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Abstract

Comparing the set of supergravity theories allowed by low-energy consistency condi-

tions with the set of string vacua provides useful insights into quantum gravity and

string theory. In fact, such a "landscape analysis" for ten-dimensional supergravity

theories was at the core of the exciting series of developments that is now referred

to as the first superstring revolution. In this thesis, we discuss the lessons we learn

about quantum supergravity and string theory by carrying out such an analysis for

the space of six-dimensional supergravity theories with minimal supersymmetry.

We first review six-dimensional supergravity theories and explain why the space of

these theories is an ideal place to carry out the landscape analysis. We then describe

how anomaly constraints bound the space of consistent theories, i.e., we map the

space of theories T that satisfy known low-energy consistency conditions. We then

go on to describe string constructions that give six-dimensional string vacua with

minimal supersymmetry, i.e., we map the space of theories S c T that come from

string vacua. Finally, we compare the space of theories T and S and explore its

implications.
We first find that there is a large discrepancy between T and S. Among the

set T - S, we identify some theories that are potentially new string vacua, but also

identify many theories that cannot be embedded in any known string vacua. These

theories may potentially be ruled out by yet undiscovered low energy constraints.

Understanding these theories is an important step in addressing the question of string

universality in six dimensions. We also find some surprising equalities that hold for

Calabi-Yau threefolds that follow from demanding that F-theory string vacua should

be consistent.

Thesis Supervisor: Washington Taylor
Title: Professor of Physics
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Chapter 1

Introduction

1.1 Motivation

It is by now well established that our universe can be described using the formalism of

quantum field theory1 if we ignore gravity. Another way to state this is to say that we

know how to describe the nature of the three fundamental forces - electromagentic,

weak and strong forces - by the standard model2 in the formalism of quantum

field theory. It has been a long-standing problem how to incorporate gravity into

this picture. In fact, gaining a full understanding of quantum gravity is one of the

principal objectives of theoretical physics research today. This objective turns out to

be a surprisingly difficult task, that seems far out of reach at the moment.3

Nevertheless, there has been amazing progress in understanding quantum gravity.

One framework that has improved our understanding is string theory [13, 14, 15, 16].

String theory is formulated by assuming that the fundamental objects in the universe

are strings propagating in space-time. It was first conceived as an effective theory of

strong interactions, but was subsequently realized to have much richer structure than

'We have listed a far from extensive collection of standard texts on the subject in the bibliography
[1, 2, 3, 4, 5, 6, 7, 8].

2A standard textbook on the standard model is [9].
3Why it is hard to formulate a quantum theory of gravity in and of itself is a fascinating subject,

that we will not be able to do justice to in this thesis. We have listed an incomplete subset of some
recent discussions in the bibliography. A review of some general challenges that quantum gravity
presents can be found in [10, 11, 12].
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intended.4 String theory ultimately found success as an ultraviolet complete theory

with quantum gravity, that does not have many of the problems that arise when

one attempts to quantize gravity in a more conventional way. For example, string

theory does not have issues with regularization that plague quantum gravity theories.

Also the theory contains non-perturbative objects that account for the microscopic

structure of black holes [18, 19, 20, 21, 22, 23]. Furthermore, string theory provides

a framework to compute physical observables in various perturbative limits.

We cannot help but mention that there have been some surprising developments

- inspired by string theory - that have revolutionized our understanding of quan-

tum gravity more recently. We now have a sharper picture of how to think about

gravity in asymptotically Anti-de Sitter space through the "AdS/CFT (Anti-de Sit-

ter/Conformal Field Theory) correspondence [24, 25, 26, 27]," or rather the "QG/QFT

(Quantum Gravity/Quantum Field Theory) correspondence [28]." In this framework,

a bulk quantum gravity theory living in Anti-de Sitter space is defined as a boundary

quantum field theory. Such a correspondence highlights the holographic nature of

quantum gravity [29, 30, 31], which has been, and, to some extent, still is one of

the mysteries of quantum gravity. There also are many exciting attempts that aim to

understand gravity beyond Anti-de Sitter space inspired by the success of AdS/CFT,

that have yet to be as successful as is predecessor. 5

The goal of this thesis is conservative compared to these daring attempts to de-

velop a new framework for quantum gravity. Here, we build on the simple observation

that string theory is - despite the fact that there is much room for improvement -

exceptionally successful in accounting for the microscopic structure of quantum grav-

ity. For example, Strominger and Vafa famously reproduced the Bekenstein-Hawking

entropy for a class of five-dimensional extremal black-holes by counting the micro-

scopic states in string theory [21]. Also, the most tractable context of the AdS/CFT

correspondence is given by the duality between type IIB string theory on AdS 5 x S5

4A nice account on the early history of string theory by one of its principal architects can be
found in [17].

5We have compiled a far from complete list of some work along these lines in the bibliography
[32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52].
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and N = 4 super Yang-Mills theory [24, 25, 26, 27]. Such exceptional success of

string theory leads one to wonder whether all quantum gravity theories that have a

sensible microscopic description are secretly string theories [53, 54]. This is the cen-

tral question we attempt to address in this thesis. Since this question is so important

to us, let us dignify it with a box and a label:

(Q') Are all consistent quantum gravity theories, string theories?

Having written down the question, a little thought reveals that question (Q')

is not a well-posed one, principally due to our ignorance of fundamental aspects of

quantum gravity and string theory. Let us break down the ill-definedness of question:

1. We do not understand how to define "quantum gravity theories."

2. We do not know how to formulate a complete definition of "consistency" in

quantum gravity theories.

3. We do not know how to rigorously define "string theory."

4. We do not understand how to define the word "is," i.e., how to define the

equivalence of a quantum gravity theory to a string theory.

Despite of the state of our ignorance, it is actually possible to repose and explore

this question in a meaningful way. Such efforts were carried out in many different

contexts and have helped us gain new insight into quantum gravity and string theory.6

Arguably the most impactful among such efforts was made in the mid-80's that lead

to ground breaking work that we now -refer to as the "first superstring revolution."

The problem underlying the developments of the first superstring revolution was a

version of the unapproachable question (Q') modified in the following way:

1. Although a "quantum gravity theory" is not well defined one can ask definite

questions about the low-energy data - such as the massless particle spectrum

- of a given quantum gravity theory.

6We have compiled an incomplete list of such work in the bibliography [53, 54, 55, 56, 57, 58, 59,
60, 61, 62, 63, 64, 65].
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2. Although the complete set of consistency conditions of a quantum gravity theory

could not be formulated, it is sensible to expect that the low-energy data of

consistent theories should obey known low-energy consistency conditions.

3. Although we do not understand "string theory" we understand how to define it

perturbatively in certain regimes, i.e., we do have a knowledge of various string

vacua.

4. Although we do not understand how to show that a string theory and a quantum

gravity theory are equivalent, we can ask whether a quantum gravity theory with

given low-energy data can be embedded into string vacua.

The modified problem is now phrased:

(Q) Can all low-energy data of quantum gravity theories satisfying known

low-energy constraints be embedded into known string vacua?

This question is still a very broad one, in that we do not have a full knowledge of

all string vacua. Also, low-energy constraints turn out to be stronger when further

constraints are placed on quantum gravity theories that one would like to investigate.

The question implicit in the work of the protagonists of the superstring revolution

was the following one:

(Q1o) Can all massless particle spectra of ten-dimensional A = 1 quantum

gravity theories that satisfy known low-energy constraints be embedded into

known string vacua?

The answer to this seemingly very restricted question had surprisingly deep im-

plications on quantum gravity and string theory. The crucial work that provided

the breakthrough addressing this problem was [55]. In this work, Alvarez-Gaum6

and Witten computed gravitational/gauge and mixed anomalies for chiral theories

in various dimensions, and in particular, showed that any ten-dimensional NA = 1
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supergravity theory has a non-vanishing anomaly at one-loop. Anomalies [66, 67],

which were originally discovered by Adler, Bell and Jackiw, are quantum effects that

break symmetries that are present in the classical theory. The existence of gravita-

tional/gauge or mixed anomalies in a quantum theory implies that there is a violation

of diffeomorphism/gauge invariance, which is needed for consistency7 .

Ten-dimensional K = 1 supergravity has very restricted structure, and its massless

spectrum can be parameterized by its gauge group g. At the time when the results of

Alvarez-Gaume and Witten were presented, it was known that type I string theory,

whose massless spectrum has SO (32) gauge symmetry, is a consistent theory. This

led Green and Schwarz to discover the Green-Schwarz mechanism [56] at play in type

I string theory in which a tree level term cancels the anomalies generated at one-loop

computed by Alvarez-Gaum6 and Witten. Green and Schwarz also found that in

order for this mechanism to work, the gauge algebra could be only one of SO(32),

E8 x E8, E8 x U(1) 24 8 and U(1) 49 [14].

Motivated by this observation, Gross, Harvey, Martinec and Rohm discovered

the E8 x E8 and SO(32) heterotic string theories [57, 58, 59], whose role in string

theory, especially in string phenomenology, is hard to overstate. The E8 X U(1)2

and U(1)4 96 theories were not an active topic of research for a while, but believed

to be pathological.8 Adams, de Wolfe and Taylor were able to show more recently

that these theories are inconsistent by examining the supersymmetry of these theories

closely [69].

Now we have an answer for question (Qio), and it is "yes." The impact of this

answer is clear by how we refer to the series of events that arrived at this conclusion.

For one, this is strong evidence - in fact, as close to a proof as one can expect

in quantum gravity - that supergravity in ten-dimensions must be a string theory.

Put in more simple terms, if we lived in a ten-dimensional universe with quantum

supergravity, we would not be having much of a debate on whether string theory was

the underlying theory of our universe.

7For more discussion on this point, consult [55].
8 See, for example, [68].
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It would be ideal if we could duplicate the success of this approach on quantum

gravity - which we refer to as the "landscape analysis" throughout this thesis - in

four dimensions. At the present, this goal is out of reach due to the fact that anomaly

constraints - which serve as the principal low-energy constraint in landscape analyses

- are much weaker in four dimensions. In fact, pure gravitational anomalies exist

only in (4k + 2) dimensions [55]. We may, therefore, be less ambitious and ask the

question (Q) in six dimensions:

(Q6) Can all massless particle spectra of six-dimensional N = 1 quantum

gravity theories that satisfy known low-energy constraints be embedded into

known string vacua?

As we explain in the next section, this turns out to be an interesting question to ask.

Not only were we able to learn much about quantum gravity and string theory by

pursuing (Q6), but were also able to identify, what we believe to be important puzzles

that stand in the way of answering it. The objective of this thesis is to present these

results and puzzles.

1.2 The Landscape Analysis and Six Dimensions

Before presenting the results and challenges that we have encountered through study-

ing the space of six-dimensional supergravity theories, it is useful set up a framework

in which to understand them. In this section, we set up the language of the "land-

scape analysis"9 and explain why the space of six-dimensional supergravity theories

with minimal supersymmetry is fertile ground for investigation using this method.

9We note that the term "landscape" used in this thesis is different from the conventional use in
the string theory literature. Conventionally, the word "string landscape" is used to describe semi-
realistic vacua of string theory, and the term "landscape analysis" refers to a statistical analysis of
this space. In the context of this thesis, by "landscape" we refer simply to the space of theories
under investigation, and the "landscape analysis" involves classifying the individual theories in this
space, as we explain further throughout the course of this section. We have included a small sample
of the string landscape literature in the bibliography [70, 71, 72, 73, 74, 75]. An extensive review on
the topic can be found in [76] and [77].
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Figure 1-1: The landscape of quantum gravity theories. The crux of the landscape analysis
is to identify the "intermediate regime," by which we denote the theories that are apparently
consistent, but that are not known string vacua.

A useful picture to keep in mind when addressing a question of the type (Qx) on

some space of theories' 0 of interest X is figure 1-1. One can draw four boundaries

in X - the boundary of apparently consistent theories, consistent theories, string

vacua and known string vacua. By saying a theory - or rather, low energy data

of a given theory - is "apparently consistent" we mean that it satisfies all known

consistency conditions. The two intermediate boundaries - the boundary of consis-

tent theories, and the boundary of string vacua - are actual boundaries in "theory

space" that are, for most interesting X, boundaries that we do not have access to at

the moment. Meanwhile, the outermost boundary and the innermost boundary are

artificial boundaries that are defined by our present knowledge, but are accessible to

us.

The landscape analysis can be summarized in two steps:

1. For given theories X, identify the theories in the "intermediate regime" of the

diagram in figure 1-1, i.e., theories that are apparently consistent, but not

known string vacua. This process itself also involves two steps.

10The correct term to use in place of "theory" would be "low-energy data of the theory" or
to be more specific, "massless spectrum and low-energy parameters of the theory," as elaborated
previously. For most instances in this thesis, we have chosen concision over precision and have used
the word "theory" in most places these other terms could have been used.
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* First, use currently known consistency conditions to identify theories that

are apparently consistent.

* Second, identify the known string vacua among these apparently consistent

theories.

2. Understand the intermediate regime.

Identifying the intermediate regime lies at the heart of the landscape analysis, as

the theories in the intermediate regime are either one of the following three:

1. Previously undiscovered string vacua.

2. Consistent gravity theories that are not string theories.

3. Secretly inconsistent theories that violate consistency conditions that are yet

unknown to us.

Hence, the theories in the intermediate regime provide us with a window to previously

uncharted territory in the "landscape" of gravity theories. By closely examining

theories, one would hopefully be able to achieve one or more of the following:

1. Discover new string vacua.

2. Find new consistent gravity theories that are not embeddable in string theory.

3. Find new constraints on gravity theories.

Notice that the developments of the first superstring revolution can be phrased in

terms of the landscape analysis picture. Before [55, 56], the picture of the landscape

of ten-dimensional N = 1 supergravity theories was given by figure 1-2(a) - it was

understood that type I superstring theory was a consistent theory of gravity, but it

was not known whether other theories were consistent or not. After [55, 56], the

picture of the landscape changed into figure 1-2(b), i.e., the papers [55, 56] identified

the apparently consistent theories, and thereby identified the intermediate regime.

The work [57, 58, 59] confirmed that E8 x E8 was a consistent theory of gravity,

hence changing the picture to 1-2(c). In the landscape analysis language, this work
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(a) Before 1984

(c) Circa 1985 (d) Circa 2010

Figure 1-2: The change of the landscape of ten-dimensional K 1 supergravity
theories throughout the years.

incorporated the E8 x E8 supergravity theory into known string vacua. The work [69]

showed that the two gauge groups U(1) 496 and E8 x U(1) 248 were inconsistent, hence

obtaining the final picture of the landscape given by figure 1-2(d). Now there is no

intermediate regime in the landscape of ten-dimensional supergravity theories with

minimal supersymmetry.

The landscape analysis has also been successfully carried out for six-dimensional

supergravity theories with K = (2, 0) supersymmetry" in [60]. In this work, gravi-

tational anomalies are used to identify the unique consistent massless spectrum that

the theory could have. This spectrum precisely agrees with the massless spectrum

of type IB string theory compactified on a K3 manifold. This result shows that

all six-dimensional K = (2, 0) supergravity theories could be embedded into string

theory.

"Six-dimensional theories are chiral and hence supersymmetry can be extended in different di-
rections. N = (2, 0) denotes that the two supercharges of the extended supersymmetry are of the
same chirality.
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The space of six dimensional supergravity theories with minimal supersymmetry

which we denote as (1, 0) supersymmetry - is an ideal place to extend the land-

scape analysis. This is because while there are strong anomaly constraints that give

us a handle on the space of apparently consistent theories [62, 63, 65], the "volume"

of the space of apparently consistent theories is quite large. For example, a wide

variety of gauge groups and matter content are allowed in the massless spectrum of

the theory. At the same time, six-dimensional (1, 0) string vacua are well-studied and

shown to be quite diverse." Therefore we have a rich, diverse, and also relatively

well-controlled landscape of theories to probe in six-dimensions.

It turns out that there is a rich intermediate regime in this landscape. Among the

theories in the intermediate regime, some are interesting candidates for new string

vacua while some seem to provide circumstantial evidence for undiscovered low-energy

constraints. One would be able to gain a better understanding of the string landscape

and quantum gravity in general by either assimilating these theories into string vacua

or by ruling them out through the discovery of new consistency conditions. Knowledge

acquired by this process have practical implications on four-dimensional string model

building and phenomenology - the discovery of new string vacua provides new tools

for constructing string models, while new consistency conditions provide additional

handles on model building.

1.3 Summary of Results and Outline of Thesis

Now that we have set up the context of our investigation, we explain the main results

of this thesis - based on the works [115], [116] and [117] - and outline its presen-

tation in this section. Before summarizing the results, let us present some basic facts

about six-dimensional (1, 0) supergravity theories.

A low-energy six-dimensional (1, 0) supergravity theory can be parameterized by

"There is extensive literature on six-dimensional (1, 0) string vacua as these string models have
played an important part in understanding various string dualities in the mid-90's. A small sample
of the vast literature is given in the bibliography [61, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89,
90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112].
Further references can be found in the reviews [113] and [114].
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its massless spectrum S, a modulus j, and anomaly coefficients, which we schemati-

cally denote by {b} [65]. The massless particle spectrum of six-dimensional (1, 0) su-

pergravity theories come in four multiplets of the supersymmetry algebra; the gravity

multiplet, the tensor multiplet, the vector multiplet, and the hypermultiplet. There is

only one gravity multiplet of the theory. The massless spectrum of the theory can be

summarized by the number of tensor multiplets T, the gauge group, and the matter

content.

The modulus j and the anomaly coefficients {b} are SO(1, T) vectors. In partic-

ular, j is a unit vector that encodes the vacuum expectation values of the T scalar

fields that lie in each tensor multiplet. The low-energy couplings that parametrize

the theory can be expressed in terms of j and {b}. For example, for each simple non-

abelian gauge group factor g, of the full gauge group, there exists a corresponding

anomaly coefficient b,. The coefficient for the kinetic term of the !,1, gauge field is

given by j - b, where the inner-product taken by an SO(1, T) metric [86].

The massless spectrum of a six-dimensional (1, 0) theory must satisfy anomaly

equations that come from a generalized version of the Green-Schwarz factorization

condition [80, 86, 97], originally formulated in ten-dimensions [56]. In other words, a

set of equations of the form

fj({b}) = F(S), (1.1)

where fi and F are some functions, must be satisfied. For many spectra, there are

not any physically sensible {b} satisfying these equations, i.e., only certain massless

spectra are allowed by the anomaly equations.

The first step of the landscape analysis we perform in this thesis is to list the

apparently consistent theories (S, j, {b}) that satisfy the anomaly equations and have

positive definite kinetic terms for the gauge fields. In the next step, we identify

among these theories, those that could be embedded in string theory. In the final

step, we make observations on the theories in the intermediate regime and explore

their implications.

Even before examining the individual theories in the intermediate regime, it is
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possible to ask about important qualitative features on the space of apparently con-

sistent theories. One such question is whether the space is bounded, i.e., whether

only a finite number of massless spectra are allowed by the anomaly constraints.

This question has been answered for theories when the gauge group is non-abelian in

[62, 65]. In these references, it was shown that the number of apparently consistent

theories with T < 9 is bounded while it is not bounded when T > 9. In [116], whose

results we present here, we have extended the analysis to theories with abelian gauge

symmetries. It turns out that the of possible combinations of gauge groups - includ-

ing abelian factors - and non-abelian matter representations is finite when T < 9,

even when abelian group factors are allowed. There are, however, infinite families of

theories with distinct U(1) charge assignments to the matter that cannot be ruled

out by using known quantum consistency conditions.

Showing that various bounds exist on the space of apparently consistent theories

is one thing, actually drawing the bounds is quite another. In order to compare the

space of apparently consistent theories and string vacua, one needs to be able to carry

out the latter task of drawing the actual boundary of apparently consistent theories.

While this seems to be quite a formidable task for the full space of theories, it turns

out to be a much more approachable one when we decide to focus on an interesting

subsector of the theories, namely, T = 0 theories.

In [115], we have presented a systematic way of constructing the finite set of

possible gauge group/matter combinations of non-anomalous six-dimensional (1, 0)

theories with no tensor multiplets, focusing on the case when the gauge group has

only SU(N) factors. Using this method, it is in principle possible to construct and

identify all theories in the intermediate regime of the landscape of T = 0 supergravity

theories. By scanning through the intermediate regime, we were able to identify many

theories that are possible candidates for new string vacua. In fact, more recently, some

models among these were realized in string theory [112].

Another important lesson we have learned by studying T = 0 theories is that

there is a systematic obstruction to embedding a large majority of the theories in

the intermediate regime. To elaborate, the low-energy parameters of all known string
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vacua satisfy an inequality known as the "Kodaira constraint" [114, 118, 119]. The

majority of the apparently consistent T = 0 theories, however, does not satisfy this

constraint. An important question that therefore arises is whether the Kodaira con-

straint is an undiscovered fundamental constraint that applies to all supergravity

theories or whether it is an artifact of known string models. Either option would

be interesting. The former implies that there is a fundamental constraint on gravity

theories that is unknown to us at the present. The latter implies that there is a large

class of string vacua that has yet to be discovered. It is worth noting that the Ko-

daira constraint gets rid of all the infinite classes of apparently consistent non-abelian

theories we were able to construct.

While extending the results of the T = 0 analysis to 0 < T < 9 would be tech-

nically challenging on the outer-boundary front of the landscape, we have a much

better handle on the landscape of known string vacua, given that the gauge group is

non-abelian [65]. This is not true, however, if we try to extend the landscape analysis

to theories with abelian gauge symmetry. Not only does the outer-boundary of the

landscape of six-dimensional theories - as noted previously - qualitatively change,

but so does the known string vacua. This is because the non-abelian sector of string

vacua is much better understood than the abelian sector. For example, the Kodaira

constraint involves only the gravitational anomaly coefficient a and the non-abelian

anomaly coefficients. We are not aware of a Kodaira-like constraint that involves

abelian anomaly coefficients at the present. Therefore, in order to expand our knowl-

edge of the six-dimensional landscape to theories that have abelian gauge symmetry,

it is important that we understand the abelian sector of string vacua better.

A first step in this direction is to identify the string data that correspond to the

abelian anomaly coefficients of a six-dimensional string vacuum. An important class

of string models in which to investigate this problem is F-theory vacua [118, 119, 120].

F-theory compactifications play a central role in understanding the six-dimensional

(1,0) string landscape in that they accommodate the widest range of known string

vacua in six dimensions [64, 65]. In fact, the data of all non-abelian string models
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known in six dimensions can be in principle embedded in F-theory [1141.13 F-theory

string vacua can be thought of as type IIB backgrounds with a non-trivial axio-

dilaton profile. A convenient way of thinking about F-theory is to treat it as a

fictitious twelve-dimensional theory. Six-dimensional (1,0) vacua can be obtained

from F-theory by compactifying it on an elliptically fibered Calabi-Yau threefold.

The gravitational anomaly coefficient a and the non-abelian anomaly coefficients of

F-theory vacua have a nice interpretation in terms of the geometric data of this

elliptically fibered Calabi-Yau manifold [64, 65, 118, 119].

As far as we are aware of, the abelian anomaly coefficients did not have a ge-

ometric interpretation before the work [117], whose results we present in this the-

sis. M-theory/F-theory duality [120] plays a central role in identifying the geometric

data that correspond to the abelian anomaly coefficients. Once the geometry of the

anomaly coefficients are understood, we can translate the six-dimensional anomaly

equations into geometric identities. The resulting identities have a very appealing

form, although further work must be done to understand their geometric significance.

The structure of this thesis is as the following. In chapter 2, we review six-

dimensional supergravity theories with minimal supersymmetry and investigate the

boundary of apparently consistent theories in its landscape. After reviewing previous

results on the bounds that anomalies place on the space of non-abelian theories, we

systematically construct the space of non-anomalous T = 0 theories, and describe

its features. We then extend the anomaly analysis to theories with abelian gauge

symmetry and investigate how anomalies constrain these theories.

In chapter 3 we investigate the boundary of known string vacua in the six-

dimensional landscape. We first explain how the six-dimensional string landscape

can be conveniently described in the language of F-theory, and explain how the non-

abelian sector of F-theory vacua have a description in terms of the geometry of an

elliptically fibered Calabi-Yau threefold. We then investigate the abelian sector of

string vacua. We first demonstrate the subtleties of the abelian sector of string vacua

'We are not claiming that all known string models in six-dimensions can be embedded in F-
theory. It is true, however, that there is no obstruction in embedding the non-abelian sector of any
known string model in F-theory vacua. We elaborate on this issue in chapter 3.
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through examining heterotic and F-theory backgrounds. We go on to use M-theory/F-

theory duality to describe the abelian sector of F-theory backgrounds. In particular,

we identify the geometric counterpart of the abelian anomaly coefficients of F-theory

vacua.

In chapter 4 we present the lessons learned by comparing the space of appar-

ently consistent theories to the space of known string vacua in the six-dimensional

supergravity landscape. We first present the results of examining the intermediate

regime of T = 0 theories. Next, we describe the intermediate regime of theories with

abelian gauge symmetry, and present the challenges of analyzing this space. We also

derive the geometric identities that come from the fact that F-theory vacua satisfy

six-dimensional anomaly cancellation conditions.

In chapter 5 we summarize the results of this thesis once more and present the

interesting questions that arise as a result of our investigations.

As stated at the beginning of this section, the content of this thesis is based on

the papers [1151, [116] and [117]. The results of [115] were obtained in collaboration

with Vijay Kumar and Washington Taylor. The results of [116] were obtained in

collaboration with Washington Taylor.
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Chapter 2

6D (1,0) Theories and Anomaly

Constraints

In this chapter, we review the low-energy data of six-dimensional (1, 0) supergrav-

ity theories and study the bounds placed on these theories by anomaly constraints,

i.e., we study the "outer boundary" of apparently consistent theories in the six-

dimensional landscape. A major result in the analysis of the "outer boundary" is

that there are only a finite number of consistent non-abelian massless spectra when

the number of tensor multiplets is less than nine [62, 64]. When T > 9, there ex-

ist infinite classes of theories. We extend upon this result in two directions in this

chapter.

While the space of non-abelian theories with T < 9 has been shown to be bounded,

explicitly constructing these consistent theories is still quite a daunting task. This

task is much more approachable for theories with no tensor multiplets. In this chapter,

we present a systematic way of building all consistent T = 0 theories whose gauge

group factors are special unitary. Constructing theories with other gauge groups can

be carried out as a straightforward generalization of the methods we have employed

here.

We also extend the results [62, 64] to the space of theories with abelian gauge sym-

metry. It turns out that there are only a finite number of consistent gauge/matter

combinations modulo U(1) charge assignments. To elaborate, the number of consis-
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tent gauge group/matter representations are finite, but there can be cases where there

exists an infinite number of different apparently consistent U(1) charge assignments

to a given theory.

This chapter is organized as the following. We first review the data parametrizing

the low-energy theory in section 2.1. We then summarize how these theories are

constrained by anomaly cancellation conditions when the gauge group is non-abelian

in section 2.2 [62, 64]. We then focus on T = 0 theories and describe the boundary of

apparently consistent theories in this subsector of six-dimensional theories in section

2.3 [115]. In section 2.4 we investigate how the anomaly constraints place bounds on

theories with abelian gauge symmetry [1161.

2.1 6D (1, 0) Theories and Anomaly Cancellation

In this section we review six-dimensional theories with AF = (1, 0) supersymmetry

and anomaly cancellation in these theories. In section 2.1.1 we present an overview

of the field content of these theories. We compute the anomaly polynomial in section

2.1.2 and review anomaly cancellation and factorization in section 2.1.3. We give

explicit formulae for the anomaly factorization condition in the presence of U(1)'s in

section 2.1.4 and discuss some salient features of these equations. In section 2.1.5

we discuss aspects of the generalized Green-Schwarz mechanism that come into play

when the theory has abelian gauge symmetry, and also explain why this issue can

be safely ignored when discussing the massless spectrum. We summarize in section

2.1.6.

2.1.1 The Massless Spectrum

The massless spectrum of the models we consider can contain four different multiplets

of the supersymmetry algebra: the gravity and tensor multiplet, vector multiplet, and

hypermultiplet. The contents of these multiplets are summarized in table 2.1.

We consider theories with one gravity multiplet. There can in general be multiple

tensor multiplets; we denote the number of tensor multiplets by T. When T = 1 it is
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possible to write a Lagrangian for the theory; the self-dual and anti-self-dual tensors

can combine into a single antisymmetric tensor. Theories with T tensor multiplets

have a moduli space with SO(1, T) symmetry; the T scalars in each multiplet combine

into a SO(1, T) vector j that can be taken to have unit norm. We consider theories

with arbitrary gauge group and matter content.

Note that a theory with a general number of tensor multiplets can still be defined

despite the lack of a covariant Lagrangian. The partition function can be defined by

coupling the three-form field strength to a 3-form gauge potential as in [121, 122].

Classical equations of motion can be formulated as in [82, 86]. Supersymmetry and

anomaly cancellation may be discussed at the operator level of a theory obtained by

quantizing the classical theory defined by these equations.

We write the gauge group for a given theory asi

V VA

11 = r X 0,x U(1)j. (2.1)
.=1 i=1

Lowercase greek letters K, A,--- are used to denote the simple non-abelian gauge

group factors; lowercase roman letters i, j, k, - - - are used to denote U(1) factors. V

and VA denote the numbers of nonabelian and abelian gauge group factors of the

theory.

We denote by N the number of irreducible representations of the non-abelian

gauge group under which the matter hypermultiplets transform (including trivial

representations); we use uppercase roman letters to index these representations. The

hypermultiplet representation I transforms in the representation R, under 9r and

have U(1)j charge q,i.

We characterize theories by their massless spectrum. There is a slight subtlety we

must consider when dealing with U(1) gauge symmetries. It is possible to break U(1)

at the linearized level by certain hypermultiplets, called "linear hypermultiplets" in

the literature [123]. We will refer to these multiplets simply as "linear multiplets"

'The gauge group generally can have a quotient by a discrete subgroup, but this does not affect
the gauge algebra, which underlies the anomaly structure analyzed in this thesis.
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Multiplet Field Content
Gravity (g, _+, B+

Tensor (X-, B_-_)
Vector (A,, A+)
Hyper (4

tp,4V-)

Table 2.1: Six-dimensional (1,0) supersymmetry multiplets. The signs on the fermions
indicate the chirality. The signs on antisymmetric tensors indicate self-duality/anti-
self-duality.

throughout this thesis. When a linear multiplet couples to a vector multiplet the two

merge into a long (or non-BPS) multiplet and are lifted from the massless spectrum.

Once lifted from the massless spectrum, these long multiplets can be safely ignored.

This issue is discussed in more detail in section 2.1.5.

2.1.2 The Anomaly Polynomial for Theories with U(1)'s

In six-dimensional chiral theories there can be gravitational, gauge and mixed anoma-

lies [55, 66, 67]. The sign with which each chiral field contributes to the anomaly is

determined by their chirality.

The 6D anomaly can be described by the method of descent from an 8D anomaly

polynomial. The anomaly polynomial is obtained by adding up the contributions of

all the chiral fields present in the theory [55]. For the T = 1 case this is given in
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[87, 108]. In general we obtain

18 = (H - V + 29T - 273) [trR 4 + (trR2) 2]5 7 60 (H
1

12 (9 - T)(trR2) 2

128

- trR2 [(TrF - MitrRF]

± [ TrF - E M triF, - 6 E MKA(trRIF,)(tra F )]
K IK I,A (2.2)

+ -trR 2 ( M 1 q1,q,FiF
I,i,j

- (MAq,i(trRgFi)Fi - 5 Miq1,iq,(trRi F2)FF
I ArRi ) I,K,i,j

-~~~~ MIqI,iqI,jqI,kqI,zFiFjFkF.
I,i,j,k,l

M 1 is the size of the representation I that is given by

A = dRI, (2.3)

where dR. is the dimension of the representation R. of r.. Similarly, M (MyA) is

the number of 9r (gr x g,) representations in I, which is given by

Mr = f1 d (MiA = JJ d ) (2.4)

respectively. V and H are the number of massless vector multiplets and hypermulti-

plets in the theory. They are given by

V VNA +VA dAdj. +VA, H= E M1  (2.5)

where dAdj. is the dimension of the adjoint representation of gauge group g,.. VNA

is the number of non-abelian vector multiplets in the theory. The integer N, which

is the number of irreducible representations of the non-abelian gauge group, plays
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an important role in bounding the number of U(1)'s. We use 'tr' to denote the

trace in the fundamental representation, and 'Tr' to denote the trace in the adjoint.

Multiplication of forms should be interpreted as wedge products throughout this thesis

unless stated otherwise.

2.1.3 Anomaly Cancellation and Factorization

The Green-Schwarz mechanism [56] can be generalized to theories with more than

one tensor multiplet when the anomaly polynomial is factorizes in the following form

[86, 97]:

I8 = QGpX4 aX4 , (2.6)
32

where Q is a symmetric bilinear form (or metric) in SO(1, T) and X 4 is a four form

that is an SO(1, T) vector. X 4 can be written as

1 2 2bc'
X' = -aatrR + ( -)trF2 + 2bjg FFj, (2.7)

where we define bij to be symmetric in i, j. The a and b's are SO(1, T) vectors and

a are SO(1, T) indices. Note that the anomaly coefficients for the U(1)'s can be

written in this way due to the fact that the field strength is gauge invariant on its

own [101, 102]. Under linear redefinitions of the U(1)'s bij transforms as a bilinear,

F = MjFj, b'j = MkMjbk, 'M E GL(VA, R). (2.8)

The AK's are normalization factors that are fixed by demanding that the smallest

topological charge of an embedded SU(2) instanton is 1. A, is actually equal to the

Dynkin index of the fundamental representation of the gauge group g,. The values

of AK for given 9, are listed in table 2.2 for all the simple groups. bK turn out to form
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an integral SO(1, T) lattice when we include these normalization factors [65].

There is an important fact related to the factors A(9) worth noting for future

reference. Let us define the normalized basis {T} for the Cartan sub-algebra of g

such that

trfTTj = Jig . (2.9)

This provides an unambiguous normalization for the root lattice of a given Lie group.

Note that two Lie groups with the same Lie algebra can have different normalizations

of the root lattice if their fundamental representations differ. We may define the

"coroot basis" for the Cartan sub-algebra as

T 2'Ti (2.10)
(a,, a,)

where a' are the coordinates of the I'th simple root. T, have the following properties:

1. The charge of the root vector E under T, is

Ta = 2(=a, a|) . (2.11)
(axi, aj')

In particular for the simple roots of the Lie algebra,

T1|aj) = CIlacj) . (2.12)

where Crj are the elements of the Cartan matrix. We note that the Cartan

matrix is determined by the gauge algebra, rather than the gauge group. For

example, it is the same for SO(3) and SU(2).

2. The charge of any weight vector 1#) under T, is

2(a,, #3)

(a j,, ) (2.13)
(ahc, f)

which is always integral, by definition of weight vectors.
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3. For two basis elements among {T1},

IgtrTTJ = C1j (2.14)A(9)

where C is the normalized inner product matrix of the coroots, i.e.,

1 4(a 1 , aj)
Ci = . (2.15)A(9) (a,, a,) (aj, aj)

Just as with the Cartan matrix, the normalized coroot matrix C is determined

uniquely by the gauge algebra.

Proofs of these statements are given in appendix A.1.

