
Constraint-Aware Distributed

Robotic Assembly and Disassembly

by

Timothy Ryan Schoen

ARCHNES

Submitted to the Department of Electrical Engineering
and Computer Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2012

@ Timothy Ryan Schoen, MMXII. All rights reserved.

The author hereby grants to MIT permission to reproduce and to distribute

publicly paper and electronic copies of this thesis document in whole or in
part in any medium now known or hereafter created.

Author
Department of Electrical Engineering

and Computer Science
May 21, 2012

Certified by
Daniela Rus

Professor
TJiesis Supervisor

Accepted by...............
Prof. Dennis M. Freeman, Chairman

Masters of Engineering Thesis Committee

2

Constraint-Aware Distributed

Robotic Assembly and Disassembly

by

Timothy Ryan Schoen

Submitted to the Department of Electrical Engineering
and Computer Science

on May 21, 2012, in partial fulfillment of the
requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

Abstract

In this work, we present a distributed robotic system capable of the efficient assembly
and disassembly of complex three-dimensional structures. We introduce algorithms for
equitable partitioning of work across robots and for the efficient ordering of assembly or
disassembly tasks while taking physical constraints into consideration. We then extend
these algorithms to a variety of real-world situations, including when component parts are
unavailable or when the time requirements of assembly tasks are non-uniform. We demon-

strate the correctness and efficiency of these algorithms through a multitude of simulations.
Finally, we introduce a mobile robotic platform and implement these algorithms on them.
We present experimental data from this platform on the effectiveness and applicability of
our algorithms.

Thesis Supervisor: Daniela Rus

Title: Professor

3

4

Acknowledgements

I would like to thank the Boeing Corporation for sponsoring this research, and Daniela Rus

for her advice and guidance over the past two years. I am indebted to the members of the

Distributed Robotics Lab, and especially to my fellow robot wranglers David Stein and

Ross Knepper. Special thanks to Seungkook Yun, without whose work none of this could

have been possible. And finally, I am incredibly grateful for my friends and family, who

have given me so much love and support over the years.

5

6

Contents

1 Introduction 17

1.1 Motivation . 17

1.2 Algorithmic Contributions . 20

1.2.1 Discrete Partitioning . 20

1.2.2 Constraint-Aware Ordered Assembly 20

1.2.3 Ordered Assembly with Part Unavailability 21

1.2.4 Ordered Assembly with Time Constraints 21

1.2.5 Constraint-Aware Ordered Disassembly 21

1.3 Organization of Thesis . 21

2 Related Work 23

3 Problem Formulation 25

3.1 Assembly . 25

3.2 Robots.. 25

3.3 Demanding Mass . 26

3.4 Task Partitioning . 26

3.5 Assembly Ordering . 27

4 Discrete Equal Mass Partitioning 29

4.1 Convergence . 32

4.2 Runtime . 33

4.3 Simulations . 33

7

5 Delivery & Assembly with Ordering 37

5.1 Runtime . 44

5.2 Convergence . 45

6 Adaptation in Decentralized Assembly 47

6.1 Decentralized Scheduling Algorithm in the Presence of Part Supply Uncer-

tainty . 47

6.1.1 Convergence . 50

6.1.2 Runtime . 50

6.1.3 Generalization . 50

6.2 Decentralized Scheduling Algorithm with Non-Uniform Assembly Times . 51

6.2.1 Convergence . 51

6.2.2 Runtime . 52

6.2.3 Generalization . 52

6.3 Simulations . 52

7 Disassembly with Part Ordering 57

7.1 Runtime . 60

7.2 Convergence . 60

8 Implementation 61

8.1 Mobile Manipulators . 61

8.2 Localization . 61

8.3 Software and Communication . 63

8.4 Blueprints and parts . 63

8.5 Navigation. 67

8.6 Manipulation . 67

8.7 Ordering . 68

8.8 Delivery . 68

8.9 Assembly . 68

8.10 Differences Between Theory and Implementation 69

8

9 Experiments

9.1 Two-Dimensional Experimental Results

9.1.1 Overall Results

9.1.2 Runtime and Efficiency

9.2 Three-Dimensional Experimental Results: Two Robots

9.2.1 Overall Results

9.2.2 Runtime and Efficiency

9.3 Three-Dimensional Results: Four Robots

9.3.1 Overall Results

9.3.2 Runtime and Efficiency

9.4 Experimental Results with Part Unavailability.....

9.5 Handoff Experimental Results

71

. 71

. 71

. 72

. 73

. 73

. 75

. 75

. 75

. 76

. 76

. 78

10 Conclusion and Future Work

10.1 Summary of Contributions .

10.2 Future Work .

9

79

79

80

10

List of Figures

1-1 At 751 fatalities in 2010, construction results in the largest number of work-

related fatalities of any industry. As reported by the U.S. Bureau of Labor

Statistics. 18

1-2 Among construction fatalities, about a quarter of the fatalities are suffered

by the construction laborers themselves. As reported by the U.S. Bureau of

Labor Statistics. 19

4-1 Test to identify stealable vertices. In the first image, the triangles with

bold outlines mark the region that would be added to P due to a trade of a

vertex. In the first case, adding the vertex would cause a collision between

two polygons. In the second, the vertex under consideration would be a

valid candidate to trade. 31

4-2 Data from running partitioning algorithm. The first image shows the initial

configuration, and the second shows the partitions after 26 time-steps on a

set of point-masses with random location and mass. Shade is a function of

total m ass of a partition . 34

4-3 Total mass of each partition over time during a typical run of the partition-

ing sim ulator. 35

11

5-1 The state of the system mid-run building a hollow blue box at the end

of a green hallway, with a uniform mass function. With nothing but ba-

sic knowledge of the DAG the system can complete the structure, but part

placement is suboptimal. Note that the front of the structure is mostly built,

creating a bottleneck which limits the rate at which delivery robots can de-

liver parts; and some parts of the structure are built to full height, limiting

the number of assembly bots that can work simultaneously. 40

5-2 The score function has the property that given two sets, the function will

give a higher score to the set with most values generating the lowest value

off... 43

5-3 Part placement while building a solid cube using uniform mass (top) and

ordering (bottom). Note that without the ordering algorithm, work in the

front occurs first (top middle), making it harder for delivery robots to reach

subassemblies in the back. Also note how more of the stacks of blocks in

the top right have reached their maximum height, leaving less opportunities

for parallelism . 45

5-4 The average number of parts with positive mass across time over 50 runs of

building a solid cube at the end of a hallway with 5 assembly and 4 delivery

robots, with uniform mass on placeable parts (top) and masses calculated

using the proposed algorithm (bottom) . 46

6-1 When the supply of a part type runs out, the assembly subtree with that part

as the root is temporarily pruned. When the part is resupplied, the subtree

is added back into the overall assembly tree. 49

6-2 53

6-3 The average demanding mass over time of ten simulations using the origi-

nal algorithm (blue) and ten simulations using the modified algorithm (red).

At t=20 the supply of plane panels is extinguished; at t=80 the supply is re-

plenished. 54

12

8-1 Side view of the KUKA YouBot. The holonomic base allows for omnidi-

rectional movement, while the five d.o.f. arm provides a usable workspace

in front of, to the side of, and on top of the robot. The spherical reflec-

tive markers can be seen on both the base and manipulator for accurate

localization. 62

8-2 System architecture and information flow. Each oval represents a separate

ROS node, and the arrows indicate messages being passed between nodes

(or in some cases, between robots). 64

8-3 Our test parts for the main algorithm, arranged in a simple two-layer "log

cabin" design. Each part has a gripping area and two diamond-shaped sup-

ports, one on each end. 65

8-4 Our test parts for the part supply algorithm. Parts are divided into top parts

(red) and foundation parts (blue). Each part is a styrofoam cube with slots

cut into the top to allow the youBots to grip them. 66

8-5 Image of a delivery robot performing a delivery. Since the robots do not

have vision and the assembly parts are not tracked by the Vicon system, the

handoff and communication must be precise. 69

9-1 Robot activity over time in trial 4. Solid blocks of color indicate when a

robot was busy with a task, as opposed to idle. 73

9-2 An assembly robot places the final part on the three-dimensional tower.

The tower is composed of six layers of the log cabin construction, or three

of the simple squares from Section 9.1. This tower is the result of trial #1

from Table 9.2. 74

9-3 Assembly sequence when no parts run out (top three images) and when the

top/red cubes run out after one has been placed (bottom three). Even with

the part supply running out, the robots continue to work and ultimately

complete the structure after part supply has returned. 77

13

14

List of Tables

8.1 Summary of differences between our theoretical algorithms and system im-

plem entation. 70

9.1 Summary of two-robot assembly trials for a square. 72

9.2 Summary of two-robot assembly trials for a tower 73

9.3 Summary of four-robot assembly trials for a tower. 75

9.4 Summary of two-robot assembly trials of stairs. In these trials, part supply

never ran out. 77

9.5 Summary of two-robot assembly trials of stairs. In these trials, part supply

of the red parts ran out after the first placement, but was resupplied after

three more placements. 77

15

16

Chapter 1

Introduction

1.1 Motivation

Five million individuals in the United States are employed by the construction and extrac-

tion services industry, making it an average-sized industry with about four percent of the

US workforce[l]. However, individuals in this industry suffer a disproportionate amount

of the work-related fatalities in the country; construction results in the largest number of

work-related fatalities of any industry[2]. Among these fatalities, the largest portion of

them are the construction laborers themselves, the individuals performing the lowest-level

construction tasks[3]. We believe that these trends extend to the other countries as well,

and as such make construction a dangerous job.

Most constructions tasks require the transportation, manipulation, and precise assembly

of a variety of objects, many of which may be heavy or hazardous in a variety of ways. We

believe that humans are not particularly well-suited for these tasks, and propose instead the

introduction of robotics to accomplish these assembly tasks. Thus we remove humans from

the situations most hazardous to their health and well-being.

We acknowledge that there are many components of assembly for which a human is

much more able to complete than a robot. The solutions we propose are not intended to

completely replace humans in the assembly progress, but instead to replace only the most

basic and dangerous of these activities. As the field of robotics progresses, one can imagine

more responsibility being allocated to the robotic platform to complete assembly activities,

17

Number and rate of fatal

Construction 751
Transportation and 6

warehousing
Agriculture, forestry, 596
fishing, and hunting

Government - - 4771
Professional and - - ---

business services
Manufacturing

Retail trade - - - - -
Leisure and hospitality

Other services (exc .
public admin.)

