Z, and Zt,

have the same variance per symbol.

On Line 3, we choose the highest value of A that we are willing to consider for

19



Algorithm 1 Cross-validation with modified bisection method

2: Ytr = IDX + Ztr

3: A = Ainit
4: Let e be an empty vector with coefficients ej
5: while i < MaxIterations do
6: Solve X = arg min ilYtr - trX|| + AIIX|eix
7: E <- IIYCV - 4CVRt'| I|k2
8: A <- A/1.5
9: end while

10: A* = arg min E = arg min IYC - G ItIll12
A A

our algorithm. It is selected such that we know it leads to an all-zero reconstructed

signal X1 = 0. The vector E defined on Line 4 is used to store the cross-validation

error values.

The following section of the cross-validation algorithm is then reiterated for a

chosen number of times: our results show that 12 repetitions allow us to obtain a

satisfying value for A*. Line 6 depicts how the cross-validation algorithm is initiated

by first obtaining an estimation Xdl of the reconstructed signal using 4Dtr as a mea-

surement matrix for the value of A that is currently tested. The cross-validation error

|iYc - lie|| 2 is then computed (Line 7) and stored in the vector C. The next

value for A to be investigated is obtained by dividing the current value by 1.5 (Line

8). The optimal value A* is then the one that minimizes the cross-validation error

(Line 10).

Figure 2-1 shows the typical behavior of the cross-validation error | |YC-4 'l li 2

as a function of the tested values of A for a given channel noise level.'

As seen, there is a sweet spot (at around 1.5-7) at which the cross-validation error

reaches a minimum before slightly increasing again: this minimum value corresponds

to the value of A* we would choose for this particular setting.

In the field of CS, cross-validation is mainly used with homotopy continuation

algorithms such as LARS [22], which iterate over an equally-spaced range of decreasing

10ur definition of channel noise measurement is provided in the introduction to Chapter 3.
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01

0.8

Figure 2-1: Typical behavior of the cross-validation error as a function of A: this plot
was generated with a sparsity ratio of k/N = 0.025 for a signal of length N = 1024,
5% channel noise, and 512 CS measurements

values for A. While this iterative process allows for better accuracy for smaller range

steps, it comes at the cost of a latency. Indeed, the higher the number of values

of A tested, the longer it takes the first algorithm to output A*, owing to the time-

consuming decoding (Line 6). In our scheme, we circumvent this latency issue by

considering a decreasing geometrical sequence of values of A, which still guarantees

that we find a solution for A* of the same order as the one predicted by an homotopy

continuation algorithm, but in a fraction of the time. We are able to obtain a solution

after a maximum of 15 iterations of Lines 6 to 8, by using a method comparable to

the bisection method [23] to obtain the values of A to be tested. However, in order to

improve the accuracy, we choose a common ratio of 1.51 instead of 21. By abuse

of notation, we refer to this technique as a "cross-validation with modified bisection

method."

2.2.2 Performance as a function of noise and sparsity levels

When investigating the performance of the cross-validation with modified bisection

algorithm, it is interesting to focus on the values that A* corresponding to higher

values of rate. Indeed, for such rates, where the number of measurements is adequate

to obtain an acceptation reconstruction, the value of A* tends to converge towards a

21



constant value. The low rate regions can thus be regarded as transient regions where

the reconstruction error is relatively high and fluctuating, resulting in higher than

expected values A*, which could also be error-prone in the reconstruction.

Figure 2-2 illustrates how A* evolves as a function of noise at different sparsity

levels. We can see that the almost constant value towards which A* converges to at

0.4

0.3

0.2

0.1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Rate

(a) Sparsity k/N = 0.01

5r0.