The gauge-invariant three-form field strengths are given by

Ha = dB' + Iaw3L+ 2 w3r +2 bisog, (2.16)2 X K . i.

where W3L and w3y are Chern-Simons 3-forms of the spin connection and gauge fields

respectively. If the factorization condition (2.6) is satisfied, anomaly cancellation can

be achieved by adding the local counterterm

5 1 GS o 4-apB" A Xf. (2.17)

Meanwhile, supersymmetry determines the kinetic term for the gauge fields to be

(up to an overall factor) [86, 101, 102]

- Z( bK )tr(F. A *F.) - Z(j -bij)(F A *Fj), (2.18)

where j is the unit SO(1, T) vector that parametrizes the T scalars in the tensor

multiplets. The inner product of j and the b vectors are defined with respect to the

metric Q. There must be a value of j such that all the gauge fields have positive

definite kinetic terms. This means that there should be some value of j such that all

j -b, are positive and such that j -bij is a positive definite matrix with respect to i, j.
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If we did not have any U(1)'s, (2.6) would be the only way in which the anomaly

can be cancelled. When we have abelian vector multiplets, however, a generalized

version of the Green-Schwarz mechanism is available [96]. In this case, it is possible

to cancel terms in the 8-form anomaly polynomial that are proportional to

F A X 6 , (2.19)

where X6 is a six form, by a counter-term in the action of the form

-C A X 6 , (2.20)

where C is a Stickelberg 0-form that belongs to a linear multiplet. The coupling of

C to the vector boson V is given by

(0,C- V) 2  (2.21)

which is what we mean by C being a Stiickelberg 0-form. The anomalous gauge

boson V recieves a mass, hence rendering the U(1) broken; the abelian vector mul-

tiplet is lifted from the massless spectrum by coupling to the linear multiplet by

the Stiickelberg mechanism. When all the anomalous U(1)'s are lifted and we look

at the pure massless spectrum of the theory, all the gravitational anomalies and

gauge/mixed anomalies induced by the massless fields are cancelled completely by

two forms through the conventional Green-Schwarz mechanism. The lesson is that

when we are discussing the massless spectrum, this generalized version of the Green-

Schwarz mechanism does not come into play and can be safely ignored.2 We elaborate

further on this issue in section 2.1.5.

2The situation is quite the opposite when we are taking the top-down approach, for example
when we are constructing theories from string compactifications. When working downward from
the high-energy end, it is important to figure out which U(1) vector bosons that naively seem to be
massless are lifted by this mechanism.
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2.1.4 The Factorization Equations

We are now ready to write down the factorization equations in the presence of U(1)'s.

The factorization equations come from demanding that the anomaly polynomial (2.2)

factorize in the form (2.6). This yields the following anomaly cancellation conditions.

Gravitational Anomaly Equations

273 H - V +29T
(2.22)

a-a=9-T

These equations come from demanding that pure gravitational anomalies are can-

celled. Here, H denotes the number of hypermultiplets and V denotes the number of

vector multiplets.

The first equation is sometimes referred to as the "gravitational anomaly bound."

This is because of the following reason. As will be seen, only the information related

to hypermultiplets charged under gauge fields show up in the other anomaly equa-

tions, i.e., one has the freedom to add neutral hypermultiplets to the theory and not

affect the mixed and gauge anomaly equations. Therefore, as long as the number of

charged hypermultiplets of the theory is below 273 + V - 29T, one can add neutral

hypermultiplets to the theory to cancel the gravitational anomaly. In this sense, the

first equation of (2.22) provides an upperbound on the number of charged hypermul-

tiplets of the theory for given T and gauge group.

Mixed Anomaly Equations

a -r ( I (AAdj, - -A)

11 (2.23)
a - bi = e M g p U)qIaqn )

These equations should be satisfied for each gauge group 09, U(1)j, and U(1)j. The
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inner products on the left-hand-side of the equations are inner products with respect

to the SO(1, T) metric Q. The group theory factor AR is defined to be

trRF 2 = ARtrF 2 (2.24)

for a given representation R of the gauge group 0,.

We can write the mixed anomaly equations in slightly different notation:

bK 1
a -( )= 1(AAdjn - E XRAR)

R

a -b = -1 q,,qq
(2.25)

Here XR is the number of hypermultiplets of representation R of gauge group 9, and

xqi,q, is the number of hypermultiplets with charge (qj, qj) under U(1); x U(1)j.

Gauge Anomaly Equations

0 = BAdj, - .M-B,

= (Z M CI - CAdj.)

= Z M'AAI
I (2.26)

0 = Z M-E q1 ,i

b bij

bij - bkI + bik - bjI + bit- bjk

= (M A q,iq,j

= Z Mqiq,qI,kqI,

These equations should be satisfied for all 9, # Q,, and for all U(1)i, U(1)j, U(1)k

and U(1) 1. For each representation R of group 9r the group theory coefficients BR

and CR are defined by

trRF 4 = BRtrF4 + CR(trF2) 2 (2.27)
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In the event that there is only one fourth order invariant for the given gauge group-as

is with for example, SU(2)-we define BR = 0. Also, E is defined by

trRF3 = ERtrF3 (2.28)

As was with the case of mixed anomaly equations, it is convenient to write the

gauge anomaly equation using slightly different notation:

bK)
2

0=

- bij =

bij -bk1 + bik -bjj + bi- byn =

BAdjK - E XRBR

R

XRCR - CAdjK)
3R

xRSARAS

(XR,qiiER
R,qi

E XR,qiqjqi jAR
R,qi,q,

E Xqi,q3 ,,,,q qiqjqkqi

qi~q,,qkq,

As before, XR is the number of hypermultiplets of representation R of gauge group 9,g

xpS is the number of hypermultiplets of representation R x S of gauge group 9" x

while XR,q is the number of hypermultiplets of representation R of gauge group g

with charge qj under U(1)i. XR,qi,q, is the number of hypermultiplets of representation

R of gauge group g, with charge (qi, qj) under U(1)i x U(1)j, and xqyq,,qk,q, is the

number of hypermultiplets that have charge (qi, qj, qk, qj) under U(1)i x U(1)j x U(1)k x

U(1)1 .

It was shown in [65] using the anomaly equations that the SO(1, T) vector a and

the non-abelian anomaly coefficients bK can be embedded in an integral lattice A. It

was subsequently shown that quantum consistency conditions impose that A must

further be embeddable in a unimodular lattice [124].
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2.1.5 Linear Multiplets and Generalized Green-Schwarz Anomaly

Cancellation

In this section we discuss linear multiplets and their role in the generalized Green-

Schwarz anomaly cancellation mechanism. We first discuss how two different types

of hypermultiplets can be distinguished when we consider their representation under

SU(2)R. Then we show how each rnultiplet couples to vector multiplets. In particular,

we show how a linear multiplet can couple to an abelian vector multiplet and form a

long multiplet. Next we depict the role that linear multiplets play in the generalized

Green-Schwarz anomaly cancellation mechanism. Lastly we show that we may ignore

long multiplets formed in this way and the generalized Green-Schwarz mechanism

when we are discussing the massless spectrum of the theory. Most of the information

on linear multiplets given in this section can be found in [1251.

There are two different kinds of hypermultiplets in supersymmetric 6D theories

with 8 supercharges. The scalar components of the hypermultiplet can transform

either as a complex 2 or a real 3 + 1 under the SU(2)R symmetry of the theory.

We refer to the first type of hypermultiplet simply as a "hypermultiplet," and the

second kind of hypermultiplet as a "linear multiplet". As far as their contribution

to the gravitational anomaly are concerned, the two kinds of hypermultiplets behave

identically. The fermions of the linear multiplet are not charged under any gauge

group, so the contribution of the linear multiplet to the anomaly is equivalent to that

of a neutral hypermultiplet, as shown shortly.

As stated above, under the SU(2)R symmetry, the scalar components of the hy-

permultiplet transform as a complex 2. The spinors, on the other hand are neutral,

i.e., singlets (1). Meanwhile, the scalar components of the linear multiplet transform

as a real 3 + 1. The spinors transform as 2's.

To see how these multiplets couple to other fields, it is useful to reduce to four

dimensions on a two-torus and write out the Lagrangian in terms of.AP = 1 superfields.

Both multiplets, when dimensionally reduced, are K = 2 fields that consist of two

chiral superfields. The hypermultiplets can transform in a non-trivial representation
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of the gauge group and consist of two chiral superfields Q and Q. In this case, the

representation of Q must be the conjugate of that of Q. It is well known that this

multiplet couples to the K = 2 vector multiplet that consists of a vector multiplet V

and a chiral multiplet D in the adjoint representation as

J d4xd4O (QtevQ ± Qt e-v) + J d4 xd2O QTbQ + (h.c.). (2.30)

Meanwhile, the linear multiplets couple to other fields in quite a different manner

[125]. They cannot couple to gauge fields in the standard way, as the Lagrangian

would not be SU(2)R invariant in this case. They can couple to U(1) gauge fields,

however. The linear multiplet consists of two chiral fields C and B and couples to

U(1) gauge fields as

d4xd 4 0 ( (iC - iCt - V) 2 + BtB) - d4xd2 0 BD + (h.c.). (2.31)

Writing the scalar of C as (7r3 + i#) and the scalar of B as (7ri + i7r2), the kinetic

terms for the scalars become

- d4 x((0,# - A1)2 + (a,7r,)2 ). (2.32)

The # can be gauged away using the gauge transformation

1
AP -+ AP + A, #-+ ±+A, (2.33)

2

and the U(1) gauge field obtains mass 1/2. The U(1) gauge field has recived a mass

by the Stiickelberg mechanism.

By integrating out the F-terms of the linear multiplet, we see that the scalar in

(D recieves the same mass(1/2). Meanwhile, the fermions do not couple to the gauge

field, and hence only contribute to gravitational anomalies. They only couple to the

fermions in V and (D through Dirac mass terms, i.e., fermions of C and B pair up

with fermions of V and 4 into two Dirac fermions of mass 1/2.
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Combining the auxiliary fields of V and <b, we get three real auxiliary fields (the

'D fields' for the K = 2 vector multiplet) that are in the 3 of SU(2)R. These couple

to the scalars transforming as the 3:

- J d4X (wrD') (2.34)

Expanding around a vacuum with ri = 0, the U(1) vector multiplet and linear mul-

tiplet together form a long K = 2 multiplet with 5 scalars, 2 Dirac fermions, and

a vector field, all of mass 1/2 in units of the mass parameter. Note that this long

massive spin-1 multiplet is not chiral, as the fermions are Dirac.

When we have linear multiplets, they may be used to cancel anomalies. As dis-

cussed in section 2.1.3, it is possible to cancel anomalies of the form

F A X 6 , (2.35)

where X 6 is a six form, by adding the term

-# A X 6 . (2.36)

# is a Stfickelberg 0-form inside a linear multiplet.

In order for the generalized anomaly cancellation to work, we must have a linear

multiplet at our disposal. If we do not have such a linear multiplet, we cannot get

rid of the term and hence the theory would be anomalous. In case we have such a

multiplet, through the Stfickelberg mechanism, we expect the linear multiplet to be

eaten to form a long massive spin-1 multiplet. Schematically, we may write

Li = Vi + Hi, (2.37)

where Li denotes the long multiplet, V denotes the U(1) vector multiplet, and Hi the

linear multiplet.

So we see that all the vector bosons of U(1) gauge symmetries whose anomalies
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are cancelled in this fashion must be massive and must form a long multiplet. These

long multiplets are non-chiral and hence do not contribute to gravitational anomalies.

Furthermore none of the fields inside this multiplet are charged under other gauge

groups. Therefore, we see that these multiplets contribute neither to gravitational

anomalies nor to unbroken gauge/mixed anomalies.

By this logic we can further state that all long multiplets obtained by U(1) gauge

bosons coupling to linear multiplets do not contribute to the anomaly polynomial.

Therefore, we may ignore all the long multiplets - or vector/linear multiplet pairs

that couple - when we are discussing gravitational anomalies and gauge/mixed

anomalies concerning unbroken gauge symmetry, i.e., gauge symmetry of the massless

spectrum.

Long multiplets and hence the generalized Green-Schwarz mechanism may thus

be ignored when we are discussing the massless spectrum of the theory. In other

words, when we are constructing low-energy effective theories, writing down anoma-

lous U(1)'s and then lifting them is a redundant procedure. We may safely restrict our

attention to the massless spectrum whose anomalies are all cancelled by two-forms;

the factorization condition (2.6) should hold for these theories.

2.1.6 Summary

A six-dimensional AN = (1,0) theory is characterized by its massless spectrum S,

the vacuum expectation value of the scalars present in the theory, and the anomaly

coefficients a, b, and b13. The massless spectrum is specified by the following data:

1. The number of tensor multiplets T.

2. The gauge group
N VA

g=Qgx f U(). (2.38)
n=1 i=1

3. The hypermultiplet matter content.

The vacuum expectation value of the scalars in the tensor multiplet is given by a

SO(1, T) unit vector j. The anomaly coefficients are SO(1, T) vectors, and in partic-
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ular b2j is also a bilinear form which transforms under the linear redefinitions of the

U(1)'s. The massless matter content and the anomaly coefficients must satisfy the

anomaly equations (2.22), (2.23) and (2.26).

The anomaly coefficients determine the invariant field strength of the tensors

(2.16), the Green-Schwarz term of the quantum effective action (2.17), and the cor-

rected kinetic term for the gauge fields (2.18). Quantum consistency conditions de-

mand that a, b, must be embeddable into a unimodular lattice.

2.2 Non-abelian Theories

In this section we review some facts about the space of apparently consistent non-

abelian theories in the six-dimensional (1, 0) supergravity landscape based on [62, 65,

114]. The main result of these works is the fact that there are only finitely many

theories - parameterized by the low-energy spectrum S, the anomaly coefficients a,

b, and the modulus j - that satisfy the following conditions3

1. The gauge symmetry is non-abelian.

2. S, a and b, satisfy the anomaly equations.

3. The gauge kinetic terms j -b are positive.

4. T < 9.

When T < 9, a is a time-like SO(1, T) vector as

a - a = 9 - T. (2.39)

Now for time-like vector a, if a - b = 0 and b2 = 0 for some SO(1, T) vector b, then

b = 0, and accordingly j - b = 0. This fact was repeatedly used in the proof for

boundedness of non-abelian theories. Therefore the boundedness proof breaks down

3We do not go in to the details of this proof in this section. Later in this thesis, however, we
prove statements on how theories with abelian gauge symmetry are bounded using almost identical
methods as [62, 65]. For more details, see section A.4.
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when T > 9. As a consequence, infinite families of apparently consistent theories

exist when the condition T < 9 is relaxed. We conclude this section by listing three

such infinite families.

The first family consists of an infinite family with an arbitrary gauge group g =

~, . If we let the matter content to be such that there is a single adjoint in each

of the factors, the anomaly equation boils down to

a.a=9-T, a-bK=O, b2 = 0, b, -b\ = 0, (2.40)

for all r. and pairs r., A. When T < 9, one cannot find SO(1, T) vectors that satisfy

these conditions and have positive definite kinetic terms. For T > 9, however, this

is possible. Taking the SO(1, T) metric to be diag(+1, -1, - - - ), all the anomaly

equations can be satisfied by setting the vectors

a = (-3, 1 x T) (.1
T) (2.41)

bi= (3, (-1) x 9, 0 x (T - 9))

for all r,. We used the notation x x n to mean that n consecutive entries are equal to

x. The gauge kinetic terms j - b become positive for the choice

j = (1,0 x T). (2.42)

The second family consists of the infinite family of spectra found by Schwarz

in [126]. Anomaly coefficients that satisfy the anomaly equations for these spectra

always exists, but it turns out that the kinetic terms for the gauge fields cannot have

positive definite kinetic terms for T < 9. This is shown using the aforementioned

property of SO(1, T) vectors [65]. As in the previous case, however, the anomaly

coefficients for these spectra can have give positive kinetic terms when T > 9. For

example, when G = SU(M) x SU(M) and the matter consists of two bifundamental
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matter fields, the anomaly equations boil down to

a-a=9-T, a-b 1 =a-b2 = 0, b2 = b = -2, b1 -b2 = 2. (2.43)

Setting the SO(1, T) metric to diag(+1, -1, -1, ... ), the vectors

a =(-3,1 x T)

bi =(1, 1, 1,1, 0 x (T - 3)) (2.44)

b2= (2, 0,0,0, (-1) x 6, 0 x (T - 9))

satisfy the anomaly equations. The gauge kinetic terms j -b become positive for the

choice

j = (1,0 x T). (2.45)

There is also an infinite family of theories with an unbounded number of tensor

multiplets [65]. For example, there exists a family of theories with g = Ek, no matter

with T = 9 +8k with k > 1. The anomaly equations are given by

-a - b = -10, b 2 = -12, b. - b\ = 0 (2.46)

for K # A. The anomaly coefficients are given by

a = (-3, 1 x 8(k + 1)) (2.47)

b. = (-1, 0 x (4n - 4), -1, -1, -1, -3, 0 x (8k + 8 - 4K))

for . = 1, ... , k. The choice of j that makes all the gauge kinetic terms positive is

given by

j = (-V'4k +9, 0 x 4k, 1 x (4k + 8)). (2.48)
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2.3 Non-abelian T = 0 Theories

In this section, we examine the space of apparently consistent T = 0 theories. For

technical simplicity, we restrict our attention to theories having gauge groups with

nonabelian structure

= 1 X ... X k = SU(M1) X X SU(Mk). (2.49)

The analysis of this section can be carried over with minor modifications to more

general nonabelian gauge group structures.

We only sketch the strategy for constructing the space of apparently consistent

T = 0 theories in this section, and describe details of the constructed theories in

section 4.1, where we present the results of the full landscape analysis. We proceed

by first reviewing the low-energy constraints of T = 0 theories in section 2.3.1, and

then explaining how we can construct the full space of apparently consistent theories

in section 2.3.2.

2.3.1 Review of Constraints

In this section, we review the low-energy constraints of T = 0 theories with gauge

group

g = 91 x -.. x gk = SU(M1) x x SU(Mk). (2.50)

When T = 0 the anomaly cancellation conditions (2.22), (2.23) and (2.26) can be

written in terms of a set of integers b, associated with the simple factors G,. of the
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gauge group

Htotai - V = Hneutrai + H - V = 273 (2.51)

3b= = XAR - Aadj (2.52)

0 =Z(xRBR -Badj (2.53)
R

b2 = E XRBR - a (2.54)
Rb- 1 [x c- Cai] (2.54)

brbA = XsARAs. (2.55)
RS

Recall that XR denotes the number of matter fields which transform in the irreducible

representation R of gauge group factor G,. Similarly, XRS denotes the number of

matter fields transforming under representation R x S of g" x g,. The group theory

coefficients AR, BR, CR were defined in equations (2.24) and (2.27). The anomaly

coefficients should be integers due to the fact that a, b, must form a one-dimensional

unimodular lattice [124] when T = 0.

In obtaining equation (2.52), we have used the fact that

a2 = 9 - T = 9. (2.56)

There is an ambiguity in fixing the sign of a relative to the scalar "modulus" j. The

word "modulus" is in quotes because actually there is no scalar modulus when T = 0.

There is, however, a discrete choice in choosing the sign of the unit vector j. This

choice individually is not physical, but the relative sign of a and j does matter. We

note that once a is chosen to be -3, additional considerations yield j = 1 [115].

In this section and in section 4.1, we denote by H the number of matter hypermul-

tiplets carrying nonabelian charges for notational simplicity. We have used Hneutrai to

denote the number of neutral hypermultiplets. Note that because we have specialized

to models with simple gauge group factors SU(Mr), the normalization factors A,.

appearing in the anomaly cancellation conditions are all unity (A. = 1) and do not
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appear in our equations.

In addition to local anomalies, quantum consistency requires the absence of global

anomalies [127]. For models with SU(M) gauge group factors, the absence of global

anomalies is guaranteed for any model without local anomalies when the anomaly

coefficients form a integral lattice. This result is proven in Appendix A.2.

As mentioned above, there is no scalar modulus when T = 0, i.e., the vector j

can be fixed to j = 1. Hence the coefficient of the kinetic term of the SU(M,,) gauge

fields is given by b,,. By imposing positivity of the kinetic terms, we obtain b" > 0.

In a general 6D supergravity theory, the tensor multiplet moduli define the coupling

constants, or the strength of the gauge interactions relative to gravity. Theories with

T = 0 are, therefore, intrinsically gravitational with all interaction strengths set by

the Planck scale.

2.3.2 Strategy for Construction

In this section, we explain the method we have used to construct the space of appar-

ently consistent non-abelian T = 0 theories. We first sketch the method of how to

construct this space of theories and then justify important features of T = 0 theories

that enable our approach to work.

In constructing the full space of apparently consistent theories, the fact that the

anomaly equations depend primarily on the integers bK associated with each gauge

group factor separately, plays an important role. It can be seen from the anomaly

equations that only the cross-term component (2.55) of the anomaly factorization

condition depends upon more than one distinct bK. By using the other anomaly

conditions we can constrain the gauge group factors SU(M) and matter transforming

under each factor independently. We can then treat these factors and associated

matter as "blocks" which can be combined to build models with multiple gauge group

factors. This general approach is discussed in [65] and used there to construct T = 1

models with gauge groups which are products of SU(M) factors with a restricted

class of representations. The main reason we are able to use this approach to actually

construct the full space of T = 0 theories is because the anomaly coefficients are all
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positive integers. This fact is responsible for the following desirable features of T = 0

theories.

First, there are only a finite number of individual blocks that satisfy the anomaly

equations (2.52), (2.53), and (2.54) on their own. Furthermore, we are able to con-

struct this full set of individual blocks of the theory. This is a key result for T = 0

theories and we devote the latter part of this section on explaining how this is achieved.

Second, since b,, are non-zero integers, (2.55) implies that any two gauge group

factors of a theory must have matter jointly charged under it. If one has the full list

of the finite number of individual blocks of the theory, this implies that there are only

a finite number of ways to put them together. This is because only a finite number

of blocks are joinable to a given block through jointly charged matter.

For example, the number of blocks one can join to an SU(10) block B with 14

fundamentals (ri) and 3 antisymmetrics (U) is bounded by 8 - the best case is when it

is possible to have the 7 pairs of fundamentals of the block to be bifundamentals (nxn)

that join an SU(2) block to B, and the 3 antisymmetrics to be in the representation

E x [ that joins B to an SU(3) block. This, of course, is an overestimation as we

have not used any anomaly conditions in the process of determining this number. In

general, if a block has r distinct representations and the number of representations i

in the block is given by ni, the block can be joined to at most

L J + L J + + LJ (2.57)

other blocks. Since there are only a finite number of individual blocks, only a finite

number of blocks are joinable to a given block.

These two features make it possible for one to construct the full set of apparently

consistent non-abelian theories when T = 0 by the following steps:

1. Construct all the individual blocks satisfying the equations (2.52), (2.53), and

(2.54).

2. Find all the combinations of blocks that can be joined together using (2.55).
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3. Eliminate theories that violate the gravitational anomaly bound (2.51).

For the rest of this section, we show that there are only a finite number of blocks

that satisfy the single-block anomaly equations (2.52), (2.53), and (2.54). We begin by

examining the properties of the group theory coefficients AR, BR, CR in more detail.

As discussed for example in [62] (see also [87]), these group theory coefficients can

be computed for any particular representation using two diagonal generators T 12 , T34

which, in the fundamental representation, take the form

(T12)ab = 6a16 b1 - 6a26b2 (2.58)

(T34)ab = 6a3668 - 6 a46b4 (2.59)

The group theory factors AR, BR, CR can be computed in terms of traces of these

generators. For SU(M), M > 3, we have

1
AR = -trRT 2  (2.60)

2
1

BR ± 2CR = ~trRT12  (2.61)
2
3

CR = --trRT 2 T3 4  (2.62)
4

In these traces, we sum over all basis states in the representation R, which can be

represented in terms of the Young tableaux with various labelings of the associated

Young diagram. For SU(2) and SU(3) there is no fourth order Casimir, or generator

T34, so we can take BR = 0 and use (2.61) to compute CR. We will find it useful to

work with the linear combination

1 1
9R (2CR + BR - AR) (trRT 2 - trRT12 ) (2.63)

12 2

Since in any given state in the representation T2 < T1
4

2 , we see that

gR R> 7 VR. (2.64)
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Rep. Dimension AR BR CR gR
l M 1 1 0 0

Adjoint M 2 - 2M 2M 6 1
M(M-1) M-2 M-8 3 00 2
M(M+1) M+2 M±8 3 1

M(M-1)(M-2) M 2 -5M+6 M 2 -17M+54 3M - 12 0
fl6 2 2

M(M 2-1) M2 -3 M2 - 27 6M M-2
M(M+1)(M+2) M 2

+5M+6 M 2 +17M+54 3M + 12 M +4
6 2 MIA2 _____

M 2 (M+1)(M-1) M(M-2)(M+2) M(M-58) 3(M2 + 2) (M-1(M-2)
EE 1 12 1 3 -58 3A 2)1 2

Table 2.3: Values of the group-theoretic coefficients AR, BR, CR, dimension and genus
for some representations of SU(M), M > 4. For SU(2) and SU(3), AR is given in
table, while BR = 0 and CR is computed by adding formulae for CR + BR/ 2 from
table with M = 2,3.

For representations given by Young diagrams with a single column there are no states

with I (T 12 )| > 1 and therefore gR = 0; all other representations have gR > 0-

For a gauge group factor SU(M) with corresponding anomaly integer b, we can

take a linear combination of the anomaly conditions (2.52), (2.53), (2.54) to get

EX9 (gj+b1 b (b - 1)(b - 2) (-5
S(2.65)

R

where we have used gsj = Caaj/6 = 1. We denote this number as the "genus"

of a block, for reasons that will be clear later on. Some examples of group theory

coefficients, dimensions, and genera are shown in table 2.3.

Now let us show that there are only a finite number of blocks satisfying the

equations (2.52), (2.53), and (2.54). For any fixed M and b, there are only a finite

number of solutions to these equations. An efficient way of finding all solutions is

given by the following. (2.65) gives a bound on the sum of the non-negative values

gR associated with the matter representations transforming under SU(M). This

gives a finite partition problem, to which all solutions can be found. Each solution

of the partition problem corresponds to a set of values for the XR associated with

representations with nonzero genus gR. As noted above, the representations with

gR > 0 are all associated with Young diagrams having more than one column. We
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can then fix the XR for all R with g > 0 and treat (2.54) as a second partition

problem. Since all CR are positive except for the fundamental representation, this

gives a set of possible combinations of coefficients XR for all representations besides

the fundamental. We can then use (2.53) to determine the number of fundamental

representations, which must be nonnegative. As an example of how this analysis

works let us consider the set of blocks with b = 1 and b = 2.

Let us begin with models with b = 1. From (2.65) we have

b = 1: 2 xRgR =(b - 1)(b - 2) = 0. (2.66)
R

Thus, XR = 0 for any representation with gR > 0, and we cannot include any rep-

resentations other than those with a single column. The anomaly condition (2.54)

becomes

SXRCR = 9. (2.67)
R

For M > 7, the coefficients CR satisfy CR > 9 for all one-column representations

other than the two-index antisymmetric (A2) and fundamental (F) representations.

So in these cases the only solution is XA2 = 3. The anomaly condition (2.53) then

becomes

xRBR = xF+ 3(N - 8) = Badj = 2M, (2.68)
R

so

XF = 24 - M. (2.69)

Thus, for b = 1 there are no possible blocks with M > 24, and the only possible

blocks with M > 7 are SU(M) factors with matter content

(24 - M) x +3 x , (b= 1 M < 24,H-V = (2+45M - M 2 )/2 273). (2.70)

(Recall that when describing the hypermultiplet matter content of any block or

model we denote by H the number of matter hypermultiplets which carry nonabelian

charges; as long as this quantity satisfies H - V < 273, uncharged hypermultiplets
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can be added to saturate the gravitational anomaly condition (2.51).)

For M < 7, other b = 1 blocks are possible. It is easy to verify that including

the 3-antisymmetric (A3) representation at the second step of the above analysis for

SU(7) gives a block satisfying the anomaly cancellation conditions with

SU(7): 22 x +1 x, (b = 1,H - V = 141). (2.71)

A similar block can be constructed for SU(6) with 20 fundamental, one A2, and one

A3 representation. Since for SU(5) the A3 and A2 representations are conjugate (and

therefore treated as equivalent in this analysis), this exhausts the range of possibilities

for b = 1. Note that all these blocks automatically satisfy the gravitational anomaly

bound H - V < 273.

A similar analysis for b = 2 again allows only single-column representations, which

now restrict M < 12 and includes SU(M) blocks of the form

(48 - 4M) x u+ 6 x , (b = 2, M < 12, H - V = 1+ 45M - 2M 2 < 273) (2.72)

for all M < 12. Other b = 2 blocks are possible for 6 < M < 10: blocks with single

3-antisymmetric (A3) representations are possible at M = 10, 9 with H - V > 273

and at M = 8,7,6 with H - V < 273. For SU(6) there are also blocks with two and

three A3 representations, and for SU(7) there is a block with two A3 representations;

all these blocks satisfy the gravitational anomaly bound H - V < 273. There is also a

single b = 2 block with gauge group SU(8) and a 4-antisymmetric (A4) representation

SU(8) : 32 x E1+ 1 x H, (b = 2,H - V = 263). (2.73)

This exhausts the range of possibilities for b = 2 blocks.

It can be shown that the equations (2.52), (2.53), and (2.54) impose that b is

bounded above for each SU(M). This is proven in appendix A.3 using the Weyl

character formula. The bound on b for each M is given in table A.1. In particular,

b must be less than or equal to 2 when M > 16. We have, however, seen above that
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M max b (total blocks) # SU(M) models
13-24 1 (1) (1) 1

12 2 (2) (2) 2
11 2 (3) (4) 2
10 2 (4) (6) 2
9 3 (4) (8) 3
8 8 (8) (22) 15
7 4 (7) (28) 16
6 6 (8) (147) 48
5 8 (14) (186) 23
4 16 (34) (3893) 207
3 597 (597) 10100
2 24297 < bmax < 36647 ~_5 x 10 7

Table 2.4: A summary of the possible distinct matter representations for gauge group

factors SU(M). The numbers in parentheses refer to possible blocks without con-

straint on the number of hypermultiplets, while the numbers without parentheses

refer to possible anomaly-free models with a single nonabelian factor with total

gauge group SU(M). The number of blocks not individually satisfying gravitational

anomaly bound becomes very large at M = 3, as does the number of blocks for M = 2

even with the gravitational anomaly constraint. We have not precisely computed the

number of blocks in these categories.

when b < 2, M < 24. We therefore have proven that (M, b) can only take a finite

number of values, which in turn implies that there are only a finite number of blocks

that satisfy the single-block anomaly equations.

We have explicitly constructed all SU(M) blocks with M > 4. We have, however,

constructed only a subset of SU(3) and SU(2) blocks due to the fact that the sheer

number of blocks turns out to be too large. We have summarized the number of

blocks for each SU(M) in table 2.4.

2.4 Theories with Abelian Gauge Symmetry

In the previous sections, we have reviewed that the number of apparently consistent

non-abelian theories with T < 9 tensor multiplets is finite, and have presented a way

to construct the full set of theories when T = 0. In light of these results it is natural

to ask whether such nice bounds exist when we allow abelian gauge group factors. It

is useful to divide this question into two parts. That is, we ask;
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I. Whether the number of different gauge/matter structures is finite when we ignore

the charges of the matter under the U(1)'s.

II. Whether given the gauge/matter structure, the number of distinct combinations

of U(1) charges each matter multiplet can have is finite.

In this section we show that the answer to the first question is "yes" when T < 9. As

is the case with non-abelian theories, when T > 9 we can generate an infinite class of

theories in which the bounds that hold for T < 9 theories are violated. An example

of such an infinite class is given in section 2.4.2.

In addressing the second question, it is important to note that theories with multi-

ple U(1) gauge symmetries (say U(1)") are defined up to arbitrary linear redefinitions

of the gauge symmetry. If we assume that all the U(1)'s are compact and normalize

the unit charge to be 1 for each U(1) factor, the theories are defined up to SL (n, Z).

From this fact, we may deduce that there are an infinite number of distinct U(1)

charge assignments possible for certain non-anomalous gauge/matter structures. This

is because there are many known examples of theories with two U(1) factors and at

least one uncharged scalar, so that the non-anomalous gauge group can be writ-

ten in the form U(1) 2 x go. Since any linear combination of the two U(1)'s is a

non-anomalous U(1) gauge symmetry, it is possible to construct an infinite class of

apparently consistent 6D supergravity theories with gauge group U(1) x Go by simply

removing the other U(1) along with a neutral scalar from the spectrum.

Hence we see that the answer to the second question is negative. We may now

ask, however,

III. Whether all infinite families of U(1)'s could be generated in the trivial manner

presented above.

IV. Whether additional quantum consistency conditions that are unknown to us at

the present could be employed to constrain the set of U(1) charges in a given

theory.
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Regarding question III, we find that there are non-trivially generated infinite families

of U(1) charge solutions. The last question is addressed in later chapters.

This section is organized as follows. In section 2.4.1 we develop a useful technical

tool in analyzing the abelian anomaly equations. In section 2.4.2 we address the first

question. In section 2.4.3 we address the second and third questions. In particular,

we present examples of infinite classes of T = 1 theories with U(1)'s that are triv-

ially/nontrivially generated. We also discuss subtleties arising in the case T = 0,

where there are no tensor multiplets. We summarize the results of this section in

section 2.4.4.

2.4.1 The Abelian Anomaly Equations

In this section we develop a useful formalism in which to manipulate the abelian

anomaly equations. After first understanding the anomaly equations in this picture,

we apply this formalism to specific examples with T = 1 and with T = 0.

It is useful to summarize the mixed (2.23) and gauge (2.26) anomaly constraints

involving abelian gauge groups by the following polynomial identities:

a -P(xi) = -I 3 Mrf1 (x) 2  (2.74)
6

0 = M-Efr1 (xi) (2.75)

b.P(xj) =A m )y. IjMAf(X,)2  (2.76)
I

P(Xj) P(Xj) E M I Mf 1 (X,)4  (2.77)
I

Here we have defined the SO(1, T) scalar and vector polynomials

fTz(i) =t g,ixi (2.78)

The reason that U(1) factorization conditions can be written as polynomial identities
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is because the field strengths of the U(1)'s behave like numbers rather than matrices

in the anomaly polynomial. We note that the xi are auxiliary variables and do not

have any physical significance. Recall that the i indices index the U(1) gauge groups

while the I indices index all the matter representations of the theory. qi,j is the charge

of representation I under U(1)j.

A theory with charges q,i assigned to the hypermultiplets is only consistent if

there exist bij satisfying these equations that give a positive-definite kinetic matrix

j - big for the U(1) gauge fields. It is useful to define the charge vector with respect

to U(1)j whose components are the charges of the N nonabelian representations:

qj _ (qi,i, q 2 ,i, qN) (2.80)

There is a GL(VA, R) symmetry of the U(1) anomaly equations that originates

from the fact that there is a freedom of redefining U(1)'s. Recall that VA is the number

of the abelian gauge group factors. If there are multiple U(1)'s one could take some

new linear combination of them to define a new set of non-anomalous U(1)'s. The

equations are invariant under

gi qi

2)-+ M ,2 (b")ij -+ (Mt(b")M), , (2.81)

\qVA \qVA

for M E GL(VA, R), as expected from (2.8). We have denoted (bP) to be the matrix

whose (i, j) element is be,. When we are discussing properly quantized charges of

compact U(1)'s the linear redefinitions of the U(1)'s must be given by elements of

SL(V, Z) C GL(V, R). In this section, however, we merely use the fact that the

anomaly equations are invariant under GL(V, R) as a tool for obtaining bounds on

the number of U(1)'s we can add to a given theory. Therefore, we do not need to be

concerned with the issue of integrality of charges.