Wholesale trade

Mining - - - - - - -

Educational and health
services

Financial activities

Information
Utilities

900 600

Number of fa

occupational injuries, by industry sector, 2010*

- ~ ~95
13.1

1 - - 1 I 26.8

356K
3201

-301

229

186

185

172

169

300

al work injuries

E 2.2

M2.5
K 2.2 Total fatal work injuries = 4,547
K 2.2 All-worker fatal injury rate = 3.5
K 2.2

3.0

4.8

-19.8

108

421

- 241

0.9

1.5

2.5

0 10 20 30
Fatal work injury rate

(per 100,000 full-time equivalent workers)

Construction had the highest number of fatal injuries in 2010. Agriculture, forestry, fishing, and hunting
sector had the highest fatal work injury rate.

*Data for 2010 are preliminary.
NOTE: All industres shown are private with the exception of government, which ndudes fatalities to workeis employed by governmental orgazat ons regardless of industry.
Fatal injury rates exdlude workers under the age of 16 years, volunteers, and resident military. The number of fatal work injuries represents total published fatal injuries before
the exclusions. For additional information on the fatal work injury rate methodology changes please see htto://www~bs.ovliifloshnotice10.htm 16
SOURCE: U.S. Bureau of Labor Statistics, U.S. Department of Labor, 2011.

Figure 1-1: At 751 fatalities in 2010, construction results in the largest number of work-
related fatalities of any industry. As reported by the U.S. Bureau of Labor Statistics.

but still being supervised by skilled human workers.

One approach to robotic construction is a centralized controller that completes the as-

sembly task in a predefined order. This approach has a number of drawbacks. The ef-

ficiency and parallelism is limited, in the sense that the tasks are completed in a serial

manner. In the case of multiple robots receiving commands from a centralized controller,

parallelism increases but there is a lack of scalability. As the number of robots increases the

complexity of processing and communication for the centralized controller grows quickly.

A centralized approach is also not adaptable to many types of failure or disturbance. A fatal

failure in the central controller would halt the assembly process regardless of the number

of robots involved. A shortage of a particular part type could equally freeze the serial

assembly process.

We believe that adaptive, decentralized algorithms that address these issues will be

18

Distribution of fatal work injuries by selected occupations in the private
construction industry, 2008-2009*

Construction laborers 2%
First-line supervisors/!2

2

manerf construction
trades and extraction workers 9%

Carpenters 9%

Roofers 7% Total fatal work injuries in 2009 = 816

E % Total fatal work injuries in 2008 = 975
Electricians -7

Construction equipment
operators 6%

0200Construction managers 3% 6%

Painters, construction and 3% U2008
maintenance 5%

Truck drivers, heavy 3%
and tractor-trailer

0% 5% 10% 15% 20% 25% 30%

Percent of private construction fatal work injuries

Fatal work injuries involving construction laborers accounted for about one out of every four private construction
fatal work injuries in 2009. Total fatal work injuries in construction declined by 16 percent from 2008 to 2009.

*Data for 2009 are preliminary. Data for prior years are revised and final.
SOURCE: U.S. Bureau of Labor Statistics, U.S. Department of Labor, 2010. 20

Figure 1-2: Among construction fatalities, about a quarter of the fatalities are suffered by
the construction laborers themselves. As reported by the U.S. Bureau of Labor Statistics.

central to the future of manufacturing. To that end, our work has focused on developing

and implementing these algorithms. We imagine a team of n robots working cooperatively

to construct a given structure. We divide these robots into two classes. The first class, part

delivery robots, are specialized for retrieving parts from a source location or repository

and delivering them to the second class of robots. This second class, the assembly robots,

are specialized for performing the assembly task given the parts delivered to them. These

assembly tasks could be placing a part, bolting pieces together, applying adhesive, or any

localized assembly task.

Each of the assembly robots is given a blueprint of the target structure, but beyond that

the processing, control, and communication are completely decentralized. This presents

several unique algorithmic challenges. The robots must decide amongst themselves how to

partition the assembly work in a way that is equitable and maximizes parallelism. Given

19

these partitions, the robots must then decide how to sequence their order of operations,

again to maximize efficiency and parallelism. Each robot must also be capable of respond-

ing to disturbances - for example, the failure of a neighbor robot or the shortage of a part

supply.

We present algorithmic solutions to these challenges in a provably correct manner,

while maintaining several desirable properties. We then implement our algorithms on a

robotic platform to demonstrate their practicality in manufacturing tasks.

1.2 Algorithmic Contributions

The work presented in this paper builds on a body of knowledge developed at MIT and

other institutions regarding the efficient construction of structures using teams of distributed

robots. Specifically, it extends the work of Seungkook Yun and David Stein to make the set

of assembly algorithms more robust. The main contributions of this work are as follows.

1.2.1 Discrete Partitioning

As many of the algorithms presented require the equal-weight partitioning of assembly

tasks, we first present a novel algorithm to partition a set of discrete point-masses into

equal partitions.' This allows the body of work available in a construction process to be

equally partitioned across a team of robots, such that each can work efficiently and the

overall goal can be completed in the least amount of time. The algorithm is extendable to

any dimensionality, although we envision most applications in two or three dimensions.

1.2.2 Constraint-Aware Ordered Assembly

The work of Yun et al. addressed how to efficiently assemble arbitrary structures given a

blueprint, but the resulting assembly order disregarded the physical constraints the struc-

ture. We present an algorithm that considers these physical constraints, and develops an

'This is taken from previous work, "Constraint-Aware Coordinated Construction of Generic Structures"
by D. Stein, T. R. Schoen, and D. Rus.[4]

20

assembly order designed to maximize parallelism and reduce bottlenecks in the task.2

1.2.3 Ordered Assembly with Part Unavailability

The above assembly algorithm is then adapted to account for the fact that some parts re-

quired for assembly may not be always present. We present an adaptation to the algorithm

that continues to maximize robot parallelism in the face of part shortages.

1.2.4 Ordered Assembly with Time Constraints

The above assembly algorithm is again adapted to consider the fact that all assembly op-

erations are not equal. Some may be more complex than others, requiring more time to

complete. Our algorithm takes these timing parameters into consideration when schedul-

ing tasks, such that the structures are assembled in the most efficient manner.

1.2.5 Constraint-Aware Ordered Disassembly

Occasionally construction tasks are needed to build temporary structures, such as a scaf-

folding of trusses used to support another assembly. These structures must be disassembled

after their purpose is complete, to clear the construction area and recycle the parts used in

the structure. We present a novel algorithm for the ordering of tasks required to disassem-

ble an arbitrary structure, again considering the physical constraints of such a disassembly

process.

1.3 Organization of Thesis

The first three chapters describe the challenges this thesis attempts to solve, as well as

their importance and context in the manufacturing industry. Chapter 4 describes our algo-

rithm for discrete partitioning of work among robots, and then Chapters 5 and 6 describe

the ordering algorithms used to maximize parallelism and efficiency in the assembly tasks.
2This is taken from previous work, "Constraint-Aware Coordinated Construction of Generic Structures"

by D. Stein, T. R. Schoen, and D. Rus.[4]

21

Chapter 7 then uses the principles described so far to develop algorithms for efficient dis-

assembly. A robotic platform is described in Chapter 8, and then the results of experiments

with our algorithms on this platform are presented in Chapter 9. Finally, conclusions and

possibilities for future work are described in Chapter 10.

22

Chapter 2

Related Work

Our work builds on prior research on robotic construction and distributed coverage. A sim-

ple distributed 3D construction algorithm is described by Theraulaz[5], while Werfel[6]

describes a 3D construction algorithm for modular blocks in a distributed setting. Fahlman

describes a system for planning how to build a structure using simple parts[7]. Stochas-

tic algorithms for robotic construction with dependency on raw materials are analyzed

by Matthey[8]. Three-dimensional construction with consideration to physical constraints

such as gravity and stacking was achieved by [9].

Ayanian and Kumar developed a decentralized feedback controller for a team of robots

to navigate around obstacles[10]. Stochastic policies for parallel task allocation in robotic

swarms were investigated by [11]. [12] developed methods for evaluating the complexity

of structures, as it applies their distributed robotic construction.

The U.S. Air Force detailed their early efforts of robotic construction in [13]. Parker

et al. described a system for nest construction using a team of robots[14]. Human-robot

cooperation for construction of heavy items was explored by Lee, et al.[15] A coordinated

robotic lego construction experiment was described by Schuil[16]. Stroupe et al. pre-

sented a heterogeneous robotic assembly system designed to maximize a number of cost

metrics[17]. Our previous work on robotic construction includes Shady3D [18] utilizing

a passive bar and an optimal algorithm for reconfiguration of a given truss structure to a

target structure[19], and experiments in building truss structures[20].

The graph Voronoi diagram is described by Erwig[21]. Using Voronoi partitions to

23

deploy robots for coverage was originally proposed by Cortez et al.[22] and has been

extended several times since then for tasks such as adaptive coverage[23] and equitable

partitioning [24]. Pavone et al. described a method of distributed equitable partitioning[25].

Maini et al. explored a genetic graph partitioning algorithm[26], and Leland and Hendrick-

son presented a study of several load balancing algorithms, in this case for parallel com-

puting but as could be applied to other uses[27]. Durham et al. presented a decentralized

algorithm for creating Voronoi partitions among robots with pairwise communication[28].

Our recent work extends the idea of equitable partitioning and combines it with coordinated

construction of truss structures[29], locational optimization[30], and adaptation to failure

and shape change[3 1].

Our approach utilizes previous work on computation using barycentric coordinates[32]

and convex hulls[33]. Our early algorithms were implemented on a team of robots by

Bolger, demonstrating the early practicality of our approaches[34].

24

Chapter 3 .

Problem Formulation

In this work, we address the challenge of utilizing a team of robotic mobile manipulators

to construct a fixed assembly.

3.1 Assembly

We define an assembly to be a collection of parts connected to each other, creating a single

structure. A blueprint defines the relative locations of each of these parts, as well as the

nature of the parts, how they are connected to each other, and which parts have physical

or reachability dependencies on each other. In this work, we assume that all structures are

fixed; that is, after a part has been connected to an assembly, it will not be moved further.

Under this definition and assumptions a multitude of structures can be assembled, rang-

ing from very simple two-party assemblies to complicated three-dimensional shapes such

as arches, pyramids, or furniture.

3.2 Robots

We are given a team of robots, some of which specialize in the assembly of components

parts into the more complicated structure - we call these the assembly robots. The rest of the

robots specialize in retrieving parts from a part cache and delivering them to the assembly

robots - these in turn are called delivery robots. These robots are mobile, relatively small,

25

and have communication capabilities with their closest neighbors. They can manipulate

parts and their surroundings with manipulators of any type, including the possible use of

external tools or the assistance of humans.