0.4

0.3

0.2

0.1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Rate

(c) Sparsity k/N = 0.05

Figure 2-2: Behavior of

- Noiseless channel
---- 5% channel noise

--- 10% channel noise

0.4-

0.3 - -

0.2-

0.1 -

0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Rate

(b) Sparsity k/N 0.025

0.5
- Noiseless channel
. - 5% channel noise

0.4- - - 10%channelnoie

0.3

0.2-

0.1 -

n-

0 0.1 0.2 0.3 0.4 0.5
Rate

(d) Sparsity k/N = 0.075

A* as a function of noise

0.6 0.7

higher rates increases with increasing channel noise. It is also interesting to note that

the higher the sparsity ratio, the higher the rate at which this constant value of A* is

achieved is.

Observing the behavior of A* as a function of sparsity, as depicted on Figure 2-3,

shows that the sparsity level also affects the rate at which the value of A* settles: the

higher the sparsity level, the higher this rate value is. Additionally, we notice that, at

a given noise level, the value towards which A* converges is approximately the same

regardless of the sparsity ratio.
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Figure 2-3: Behavior of A* as a function of sparsity

2.3 Signal model and measurement matrix

In this section and the subsequent one, we present the details of our simulations

setup. For each setting we investigate, we consider a k-sparse signal X of length

N = 1024, and define its sparsity ratio as k/N = a. The signal X is formed of

spikes of magnitudes ±1 and ±0.5, where each magnitude has a probability of a/4.

Figure 2-4 shows an example of an original signal generated for our simulations as

well as the corresponding reconstructed signal. Some of the noise in the reconstructed

signal is due to the noise that is applied to the channel.

2.4 Simulation software

The simulations were implemented in MATLAB using cvx [24], a modeling system for

convex optimization which uses disciplined convex programming to solve the LASSO

optimization in (2.8) [25]. The code snippet in Figure 2-5 shows how the LASSO
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-0

0 100 200 300 400 500 600 700 800 900 1000

Figure 2-4: Example of original and corresponding reconstructed signals

1 % A - measurement matrix
2 % X - original signal or length N
3 % Y - measurement vector
4 % A - 11 parameter

5

6 cvx-begin;
7 variable x(N); % Declare vector variable

8 minimize(1/2 * pow-pos(norm(A*X - Y), 2) + A * norm(X, 1));

9 cvx-end;

Figure 2-5: Typical cvx run

reconstruction is described using cvx:

When cvx is given a specification such as the one in Figure 2-5, the program uses

the following four steps to output a solution to the sparse problem and thus output

a CS reconstructed signal:

" The convexity of the problem is first verified.

" An interior-point method (IPM) problem compatible with the original f1 min-

imization problem is then generated. Reference [25] shows that under certain

conditions, among which is the fact that the problem we wish to solve is convex,

it can be transformed into an IPM form, which is easily solvable.

" The transformed problem is solved using the solvers SDPT3 or SeDuMi citecvx.

24
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* The solution outputted by the IPM-problem is then transformed back to the

original problem to obtain the desired solution. [24]

It is important to note that, in the code snippet presented above, the factor

multiplying the E2 norm of the CS reconstruction error is set at , instead of -

as in (2.8). This substitution allows us to obtain values to obtain values of A* that

are not of the order of 10-10 or less from the cross-validation with bisection method

algorithm.
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Chapter 3

Results and Analysis

In this chapter, we evaluate the performance of the compressive sensing-based joint

source-channel coding scheme for both a point-to-point channel, and a distributed

case. As such, we investigate both noiseless and noisy channels.

When we consider a noisy channel, we often characterize the standard deviation of

channel noise by a given percentage of the power the transmitted compressive-sensing

encoding signal. As such, given a CS measurement matrix <b E RmxN and an original

signal X E RN, we obtain a noiseless measurement vector Y, = <bX, whose power is

calculated as

Ps = IIYnI~e 2  
(3.1)

where Yn E Rm.