The factorization equations, combined with the positive-definite condition on bij,
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impose stronger constraints on the theory when T < 9. This is because a is timelike

when T < 9:

a -a = 9 - T > 0 (2.82)

When a is timelike,

a-y=O, y-y;O y = 0 (2.83)

for any arbitrary SO(1, T) vector y. This fact is used in [62] to bound the number of

theories with nonabelian gauge groups, and is also crucial in bounding the space of

theories with abelian factors. In particular, this fact implies that the charge vectors

qj must be linearly independent in order to get a positive definite kinetic term for the

U(1)'s when T < 9. If they are not, there exists non-zero (xi) such that f1 (xi) = 0

for all I since

fA(Xi) (fi(xi),-- , fN(Xi)) xqi.- (2.84)

For such xi, we see that

a -P(xz) = 0, P(x) - P(x) = 0. (2.85)

This implies that P(xi) = 0, which in turn implies that j -P(xi) = 0, i.e.,

(j - b)5xpcj = 0. (2.86)
ii

This would mean that the kinetic term is not positive-definite. Hence we have proven

that in order for the kinetic term to be positive-definite, qi must be linearly indepen-

dent when T < 9. This in particular means that we cannot have a massless U(1)

vector under which nothing is charged, i.e., that when T < 9, the trivial solutions

to the U(1) factorization equations where all the charges are set to q,i = 0 are not

acceptable. The analogous connection in 10D between U(1) charges and the BF 2

term, which is related by supersymmetry to the gauge kinetic term [86], also played a

key role in the analysis in [69] showing that the ten-dimensional supergravity theories
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with gauge group U(1) 4 6 and E8 x U(1)248 are inconsistent.

The fact that qi are all linearly independent for T < 9 also implies that

P(Xz) - P(Xz) = ( Mrf1 (Xi) 4 > 0 (2.87)

for all non-zero xi as f1 (xi) cannot be made simultaneously zero for all I. We make

use of (2.87) in bounding the set of abelian theories in section 2.4.2. Now let us

examine some examples using this formalism.

Examples : T = 1

Let us examine the abelian anomaly cancellation conditions for examples that have

one tensor multiplet. As discussed earlier, T = 1 theories have a Lagrangian descrip-

tion, unlike theories with other T values. The SO(1, T) basis most commonly used

for T = 1 theories in the literature is

0 1

1 0

-2
a =,

-2
b 1 A (

2 an
I = - (2.88)

N5 e-+

for which the factorization condition becomes

I = - (trR2 -( atrF.-Z aijFiFj)A(trR2 -( &trF,-( F (2.89)
K ij X i3

For the abelian factors we have

1 aeij
aij-_

(2.90)

and the gravitational anomaly constraint becomes

H - V = 244. (2.91)
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The kinetic term for the antisymmetric tensor is given by

L = 1e-2(dB - w) (dB - w), (2.92)
2

where 4 is the dilaton. We define the Chern-Simons forms w and cD as

dw = 1 (trR2 - a trF2 - ZaijFiF) (2.93)

dQ = 1 2(trR2 - &, trF, - &iFiF) (2.94)

The variation of the two form under gauge transformations becomes

JB = -1 2 ( a trAKF + aijAiFj) (2.95)

and the anomaly can be gotten rid of by adding the term

-B A dQ (2.96)

to the Lagrangian. Supersymmetry determines the kinetic term for the gauge fields

to be

- (areO + &5e-)trF A *Fr - E(aeO + &e-)F A *Fj . (2.97)
K ij

For a consistent theory without instabilities there must be a value of the dilaton such

that all the gauge fields have positive kinetic terms. This means that the matrix

=yi e* . + ije- = 2Vij - big (2.98)

must be positive definite for some value of 4. Also, in order for the distinct U(1)i

vector multiplets to be independent degrees of freedom, 7Yj5 must be non-degenerate.

In order to discuss the factorization equations coming from terms with abelian

gauge field factors, in addition to f1 (xi) = q,ixi it is convenient to define the quadratic
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forms

F(xi) = aijxizx F(xi) = dijxixj. (2.99)
ij ij

These are the components of Pa(x) defined through (2.79).

The factorization condition can then be summarized by the polynomial identities

0 = (M7E.)fi(xi) for all , (2.100)
I

F(xi) + F(xi) = >Mrfj(x) 2  (2.101)

5rF(xi) + arF(xi) = 4 (M AI)f(Xi) 2  for all r. (2.102)

F(xi)F(xi) = EZ Mf(xi)' (2.103)
I

The basis chosen for the U(1) factors is defined up to GL(VA, R):

gi qi

-+ M , (a) j -+ (M t (a)M) , (&)ij -+ (M t (&)M) . (2.104)

qVA \qVA

(a) and (&) denote the matrices whose (i, j) element is aij and dij, respectively.

As proven in the last section, since T = 1 < 9, the charge vectors {q} are linearly

independent for solutions of the factorization equations that give a non-degenerate

kinetic term for some value of the dilaton. Linear independence of q'i imposes positive-

definiteness on both aij and &55. The reason is that the r.h.s.'s of (2.101) and (2.103)

are both positive for any real xi if q'i are linearly independent. This is because f(xi)

cannot be zero for any real xi. Hence F(xi) and F(xi) are positive for all real xi.

Therefore, aij and &ig both have to be positive definite.

Let us examine two examples where we can see the abelian anomaly cancellation

equations at play. The first example is given by orbifold compactifications of the

E 8 x E8 heterotic string theory [87]. This theory has gauge group E7 x E8 x U(1)
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with 10 56's and 66 singlets with respect to E 7 . Nothing is charged under the E 8 .

This matter structure solves the non-abelian factorization equations. The non-abelian

part of the anomaly polynomial factorizes to

1 1 2 1 1

16(trR - trF -tr ) A (trR - trF., + trF 8 ). (2.105)

We index the hypermultiplet representations 56 by I = 1, - - , 10 and the singlets by

I = 11,--- , 76. Since there is only one U(1), there is only a single a = an and a

single & = &n. Also, f1 (x) = q1x.

Therefore, the anomaly equations can be obtained by plugging in

F(x) = ax, F(x) = &x, fi(x) = qjx (2.106)

to equations (2.100)-(2.103). Since E 7 and E 8 do not have third order invariants, and

no matter is charged under E8 , we obtain

11
- a + I = 0 (2.107)

10 76

a + it = 6(56 q+ qj )(2.108)
1= =11

1 10

a + 10 = 4 q (2.109)
1=1

10 76

a& = 3(56 q± + q) (2.110)
1=1 I=11

This can be re-written as

10 76 10 2 9 76 2

56 q + q = 36 q(1 196 ). (2.111)
I=1 I=11 11I1

Five distinct charge assignments that give solutions to these equations can be obtained

by different abelian orbifold - by which we mean an orbifold whose orbifold group

is abelian - compactifications. For example, there is a Z8 orbifold compactification
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that assigns the charges

qi = q2 = -3/8, q3 = q4 = q5 = -1/4, q8 = q9 = q10 = 0, q6  g = -1/8,

qu =--- = q30 = 1/8, q 3  ==q34 =-7/8, q35 =q44 =/4,

q45 = = 5 0 =-3/4, q51 = q54 = 3/8, q55  - = q58 = -5/8,

q59 = -.. = gr7 = 1/2, q8 = - - - = q6 = -1/2

to the hypermultiplets. The anomaly coefficients for these charge assignments are

a = 1, & = 6. (2.112)

All five solutions from abelian orbifolds are given in table 1 of [87].

We present one more example that proves to be useful later in this section. Con-

sider the gauge group SU(13) x U(1) with 4 two-index anti-symmetric, 6 fundamental

and 23 singlet representations of SU(13). These solve the anomaly equations that do

not concern the U(1) field strengths. The non-abelian part factorizes to

16(trR 2 - 2trFU(13)) A (trR2 - 2trF (2.113)

Denoting the charges of hypermultiplets in the antisymmetric/fundamental/singlet

representations as a,(x = 1, -.. , 4)/f,(y = 1,... ,6)/sz(z = 1, - - ,23) the anomaly

equations become

0= 92 + f, (2.114)

a + & = ( 78a2 + E 13f2 s2) (2.115)

2a + 2& = 4( 11aIa+ f2) (2.116)

ad = 2( 78a + 13f4 + Es ) (2.117)
I a sl i Z

If there exist for given a~, ft,, sz a solution a, & to these equations, the anomaly
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polynomial factorizes into

- (trR2 - 2trFS2U(13 ) - aFU()) A (trR2 - 2trFj( 3 ) - F
16 F2(3 F~) (2.118)

We identify infinite classes of charge assignments and a,& values that solve these

equations in section 2.4.3.

Examples : T = 0

We now examine the abelian anomaly cancellation conditions for examples with T =

0. In the case T = 0 all the SO(1, T) vectors a, b, j reduce to numbers. As explained

in the previous section we may set

Q = 1, a = -3, j = 1. (2.119)

Positivity of the kinetic term imposes that the bK's be positive and that bij be a

positive definite matrix.

In this case the factorization condition becomes

(2.120)Is= - ( 3 tr 2 + 2brtrF 2 + E 2biFiF )2 .
18 3K2Ar 

ij

The gravitational anomaly constraint becomes

H - V = 273. (2.121)

The factorization equations coming from U(1)'s can be written out by using the

quadratic form

(2.122)P(xi) = S bijxix,
ii
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as the polynomial identities

0 = Z(M7E)f(xi) for all n (2.123)

P(Xz) = EJZM Ifl(i)2 (2.124)

P(x() = T = < t (Mt h Arg )fv(Xe) 2  for all l y (2.125)
br

p(,2= M _ x) (2.126)
3'1

The basis chosen for the U(1) factors is as usual defined up to GL(VA, R) through

(2.81). Since T = 0 < 9, the charge vectors {q'} are linearly independent for solutions

of the factorization equations that give a non-degenerate kinetic term for some value

of the dilaton.

Now let us examine a few examples in which the anomaly equations come into

play. We first consider a theory with gauge group SU(6) x U(1) with 1 adjoint, 9

two-index anti-symmetric, 18 fundamental and 31 singlet representations of SU(6).

These solve the non-abelian anomaly factorization equations. The factorized non-

abelian anomaly polynomial is

1 3
(--trR2 + 6trFir(6 )2 . (2.127)

32 2

Denoting the charge of hypermultiplets in the adjoint/antisymmetric/fundamental/singlet

representation as d/ax(x = 1, .. , 9)/fu(y = 1, - - -, 9)/sz(z = 1, - - -, 31) the anomaly
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equations become

0 = Z 5a, + f (2.128)
X Y

b = -(35d 2 + E 15a2 + E 6f,2 + 3 s2) (2.129)
18

3b = (12d 2  4a +Zf ) (2.130)

b2 = 1(35d4 + 15a4 + E 6fy + S4) (2.131)

For charges and b satisfying these equations, the anomaly polynomial of the theory

factorizes into

-( 3  trR2 + 6trF2U(6 ) + 2bF2(l))2 . (2.132)

Finding an apparently consistent supergravity theory with this gauge group amounts

to identifying values for b and the charges d, ax, fy, sz so that (2.128) through (2.131)

are satisfied. If we assume that the U(1) is compact and the charges are integers then

this is a system of Diophantine equations over the integers. In general, classifying

solutions to such a system of equations can be a highly nontrivial problem in number

theory.

A particularly interesting class of examples are pure abelian theories. In this case

the only non-trivial abelian anomaly equations are the last equations of equation

(2.23) and equation (2.26) ((2.128) and (2.131) for T = 0). For a theory with a given

number of abelian vector multiplets, there is a lower bound on the number of charged

multiplets it must have. When the number of charged hypermultiplets saturate this

bound, the charges that the hypermultiplets carry is severely restricted. Such theories

have a particularly simple structure and are interesting to study further.

As an example, consider the case of a purely abelian theory when T = 0 and

VA = 1. We denote the charges of the X charged hypermultiplets in the theory by
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q, - - ,qx : 0. Then we must solve

18b = q

(2.133)
3b2  4

Using the inequality

(E q )2 < X(E q), (2.134)
I I

we see that

X > 108. (2.135)

When X is equal to 108, i.e., when the number of charged hypermultiplets saturates

the lower bound, the only solutions to the equations (2.133) are

qI = iQ for all I, b = 6Q 2. (2.136)

Similarly for any pure abelian T = 0 theory, using (2.123) and (2.126) we can show

that the following relation between VA and the number of charged hypermultiplets X

holds
324VA X VA + 273. (2.137)
VA + 2

The proof is given in appendix A.5. Hence, as above, when VA = 1 there must be at

least 108 charged hypermultiplets; likewise, when VA = 2 there must be at least 162

charged hypermultiplets. As seen in the VA = 1 case, in the marginal cases when X

exactly saturates this bound, the solutions to the charge equations are particularly

simple. From (2.137) it follows that the maximum possible number of U(1) factors

that can be included in any T = 0 theory with no nonabelian gauge group is VA < 17.4

A family of marginal/nearly marginal T = 0 theories with gauge group U(1)k k <

7 can be obtained by Higgsing an SU(8) theory with one adjoint hypermultiplet and

4(2.137) alone implies that VA <; 17 or VA > 32. An additional constraint following from equations
(2.123) and (2.126) is needed to obtain the desired bound. We derive this constraint and show that
indeed VA <; 17 in appendix A.5.
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Gauge Group U(1) U(1)2 U(1)3 U(1)4 U(1)5 U(1)6 U(1)7
X 0 108 162 198 225 243 252 252

324 VA/(VA +2) 0 108 162 194.4... 216 231.4... 243 252
X' 273 166 113 78 52 35 27 28

Table 2.5: The number of charged hypermultiplets X for pure abelian theories ob-
tained by Higgsing the adjoint of the SU(8) theory with one adjoint and nine anti-
symmetrics. We have also tabulated the number of uncharged hypermultiplets in the
theory, X' = (273 + VA - X).

nine antisymmetric hypermultiplets. The number of charged hypermultiplets X for

the various pure abelian theories one obtains by Higgsing the adjoint of this theory

in different ways is summarized in table 4.3.

2.4.2 Bounds on T < 9 Theories With U(1)'s

We now address the first (I) of the four questions raised at the beginning of this

section. That is, we prove that the number of different gauge/matter structures -

specified by the gauge group and the non-abelian representation of the matter - is

finite for theories with T < 9, when we ignore the charge of the matter under the

U(1)'s.

The strategy we pursue is the following. First, we prove that in a non-anomalous

theory, the number of U(1)'s is bounded by a number determined by the non-abelian

gauge/matter content. We prove that the relations

VA (T + 2)V2N + 2(T + 2) (2.138)

VA < (T + 2)(T + 7) +(T+2) 2VNA+(T2-51T+ 4 ) (2.139)

hold for non-anomalous theories with T < 9, where VA is the rank of the abelian gauge

group, VNA is the number of nonabelian vector multiplets, and N is the number of

hypermultiplet representations. These bounds imply that the number of U(1)'s one

could add to a non-abelian theory is finite. We note that these bounds are in no

sense optimal; they could be improved by a more careful analysis. These inequalities,

however, will be sufficient for the purpose of proving that there is a finite bound on
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theories with T < 9.

Next, we define the concept of "curable theories" as non-abelian theories with

H - V > 273 - 29T that can be made non-anomalous by adding U(1) vector fields

and without changing the non-abelian gauge/matter structure. Curable theories are

defined so that all non-anomalous theories with abelian gauge symmetry can be ob-

tained by adding U(1)'s either to non-anomalous theories, or to curable theories. We

then show that the number of curable theories is finite for T < 9, which combined

with our other results, implies that the number of gauge/matter structures possible

for non-anomalous theories with T < 9 is finite.

Lastly, we construct an infinite class of non-anomalous theories with an unbounded

number of U(1)'s and T > 9.

Bound on Number of U(1) Factors

In this section we prove equations (2.138) and (2.139) for non-anomalous theories

with T < 9. Given a gauge group

V VA

g=fJ g, x j U(1) , (2.140)
r=1 i=1

we show that the bound on VA can be given as a function of the number of nonabelian

vector multiplets

VNA Adj, (2.141)

and N, the number of nonabelian matter representations. This can be done by making

use of equation (2.77), which is equivalent to the last equation of (2.26)

P(xi) - P(xi) = 1 MIf(x) 4

(2.142)
< bi - bki + bik . bjI + bil - bik = MIqI,iqIjqI,kqI,

We should be looking for integral solutions of this equation for bij, qj,i, but for now

we simply determine the conditions for the equations to have real solutions. These
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conditions impose a bound on VA, which also is a bound for integral solutions. These

equations have a GL(V, R) invariance summarized by (2.104) where the matrices M

now can be taken to be real.

We first state the following useful

Fact : For (T + 1) symmetric n x n matrices S1 , - ,ST+1, there exists a matrix

M E GL(n, R) such that for r = [n/(T + 2)] the matrices S' = M'S,M satisfy

(S'M = 0 for distinct k, 1 < r (2.143)

for all a = 1, ... , (T + 1).

Proof : First pick an arbitrary n-dimensional vector ei. Then generate the set of

(T + 2) vectors

Vi = {ei, Sie1, - - - , S(T+l)e1}. (2.144)

When 1 < n/(T + 2) there always exists a non-zero vector that is orthogonal to these

(T + 2) vectors. Pick one and call it e2 . Then generate the set of (T + 2) vectors

V2 = {e 2, Sie2 , - -- , S(T+1)e2}. (2.145)

When 2 < n/(T + 2) there always exists a non-zero vector that is orthogonal to the

set V1 U V2 of vectors. Pick one and call it e3. By iterating this process we can obtain

T non-zero mutually orthogonal vectors,

ei, - , er (2.146)

such that

e Scej = 0 for i # j (2.147)

for all a. We can then choose vectors e+ 1,-... , en that together with ei, - - -e. form

a basis of R". Define

M = (ei ... en), (2.148)
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where e; are column vectors. It is clear that detM : 0 and that for S' = M'SQM

(S')kl = 0 for distinct k, 1 < r (2.149)

for all a. El

Due to this fact, there exists a matrix M E GL(VA, R) such that for all a

MikMjybkl = 0 for distinct i,j r (2.150)

for any solution of (2.142). We have defined

TVA 1
(2.151)

This means that the existence of a solution of (2.142) implies the existence of a

solution of the same equations with

bkl = 0 for distinct k,l < r.

Therefore, we may from now on assume that this condition is true.

For ordered pairs (i, j) with i < j T, we define the vectors

ij =- (3/Igijgi,, N g/7 q2,iq2,j, -, / NN,iqNj)

Then we have

Nij -Nk= -MIqI,iq,iq,kqI,1 = bij - bkl + bik - bj + bil - bik = 0

for ordered pairs (i, j) 5 (k, 1). Also from the last equation of (2.26), we have

Qij - Ni= Mjq2,iq,, = bi -bjj + 2bij - bij = bi - bjg > 0.
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The last inequality holds due to the fact that bij are timelike vectors since

b, > 0 , (2.156)
I

as gi cannot be a zero vector. The inner-product of two timelike SO(1, T) vectors

cannot be zero, and EZ iA4,,2q, cannot be negative and hence the inequality in

(2.155).

Therefore, Qij are non-zero mutually orthogonal vectors for i < j < r. Thus, we

have r(r - 1)/2 non-zero orthogonal vectors in an N-dimensional space. Hence

1( - 1  VA - 2) < N < H < VNA + VA + 2 73 - 29T- (2.157)
2 T±2 T ±2 2

Using the two inequalities

1 - - 2) < N (2.158)
2 T+2 T+2-

±( - 1)( V±- 2) < VNA + VA + 273 - 29T, (2.159)
2 T+2 T+2-

we obtain the bounds

VA < (T + 2)v/-+ 2(T + 2) (2.160)

V<T\T L7 T2IV±T 1 ±2225
VA < (T + 2)(T +-7 )+ (T+2) 2VNA (T2 - 51T + 4 ), (2.161)

as promised. We have used the fact that v/-a+b < vFa + v5 for non-negative a, b

to simplify the first inequality. The second inequality simply follows from solving

(2.159) for VA when the inequality is saturated. This result implies that given a

non-anomalous non-abelian theory, the number of U(1)'s one could add to the theory

keeping it non-anomalous is bounded.

The equations we have used also apply to pure abelian theories. This is because

we have not used any constraint coming from the non-abelian structure of the theory;

we have only used the equation (2.142). Hence we can obtain a bound on the number

78



of U(1)'s when the theory is purely abelian:

7 2225
VA < (T + 2)(T + 2)+(T + 2) T 2  51T + (2.162)

Note that this bound is substantially weaker than the tighter bound VA 17 for

T = 0. (For T = 0 this bound states that VA < 54, while we show that VA < 17 in

appendix A.5.)

Curability and Finiteness of Curable Theories

We define "curable" theories to be non-abelian theories that violate the gravitational

anomaly bound H-V > 273-29T, but whose anomaly polynomial can nonetheless be

made factorizable by adding U(1) vector multiplets and some singlet hypermultiplets

in such a way that the gravitational bound is satisfied. There should also exist values

for the scalars in the tensor multiplets that make the kinetic terms of all gauge fields

positive in the resulting non-anomalous theory. We also assume that these theories

do not have any hypermultiplets that are singlets under the non-abelian gauge group.

From this definition it is clear that all non-anomalous theories with abelian gauge

symmetry can be obtained by the following steps.

1. Begin with a theory without abelian gauge group factors that is either non-

anomalous or curable.

2. Add abelian vector multiplets and (possibly) hypermultiplets in the trivial rep-

resentation of the non-abelian gauge group.

3. Assign U(1) charges to the matter.

We note that it is clear that the number of U(1)'s one could add to a given curable

theory is finite, since it is bounded by (2.160) and (2.161). From this it is evident

that the crucial remaining step in obtaining bounds on theories with abelian gauge

symmetry is showing that the number of curable theories is bounded.
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As an example of a curable theory, consider the T = 0 theory with gauge group

and matter content

SU(9) : 26x n+1 x0+1 xL, (H - V = 274). (2.163)

Although this theory violates the gravitational anomaly bound, it satisfies the other

gauge/mixed anomaly equations with b = 2. (Recall that when T = 0 the anomaly

coefficients a, b are numbers.) The theory (2.172) can be cured by adding a single

U(1) vector multiplet and assigning charges to the matter in the following way

SU(9) x U(1): 6 x (0, +1) + 6 x (D , -1) + 14 x ( ) (2.164)

1 x (0,.)+1 x (l , ), (H - V = 273).

The anomaly polynomial of the final theory factorizes to

I8 = (- 3 trR2 + 2trFjU(9 ) + 6F(1) )2 . (2.165)

Since abelian vector multiplets and singlet hypermultiplets do not appear in a

curable theory and do not contribute to the nonabelian gauge/mixed anomalies, it is

clear that the anomaly polynomial of a curable theory takes the form

18 = (H - V - 273 + 29T) (trR4 5 (trR2)2
57604

1 (1 ~ ~ b 1 atR (2.166)
- Zap atrR (f )trF atrR2+ (b)trF 2

32, K J . )( r

where H - V is larger than 273 - 29T. One might think that any theory of this type

is naively curable, since we could apparently add an arbitrary number of U(1) vector

multiplets under which no matter field is charged, so that H - V' = 273 - 29T. The

kinetic term for these vector fields, however, would be degenerate - in fact zero - if

we do so. In fact, in many cases the bounds on the number of U(1) factors that can

be added to a theory make it impossible to cure nonabelian theories with anomalies

of the form (2.166).
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We have reviewed the fact that the number of distinct nonabelian gauge groups

and matter representations possible for theories with T < 9 and no U(1) factors

is finite in section 2.2 [62, 65]. The bound Hcharged - V < 273 - 29T from the

gravitational anomaly condition played a key role in this proof, limiting the number

of charged hypermultiplets that could appear in a theory with any given nonabelian

gauge group. To prove that the number of curable theories is also finite for T < 9

we need an analogous constraint on the number of hypermultiplets for theories with

U(1) factors. We now find such a bound, using the bounds (2.160) and (2.161) on

the number of U(1) factors that can be added to a curable theory.

Suppose a theory is curable by adding VA U(1) vector multiplets and H' hyper-

multiplets. Then using (2.160) we obtain

273 - 29T > (H - V)cured theory = H - V + H' - VA

> H -V + H'- r(T + 2)V'H'/ +N - 2(T + 2) (2.167)

=(H -V)+(vfHT'+ - (T +2)) 2 -N - (T2+4T+6),
-vF 2

where H, V and N denote the numbers of hypermultiplets, vector multiplets and

hypermultiplet representations in the initial non-abelian theory. Since H' > 0, when

N < (T + 2) 2 /2 we have

(T±+2 )) ~(T±+2) 2

(H'+N -T 22)2 - N > - , (2.168)

while when N > (T + 2)2/2 we have

(H'+ N - (T+ 2 )2 - N (T 2 )2 - N = -v'(T + 2)v + (T + 2) 2

2
(2.169)

Thus, any curable theory satisfies one of the following two constraints:

H - V < 273 - 29T + (T2 + 6T + 8) (2.170)

H - V - (T + 2)vW < 273 - 29T + (2T + 4) (2.171)
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Curable theories therefore must satisfy the non-abelian gauge/mixed anomaly equa-

tions among (2.23), (2.26) and one of these modified gravitational anomaly con-

straints.

This result suggests that the proof in [62, 65] can be modified to show that the

number of curable theories are in fact finite. There it was shown that the H of

theories that obey the non-abelian factorization equations - and can have a positive

kinetic term - grew faster than the V of the theory when V became large. This in

turn implied that V must be bounded for theories that satisfy the the non-abelian

factorization equations and respect the H - V bound. We have shown that curable

theories must obey the same non-abelian factorization equations with the H - V

constraint modified. Fortunately, this constant is only modified by a term subleading

in N < H. This suggests that the boundedness of curable theories can be shown along

the same lines as the proof of boundedness of non-abelian theories. This is indeed

the case, though the added term proportional to /W complicates some parts of the

analysis. The details of the full proof of this statement are presented in appendix

A.4.

We note that the equations (2.170) and (2.171) enable us to identify many uncur-

able theories with ease. For example, it can be shown that the T = 0 theory with

gauge group and matter content

SU(7): 27 x E +1 x , (H - V = 351) (2.172)

is uncurable, since

H - V > 273 - 29T + (T2 + 6T + 8) = 281 (2.173)

H - V > 273 - 29T + (2T + 4) + /(T + 2)V = 277 + 2vf56 = 291.9... (2.174)

To summarize, we have defined 'curable theories' to be supergravity theories that

satisfy the following conditions:

1. The gauge group is non-abelian.
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2. The theory has no singlet hypermultiplets.

3. H-V>273-29T

4. The theory can be made non-anomalous by adding U(1) vector fields that are

independent degrees of freedom, as well as possibly adding singlet hypermulti-

plets.

5. In the resulting non-anomalous theory, there exists a choice for the scalars in

the tensor multiplets that makes the kinetic terms of all gauge fields positive.

We have proven the latter three of the following facts:

1. The number of non-anomalous non-abelian theories is finite [62, 65].

2. The number of U(1)'s one can add to non-anomalous theories is finite.

3. The number of curable theories is finite.

4. The number of U(1)'s one can add to curable theories is finite.

As pointed out in the beginning of this section, any non-anomalous theory with

U(1)'s can be constructed by adding abelian vector multiplets and neutral hypermul-

tiplets to a non-anomalous or curable theory with no abelian gauge symmetry. Hence

it follows that there is only a finite number of distinct gauge/matter structures a 6D

(1, 0) theory could have even when we allow abelian components to the gauge group.

In particular, this implies that the total rank of the gauge group is bounded, even

when we admit abelian factors in the gauge group.

Infinite Classes of Theories with T > 9

In this section, we show that for T > 9 a bound cannot be imposed on the number

of U(1)'s as we have done in the case T < 9. We first show that there are certain

classes of theories to which one could add an arbitrary number of U(1)'s, and discuss

why this is not possible when T < 9 and show an example of an infinite class of
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non-anomalous theories with an unbounded number of U(1)'s. We end by presenting

a class of theories with an unbounded number of U(1)'s and tensor multiplets.

Suppose we have a theory To with gauge group go that satisfies all the anomaly

equations and has an SO(1, T) unit vector jo that satisfies jo - b" > 0 for all gauge

groups K. Denote the number of vector and hypermultiplets of this theory as Vo and

Ho.

Suppose an SO(1, T) vector b that satisfies the following conditions exists:

1. b is light-like, i.e., b2 = 0.

2. a-b=0.

3. b, - b = 0 for all r.

4. b -jo > 0.

Recall that in the case T < 9 it is impossible for a vector b to satisfy conditions 1,

2 and 4 at the same time. In that case a is a time-like vector and if 1 and 2 are

satisfied, b must be a zero vector. This is what prevented us from having a U(1) with

nothing charged under it.

The situation is quite different when T > 9; in this case a vector b satisfying the

four conditions above is not ruled out in general. Once such a b is available one could

construct theory Tk from To with the following properties.

1. The gauge group is g = go x U(1)k.

2. The matter content is that of 70 with k neutral hypermultiplets added.

3. Nothing is charged under the U(1)'s, i.e., q',j = 0 for all I, j.

4. The non-abelian anomaly coefficients are given by bK.

5. The abelian anomaly coefficients are given by bij = og3b.

6. The tensor multiplet scalar vacuum expectation value is given by jo.
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By adding the k neutral hypermultiplets, the gravitational anomaly condition,

Hk -Vk = (Ho + k) - (VO+ k) = Ho -Vo = 273 - 29T (2.175)

is satisfied. The non-abelian anomaly factorization conditions are all satisfied by

definition. We find that all the U(l) anomaly equations among (2.23) and (2.26) are

also satisfied as both sides of the equation turn out to be 0. Also,

jo - bij = (jo - b)Jis (2.176)

is a positive definite matrix by the assumption that b -jo > 0. Therefore, this theory

satisfies all the anomaly equations and has a sensible kinetic term. Since this is true

for any k we find that we could add an infinite number of U(1)'s to T0 .

The simplest of these classes of theories is given when there are no non-abelian

factors. A U(1)k theory with 273 - 29T + k neutral hypermultiplets and a, bij given

by

a = (-3, 1 x T, 0, ... ,0), bi2 =bij forb=(3,(-1)x9,0, ... ,0) (2.177)

satisfies all the factorization equations. x x n denotes that n consecutive components

have the same value x. Defining

j = (1, 0, 0, 0, 0, -- ,0) , (2.178)

we find that the matrix for the kinetic term of the vector multiplets

j - bij = 3Joj (2.179)

is positive definite. k is bounded below by 29T - 273 but has no upper-bound.

Let us end by giving an example of a class of theories with an indefinitely increasing

number of U(1) factors and tensor multiplets. A simple example can be constructed

when the gauge group is U(1)29k, T = k and the matter is given by 273 neutral
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hypermultiplets. a, b;j given by

a = (-3, 1 x T, 0, .- , 0), big=b6b1  forb=(3,(-1)x9,0, ... ,0) (2.180)

These anomaly coefficients trivially satisfy the anomaly equations for the given spec-

trum. When

j = (1, 0, 0, 0, 0, -- ,0) , (2.181)

we find that the matrix for the kinetic term of the vector multiplets

j - bij = 362) (2.182)

is positive definite. k is bounded below by 9 but has no upper-bound.

2.4.3 Infinite Classes of Non-anomalous Theories with U(1)'s

In this section, we investigate the second and third questions (II and III) posed at

the beginning of section 2.4, beginning with II: Given the gauge/matter content of

the theory - by which we mean that we fix the gauge group and the representations

of the hypermultiplets with respect to the non-abelian part of the gauge group - are

there an infinite number of solutions to the U(1) charge equations? We denote these

U(1) charge equations "hypercharge" equations.

As pointed out previously, there are infinite families of solutions that may be "triv-

ially generated" in the following sense. There certainly exist solutions of the anomaly

equations with gauge group g = go x U(1) 2 . In such a case, denoting the charge vec-

tors with respect to the two U(1)'s qI and q, any linear combination Q = rqi + sq

solves the anomaly equation for g' = go x U(1) with the same matter structure. On

top of the anomaly cancellation conditions, we may demand that additional consis-

tency conditions be obeyed [124, 128, 129, 130]. Three such conditions are applicable

to six-dimensional supergravity theories with compact U(1) abelian factors:

1. Charge Integrality Constraint : All charges of particles should be integral

with respect to the minimal charge of the U(1)'s.
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2. Minimal Charge Constraint : The greatest common divisor of the charges

of all particles under each U(1) should coincide with the minimal charge - or

inverse of the periodicity - of the U(1).

3. Unimodularity Constraint : The string charge lattice spanned by the anomaly

coefficients should be embeddable in a unimodular lattice.

The first and second constraints do not stop us from generating an infinite familiy

because if the initial theory with g = go x U(1) 2 satisfied the charge integrality

constraint and the minimal charge constraint, the new theory would also satisfy this

constraint when r, s are taken to be mutually prime integers. The unimodularity

constraint does not help either, as we see shortly.

Let us depict the situation with the simplest example. For g = U(1) 2 , T = 1

the following charges on the 246 hypermultiplets of the theory solve the anomaly

equations. Assume that there are 48 hypermultiplets with charge (0,1), 48 hyper-

multiplets with charge (1, 0), 48 hypermultiplets with charge (1, 1) and 102 neutral

hypermultiplets. Written in terms of charge vectors

qi = (1 x 96,0 x 48,0 x 102), q2 = (0 x 48,1 x 96,0 x 102), (2.183)

where q x n denotes that n consecutive components have the same value q. The only

non-trivial anomaly equations concerned are

1(48x2 + 48(xi + x 2 )2 + 48x) = (C11 + &11)x2 + 2(a 1 2 + &i2 )xix 2 + (022 + 5 22 )x2

(2.184)

2(48x4 + 48(xi + x 2 )4 + 48x) = (aulx2 + 2a1 x1 x 2 + a 22x)(&1nx2 + 2&12 x1x 2 + &22x )

(2.185)

Both equations are satisfied by the choice

an1 = a22 = 2a12 = = 522 = 2&1 = 8. (2.186)
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Therefore

Q= (rx 48,(r+s) x 48,s x 48,Ox 102) (2.187)

satisfy the equations

-(48r2 + 48(r + S)2 48s 2) = 16r 2 + 16rs + 16s 2  (2.188)
6

-(48r4 + 48(r + s)4 + 48s) = (8r 2 + 8rs + 8S2)2. (2.189)
3

It is easy to see that this choice of charges solves the anomaly equation for g = U(1)

with a = & = (8r 2 + 8rs + 8S2). Therefore, we obtain an infinite class of solutions to

the anomaly equations for g = U(1).

It is clear that imposing the charge integrality constraint and the minimal charge

constraint does not stop us from generating this infinite family as we may take r and

s to be mutually prime integers. Now we show that the unimodularity constraint is

also satisfied when r and s are integers.

It is useful to notice that when T = 1, a sufficient condition for the unimodularity

constraint is that all the anomaly coefficients a and & defined in section 2.4.1 are even

integers. This is because if all a and & are even integers, all string charge vectors

a = , b = - (2.190)
(-2 )2 5

are embeddable in the unimodular lattice spanned by

1 0
and , (2.191)

with inner product structure 0 as defined in (2.88). When r, s are integers, a and &

of the U(1) are both equal to (8r 2 + 8rs + 8S2), which is an even integer. Therefore,

the unimodularity constraint does not rule out this infinite class of theories.