The team of robots is completely decentralized. There is no central robot or sched-

uler determining the assembly order or issuing commands to the robots. Each robot acts

independently and determines on its own best course of action to take.

3.3 Demanding Mass

We define a function #(v) over the assembly space, which we refer to as the demanding

mass. For each part v, the demanding mass indicates the priority of that part. The robots

utilize this mass function to determine the highest priority parts to place onto the assembly.

In prior work the demanding mass function was smoothed so as to be continuous; in this

work, the demanding mass function will be comprised of a delta function at the location of

each part, and zero elsewhere.

3.4 Task Partitioning

In order to maximize parallelism, we follow the work of Yun et al. and divide the partition

the demanding mass function into sections assigned to each robot[29]. There is exactly

one partition per assembly robot, and each partition contains zero or more point masses

representing parts that have not yet been assembled. We require that the partitions be

convex and non-overlapping; each unassembled part is assigned to exactly one partition.

Given this formulation, we would like partitions to have equal mass so that the work is

equitable between robots and the overall structure is completed in the most efficient way

possible.

The high-level description of our algorithm is as follows. Given the starting positions of

the robots, we initially create a Voronoi partitioning of the parts. We calculate the convex

hulls of each robot's partition. The robots then communicate with their neighbors to trade

vertices on their hulls to create equal-work partitions. As we show, this is guaranteed to

26

converge to a local maximum.

3.5 Assembly Ordering

We assume that the blueprint provides information about the physical dependency and

reachability constraints of the structure, as will be defined later. We represent this informa-

tion in the form of two directed acyclic graphs (DAGs), G, = (V, E,) and G, = (V, E,).

The nodes of the graphs represent the parts to be assembled, and the edges represent de-

pendencies. The edges of the reachability graph point from parts that could be blocked

by other parts to those blocking parts. The edges of the physical dependency graph point

from parts that provide support to the parts they support. Under this formulation, edges

point from parts that will be assembled earlier in the assembly process to parts that will be

assembled later.

These requirements, while providing a few hard constraints about the order of assembly

process, still leave a large amount of flexibility. Instead of assembling parts in a random

order within these constraints, we would like to optimize our ordering to maximize par-

allelism and reduce bottlenecks. That is, at any point, we would like a robot to decide

deterministically which part it will next assemble in order to maximize a parallelism met-

ric.

27

28

Chapter 4

Discrete Equal Mass Partitioning

In our problem formulation we represent each part in the target structure as a point, which

is reasonable given the discrete nature of parts. We define the demanding mass of a part

as a measure of its priority in placement order, where the mass of a part is 0 if a part is

unplaceable or already placed and positive otherwise (this is discussed in more detail in

Chapter 5). By partitioning based on this mass function, we can allocate roughly the same

amount of reachable, actionable work to each robot. We repeat this algorithm continuously

during runtime to maintain an equitable partitioning of the workspace Q as masses change

dynamically while the structure is built.

A trade-off of the significant increase in fidelity we get by updating our model from a

geometry to a blueprint is a change in the nature of the density of the Q. The density of

Q is used by most coverage algorithms, including canonical Lloyd algorithms for equipar-

titioning, to perform gradient descent to converge to equal-mass partitions. Our blueprint

forces the density of Q to be a dynamic summation of scaled Dirac delta functions, which

has a gradient of either zero or infinity at all points, meaning we can not use the class of

deployment algorithms that depend on Voronoi partitioning.

Vertex swap, which we present as a potential solution to this problem in [30], works

on a graph rather than in R", and requires multi-hop communication. In order to use this

algorithm, we need to define a graph that connects the set of positive mass points. If we

create a relatively sparse graph we introduce unnecessary assumptions which limit which

points can be in the same partition. If we create a well-connected graph we introduce the

29

assumption of excessively large communication radii as neighbors are defined by edges in

the graph rather than L distance. We have developed a equipartitioning algorithm that

does not require a graph connecting points, uses only local communication, and has lower

complexity than vertex swap.

We identify partitions that are spatially compact and approximately equal mass, but as

stated above Voronoi partitioning and vertex swap are not viable options. The problem of

partitioning a set of point masses in R4 into non-intersecting, convex, equal-mass partitions

is NP-hard, even in R2. We present the hull vertex swap algorithm (Algorithm 1), an

efficient distributed method for approximating equal-mass partitioning using only single

hop communication.

Hull vertex swap converges to a convex partitioning of the points v C V distributed

across the space Q into a set of partitions. We allow each partition Pi, i E [1, n] to "steal"

points from its set of neighbors VpN. The focus of the algorithm is to determine which

vertices can be transferred from one partition to another without creating an intersection

between the convex partitions, and which vertices can be stolen to effectively converge to

a solution that locally maximizes our measure of equality.

We now discuss how to determine which vertices can be stolen without introducing

intersections between partitions. We then present how to compute which vertex is best

to steal, if any, and finally present a proof of convergence and data from simulation. To

compute which vertex to steal, each robot first computes the convex hull of its partition

P; then for each vertex vi in the hulls of its neighbors, it considers the region that would

be added to the polygon defined by the convex hull of P if vi were moved into P. Any

vi that would not create an intersection between two polygons if added to P is considered

a stealable vertex. The area added to the region can be quickly tested for intersection by

finding the triangle formed by the tangent rays between P and vi and testing the edges

of each of the hulls in Np for intersection with that triangle (see Figure 4-1). In higher

dimensional cases this extends to the pyramid formed by tangent planes.

We measure equality using a cost function 7 from [22] with a constant distance func-

30

Figure 4-1: Test to identify stealable vertices. In the first image, the triangles with bold
outlines mark the region that would be added to P due to a trade of a vertex. In the first
case, adding the vertex would cause a collision between two polygons. In the second, the
vertex under consideration would be a valid candidate to trade.

Algorithm 1 Partitioning Algorithm
1: Deploy into Q at random pose pi
2: P +- {v1(lpose(v) - pi I < Ipose(v) - pI|)Vj i}
3: loop
4: compute convex hull of P
5: update Nrp
6: X +- {v Iv E Np, v is stealable}
7: i +-- argmax(AWr, (vi))

viEX
8: if A~p(vi) > 0 then
9: communicate to NM : vi e Pu, to remove vi

10: P <- P U vi
11: end if
12: end loop

31

tion. Given that each vertex v has a mass 4(v):

MP E O 4(v) (4.1)
vEP

INQ = Mm, (4.2)
ie[1,n]

Without loss of generality, if we consider moving a vertex v from P1 to P2, we can compute

the change in mass:

A Q= (17 M) (Mr2 + 4(v)) (M-4(- - Ro (4.3)

Af= Me (MlMr2 + 4(v) (Me1 - Mr 2 - 4(v))) - (4.4)

Af MP, 4(v) (Me1 -M2 - 4(v)) (4.5)

When comparing two potential exchanges of vertices, we only need knowledge of the

partitions that will change in order to compute both the sign and relative magnitude of our

deltas. We therefore need only local knowledge to determine which vertex, if any, is best

to trade. We can therefore compute a scaled local AWg of moving some v from some

neighbor's partition Pi to Pe1f with:

A11N = Mpk p(v)(Mpi - MPsef - p(v)) (4.6)

(PA~jAPk#APi/

~ M~ (4.7)

4.1 Convergence

Theorem 1 Algorithm 1 will converge to a local maximum.

32

Proof 1 We know that the denominator in equation 4.7 will be unchanged by a vertex being

stolen and that therefore

argmax(AWy(P +- vi)) = argmax(ANQ(P +- vi)) (4.8)
vieX viEX

so each stolen vertex will result in an increase in H Q. The value of W is bounded from

above and all | ANI is bounded from below, so by induction the algorithm must converge

to a local maximum.

4.2 Runtime

Theorem 2 The update at each step of Algorithm 1 runs in 0(||| + I N I I I P) time.

Proof 2 Consider a single step of Algorithm] running on a robot in R d. Finding a trian-

gle or cone takes 0(1 P1) time. Checking for intersections takes 0(N || d-1). This check

needs to be run on 0(1 A) candidate points [33]. Computation of each AN takes con-

stant time, so the computation of candidate points dominates this function. The runtime per

step is therefore 0(||I|(||\|- +(||p|} =) 0(|II|Id - I IM IIIPI).

Because only the hull is considered, this is often much faster in practice.

4.3 Simulations

We ran the partition algorithm on several hundred randomly generated sets of pointmasses

with random mass. Point location was sampled from either a uniform distribution or 2D

Gaussian. The partition masses converged on all pointsets such that their standard devia-

tion was less than twice the average mass of a point. No partitionings contained outliers

after convergence, which suggests that most local maxima are good approximations of

equal-mass partitioning (see Figures 4-2 and 4-3). The simulations took 15.5 minutes in an

environment with 500 point masses with 12 robot state machines each running in a separate

thread on a single 1.2 GHz core. Running the same environment with 5 robots converged in

33

Figure 4-2: Data from running partitioning algorithm. The first image shows the initial
configuration, and the second shows the partitions after 26 time-steps on a set of point-
masses with random location and mass. Shade is a function of total mass of a partition.

2.5 minutes, and with 5 robots and 250 points the system converged consistently in under

45 seconds.

34

18D

160-

140

12D

i

60

40-

2D

12
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 3 37 38 39 40 41

Figure 4-3: Total mass of each partition over time during a typical run of the partitioning
simulator.

35

36

Chapter 5

Delivery & Assembly with Ordering

Delivery robots repeatedly choose random assembly robots and deliver the part with the

highest demanding mass inside the chosen assembly robot's partition. The assembly robot

waits for a delivery and then performs whatever actions are necessary to attach the part to

the main structure.

Algorithm 2 Delivery Algorithm
1: loop
2: Move within communication range of random assembly robot r
3: Receive highest priority vertex in P, from r
4: Bring corresponding part from part source to r
5: end loop

In our definition, parts with 0 mass violate either physical or reachability constraints.

Between any two parts with non-zero mass, the part with higher mass is given priority

in placement. Given this planning algorithm, the mass function 0(-) dictates the order in

which parts are placed. We need a mass function with the following properties:

" no part placement violates global constraints

" after a part is placed the number of placeable parts tends to increase or remain con-

stant

" the creation of bottlenecks and hallways is avoided if possible

37

Algorithm 3 Assembly Algorithm
1: Start partition algorithm (Alg. 1)
2: loop
3: for v E Pself do
4: if v reachable from outside construction site then
5: dist(v) +- 1
6: else
7: dist(v) <- 1 + min({dist(u) (u, v) E E,})
8: end if
9: end for

10: yield until delivery
11: receive delivery of part v
12: place v and signal neighbors
13: for u E all children and parents of v do
14: update 4(u) (Equation 5.24)
15: for w E all children and parents of u do
16: update O(w)
17: end for
18: end for
19: end loop

* changes to the local density function can be efficiently calculated and updated using

only local information

The precise order in which parts are placed is partially a function of the assignment of

partitions and availability of parts, which are respectively non-deterministic and outside of

our control. The ordering should optimize over some set of local metrics. To build this

function, we present mass functions that each satisfy one of our goals and then describe a

combined definition. In each definition we represent the placement of a part by removing

the vertex vi corresponding to the part placed and also removing any edge going into or out

of vi from both graphs.