For a given channel noise percentage of a, the standard deviation of the random

Gaussian channel noise Z defined in (2.6) is thus defined as

uz = 0.01 x a x P (3.2)

We shall often refer to this definition in the presentation of our rate-distortion

results.
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3.1 Joint CS-based source-channel coding for a

point-to-point channel

In this section, we evaluate the performance of a joint source-channel coding scheme

using compressive sensing (CS) proposed in [8] and whose schematic is shown in

Figure 3-1.

A(0, 0ch)

X -- D >40 { ] :

Figure 3-1: Point-to-point channel setting

The signal and measurement models are defined in Section 2.3. The sensing-

communication scheme is performed in the following steps:

Step 1 (Encoding) The CS encoding is done by taking m measurements of the

signal X of length N = 1024 using a measurement matrix 4D E RmxN distributed as

in (2.4) to obtain a measurement vector Y, = 4X.

Step 2 (Transmission through channel) The measurement vector Y is trans-

mitted through a noiseless or noisy channel. The signal reaching the receiver is

Y = Yn. + W = @X + Z, where Z E R' is additive zero-mean random Gaussian

noise.

Step 3 (Decoding) At the receiver, the LASSO decoder outputs an reconstructed

signal X of X by solving the following optimization

X = arg min ||Yf-2X + A*IIXIeI (3.3)
x 2m

where we use Algorithm 1 to find A*.

The rate is calculated as m/N and we compare how both the channel noise level

and the sparsity of the original signal affect the rate-distortion behavior of the scheme,
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using PRD and MSE as distortion measures. In these simulations, each point has

been achieved by averaging the distortion values obtained by running each setting

(channel noise, m, and sparsity ratio) 15 times. We investigate three different noise

levels, which are respectively noiseless, 5% and 10% channel noise, as well as four

sparsity ratios k/N = [0.01, 0.025, 0.05, 0.075].

3.1.1 Rate distortion as a function of noise level

Figure 3-2 how the rate-distortion behaves for different noise levels we consider. On

each subfigure, we compare both distortion metrics.
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Figure 3-2: Rate-Distortion for a point-to-point channel for different sparsity levels

As seen in Figure 3-2, we can distinguish two regimes in the rate-distortion curves:

the first one corresponds to an almost constant distortion D* after the number of

measurements exceeds some critical value m*. As expected, both m* and D* increase

slightly with increasing channel noise. However, we observe that this increase is much

more important when PRD is used a distortion measure.
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The second observed regime demonstrates a rapid degradation of the distortion,
as the number of measurements is insufficient to properly reconstruct the original

signal. This rapid degradation corresponds to the settings of the simulations where

the number of measurements is inferior to m*. As expected, this second regime

coincides with the rate regions where the values of A* are high and fluctuating.

3.1.2 Rate distortion as a function of sparsity level

It is also interesting to observe how the scheme operates at a fixed channel noise level

and with a varying sparsity level. The comparison of the rate-distortion behaviors

with this setting is illustrated in Figure 3-5 for the two distortion metrics we consider.

For a given noise level, we observe an upper-right shift of the curves for increas-

ing sparsity ratio. In particular, we can see that the value of m* increases almost

linearly with the sparsity ratio. We also notice that the value of m* increases much

sharply when MSE is used as a distortion measure. As before, we can observe that

the changes in rate-distortion curves are much distinguishable when the distortion

measure is PRD.

3.2 Joint CS-based source-channel coding for a dis-

tributed case

In this section, we evaluate the performance of the compressive sensing-based joint

source-channel coding scheme for a distributed setting. We consider the single-hop

network depicted in Figure 3-4 with two sources si and s 2, whose samples exhibit

both spatial and temporal redundancies [8]. As previously defined, the temporal

redundancy refers to the fact that each signal is sparse; the spatial redundancy refers

to the fact that the difference between the two signals at the two sources is sparse.