The natural follow-up question to ask is whether there is some gauge/matter

structure that permits an infinite number of distinct solutions to the hypercharge
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equations that cannot be lifted to a theory with more U(1)'s. It turns out that there

are infinite classes of solutions to anomaly equations of a theory with gauge group

go x U(1) that cannot be lifted to Go x U(1) 2 . The example we examine is the theory

with gauge group SU(13) x U(1) that we presented at the end of section 2.4.1. There

we found a solution to the non-abelian factorization condition with 4 antisymmetrics,

6 fundamentals and 23 singlets in the SU(13). The non-abelian part of the factorized

polynomial is

S(trR2 - 2trFU(13)) A (trR2 - 2trFjUgs)). (2.192)

Denoting the charge of hypermultiplets in the antisymmetric/fundamental/singlet

representation as ax(x = 1, -.. ,4)/fy (y = 1, - 6)/sz(z = 1, ... ,23) the anomaly

equations become

9E a + Ef = 0 (2.193)

78 a + 13 f +± s = ad (2.194)

78 a 2+13 f2Z+ s = 6a + 6& (2.195)

44 a2 + f4 f2 = 2 + 25 (2.196)

There is an ansatz that solves this equation given by

2
(ax) = (-3a - -f, a, a, a) (2.197)

3

(fY) = (f, f, f, f, f,f) (2.198)

(sz) = ((6a + f) x 18, 0,0,0, 0, 0) (2.199)

where in the last line we mean that 18 of the sz take the value (6a + f) while five take

0. This ansatz satisfies the first equation and renders the third and fourth equations

equivalent. Then the second and third equation can be solved with respect to a, & to
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yield

a ~2 [(49 + 198t + 5942) ± ,3I(1 + 6t) 23 - 24t - 36t2] (2.200)
f2' f2 9

where we have defined t = a/f. It is easy to see that a, 5 are real as long as

-2 - 3v5 -2±+3V5
< t < . (2.201)

6 6

Both a, & are positive when t is in this range. Hence we see that there are an infinite

number of integral hypercharge solutions to the equations (2.193)-(2.196) that give

allowed values of a, a.

It is clear that this theory cannot be lifted to a theory with gauge group SU(13) x

U(1) 2 . Although the ansatz for the given solution seems to imply that this theory

can be lifted, for example by choosing the charges for one U(1) to be proportional

to a and the charges for the other U(1) to be proportional to f, the fact that a/f

must lie in a certain range implies that there must be an obstruction to doing this.

The obstruction is that if one tries to lift the theory to a theory with gauge group

SU(13) x U(1) 2, the matrices aij and &d3 of this theory cannot be made into positive

definite real matrices as is required for the U(1) gauge fields to have positive-definite

kinetic terms.

The next question to ask is whether there is an infinite subclass of these theories

that satisfy all three quantum consistency conditions introduced at the beginning of

this section. Generating a subclass of theories that satisfy the integrality constraint

and the minimum charge constraint is not difficult. For example, by taking f and a

to be mutually prime integers and f to be a multiple of 3, one can generate an infinite

class of solutions that satisfy these two constraints. These conditions, however, do

not lead to the unimodularity constraint.

In order to construct a subclass of theories that satisfy all three constraints, let

us examine whether there exists an infinite number of rational values of t that make

the right hand side of (2.200) rational. This problem boils down to the question of
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whether the equation

23 - 24t - 36t2 = 39q 2  (2.202)

admits an infinite number of solutions with rational t and q. We find that there

indeed are an infinite number of rational solutions to this equation using methods

outlined in chapter 7 of [131]. When

a 13k 2 -234k -51 (2.203)

j=t= 24(13k 2 +3)

for k rational we find that

a 13
= 144(3 ± 13k 2 )2 [6687 + 54756k + 94458k2 - 124956k 3 + 39455k 4] (2.204)

1 13
= 144(3 ± 13k 2 )2 [2475 + 37908k + 170274k 2 - 29484k 3 + 9035k4] . (2.205)

Hence we find that the number of non-anomalous theories with SU(13) x U(1) with

this particular type of matter content is infinite.

To be clear, we now spell out the explicit subclass of theories that satisfy all three

quantum consistency conditions. Setting k = r/s for integers r and s in the above

equations, we find that when

a = 13r 2  234rs - 51s 2  (2.206)

f = 24(13r 2 + 3s 2 ), (2.207)

a and & take on the values

a = 52 [6687s 4 + 54756s 3r + 94458s 2r 2 - 124956sr 3 + 39455r4] (2.208)

a = 52 [2475s4 + 37908s 3r + 170274s 2r 2 - 29484sr 3 + 9035r4] , (2.209)

which are even integers. As discussed early on in this section, this implies that

the string charge lattice can be embedded in a unimodular lattice. It is clear that

this ansatz assigns integer charges to all the fields and hence the charge integrality
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constraint is also satisfied. If a and (-3a - 2f/3) are mutually prime, the minimal

charge constraint is also satisfied. There are an infinite number of integer pairs (r, s)

that render a and (-3a - 2f/3) mutually prime. In fact, we can show that when

r = 84n + 43 (2.210)

s = 182n + 92 (2.211)

for integer n, a and (-3a - 2f /3) are mutually prime. This fact is proven in appendix

A.6.

We have found a particular gauge/matter structure with one U(1) that has an

infinite number of distinct solutions to the hypercharge equations for T = 1. Further-

more the theory cannot be lifted to a theory with two U(1)'s for these hypercharge

assignments.

The situation is rather subtle for the case of T = 0. The equations (2.123)-(2.126)

make it clear that any infinite class of solutions to the anomaly equation with charge

vectors of the form

Q = rI + s q2 (2.212)

for one U(1) can be lifted to U(1) 2 . As in the T = 1 case there are a plethora

of examples of gauge/matter structure that admit an infinite family of hypercharge

solutions in this way. If, however, we want to identify an infinite class of theories that

satisfy anomaly equations for a single U(1) factor that cannot be extended to U(1) 2 ,

we cannot have a simple linear ansatz as in the T = 1 case. Examining some specific

examples of T = 0 theories gives interesting number theory problems that in some

cases seem to have infinite U(1) families that cannot be extended to U(1) 2 models,

but we do not go into the details of these constructions here.

2.4.4 Summary

In this section, we have considered 6D supergravity theories with (1, 0) supersymme-

try with abelian as well as nonabelian gauge group factors. The following statements
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have been proven for such theories when the number of tensor multiplets T satisfies

T < 9:

1. The number of abelian vector multiplets is bounded above by (2.160) and

(2.161). The upper bound is determined by the nonabelian gauge/matter con-

tent.

2. The number of possible gauge groups and nonabelian matter content is finite,

though there are families with infinite numbers of possible distinct U(1) charges.

From (2), it immediately follows that

3. There is a global bound on the rank of the gauge group of any non-anomalous

6D N = (1, 0) theory with T < 9.

When T > 9, infinite classes of theories can be constructed, just as it was with

non-abelian theories.
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Chapter 3

6D (1,0) String Vacua

In the previous chapter, we have investigated the boundary of apparently consistent

theories of the six-dimensional (1,0) supergravity landscape. In the present chapter,

we carry out the second step of the landscape analysis by investigating the boundary

of known string vacua.

An important observation that can be made about string models in six-dimensions

is that their non-abelian sectors have a natural embedding into F-theory vacua [64,

65, 114]. In fact, F-theory provides a unifying framework in which to include string

vacua with all values of T with a wide variety of gauge groups. Six-dimensional F-

theory vacua can be obtained by compactifying the twelve-dimensional theory on an

elliptically fibered Calabi-Yau threefold X [118, 119]. The low-energy data of an F-

theory vacuum can be extracted from the geometric data of manifold X. We review

how the geometric language of F-theory is ideal for describing low-energy data of

six-dimensional supergravity theories and how non-abelian sectors of string models

can be embedded into this framework.

The abelian sector of a string vacuum is more difficult to deal with. The difficultly

arises from an aspect of abelian gauge symmetry discussed in section 2.1.5. Abelian

vector fields - vector fields under which no other vector field is charged - can

be coupled at the linear level to Stickelberg fields and be lifted from the massless

spectrum. Therefore, even simple information such as the number of abelian gauge

fields is not trivial to obtain.
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There are, however, tools to understand the abelian sector of F-theory back-

grounds. In particular, M-theory/F-theory duality is useful in understanding the

abelian spectrum and the anomaly coefficients of F-theory vacua. In this chapter,

we show in detail how to extract information of the abelian sector of six-dimensional

F-theory vacua from the geometric data of the Calabi-Yau threefold it is compactified

on.

This chapter is organized as the following. In section 3.1 we review how the

geometric data of F-theory compactifications translate into low-energy data of the

six-dimensional supergravity theory, and explain how non-abelian sectors of string

vacua can be naturally embedded in this framework. In particular we introduce type

IIB intersecting brane models and magnetized brane backgrounds and show how the

non-abelian sector of these vacua can be embedded into F-theory data. In section

3.2 we investigate the subtleties in determining the abelian sector of string vacua.

We utilize the example of magnetized brane backgrounds. Finally in section 3.3 we

use M-theory/F-theory duality to extract low-energy data of the abelian sector of F-

theory vacua. In particular, we determine the spectrum, the charges of matter under

abelian gauge groups and the abelian anomaly coefficients from the geometry of the

compactification manifold.

3.1 F-theory and the Non-abelian Sector

In this section, we explain why F-theory is an ideal framework to describe six-

dimensional (1, 0) supergravity theories and string vacua. In particular, we explain

why it is possible to embed the non-abelian sector of all known string vacua into

F-theory.

We begin by explaining how low-energy parameters of six-dimensional supergrav-

ity theories can naturally be embedded into F-theory in section 3.1.1. In particular,

there is a beautiful map between anomaly coefficients and geometric data of F-theory

vacua [64, 65, 118, 119]. This map is crucial in embedding other string vacua into

F-theory - we explain how this is done in section 3.1.1 as well. Next we go on to
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examine two examples of string vacua - type IIB intersecting brane models in section

3.1.2 and magnetized brane models in section 3.1.3- and see how the non-abelian

sector of these backgrounds can naturally be embedded in the framework of F-theory.

3.1.1 6D (1, 0) F-theory Vacua and Embeddability

In this section, we review six-dimensional F-theory vacua and how to embed the non-

abelian sector of supergravity theories and other string vacua in them. We first give

a general review F-theory backgrounds following the presentation of [65]. We then

explain an important feature of F-theory vacua, i.e., that they all satisfy the "Kodaira

constraint," and how one can embed the non-abelian sector of a supergravity theory

satisfying this constraint to F-theory. We conclude the section by explaining how

the Kodaira constraint is obeyed in various six-dimensional string vacua and noting

that the non-abelian sector of all known string vacua therefore can be in principle

embedded in F-theory.

F-theory backgrounds can be thought of as non-perturbative type-IIB backgrounds

with seven-branes which are not necessarily mutually local. When we are compacti-

fying F-theory on some elliptically fibered manifold, the base of the manifold B can

be thought of as the space we are compactifying type IIB string theory on. The

value of the axio-dilaton varies over the base; this value is identified with the complex

structure of the elliptic fiber of the fibration. In order to get Af = (1,0) supersym-

metry, the total space of the fibration must be a Calabi-Yau threefold. This fact

places restrictions on B [65]. Two relevant conditions that B must satisfy are that

h2,0 (B) = hl-0(B) = 0 and that K -K = 10 - h 1'(B) where K is the canonical class

of B. We note that the first condition implies that H 2 (B) ^H1'1(B).

The fiber degenerates on complex codimension-one submanifolds of the base.

These submanifolds can be thought of as the submanifolds the seven-branes wrap.

The type of degeneration determines the nature of the seven-brane and tells us

the non-abelian gauge group we get in the six-dimensional theory [118, 119, 132,

133, 134, 135]. The codimension-two singularities can be thought of as intersecting

points of the seven-branes. These contain information on the local matter we obtain
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[97, 112, 133, 134, 135, 136, 137, 138, 139, 140]. There are various ways of deriving the

gauge/matter content coming from a given elliptically fibered Calabi-Yau manifold.

One way is to blow up these codimension-one and codimension-two singularities and

to compute intersection numbers. We explain this procedure in more detail in section

3.3.

A beautiful fact is that the geometrical data of an elliptically fibered Calabi-Yau

threefold can be encoded as vectors in an integral lattice. More precisely, geometric

data such as the canonical divisor class, the Kshler class of the base manifold, and

the algebraic two-cycles (or divisors) the seven-branes wrap can be expressed as a

vector in the H 2 = H1'1 lattice of the base manifold. It turns out that this integral

lattice is precisely the lattice A that parametrizes the low energy theory [64, 65].

To provide the complete map between geometrical data and the low-energy data,

we begin by noting that the number of tensor multiplets T satisfies T = h1'1 (B) - 1.

The H 2 lattice of the base manifold is an SO(1, T) lattice [65]. The anomaly coeffi-

cients and the modulus j - which parameterizes the vacuum expectation values of

the scalars in the tensor multiplets - are vectors in this lattice, and hence correspond

to two-cycles in the base. The a vector corresponds to the canonical divisor class of

the base, the j vector corresponds to the Kihler class of the base, and the b, vectors

corresponds to the locus of brane r.. The "type of degeneration" along the locus b.

- more precisely the singularity type and the monodromy of the fiber - determines

the gauge group g,.' For example, we have listed the gauge algebra obtained from

singularity types when there is no monodromy in table 3.1. Note that since bK must

be effective, j - b, > 0.

There is an important constraint on the vectors a and b, that comes from the

Calabi-Yau condition. The discriminant locus of an elliptic fibration is given by a

divisor class A in the base B. This can be decomposed into a sum of components

A= c~b, +Y (3.1)

1More precisely, the singularity determines the gauge algebra rather than the gauge group. This

distinction can be ignored for our purposes.
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Singular Fiber Gauge Group C.
In SU(n) n
II none 2

III SU(2) 3
IV SU(3) 4
I * SO(2n+8) n+6

II* E8  10
III* E 7  9
IV* E6  8

Table 3.1: Singular fibers and their associated gauge group in the absence of mon-
odromy. c denotes the coefficients appearing in the Kodaira formula.

where bK, recall, are irreducible effective divisors giving rise to non-abelian gauge

factors. Y is a residual effective divisor. The coefficients c. are determined by the

codimension-one singularity along b,. We have listed c. for singularities with no

monodromy in table 3.1. Although the locus Y does not induce any enhanced gauge

group, it produces codimension-two singularities by colliding with the brane loci b".

The Kodaira condition stating that the total space of the elliptic fibration is a Calabi-

Yau manifold is

-12a = A= cb + Y. (3.2)
K

This relation implies that (-a) lies inside the Mori cone. Meanwhile, since Y is

effective, it must have non-negative volume. This condition implies that

-12j -a ;> cj - b. (3.3)

as j is the normalized Kshler form of the base. We call this inequality, the "Kodaira

constraint."

Therefore there is a clear route to mapping the non-abelian sector of a given

low-energy theory to an F-theory model using this map given that the parameters

of the low-energy theory satisfy the Kodaira constraint. We begin by choosing an

appropriate base B with h1' 1(B) = T + 1.2 Then we tune the complex structure

2This choice is not quite simple as T increases and the number bases to choose from increases. It
is known, however, that the number of bases to choose from is finite [141, 142]. A systematic study
of the bases that can be used has been undertaken in [143].
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of the elliptically fibered Calabi-Yau manifold so that it has the codimension-one

singularity structure encoded in the non-abelian anomaly coefficients b,. Once the

codimension-one singularity structure is established, we tune the complex structure

further to obtain the required matter structure.

There is no proof that this procedure would work in general. It is true, however,

that when the gap between -12a and cabs is quite large, and when the matter

representations are simple, this procedure is expected to produce the desired F-theory

model. This expectation is based on the fact that the procedure sketched above is

bound to be executable when the numbers of complex parameters one needs to tune

to obtain the desired singularity structure is small.

Some explanation on the term "simple matter" is due. By saying that a given

matter representation is "simple" we are implying that they come from codimension-

two singularities that arise without much tuning. What we mean is the following.

After one tunes the complex structure of a given elliptically fibered Calabi-Yau man-

ifold to reproduce some desired codimension-one singularity structure, there are still

some degrees of freedom in the complex structure left over. Setting those complex

variables to generic values, one in general obtains codimension-two singularities that

give these "simple" matter representations. Tuning the complex structure further,

one can obtain more "complicated" matter. For example, the codimension-two sin-

gularity structure that yields fundamental(o), antisymmetric(B) and adjoint matter

of an SU(M) gauge group is generic for many single block models [64, 115]. In par-

ticular, when there is an AM singularity over a smooth curve of genus g, there are

2g - 2 adjoint hypermultiplets in the massless spectrum [119, 144, 145]. One can,

however, tune the complex structure so that the curve has a double point. For each

double point, it can be shown that an adjoint hypermultiplet can be traded for an

antisymmetric and a symmetric hypermultiplet [97].

As noted above, in the case of SU(M) groups, codimension-two singularities that

generate fundamental(LI), antisymmetric( ), symmetric(EIl) matter is well known

[97, 119, 136]. Adjoint matter is generated when there is a codimension-one singularity

over a curve of genus greater than one [119, 144, 145]. Jointly charged matter arises
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when two enhanced singularities collide at a point. The singularity structure that

give rise to the bifundamental(O] x o) is well understood. More exotic matter have

been constructed in F-theory from more complicated codimension-two singularities,

but we postpone their discussion to section 4.1.

To our knowledge, all perturbative string vacua under-saturate the Kodaira bound,

and only have simple types of matter.3 In particular, we find that

-12a > -na ;> Z cb. (3.4)
K

for some n < 12. The inequality implies that the difference between the left-hand-

side and the right-hand-side lies inside the Mori cone. Note that this inequality

makes sense due to the fact that -a - j > 0. The Kodaira bound in many of these

string constructions is manifested as tadpole constraints. These facts are the basis

for claiming that the non-abelian sectors of all known string vacua are embeddable

into F-theory. In the following two subsections, we examine the examples of type

IIB intersecting brane models and magnetized brane backgrounds from this point of

view.4

3.1.2 Type IIB Intersecting Brane Models

In this section, we introduce type IIB intersecting brane models. We find the massless

spectrum and anomaly coefficients of the non-abelian gauge groups. We check that

the matter structure is simple and that the Kodaira bound is under-saturated for this

set of models.

Type IIB intersecting brane models are models constructed by compactifying type

IIB string theory on a compact manifold with D-branes and O-planes wrapping com-

pact cycles. A nice general review on this subject can be found in [148]. In this

section, we focus on the case where type IIB is compactified on a K3 surface to six

3A more extensive discussion of this fact can be found in [114].
4We note that in the case of these models, explicit F-theory duals exist [99, 146, 147]. We,

however, use these examples to sketch the general strategy to embed the non-abelian sector of string
vacua into F-theory.
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Representation Multiplicity

On X 0 7r. -*ir'\
[]kxIax IlrA rE V Xlr~w 7R 57rtc - (7r' + 7ro7)

J j7rK - ( r - 7ro7)
Adjoint in SU(N.) j7r, r 1

Table 3.2: The number of hypermultiplets
brane model.

of each representation in an intersecting

dimensions following [106, 114].

Type IIB compactified on a K3 surface yields a six-dimensional supergravity the-

ory with (2, 0) supersymmetry. To obtain (1, 0) supersymmetry, one can wrap D7-

branes and 07-planes on cycles in the K3 surface when the K3 surface admits an

anti-holomorphic involution &. The O-plane lies on a cycle 7r0 7 that is invariant under

this involution. Meanwhile, groups of M. coincident D7-branes wrapping a cycle 7r,.

can be thought of as wrapping its image under the involution 7r' d(ir,) simulta-

neously in the presence of the 07-plane. The compactness of K3 imposes that the

brane tensions cancel:

(3.5)rM.(r + r'.) = 87r0 7 .
K

Given a intersecting brane configuration such that the 07-plane wraps the cycle

7r0 7 and that Ma coincident D7-branes wrap the cycle 7r,, for r. = 1, .. , k, the non-

abelian gauge group is given by

SU(M 1 ) x - - - X SU(Mk) (3.6)

and the hypermultiplets for each gauge group is given by table 3.2 [106, 114]. The

dots between cycles are intersection numbers of the two cycles involved.

Using the the tadpole constraint and properties of the involution, one finds that
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the anomaly equations become

1
a -a = Iro7 - 7ro7 = 9 - T (3.7)

1
a -b = - r0 7 (7rw + r) (3.8)

b. b. = I(rK + 7r') - (7r. + 7r') (3.9)

b. b\ =I (r+r) - (7rA + 7r') (r, A) (3.10)

The inner-product on the left-hand-side of the equations is, as usual, an SO(1, T)

inner-product while the inner-product on the right-hand-side is the intersection prod-

uct in the K3 manifold.

We find that we can identify the integral cycles invariant under the antiholomor-

phic involution
1 1

-7=7r 0 7 , -- (7r. + Ir') (3.11)

with the anomaly coefficients of the low-energy theory

1 1
a= - 72 ro7, b. = 2 -(7rr + 7r'. (3.12)

Now the tadpole constraint becomes

ZMbr = -8a. (3.13)

Hence we see that the Kodaira bound is under-saturated for these models. All the

matter that appear are also the type that can be generated from F-theory by known

methods. We note that there are additional consistency conditions that must be

imposed for supersymmetry, namely the fact that the D-branes and O-planes should

be calibrated under the real part of the complex structure two-form. We, however,

did not need them in deriving the anomaly equations of the low-energy theory and

also in finding the tadpole condition. The additional constraint may be required to

restrict the cycles (-r + 7r') and 7r0 7 to a T + 1 dimensional plane with signature

(1, T) within the homology lattice so that the identifications (3.12) could indeed be
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made.

3.1.3 Magnetized Brane Backgrounds

In this section, we introduce magnetized brane models and compute the massless

spectrum and anomaly coefficients of the non-abelian gauge groups. We confirm that

the matter structure is simple and that the Kodaira bound is under-saturated.

Magnetized brane backgrounds are SO(32) heterotic string compactifications on

a K3 manifold with U(1) gauge fluxes. These models were widely studied in the

context of the dual type I theory [103, 104, 105]. Here we use the formalism of

[108, 109, 110, 111].

The equations of motion, which come from imposing that there is a covariantly

constant spinor in the internal manifold, imposes that we have a gauge bundle over

K3. The U(1) background gauge bundle can be written as,

F = 47r fiT (3.14)
i

where TI are generators of the Cartan subgroup of SO(32) with the normalization,

trT' = 2 (3.15)

By the assumption that F is in the Cartan subalgebra, the equations of motion impose

that fi are harmonic two-forms. Harmonic two-forms have a natural inner product

fi-f = 4 fi A f. (3.16)
K3

We restrict ourselves to "multiple stack models" where we define the background
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field to be of the form,

0 -fi 0 0

fi 0 0 0

0 0 0 -fi

0 0 fi

0 -f 2

f2 0

0 -fn

fA 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

where there are M 1 , - - - , Mn blocks of -ifioy, . - - , -ifoa, matrices along the diagonal

with

2M 1 + - --+2Mn = 32 - 2M. (3.18)

Our background could be written more concisely as,

P = 47r faTa
a=1

(Mi+--+Ma)

Ta[=( M Ti]

(3.19)

(3.20)

Note that the Ta do not satisfy trTa = 2 in general. It is clear that the gauge group
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Representation Number U(1) charge

(Na, Nb) + (Na, Nb) -2 - (fa - fb) 2  (1, -1), (-1,1)
(Na, Nb)+(Na, Nb) -2 - (fa ± fb) 2  (1, 1), (-1, -1)

Antisym. in U(Na) + c.c. -2 - 4fa 2, -2

(Na, 2M) + (Na, 2M) -2 - f1, 1
Neutral 20 -

Table 3.3: The number of hypermultiplets of each representation and their U(1)

charge.

is broken to

II U(Ma) x SO(2M) (3.21)
a=1

in this background.

The tadpole cancellation condition imposed by the equations of motion becomes

in this language

Mafa = -24 . (3.22)
a

There are additional constraints imposed on fa by supersymmetry. Denoting the

holomorphic(antiholomorphic) and Kihler 2-forms as Q(Q) and J, the fa must satisfy

fa - O = 0, f -4 = 0, fa -J = 0. (3.23)

The magentic brane models are parametrized precisely by fa obeying such constraints

which can be embedded into the integral lattice, H 2(K3, Z). It turns out to be enough

to demand that fa spans a negative definite plane in the H 2(K3, Z) lattice [111]. Since

this implies that fa < 0, and since the H 2(K3, Z) lattice is even, this automatically

implies that the number of U(Ma) gauge factors n < 12.

The matter content of the dimensionally reduced theory has been worked out

many times in the literature - for example, in [83] - and we simply state the

results. The ten-dimensional gravity multiplet decomposes in to one gravity multi-

plet, one tensor multiplet and twenty hypermultiplets. The ten-dimensional SO(32)

vector multiplet decomposes in to six-dimensional multiplets of the gauge group

~[= 1 U(Ma) x SO(2M) and charged hypermultiplets. The number of hypermulti-
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plets can be obtained by using index theorems. It is summarized in table 3.3. We can

normalize the U(1), charges so that the fundamental of SU(M) has charge 1 under

this U(1). The correpsonding U(1) charges are written out in the table for future

reference.

The anomaly polynomial of the nonabelian sector can be computed explicitly from

the matter content. It is given by

I8 oc [trR2 ± 2 4(fa2 + 1)trFa + 2trF2m] A [trR2 - 2trF. - trF MI (3.24)

Fa denote the field strengths for the SU(Ma)

strength for the SO(2M) gauge field. The

SO(2M) are given by

gauge fields and F2m denotes the field

anomaly coefficient for SU(Ma) and

(3.25)

We have used the fact that for SO(2M), A =

tional metric and a vector

2. Note that we are using the conven-

(3.26)
0 1 -2

1 0 ) -2

It is clear that by the two constraints (3.18) and (3.22),

Zcb, = Maba + (M + 2)b2M =
a n 18

This inequality holds since for any value of the modulus

< -9a < -12a.

1 eO
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(3.28)

1 -4(f2 + 1) 1 -4
ba = - , b2M - - .

2 ( 2 2 (2



the inner product

j - (-9a - Mab - (M + 2)b2M) = 3V2e > 0. (3.29)
a

We therefore find that these models have simple matter structure, and also under-

saturate the Kodaira bound, as desired.

We must expose a caveat in our discussion here. All of our discussions have been

perturbative - we have assumed that we are working in a background in which ten-

dimensional SO(32) supergravity provides a valid description of the physics. It must

be noted, however, that U(1) backgrounds have the subtlety that the K3 manifold on

which they are compactified over are often singular. This point is discussed in detail

in [111].

This is due to the fact that the K3 manifold can have vanishing cycles due to

(3.23) and can have orbifold singularities for some f,. It is known that worldsheet

instantons smooth these singularities when there is no gauge bundle [149] but in the

cases of interest, we have non-trivial gauge bundles precisely at the orbifold point.

Furthermore, this corresponds to a small instanton limit, so we expect an enhanced

gauge symmetry. So to analyze the the low-energy physics properly, we must factor

in the non-perturbative effects that come from the small instanton limit. Therefore,

the validity of our analysis only holds in the perturbative sector of this background.

There is a way to move out of this small instanton limit. We have nineteen moduli

that blow up the orbifold singularity of the theory. Turning on the nineteen moduli

renders the manifold non-singular, but can potentially break the gauge symmetries.

This is because that we generically have to turn on vacuum expectation values for

hypermultiplets charged under some of the gauge groups. A careful analysis of this

phenomenon along the lines of [110, 125, 150, 151, 152, 153] must be carried out to

understand these points of enhanced gauge symmetry properly. We note that these

points have also been studied in the context of F-theory in [154, 155].
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3.2 Non-trivialities of the Abelian Sector: An Ex-

ample

As stressed many times throughout this thesis, the abelian sector of string models

involve subtleties that do not arise for the non-abelian sector. For example, even

determining the abelian gauge symmetry itself is an involved process in a wide variety

of string constructions, including heterotic, orbifold, intersecting brane, fractional

brane and F-theory models [80, 81, 87, 96, 98, 100, 107, 108, 109, 110, 118, 119, 156,

157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167]. The subtlety comes, as pointed

out in the beginning of this chapter, from the fact that abelian vector fields in the

spectrum that are naively massless can be lifted at the linear level by coupling to

Stiickelberg fields. In this section, we demonstrate the process of determining the

abelian sector of magnetized brane backgrounds introduced in section 3.1.3, and find

that additional constraints on the vacuum construction is needed to find massless

abelian gauge fields.

From the discussion in section 3.1.3, we might naively expect that there are n

U(1)'s, where n is the number of U(Ma) gauge group factors. Many of these U(1)'s,

however, should be lifted by the generalized Green-Schwarz mechanism we have de-

scribed in section 2.1.5. To see how the generalized Green-Schwarz mechanism comes

into play, let us examine the full anomaly polynomial of the magnetized brane back-

ground given in section 3.1.3. As before, we use F (Aa) to denote the SU(Ma) field

strength(vector field,) Ga (A,) to denote the U(1), field strength(vector field,) and

F2M(A2M) to denote the SO(2M) field strength(vector field.) With these conventions,
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the anomaly polynomial becomes

18 =[trR2 + 4(fa + 1)trFa + E 4Ma(fa + 1)G2 + 2trF2m]
a a

A[trR 2 - 2trF - 2MaGa - trF2M]
a a

- Z MaGa A (fa - fb)[- -Mb(trR 2)G + 4trF,3 + 12(trF2)Gb + 4MaG]
a b

(3.30)

Let us first find the six-dimensional terms relevant to the Green-Schwarz mecha-

nism. These are terms that involve the six-dimensional B field. The kinetic term for

the B field is found to be,

-- e-20(dB -w) (dB -w) (3.31)
2

with

dw c trR2 - 2trF. - E 2MaGa - trF2M (3.32)
a a

Part of the ten-dimensional Green-Schwarz term descends to,

-B A da (3.33)

with

D oc trR2 + 4(fa + 1)trFa + 4Ma(fa +1)G2 + 2trF2M '
aa

Therefore we see that the Green-Schwarz mechanism cancels the first term in (3.30),

as it should.

Before finding the terms relevant to the generalized Green-Schwarz mechanism,

let us examine the neutral hypermultiplets which will participate in the anomaly

cancellation. The four scalars of a neutral hypermultiplet transform under SU(2)R

as a 1 + 3. For nineteen of the neutral hypermultiplets, the 1 comes from the ten
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dimensional tensor reduced over nineteen harmonic two-forms Wk, i.e.,

B 10 D bkok . (3.35)
k

These two-forms Wk are orthogonal to the Kshler form J and the holomorphic and

anti-holomorphic 2-forms, Q and n. The 3 come from geometric moduli of the K3

manifold. For one neutral hypermultiplet, the 1 is the volume modulus of the internal

manifold. The 3 come from reducing the ten-dimensional tensor over the Kshler,

holomorphic and anti-holomorphic two-forms [108].

Now let us dimensionally reduce the Lagrangian of the ten-dimensional heterotic

string theory to observe the generalized Green-Schwarz mechanism at play. Defining

K3k A fa = fa,k 
(3-36 )

we obtain the kinetic term

1 e-2,(dbk - Mafa,kAa) 2  
(3.37)

a

for the Stickelberg fields by dimensionally reducing the ten-dimensional kinetic term

of the tensor field. Part of the ten-dimensional Green-Schwarz term descends to

(bk A E fa,k[- Ma(trR2 )Ga + 4trFa + 12(trFa)Ga + 4MaG3]) . (3.38)
k a

Therefore we see that the generalized Green-Schwarz mechanism gets rid of the second

term in (3.30). We note that the reason all this is possible by using only nineteen

harmonic forms is because of the relations (3.23).

The U(1)'s being lifted can precisely be read off of the kinetic term (3.37) of the

linear multiplets. A useful way to write out the nineteen components of the fa that

parametrize the U(1) instanton background is to organize them into column vectors:

f ( M1f1 M2f2 - Mnfn ) (3.39)
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Now (3.37) implies that the rank of this matrix is precisely the number of U(1)'s

being lifted. In order for some U(1) to survive, the rank of this matrix should be

less than the number of U(1)'s, n. As seen in the last section n < 12 < 19 which is

the number of rows. Therefore, in order for there to be an unlifted U(1), fi, ... ,

should not be linearly independent. In this case, there exist n component vectors

V1, - -, Vr with r = n - rankf such that

Z MaVi,afa,k = 0 (3.40)
a=1

for all k = 1, ... , 19. fa,k are the components of the two-forms fa given in equation

(3.36). Then the r abelian vector fields

Ai= E3 Vj,aAa (3.41)
a

survive the Stiickelberging and remain in the low-energy spectrum.

Therefore, we have demonstrated that in order to properly identify the abelian

gauge sector, a careful treatment of the Stfickelberg mechanism is necessary for mag-

netized brane backgrounds. In this example, we found that additional constraints on

the gauge fluxes fa must be imposed in order for there to be massless abelian gauge

fields.

3.3 M-theory/F-theory Duality and the Abelian

Sector of F-theory

We have demonstrated non-trivial aspects of abelian gauge symmetry of string back-

grounds through the example of magnetized brane backgrounds in the previous sec-

tion. Such non-trivialities show up in F-theory vacua as well. Unlike the non-abelian

sector, there is a global flavor to the abelian sector of F-theory backgrounds. For ex-

ample, even simple information such as the number of massless abelian vector fields

is encoded in global data of the full manifold [119, 168, 169]. This should be con-
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trasted to the case of the non-abelian sector of the theory as its dynamics could be

determined locally - only the near-brane geometry mattered in understanding it.

It is not clear how to probe the abelian sector of F-theory backgrounds directly.

This is because the degrees of freedom of the underlying twelve-dimensional theory

and their interactions - if they exist at all - are unclear at the moment. In order to

understand the abelian sector of the theory, it turns out to be more convenient to take

an intersection theory-based5 approach in the M-theory dual of the F-theory back-

ground [132, 144, 145, 172]. By recovering the low-energy data of the six-dimensional

F-theory background using this duality, we can identify the geometric meaning of

the abelian anomaly coefficients by comparing the coefficients of topological terms

obtained from both sides [172, 173, 174].

We proceed in three steps. In section 3.3.1, we first review M-theory/F-theory

duality and obtain basic information about the massless spectrum of F-theory from

the M-theory side. In the process we obtain equation (3.49), which is an identity

relating various topological data of the manifold. In section 3.3.2, we demonstrate

how M-theory/F-theory duality can be used to recover the low-energy data of the

non-abelian sector. Finally in section 3.3.3, we identify the geometric counterparts of

the low-energy data of the abelian sector in an analogous way.

3.3.1 M/F-theory Duality

The duality between M and F-theory [120] provides the clearest way to see how the

low-energy dynamics of gauge bosons and matter content arise in F-theory back-

grounds. 6  F-theory compactified on X x S'-where X is an elliptically fibered

Calabi-Yau threefold with a section-is dual to M-theory compactified on X. In

the five-dimensional M-theory background, all the Kshler deformations of X become

available, unlike in the six-dimensional theory. These moduli on the F-theory side

are given by the size of the S' and the Wilson lines of the gauge fields along the S1.

By turning these moduli on to generic values, we may resolve the singular manifold

'Some standard texts on intersection theory are [170] and [171].
6 A great review on F-theory and M-theory/F-theory duality can be found in [175].
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6D 5D
Gravity 1x (Gravity)±1 x (Vector)
Tensor 1 x (Vector)
Vector 1x (Vector)
Hyper 1 x (Hyper)

Table 3.4: Six-dimensional (1,0) supersymmetry multiplets and their descendants in
five dimensions when compactified on a circle.