Before defining our mass function we need to make a modification to the reachability

graph. We need local information about the global property of reachability, and one way to

do this is to modify reachability into a DAG. We do this by defining G'(V, E') such that:

E' {(u, v)I(u, v) E E, A dist(u) > dist(v)} (5.1)

We are now ready to begin defining the mass function #. First we define the global con-

38

straints formally: any vi is placeable iff it will be physically supported and not render any

unplaced parts unreachable. We define two boolean variables (,(v) and (, (v) to represent

this criteria.

(,(v) = (degp (v) # 0) (5.2)

& (V) = (3j : ((vj, v) E E') A (deg' (vj) = 1)) (5.3)

(, indicates that a part will not be physically supported if its indegree is anything but

0; all the parts it depends on for support must already be placed. &, indicates that the part

should not be placed if doing so would prevent delivery robots from reaching another part;

that is, if placing a part blocks a unique exit it cannot be placed.

4c) 0 (,(V) V& (V) (5.4)
1 otherwise

Because the ordering of parts is defined by a set of DAGs, any mass function that obeys

the constraints above and sets all other #(vi) to a positive value will terminate if the problem

is solvable. This is sufficient to have a system that will build a structure without violating

any physical constraints, however with binary mass placement order will be essentially

random.

The remaining mass functions allow behavior to be tuned to tend towards placement

that allows for better parallelism of assembly tasks and access to the structure by delivery

robots.

Before presenting these functions, we introduce the following scoring function and

briefly discuss its properties. Given some function f : x -+ Z+, and some candidate sets

Xi with the property ||Xill < cxVi:

score(f(-), X) = (2f W) x (5.5)
xEX

The correctness of ours algorithms depends on a property of the function, which we

shall call the ranking property. The property is defined as follows. Assume we are given a

39

Figure 5-1: The state of the system mid-run building a hollow blue box at the end of a green
hallway, with a uniform mass function. With nothing but basic knowledge of the DAG the
system can complete the structure, but part placement is suboptimal. Note that the front of
the structure is mostly built, creating a bottleneck which limits the rate at which delivery
robots can deliver parts; and some parts of the structure are built to full height, limiting the
number of assembly bots that can work simultaneously.

40

function f : x -+ Z+ and two sets X1 and X2 which are bounded in size by some integer

constant k > 0. The ranking property states that the lowest value of f(x) produced by

the members of the sets for which the two sets does not have an equal number of elements

producing that value, the set with more elements producing that value will have a higher

score. Formally, if

y = min{i: |f{x C X 1|f(x) = i}|| # |f{x e X2|f(x) = i}i} (5.6)

|I{x E XIf (x) y}l > |{x E X2|f(x) = y}|| -=> score(f,X1) > score(f,X 2)

(5.7)

For example: consider two nodes on a directed graph with sets of children X1 and X2 ,

and a function f(v) which returns the outdegree of a node. The node with more children

that have outdegree 0 will have a higher score (score(f, Xi)). In the case of a tie, the node

with more children with outdegree 1 will have a higher score. After that ties are broken by

the number of children with outdegree 2, and so on. We use this function extensively in our

definitions.

Theorem 3 The ranking property holds for the score function.

Proof 3 Assume we are given a function f : x -+ Z+ and two different sets X 1 and X2

which are bounded in size by some integer constant k > 0. Without loss of generality, we

will say that the function f (-) produces the same number of results on X1 and X 2 for all

values lower than some on-negative integer y. Stated differently, y is the lowest value for

which f (-) produces a different number of results on the two sets. Again without loss of

generality, assume that f (.) produces more results on X1 at y than on X2 at y.

k > logk (5.8)

Subtracting a term kyfrom both sides and rearranging,

-ky > log k - k(y + 1) (5.9)

41

2 -ky > k2-k(y+l)

Given either set Xj, i E {1, 2}, we can split the score function into parts.

score(f (.), Xj) = E (2-kf(x)) + (2 -ky) + 3 (2 -kf(x))
xEXilf(x)<y xEXilf(x)=y xEXiIf(x)>y

(5.11)

We observe that the first term in 5.11 is necessarily the same for both sets, and can

therefore be treated as a constant. Furthermore, we see that the following bounds must

exist:

(2-ky) - -ky) > 2 -ky (5.12)
xEX 1 If(x)=y xGX 2 If(x)=y

(2 -kf(x)) - (2 -kf(x)) > -k2-k(y+l) (5.13)
XEXif(x)>y xEX21f(x)>y

Using 5.11, 5.12, and 5.13, the difference between can be represented as

score(f(-), X 1) - score(f(-), X 2) > 2 ~-ky - k2-k(y+l) (5.14)

Per 5.10, this difference is strictly positive, and therefore

score(f(-), X1) > score(f(-), X 2) (5.15)

Figure 5-2 depicts this property of the score function.

First we define a function that will help to place parts such that we first maximize the

number of parts still available to be placed (i.e., reveal as many new parts as possible).

A reasonable function could rank parts first by the number of physical dependencies they

satisfy. We can represent this ranking with the score function:

(vi) = score(deg- , {vI (vi, vj) E E,}) (5.16)

42

(5.10)

(2f(x)-cx

f(x) = 0 f(x)= 1 f(x)= 2 f(x)= 3

Figure 5-2: The score function has the property that given two sets, the function will give
a higher score to the set with most values generating the lowest value of f.

Similarly, we would like to place blocks that are least likely to cause a bottleneck first.

By rating blocks by the number of different ways to reach their children we can place

preference against restricting high-traffic paths. We also would like to tend toward placing

parts in harder-to-reach locations first, so we need to define a slightly more complex test

function g(vi) = max(degG,, (vj)) - deg',(vi).

0r (vi) ~ score(g, {vI(v3 , vi) E E'}) (5.17)

We also would like to tend toward working in areas far from the easily reachable edge

of the system first (i.e., at the end of a hallway). We can use the distance function from

Algorithm 3 to measure this:

#r (vi) ~ dist(vi) (5.18)

To combine these two statements we normalize the distance function to between 1 and

1. The score function behaves such that multiplying by a half is the equivalent of redefining

the input function f'(-) = f(.) + 1. In this case doing so would effectively lower the

outdegree of each of a node's children by 1, thus lowering the node's priority. This allows

43

I

us to scale # by distance without breaking the tiered behavior of the score function.

dist(vi) - 1
kdist (i)-ds(vi) (5.19)

2(max(dist(v)Vv c V, 2) - 1)

Or(vi) = kdist (vi)score(g, {vI(vj, vi) c E'}) (5.20)

Finally, in combining these three measures of mass, we need to rescale our masses to

allow comparison between #r and #,. To achieve this we introduce two scaling factors: #
which rescales the range of in-degrees of nodes in E' to match that of Ep, and 7y which can

prioritize reachability or physical dependency as required by the task. The exact tuning of

these functions varies depending on the capability and number of each class of robot, and

this relationship is left as future work.

max(deg- (vi))#+ (5.21)
max(degG,(V))

Vj

E {-1, 0,1} (5.22)

If we define g'(vj) = #(g(vy) + -y), we can introduce those scaling factors to the reach-

ability function by substituting into equation 5.20, which will normalize it to resemble the

physical dependency function:

'(vi) = kdist(vi)score(g', {vj|(vj, vi) c E'}) (5.23)

We can now combine equations (5.23), (5.16), and (5.4) to define our combined mass

function for use by the controller.

#(Vi) O=c(v1)(#,.(vi) + #,(vi)) (5.24)

5.1 Runtime

Upon the placement of a part, at most c parts will have a change of degree, which in turn

means only c2 parts have a potential change in mass. This allows constant time for a robot

44

Figure 5-3: Part placement while building a solid cube using uniform mass (top) and or-
dering (bottom). Note that without the ordering algorithm, work in the front occurs first
(top middle), making it harder for delivery robots to reach subassemblies in the back. Also
note how more of the stacks of blocks in the top right have reached their maximum height,
leaving less opportunities for parallelism.

to update all masses after a part has been placed.

5.2 Convergence

Theorem 4 The controller outlined in algorithms 2 and 3 will converge to a complete

structure if possible.

Proof 4 Our constraints are described by two DAGs. The mass function we describe here

gives positive mass to all vertices with no unplaced parents, which by definition describes

and follows a valid topological ordering of both G, and G', and will therefore converge

without violating either sets of constraints.

45

Figure 5-4: The average number of parts with positive mass across time over 50 runs of
building a solid cube at the end of a hallway with 5 assembly and 4 delivery robots, with
uniform mass on placeable parts (top) and masses calculated using the proposed algorithm
(bottom).

46

Chapter 6

Adaptation in Decentralized Assembly

6.1 Decentralized Scheduling Algorithm in the Presence

of Part Supply Uncertainty

Let us define Av as the part type of part v, and assume all types of the same part are identical

and that there are a finite number of part types. Many parts may have the same type, and

each assembly requires one or more types of part.

Let the function n(A) represent the number of parts available of type A. We assume that

all robots have information about the number and type of robots available, although for our

purposes it is sufficient to represent n(A) E {0, 1} as the presence or lack of parts of type

A.

The first modification to our algorithm ensures that a part which we lack is not consid-

ered "placeable". We introduce another boolean variable

(6.1)s(v) = (n(\Av) = 0)

and then redefine our constraint weight to include this variable.

G (v) V (,(V) V G(c)
otherwise

We now introduce two algorithms: one for when a robot receives communication that a

47

(6.2)<pc~) = 0
1V)

supply of a certain part type has been extinguished, and another when it receives commu-

nication that a part type has been replenished. A diagram demonstrating how a subtree is

pruned upon running out of a particular part type can be found in Figure 6-1.

Algorithm 4 Part has been extinguished
1: Receive communication that n(A) = 0
2: E - 0

p
3: El< E,
4: for (vi, vj) E E, : A 3 = Ado
5: E- E U {(vi,v)}
6: E +- EP \(v j, vj)
7: end for
8: E, +- E'

Algorithm 5 Part has been replenished
1: Receive communication that n(A) > 0

2: Ep +- Ep E'\

By making these modifications, we achieve several improvements. First, since a part is

not considered placeable if its supply has run out, an assembly robot will not assign positive

demanding mass to those parts. This prevents delivery robots from seeking that part.