In our simulations, X1 is ki-sparse and X 2 = X1 +E, where E is a k2-sparse error

signal; we assume that ki > k2 . The goal is to reconstruct both 1 1 and X 2 at the

receiver r. We present two ways of performing these reconstructions, and in both
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Figure 3-3: Rate-Distortion for a point-to-point
for different channel noise levels
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channel as a function of sparsity level

cases, the total rate and the total distortion were respectively calculated as following

mi + m2Rtotal - N (3.4)
N

Dtotai = Di + D 2 (3.5)

where mi is the number of compressive sensing measurements taken at source si and

Di is the distortion measured between the original signal Xi and its reconstruction
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Figure 3-4: Single-hop network for distributed cases

XC. For both of the reconstruction cases we analyze, we present the results of the

simulations for noiseless channels as well as channels with 5%, and 10% noise.

3.2.1 Case 1: Only temporal dependency is considered

In this case, we treat si and S2 as if there were two independent sources: X1 and X 2

are compressed and decompressed independently. Algorithm 2 summarizes how this

process is done.

Algorithm 2 Distributed case 1: only temporal decency is considered

1: Y1 = <D1X1 + Z1
2: Y 2 = <D2 X 2 + Z 2
3: Decompress Y 1 to obtain 1 1 by solving

= arg min -|Y 1 - DIX 1| 2 + A*| XI|It
x1

4: Decompress Y 2 to obtain X2 by solving
= arg2min - <b2 X 2 |2 + A*||X2| [|

x2

The signals that r receives from si and s2 are respectively shown in Lines 1 and

2 of Algorithm 2. The vector Zi represents an additive zero-mean Gaussian noise

associated with the channel from si to r, and <Di E RmixN are random sensing matrices

similar to (2.4) with which the signals X1 and X 2 are encoded.

Lines 3 and 4 of the algorithm correspond to the CS LASSO decoding performed

at r to obtain the reconstructions 1 and 1 2 of the original signals X 1 and X 2.
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3.2.2 Case 2: Both spatial and temporal dependencies are

considered

In this case, we also take advantage of the spatial correlation in addition to the

temporal correlation between X1 and X 2, as shown in Algorithm 3.

The reconstructions are run by first obtaining an estimate 1 1 for X1 using mi

measurements. We then take m 2 measurements of X 2 , where m 2 < min, which

allows us to reconstruct the error signal, using 1 1. Given how X 2 was generated,

we thus generate X 2 by adding the reconstructions for X1 and E, as summarized in

Algorithm 3.

Algorithm 3 Distributed case 2: both spatial and temporal dependencies are con-
sidered

1: Yi = (D1X1 + Z1
2: Decompress Y 1 to obtain X1 by solving

X1 = arg min ||Y 1 - 1X1 ||2 + A*| |1
x,

3: Y 2 = # 2 X 2 + Z 2

4: Y 2 = 4 2(X 1 + E) +Z 2 , and we already have an estimate for X1
5: Let YE = Y 2 - 41X1

6: Thus YE = D2E + ZE
7: Decompress YE to obtain t by solving

E = arg min -|YE - 11 2 + A*||XI ||,
E

8: Hence X2 = 1 + E

Lines 1 and 3 of Algorithm 3 corresponds to the signal received at r from source

si and S2 respectively, where, as before, Di E RmixN is generated using (2.4) and Z,

is a random Gaussian noise vector corresponding to the noisy channel between si and

r. We set mi > M 2 . The receiver then uses the LASSO decoder to obtain 1 (Line

2). Given the spatial dependency between X1 and X 2 , Lines 3 and 4 are equivalent

for Y 2 . The noisy measurement vector YE for the error E can thus be defined (Line

5), and decoded to obtain an estimate for the error E (Line 7). Line 8 shows how k 2

is computed as the sum k 1 + E.