X to X. This is equivalent to going to the Coulomb branch of the non-abelian gauge

theory, as the five-dimensional vector multiplet has a real adjoint scalar. We can

recover the fibration limit X -+ X as we turn off all the Wilson lines and take the

radius of the S' to infinity. In this sense, the six-dimensional theory can be thought

of as a "decompactification limit" of the M-theory background. We use the terms

"decompactification limit," "F-theory limit," and "fibration limit" interchangeably.

Now let us recover the massless spectrum of the six-dimensional theory from

the geometrical data of X. When we compactify the six-dimensional theory with

K = (1, 0) supersymmetry on S1, we get a five-dimensional AN = 2 theory with 8

supercharges. The short multiplets of the six-dimensional theory descend to short

multiplets of the five-dimensional theory as shown in table 3.4. By resolving X

to X we have turned on Wilson lines, and hence all multiplets charged under the

Cartan sub-algebra of the full gauge group become massive. We denote these multi-

plets "charged multiplets." Charged multiplets descend from either vector multiplets

or hypermultiplets. Therefore the six-dimensional massless spectrum can be recov-

ered from the five-dimensional theory by identifying the massless multiplets and the

charged multiplets that become massless in the decompactification limit.

There is nothing special about the Cartan basis. The Wilson lines turned on are

generic and mutually commuting, and hence we can always find a Cartan subgroup

of which the Wilson lines are elements of. We note that the Cartan sub-algebra of

the full gauge algebra consists of the direct sum of the Cartan sub-algebra of the

individual gauge groups. For abelian groups, the Cartan sub-algebra is equal to the

full gauge algebra.

Let us first identify the massless fields of the five-dimensional theory [176, 177,
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178]. M-theory compactified on the fully resolved manifold X has h2 (Z) = h'"(i)

massless vector fields coming from descending the three-form on the harmonic two-

forms of X. Among these, one vector field is inside the five-dimensional gravity

multiplet and the others belong to vector multiplets. The two-forms are Poincare

dual to four-cycles in X, that is, for any harmonic two-form W there exists a four-

cycle E in X such that for any two-cycle c in X,

W = E -c (3.42)

where the right-hand side denotes the intersection number between the two cycles.

Therefore, for each massless vector field, there is a corresponding four-cycle. On the

F-theory side, one of these vector fields come from KK-reducing the graviton along

the S', while (T + 1) = h 1 (B) come from KK-reducing the one self-dual and T

anti-self dual tensor fields. The rest come from vectors in the six-dimensional vector

multiplets that are either abelian or in the Cartan of a non-abelian gauge group.

Also, there are h (i) = h2,1 ()+1 massless hypermultiplets in the five-dimensional

spectrum. In the decompactification limit, all of these hypermultiplets become six-

dimensional neutral hypermultiplets-hypermultiplets that are not charged under any

vector field in the Cartan.

Now let us identify the charged multiplets. These come from M2 branes wrapping

complex curves of X. Since the charged multiplets should become massless in the

decompactification limit, they should come from M2 branes wrapping curves that

shrink in the fibration limit. As we move along the Coulomb branch to recover the

full non-abelian gauge symmetry of X, two types of curves shrink to zero size.

1. Type I Isolated rational curves that shrink to zero size in the limit X -+ X.

2. Type F Rational curves fibered over a curve that shrink to zero size in the

limit X - X.

These curves are all rational curves; they are topologically P's as only these types

of curves can shrink in X [179]. We index the curves of type I by r and denote them
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Cr, and index the curves of type F by p and denote them x,. We use gp to denote the

genus of the curve Xp is fibered over. The curve a type F curve is fibered over is either

a curve in the base or its branched cover [132]. In the fibration limit X -+ X, the type

F curves shrink into points on the singular fibers along codimension-one loci in the

base while the type I curves shrink into points on singular fibers at codimension-two

loci.

A curve of type I contributes one hypermultiplet, while a curve of type F fibered

over a curve of genus g contributes 2g hypermultiplets and 2 vector multiplets to the

BPS spectrum [144, 145]. By quantizing the zero mode of an M2 brane wrapping

a curve of type I, one obtains a half-hypermultiplet. Together with another half-

hypermultiplet that comes from quantizing the zero modes of an anti-brane wrapping

the same curve, a curve of type I contributes one hypermultiplet. Meanwhile, 2g

half-hypermultiplets and one vector multiplet come from quantizing the zero-modes

of an M2 brane wrapping a curve of type F fibered over a curve of genus g. Also

the same number of multiplets come from quantizing the zero-modes of an anti-M2

brane wrapping the same curve. By definition, these multiplets become massless in

the decompactification limit, and are in the massless spectrum of the six-dimensional

theory.

The charge of a charged BPS particle coming from a brane wrapping a rational

curve c under a vector field AE coming from reducing the eleven-dimensional three-

form field on the harmonic three-form w is given by

SjW = ±E - c, (3.43)

where E is the four-cycle that is Poincare dual to w. The sign depends on whether

the brane is an M2 brane or and anti-M2 brane. While the charge of a vector mul-

tiplet is unambiguous, there is an overall sign ambiguity in defining charges of the

hypermultiplet. A hypermultiplet consists of two half-hypermultiplets with opposite

charges under any abelian or non-abelian Cartan gauge field; one coming from M2

branes wrapped on a curve and the other coming from an anti-brane wrapped on the
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same curve. We fix the sign of the charge of a hypermultiplet coming from a curve c

under a gauge field Ar as

j = E -c. (3.44)

Meanwhile, the charge of vector or hypermultiplets under the vector multiplets

coming from shrinking rational curves of type F can be obtained by considering the

algebra of BPS states in the Calabi-Yau manifold as described in [180, 181]. Some of

the multiplets that are uncharged under the vector fields in the Cartan sub-algebra

can be charged under vector fields that come from shrinking type F rational curves.

Let us summarize what we have learned. There are h' 1 (X) massless vector fields

in the five-dimensional M-theory background. In the decompactification limit, two of

them belong to the gravity multiplet, T = (h"'{(B) - 1) of them belong to the tensor

multiplets and the rest of them belong to the vector multiplets that are either abelian

or in the Cartan of the non-abelian gauge groups. There are h2,1 (Z) + 1 massless

hypermultiplets in the five-dimensional theory. In the decompactification limit, they

are hypermultiplets uncharged under the Cartan/abelian vector multiplets. There

are (E, 1 + E, 2g,) massive hypermultiplets and (E, 2) massive vector multiplets,

which in the decompactification limit, are hyper/vector multiplets charged under the

abelian or non-abelian Cartan vector multiplets.

Since we have accounted for all the vector and hypermultiplets of the six-dimensional

theory from the geometric data of X, the gravitational anomaly constraint

H - V + 29T = 273, (3.45)

can be written in terms of this data. The number of six-dimensional vector multiplets

and hypermultiplets are given by

V = (h'(X) - 2 - T) + E 2 (3.46)
P

H = (h 2',(Z) + 1) + 1 + E2g. (3.47)
r p
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Thus, the gravitational anomaly constraint can be re-written as

270 - 30T + (h'l(Z) - h2,1 = 1 + E(2gp - 2). (3.48)
r p

Using the fact that K K = 9 - T for the canonical divisor K of B, and that

X± = 2(h 1 (Z) - h2,1(X)) for the Euler characteristic Xk of X, we find

30K.K+ Ix± = E 1 + (2gp - 2). (3.49)
r p

3.3.2 The Non-Abelian Sector

In this section, we continue the analysis of the M-theory/F-theory duality. We first

classify the vector fields of the five-dimensional theory in a useful way. Then we

recover the low-energy data of the non-abelian sector from the geometric data of X.

The results turn out to be consistent with that of section 3.1. Most of the discussion

in this section can be found in [132, 133, 134, 135, 136] but we have rephrased them

in a way more convenient for our purposes.

Let us first classify the vector fields of the five-dimensional theory in a useful way.

Recall there is a one-to-one correspondence between the massless five-dimensional

vector fields and four-cycles of X. There are four types of four-cycles in X.

1. Type Z The zero section; Z ++ .

2. Type B Four-cycles obtained by fibering the elliptic fiber f over two-cycles

Ho,--- HT in the base B; Bo,..- -BT ++ 0, ... ,T.

3. Type C : Monodromy invariant four-cycles that are locally type F rational

curves fibered over a curve in the base B; T 1, ... , Tr ++ T 1 , ... , 7R.

4. Type S : Non-zero sections of the fibration; $ 1, ... , SvA +-+ &1, ... , &VA'

The lowercase greek letters denote the Poincard dual two-forms in the resolved mani-

fold. The type S four-cycles are generators of the non-torsion part of the Mordell-Weil
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group of the elliptic fibration. The number VA is the Mordell-Weil rank of the elliptic

fibration [119, 168, 1691.

We note that the intersection of type B cycles satisfy

Bo -Bp = (Ha -Hjg)Bf 2 cajf, (3.50)

where the subscript B means that we are taking the intersection of curves on the base

and f is the fiber class of the elliptic fibration. We emphasize once more that H" are

the basis elements of H 2 (B). From this relation we also see that the triple intersection

products among the type B cycles are zero, as the type B cycles do not intersect a

generic fiber. The Q is a symmetric invertible SO(1, T) bilinear form, or an SO(1, T)

"metric." We denote

0"# a 04)ap(3.51)

and raise and lower SO(1, T) indices by Q.

We postpone the discussion of the four cycles of type S to section 3.3.3 and focus

on the first three types of cycles. We make the following

(Claim 1)

1. The vector field Z obtained by the three-form KK-reduced along (= - j(Z-
Z - B')3a can be identified with the vector field coming from KK-reducing the

six-dimensional metric along S' in the decompactification limit. It is inside the

five dimensional gravity multiplet.

2. The vector fields B0 , - , BT obtained by the three form KK-reduced along

#-- , #r can be identified with the vector fields obtained by KK-reducing the

(T + 1) six-dimensional tensor fields along S' in the decompactification limit.

3. The vector fields A1, - - - , AR obtained by the three-form KK-reduced along

ri can be identified with the vector fields obtained by KK-reducing the six-

dimensional non-abelian vector fields in the coroot basis of the Cartan of each

gauge group along S' in the decompactification limit.
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For convenience, we abuse the term "duality" throughout the rest of this thesis in

the following way; we say that a vector field is "dual to" a four-cycle S when it is

obtained by KK-reducing the eleven-dimensional three-form on a two-form that is

Poincard dual to S.

We denote the Poincar6 dual four-cycle of ( as

Z = Z - (Z - Z -B")Ba (3.52)

Z has been defined so that

Ba -Z - Z = 0 (3.53)

for all a, as can be checked explicitly. Also, as the B, do not intersect the fiber,

Z - f = Z - f = 1. We denote this four-cycle a type Z four-cycle.

Let us verify the third entry of (Claim 1) first. We can always organize the basis of

type C cycles in a convenient way. For each non-abelian gauge group !9, there exists

a curve b. in the base over which the fiber takes the Kodaira fiber-type corresponding

to g, We use b, to denote both the actual curve and its class in the base. The fiber

at b, consists of groups of type F rational curves. There is a canonical way of choosing

linearly independent monodromy invariant groups of these rational curves, which we

discuss in length in appendix B.1. If we denote this group as '-y, for each r,, the four

cycles obtained by fibering y,, over b, are dual to the vector field corresponding to

T1,,, the I'th element of the coroot basis of the Cartan of g,. This is because, as we

have checked in appendix B.1, the intersection numbers reproduce the charges of the

charged adjoint multiplets under 7T,,, correctly.

To be more precise, let us denote T,K to be the four cycle obtained by fibering

71,r over the curve bK. As checked case by case for each Lie group in B.1, for each r

we can find type F rational curves that correspond to the simple roots a,,. of the Lie

group 9, Let us denote those curves XI,.. Then,

T,K . XXA = -&2(a,,, aj,) = -oCIJ,.,, (3.54)
10(a,, aIA)
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where C, is the Cartan matrix of 9,.. All type F rational curves Xp can be written

as linear combinations of XI,s. The intersection numbers between these curves and

T,, precisely reproduce the charges all the negative roots of each gauge group. By

wrapping branes and anti-branes along these type F curves, one recovers all the

charged adjoint vector fields of the theory. In the F-theory limit, these charged

vector fields become massless, and along with the vector fields dual to T,, form the

vector multiplet of gauge group g.

Therefore we can group the type C cycles according to their gauge groups i.e.,

TI,r : (T 1,1 , ... T1),1 - -- , (T1,N, * . , TRN,N)- (3-55)

These are dual to non-abelian gauge field components

Air.n : (A,1,, - - - , Ani,1), - - - , (A1,N 7 * * * I ARN,N) (3-56)

of the coroot basis elements of the Cartans of the non-abelian gauge groups;

T,. : (7T1,--- , T.. ,1),--- , *(1,N, * * ' 7 TRN,N) - (3.57)

Meanwhile, hypermultiplets obtained by wrapping M2 branes around clusters of

type I curves in the resolved manifold also form representations under the non-abelian

gauge groups. The representations can be determined by computing the intersection

number of all the type I curves in each "cluster" with each T,K. Note that the

intersection number between T,K and any rational curve is integral. This is consistent

with the fact that the charge of any weight vector is integral under elements of the

coroot basis.

There is one question we raise before we go further. The type B cycles and type

Z cycles do not intersect any of the shrinking curves, i.e.,

B. - cr = B. - X,= Z - c, = Z -Xp= 0. (3.58)
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A given shrinking rational curve sits at a point above the base, and hence B 0 , which

is a fibration over a curve in the base, can always be smoothly deformed to avoid

intersecting it. Z does not intersect any shrinking curves since the zero section does

not touch any singularities in the fibration limit. Therefore, a vector field obtained

by reducing the 11D three-form over some type C cycle T, and a vector field dual

to T + xZ + t*B 0 should reproduce the same charges. We claim that x and tP can

be fixed to zero by comparing the coefficient for the Chern-Simons five-form for the

vector fields.

We now justify the two claims about vector fields Z and B" by examining the

Chern-Simons term in the five-dimensional theory in a generic point in the Coulomb

branch. It is given by [178]

(S - SY - SZ) fAx A FY A FZ, (3.59)

where S, are the dual four-cycles of the two-forms each gauge field is KK-reduced

upon. The coefficient is the triple intersection of the four-cycles involved.

The intersection numbers are given by

1 3
S(9-T)(ZZZ)+ -5,C1,.(K- b)(ZTI,KT,)

4 2

± 3C0 p(ZBBp) - 36K.C\jKba, (BOT1,KT,A\) (3.60)

± (triple intersections among T's)

in standard polynomial notation 7 ; the coefficient of the term (SxSySz) is the inter-

section number (S. - S, - S,) with multiplicities, i.e., the polynomial is defined as

E (SX -S, -SZ) (SX SSZ) .(3.61)

'We have not computed the triple intersections among the type T cycles, as we do not need them
for the purposes of this thesis. We note that these terms have been computed and matched with
the F-theory side in [182].
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b' are the SO(1, T) coordinates of b, i.e.,

bK = b"H. (3.62)

C. is the normalized coroot inner-product matrix for gauge group g, defined in section

2.1.4 and discussed extensively in appendix B.1. K is the canonical divisor of the

base.

Let us explain this result first. It is more convenient to obtain the intersection

numbers using Z, so we use the Z rather than Z. Intersection numbers involving Z

can be obtained straightforwardly from those involving Z.

We first note that

ZX - Y = (X. -Y110 (3.63)

since Z is the normal bundle of the base B. XIB is the two-cycle on B-or more

precisely, the zero section Z-obtained by restricting the four-cycle X to Z. The

manifold X is Calabi-Yau and hence by the adjunction formula

Zf 83= K. (3.64)

Also,

BalB= Ha. (3.65)

Hence

Z(K) (9T), Z B (K H,)B K,, (3.66)
Z -B,, -B,3 = ( Ha Ha3 Qo j-=Ga

By construction, Z and T,, are disjoint; the zero section does not touch any of

the singularities. Hence for any four cycle X,

ZTr,,. X = 0. (3.67)
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Also, by (3.50)

Ba -Bf - TI,K = Qap6f -T1,,. (3.68)

Since T1 ,, are rational curves fibered along a curve in the base, it does not intersect

with a generic fiber. Hence the intersection number is 0.

It is shown in appendix B.1 that

Ba . TI,K - Tj,x = -ba,,(yI,K - Tj,,\) = - 6K.CIba,r. (3.69)

r and A must be the same in order to get a non-zero result since TI," does not intersect

type F rational curves fibered over a different locus.

It is convenient to express this relation using the projection 7 to the base manifold.

More precisely, we define ir(C) of some two-cycle C in X to be the projection of C to

the H 2 (B) c-- H 1 -1 (B) lattice of the base manifold. As pointed out in the introduction,

the projection of C to the base can in general be a linear combination of two, one

and zero-cycles in the base. We treat one-cycles and zero-cycles to be null vectors in

H 2 (B). Then 7 is defined so that for any two-cycle C in X,

w(C) = (C -B")Ha , Ba- C = (Ha - r(C))L = r(C),. (3.70)

Therefore (3.69) can be rewritten as

7r(T,K -T j,,) = -6.xCIjba, H" = -6J.CIjbr. (3.71)

Now let us investigate the six-dimensional F-theory background compactified on

the singular manifold X and then further compactified on S 1 . Let us denote the

vector fields obtained by KK-reduction on S' in the following way:

1. Z' is the vector field obtained by KK-reducing the six-dimensional metric. It is

inside the gravity multiplet.

2. B' are the vector fields obtained by KK-reducing the (T + 1) tensors.

3. A' are the vector fields obtained by KK-reducing the non-abelian vector fields
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in the coroot basis of the Cartan of the gauge group.

Let us denote the anomaly coefficients for the non-abelian gauge fields as b',. In

section 3 of [173], the coefficients of the Chern-Simons term of the KK-reduced five-

dimensional theory on a generic point in the Coulomb branch is worked out explicitly.

The intersection polynomial is given by

Qap(Z'B,'B' ) - 26,xCJ,b. (Bc',,'A',(A')
J8 a J1.0(3.72)

+ (triple intersections among A's)

up to an overall constant-that we denote K.,t-in the "decompactification limit,"

i.e., when the vacuum expectation value of the scalars in the vector multiplets and

the inverse radius of the S' go to zero [173]. Note that we have used the non-trivial

fact that A. is chosen so that the Cartan generators {T,r} of g,. in the coroot basis

satisfy
1

-trT 1 ,.Tj,. = Cr,.. (3.73)

This intersection form agrees with (3.60) up to terms that do not involve B when

we identify b. = b - which is indeed true for non-abelian gauge fields [64, 65] - and

take Z and B0 to be proportional to Z' and B'. The terms that involve B cannot

receive corrections for the following reason. The corrections to these Chern-Simons

terms come from one-loop integrals of five-dimensional fermions [144]. The only way

that terms involving B could receive corrections on the F-theory side is if some six-

dimensional fermion in a short multiplet couples to the tensor field B in a way that

reduces to

?PBF"# (3.74)

in five dimensions. There are no such couplings so these terms are not modified [182].

Meanwhile, the vector field Z, ~ g,5 can couple in this manner to charged fermions

in short multiplets. One-loop contributions of these fermions generate the first two

terms of (3.60) [182].

We note that we have a well defined normalization prescription for Z and B given
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in the following way. There is an unambiguous prescription for the normalization of

non-abelian gauge fields on both sides; they were normalized to reproduce the charges

of the coroot lattice. This implies that A and A' are indeed identical. Then we can

fix the proportionality constant of the B with respect to B' by using the fact that

b. = b'. (3.75)

This in turn fixes the proportionality constant of Z with respect to Z'. Fixing the

normalization of B and Z is important in determining what the abelian anomaly

coefficients are.

We have verified (Claim 1) by comparing the Chern-Simons five form on the M-

theory and F-theory side. Note that if we add type B or type Z cycles to type C

cycles, the intersection polynomial becomes modified. In particular, terms of form

(ZBT) would appear, which do not and cannot appear on the F-theory side in the

decompactification limit.

3.3.3 The Abelian Sector

In this section we find the four-cycles dual to KK-reduced abelian gauge fields and

identify the abelian anomaly coefficients. We make the following

(Claim 2) The vector fields A 1, - -- , AV, dual to type S four-cycles Si - which we

shortly define - can be identified with the vector fields obtained by KK-reducing the

six-dimensional abelian vector fields along S' in the decompactification limit.

We construct the type S four-cycles in the following way. For each type S four-

cycle S, define the corresponding type S four-cycle Si as

Si= $ - (S - f)Z - ((Si - ($3 - f)Z) . Z- B)Ba + Z($ - xi,K)(C11 )IJTJ, (3.76)
I, J, r

where n labels the non-abelian gauge groups of the six-dimensional theory and I

labels their simple roots. (C-')rj is the (I, J) component of the inverse of the Cartan

matrix C,. Recall that XIr is the type F cycle corresponding to the simple roots ar.
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of g,. Type S cycles are defined so that

1. Si-f =0.

2. S-Z-B, = 0.

3. Si -Xp= 0.

The first and second identities can be checked easily by using intersection identities

given in the previous section. We note that the first condition implies that

Si -B -B# = Qa#Si -f = 0. (3.77)

We also note that the second condition implies that

Si -Z -X = (SI - Xj)B = (XIB)Si -Z - B = 0 (3.78)

for any four-cycle X.

Since all X, are homologically equivalent to a sum of xr,K, the third identity needs

to be checked only for all XI,. This can be done:

Si - XIK = S XI, + E (i - XJ,A)(C- 1 )JK(TK,A 'x)I,n
J,K,A

= $ X- x,.+ E ($ - xJA)(CA')JK(~AnCKI,) (3-79)
J,K,A

= $XI, -,§ - -X,; = 0.

Meanwhile,

Si -TIr -Ba = be,.(Si - 71,r). (3.80)

Recall that yI,,c is the monodromy invariant fiber of T,K over b,. As can be seen in

appendix B.1, the lI,K are linear combinations of XJ,K. Therefore, it follows that

Si -TK -Bo = 0 (3.81)
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for any T,, and Ba.

Equation (3.76) is the threefold analog of the map Shioda used to map rational

sections of an elliptically fibered surface to points in the N6ron-Severi lattice of that

surface [183] .8 Once the rational sections were mapped to a lattice, a number-valued

inner-product on the sections could be defined. In our case there is an H 2 (B) vector-

valued inner-product on type S cycles. It is -ir(Si - Sj). We claim that these are the

anomaly coefficients of the abelian gauge groups.

Now we verify that vector fields dual to type S cycles can indeed be identified with

the KK-reduced six dimensional abelian vector fields in the decompactification limit.

We verify that none of the vector multiplets are charged under Ai and that the coef-

ficients of the Chern-Simons five-forms have the proper form. The first point is easily

checked since Si- Xp = 0 implies that none of the charged vector multiplets are charged

under Ai. Si, however, can intersect with curves of type I, i.e., hypermultiplets can

be charged under abelian gauge fields.

The triple intersection polynomial, when incorporating Si becomes

1 3( 3 (~.S~)(Z 1 3-(9 - T)(ZZZ) + 6 rCIjr(K -b)j(ZTI,T,A) - (K -,r(Si - Sj))(ZSiSj)
4 2 2

± 32aj (ZBaBp) - 36K.C1JKb,,(BaTI,.TJ,x ) + 37r(Si . Sj),(BaSiSj) (3.82)

± (triple intersections among T, S)

We have explained the absence of the terms (SBB), (SBZ), (STZ) and (STB).

Coefficients of the (SSB) terms follow from the definition of the projection 7r.

Adding the contributions of A'-the vector fields obtained by KK-reducing the

six-dimensional abelian vector fields-to equation (3.72), the tree-level intersection

polynomial on the F-theory side is given by

Qap8(Z'B' B') - 26K.C1IJ,rb (B' A'1,rA',) - 2ba,ij (B'A'J, A' )
a ., I K J,(3.83)

+ (triple intersections among A's and A's)

8The image of the rational sections of an elliptically fibered K3 manifold M under the Shioda

map-which are two-cycles-are also dual to the abelian vector fields of the eight-dimensional su-

pergravity theory obtained by compacifying F-theory on M [120, 179, 184, 185].
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up to the same overall constant Ki,t defined below (3.72). Recall that be,ig are

the SO(1, T) vector components of the abelian anomaly coefficients. We see that

the intersection polynomial (3.82) matches with (3.83) up to terms not involving B,

when we normalize Z and B with respect to Z' and B' according to the prescription

given at the end of the previous section. The matching of the intersection polynomial

concludes the justification of (Claim 2).

Furthermore, if we normalize the gauge fields A' so that the charge of the hyper-

multiplet coming from branes wrapping c, is c, - Si, we can equate A' and Ai. Then

due to the normalization prescription of B, we have given in the previous section, we

can unambiguously equate

big= -- (Si - S). (3.84)

This is the main result of this section.

3.3.4 Summary

Let us summarize our findings. F-theory compactified on X x S'-where X is an

elliptically fibered Calabi-Yau threefold with a section-is dual to M-theory compact-

ified on X. We have identified the massless field content of the six-dimensional theory

from the M-theory dual. In the process, we have proven equation (3.49).

The vector fields of the six-dimensional theory KK-reduce along S1 to vector

fields in five dimensions. In the M-theory dual, the KK-reduced vector fields have the

following origins:

1. Abelian Vector Fields : KK-reduction of the 11D three-form on two-forms

dual to four-cycles of type S.

2. Non-abelian Vector Fields in the Cartan of the Gauge Group: KK-

reduction of the 11D three-form on two-forms dual to four-cycles of type C.

3. Non-abelian Vector Fields Not in the Cartan of the Gauge Group:

M2 branes and anti-branes wrapping curves of type F.
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The definitions of the various types of cycles are given in section 3.3.2. We note once

again that we abuse the term "duality" in the following way; we say that a vector field

is "dual to" a four-cycle S when it is obtained by KK-reducing the eleven-dimensional

three-form on a two-form Poincar6 dual to S. The abelian and non-abelian Cartan

vector multiplets are dual to four-cycles that do not intersect the fiber.

Let us elaborate on the construction of cycles of type S. Type S cycles Si are

constructed from four-cycles that are the generators of the rational sections through

the Shioda map (3.76). The anomaly coefficient of the abelian vector fields can be

identified with the opposite vector of the projection of the the intersection of two type

S four-cycles to the H' lattice of the base:

bi= -7r(Si -Sj) . (3.85)

All the fields charged under abelian or non-abelian Cartan vector fields come from

M2 branes wrapping shrinking rational curves. Rational curves of type I-or isolated

rational curves-contribute one hypermultiplet each to the massless spectrum in the

decompactification limit: a brane and an anti-brane wrapping a given curve contribute

a half-hypermultiplet each, which together form one hypermultiplet. Rational curves

of type F-or fibered rational curves-contribute 2g hypermultiplets where g is the

genus of the curve over which the rational curve is fibered. As mentioned above, a

type F rational curve also contributes two vector multiplets to the massless spectrum

of the six-dimensional theory, each obtained by either wrapping a brane or an anti-

brane.

A charged hypermultiplet consists of two half-hypermultiplets each coming from

wrapping an M2 brane or anti-brane on a curve. There is an overall sign ambiguity

in defining charges of hypermultiplets. We use the convention that a hypermultiplet

coming from wrapping branes and anti-branes on a rational curve C has charge C -S

under the vector field dual to a four-cycle S. Meanwhile, each vector field coming from

wrapping M2 branes(anti-branes) on the type F curve Xp has charge Xp - S(-Xp - S)

under the vector multiplet dual to a four-cycle S, respectively.
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Chapter 4

Lessons Learned

We have seen in section 2 that the anomaly constraints of six dimensional supergravity

theories with minimal supersymmetry render the space of potentially consistent the-

ories quite manageable under certain assumptions. For example, we have reviewed

that the number of possible non-anomalous massless spectra is bounded when the

number of tensor multiplets T is smaller than nine and there are no abelian gauge

group factors [62, 65].

In particular, we have seen that when T = 0, all the anomaly equations simplify

so that there is a systematic way of constructing all non-anomalous models given the

gauge group. Therefore, we are now in a position to compare the non-anomalous

models with all known string vacua for T = 0. Comparing the set of non-anomalous

theories and the set of string vacua, we identify many theories that can readily be

embedded into string theory, as well as theories that are candidates for new string

vacua.

We also find many of theories that we do not know how to incorporate into any

known string vacua. These are theories whose anomaly coefficients violate the Kodaira

bound

Zvu(j - b,) < -12j -a (4.1)
K

that we have introduced in the previous chapter. In fact, as can be seen from table

4.1, these theories turn out to populate the bulk of the T = 0 landscape. If these
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M # SU(M) models # satisfy Kodaira
13-24 1 1

12 2 2
11 2 2
10 2 2
9 3 3
8 15 14
7 16 16
6 48 47
5 23 16
4 207 154
3 10100 262
2 ~ 5 x 107  176

U(1) oo ?

Table 4.1: The table of numbers of non-anomalous T = 0 theories with gauge group
SU(M) for various M. There are no non-anomalous theories when M > 24. The
number of all theories that are non-anomalous are given in the second column. The
number of theories that satisfy the Kodaira condition in addition are given in the
third column. The number of non-anomalous theories with M = 2 are very large and
have not been computed precisely. Note when the gauge group is abelian there exist
an infinite number of non-anomalous theories. There is no known analogue of the
Kodaira constraint for abelian theories.

theories indeed are undiscovered string vacua, there must be a large part of the string

landscape that is currently undiscovered. If these are secretly inconsistent, there

must be some fundamental reason that the Kodaira bound should hold for these

supergravity theories. The Kodaira bound has other intriguing features that make it

attractive as a candidate for a fundamental constraint of supergravity. We show in

section 4.2 that in fact all the infinite families of T > 9 theories constructed in section

2.2 violate the Kodaira bound. We therefore have identified an important question

regarding the consistency of quantum supergravity theories through the landscape

analysis:

Meanwhile, we have shown in section 2.4 that the situation becomes less tractable
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when the gauge group has abelian factors. For example, it has been shown that

while the number of allowed gauge groups and non-abelian matter representations are

bounded when T < 9, there exist infinite classes of theories generated by assigning

different U(1) charges to the matter.

The immediate question that arises in this context is whether such infinite classes

of theories are consistent. This is a hard question to answer. To our knowledge, there

are no consistency conditions that could rule out the simple examples of infinite classes

of theories given in section 2.4.3, but at the same time, there is no guarantee that

these examples are consistent. We may be less ambitious and ask whether there is an

obstruction to embedding all of these theories in string theory. This question is still

a difficult one to answer, as there is no known abelian generalization of the Kodaira

constraint that would restrict the charge structure of U(1) theories. By examining

the table 4.1, however, it is easy to observe that the U(1) theories fit the general

trend of anomaly equations being less restrictive for groups with less structure. This

table strongly suggests that a generalized version of the Kodaira constraint might

be attainable in string theory. Hence, another important question arising from our

landscape analysis is:

(Q2) Is there a generalized version of the Kodaira constraint for theories

with abelian gauge symmetry (in string theory) ?

A practical strategy to pursue in this direction is to ask whether there is an

obstruction in incorporating the infinite class of theories to known string vacua, and

hope to gain insight from it. In section 3.3 we have made some progress in this

direction by identifying a geometrical object that corresponds to the abelian anomaly

coefficients for F-theory vacua. Although we have not been able to go further to

identify a generalized version of the Kodaira constraint, some interesting results follow

from carrying the analysis further. The dictionary of section 3.3 enables us to translate

the anomaly equations that hold for six-dimensional (1, 0) theories to intersection

theory equalities of Calabi-Yau threefolds - we present these equations in section
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4.3.

The structure of this chapter is as the following. We present the results from the

analysis of T = 0 theories in section 4.1. Then we discuss the status of the landscape

of theories with abelian gauge symmetry in 4.2. In particular, we review the infinite

classes of theories that could be generated for these theories and pose the question of

how to think about them. Finally, in section 4.3 we decribe the intersection theory

equalities that could be obtained by translating the anomaly equations to geometric

terms.

4.1 Non-abelian T = 0 Theories

In this section, we compare the space of apparently consistent T = 0 theories with

gauge group

g = SU(M 1 ) x ... x SU(Mk) (4.2)

with the space of string vacua, in particular, F-theory vacua. According to the dictio-

nary reviewed in section 3.1, F-theory models with T = 0 are obtained by compactify-

ing on an elliptically fibered Calabi-Yau threefold with base P2 [118, 119]. The set of

toric Calabi-Yau threefolds with base P2 have recently been systematically studied in

[186]. Also, a detailed study of the matter sector of T = 0 F-theory compactifications

is given in [112].

We can classify the set of apparently consistent T = 0 theories constructed by the

strategy sketched in section 2.3 into three groups:

1. Theories readily embeddable in F-theory

2. Candidate theories for new string vacua

3. Theories we do not know how to embed in string theory

As reviewed in section 3.1.1, there is no clear obstruction to embedding any apparently

consistent theory that satisfies the Kodaira bound (3.3) into F-theory. In other words,

any theory that satisfies the Kodaira constraint has a chance of being an F-theory
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vacuum. As reviewed in section 2.3, the anomaly coefficients of T = 0 vacua are

integers bK, and the gravitational anomaly coefficient is given by a = -3. Using the

group theory coefficients given in section 3.1.1, we find that the Kodaira bound (3.3)

for theories with gauge group SU(M1 ) x ... x SU(Mk) is given by

Mibi + M 2 b2 + - - -+Mkbk< 36. (4.3)

If a theory satisfies the Kodaira constraint and only has conventional, or simple,

matter - matter that is known to be generated in F-theory vacua - it is expected

to be obtainable from F-theory by tuning the complex structure in a generic way. We

classify these theories to be readily embeddable.

Meanwhile, we find theories that satisfy the Kodaira bound but that have exotic

matter structure that has not been constructed in F-theory previously. Although

there is exotic matter, there is no clear reason why these theories cannot be F-theory

vacua with complicated singularities unstudied before. We therefore expect these the-

ories to be embeddable into F-theory, with non-trivial tuning of the complex structure.

These theories are candidate theories for new string vacua. A systematic study of

such exotic vacua was initiated in the recent work [112].

Finally there are - in fact, quite many - theories that violate the Kodaira

bound. As discussed in the introduction of this chapter, we do not have a framework

in which to understand these theories. These theories might be exotic string vacua

that have not been constructed yet, or inconsistent theories violating an undiscovered

consistency condition.

In this section, we systematically scan the space of apparently consistent T =

0 theories and see how these theories fall into each category described above. As

explained in section 2.3, we construct theories by putting together blocks of single

gauge group factors. Therefore, it is convenient to classify theories in the landscape

by the number of blocks it is made of. We examine the structure of the single building

"blocks" as well as single block models in section 4.1.1. We then proceed to examine

the structure of two-block and multi-block models in sections 4.1.2 and 4.1.3. We
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summarize our findings in section 4.1.4.

4.1.1 Singe Blocks in T = 0 Theories

In this section, we examine the single SU(M) blocks that satisfy the gauge anomaly

equations (2.52), (2.53) and (2.54):

1
3b. = - XRAR- Aadj

6 1 YJ
. R

0 = E XRBR -Ba
R

b21 = C - C]
RI

(4.4)

(4.5)

(4.6)

and also the single block models that consist of one of these blocks. Recall from

section 2.3 that M < 24 for all blocks that satisfy these equations.

Let review facts about blocks with b = 1 or 2 shown in section 2.3. For M > 7,

the only possible blocks with M > 7 are SU(M) factors with matter content

(24 - M) x 0+3 x E,

(In this section, we use H

block.)