Second, by removing the physical dependency of extinguished parts from the parts they

depend on, Algorithm 3 will now weight those depended-on parts less. This is desired,

because part types that are currently lacking do not provide the robot additional work to

perform. Placing physical dependencies does not free up more parts for the assembly robots

to place. Doing this ensures that we maintain efficient ordering construction, by pretending

that the parts no longer exist in the assembly blueprint.

Note that in this algorithm we did not modify the reachability graph, G,. This is done

so that even though we are ignoring the extinguished parts in the dependency graph, we still

do not place parts that would prevent placing the extinguished part once the part supply has

been replenished.

48

run out of this part type

temporarily prune subtree

Figure 6-1: When the supply of a part type runs out, the assembly subtree with that part as
the root is temporarily pruned. When the part is resupplied, the subtree is added back into
the overall assembly tree.

49

6.1.1 Convergence

Theorem 5 The controller; when modified by algorithms 4 and 5, will converge to a com-

plete structure if possible.

Proof 5 Any time the supply of a part type runs out, the graph will be modified iff parts of

that type remain to be assembled in the structure. Therefore, if the structure is possible to

complete the parts will be resupplied. At that time, the controller takes its previous form.

Therefore, if the structure is possible to complete, the modified algorithm will converge

to a complete structure.

6.1.2 Runtime

Algorithm 4 requires O(1 V I+ I I|E) time to run, since it makes copies of the physical

dependencies edges and loops through all nodes in the graph. Algorithm 5 simply makes a

copy of the edges, so its runtime is O(1|E,|1).

These two algorithms are only run when a part supply is extinguished or resupplied.

Since these two events rely on factors external to the algorithm, it is impossible to com-

pletely describe what effects they have on the runtime of the algorithm. However, the mod-

ifications that they make to the physical dependency graph do not change the asymptotics

of the underlying algorithm.

6.1.3 Generalization

Note that in the presence of no part supply restrictions, neither algorithm will be utilized

during assembly. Therefore this modification can be viewed as a generalized version of the

original algorithm that takes part supply into account.

50

6.2 Decentralized Scheduling Algorithm with Non-Uniform

Assembly Times

Our previous algorithms have assumed that all assembly operations take the same amount

of time to accomplish, which is rarely true in practice. For example, one can imagine an

assembly where one task is twice as valuable to complete in order to maximize parallelism

and efficiency; our prior algorithms would choose the former task to complete first. How-

ever, if the first task takes three times as long to complete, then the second task is actually

more desirable to complete first. It will make additional work available sooner.

Once we introduce the concept of assembly time, we are no longer interested in the

ability of a task completion to make work available; instead, the quantity of interest is a

task's ability to make work available divided by the amount of time it takes to complete the

task. Mathematically, we introduce this into the algorithm by altering the scoring function.

It now takes the form:

score(f(-), X) =[(2 .(6.3)
xEX

where Tx represents the amount of time required to complete task x. In the algorithm

the function f (x) represents the number of other nodes that will be affected by completing

a task (for example, by fulfilling physical dependencies). By dividing this by the time

required to complete that task, we now ensure that we weight assembly tasks according to

their actual value to the assembly process.

6.2.1 Convergence

Theorem 6 The controller; when modified by equation 6.3, will converge to a complete

structure if possible.

Proof 6 We have already proved that the original controller will converge to a complete

structure if possible. A part's mass has only a simple linear relationship on the score

function. Assuming the time to complete an assembly task, Tx, is a positive number the

51

sign of the score function is not affected. Therefore the sign of every part's mass is equally

unaffected. The order of part placement may change, but a placeable part will not become

unplaceable and vice versa. Therefore the structure will converge if originally possible.

6.2.2 Runtime

The addition of an assembly time term to the scoring function does not affect computational

complexity or runtime in any significant way.

6.2.3 Generalization

In the case of uniform assembly times such that Tx = T is a constant, the equation 6.3 can

be reformatted:

score(f (-), X) = 2- X| (2f(x))C. (6.4)
xEX

As such, the scores and therefore the part weights would be linear scaled version of the

part weights from the original algorithms. As overall scaling does not influence part order,

the assembly order would remain the same. We can therefore view this as a generalized

version of the original algorithm that takes assembly time into consideration.

We can also combine this modification with the above part supply algorithm, to make a

fully generalized version that takes both assembly time and part supply into consideration.

6.3 Simulations

To test the effectiveness of the part supply modification to our algorithm, we ran it on our

airplane simulation seen in Figure 6-2 using six assembly robots and six delivery robots.

In order to evaluate its effectiveness with respect to part supply, at t=20 the supply of plane

wall panels is extinguished. At t=80 the supply is replenished so that the assembly can

be fully constructed. The simulation was run twenty times: ten times using the original

algorithm, and ten times using the modified part supply algorithm. The results from each

set of ten were averaged together.

52

(a) At t = 20 the fuselage panels have run out. Much (b) At t = 80, the fuselage panels are resupplied.
of the structure is left to complete. The assembly robots have constructed much of the

framework of the fuselage, but were unable to place
any fuselage panels in the past 60 timesteps.

(c) The plane has been fully assembled at t = 102
with the resupplied fuselage panels.

Figure 6-2: The plane assembly used in simulation contains a fuselage, two wings, and
a tail section, each of which is composed of many individual parts. The parts are color-
coded to indicate which robot of the six assembly robots placed each part (e.g., red parts
were placed by robot 1, green were placed by robot 2). There are a variety of structural
dependencies between parts, making the construction order complex. The plane is shown
at (a) t = 20, (b) t = 80, and (c) completion at t = 102.

53

45

40

35

Z>30

25

E
C 20
0)

M15

10

5

1 21 41 61 81 101 121 141 161 181 201 221 241

Time Step

Figure 6-3: The average demanding mass over time of ten simulations using the original
algorithm (blue) and ten simulations using the modified algorithm (red). At t=20 the supply
of plane panels is extinguished; at t=80 the supply is replenished.

A graph of average demanding mass over time can be found in Figure 6-3. The ver-

tical lines at t = 20 and t = 80 show the times at which the supply of plane panels was

extinguished and resupplied, respectively. As expected, both algorithms perform roughly

the same until t=80. The difference up until this point is not the amount of work being

done, but that with the modified algorithm the robots are more intelligently choosing which

work to do in order to efficiently parallelize the remaining work once the part supply is

replenished.

It follows that the behavior diverges after t = 80. The original algorithm produces a

slightly larger spike in available work - this is expected, since the unmodified weighting

function would have caused the dependencies of plane panels to be assembled. Thus, when

panels are resupplied there is a large and immediate need for them. However, under the

original algorithm, there are undiscovered bottlenecks in the assembly process that have

not been addressed. This produces a much longer overall completion time.

In contrast, the modified algorithm weighted the dependencies of the plane panels low

54

-original

- modified

(since they did not free up additional work to complete), and instead focused on other

sources of bottlenecks. This leaves a large amount of available, parallel work to be com-

pleted. Once the plane panels are resupplied, the robots can place the panels' dependencies

and the panels themselves. The modified algorithm finishes the construction task much

faster than the original algorithm.

This is an instance in which the differences between the two algorithms are especially

highlighted, because the structure has areas of potential bottleneck and there are relatively

many robots working simultaneously. We expect that this mimics the structures and work-

ing environments of real applications, and thus this simulation accurately represents the

benefits of the modified algorithm.

55

56

Chapter 7

Disassembly with Part Ordering

Using the same structures and logic as the constraint-aware assembly process, we can pro-

vide a controller to disassemble a structure in a similar fashion. However, we have to rede-

fine our paradigm of "assembly" and "delivery" robots. For this task, the assembly robots

will be disassembling the structure, while the delivery robots will be picking up discarded

parts and delivering them out of the construction site, perhaps back to the part cache. From

here on these tasks will be referred to as disassembly and clearing, respectively. The rede-

fined algorithms are designed to mimic the structure of the assembly algorithm in Chapter 5,

while integrating the stochastic delivery properties of Bolger, et al[20].

Algorithm 6 Clearing Algorithm
1: loop
2: Move to random assembly robot r
3: Listen for demanding mass of all robots in communication range
4: Move to robot s with highest demanding mass
5: Clear part from s
6: end loop

Additionally, we need to redefine our concept of part's demanding mass. Now parts

that have been placed have mass, whereas parts that have been disassembled and cleared

have 0 mass. Between any two parts with non-zero mass, the part with higher mass is given

priority in disassembly. Given this planning algorithm, the mass function #(-) still dictates

the order in which parts are disassembled.

To begin adapting the mass function, we must first redefine our disassembly criteria.

57

Algorithm 7 Assembly Algorithm
1: Start partition algorithm (Alg. 1)
2: loop
3: Calculate highest priority vertex v from #(.)
4: remove v and signal neighbors
5: for u c all children and parents of v do
6: update #(u) (Equation 7.7)
7: for w E all children and parents of u do
8: update #(w)
9: end for

10: end for
11: yield until clearing
12: end loop

Since we no longer need to worry about reachability or part availability, we can capture

this in a single variable.

(v) = (degG,(v) 0) (7.1)

This indicates that a part will not be removable if its outdegree is anything but 0. That

is, we should not remove a part if there are other parts still depending on it for physical

stability.

Because our mass function maintains the same form as the mass function for assembly,

it retains the same desired properties. One of these is that it will terminate if the prob-

lem is solvable (which it is, assuming that the assembly was constructed using the same

blueprint). This is sufficient to have a system that will disassemble a structure while main-

taining stability, however with binary mass disassembly order will be essentially random.

The remaining mass functions allow behavior to be tuned to tend towards disassembly

that allows for better parallelism.

To help to remove parts such that we first maximize the number of parts still available

to be removed (i.e., remove parts that many other parts are supporting), we can rank parts

first by the number of physical dependencies they have. We can represent this ranking with

the score function from Chapter 5:

#,(vi) =score(degG,, {v l(vi, vj) E Ep}) (7.2)

58

Similarly, we would like to remove parts that cause bottlenecks. By rating parts by the

number of different ways to reach their children we can place preference toward removing

parts around high-traffic paths. We also would like to tend toward disassembling parts in

harder-to-reach locations last, so we need to define a slightly more complex test function

g(vi) = max(deg ,(vy)) - deg-,(vi) .