The compared performance of the two algorithms for the distributed case are

shown on Figure 3-5 for a noiseless, 5%, and 10% channel noise settings.
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Figure 3-5: Distributed Case: (T) is temporal correlation only case; (T+S) is temporal
and spatial correlation case

We observe that, for the noiseless channel, at a rate of 0.5, we obtain on average

a factor of 2.5 times improvement when using Algorithm 3 over Algorithm 2 with

PRD as a distortion measure. When using MSE, an average improvement of almost

3 times is obtained for the same setting.

When the channel is noisy, the similar average improvements at a rate of 0.5

are respectively factor of 2 times and 2.5 times for PRD and MSE. These results

prove that taking advantage of the spatial and temporal correlations between the two
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signals allows to achieve a much improved rate-distortion behavior.
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Chapter 4

Conclusions and Future Work

In this thesis, we empirically evaluated the rate-distortion behavior of a joint source-

channel coding scheme, based on compressive sensing for both a point-to-point chan-

nel and a distributed setting.

We first proposed an efficient algorithm to choose the e1-norm regularization pa-

rameter A from the Least Absolute Shrinkage and Selection Operator, which we used

as a compressive sensing decoder. This algorithm, which combines cross-validation

and modified bisection, offers a reasonable trade-off between accuracy and computa-

tion time.

Using the values of A obtained with this algorithm, we characterized the rate-

distortion behavior of the joint source-channel scheme in a point-to-point channel

using two distortion measures and showed that there exists an optimal sampling rate

above which the distortion remains relatively constant, and below which it degrades

sharply.

We then studied a single-hop network with two spatially and temporally correlated

sparse sources and a receiver which uses compressive sensing decoders to reconstruct

the source signals. We observed the effect of these signal correlations on the rate-

distortion behavior of the scheme and showed that taking both spatial and temporal

correlation in consideration allows us to achieve on average a factor of 2.5 times

improvement in rate-distortion compared to only taking temporal correlation.

37



Future work The next immediate step following this research would be to include

the random linear network coding part of the scheme to obtain a full rate-distortion

analysis of the original scheme of [8]. Still in terms of rate-distortion study, another

lead for future work could be the theoretical verification of the linear relation between

sparsity and rate for CS observed in Figures 3-2 and 3-3.

It would also be interesting to test the joint source-channel-network coding scheme,

as well as the cross-validation method on more natural signals, such as ECG signals

and other medical signals in order to not only see how both performs, but also to

compare the associated rate-distortion behavior to our empirical study.

Finally, we focused on using the LASSO as a CS decoder. However, it would

be interesting to investigate other reconstruction algorithms among the greedy and

combinatorial ones which are used for CS reconstruction. The performance of LASSO

as opposed to these alternative techniques could then be evaluated.
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Appendix A

Selected Matlab code

A.1 Cross-validation with modified bisection method

1 function [A-star, results] = crossValidation(m, noise-percentage,
sparsity-ratio)

2 % Returns the value of A that is output by the cross validation
3 % combined with bisection when looking for values of A.
4

5 % Default values

6 N = 1024;

7 maxIterations = 16;

8 A-initial = 1;
9

10 % Create A: total measurement matrix (Rademacher matrix)
11 A = sign(rand([m,N]) - 0.5);

12 ind = find(A == 0);

13 A(ind) = ones(size(ind));
14 A = (1/sqrt(m)) * A;

15

16 % Generate and normalize cross-validation matrices
17 cv = round(0.1 * m);

18 tr = m - cv;

19

20 training = A(l : tr, :);

21 testing = A(tr + 1: end, :);
22

23 training = training ./ norm(training(:, 1), 2);
24 testing = testing * sqrt(cv / tr) / norm(testing(:, 1), 2);

25

26 % Generate sparse signal
27 xs = zeros(N, 1);

28 k = round(sparsity-ratio * N);
29

30 for i = 1 : k,
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31 position = randi(N);

32 sig = 2 * round(rando) - 1;
33 magnitude = randi(2)/2;
34 xs(position) = sig * magnitude;
35 end

36

37 % Calculate noise variance

38 transmissionPower = sum(sum(xs.^2)) / N;