For M < 7, other b=

SU(7) :

(b= 1,M < 24,H-V= (2+45M- M 2 )/2 < 273). (4.7)

to denote the number of charged hypermultiplets of a given

1 blocks are possible. For SU(7) there exists the block

22 x 3+1 x H, (b= 1,H - V = 141). (4.8)

A similar block can be constructed for SU(6) with 20 fundamental, one A2, and

one A3 representation. For SU(5) the A3 and A2 representations are conjugate (and

therefore treated as equivalent in this analysis), this exhausts the range of possibilities

for b = 1. All these blocks automatically satisfy the gravitational anomaly bound

H - V < 273, and hence can give single block models.

For b = 2 there are again only single-column representations. Now M < 12. The
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generic blocks have the form

(48-4M)xo+6 xE, (b=2, M<12,H-V=1+45M-2M2  273) (4.9)

for all M < 12. There are other b = 2 blocks when 6 < M < 10. Blocks with single

3-antisymmetric (A3) representations are possible for M = 10, 9 with H - V > 273

and at M = 8, 7,6 with H - V < 273. For SU(6) there are also blocks with two and

three A3 representations, and for SU(7) there is a block with two A3 representations;

all these blocks satisfy the gravitational anomaly bound H - V < 273. There is also a

single b = 2 block with gauge group SU(8) and a 4-antisymmetric (A4) representation

SU(8) : 32 x + 1 x H, (b = 2, H - V = 263). (4.10)

This completes the list of all possible b = 2 blocks.

Continuing to b = 3, there is now a nonzero contribution to the genus,1

b=3: 2 x RgR = (b - 1)(b - 2) = 2. (4.13)
R

There is, therefore, necessarily a matter representation with more than one column,

which has gR = 1. The only possibilities are the adjoint and two-index symmetric

representations for general N (note that the representation U3 in Table 2.3 for SU(3)

'Some comments are due on the genus g of a block given by (b - 1) (b - 2)/2 and the genus 9R of
each matter representation defined by

1
9R =-g(2 CR±+B - AR) . (4.11)

For models with an F-theory construction, the anomaly integer b is the degree of the curve realizing
the corresponding gauge group. The quantity g := ER XRgR = (b - 1)(b - 2)/2 is then the (arith-
metic) genus of this curve. In F-theory, the number of adjoint hypermultiplets in the low-energy
theory is given by the geometric genus g of the curve. The genus-degree formula for a general,
possibly singular, curve relates the arithmetic and geometric genera

g = (b - 1)(b - 2 )/ 2 = gg + 1) (4.12)
P 2

where the sum is over all singular points P of the curve, and mp is the multiplicity at point P
[187]. This relationship provides a clue towards realizing general matter representations in F-theory
through codimension-2 singularities. This point has been explored further in [112].
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has gR = 1, but is also the adjoint of SU(3)). For each choice of representation sat-

urating the genus g = 1, there are various possible combinations of n-antisymmetric

single-column representations which can solve the partition problem for the C's. The

largest N for which a one-block model appears with b = 3 which satisfies the gravita-

tional anomaly bound on the number of hypermultiplets is N = 9; the matter content

of this model is

SU(9) : 5 x u+ 4 x + 1 x +1 x Adj, (b = 3, H - V = 273). (4.14)

Note that the blocks listed explicitly above (4.7, 4.8, 4.9, 4.10, 4.14) have H -V <

273, and therefore, by adding neutral hypermultiplets, can be completed to anomaly-

free low-energy supergravity theories with single factor gauge groups G = SU(M).

The model in (4.14) precisely saturates the gravitational anomaly bound with H-V =

273. This model therefore has no neutral hypermultiplets and is "rigid" in the sense

that deformation along any scalar modulus will break the symmetry of the model.

As we will see, many of the most exotic matter representations arise in such rigid

models.

All the models described above furthermore satisfy the Kodaira bound from F-

theory E, bM,, = bM < 36. We might therefore expect that these models have

F-theory realizations. While the fundamental and antisymmetric matter representa-

tions have standard F-theory realizations, however, the 3-index and 4-index repre-

sentations are more exotic. These representations were also encountered in T = 1

models in [65]. In the case of the 3-index representations, a codimension two singular-

ity structure has been identified in F-theory which realizes this matter representation

for N = 6,7,8 [134] through local enhancement of the singularity type to E6 , E 7 and

E8 respectively. We are not aware, however, of any known F-theory realization of the

4-index antisymmetric representation, or of the 3-index antisymmetric representation

for M = 9. Progress in this direction has recently been made by [112].

We have systematically analyzed the set of all possible SU(M) blocks with ar-

bitrary matter representations for T = 0 and any M. A summary of the results of
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M max b (total blocks) SU(M) models Kodaira models
13-24 1 (1) (1) 1 1

12 2 (2) (2) 2 2
11 2 (3) (4) 2 2
10 2 (4) (6) 2 2
9 3 (4) (8) 3 3
8 8 (8) (22) 15 14
7 4 (7) (28) 16 16
6 6 (8) (147) 48 47
5 8 (14) (186) 23 16
4 16 (34) (3893) 207 154
3 597 (597) 10100 262
2 24297 < bm. < 36647 ~ 5 X 107 176

Table 4.2: A summary of possible distinct SU(M) blocks. The numbers in paren-
theses refer to possible blocks without the gravitational anomaly constraint imposed,
while the numbers without parentheses refer to possible single block SU(M) models.
The last column gives the number of single factor models which satisfy the Kodaira
constraint bM < 36 needed for an F-theory realization. The number of blocks not
individually satisfying the gravitational anomaly bound becomes very large at M = 3,
as does number of blocks for M = 2 even with the gravitational anomaly constraint.
We have not precisely computed the number of blocks in these categories.

this analysis - part of which was already shown in table 2.4 - appears in table 4.2.

We carried out this analysis by finding all of the finite number of solutions for the

partition problem for each combination of M and b, within the bounded range of b's

for which a solution can be found for each M. As noted before, we have explicitly

computed all blocks for M > 4, dividing the set into those which do or do not individ-

ually satisfy the gravitational anomaly bound H - V < 273. For SU(2) and SU(3),

the total number of blocks becomes quite large. For SU(3) we have only explicitly

computed the number of blocks which individually satisfy the gravitational anomaly

bound, and for SU(2) we have only estimated the number of blocks and their range

and computed some specific examples, as described below. The detailed analysis of

upper bounds on b for each fixed M is given in appendix A.3.

We now describe briefly a few interesting aspects of the results summarized in

Table 4.2 and highlight a few specific blocks of interest.

M > 8:
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For M > 9, there are known F-theory realizations of all matter representations

appearing in all single-block models. Furthermore, the Kodaira constraint is satisfied

for all single blocks with M > 8. Thus, it seems likely that all the single-block

SU(M) models with M > 9 which are anomaly-free can be realized in F-theory.

The only unusual representation which arises at M = 9 is the 3-index antisymmetric

representation mentioned above in the model (4.14).

M = 8:

At M = 8 we find several novel features. As mentioned above, there is an SU(8)

model with a 4-index antisymmetric representation. There is also a somewhat exotic

model with

SU(8): 1xW (b = 8, H - V = 273). (4.15)

This is the only SU(8) model containing a block with b > 4 and is another exam-

ple of a model with rigid symmetry. There is no known F-theory realization of the

"box" matter representation appearing in this model, although a singularity structure

that could possibly give this representation for a low-rank gauge group was studied

in [112]. Furthermore, this model violates the Kodaira condition (bM = 64 > 32).

Nonetheless, the numerology seems to work out rather nicely for this model, suggest-

ing that there may possibly be some new class of string compactification which could

realize this model.

M < 6

At M = 6 and below, the range of possible representations expands significantly,

and models which violate the Kodaira condition begin to proliferate. There is one

model at M = 6 which has another exotic representation

SU(6) : 2 x + 2 x + 2 x + 2 x Adj, (b = 6, H - V = 273). (4.16)

This is another example of a model with rigid symmetry, although this model is (just

barely) within the Kodaira bound.

At M = 5 and below an increasing range of exotic representations becomes pos-
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sible. At the end of this section we summarize the set of representations which can

be realized in models satisfying the Kodaira condition for any M. One particularly

simple and interesting block with M = 4 is

SU(4) : 1 x +64 x 0, (b= 4, H - V = 261). (4.17)

For models not satisfying the Kodaira bound, an even wider range of representa-

tions can be realized; for example, for N = 4 there are single block models violating

the Kodaira bound which have the representations rFED and . Most of these

exotic representations appear in models which precisely saturate or almost saturate

the gravitational anomaly bound. For example, one SU(4) model at b = 16 has

SU(4): 3 x + 3 x +1 x cnm, (b = 16, H - V = 272). (4.18)

At M = 3 the range of possibilities increases still further. The distribution of

blocks across values of b is rather non-uniform. There are an enormous range of

blocks not satisfying the gravitational anomaly bound and having b < 500 which

we have not attempted to completely enumerate. Among those blocks individually

satisfying the gravitational anomaly bound, most are distributed across values of

b < 70, with more blocks at values of b divisible by 3. The most blocks satisfying

the gravitational anomaly bound occur at b = 24 (910 blocks). There are only a few

values of b > 70 with allowed such blocks, including 44 blocks at b = 93, followed by

3 blocks at b = 105 and single blocks each at b = 153,168,408 and 597. The matter

content for b = 597 is given by

SU(3) : 1 x (S6)+ 1 x (S21) (b = 597, H - V = 273). (4.19)

Even without imposing the gravitational anomaly bound, there are only blocks pos-

sible for three distinct values of b > 500. At b = 521 there are 79,151 different blocks

possible with H - V < 1000; at b = 522 there are 40 such blocks. The only block

possible with b > 522 is (4.19). It is striking that the largest possible SU(3) block
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precisely saturates the gravitational anomaly bound.

For SU(2) we have not computed all blocks explicitly, even restricting to blocks

satisfying the gravitational anomaly bound, as the number of possibilities is very

large. The best upper bound we have found for b for SU(2) is 36,647 (see Appendix

B). We have sampled the distribution by computing the number of blocks satisfying

the gravitational anomaly bound for multiples of 20, b = 20k, up to b = 1000, and

for multiples of 250 up to b = 20, 000. The number of blocks at fixed b seems to peak

around b = 420, where there are 65,459 distinct SU(2) blocks. The number of blocks

starts to drop significantly after b = 1000, with for example 11,121 blocks at b = 1000,

835 blocks at b = 2000, and 12 blocks at b = 4000. As for N = 3, however, there

are individual blocks out to much larger values of b. We have found blocks satisfying

H - V < 273 for b up to 24,297, though there are probably sporadic blocks appearing

for larger b up to close to the bound of 36,647 (though these must be rare; for example

24,297 is the only value of b between 24,000 and 25,500 which admits a block). Based

on the partial data we have computed, we estimate the number of blocks satisfying

the gravitational anomaly bound to be on the order of 5 x 10'. The total number

of blocks without imposing the gravitational anomaly constraint is much larger, but

still finite. An example of an SU(2) block with a very large value of b satisfying the

gravitational anomaly bound is the following block with b = 10,750

SU(2): 1 x E(S2) + 1 x (S3) + 1 x (S4) + 1 x (S5) + 1 x (S6)(4.20)

+1 x (S17) + 1 x (S55) + 1 x (S69) + 1 x (S85),

(b = 10750, H - V = 252).

An example of a block with larger b which violates the gravitational anomaly bound

is

SU(2) 24530 x +8380 x m+1 x (S12) +1 x (S29) + 1 x (S4@(.21)

+1 x (S113), (b = 18000, H - V = 74398).
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This block, in fact, wildly violates the gravitational anomaly bound, and it can be

shown fairly easily that no model satisfying the gravitational anomaly bound can con-

tain this block. For SU(2) there are many such single blocks at large b that satisfy the

single block anomaly equations but violate the gravitational anomaly bound. Thus,

as the rank decreases the gravitational anomaly bound becomes a more important

constraint in restraining the class of allowed models, even though the gravitational

anomaly bound alone is sufficient to prove that the number of blocks is finite.

We conclude this description of single SU(M) factor matter blocks in T = 0

models with a brief summary of all novel representations which can appear in single

block models satisfying the F-theory Kodaira constraint, but for which no F-theory

realization is known. There is no argument we are aware of which rules out these

representations in F-theory; indeed it seems likely that some of these representations

can be realized by new codimension-two singular structures, some which are suggested

in [112]. Note that further representations can appear when multiple blocks are

considered, so this list is not a complete list of all possible matter types for T = 0

models.

As review in section 3.1.1, matter representations with standard F-theory con-

structions are the fundamental ([3), 2-antisymmetric (A2 = ), and adjoint represen-

tations [119]. The 2-symmetric (S2 = M) was identified in terms of a double point

singularity in F-theory in [97] and the local singularity structure associated with 3-

antisymmetric representations ( have also been identified in F-theory for SU(6)

[135, 136, 134], SU(7) [136, 134], and SU(8) [134].

The novel matter representations which can appear in a model satisfying the

Kodaira constraint, where the gauge group has a single nonabelian factor SU(M) are
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as follows

H: Appears for SU(M), M = 9,8,7,6.

H: Appears for SU(8) as in the single block model (4.10)

: Appears for SU(M), M = 5,4 (Adjoint for SU(3)).

: Appears for SU(5) (Adjoint for SU(4)).

W: Appears for SU(4).

: Appears for SU(M), M = 4, 3,2.

F: Appears for SU(4).

]i: Appears for SU(3).

c~ iiAppears for SU(2).

Li ii : Appears for SU(2).

4.1.2 Two-factor combinations

In principle, given the complete list of all possible single blocks one can construct all

multi-block models satisfying the gravitational anomaly bound by simply considering

all possible ways in which matter can be multiply charged between blocks in a fashion

compatible with equation (2.55):

brbA = E XRsARAs. (4.22)
R,S

Since the number of jointly charged hypermultiplets grows quickly as the number of

blocks increases, the ways of combining multiple blocks are actually quite constrained.

We have used the complete analysis of single blocks to construct in this fashion all

possible two-block models with gauge group SU(M) x SU(P) for 4 < M < P.

We present here some examples of the features which can appear in such two-block

models.

From the cross-term anomaly constraint (2.55), it follows that any pair of blocks

must share matter which transforms under each gauge group factor, satisfying the
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summation relation

brb = Z XRsARAs, (4.23)
RS

where R and S are representations in SU(M) and SU(M) respectively. The sim-

plest type of matter charged under two gauge group factors is bifundamental matter,

familiar from various string constructions. In this case AR = As = 1. There is a

simple family of two-block models with matter content of the form

G = SU(M) x SU(24 - M) (4.24)

b1 = b2 = 1

matter = 3(Fx.-)+3(-xO)+1(o xEi).

Another family of models takes the form

G = SU(M) x SU(12 - M) (4.25)

b1 =b2 = 2

matter = 6( x -) + 6(- xB)+ 4(E] x I)

for N < 12. The family of models (4.25), including the single block model with

b = 2, M = 12 were previously constructed by Schellekens using Gepner models [188].

There are a variety of other two-block combinations possible with bifundamen-

tal matter and higher values of b's. When we consider larger values of b., b\, more

interesting combinations can also arise. There are some models which contain repre-

sentations of the form 0 x El. For example, the two-block model with largest M < P

with such a representation has gauge group and matter content

G = SU(5) x SU(7) (4.26)

(bi, b2 ) = (4, 2)

matter = 2(0 x -) + 1(0 x -) + 3([ x -) + 2(- x ) + 2(0 x [) + 2(E x E)

H - V = 273.
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There is a similar model with gauge group SU(5) x SU(6), but with SU(5) adjoints

instead of symmetric representations.

G = SU(5) x SU(6)

(bi, b2) = (4, 2)

matter = 4(Elx .)+3(Adj x .)+3(. x P + 2( x ) + 2(0 x E)

H - V = 273.

(4.27)

These models both saturate the gravitational anomaly, have similar representation

content, and satisfy the Kodaira constraint.

As the rank of the gauge group factors drops, more exotic matter multiplets

charged under two factors appear. For example, for SU(4) x SU(4) there are models

containing matter which transforms in a non-trivial non-fundamental representation

of two gauge groups. One example is given by the model

G

(bi, b2 )

matter

H - V

= SU(4) x SU(4)

= (2,2)

= 32(o x -) + 32(. x Q)+ 1(8 x

= 262.

(4.28)

Another interesting class of models are those which contain two blocks SU(M) x

SU(P) for large P and small M. For example we find the following three models

G = SU(2) x SU(24)

(b, b2 ) = (88, 1)

matter = 1( rx-)+1( x-)+1(x)

H - V = 272.

(4.29)
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G = SU(3) x SU(24) (4.30)

(bi, b2) = (22, 1)

matter = 1( x -) + 1(o x B

H - V = 273.

G = SU(2) x SU(19) (4.31)

(bib 2) = (27,1)

matter = 1(E x -) + 2(I x -) + 1( x )+ 1( x-)

+1(M mx -)+1( x-)

+1(o x B + 1(= xE)

H - V = 273.

These are the only multiblock models with a gauge group larger than SU(18) that has

non-bifundamental jointly charged matter. These models all severely violate the Ko-

daira bound. It is perhaps interesting to note that models containing SU(M) factors

with M = 20, 21, 22, 23 cannot have jointly charged matter other than bifundamental

matter as in the family of models (4.24)

4.1.3 Matter transforming under more than two factors

We have also considered models containing more than two blocks which when taken

together satisfy the gravitational anomaly bound, and which contain matter charged

under more than two gauge group factors. A limited class of such multiply-charged

matter representations are known to appear in F-theory constructions. In particular

tri-fundamental representations of SU(2) x SU(2) x SU(M) can arise at a point

where the singularity structure is enhanced to DM+2 [136], and tri-fundamentals of

SU(2) x SU(3) x SU(M) can be realized from EM+3 singularities for M < 5. In

[65] apparently consistent low-energy models with T = 1 containing tri-fundamental

matter charged under the three gauge group factors SU(2) x SU(3) x SU(6) were
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identified. While we have not done a completely systematic search, we have identified

a number of the interesting matter structures of this type which can arise in T = 0

models. We list here some of the possibilities. While this list is not necessarily

comprehensive, it should serve to demonstrate the kinds of multiply-charged matter

representations which may be possible.

3-charged matter

As for T = 1, at T = 0 we find tri-fundamental matter charged under SU(2) x

SU(3) x SU(6). Such matter appears in the following 3-block model

G

(bi, b2, b3 )

matter

H-V

= SU(2) x SU(3) x SU(6) (4.32)

= (3,2, 1)

= 1(] x 0 x n) + 36(E x - x -) + 30(- x E x -) + 12(. x - x. )

+1([-D x - x -) + 3(- x - x 2)

= 272 .

Matter charged under SU(2) x SU(4) x SU(4) appears in the model

G =

(bi, b2,bs) =

matter =

SU(2) x SU(4) x SU(4)

(2,4,4)

2(0 x E x n) + 4(. x E x E) + 2(. x x E)
+8( X - x -) + 3(- x Adj x -) + 3(. x - x Adj)

H - V = 273.

There is also matter charged under SU(3) x SU(3) x SU(3), appearing in the
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model

G = SU(3) x SU(3) x SU(3) (4.34)

(bi, b2,b3) = (2, 2,2)

matter = 1(E] x D x ) + 1[(E3 x x -) + cyclic] + 27 [(] x - x -) + cyclic]

H - V = 273.

Both these models containing tri-fundamental matter satisfy the Kodaira constraint.

There is also an interesting combination of 3 blocks of the form (4.17) which contains

matter charged under SU(4) x SU(4) x SU(4).

G

(bi, b2 , b3 )

matter

H-V

= SU(4) x SU(4) x SU(4) (4.35)

= (4, 4, 4)

= 4(EOxExo)+1 (Hx - x -) + cyclic]

= 271.

It is possible to combine four SU(3) blocks to have multiple tri-fundamentals

between groups of 3 of the SU(3)'s

G = SU(3) x SU(3) x SU(3) x SU(3) (4.36)

(b b2, b3,b4 ) = (3, 3, 3, 3)

matter = 1 [(] x E x 0 x -) + cyclic] + 3 [(0 x n x - x -) + 5 permutations]

+1 [(> x - x - x -) + cyclic]

H-V = 270.
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Matter charged under more than three factors

We have found a few exotic models in which matter can be charged under more than

3 gauge group factors.

There is a combination of 4 SU(2) factors carrying a 4-fundamental in a model

which satisfies the Kodaira constraint

G = SU(2) 4  (4.37)

bi = 4

matter = 2(0 x 0 x E x [) + 8[(D x 0 x - x -) + 5 permutations]

+3 [( x - x - x -) + cyclic]

H -V = 248.

And there is a more exotic combination of 8 SU(2) factors at b = 8 where each

block has 128 fundamental representations and one S4 (5-dimensional) representation

G = SU(2)8  (4.38)

bi = 8

matter = 1(DxoxoIxE xxO xOxC)

+1[(mmx-x-xx-x-x-x-.)+cyclic]

H-V = 272.

4.1.4 Summary

Let us summarize the results from the landscape analysis on the space of T = 0

theories:

Candidates for new string vacua:

We have identified a number of SU(M) matter representations which are not ruled
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out by low-energy consistency conditions, but whose realization in string theory is

not yet known. Some of the novel matter representations we have found are com-

patible with the Kodaira constraint, and may be realized by new codimension-two

singularities in F-theory.

Theories Violating the Kodaira bound:

All F-theory - and to our knowledge, string theory - realizations of T = 0

6D theories satisfy the Kodaira constraint, as elaborated in section 3.1. There are

many - but a finite number of - models which satisfy the anomaly cancellation

condition on the low-energy theory but which violate the Kodaira constraint. We

do not have a framework to think about these theories at the present. Whether

the Kodaira constraint can be derived from a yet unknown fundamental principle of

quantum gravity, or whether it is an artifact of the constraints on the landscape of

known string models is an important question that this investigation presents. We

investigate this question further for the rest of the thesis.

Models with rigid symmetry:

Many of the most unusual matter representations we have found live in mod-

els which either completely or almost completely saturate the gravitational anomaly

bound H - V < 273. When this bound is saturated, there are no uncharged hyper-

multiplets, and any deformation of the model will break the symmetry and reduce

the matter content. Thus, these models are delicately balanced configurations which

exist only at specific points in the moduli space of 6D supergravity theories. Many

of the explicit models we have found which go outside the domain of established F-

theory constructions turn out to precisely saturate the gravitational anomaly bound

and exhibit remarkable numerological/group theory structure, suggesting that per-

haps some novel stringy mechanism may enable the existence of these theories as

quantum-complete theories of supergravity.

Diversity at low rank:

When the rank of a gauge group factor is large, in general we find that the asso-

ciated models contain matter associated with well-known F-theory singularity types

and clearly satisfy the Kodaira constraint. As the rank of the factors decreases, how-
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ever, more exotic types of matter appear and more models arise which violate the

Kodaira constraint. Models containing only SU(2) factors become difficult to classify,

and admit a wide range of representations. This observation matches with the results

of section 2.4, where it is shown that an infinite number of charge solutions exist for

U(1) models.

4.2 Theories with Abelian Gauge Symmetry

As we have seen in sections 2.4, 3.2 and pointed out in numerous places in the thesis,

the space of six-dimensional theories with abelian gauge symmetry is not as well

controlled as the space of non-abelian theories, to say the least. There are infinite

classes of apparently consistent theories for any T, and the abelian sector of the

string landscape is not well understood. For example, how many different "kinds" of

Mordell-Weil sections - which would lead to different U(1) theories - an elliptically

fibered Calabi-Yau manifold could have is not well known.

The tables 4.1 and 4.2, however, gives us reason to hope that there may be, at

least on the string side, a generalized version of the Kodaira constraint that truncates

the infinite families of theories that exist in abelian theories. These tables indicate

that there being an infinite number of apparently consistent charge assignments to

an abelian theory fits the general trend of theories with less structure having a wider

variety of allowed matter. If there indeed exists a generalized version of the Kodaira

constraint, it would truncate the infinite classes of theories along with the charge inte-

grality, minimality and unimodularity constraints [124, 128, 129, 130]. For example,

let us consider the first infinite class of theories considered in section 2.4.3. In these

T = 1 theories with gauge group U(1), there are 48 hypermultiplets with charge r,

48 hypermultiplets with charge s, 48 hypermultiplets with charge (r + s), and 102

neutral hypermultiplets. The anomaly coefficient is given by

(a, d) = (8r 2 + 8rs + 8S2, 8r 2 + 8rs + 8S2) , (4.39)
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while the gravitational anomaly coefficient is given by

a = (-2, -2). (4.40)

It is clear that if the charge is quantized so that r and s are integral and mutually

prime, then a and & would be unbounded in magnitude. If there exists some condition

that imposes a bound on a and &, it would truncate this infinite family.

A bound on the magnitude of abelian anomaly coefficients have strong implications

for T < 9, since for such values of T, the infiniteness of the space of apparently

consistent abelian theories lie entirely in the infinite choice charge assignments. Any

infinite choice of charge assignments for a given gauge/matter representation structure

would lead to one of the abelian anomaly coefficients to diverge, given that charges

and anomaly coefficients are quantized. Therefore if a generalized version of the

Kodaira constraint - which bounds the magnitude of abelian anomaly coefficients

- exists for string vacua, it will pick out a finite subset of the infinite set of apparently

consistent abelian models with T < 9.

A generalized version of the Kodaira constraint is expected to truncate the infinite

classes of T > 9 theories also. In the case of non-abelian theories, the Kodaira

constraint actually truncates all the infinite classes of T > 9 theories constructed in

section 2.2. For example, let us consider the first family with arbitrary gauge group

g = fj, Q with anomaly coefficients

a= (-3,1 x T) (4.41)

b. = (3, (-1) x 9, 0 x (T - 9))

for all r. and modulus

j = (1,0 x T). (4.42)

As before, we use the notation x x n to mean that n consecutive entries are equal to
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x. Then the Kodaira constraint becomes

c.(b, -j) = 3c 36 (4.43)

which imposes that

c. 12. (4.44)

This constrains the gauge group and truncates the infinite family to a finite subset.

It can be checked that the Kodaira constraint truncates the other two infinite families

constructed in section 2.2.

These observations suggest that a generalized version of the Kodaira constraint

should exist at least for F-theory vacua, since F-theory can only allow a finite number

of possible U(1) charges for any class of theories. The result of section 3.3, in which

the geometric counterpart of abelian anomaly coefficients are identified for F-theory

vacua, is a first step in the direction of identifying such a generalized constraint for

the abelian sector. We have so far not been able to go further towards achieving this

goal. We, however, can use the geometric characterization of the abelian sector given

in section 3.3 to translate the gauge/graviational and mixed anomaly equations into

non-trivial geometric identities. We present the results in the following section.

Let us end this section by examining an interesting class of abelian F-theory

backgrounds that might give us further insight into charge constraints of F-theory

vacua upon further investigation. These are the pure abelian T = 0 theories we have

introduced in section 2.4. Recall that a family of T = 0 theories with gauge group

U(1)k, k < 7 can be obtained by Higgsing an SU(8) theory with one adjoint and nine

antisymmetric matter. The number of charged hypermultiplets X for the various

pure abelian theories one obtains by Higgsing the adjoint of this theory in different

ways is summarized in table 4.3. There exists an F-theory construction of this SU(8)

model, which has b = 3, through an explicit Weierstrass model in [112], and hence

all the seven theories of this family should be embeddable in F-theory, although we

have not worked out the details of this Higgsing.

Explicit F-theory compactifications are known for the first four theories on table
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Gauge Group U(1) U(1)2 U(1)3 U(1)4 U(1)5 U(1)6 U(1)7
X 0 108 162 198 225 243 252 252

324 VA/(VA+2) 0 108 162 194.4... 216 231.4... 243 252
X' 273 166 113 78 52 35 27 28

Table 4.3: The number of charged hypermultiplets X for pure abelian theories ob-
tained by Higgsing the adjoint of the SU(8) theory with one adjoint and nine anti-
symmetrics. We have also tabulated the number of uncharged hypermultiplets in the
theory, X' = (273 + VA - X).

4.3. Since these theories have T = 0, they can be obtained by F-theory compactifi-

cations on Calabi-Yau threefolds that are elliptic fibrations of P2 [118, 119]. Such a

Calabi-Yau threefold that is non-singular can be expressed as a degree 18 hypersurface

in the projective space P[1, 1, 1, 6,9] [189], which is denoted by

X18 [1,11, 6, 9]2,272. (4.45)

The subscript denotes the degree of the hypersurface, the number in the brackets

parametrize the projective space, and the two superscripts denote the h1,1 and h 2,1

values of the manifold. Using M-theory/F-theory duality explained in detail in section

3.3, one can see that when T = 0 the total rank of the gauge group is given by (hi,1-2)

and the number of uncharged hypermultiplet is given by (h 2,1 + 1). It is easy to check

that the data of this manifold reproduces the first theory in table 4.3.

There is a general process by which one can replace the fiber-type of an el-

liptically fibered manifold to generate a different manifold [189]. From the point

of view of stringy geometry, one can understand this as a conifold transition be-

tween topologically distinct manifolds [190]. Three manifolds can be generated from

X 1 8[1, 1, 1, 6, 9]2,272 by successive conifold transitions. They are given by

X 12 [1, 1,1, 3,6]3,165, X4[1, 1,1, 3, 3]4,11 2, X6,6[1, 1, 1, 3,3, 3]5' 77. (4.46)

At a generic point in the complex moduli space, theories obtained by compactifying

on these manifolds do not have nonabelian gauge symmetry. Comparing the numbers

with table 4.3, we find that the massless spectrum of the six-dimensional theories
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obtained by F-theory compactifications on the three manifolds of (4.46) coincides

with the massless spectrum of the second, third and fourth theories of table 4.3 with

gauge groups U(1)k, k = 1, 2, 3. We do not know how to continue this process to

construct an explicit geometry realizing a theory with gauge group U(1) 4 .

This simple set of theories seems to be an ideal place to start examining aspects of

abelian gauge symmetry for F-theory vacua. Hopefully insight gained from studying

these simple examples will lead to a better understanding of how charges of abelian

gauge symmetry are constrained in F-theory.

4.3 Intersection Theory

Due to the identifications made in the section 3.3, the mixed/gauge anomaly equations

can be reformulated into equalities between intersection numbers obtained in the

resolved Calabi-Yau threefold. Remarkably, they can be summarized in two equalities.

They are given by the following:

7r(S1 -S2) - 7(S3 -S4)+ IN(S1 -S3)-x(S2 -S4) + 7(S1 -S4) - X(S2 -S3)

= (c, - S1)(c, -S2)(cr -S3 )(cr - S 4 ) + E(2gp - 2)(Xp - S1)(x, - S2)(Xp - S3)(x, - S 4 )
r p

(4.47)

and

6K-7(Si -S2) = (Cr .-S1)(c,- S2)+ (2g-2)(xp.S1)(xp-S2) (4.48)

when

f -S =0. (4.49)

As in the previous chapter, c, denote the isolated (type I) rational curves, while Xp

denote the fibered (type F) rational curves. Recall that by definition cr and Xp are

curves that shrink to zero area in the fibration limit. gp denotes the genus of the curve
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over which rational curve Xp is fibered. We have used K to denote the canonical class

divisor of the base.

7r is the projection to the base manifold. More precisely, r(C) of some two-cycle C

in X is the projection of C to the H2 (B) lattice of the base manifold. The intersection

between projected curves are taken in the base, while all the other intersections are

taken inside the full manifold. Recall that for any two-cycle C in X

ir(C) = (C - B0 )Ha <=> B, - C = (H 0 . r(C))B = 7r(C),0 , (4.50)

for the basis elements H0 of H 2 (B). Recall that B. are type B four-cycles obtained

by fibering the elliptic fiber over H,.

As seen in section 3.3, any four-cycle that does not intersect the fiber is a linear

combination of four-cycles of type B, S, or C. One can easily check that to prove

equations (4.47) and (4.48) for any four-cycle with zero intersection with the fiber,

it is enough to prove them in the case when all S, are among the basis elements

{Ba, T,,, Si}. We can carry out this procedure in the following steps.

1. We first show that these equations trivially hold when one of S' is of type B.

2. We then show that these equations hold when all four four-cycles S,, are of type

S or of type C.

3. Finally we show the validity of the equations when there are both four-cycles

of type S and C among S, thereby concluding the proof of these equations.

The details of these steps are unilluminating, but the basic idea is simple. For the

rest of the section, we carry out step 1 explicitly and sketch the idea behind showing

steps 2 and 3. We have carried out steps 2 and 3 explicitly in appendix B.2.

Let us prove equations (4.47) and (4.48) in the case that one of the four cycles is

of type B. Without loss of generality, let S1 = B0 . All shrinking two-cycles do not

intersect S1. Therefore the right-hand sides of both equations are 0. Meanwhile, for
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any S such that S - f = 0

B1 . Bp -S = faf .S = 0 (4.51)

for all B3 and therefore

r(Ba. -S) = (B# . Ba -S)H 1 = 0. (4.52)

Therefore ir(Sn - S1) = 0 for n = 2, 3,4 and hence the left-hand sides of the two

equations are also zero.

When all S, are either of type C or S, the equations (4.47) and (4.48) become

more interesting. In this case, the gauge anomaly equations (2.26) lead to (4.47)

and the mixed anomaly equations (2.23) lead to (4.48). As can be seen in section

3.3, each gauge field A2 in the Cartan subalgebra of the full gauge group is dual to

a four-cycle C, E {TI,,, Si} in the resolved Calabi-Yau manifold X. If we restrict

our attention to only these gauge fields, the anomaly polynomial takes the structure

of an abelian theory. In particular, the anomaly coefficients of F2Fy are given by

-7r(Cx -C,) - they are bilinear forms in the x index and are vectors in the H2 lattice

of the base. Therefore, by plugging in elements of the Cartan to the gauge/mixed

anomaly equations, the inner-products between anomaly coefficients on left-hand sides

reproduce the intersection numbers between between various X(Si -Sj) of (4.47) and

(4.48).

The right-hand sides of the gauge/mixed anomaly equations (2.26)/(2.23), are

given by the sum of products of the charges of "charged multiplets" under vector

fields dual to Cx E {T,,,, Si}. The charged multiplets come from quantizing zero-

modes of the M2 branes and anti-branes wrapping type I or type F curves. A type I

curve c, contributes one hypermultiplet with charge c, - C2, while a type F curve Xp

contributes 2g, hypermultiplets of charge Xp -Cx and two vector multiplets each with

charge tXp -C, under the vector field dual to C2 [144, 145]. Therefore the right-hand

sides of equations (4.47)/(4.48) are reproduced by plugging in elements of the Cartan

to the right-hand sides of the gauge/mixed anomaly equations. This concludes the
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proof of the two equations.

Together with the gravitational anomaly equation (3.49), the equations (4.47) and

(4.48) can be rewritten as

37r(S -S) --r(S -S) = (cr. S)4 + ((2g - 2)(xp -S)4
r p

6K -r(S -S) = (Cr S)2 + ((2gp - 2 )(Xp-S)2
r* p

30K K± 1Xfc 1 (2p - 2)
r p

(4.53)

(4.54)

(4.55)

for any S - f = 0. It is easy to check that these set of equations are equivalent to

equations (4.47) and (4.48) and (3.49) by setting

4 2

S = tiSi or S = tiSi
i=1 i=1

(4.56)

and treating both sides of the equations as polynomials of ti and comparing coef-

ficients. Noting that the Euler characteristic of a point is 1 and that the Euler

characteristic of a genus g curve is (2 - 2g), we can finally write the equations in the

appealing form:

37r(S - S) -7r(S - S) = ( XM(C)(C ' S)4 (4.57)
C

6K .7r(S S) = XM(c)(C. S)2 (4.58)

30K.K+ x± = XM(C) (4.59)
C

for any S- f = 0.