#,(vi) = score(g, {vI(vj, vi) E E'}) (7.3)

Finally, in combining these three measures of mass, we introduce two scaling factors:

' which rescales the range of in-degrees of nodes in E' to match that of E,, and -y which

can prioritize reachability or physical dependency as required by the task. The exact tuning

of these functions varies depending on the capability and number of each class of robot,

and this relationship is left as future work.

max(dege (vi))
= (7.4)

max(degG+,(vi))

7 E {-1, 0, 1} (7.5)

If we define g'(vj) =(g(vy) + y), we can introduce those scaling factors to the reach-

ability function by substituting into equation 7.3, which will normalize it to resemble the

physical dependency function:

' (vi) = score(g', {vjI(vj, vi) E E'}) (7.6)

We can now combine equations 7.6, 7.2, and 7.1 to define our combined mass function

for use by the controller.

#(vi) = #c(vi)(#'r(vi) + #,(vi)) (7.7)

59

7.1 Runtime

Upon the removal of a part, at most c parts will have a change of degree, which in turn

means only c2 parts have a potential change in mass. This allows constant time for a robot

to update all masses after a part has been removed.

7.2 Convergence

Theorem 7 The controller outlined in algorithms 6 and 7 will converge to a completely

disassembled structure if possible.

Proof 7 The structure was assembled using the reverse algorithm, and relying on the same

underlying mass function and DAGs. The mass function gives positive mass to all vertices

with no remaining parents, which by definition describes and follows a valid topological

ordering of Gp, and will therefore converge without violating physical constraints.

60

Chapter 8

Implementation

8.1 Mobile Manipulators

The platform on which we have chosen to implement our algorithms is a team of KUKA

youBots. The youBot, seen in Figure 8-1, consists of a holonomic base capable of om-

nidirectional movement and a five degree-of-freedom arm with two-finger gripper[35].

The robots are equipped with an onboard PC running Ubuntu Linux, giving flexibility

of software choices. The mini ITX PC board also contains embedded Wifi to allow the

robots to communicate with one another, although we have augmented them with Netgear

WNCE2001 Wifi adapters for increased communication integrity.

8.2 Localization

Localization for the youBots is provided by a 12-camera Vicon motion capture system,

which can track position and orientation to millimeter and milliradian precision respec-

tively. Retroreflective markers in unique patterns allow the Vicon system to identify marked

robots in the workspace.

In our experiments, the robotic base and manipulator were separately marked. The base

was tracked for navigation, collision avoidance, and rough navigation toward a goal loca-

tion. The arm was tracked for fine position adjustments to allow for precise manipulation.

These poses of both the bases and arms are broadcast wirelessly to the robots at 10Hz

61

Figure 8-1: Side view of the KUKA YouBot. The holonomic base allows for omnidirec-
tional movement, while the five d.o.f. arm provides a usable workspace in front of, to the
side of, and on top of the robot. The spherical reflective markers can be seen on both the
base and manipulator for accurate localization.

62

using the tf interface for ROS, as described below.

8.3 Software and Communication

The software architecture runs within the Robot Operating System (ROS). There are sev-

eral nodes, depicted in Figure 8-2, that run simultaneously. At the lowest level, there are

hardware-specific nodes to control the robotic arm and base through ROS wrappers for

the youBot driver. These in turn are given commands by the planner, which directs the

overall flow of the assembly process. The planner is in constant communication with the

blueprint node, which maintains the state of the assembly process and the goal structure.

The blueprint node coordinates with the partitioner node, where the heart of the algorithm

exists. The partitioner ensures that work is being evenly split among the robots, and ensures

an efficient assembly order. Finally a Vicon node interacts with the Vicon motion capture

system to provide position information to the partitioner and planner, which these respec-

tively use to spatially partition the work and issue execution commands appropriately.

Our system takes advantage of the distribution and communication infrastructure in

ROS. All nodes are run in a decentralized manner on the appropriate robot (with the excep-

tion of the Vicon system, which is necessarily centralized). Communication is performed

through ROS channels or "topics". All nodes are designed to function successfully with an

arbitrary number of robots, although the experiments described here will only focus on two

in order to demonstrate the specifics of the system.

8.4 Blueprints and parts

Structures are specified using the YAML markup language. A blueprint file is a list of

parts, each of which contains a unique identifier, a pose in the target structure, and any

dependencies the part may have or provide. Using this simple but robust description, an

arbitrarily complex structure can be specified.

As a simplified structure, we decided to build squares in an approach similar to how a

log cabin is constructed. Two parallel parts are stacked on alternating sides. Two layers of

63

F

wheels joints

robot actuators

Figure 8-2: System architecture and information flow. Each oval represents a separate ROS
node, and the arrows indicate messages being passed between nodes (or in some cases,
between robots).

64

I

Figure 8-3: Our test parts for the main algorithm, arranged in a simple two-layer "log
cabin" design. Each part has a gripping area and two diamond-shaped supports, one on
each end.

this structure are shown in Figure 8-3. The parts are constructed out of lightweight foam,

and consist of a long flat section with two diamond-shaped supports on either end and a

raised gripping area in the center.

To demonstrate our part supply algorithm, we will make use of styrofoam cubes to build

a staircase. For part heterogeneity, we have split the cubes into two groups and color-coded

them accordingly. The red cubes represent the finished "tops" of the staircase, whereas

the blue cubes represent the unfinished "foundation" of the staircase, perhaps made out of

concrete in a real assembly process. The assembled staircase with both types of parts can

be found in Figure 8-4.

65

Figure 8-4: Our test parts for the part supply algorithm. Parts are divided into top parts
(red) and foundation parts (blue). Each part is a styrofoam cube with slots cut into the top
to allow the youBots to grip them.

66

8.5 Navigation

A motion planner described in [36] is employed for rough navigation. It uses a combination

of a grid-based global planner and an equivalence class-based local planner to calculate a

smooth and safe path to the goal. A static map is employed to assign high-cost areas to the

part cache and target construction area, such that the robots only approach them as needed

to retrieve or place parts.

For any navigation task, the robots switch to a second controller upon reaching the

general vicinity of the goal. This controller uses simple proportional feedback control on

the base velocity given the position of the arm in order to precisely position the robotic

manipulator in the correct position for the next step in the task. This ensures maximum

accuracy and minimal errors over the entire assembly process.

8.6 Manipulation

In these experiments neither the parts nor the manipulators were equipped with any sensing

or vision. Additionally, the parts were not marked with the retroreflective markers. Instead,

the robots relied on the parts being accurately and precisely placed at a predetermined

source location. A precise handoff must also be executed between the delivery robot and

assembly robot. If a delivery robot does not carefully deliver or report the coordinates

of a component part, the assembly robot will be unable to retrieve it and place it on the

assembly.

To assist in manipulation, we added small sandpaper discs on the inside of the youBot

fingers. This prevented the parts from slipping or changing orientation. We also added

these sandpaper discs onto the colored cubes used in the part supply algorithm, to further

prevent slipping.

67

8.7 Ordering

As described in Chapter 5, our ordering relies on two DAGs G, and G, represented in the

assembly blueprint. These respectively indicate the physical dependencies and reachability

constraints of the target assembly. Given the structure of these graphs and a scoring func-

tion, we can weight individual parts by their contribution to the parallelism and efficiency

of the overall task. Assembly robots therefore choose the parts with the largest weight to

assemble next, ensuring that the robots are greedily opening up the most future work to be

done.

To save complexity and time over trials, the ordering of parts in the assembly process

is calculated prior to execution. In practice this could be performed either offline or online,

depending on the requirements of the task and the complexity of the assembly blueprint.

The algorithms and approaches are the same regardless of the choice.

8.8 Delivery

After retrieving a part from the source, a delivery robot begins listening to broadcasts com-

ing from assembly robots. These broadcasts contain each assembly robot's demanding

mass for each part type. The delivery robot chooses the assembly robot with the highest

demanding mass for the part type it has retrieved, and begins moving toward that particular

robot.

Once the delivery robot is within appropriate range of the assembly robot, it passes the

part. An image of this handoff occurring can be found in Figure 8-5. Again, since the parts

and grippers are not equipped with any sensors, the robot must be precise in the handoff.

8.9 Assembly

Finally, assembly is performed using the same precision techniques in order to produce a

stable, accurate placement of the individual parts. Assembly repeats until the structure is

complete or parts are no longer delivered via the delivery robots.

68

Figure 8-5: Image of a delivery robot performing a delivery. Since the robots do not have
vision and the assembly parts are not tracked by the Vicon system, the handoff and com-
munication must be precise.

8.10 Differences Between Theory and Implementation

Our experimental platform utilizes a full implementation of our theory, with differences as

noted in Table 8.1. The main differences are a result of the scale of the assembly task. Our

algorithms are generalized for use on an arbitrarily large number of robots. It is therefore

essential that communication be limited to neighbors, and that techniques such as gradient

descent are used to find local maximums of demanding mass. In our experiments, we use

a maximum of four robots. In this case all robots are each others' neighbors, so we relax

these explicit constraints. In our examples, the effect is the same as if the constraints were

still in place.

The other difference is that the part ordering is calculated offline instead of in real-time

during the assembly process. This was done for simplicity and consistency between trial

runs.

69

Aspect Theory JImplementation
Delivery Gradient descent to local as- Delivery to robot with highest

sembly robot with highest de- demanding mass
manding mass

Assembly Abstract assembly task Concrete assembly task: part
placement

Partitioning Discrete partitioning with hull Discrete partitioning with hull
vertex swap vertex swap

Ordering Part priority calculated in real- Part priority calculated offline
time based on dependencies, based on dependencies, reach-
reachability, part supply, and ability, and part supply
assembly time

Communication Neighbors only (single hop) All robots

Table 8.1: Summary
mentation.

of differences between our theoretical algorithms and system imple-

70

Chapter 9

Experiments

9.1 Two-Dimensional Experimental Results

9.1.1 Overall Results

Ten full assembly trials were attempted with two robots and a blueprint of a simple square

structure seen in Figure 8-3. Each trial consists of four delivery-assembly iterations. Each

iteration involves a delivery robot retrieving a part from the source, delivering it to the as-

sembly robot, and transmitting its location to the assembly robot; the assembly robot in turn

retrieves the part from the broadcast location, moves to the assembly location, and places

the part on the assembly. There are therefore many possible points of failure, especially

given that the parts are retrieved and manipulated without vision.

The results are summarized in Table 9.1. Assembly and delivery utilization is defined

as the percent of time that the assembly or delivery robot, respectively, was busy with a

task as opposed to waiting.

Over all ten trials, there was only one failure. This occurred when the assembly robot

dropped a part after retrieving it from delivery but before placement on the final structure.

This was likely due to a low battery which caused there to be insufficient force in the

gripper; the battery was replaced for the last two trials and no further issues were seen.