39 noiseVar = noise-percentage * transmissionPower;
40

41 % Generate training and cross-validation data

42 y-tr = training * xs + randn(tr, 1) * sqrt(noiseVar);

43 noiseVarPerMeas = noiseVar / length(y-tr);

44 y-cv = testing * xs + randn(cv, 1) * sqrt(cv * noiseVarPerMeas);
45

46 % Algorithm
47 A = A-initial;
48 results = zeros(l, maxIterations);
49 As = zeros(l, maxIterations);
50

51 for j = 1 : maxIterations,
52 fprintf('.');
53 As(j) = A;
54

55 cvx-clear;
56 cvx.begin 'quiet';
57 variable x(N);

58 minimize(1/2 * pow-pos(norm(training*x - ytr), 2) +
59 A * norm(x, 1));

60 cvx-end;
61

62 results(j) = norm(y-cv - testing*x, 2);

63 A = A / 1.5;
64 end
65

66 [-, i] = min(results);
67 Astar = As(i);
68

69 return

A.2 Single CS run for point-to-point channel

1 function [results, x-o, x-r] = singleRun(m, k, A, ...
measNoisePercentage, N, signalModel, signalNoise, measModel)

2 % Returns the PRD and MSE between the original and the reconstructed
3 % signals - for a point-to-point channel.
4 % N - size of signal
5 % m - number of measurements
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6 % k - signal sparsity
7

8 % Generate simulations data
9 [A, b, x-o] = generateData(m, N, k, measModel, signalModel,

signalNoise, measNoisePercentage);
10

11 % CVX - LASSO

12 cvx-begin 'quiet';
13 variable x-r (N);
14 minimize(1/2 * pow-pos(norm(A*x-r - b), 2) + A * norm(x-r, 1));
15 cvx-end;
16

17 % Computing results:

18 results = zeros(4, 1);
19

20 % * PRD calculations
21 prd = norm(x-r - x-o, 2) / norm(x-o, 2);
22 prd-avg = prd / N;

23

24 % * MSE calculation
25 energy = sum(sum((x-r - x-o).^2)) / sum(sum((x-o).^2));
26

27

28 results(l) = prd;

29 results(2) = prd-avg;
30 results(3) = energy;
31 results(4) = A;
32

33 end

A.3 Single CS run for distributed setting

1 function [results, X1, X1_r, X2, X2-r, E] = ...
singleDistributedRun(N, ml, m2, kl, k2, distcase, Al, A2,
measNoisePercentage, signalModel, signalNoise, measModel)

2 % Returns the PRD and MSE between the original and the reconstructed
3 % signals - for a point?to?point channel.
4 % N - size of signal

5 % m - number of measurements

6 % k1 - sparsity of signal from source s-1
7 % k2 - sparsity of error signal

8 % Al - optimal A for X-1
9 % A2 - optimal A for X-2, which is either calculated for a
10 % sparsity level of k1 + k2 (distributed case 1) or k2 ...

(distributed case 2).
11 % distcase - if 1: only temporal correlation is considered; if 2: ...

both temporal and spatial correlations are considered.
12

41



13 % Generate simulations data: first generate compressed X1 (signal ..

from source 1)
14 klN = round(kl * N);

15 [Al, bl, X1] = generateData(ml, N, k1N, measModel, signalModel,
signalNoise, measNoisePercentage);

16

17 % Generate the error signal and X2 (signal from source 2)

18 E = zeros(N, 1);

19 k2N = round(k2 * N);

20

21 for i = 1 : k2N,

22 % Pick random position & sign

23 % Magnitude = 0.5 wp 0.5; 1 with 0.5

24 position = randi(N);

25 sig = 2 * round(rando) - 1;