The sum of the right-hand-sides of the equations are over all - both type I and F

- curves c that shrink in the fibration limit. XM(c) is the Euler characteristic of the
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moduli space of the curve in the manifold X graded by the complex dimension of the

moduli space, i.e.,

XM(c) 1 (Moduli space of c is a point) (4.60)

1 2g - 2 (Moduli space of c is a curve of genus g)

We note that the geometric implications of the mixed and gauged anomaly equa-

tions have been studied in [133, 134] for non-abelian gauge groups, but have not been

put into the form we have presented here. The implications of the third equation -

coming from the gravitational anomaly constraint - has also been studied previously

[132, 133, 134], although not quite in the language that we have used. An interest-

ing fact is that the equation (4.59) can be translated into a threefold analogue [189]

of the Sethi-Vafa-Witten formula [191] for elliptically fibered Calabi-Yau threefolds

with various fiber types. We note that the Sethi-Vafa-Witten formula was originally

derived for elliptically fibered Calabi-Yau fourfolds in Weierstrass form, and has been

extended to more general elliptically fibered fourfolds [189, 192, 193]. While these

equations are aesthetically pleasing, we do not yet have much insight into how much

they add to what we already know about the geometry of Calabi-Yau threefolds. Un-

derstanding the origin and implications of these equations geometrically and possibly

generalizing them in a meaningful way would be an interesting direction of inquiry.
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Chapter 5

Conclusions and Outlook

Let us conclude this thesis by summarizing the major lessons that we have learned

from examining the landscape of six-dimensional (1, 0) supergravity theories and ex-

ploring directions for future developments.

Candidates for new string vacua

We have identified theories with exotic matter that have a high chance of being new

string - in particular, F-theory - vacua. If these are indeed verified to be new

F-theory vacua, it would also have implications on four-dimensional F-theory vacua,

since the codimension-two singularities that generate the exotic matter would also

generate the same kind of matter for four-dimensional backgrounds. A thorough

investigation of T = 0 global models with exotic matter has been initiated in [112].

The Kodaira bound

We have found that many - in fact, most - apparently consistent non-abelian

theories violate the Kodaira bound (3.3), which all string models known to us satisfy.

The Kodaira bound essentially states that the weighted sum of the inverse gauge

couplings of the non-abelian gauge groups is bounded above by the coupling of a

higher curvature term. The question whether this bound comes from a fundamental

principle of quantum gravity, or whether it comes from artificial constraints particular
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to the known string vacua must be answered to gain a full understanding of the six-

dimensional supergravity landscape.

One hope is that the Kodaira bound is indeed a fundamental constraint of quan-

tum supergravity theory that follows from basic properties such as unitarity or causal-

ity [194]. Indeed, constraints on higher curvature terms in gravity have been im-

posed by demanding such basic properties, especially in the context of AdS/CFT

[195, 196, 197, 1981. There also is an intuition that probe solitons contain non-trivial

information of the theory [89, 199, 200, 201] and can be used to detect hidden patholo-

gies of supergravity theories [202]. Putting these results together, one may speculate

that conformal field theories dual to the near horizon geometry of BPS solitons of

six-dimensional supergravity theories might exhibit pathologies when the Kodaira

bound is violated. Six-dimensional supergravity theories with a non-abelian gauge

group have extremal dyonic strings [203, 204]. One might be able to find additional

constraints on the gravity theory by imposing the consistency of the dual CFT living

on these strings.

Existence of a generalized Kodaira bound

We have seen that the space of apparently consistent abelian theories is not well con-

trolled due to the infinite number of apparently consistent charge assignments possible

to a given theory. The space of known string vacua is also less well-characterized due

to the lack of a generalized version of the Kodaira bound that involves the abelian

anomaly coefficients. A major result we have presented is that the infiniteness of the

space of apparently consistent theories with abelian gauge symmetry lies solely in

the infinite number of charge assignments a given gauge/matter structure could have.

Therefore a subspace satisfying a generalized version of the Kodaira constraint would

be finite given that we demand that the abelian charges are quantized.

This strongly motivates the search for a generalized version of the Kodaira con-

straint that applies to theories with abelian gauge symmetry. If the Kodaira con-

straint could be derived from low-energy methods mentioned above, one would guess

that the generalized Kodaira constraint could be obtained by a slight generalization

162



of those methods. From the string theory/F-theory point of view, however, deriving a

generalized Kodaira constraint seems to require qualitatively different methods. The

hope is that the intersection theory based techniques we have used in this thesis to

analyze the abelian sector could be used to derive a generalized Kodaira constraint

for F-theory vacua. Whether this could be achieved remains to be seen. One thing

for certain is that a thorough study of the abelian sector of F-theory itself should be

carried out in order to understand the charge constraints of abelian gauge fields.

The intersection equations

We were able to derive non-trivial geometric equalities that hold for elliptically fibered

Calabi-Yau threefolds by using gravitational/gauge and mixed anomaly equations of

the six-dimensional theory obtained by compactifying F-theory on it. The mathe-

matical origin of these equations is unclear. An interesting question is whether such

equations could be derived by geometric means. Another is whether these equations

could be generalized in a meaningful way. Answering these questions could hopefully

lead to a deeper understanding of the geometry of Calabi-Yau threefolds.

An intriguing observation that we can make is that the formulae strongly resemble

the instanton-corrected triple intersections introduced in [205]. In mirror symmetry,

these instanton sums are taken in the large Kshler structure limit. In our case,

however, the mixed anomaly equations seem to be related to an instanton-corrected

triple intersection form in a singular limit. We do not understand this connection

fully at this moment.

Understanding the interaction between anomaly constraints and consistency con-

ditions that the geometry and various fluxes of four-dimensional F-theory construc-

tions must satisfy is expected to be more involved. This is because four dimensional

F-theory backgrounds have much richer structure than six-dimensional backgrounds. 1

There has, however, been beautiful work [165] in which constraints on "hypercharge

fluxes" on F-theory SU(5) GUT models with U(1) symmetries - referred to as

'An incomplete list of references on the structure of four-dimensional F-theory backgrounds is
given in the bibliography [163, 164, 167, 174, 175, 206, 207, 208, 209, 210, 211, 212, 213, 214]. A
nice review of this subject and further references can be found in [215].
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"generalized Dudas-Palti relations" [2161 - are derived by four-dimensional anomaly

cancellation conditions. The generalized Dudas-Palti relations provide a good handle

on F-theory GUT models with U(1) symmetries [165, 166]. It would be interesting to

expand the anomaly analysis to more general F-theory constructions and see if one

could understand the constraints that anomaly cancellation imposes upon the various

building-blocks of four-dimensional F-theory models in the language of intersection

theory.

Some final words

The space of six-dimensional supergravity theories with minimal supersymmetry has

provided us with surprising insights into quantum gravity and string theory. There

is a long way to go, however, to achieve an understanding of this space of theories at

the level of, say, ten-dimensional theories. If the Kodaira constraint and its abelian

generalization could indeed be shown to be fundamental constraints of quantum grav-

ity, it would be a major breakthrough in proving the string universality conjecture in

six-dimensions [631. According to the current picture of the six-dimensional landscape

we have, this seems to be the best-case scenario among the many imaginable options.

Attaining string universality would be, to say the least, quite an important result -

it would provide strong evidence toward an affirmative answer to the vague question

we have posed at the beginning of this thesis:

(Q') Are all consistent quantum gravity theories, string theories?

History shows, however, that one could never be sure as nature has many surprises

hidden up her sleeves. One could only hope that she or he is ready enough to discover

those surprises which are sure to be pleasant and beautiful in their unexpected way.
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Appendix A

Appendices for Chapter 2

A.1 Some Lie Algebra

In this section, we review some relevant Lie algebra to understand the group factors

A,, introduced in table 2.2 of section 2.1.3, and their relation to the normalized coroot

matrix Crj. Almost all of what is discussed in this section can be found in standard

texts such as [217, 218].

For a given Lie group g and its Lie algebra g, let us define the generators of Cartan

sub-algebra {T}. Let us normalize the Cartan generators so that

trTiT = 6i7 (A.1)

where the trace is taken in the fundamental representation. We can diagonalize all

the other generators of the Lie group with respect to {T}. Each such generator is

uniquely labelled by its eigenvalue under {T}, i.e.,

[Ti, E.] = aE.. (A.2)

In other words, there is a one-to-one correspondence between the vectors a and the

generators of the Lie group. These vectors a are called the roots of the Lie algebra.

Notice that a will scale with a change of normalization in T. Since we have nor-
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malized the Cartan generators in an unambiguous way with respect to the definition

of g, the normalization of a are also fixed. This is because the weights #, of the

fundamental representation of g must satisfy

Z , = 1 (A.3)

for each i, where 0,,i is the i coordinate value of #.,. This condition fixes the normal-

ization of the weight lattice. In this sense, we can say that a are the roots of the Lie

group g, with a slight abuse of terminology.

Now let us determine A(9) with respect to these vectors. Recall that A(9) is a

normalization factor fixed by demanding that the smallest topological charge of an

embedded SU(2) instanton is 1. This definition can be rephrased in the following

way.

For any given Lie group 9, we may find an SU(2) subgroup. Hence we may

always find an SU(2) sub-algebra s generated by a subgroup of the generators of the

Lie algebra g of !, i.e., there exist elements Si, i = 1, 2, 3 of the Lie algebra that

satisfy

[Si, Si] = ieijkSk. (A.4)

From this relation, one can deduce that

2trS2 = 2trS2 = 2trS (A.5)

in any representation. Let us call this value 1(s) where the trace is taken in the fun-

damental representation. The normalization of the Si are fixed; if we multiply them

by a factor, the defining commutation relation does not hold anymore. Therefore, for

all the SU(2) sub-algebras s of Lie algebra g, the l(s) is a well-defined number. We

define A(9) to be,

A (g) = min 1 (s) (A.6)
{8}

where {s} are all the SU(2) sub-algebras of g. For example, in SU(2) the generators

that satisfy the SU(2) sub-algebra - in the fundamental representation - are given
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by Si = io-; where o-i are the Pauli matrices. It is clear that 2trS2 = 1. For SO(4),

the generators that satisfy the SU(2) sub-algebra with minimum 1(s) are,

0

0 0

0 0

0 i/2

0

0

-i/2

0

0

0
S3 =

0

i/2

0

S2=
0

1/2

0

0 1/2 0

0 0 1/2

0 0 0

1/2 0 0

, (A.7)

(A.8)

0 0 i/2

0 -i/2 0

-i/2 0 0

0 0 0

In this case, 1(s) = 2trS2 = 2.

Now it can be shown that for any root a

[ , E-a] = -Ea,
(a, a)

[E, E ] oc a -T , (A.9)

where we have defined

a -T = aTi. (A.10)

We may use the freedom to rescale E so that the proportionality constant in (A.9)

is (a,a)-1. Then
Ec+E-,a E-E-a a-T

2 2i (a, a)
(A.11)

generate a su(2) subalgebra s(a) of g. Then

a . T 22
l(s(a)) = 2tr( a)2 = (A.12)

(a, a) (a, a) (.2

Every su(2) sub-algebra can be embedded into the Lie algebra in this way by a change

of basis, so we find that
2

A()= ( (A.13)
(a,7 ae)max
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where (a, a)max is the length squared of the longest root of the Lie algebra.

Now let us examine properties of {T}, which are the coroot basis for the Cartan

generators. They are defined to be

2a1 -T
(a1 , a1 )

(A.14)

where a. are the simple roots of the Lie group.

under T, are given as

[T1, E] = 2c,' [T, Ep]
(ai, ai)

In particular,

The charges of the root vectors EO

_2(ai, #3)
= (a,,) (A.15)
(a , air)

[ 2(ai, aj) =[T~,E~] -(ai, ai)

Now let us examine

(A.16)

(A.17)
1 trTITj.

A(9)

Using (A.13) we find that

1-trTj - 2(a, a)max(ai, aj) - CIJ. (A.18)
A(g) (a1 , ai)(aj, aj)

This is exactly the inner-product matrix for the coroot lattice normalized such that

the shortest coroot has length 2. Note that although we had to refer to the group g

in defining TI, the matrix Crj only depends on the Lie algebra due to the dividing

out by A(g). For example, C = (2) for both SU(2) and SO(3).

For simply laced groups, Crj coincides with the Cartan matrix CIJ. For non-simply
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laced groups C and C are different. C for Bn and C are given by

-1 - 0 0 0 0

0 0 0

- 2 -1 0 0

- -1 2 -1 0

- 0 -1 2 -2

--- 0 0 -2 4)

2

-2

0

0

0

-2 0 0

4 -2 0

-2 4 -2 ... 0 0

0

0

0 0 0

For B, we have defined an to be the simple root with the different(short) norm, i.e.,

(ai, ai) = (a 2 , a 2) = - = (an_1, a_1) = 2(an, a.) . (A.21)

For C we have defined ai to be the simple root with the different(long) norm, i.e.,

(ai, ai) = 2(a 2 , a 2) = - - - = 2(an_1, an_1) = 2(an, an) . (A.22)

Note that the coroot corresponding to a long/short root becomes a short/long coroot,

respectively.
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-1 2

C(Bn) = 0

0

0

0

0 0

0 0

and

(A.19)

C(Cn) =

0 0

-- 0 01

-2 4

0 0

(A.20)0

-2

--- -2 4 )



C for F4 and G2 are given by

2 -1 0 0

-1 2 -2 0 (2 -3\
C(F 4) = , C(G2 ) = - (A.23)

0 -2 4 -2 - 3  6

0 0 -2 4

respectively. For F4 we have taken ai and a2 to be the long roots, i.e.,

(ai, ai) = (a2, a 2 ) = 2(a3, 03) = 2(a4, a4) . (A.24)

For G2 we have taken ai to be the long root, i.e.,

(ai, 01) = 3(a2, a2). (A.25)

For each non-simply laced group, we have aligned the roots so that they are decreasing

in norm.

A.2 Global anomalies

In this section we prove that locally non-anomalous blocks with anomaly coefficient b

and gauge group SU(2) or SU(3) are free of global anomalies of the kind addressed in

[127] if and only if b- b is integral. The problem with SU(2) and SU(3) charged chiral

fermions is that the fermion measure might obtain a phase under global gauge trans-

formations, which are gauge transformations that are not homotopic to the identity.

This happens for only for the gauge groups SU(2) and SU(3) among the SU groups

in six dimensions because 7r6(SU(2)) = Z12, 7r6(SU(3)) = Z6 while r6 is trivial for

the other SU(N) gauge groups.

Let us first consider SU(3) in six dimensions. Defining the global gauge transfor-

mation that generates r6(SU(3)) = Z6 as g, we need to determine the phase 27ra, a

chiral fermion measure in representation r acquires when acted on by g. Note that
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a, is defined up to integers.

This problem was essentially solved in [219], but let us phrase it in a language

convenient for our purposes. The result of [219, 220] is that if an SU(4) representation

R is broken into EZ ri of SU(3) representations ri in a canonical embedding then

ar = BR(A.26)

Let us define two generators of SU(4), T 12 , T34 which, in the fundamental represen-

tation, take the form

(T1 2 )ab = 6 a16b1 - 6a26A2 (A.27)

(T34)ab = 6a3663 - 6 a46
4 (A.28)

The group theory factors BR, CR can be computed in terms of traces of these gener-

ators, by their definitions:

BR ± 2CR r RT 2 (1A29)

3 T
CR = trRT 2 T34  (A.30)

Note that CR is a multiple of 3 as trRT4T34 is integral, and is a multiple of 4. This

can be seen from looking at which Young tableaux contribute to the trace for a given

representation (for an explicit proof, see [65]). If R is broken into E> ri, it is clear

that

BR + 2CR = rtrRT, = tr4Ti2 = 2 Cr, (A.31)
B + C 2 r 1 2 2

and therefore

2 CiE BR mod 6 6ari mod 6 (A.32)

Since the measure of a chiral fermion in the trivial representation does not acquire a

phase under global transformations, and by taking R = 4 we find that a3 = C3 /3.

It is straightforward to carry this through by going through the representations of
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SU(4), and showing by induction that actually

a, = C (A.33)
3

For SU(2) the situation is similar. Denoting the generator of r6(SU(2)) = Z1 2 by

g' we need to find the phase 27ra,., the chiral fermion measure in representation r' of

SU(2) acquires when acted on by g'.

Let us embed SU(2) into SU(3). It is known(for example as stated in [219]), that

g' maps to g when we do the embedding. Therefore we see that if an SU(3) repre-

sentation r is broken into EZ r, of SU(2) representations r; in a canonical embedding

a,. = a,. = C Cr(A.34)
3 3

By an almost word-by-word duplication of the argument for SU(3), we obtain

a,., = -, (A.35)
3

This is a satisfying result, because we see from the anomaly equations on the C

factors

SX,.a, - a = Exr - = b - b. (A.36)
i i 3 3

The far left hand side of this equation is the phase (divided by 27r) the fermion

measure obtains under the global transformation given by the generator of -r6 of the

gauge group. Therefore the condition that the given gauge group does not have any

global gauge anomalies is equivalent to the condition that the far right hand side of

the above equation is integral. Therefore an SU(2) or SU(3) block with anomaly

coefficient b does not have global gauge anomalies if and only if b -b is integral.
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A.3 Proof of bounds on b

Using group theory identities, one can find constraints on the matter content of

individual blocks of a given theory. In this Appendix, we show that even without

the H - V constraint we can bound the degree b of an SU(M) block just from

group theory constraints when T = 0. The only equations we use are the anomaly

cancellation conditions for a given gauge group:

18b + Aa = XRAR (A.37)
R

Ba = XRBR (A.38)
R

3b2 + Cadj = E X RCR (A.39)
R

In section A.3.1 we make some useful statements based on the Weyl character

formula. In section A.3.2 we see how this bounds b for gauge groups larger than

SU(3). In section A.3.3 we discuss the process of bounding b's for the gauge groups

SU(2) and SU(3). In section A.3.4 we summarize the results. A useful reference for

this section is [218], chapters 12 and 13.

A.3.1 The Weyl Character Formula

We use the Weyl character formula (equation (XIII.37) of [218])

te - ZwW sign (w)e(A+6 ,wP) (A.40)
EwEw sign(w)e(

6 m'P)

In this formula trA denotes the trace of the representation with highest weight vector

A. p is an element of the Lie algebra p = paTa where T' is the Cartan basis, and

(pi, - - - , p,) are coordinates on the weight space. Brackets denote inner products in

the weight space. R+ is the set of positive roots of the Lie algebra, and W is the

173



Weyl group. The vector J is defined to be half the sum of the positive roots

E = a
aER+

For p = so the equation simplifies to

tr e"

( 2e e

- -j (a, ± ) ____ ___ 2__ 120_

ckER+ 1 1 +)1.k 1± 7 6)2 (A)2 ± -j(C

This is due to the relation (equation (XIII.13) of [218])

J)4(1)4 + .

sign(w)eN'WP) = J 1 (ea("'P) - e-i(P))
WEW aER+

(A.43)

which holds for an arbitrary vector p.

Expanding in s, and looking at the terms of order 0, 2, and 4, we find that

(a, A + t)Dax= trxl I

AA(trf 62) = trA62= Z((a, A+
aER+

6)2 - (a, 6)2)

(A.44)
BA (try 4) + CA(tr6 2)2 = trA6  = (-(a, A + 6)4 + (a, 6)4)

a ER+

+ D( 1 ((a, A + 6) 2 - (a6)2))2
aER+

Now trf62 and trfyo are explicitly calculable. We consider SU(M) groups with

the normalization trfTTb = 26ab. We use the fact that for SU(M) the positive roots

are given by

a = ai + aj+1 + --- + a-1 + aj (A.45)

for i < j where ai for i = 1, 2, -.- , N -1 are the simple roots of SU(M) whose Cartan
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matrix is given by

(ai -aj) =

(2 -1 0 --- 0 0

-1 2 -1 - 0 0

0 -1 2

0 0 0

--- 0 0

-. - 2 -1

0 0 - -1 2 /

6= aig =Zij M-1

i(M-i)

2

By explicit calculation one may show that

(ai, J) = 1

and therefore taking the dual basis of {a} to be {#3O},

6 i

Now we use the fact that the highest weight vector for the fundamental represen-

tation is #1. Then using (A.44) we find that

trf62 =

i<j

M

12

M
12

M-1
E((j + 1)2

j=1

((ai, #1 + )2 - (a, )2)

(A.50)

M(M - 1)(M + 1)
12
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and likewise

trfj4 = 10 Z((acy,/#1 + )4 + (aij,6) 4) + M ((ai,/#1 + 6)2 - (a, 6)2))2
10i:!j 48i~j

M(N2 _ 1)2
48= 10 ( (J6 + ( + 1))4 +

+ 1)4 +j) + (M2 _ 1)2
48

M
= 120 ( 4- 1) + i(M2 _ 1)2

48

-M(M - 1)(M + 1)(3M 2 _7)
240

(A.51)

Furthermore, plugging in the equation for A, to the equation for the fourth order

invariants and dividing both sides by (trf J2)2 we find that

3A2
YMBA + C <

D,\
(A.52)

where we have defined

trf64
M (trfJ2)2

3(3M 2 - 7)
5M(M 2 - 1)

All the results of the current section hold for SU(2) and SU(3) also if we set

B\ = 0 by hand, which we can certainly do for these groups.

A.3.2 Restriction on b

For a single SU(M) block with M > 4 define

ER XR(yMBR + CR) _ 3b2 +6 + 2MyM

ZRXRAR 18b+ 2M
(A.54)

This means that there must exist a representation Ro with

yMBRo + CRo ;>r
A RO

(A.55)
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since by definition, yMBR, + Cao and A& are positive. Then by inequality (A.52),

( < A. < XRAR = 18b+ 2M (A.56)
R

Plugging in the definition of q, we find that

324(b + M/9)2

- b2 + (2+ 2yMM/3)

The maximum value for the right hand side of the above equation is obtained for

b = (18/M + 6yM) and plugging in this value of b we obtain the inequality

4M 2

DRO < 324 + = DM (A.58)
2 + 2yMM/3

Hence we obtain
b2+2+2MyM/3 <ma An= + - 7< max ( ) (A.59)

18b+ 2M 3 - RDR<Dm DR

This procedure gives an upper bound b, on b, for all M > 4. For M = 2,3 we are able

to obtain slightly improved bounds as we have explicit expressions for AR, CR, DR for

these groups. This is helpful since the enumeration of SU(2) and SU(3) blocks takes

much more time numerically compared to blocks with M > 4. We will elaborate on

this in section A.3.3.

Implementing (A.59) to obtain an upper bound of b is a rather tedious, but

straightforward task. In practice we must find all representations with DR < DM

and find the maximum value of AR/DR among those representations. This can be

done by using the following useful

Fact : Given two representations R 1 and R 2 represented by young-diagrams Y1,

Y 2 , if Y 2 can be obtained by attaching columns of blocks to the right of Y, then

necessarily DR, < DR2-

This follows simply from the fact that the dimension of a representation is as-

sociated with the number of distinct labelings of the boxes which are horizontally

non-decreasing and vertically increasing. Adding columns to the right, there is al-
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ways at least one labeling of Y2 for each labeling of Y by simply repeating entries on

each row in the added columns. For example, if we define

Y 1 = , Y2 = , Y3  = (A.60)

the dimension of representation Y is smaller than that of Y2 . Meanwhile, it is not

guaranteed that the dimension of Yi is smaller than the dimension of Y3 .

Starting from single column representations one may span a tree of young diagrams

by attaching columns of varying length to the right until one runs into a diagram with

DR > Dm. Since the dimension strictly increases at each step, all the branches of

the tree will eventually terminate and one can obtain all the representations with

bounded dimension.

Although we have thus found an upper bound on b for each group SU(M), which in

principle makes the problem of enumerating blocks into a finite algorithm, in practice

it is helpful to reduce the bound somewhat to make the enumeration of blocks more

tractable. It turns out that we can further restrict b by utilizing the condition

A <; 18bu + 2M (A.61)

That is, it can be the case that

b2 +2+2Mym/3 q < AR (A.62)
18b+2M 3- R:DR<DM DR

and AR<18bu+2M

further restricts b below the bound coming from (A.59).

For example, in the case of SU(7) one finds that

AR 495
max (-) 9- = 1.07 ... (A.63)

R:DR<386 DR 492

and hence

b < 19. (A.64)
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b bound 617 1126 40 124 114 112 111 6 16 15 13 13 13 2

Table A.1: Upper bound on b for individual block of group SU(M).

But one finds that for b < 19, 18b + 2M < 356, so

AR 165
max ( ) = - = 0.78 ... (A.65)

R:DR<386 DR 210
and AR_356

and hence b is further restricted to the value

b < 14. (A.66)

The bound on b obtained this way for 4 < M < 17 is given in table A.1. For M > 18,

4M 2  M(M - 1)(M - 2) (A.67)
2 + 2ymM/3 6

This means that the representation with maximum A/D in an SU(M), M > 18 block

is either the adjoint, symmetric, antisymmetric or fundamental. The maximum value

of A/D of these is given by the symmetric and hence it must be the case that

b2 +2+2Mym/3 2(M+2)
18b + 2M - M(M + 1)

A little bit of algebra shows that this implies b < 2 for M > 18. This completes the

data needed for Table A.1. Given the upper bound on b for each M it is therefore a

finite problem to enumerate all possible gauge factor + matter "blocks". As noted

in section 4.1, in most cases the actual maximum b for each M is smaller than that

given in Table A.1. In particular, above M = 12 only blocks with b = 1 are possible.

A.3.3 Comments on SU(2) and SU(3) Blocks

The b values of the SU(2) blocks can be restricted in an equivalent fashion. The

reason we are addressing them separately is because the bound on b obtained for
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SU(2) using the equations in the previous section is very high. In particular, the

most naive bounds on b for SU(2) is of order 10 5.

We first provide the most naive bounds on b we can get for SU(2) and SU(3).

As mentioned in the previous section we can get slightly better bounds because the

equations for A, C, D are simple enough to manipulate directly.

For SU(2) all representations are m-symmetric representations. The dimension

and group theory coefficients of the representation are

Am = m(m-+1)(m+2)/6 (A.69)

Cm = Am(3m 2 + 6m - 4)/10 (A.70)

Dm = m+1. (A.71)

Also recall that Bm = 0 for all representations. The anomaly equations (A.37), (A.39)

can be written as

Zm(m+1)(m+2)xm = 108b+24 (A.72)
m

Zm 2 (m + 2) 2 (m + I)Xm = 60b2 + 36b + 192. (A.73)

Taking the largest m with xm X 0 to be mM, we find that,

10b2 ± 6b+ 32 < mM(mM + 2) (A.74)
18b+4

and hence

10b 2 + 6b+ 32 3/2) mM(mM±+2) mM(mM±--2) (.518b + 4 (A.75)

< mM(mM 2) (mm + 1) 108b + 24.

This gives the bound b < 68018.

The representations of SU(3) can be represented by a pair of numbers x and y

which denote the number of two block/one block columns of its young diagram. Then
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the dimension and group theory coefficients of representation (x, y) are given by

1
Ax,,= 1XY(X + Y)(X 2 + y 2 + XY - 3) (A.76)

1 9
CX, = IXY(X +Y)(X 2 ±y 2 + XY - 3)(X 2 ± y 2 + XY - -) (A.77)

120 2
1

DX,,= IXY(X + Y), (A.78)

where we have defined X = (x + 1), Y = (y + 1). Writing out the anomaly equations

and going through a similar process as in the SU(2) case one obtains the bound

b < 617.

Up to now we have been using that fact that in order for a block to satisfy the

anomaly equations, we must have some representation R with a large

CR 3b2 + Ca-
- > 3 ~ 0(b). (A.79)
A R 18b + Aj

We have been ruling out b values for which all such large representations R have

AR > 18b + Aadj. Finding all solutions to the anomaly equations for SU(2) and

SU(3) for the range of b values constrained only by this condition turns out to be a

demanding task numerically, and it is useful to further restrict the allowed values of

b. To do this, we generalize the strategy. employed up to now.

Suppose bo is a value not ruled out by the previous arguments. This means that

there exists a representation R satisfying

CR> 3bo ± Ca
AR > 1b 0 ± C (A.80)
AR 18bo + Aad

and

AR < 18bo + Aa (A.81)

within the block. Let S(bo) = {R 1, ... Rk} be all the representations that satisfy

these two equations. The fact that A, C, D, A/D and C/A are all strictly increasing

functions with respect to m in the case of SU(2) and of x and y in the case of SU(3)

is helpful in constructing this list.
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Now assume that we have the representation R1 in a block with given bo. If R1

satisfied,

3b2 + Caj = CR 1 , and 18b0 + Aaaj = AR 1 , (A.82)

we would have a solution for a single block whose matter content is given by just one

R1 . Suppose this were not the case. 1 By the same line of argument as before we

must have a representation R satisfying

CR 3b2 + Cadj - CR1

AR 18b0 + Aadj - AR1

and

AR < 18b0 + Aadj - AR 1. (A.84)

If no such representation R exists, the representation R 1 cannot show up in a block

with b = bo. If the situation were same for all the representations in S(bo) =

{R 1 , R 2 , - - , Rk} we could rule out b = bo. We can iterate this process to further

rule out b values.

We have employed this procedure for SU(2) and the initial bound 68,018 has been

pulled down to 36,647. For SU(3) we have iterated this process 5 times and were

able to rule out 288 values of b in the range b < 617.

We can describe the problem of constructing single block models in a very concise

way as a partition problem for SU(2) and SU(3) as the coefficients of the anomaly

equations are all positive for these cases. While the situation is similar for SU(3) only

depict the process for SU(2) for simplicity. The problem is to find a combination of

representations where the AR, CR, DR values add up to (4 + 18b, 8 + 3b2, D) with

D < 276. This is a straightforward partition problem, whose algorithmic solution is

simplified by the fact that Am/Dn and Cm/Am are monotonically increasing functions

of m. We have implemented an algorithm which computes all such partitions for fixed

b and checked a representative sample of b's in the allowed range as described in the

main text.

'In fact, we can show that for SU(2) and SU(3) there cannot be a block with a single matter
representation, i.e. a block with ER XR = 1.
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One last note is that the maximum b value possible for single block models turns

out to be within an order of magnitude of the upper bounds for small gauge groups.

For SU(3) the maximum b possible for an SU(3) is b = 597 while the bound is 617,

and for SU(2) we were able to find a block with b = 24,297 while the bound is given

by 36, 647.

A.3.4 Summary

To summarize, just from the group theory we find that each individual block cannot

have a gauge group larger than 24. The b values are bounded as in table A.1 SU(N)

with N > 3. The best bound we have for SU(2) is 36,647. As discussed in the main

text of this thesis, given an upper bound on b, for each fixed N < 24 we can solve

the finite partition problem for each b to enumerate all possible blocks.

A.4 Proof of Bound on Curable Theories

We prove that the number of curable theories as defined in section 2.4.2 is finite for

T < 9. The crucial fact we use is that for curable theories one of the two following

conditions must hold:

H - V < 273 - 29T + (T2 + 6T + 8) (A.85)

H - V - 4(T + 2)I5K<; 273 - 29T + (2T + 4) (A.86)

where N is the number of hypermultiplet representations of the theory. It is clear

from [62, 65] that there could not be an infinite family of theories for which the first

condition holds as it requires H - V to be bounded. Therefore, it is sufficient to show

that there does not exist an infinite family of curable theories for which the second

condition (A.86) holds. It proves convenient to define

c(T) = . (A.87)
(A.87
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Before presenting the proof of the desired result, we point out that the proof is

very similar to that given for non-abelian theories in [62, 65]. Proofs of the existence

of bounds on non-anomalous theories are carried out by two steps in these references.

First, the authors identify infinite classes of theories that satisfy all the anomaly

equations other than the gravitational anomaly bound, and that have positive kinetic

terms for the gauge fields. Then they show that it is impossible for all the theories

in that infinite class to satisfy the gravitational anomaly bound. This is proven by

showing that as the total rank of the gauge group increases, the increase of H is much

faster than V. This proves that constructing an infinite class of theories that satisfy

all the anomaly cancellation conditions and that have positive kinetic terms for the

gauge fields does not exist.

We also take the same approach in proving our bounds. In our case, however, we

must prove that the increase of H - c(T)V/K is much faster than V for the infinite

classes of theories one could construct. Most of our effort will be put in to showing

that VK does not increase so fast as to affect the growth of H.

There are infinite classes of theories that this is easy to show. For example, for the

class of theories whose H and V exhibit a scaling behavior with respect to the rank

of the total gauge group when it becomes large, the arguments presented in [62, 65]

can be virtually repeated. This is because equation (A.86) implies that

(v'- - c(T))2 - V < 277 - 27T + c(T) 2 . (A.88)

This is because as we have assumed there exist no singlets in curable theories, and

hence
H

N < - < H (A.89)
-2

holds. Therefore, the scaling behavior of (V I- c(T)-)2 V and H - V with respect

to the rank is equivalent and the boundedness argument for these classes of theories

are essentially the same. In particular, for an infinite class of theories whose simple

group factors have bounded rank, the proof of boundedness given in [62, 65] can be

used with very little adjustments. This is presented in section A.4.1.
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It is, however, worth pointing out that for some infinite class of theories, the

situation is rather subtle. When there exist simple group factors with unbounded

rank in the infinite class of theories, the bound (A.88) becomes too delicate to use.

In that case the stronger bound (A.86) turns out to be more useful in proving the

existence of bounds of curable theories. We will carry this out in section A.4.2.

We now turn to presenting the complete proof of the bound on curable theories.

We proceed by reductio ad absurdum. Let us assume there is an infinite family of

curable non-abelian theories with gauge group [,. g,.. Due to the bound on H - V -

2cx/i > (VI - C)2 - V - c2, we see that theories in an infinite family of curable

theories should be unbounded in the dimension of the gauge group. If not, H and

V are both bounded, and hence only a finite number of theories can be constructed.

There are two ways an unbounded family can occur. These are given as the following:

1. The dimension of each 9., or equivalently, dAdj. is bounded, but the number of

simple factors is unbounded in this family.

2. The dimension of a single simple group factor 9,, is unbounded.

We show that both kinds of families cannot exist in the following subsections.

An important fact we use throughout the proof is the fact that,

H > Number of pairs of g, # 9,

(for which there exists a jointly charged hypermultiplet. (A.90)

= (Number of pairs of 9, # g,. with b - b. # 0.)

This can be shown in the following way.

Suppose a hypermultiplet representation I is charged under A > 2 gauge groups.

Then

M, 2 \ A(A - 1) = Number of pairs of g9 # 9r (A.91)
(that I is charged jointly under.)
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and therefore

S Number of pairs of G, = Q,

i that I is charged jointly under.)
(A.92)

Number of pairs of g, 54 e

for which there exist a jointly charged hypermultiplet.

This means that any ordered pair of gauge groups that has matter jointly charged

under it contributes at least 1 to H. This proves the inequality in the first line of

(A.90).

Since AR for any representation R of any simple Lie group G, is positive and since,

b - b. = ( )AA( M'A' AAI > 0 (A.93)

the necessary sufficient condition for two gauge groups G,, G, to have jointly charged

matter is b. - bK : 0. Therefore

H > 1 = (Number of pairs of t A K withbL-bK$0.) (A.94)
tor., b,.b.Af0

This proves the equality in the second line of (A.90).

A.4.1 Case 1 : Bounded Simple Group Factors

Let us assume that there exists an infinite number of curable theories with bounded

simple group factors but with unbounded total dimension.