In the remaining nine trials, there were no significant failures. All part retrievals and

handoffs were performed successfully. There were no dropped parts, collisions between

71

Trial Runtime Assembly Delivery Success
(M:SS) utilization utilization (Y/N)

1 6:04 83.4% 64.5% Y
2 5:59 86.5% 65.9% Y
3 6:09 80.7% 64.6% Y
4 6:22 86.5% 63.7% Y
5 6:24 87.8% 63.6% Y
6 5:58 86.8% 63.7% Y
7 6:05 88.3% 65.6% Y
8 6:20 87.0% 66.2% N
9 6:12 87.6% 64.4% Y
10 6:17 85.9% 65.1% Y

Avg 6:11 86.1% 64.7% 90%

Table 9.1: Summary of two-robot assembly trials for a square.

robots, or inadvertent contact with any parts. The structure was completed in all nine trials.

9.1.2 Runtime and Efficiency

The average runtime over the trials was 6 minutes and 11 seconds, with a standard deviation

of 9.6s. An activity log for a typical run can be found in Figure 9-1. The solid bars indicate

when each robot was busy with a task, and the lack of a bar indicates that the robot was

waiting. The chart shows that the assembly robot was busy for nearly the entire assembly

process, whereas the delivery robot was busy for significantly less time. Indeed, over all

trials the average assembly utilization was 86.1% whereas the average delivery utilization

was 64.7%. This suggests that the optimal assembly to delivery robot ratio for this task

is roughly two to three, although it is unlikely that the marginal utilization of additional

robots is strictly linear. Additional testing would need to be performed in order to validate

a choice of ratio.

Surprisingly, there is very little correlation between the assembly utilization and deliv-

ery utilization (r=0.08). This suggests that the efficiency of one robot is not impacted as

much by how much it is waiting for another robot to finish a task, but is perhaps influenced

by how quickly it is able to finish its own work - and therefore how much it must wait for

the next step in the process.

72

Assembly
Robot

Delivery
Robot

0 50 100 150 200 250 300 350 400

Time (s)

Figure 9-1: Robot activity over time in trial 4. Solid blocks of color indicate when a robot
was busy with a task, as opposed to idle.

Runtime Assembly Delivery Success
(M:SS) utilization utilization (Y/N)

1 19:32 83.1% 58.6% Y
2 20:09 81.3% 69.7% Y
3 22:17 84.5% 51.5% Y

Avg 20:39 83.0% 59.9% 100%

Table 9.2: Summary of two-robot assembly trials for a tower.

9.2 Three-Dimensional Experimental Results: Two Robots

9.2.1 Overall Results

Our next task introduces a new blueprint to investigate the robustness of the system for

constructing a three-dimensional structure. The new blueprint uses the same "log cabin"

style, but has six layers instead of two. An example of this structure can be seen in figure

Figure 9-2. This new assembly process requires a total of twelve delivery-assembly itera-

tions per trial. There can also be stability complications, as parts form the foundation for

more parts; an early misplacement can cause the entire structure to fall.

Otherwise, all aspects of the assembly process are the same as described in Section 9.1.

The results from the three-dimensional construction are summarized in Table 9.2.

Over all three trials, there were no significant failures. All part retrievals and handoffs

were performed successfully. There were no dropped parts or collisions between robots. A

few times the assembly robot brushed the structure, but in none of the trials were the parts

73

Figure 9-2: An assembly robot places the final part on the three-dimensional tower. The
tower is composed of six layers of the log cabin construction, or three of the simple squares
from Section 9.1. This tower is the result of trial #1 from Table 9.2.

74

Trial Runtime Assembly 1 Assembly 2 Delivery 1 Delivery 2 Success
(M:SS) utilization utilization utilization utilization (Y/N)

1 9:16 84.8% 90.1% 95.4% 86.3% Y
2 8:53 88.9% 87.3% 96.6% 96.1% Y
3 8:46 89.9% 88.7% 93.0% 94.2% Y
4 10:29 83.3% 86.8% 90.9% 94.4% Y
5 12:34 87.8% 87.9% 82.0% 92.7% Y
6 10:33 87.2% 87.9% 96.7% 93.9% Y
7 8:42 89.7% 87.2% 97.9% 94.0% Y
8 11:23 93.0% 84.9% 81.5% 93.7% N

Avg 10:05 88.1% 87.6% 91.8% 91.9% 87.5%

Table 9.3: Summary offour-robot assembly trials for a tower.

knocked out of place or moved in such a way that compromised the structure.

trials, the structure was stably completed.

In all three

9.2.2 Runtime and Efficiency

At 20:39, the average runtime over the trials was roughly three times that for the two-

dimensional square, as expected. Delivery and assembly utilization were also similar.

There were not enough trials to comment on overall trends or correlations.

9.3 Three-Dimensional Results: Four Robots

9.3.1 Overall Results

To increase the complexity of our task, we then constructed the tower using a total of four

robots. Two robots were designated as delivery robots, and the other two as assembly

robots. All other aspects of the assembly process were the same. The results of these trials

are summarized in Table 9.3.

In all of the trials except the last, the structure was completed successfully with no

errors. On the last trial, there was a timing issue where both assembly robots attempted

to place parts simultaneously and the parts collided. The rest of the assembly process

continued as planned, although the two collided pieces had to be re-placed manually to

support the remainder of the structure. This may have also led to variability in the metrics

75

for that trial, as both assembly robots experienced difficulty placing these parts accurately

due to the other robot's movements. The delivery robots needed to wait for this interaction

to finish before delivering more parts, decreasing their utilization and lengthening the time

of the overall process.

9.3.2 Runtime and Efficiency

The average runtime for these trials was less than half than that for the two-robot trials,

indicating that there must have been an increase not only in parallelism but also in uti-

lization. Indeed, average assembly utilization across both robots was marginally higher at

87.9% and average delivery utilization was much higher at 92.8%. This suggests that the

relationship between number of robots and the amount of work is not simply linear, but

perhaps more complicated. It would seem that for large-scale assemblies the number of

delivery robots should be roughly equal to the number of assembly robots, with perhaps

slightly more assembly robots to raise the assembly utilization above 90%.

9.4 Experimental Results with Part Unavailability

In order to test our part unavailability algorithm, we used a blueprint of a simple set of

stairs. There are three steps, and each step has one, two, or three parts respectively. The

top part on each step is a "finished" top part, which we represent with a red cube. All of

the cubes underneath top parts are "foundation" parts, represented with a blue cube.

We ran three trials of the assembly process in which parts did not run out. As can be

seen in Figure 9-3, the assembly robot first completes the shortest stair, then the middle

stair, and then the third stair. We then ran three trials where after the assembly robot places

the first red part, the supply of red parts runs out. The assembly robot adapts and places

all of the foundation parts, and then when the red parts are resupplied the assembly robot

completes the structure. This sequence can also be found in Figure 9-3.

A summary of our results for the two sets of trials can be found in Tables 9.4 and 9.5,

respectively. As can be seen, there was no significant difference in time or utilization

76

Figure 9-3: Assembly sequence when no parts run out (top three images) and when the
top/red cubes run out after one has been placed (bottom three). Even with the part supply
running out, the robots continue to work and ultimately complete the structure after part
supply has returned.

Trial

1
2
3

Avg

Runtime Assembly
(M:SS) utilization

8:44 91.5%
8:56 88.6%
8:35 87.7%
8:45 89.2%

Delivery
utilization

96.5%
95.8%
94.8%
95.7%

Table 9.4: Summary
ran out.

of two-robot assembly trials of stairs. In these trials, part supply never

Runtime Assembly Delivery
r (M:SS) utilization utilization

1 8:18 87.3% 94.9%
2 8:55 87.4% 98.0%
3 9:28 89.2% 97.0%

Avg 8:54 88.0% 96.6%

Table 9.5: Summary of two-robot assembly trials of stairs. In these trials, part supply of the
red parts ran out after the first placement, but was resupplied after three more placements.

77

I

between the two trials. This indicates that the assembly robots adequately adapted to the

loss of part supply and did not lose efficiency.

9.5 Handoff Experimental Results

In our later experiments, deliveries were achieved by direct handoff between the delivery

robot and assembly robot. That is, instead of setting down the part during the delivery, the

delivery robot presented the part to the assembly robot that then retrieved it directly from

the delivery robot manipulator.

Over our recorded trials, there were 114 attempts of such a handoff with the log cabin

parts, 112 of which succeeded. This is a success rate of 98.2%. Assuming that each handoff

is an independent event with this probability of failure, the probability of a successful run

(no errors in handoff) are 83.8%.

The first failure was due to high network latency, such that the location of the delivery

robot was miscommunicated to the assembly robot. The second failure was due a loose

grip on the part by the assembly robot; while the assembly robot navigated to the target

location, the orientation of the part slipped and was therefore not placed correctly.

78

Chapter 10

Conclusion and Future Work

10.1 Summary of Contributions

In this work, we presented a number of algorithms for the efficient assembly of structures

using a distributed robotic system. In order to equally partition work across a team of

robots, we first presented a distributed algorithm for equal mass partitioning. It begins

with a Voronoi partitioning of the points, and then tests swapping vertices between the

hulls of neighboring partitions to maximize a heuristic function. The algorithm is fully

decentralized, and relies only on local knowledge to perform these swaps. It is guaranteed

to converge to a local maximum.

We then presented an algorithm for the ordering of assembly tasks to increase the par-

allelism and efficiency of the assembly process. It considers the physical dependency and

reachability constraints of an assembly, and uses this information with the help of a scoring

function to weight parts according to their priority in the assembly process. These weights

can then be used in addition to hard constraints to develop an ordering of operations. The

algorithm is guaranteed to converge to the target structure if possible, and exhibits desirable

efficiency qualities.

Using this algorithm as a base, we then presented adaptations to those algorithms to

consider further implications of a real-world assembly scenario. In a situation in which

part supply is limited or becomes unavailable, we modified our ordering algorithm to take

this into consideration and reweight assembly tasks so as to maximize parallelism once the

79

parts are restored. We also considered the case where assembly operations are non-uniform

in the amount of time required to complete them. Our original algorithm was ignorant of

true time (instead representing time in terms of algorithm steps), so the modification adapts

it to remain efficient in the face of differing time constraints. Both adaptations to these

algorithms retain the desirable qualities of the original ordering algorithm, including its

guaranteed convergence if the structure is possible to be completed.

Under the same paradigms and assumptions, we also constructed an algorithm for the

efficient disassembly of structures using a team of heterogeneous robots. Many of the

techniques and qualities of the original algorithm are preserved, but require small tweaks

in order to be appropriate in the context of disassembly. Again, convergence is preserved.