26 magnitude = randi(2)/2;
27 E(position) = sig * magnitude;
28 end
29

30 X2 = X1;

31 X2 = X2 + E;

32

33 % Generate measurement matrix and noisy signal for X2

34 A2 = sign(rand([m2, N]) - 0.5);

35 ind = find(A2 == 0);

36 A2(ind) = ones(size(ind));
37 A2 = (1/sqrt(m2)) * A2;

38

39 b2 = A2 * X2;

40 transPower = sum(sum(X2.^2)) / N;

41 measNoise2 = sqrt(measNoisePercentage * transPower);
42 b2 = b2 + randn(m2, 1) * measNoise2;
43

44 % For either distributed case, we always want to decompress Xl
45 cvx-begin 'quiet';
46 variable Xlr(N);

47 minimize(1/2 * pow-pos(norm(A1*Xlr - bl), 2) + Al *

norm(Xl-r, 1));
48 cvx-end;
49

so switch distcase
51 case 1, % Only temporal correlation

52

53 % Decompress X2
54 cvx-clear
5s cvxJbegin 'quiet';
56 variable X2_r(N);
57 minimize(1/2 * pow-pos(norm(A2*X2_r - b2), 2) + A2 *

norm(X2-r, 1));
58 cvx-end;
59

60 case 2, % Both temporal and spatial correlation are considered
61

62 % Decompress error to obtain X2_r
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63 C = b2 - A2 * Xlr;
64 cvxclear

65 cvx-begin 'quiet';
66 variable E-r(N);

67 minimize(1/2 * powpos(norm(A2*E-r - c), 2) + A2 *

norm(E-r, 1));

68 cvx-end;
69

70 X2-r = Xlr + E-r;

71

72 end

73

74 % Computing results:

75 results = zeros(5, 1);
76

77 % PRD calculations

78 prdl = norm(Xl-r - Xl, 2) / norm(Xl, 2);
79 prd2 = norm(X2_r - X2, 2) / norm(X2, 2);

80

81 prd = prdl + prd2;
82 prd-avg = prd / N;
83

84 % Average energy

85 energyl = sum(sum( (X1-r - X1) 2) ) / sum(sum( (Xl) 2) );
86 energy2 = sum(sum((X2-r - X2).2)) / sum(sum((X2) .2));
87

88 energy = energyl + energy2;
89

90 results(l) = prd;
91 results(2) = prd-avg;
92 results(3) = energy;
93 results(4) = Al;
94 results(5) = A2;
95 results(6) = (ml + m2) / N; % Rate
96

97 end

43



44



Bibliography

[1] E. J. Candes and M. B. Wakin, "An Introduction to Compressive Sampling,"
IEEE Signal Processing Magazine, pp. 21-30, March 2008.

[2] A. Schulz, L. Velho, and E. da Silva, "On the Empirical Rate-Distortion Perfor-
mance of Compressive Sensing," in 2009 16th IEEE International Conference on
Image Processing (ICIP 2009), November 2009, pp. 3049-3052.

[3] W. Dai, H. V. Pham, and 0. Milenkovic, "Distortion-Rate Functions for Quan-
tized Compressive Sensing," in 2009 IEEE Information Theory Workshop on
Networking and Information Theory (ITW 2009), June 2009, pp. 171-175.

[4] B. Mulgrew and M. Davies, "Approximate Lower Bounds for Rate-Distortion
in Compressive Sensing Systems," in 2008 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP 2011), no. 3849-3852, April
2008.

[5] J. Chen and Q. Liang, "Rate Distortion Performance Analysis of Compressive
Sensing," in 2011 IEEE Global Telecommunications Conference (GLOBECOM
2011), 2011, pp. 1-5.

[6] A. K. Fletcher, S. Rangan, and V. K. Goyal, "On the Rate-Distortion Per-
formance of Compressive Sensing," in 2007 IEEE International Conference on
Acoustics, Speech, and Signal Processing (ICASSP 2007), vol. 3, April 2007, pp.
885-888.