Let's denote the gauge group of this infinite family of theories {7} as 4=

l7" K , with dAdj. < D. Notice that we are denoting the number of gauge group

factors, v. So as <D -+ oo, v -+ oo. It is useful to classify the gauge group factors into

three types according to their b2 value:

1. Type Z : b2 = 0

2. Type N : b2 < 0

186



3. Type P : b2 > 0

Since the dimension of each factor is bounded,

(vHI - C)2 < H - 2cN + c2 <; 273 - 29T + vD + C2 = B ~ O(v). (A.95)

Therefore, the dimension of any representation is bounded also by

B' = (/5 + c) 2 ~ O(v) . (A.96)

Let's denote the number of N, Z, P type factors as VN, vZ, vp. Then

V = VN + VZ - VP - (A.97)

It is shown in [65] that bL, b, of any two P type factors g,, g, satisfy b - b,. > 0. Also

it is shown that there exists v2/T - 1 N distinct ordered pairs of type N gauge group

factors that have matter jointly charged under them. Therefore, using (A.90) we can

show that

vp(up - 1) + (vN- v) < H < B' ~ O(v). (A.98)
T

Thus when v is large,

VP, VN < 0(Vf) < v (A.99)

and therefore the majority of gauge group factors are of type Z:

VZ ~ O(v) (A.100)

From the fact that two lightlike vectors cannot have zero inner product unless

they are parallel, it is clear that in order for two Z type gauge groups to have no

jointly charged matter their b vectors must be parallel. When we denote the size of

the largest collection of parallel type Z vectors as y there are at least vz(VZ - /)
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ordered pairs of type Z gauge groups with b, - bA, # 0. This means that

vz(vz - pi) = (vz - t)(v - vp - vN) < B', (A.101)

so from (A.100) we see that vz - p is of order at most 0(1), i.e., vz - it is bounded

as a function of D as we take v -+ oo. Therfore

P vz -- 0(v). (A.102)

Meanwhile, it was shown in [62] that all Z factors satisfy H - V > 0 on their own.

Since the p Z factors have no jointly charged matter among themselves,

H - V > p - D x [(vz - p) + v, + vN] ~ 0(v), (A.103)

i.e., the right hand side of the inequality is unbounded as

clear that,

a function of v. Then it is

(A.104)

is also unbounded as a function of v. Therefore, H - V -

when each simple group factor of the infinite family has

out case 1.

2cv/iV cannot be bounded

bounded rank. This rules

A.4.2 Case 2 : Unbounded Simple Group Factors

Let us assume that there exists an infinite number of curable theories with a simple

group factor that is unbounded. This is possible if the gauge group contains a classical

group H(Af) (which is either SU, SO or Sp) with unbounded rank. In this case, there

would be an infinite subfamily whose gauge group is given by H(A/) x g with fixed

classical group type H, and gg = 1[" ! gn an arbitrary product of simple gauge

groups with A( unbounded. It is shown in [62] that when Nf is large, the 7-() block

must be among those given in table A.2.
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Group Matter content H' - V' 2c a - b b2

2Ko 2 +1 <2cv2A 0 -2

SU(K) (K+8)+1E j 2 +9K+1 +2cV7 T+9 1 -1
(K-8)n+1m I 2 _ - K+ + 2cW f-7 -1 -1

16C+2R 15 +1 <2cVi8 2 0

SO(K) (K -8) E {N 2 2cVrTV 8 -1 -1

Sp(/2) ( +8) o!A} 2 +1K < 2cvVV+8 1 -1
16C±1 15K < 2cVi7 2 0

Table A.2: Allowed charged matter for an infinite family of models with gauge group

H(K). The last column gives the values of a, & in the factorized anomaly polynomial.

H', V' and N' are as defined in the text.

Let us enumerate the hypermultiplet representations charged under H(K) with

indices, I' = 1, ... , N' and the ones uncharged(and hence charged only under other

gauge group factors) as I" = N' + 1, - - - , (N' + N"). Note that (N' + N") = N. We

call the former hypermultiplets ' hypermultiplets and the latter I" hypermultiplets.

We also define

H' Z MII
H"I

H"= xi 111
I//

V' dAdjH(N)

V"I E dAdjg,
K

H - V = (H' - V') + (H"- V")

H -V - 2cv N > (H'-V'- 2c v7) + (H"-V"- 2cv 2N1),

(A.107)

(A.108)

where we have used the fact that for positive x and y, /dX7+y < Vx + V7.

From the H - V - 2cVN constraint, we see that additional gauge groups have to

be added to make the theory curable since for large K, (H'- V'- 2cvNd) ~ 0 (A 2 ) or

~ O(K). We shortly see that this is not possible for arbitrary large K. We explicitly

work out the proof for the cases when (H' - V' - 2cVN 7 ) ~ 0(K 2 ), but the proof

generalizes to the other case straightforwardly.
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Let us see whether we can find an infinite class of g such that (H" - V" -

2cv\N) - -0(K 2 ) for large K. There are again two kinds of behavior of gg under

K -+ oo. It can consist of simple gauge factors of bounded rank, or it can have a

simple gauge factor whose rank is unbounded. We consider these cases separately.

Case 2-1 : Rank of Simple Gauge Group Factors of g Bounded

Assume that the dimensions of of the simple gauge group factors are bounded by D.

Denoting v(K) as the number of gauge group factors, as previously mentioned, we

see that

H" - V" - 2cVKZ > (vIH - C)2 - C2 - Dv(K) (A.109)

must behave as -0(K 2) for large K. Therefore,

v(K) ;> (K 2 ). (A.110)

Hence we must have an infinite family of theories where the number of simple gauge

group factors of g increase at least as 0(K 2 ). Also it is clear that

H" < O(v) (A.111)

for large K and therefore,

H = H'+ H" < 0(K 2) + 0(v) 0(v). (A.112)

Meanwhile, we know from table A.2 that the size of the representation of I' hy-

permultiplets with respect to the K gauge groups can be at most of order O(K) in

our case.2 Therefore, the maximum number of gauge groups an I' hypermultiplet

could be charged under is given by O(logKN) 0(logv). Since there are at most

0(KNlog K) < 0(v4i log v) such factors, there exists an order O(v) > O(K 2) number

of gauge groups among the v gauge groups 9, under which only the I" hypermultiplets

2When (H' - V' - 2cv/R) ~ O(N), the number of I' hypermultiplets can be at most of order
0(1).
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are charged. We denote theses gauge groups as {gKI}.

Let us denote the size of the set v" and the total number of vector multiplets in

{ 9} as V'". Note that v" - 0(v). Then

H" - V" - 2cv > H" - V'" - 2cvK- DO(x/ilogv). (A.113)

Defining the number of P, N, and Z type factors in {gw'} as v'j, v' and v's as

before repeating the steps of case 1 we can show that

", v' <; 0O(#) < v,V I V" 9(Thv (A. 114)

and therefore that

(A.115)

Also, denoting the size of the largest collection of parallel type Z vectors as I" we

may show that

p" ~ (v"n) (A. 116)

as in case 1. We may finally show as in case 1 that

H" - V"' > p" - D x [(vZ - p") + VP + V']
(A.117)

~ O(v") ~ O(v),

and hence that

H" - V' - 2cW N2> ( V - c) 2 - V' - c2 > O(v). (A. 118)

Putting this result together with (A.113) we find that

H" - V" - 2cvN > 0(v) - DO( log v) ~ 0(v). (A.119)

Hence (H" - V" - 2cvNM) cannot behave as -0(N 2) for large N. We have come

a long way to show that there exists a simple gauge group factor in gg that is
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unbounded in rank.

Case 2-2 : A Simple Gauge Group Factor of Unbounded Rank in gg

In this case, there must be an infinite family of theories with

H(Af) x 1(P) x grp (A.120)

with unbounded K and P where H and H are given classical groups. It is clear that

both gauge groups have to come from table A.2.

Unless H' - V' - 2cx/iiW for ft(A) x H(P) is bounded, by the same arguments

as case 2-1 we can show that ggp contains a gauge group factor of unbounded rank.

By the same investigation as in [65] we find that all combinations that have bounded

H' - V'- 2cV2W cannot have positive definite kinetic terms.

Hence we are led to the conclusion that there must be an infinite family of theories

with

H (N) x H (P) x H (Q) x ,r,g . (A.121)

K, P and Q are unbounded and H, H and H are given classical groups. All three

unbounded gauge groups must be from table A.2.

It also is the case that H' - V' - 2cviV- for H(K) x H(P) x H(Q) must be

bounded in order for gv,-,Q to have no gauge group factor of unbounded rank. It

turns out to be impossible to find such a family with bounded H' - V' - 2cV2W for

which there exists a j vector that gives a positive kinetic term.

Our proof is concluded by the fact that one cannot construct an infinite family

of theories that consists of four blocks from table A.2 for which all the ranks of the

individual gauge group factors go to infinity. l
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A.5 A Bound on the Number of Vector Multiplets

for Pure Abelian Theories with T = 0

In the case that T = 0 and the gauge group is purely abelian, we can obtain a lower

bound on the number of charged hypermultiplets as a function of the the total rank

of the gauge group. Similar bounds may be obtained for other values of T < 9 though

they are less stringent.

We label the U(1) gauge groups by i = 1, - , VA. The gravitational anomaly

condition imposes that the number of hypermultiplets is equal to VA + 273. We

denote the number of charged hypermultiplets to be X < (VA + 273), and label them

by I = 1, .-- , X.

For T = 0, the vectors

qi -= (qli , q2,i, - x,j), (A.122)

whose components are the charges of the X charged hypermultiplets under U(1)j,

must satisfy

108 fr (Xi)4 = (Z fj(X) 2 )2 . (A.123)

This follows from (2.124) and (2.126) where, as before, we have defined

f1 (xi) = q,ixi. (A.124)

In order for the kinetic term matrix proportional to

bi = g,igrj (A.125)

to be positive definite, qi must be linearly independent. This was explained at the

end of section 2.1.4. Therefore, using the GL(VA) invariance of the equation, we can

redefine qi so these vectors become orthogonal. It is convenient to normalize them to

have norm vT-i, i.e.,

q,iq,j = Nil 6iy . (A.126)
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(Note that the q's are not necessarily integers in this basis.)

Plugging this into (A.123) and expanding, we find that qi,i must also satisfy

q i = 1 (A.127)

q iq, = 1

qqi,j = 0

qI,iqIJqI,k = 0

qI,iqjqI,kql,l = 0

for i, j distinct

for i, j distinct

for i, j, k distinct

for i, j, k, 1 distinct.

Defining the vectors

Qi (q2 2 .. ,2,)

(q A 1, ,--- , (11,1)7,

Qjj =- (gi,i qi, , q2,iq2,j7, - 7 qx,iqx,5)

for i < j, the equations obtained from (A.123) and (A.126) can be re-written as,

A - /108QjVX

-. -. - 1

Q = Qi = 0

i -5k = Qig -Sik = 0

Qij - kI = 0

for ij distinct

for ij distinct

for ij distinct

for i, j, k distinct

for i, j, k, 1 distinct
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(A.133)
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(A.137)

(A.138)

(A.139)

(A.140)

(A.141)



It is easy to see that Qi and Qig are all non-zero, since all q- j 0. Also Qj and Qij

are X-dimensional vectors by definition.

Using the given inner products we can show that

21 1
|Q1 + -- +QVAI =VA + VA(VA - 1) VA(VA + 2). (A.142)

Since A is a unit vector by definition,

101VA = -(Q )5|Q|= VA(VA+2). (A.143)

Hence
3 X < VA + 273, (A.144)

VA + 2

as promised. This equation implies that

VA < 17 or VA > 32. (A.145)

An additional constraint is needed to obtain an upper bound on VA.

The additional constraint can be obtained by utilizing the full set of vectors Qig
and Qj we have defined. Note that by (A.140) and (A.141), Qig are mutually orthog-

onal. They are also orthogonal to Qi and A as can be seen in (A.138), (A.139) and

(A.140).

Also, all Qj must be linearly independent. This is because if we assume

kiQ 1 +-- - + kvAQvA = 0, (A.146)

then for non-zero ki

k +...k VA±+ (kk 2 +--+kvAlkvA) =0. (A.147)
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But the l.h.s. can be rewritten as

(A.148)

and hence the equality cannot hold for non-zero ki.

Therefore, we find that Qj together with Qij form a set of linearly independent

vectors. This means that we must have VA(VA +1)/2 linearly independent vectors in

X < VA + 273 dimensional space. Hence,

VA(VA + 1) < X < VA + 273.
2

(A.149)

From this we obtain the bound VA 24.

Put together with the bound (A.145) we obtain

VA< 17, (A.150)

as desired. E]

A.6 Proof of Minimal Charge Condition for SU(13) x

U(1) Models

In this section we prove that when

r = 84n+43 = 2 x 3 x 7 x (2n± 1) + 1

s = 182n+92= 7x 13 x (2n+1)+1

for integer n, then the integers a and (-3a - 2f/3) for

a = 13r2 - 234rs - 51s 2

f = 24(13r 2 + 3s 2 )

196

(A.151)
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are mutually prime. Let us define

2 2
g = gcd(a, -3a - -f) = gcd(a, -f). (A.155)

33

Our goal is to show that g = 1.

We first acknowledge that r and s are mutually prime. This is because

gcd(r, s)|(13r - 6s) (A.156)

and

13r - 6s = 7. (A.157)

It is clear, however, that 7 and r are mutually prime. Therefore, gcd(r, s) must be 1,

and hence r and s must be mutually prime. Meanwhile, a is odd since r is even and

s is odd. Therefore g must also be odd, i.e. 2 { g. Also, g is not divisible by 3. We

can show 3 { g by noting that g I (13r 2 + 3s2 ) and that

13r 2 + 3s2 = 1 (mod 3). (A.158)

Let us show that g = 1. By definition

g = gcd(a, ) = gcd(13r2 - 234rs - 51s 2 , 16(13r 2 + 3s 2 ))
3 (A.159)

= gcd(13r2 
- 234rs - 51s 2 , 13r 2 + 3S2),

where we have used the fact that 2 { g. Using standard properties of the greatest

common divisor, we further find that

g = gcd(13r2 - 234rs - 51s 2 , 13r 2 + 3s2)

= gcd(-234rs - 54S2, 13r 2 + 3S2) (A.160)

= gcd(-234r - 54s, 13r 2 + 382) = gcd(-18(13r + 3s), 13r 2 + 3S2)

= gcd(13r + 3s, 13r2 +3s 2)
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In the penultimate line we have used the fact that

gcd(s, 13r 2 + 3s2) = gcd(s, 13r 2 ) = 1

since s -=1

(A.161)

(mod 13) and s and r are mutually prime. In the last line we have used

2{g and 3{g.

Therefore, g must be a divisor of

-(13r + 3s)(13 - 3s) + 13(13r 2 + 3s 2) = 48s 2 . (A.162)

We have seen in (A.161) that s is mutually prime with 13r 2 + 3s2. Therefore, g is

mutually prime with s and hence

g12 3 x 3. (A.163)

We, however, know that 2 { g and 3 1 g. This proves that g = 1, as desired. C
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Appendix B

Appendices for Chapter 4

B.1 Lie Algebra and Intersection Theory

In this appendix, we show that the normalized coroot inner-product matrix, and the

Cartan matrix defined as

= 1 4(a,,aj) (B.1)
A (9) (a,, a,)( aj, aj)

Cry = 2(a,, aj) (B.2)
(ar, ar)

are related to the intersection matrix of cycles obtained by blowing up singular fibers.

a, are simple roots of the Lie algebra. The simple roots are normalized by fixing the

normalization of the matrices {T} that generate the Cartan sub-algebra such that

trTiT = ij , (B.3)

where the trace is taken in the fundamental representation. Therefore we see that

the normalization of the roots depend on the Lie group, rather than the Lie algebra.

The Cartan matrix, however, clearly only depends on the Lie algebra rather than the

Lie group from its definition; it is independent of the normalization of the roots. We

have shown that the same holds for the normalized coroot matrix Crj in appendix

A.1.
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To make a precise statement relating these matrices to the intersection theory of a

resolved codimension-one singularity on the base, let us set up the context. Suppose

there is a singular fiber of Calabi-Yau threefold X fibered over a curve b in the base

that gives an enhanced gauge symmetry with Lie algebra g. One can resolve this

singularity by blowing up r independent P's, where r is the rank of g. Denote the r

P 1's as X1, - , Xr. Also denote the r four-cycles obtained by fibering the P's along

b as C1, - - , C,. In the case of non-simply laced gauge groups, a single fiber of C,

might contain multiple copies P's because monodromy of the fibers will map rational

curves in the fiber into each other. We denote the monodromy invariant fibers 7y, so

that C, is obtained by fibering -yr over b.

The statement is that

Ba - C1 - Cj = -C1jb(
(B.4)

C1 - Ci = -C1;

where B, are the four-cycles that are obtained by fibering the elliptic fiber over

elements of H 2 (B). We check this statement by comparing the Cartan matrix and

the normalized coroot matrix C computed in section A.1 and the explicit intersection

numbers to obtain (B.4).

We verify the equations pictorially. For each gauge algebra, we draw the corre-

sponding tree of resolved rational curves and label the linearly independent curves as

a, and label the monodromy invariant combinations of rational curves -yj according

to [133]. The curves x, that M2 branes wrap to give root vectors are identified with

a,. The four cycles Cj dual to non-abelian gauge field components of the coroot basis

elements T of the Cartan are obtained by fibering 7j over b.

We verify that

-1 -Ti = -C1B
(B.5)

w1 - a =l -C o

where the intersections are taken within a local complex dimension two slice of the
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manifold transverse to b at a generic point in b. These two equations imply (B.4)

since

Ba . C C = ba(y -Cj) = -bCj,, (B.6)

C 1 xJ = C1 - aj = -C1j. (B.7)

The latter equalities of the two equations follow from (B.5) since C, is a -Y1 fibration

over b. We note that all the data are defined for the Lie algebra, and not sensitive to

the Lie group.

We verify these equations first for simply laced Lie algebras, and then for non-

simply laced Lie algebras. All of the facts stated in this appendix either can be found

in, or are implicit in [118, 119, 132, 133, 134, 135, 179], but we have stated them in

a way that is convenient for our purposes.

B.1.1 Simply Laced Lie Algebras

For simply laced Lie algebras, the monodromy group of the blown-up singular fibers

are trivial and the blown-up rational curves form the Dynkin diagram of the corre-

sponding Lie algebra, except possibly for the case of su(2). It turns out that a, =

for all the simply laced Lie algebras.

The self-intersection number of a rational curve is (-2) and the intersection num-

ber between adjacent rational curves is 1. The intersection number between non-

adjacent curves are 0. The intersection number satisfies linearity conditions, i.e.,

c - (Aci + A2c2) = A, (c - c1 ) + A2 (c - c2). (B.8)

Based on these rules, we can verify that the resolved fibers that give the A, D, E

algebra satisfy (B.5).

I,+1 fibers, or possibly the III/IV fiber for A 1/A 2 respectively, give the A, Lie

algebra. The tree of blown-up rational curves of the resolved In+1 fiber-or the
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III/IV fiber for A1/A 2 -is depicted in figure B-1. It is clear that

(7 -Yj) = (71-yi0) =

I -2

1

0

0

0

0

1

-2

0

0

0

0

- - 0

- - 0

--- -2

- - 1

- - 0

- - 0

0

0

1

-2

1

0

0

0

0

1

-2

1

-1 (X2 I3

0

0

0

0

1

-2

= -Cj = -Caj. (B.9)

n1

Figure B-1: Resolved fiber for A,. The curves a corresponding to root vectors are in solid
lines while the monodromy invariant fibers y corresponding to coroots are in dotted lines.

I.*_4 fibers give the D, Lie algebra. The tree of blown-up rational curves of the

resolved I*_-4 fiber is depicted in figure B-2. The intersection matrices are given by

(7Y -7y) = (7Yi - a) =

/ -2

0

1

0

0

0

0

-2

1

0

0

0

1

1

-2

1

0

0

The fibers IV*, III* and II* give

The tree of blown-up rational curves of

0

0

1

-2

0

0

- -2

--- 1

0

0

0

0

1

-2)

= -Cry = -Cra . (B.10)

the E6 , E7 and E8 Lie algebra respectively.

the resolved E, fiber is depicted in figure B-3.
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ae e e

)Ii t3 I4 In

Figure B-2: Resolved fiber for D,.

The intersection matrices are given by

(1i -i) = (1-i aj) =

t -2

1

0

0

0

0

0

1

-2

0

1

0

0

0

0

0

-2

1

0

0

0

0

1

1

-2

1

0

0

0

0

0

1

-2

0

0

- - 0

- - 0

- - 0

- - 0

- - 0

--- -2

- - 1

0

0

0

0

0

1

-27

-CIJ = -CI.

(B.11)

Il $2 I4n
ig B2 '4

Figure B-3: Resolved fiber for E,,.

su(2) can come from an 13 or IV fiber with a Z 2 monodromy. The resolved fiber

that gives the A 1 Lie algebra in this way is given by figure B-4. The Z2 interchanges

the two P 's drawn in the figure, and hence the point where the two rational curves

touch is singular. -y1 is the monodromy invariant fiber. It is shown in [132] that the

BPS states come from branes wrapping ai rather than the the individual components
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drawn as spheres in the figure. The intersection matrices are given by

(YI - Yj) = (YI -aj) = (-2) = -Cry = -Caj. (B.12)

Y 1 (x1

Figure B-4: Resolved fiber for A 1.

B.1.2 Non-simply Laced Lie Algebras

For non-simply laced Lie algebras, the blown-up singular fibers have non-trivial mon-

odromy. The blown-up rational curves form the Dynkin diagram of a larger Lie

algebra. Under monodromy, the rational curves are exchanged among themselves.

For each fiber, we denote the independent rational curves a,, and the monodromy

invariant components of the fiber yj . Let us verify that the resolved fibers that give

the A, D, E algebra satisfy (B.5).

The fibers I(n3) with Z2 monodromy give the B, Lie algebra. The tree of blown-

up rational curves of the resolved I*3) fiber is depicted in figure B-5. The Z2

monodromy exchanges the two rational curves in - 2,. The intersection matrices are
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given by

(7' - YJ) =

(71-a =

-2

1

0

0

0

-2

1

0

0
0

1

-2

0

0

0

1

-2

0

0

0

--- 0

- - 0

--- -2

1

--- -2

1

0

0

1

-2

2

0

0

1

-2

2

0

0

0

2

-4

0

0

0

1

-2

= -CIJ ,

(B.13)

= -CIJ.

*0

i Y2 i(n-1)

Figure B-5: Resolved fiber for B,. The curves a corresponding to root vectors are in solid
lines while the monodromy invariant fibers -y corresponding to coroots are in dotted lines.

The fibers 12n or I(2n+1) with Z 2 monodromy give the C, Lie algebra. The tree" f

blown-up rational curves of the resolved 12n and I(2n+1) fibers are depicted in gure

B-6. The Z2 monodromy exchanges the two rational curves in each -Y,. Just as with

the case of su(2), ai should be taken to be equal to y1 [132]. The intersection matrices
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are given by

(71 - 7YJ) =

(-1 -aj) =

-2

2

0

0

0

-2

2

0

0

0

2

-4

2

0

0

0

2

-4

0

0

1 0

-2 1

1 -2

0 0

0 0

Yi

Y': Y2:

Yn- Y2 - ------
Y2 ..................

Figure B-6: Resolved fiber for C,.

The fiber IV* with Z 2 monodromy gives the F4 Lie algebra. The tree of blown-up

rational curves of the resolved IV* fiber is depicted in figure B-7. The Z 2 monodromy

exchanges the two rational curves in y3 and -y4. The intersection matrices are given
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0

0

2

-4

0

0

0

1

-2,

= -CI,

(B.14)

= -CI .

- -4
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by

-2

1
(11-*'7j) =

0

0

1

-2

2

0

0

2

-4

2

0 -2

o 1
= -C1; , (-Y-a) =

2 0

-4 0

a.4 %3 : a2 :' :

Y2

Figure B-7: Resolved fiber for F4.

The fiber I with Z3 or 63 monodromy gives the G 2 Lie algebra. The tree of

blown-up rational curves of the resolved I3 fiber is depicted in figure B-8. The Z 3 or

63 monodromy exchanges the three rational curves in 72. The intersection matrices

are given by

(B.16)

Yi

Figure B-8: Resolved fiber for G2.
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(B.15)

-2 3 -2 1
(71- 7) == -C-1 , (-Y1 -aj) = = -C,. -
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B.2 Proof of Intersection Equations for S, of Type

S or C

We prove the intersection equations

7r(Si -S2) - r(S3 -S4) +7(S1 -S3) -7r(S 2 -S4) +7r(31 -S4) -7r(S 2 -S3)

= Z(c, Si)(C, -S2)(Cr -S3)(cr -S4) + E (2g - 2 )(Xp -S1)(x, -S2)(x - S3)(XP -S 4 )
p

(B.17)

and

6K - 7r(Si - S2 ) = (Cr - S1)(c, - S2) + (2g, - 2)(Xp -Si)(x, -S2 )
r p

Sn E {Ti,, Si}. (B.19)

We first check the case when Sn are all of type S, then check the case when S,

are all of type C. Finally we check the case when there is a mixture of type S and C

cycles among Sn. We refer to the first equation (B.17) the quartic equation and the

second equation (B.18) the quadratic equation throughout this appendix.

B.2.1 Type S Cycles Only

Take Sn to be type S cycles {Sj, Sj, Sk, Si}. Sn are dual to abelian vector multiplets.

Then using the result (3.84)

bij = -,r(Si - Si) , (B.20)

the last equation of (2.26) can be rewritten in the form

,w(Si -S,) -'r(Sk -S) +7T(Si - Sk) -,r(Sj -SI) +r(Si - SI) -7r(Sj - Sk) = qiqjqxqi".

(B.21)
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We have used x to index all the hypermultiplets in the theory and q. denotes the

charge of hypermultiplet x under the U(1) vector field dual to S.

We note that all hypermultiplets charged under these vector multiplets come from

M2 branes wrapping type I curves, which are precisely c,. Recall that

S -x, = 0X (B.22)

for all p by the construction of S-type cycles.

Then since the charge of the hypermultiplet coming from wrapping branes on c,

under vector field n is c, - Si, the last equation of (2.26) is indeed equivalent to the

equation

(Si -S i) - r(SC -SO)+rSi -SO) -r(Si - SO)+,(Si- - ) (XSi -Sk)

= (c,. - Si) (c, - Sj) (c, - Sk) (c, SI) +(1(2g, - 2)(x, -O Si(x, - Sj) (x,- Sk) (x, - SI)
r p

(B.23)

since the latter term on the right hand side is zero.

Similarly, since the vector a is identified with the canonical class of the base K,

the second equation in (2.23) implies that

6K -r(Si - Sj) = -6a -bij =E qiqx

= Z(c Si)(cr - Sj) + (2gp - 2 )(Xp- Si)(Xp - S)
r p

(B.24)

for two type S four-cycles Si, S. Hence we have shown that (B.17) and (B.18) hold

when S, are all of type S.
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B.2.2 Type C Cycles Only

We prove

r r( . TK, L,,p) + (2 other groupings)

2 (cr - TI, C(C- TJv) (Cr' TK,XTc, * TL,.)
r (B.25)

+ ( (2gp - 2) (xp T1,) )(xp Tjv) (XP TK,\) (XP * TL"p)
P

and

6K-,r(TTj,,) = (cr -T,,) (cr -Tj,,) + (2gp - 2)(x-T1,r)(x-Tj,,,)
r p

(B.26)

for T,K of type C. The quartic equation is only non-trivial when the K, y, A, y are equal

in pairs-this includes the case when they are all equal. The quadratic equation is

only non-trivial when r, and v are equal.

The two statements above follow from three facts.

1. 7r(T 1,, -Tj,,) satisfies

r(T1,r -T jv) = -6rvb.C13,., (B.27)

so the left-hand side of the quartic equation is zero unless r,, v, A, y are equal

in pairs. Similarly, the left hand side of the quadratic equation is zero unless r.

and v are equal.

2. Unless r,, y, A, y are equal in pairs,

((Cr - TI,K)(c, -T) (Cr - TK,A) (Cr 'TL,ps) kRtrRTM,. = 0 (B.28)
r R

for some constants kR and M, r. Similarly, unless r, and v are equal,

3 (Cr -T1 ,K)(c - T,') = [ kRtrRTM,1 = 0 (B.29)
r R
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for some constants kR and M,'r/. This is because the hypermultiplets com-

ing from type I cycles always can be organized into representations of the Lie

algebra.

3- Xp can be organized into positive(or negative, depending on convention) roots

of the simple Lie algebra factors as {Xpl = (Xs,r}. Any X,,K for a given r, is a

linear combination of curves XI,K corresponding to the simple roots of Qr. Since

XI,r. TK v = -&rvC1,K, (B.30)

the equation

(Xp -T1,K) (XP -T1,) = 0 (B.31)

holds for . # v.

Therefore (B.25) is non-trivial only when r, v, A, yL are equal in pairs, and (B.26) is

non-trivial only when r = v.

Now let us write the anomaly equations in a form more convenient to our purposes.

The anomaly equations concerning only non-abelian gauge group factors implies that

the following holds for all elements T, Tv of the Cartan of the gauge groups ,, gv:

trT 2 2

taT- 2
_b 1(trAdj.TK2 _ XRtrRT2) (B.32)

trT 2 1
bK.-b( A )2 ZRrRT - T4) (B.33)

trT 2 trT 2 tr r
Ab " )A = RStr (K $ ) (B.34)

R,S

Let us take T = tIT,K and Tv = sITi,K where I runs over the indices of the coroot

basis of the Cartan sub-algebra of each gauge group. Expanding the equalities above,

we obtain polynomials with respect to tj and s, on both sides of the equations. The

anomaly equations must hold for any value of tj and s1 . Hence all the coefficients of
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the polynomials must be identical. By identifying the coefficients, we obtain

a - bKC1I, = (trAdj, J, ~~ xRtrRT,7TJ,K)

* b.-(CIJCKL,K±CIK,nCJL, ± CIL,KCJKK)=

x RtrRTI,.TJ^,TK,r.TL, - trAd j.I,ATJ,KTK,^TL,K (B.35)

b - bvCIJ,CKL,v xRStrRTITJrtrSTK,vTL,v
R,S

for r. A P.

We can write all the elements of the right-hand sides as a sum of products of the

charge of each vector or hypermultiplet under each Cartan element. Each charged

multiplet corresponds to a type I or a type F rational curve, and its charges are given

by the intersection numbers of the curve with the four-cycles of type C. Rewriting

the right-hand sides of the equations we obtain

-6a - b.CIJ,. =

(Cr - T1 ,) (cr T j,r.) + (2gp - 2)(Xp - T1,r.)(xp -Tjr.)
r p

b- b.(CIJCKL,K + CIK,KCJL,K ± CIL,.CJK,K)=

S(Cr - TIr)(c - TJK) (Cr -TK,)(c, ' TL,(C )
r

+ E(2gp - 2)(Xp -T1,.)(x, -Tj,,)(Xp -TK,r.)(xp ' TL,K) (B.36)

p

b. * bvCIJCKL,v =

S(Cr -T )(Cr -TJ,) (Cr - TK,v)(Cr -TL,v)
r

+ ( (2gp - 2)(Xp - T1,r )(x, - Tjr)(xp - TK,v) (Xp TL,v)

p

Note that the curve xp contributes 2gp hypermultiplets and two vector multiplets

[144, 145], as explained in section 3.3.1. The vector multiplet always contributes with

a negative sign with respect to the contribution of the hypermultiplet to the right
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hand sides of the equations. The last term of the last equation is zero.

Finally using

ir(T,K -Tjv) = -JrubnCjn , (B.37)

and the fact that a is equal to the canonical class K of the base, the three equations

translate into

6K - Ir(T,K -TjK) =

S(Cr -T1 ,K) (Cr -TJK) + (2gp - 2)(xp . T1,.)(xp -Tj,.)
r p

7r(TI,K - TJ,K)--r(TK,K * TL,,) + (2 other groupings) =

S(c,- -TI,K) (Cr -TJ,K) (C, -TK,) (Cr ' TL,n)

+ ((2gp - 2 )(Xp (x- TJ,- ) (Xp -TK,r )(xp ' TL,r )
(B.38)

7r(T,n -Tjr)-7r(TK,v ' TL,v) + (2 other groupings) =

(c, -TI,K)(C-r T,) (Cr - TK,v) (Cr 'TL,v)
r

+ ((2gp - 2 )(Xp - T1,r (xp T )(x, - TK,v)(Xp ' TL,v)
p

We note that in the last equation, the two other groupings of cycles that are not

written down are zero.

B.2.3 Both Type S and C Cycles

The quadratic equation is always trivial when Si and S2 are each of type S and C,

for the following reasons.

1. The left hand side of the quadratic equation is trivially zero since

7r(S -T.) = 0, (B.39)

due to the construction of type S cycles.
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2. The hypermultiplets come in representations of the non-abelian Lie algebra.

Hence,

S (C, -S) (c, -TI,.) = ( kRtrRTI, = 0. (B.40)
r R

3. Si do not intersect type Xp curves by construction. Hence,

(2g, - 2 )(Xp - Si)(Xp -T,,) = 0 . (B.41)
P

Similarly we can show that the non-trivial cases to check for the quartic equation

are, without loss of generality, when

1. S1 = T,,x, S2 = TJn, S3 = TK,r, 84 = Si

2. S1 = TK, S2 = TJn, S3 = Si, S4 = Sj-

From the anomaly equations, we can show that for any element of the Cartan T. of

0 = 5 XR,qiitrRT0

R,q1

StrT (B.42)
b - bij t = T (' xR,,qi,q QiQjtrT2

R,qi,qi

Setting T. = Tr ,tr, we can write both sides of the two equations as polynomials with

respect to t1 . Since the equality must hold for all values of t1 , the coefficients of the

polynomials must match on both sides, and hence

0 = E3 XR,qjtrR(TKTJ,nTL,^)qi

R,qi 
(B.43)

b. - bijCJ = E XR,qi,qjtrR(TnTJ,n)qiqj

R,qi,qj

As before, we can write all the elements of the right-hand sides as a sum of

products of the charge of each vector or hypermultiplet under TI,K, U(1)i or U(1),.

Each charged hypermultiplet has a corresponding type I rational curve, and its charge
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is given by the intersection numbers of the curve with the four-cycles of type C or S.

Rewriting the right-hand sides of the equations we obtain

0 = Z(Cr -TIK)(Cr Tj ,, )(Cr T (K,n c, - Si)

b. -biCijK = Z(cr -Ti,)(c, - Tr)(c.- Si)(Cr -S)
r

b.CJ,. = -x(T,r -TK), w(T,, -Sj) = 0, bij = -(Si - S),

we obtain the final expressions by rewriting the equations:

(B.44)

(B.45)

- r(T,, -T7,,) + (2 other groupings)

= Z(Cr - T *,)(c, - Tr)(c, - TK,,)(c, - Si)

+ ( (2gp - 2)(xp . T1,r (xp -T, )(x, -TK,.)(xp " Si)

- r(Si -Sj) + (2 other groupings)

= E (cr Tpr)(Cr -TJ,K)(c, - Si)(Cr - Sj)

(B.46)

+ (2gp - 2)(Xp -T,,)(x, -TJK-)(xP- S)(x . Si)
P

Note that the left hand side of the first equation is zero, and that the two other

groupings in the second equation are zero. The second term on the right hand side

of both equations are zero since Si - Xp = 0 by construction of type S cycles. El
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7r(71,. - SO)

7r(7,-,r. - 7j-'r.)
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