To demonstrate the correctness and applicability of our algorithms, we finally presented

an experimental testbed on which we implemented our algorithms. The platform consisted

of two to four robots, divided into two teams for assembly and delivery. It took advantage

of the communications abilities inherent in the Robot Operating System, but built on top

of that our partitioning and ordering algorithms, as well as the high-level planning and

actuation required for actual assembly tasks. We performed a number of experiments with

this platform, and presented the results as validation of our algorithms.

10.2 Future Work

Because of the multitude of technological challenges that arise from a full robotic assembly

system, there remains a large amount of work in this area.

For the most part, our system ignored the challenge of perception by utilizing a Vicon

motion capture system. In practice, perception would have to be an important module of

any robotic assembly system. Detecting the assembly site, component parts, and target

structures, as well as other robots or even humans on the factory floor, would all be crucial

tasks. Additionally, specialized perception would likely be needed to monitor the specific

assembly operations themselves to identify when they are complete or if they need to be

repeated. Hammering a nail, for example, would require perception to know when the nail

was flush with the component.

80

The assembly or manipulation event itself was also largely unexplored by this work.

We assumed that assembly tasks were relatively simple and atomic, although not neces-

sarily uniform in time requirements. In practice assembly operations could be arbitrarily

complicated or multi-part. The grasping, maneuvering, and sensing operations involved in

performing these tasks can be equally complicated or specialized.

Adapting to changes or unexpected events in the assembly process remains an active

area of research. A failed assembly operation, modifications to the assembly by a human

on a factory floor, or accidental damage to the target structure are all events that could occur

at an active assembly site. A robust robotic platform would need to detect, analyze, and

respond adequately to these situations.

We also imagine humans will play a large part in the assembly process, largely due

to a dichotomy of skill. Humans are, by their nature, better at planning and/or performing

certain tasks than robots, and vice-versa. A truly efficient and robust robotic platform could

recognize when tasks require human input or assistance, signal for this help, and wait until

it has been completed to continue. The addition of humans into the assembly process also

involves a number of other considerations, including workplace safety and communication

protocols.

Even within the context of assembly ordering, there is still much work to be done.

Although this work attempted to analyze some of the complexities of an assembly task that

could factor into efficient partitioning and ordering of assembly tasks, there are many other

areas where improvements could be made. For example, if part supply is not currently

extinguished but will be at a known time in the future, proper planning would account for

this fact and utilize it in the ordering algorithm.

As these challenges continue to be solved, we look forward to the further integration of

robotics into industrial assembly for a safer, more efficient, and more robust process.

81

82

Bibliography

[1] U. B. of Labor Statistics. (2011, Apr.) May 2010 national occupational employment and wage
estimates united states. [Online]. Available: http://www.bls.gov/oes/current/oes-nat.htm

[2] - . (2011, Aug.) Census of fatal occupational injuries (cfoi) - current and revised data. [Online].
- Available: http://www.bls.gov/iif/oshcfoil.htm

[3] - . (2011, Aug.) Census of fatal occupational injuries - archived data. [Online]. Available:
http://www.bls.gov/iif/oshcfoiarchive.htm

[4] D. Stein, T. R. Schoen, and D. Rus, "Constraint-aware coordinated construction of generic structures,"
in Proc. of IEEE/RSJ International Conference on Intelligent Robots and Systems, 2011.

[5] G. Theraulaz and E. Bonabeau, "Coordination in distributed building," Science, vol. 269, no. 5224, pp.
686-688, 1995. [Online]. Available: http://www.sciencemag.org/content/269/5224/686.abstract

[6] J. Werfel and R. Nagpal, "International journal of robotics research," Three-dimensional construction
with mobile robots and modular blocks, vol. 3-4, no. 27, pp. 463-479, 2008.

[7] S. E. Fahlman, "A planning system for robot construction tasks," Artificial Intelligence, vol. 5, no. 1, pp.
1 - 49, 1974. [Online]. Available: http://www.sciencedirect.com/science/article/pii/0004370274900083

[8] L. Matthey, S. Berman, and V. Kumar, "Stochastic strategies for a swarm robotic assembly system." in
Proceedings of IEEE International Conference on Robotics and Automation. IEEE, 2009, pp. 1953-
1958.

[9] K. Petersen, R. Nagpal, and J. Werfel, "Termes: An autonomous robotic system for three-dimensional
collective construction," in Proceedings of Robotics: Science and Systems, Los Angeles, CA, USA,
June 2011.

[10] N. Ayanian and V. Kumar, "Decentralized feedback controllers for multiagent teams in environments
with obstacles," Robotics, IEEE Transactions on, vol. 26, no. 5, pp. 878 -887, oct. 2010.

[11] S. Berman, A. M. Halisz, M. A. Hsieh, and V. Kumar, "Optimized stochastic policies for task allocation
in swarms of robots," IEEE Transactions on Robotics, vol. 25, no. 4, pp. 927-937, 2009.

[12] M. A. Hsieh and J. Rogoff, "Complexity measures for distributed assembly tasks," in Proceedings of
the 2010 Performance Metrics for Intelligent Systems Workshop (PerMIS09), Baldimore, MD, USA,
Sept 2010.

[13] A. Nease and E. Alexander, "Air force construction automation/robotics," Automation in Construction,
vol. 3, no. 1, pp. 93 - 98, 1994, ice:titleZSpecial Issue: 10th ISARC, May 24-26, Houston, Texas, USA
i/ce:titleZ. [Online]. Available: http://www.sciencedirect.com/science/article/pii/092658059490037X

[14] H. Z. Chris Parker and R. Kube, "Blind bulldozing: Multiple robot nest construction." in Proc. of
IEEE/RSJ International Conference on Intelligent Robots and Systems, Oct. 2003.

[15] S. Y Lee, K. Y. Lee, S. H. Lee, J. W. Kim, and C. S. Han, "Human-robot cooperation control
for installing heavy construction materials," Auton. Robots, vol. 22, no. 3, pp. 305-319, Apr. 2007.
[Online]. Available: http://dx.doi.org/10.1007/s10514-006-9722-z

83

[16] C. Schuil, M. Valente, J. Werfel, and R. Nagpal, "Collective construction using lego robots," in
proceedings of the 21st national conference on Artificial intelligence - Volume 2, ser. AAAI'06. AAAI
Press, 2006, pp. 1976-1977. [Online]. Available: http://dl.acm.org/citation.cfm?id=1597348.1597535

[17] A. Stroupe, T. Huntsberger, A. Okon, H. Aghazarian, and M. Robinson, "Behavior-based multi-robot
collaboration for autonomous construction tasks," in International Conference on Intelligent Robots
and Systems, 2005.

[18] S. kook Yun and D. Rus, "Optimal distributed planning for self assembly of modular manipulators,"
in Proc. of IEEEIRSJ IEEE International Conference on Intelligent Robots and Systems, Nice, France,
Sep 2008, pp. 1346-1352.

[19] S. kook Yun, D. A. Hjelle, H. Lipson, and D. Rus, "Planning the reconfiguration of grounded truss
structures with truss climbing robots that carry truss elements," in Proc. ofIEEE/RSJ IEEE International
Conference on Robotics and Automation, Kobe, Japan, May 2009.

[20] A. Bolger, M. Faulkner, D. Stein, L. White, S. kook Yun, and D. Rus, "Experiments in decentralized
robot construction with tool delivery and assembly robots," in Proc. of IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems, 2010.

[21] M. Erwig, "The graph voronoi diagram with applications," Networks, vol. 36, no. 3, pp. 156-163, 2000.
[Online]. Available: http://dx.doi.org/10.1002/1097-0037(200010)36:3;156::AID-NET2Z3.0.CO;2-L

[22] J. Cort6s, S. Martinez, T. Karatas, and F. Bullo, "Coverage control for mobile sensing networks,"
Robotics and Automation, IEEE Transactions on, vol. 20, no. 2, pp. 243-255, 2004.

[23] M. Schwager, J.-J. Slotine, and D. Rus, "Decentralized, adaptive control for coverage with networked
robots," in Robotics and Automation, 2007 IEEE International Conference on, april 2007, pp. 3289-
3294.

[24] M. Pavone, E. Frazzoli, and F. Bullo, "Distributed policies for equitable partitioning: Theory and appli-
cations," in Decision and Control, 2008. CDC 2008. 47th IEEE Conference on, dec. 2008, pp. 4191-
4197.

[25] - , "Distributed algorithms for equitable partitioning policies: Theory and applications," in IEEE
Conference on Decision and Control, Cancun, Mexico, Dec 2008.

[26] H. Maini, K. Mehrotra, C. Mohan, and S. Ranka, "Genetic algorithms for graph partitioning and incre-
mental graph partitioning," in Proceedings of Supercomputing '94. ACM Press, 1994, pp. 449-457.

[27] R. Leland and B. Hendrickson, "An empirical study of static load balancing algorithms," 1994, pp.
682-685.

[28] J. W. Durham, R. Carli, P. Frasca, and F. Bullo, "Discrete partitioning and coverage control with gossip
communication," ASME Conference Proceedings, vol. 2009, no. 48937, pp. 225-232, 2009. [Online].
Available: http://link.aip.org/link/abstract/ASMECP/v2009/i48937/p225/s1

[29] S. kook Yun, M. Schwager, and D. Rus, "Coordinating construction of truss structures using distributed
equal-mass partitioning," in Proc. of the 14th International Symposium on Robotics Research, Lucem,
Switzerland, August 2009.

[30] S. kook Yun and D. Rus, "Distributed coverage with mobile robots on a graph Locational optimization
and equal-mass partitioning," in Workshop on the Algorithmic Foundations of Robotics, 2010.

[31] S. Yun and D. Rus, "Adaptation to robot failures and shape change in decentralized construction."
Institute of Electrical and Electronics Engineers, 2010.

[32] P. Yiu, "The uses of homogeneous barycentric coordinates in plane euclidean geometry," International
Journal of Mathematical Education in Science and Technology, vol. 31, pp. 569-578, 2000.

[33] F. Preparata and S. Hong, "Convex hulls of finite sets of points in two and three dimensions," in Com-
munications of the ACM, 1977.

84

[34] A. Bolger, "Coordinated part delivery using distributed planning," Master's Thesis, Massachusetts In-
stitute of Technology, CSAIL Distributed Robotics Laboratory, Jun. 2010.

[35] Locomotec. (2012, Jan.) Kuka youbot store. youbots. [Online]. Available: http://www.youbot-
store.com/category/53-youbots.aspx

[36] R. A. Knepper, S. S. Srinivasa, and M. T. Mason, "Hierarchical planning architectures for mobile ma-
nipulation tasks in indoor environments," in Proceedings of International Conference on Robotics and
Automation, May 2010.

85