[7] F. Wu, J. Fu, Z. Lin, and B. Zeng, "Analysis on Rate-Distortion Performance of
Compressive Sensing for Binary Sparse Source," in Data Compression Confer-
ence, March 2009, pp. 113-122.

[8] S. Feizi and M. M6dard, "A Power Efficient Sensing/Communication Scheme:
Joint Source-Channel-Network Coding by Using Compressive Sensing." Annual
Allerton Conference on Communication, Control, and Computing, 2011.

[9] L. D. Davisson, "Rate-Distortion Theory and its Applications," Proceedings of
the IEEE, vol. 60, no. 7, pp. 800-808, July 1972.

[10] F. Chen, F. Lim, 0. Abari, A. Chandrakasan, and V. Stojanovid, "Energy-Aware
Design for Compressed Sensing Systems for Wireless Sensors under Performance
and Reliability Constraints," to be published, 2011.

45



[11] G. Raskutti, M. Wainwright, and B. Yu, "Restricted Eigenvalue Properties
for Correlated Gaussian designs," The Journal of Machine Learning Research,
vol. 11, pp. 2241-2259, 2010.

[12] M. Davenport, M. Duarte, Y. Eldar, and G. Kutyniok, Compressed Sensing:
Theory and Applications. Cambridge University Press, 2012.

[13] S. Mallat and Z. Zhang, "Matching Pursuit with Time-Frequency Dictionaries,"
IEEE Transactions on Signal Processing, vol. 41, no. 12, pp. 3397-3415, 1993.

[14] S. Mallat, "A Theory for Multiresolution Signal Decomposition: the Wavelet
Representation," IEEE Pattern Analysis and Machine Intelligence, vol. 11, no. 7,
pp. 674-693, 1989.

[15] N. Ahmed, T. Natarajan, and K. R. Rao, "Discrete Cosine Transform," IEEE
Transactions on Computers, vol. 23, no. 1, pp. 90-93, January 1974.

[16] D. Achlioptas, "Database-friendly random projections: Johnson-Lindenstrauss
with binary coins," Journal of Computer and System Sciences, vol. 66, no. 4, pp.
671-687, 2003.

[17] R. Baraniuk, M. Davenport, R. DeVore, and M. Wakin, "A Simple Proof of the
Restricted Isometry Property for Random Matrices," Constructive Approxima-
tion, vol. 28, no. 3, pp. 253-263, 2008.

[18] R. Tibshirani, "Regression Shrinkage and Selection via the LASSO," Journal of
the Royal Statistical Society. Series B (Methodological), pp. 267-288, 1996.

[19] R. Ward, "Compressed Sensing with Cross Validation," IEEE Transactions on
Information Theory, vol. 55, no. 2, pp. 5773-5782, December 2009.

[20] P. Boufounos, M. F. Duarte, and R. G. Baraniuk, "Sparse Signal Reconstruction
from Noisy Compressive Measurements using Cross Validation," IEEE/SP 14th
Workshop on Statistical Signal Processing, pp. 299-303, 2007.

[21] P. Refailzadeh, L. Tang, and H. Liu, "Cross-validation," Encyclopedia of
Database Systems, pp. 532-538, 2009.

[22] B. Efron, J. Johnstone, I. Hastie, and R. Tibshirani, "Least Angle Regression,"
Annals of Statistics, vol. 32, pp. 407-499, 2004.

[23] R. L. Burden and J. D. Faires, Numerical Analysis. PWS Publishers, 1985.

[24] M. Grant and S. Boyd, "CVX: Matlab Software for Disciplined Convex Program-
ming, version 1.21," http://cvxr.com/cvx, April 2011.

[25] , "Graph Implementations for Nonsmooth Convex Programs," in Recent
Advances in Learning and Control, ser. Lecture Notes on Control and Information
Sciences, 2008, pp. 95-110, http://stanford.edu/boyd/graph-dcp.html.

46


