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ABSTRACT   
Urban geographers, planners, and economists have long been 

studying urban spatial structure to understand the development of 

cities. Statistical and data mining techniques, as proposed in this 

paper, go a long way in improving our knowledge about human 

activities extracted from travel surveys. As of today, most urban 

simulators have not yet incorporated the various types of 

individuals by their daily activities. In this work, we detect 

clusters of individuals by daily activity patterns, integrated with 

their usage of space and time, and show that daily routines can be 

highly predictable, with clear differences depending on the group, 

e.g. students vs. part time workers. This analysis presents the basis 

to capture collective activities at large scales and expand our 

perception of urban structure from the spatial dimension to 

spatial-temporal dimension. It will be helpful for planers to 

understand how individuals utilize time and interact with urban 

space in metropolitan areas and crucial for the design of 

sustainable cities in the future.   

Categories and Subject Descriptors 

H.2.8 [Database Applications]: data mining, spatial databases 

and GIS; I.5.3 [Clustering]: clustering algorithms and similarity 

measures. 

General Terms 

Algorithms, Design, Measurement, Human Factors, Performance 

Keywords 

Urban spatial-temporal structure, Human activity intensity, Kernel 

density estimation, Time-cumulative spatial activity density, 

Computational social science 

1. INTRODUCTION 
Cities, home to billions of people, are complex systems [1, 2]. For 

decades, urban spatial structure, measured by the degree of spatial 

concentration of population and employment, has been studied by 

urban scholars to describe the structure and organization of cities, 

and their function and role in people’s life [3-5]. On the one hand, 

with the improvement of transportation systems, cities have 

evolved from monocentric to polycentric forms in their spatial 

configurations [3, 6-8].  On the other hand, with the advances in 

information and communication technologies (ICT), cities have 

been racing to be “smarter”, in terms of their human, social, and 

environmental capital profiling [9, 10]. As a result, today swelling 

cities have become incidentally data repositories of human 

activities (gained from the emerging massive urban sensors such 

as GPS, mobile phone, and online user-generated social media). 

These facts, plus the spectacular ability of researchers to collect 

and analyze data, have helped us understand the nature of human 

mobility (e.g., high predictability in daily routine [11, 12]) and the 

dynamics of cities [13, 14], and provided a great potential for 

planners to optimize the value of existing infrastructures in the 

city [15]. 

While celebrating opportunities these massive urban sensing data 

bring to us, researchers have also realized challenges of adopting 

them, due to privacy and legal restrictions and economic 

constrains. With little or no information about either the social 

demographic characteristics of the individuals or the types of 

activities they are conducting, our understanding of the causes and 

underlying reasons of human behavior are still inadequate [16]. 

For example, in the study by Becker et al. [17], although it is 

promising to see plausible estimates of the spatial distribution of 

residence by users of different phone usage patterns (e.g., 

classified “workers” or “partiers”) based on call detail records 

(CDR), we still cannot get a complete picture of human activities 

in non-home/work categories, as it is hard to infer or validate 

those types of activities from the CDR data. Yet since cities have 

been playing increasingly important roles as consumption centers 

[18], urban planners are pressed to know how cities are used by 

different types of people for different types of activities. Given the 

nature of these urban sensing data (such as CDR), similar 

challenges are faced by other studies (e.g., Eagle et al. [19]),  

where non-home/work activities are hard to be differentiated. 

Meanwhile, it is also unclear how knowledge gained from 

targeted groups of communities (e.g., universities [19]) may apply 

when the scale is enlarged to metropolitan area and beyond. 

Activity-based travel surveys collected by planners to develop 

transportation and activity models for cities, on the other hand, 

have the potential to complement the new insights in human 

activities and mobility gained from massive urban sensing data as 

discussed above. If responded accurately, travel surveys can 

inform us about “who, what, when, where, why and how of travel 

for each person in a surveyed household” [20]. These questions 

have been in the center of urban planning, geography and 
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transportation fields for decades [21-26], due to their importance 

in helping us understand the complexity and dynamics of cities. 

In this paper, we concentrate on numerical methods to mine the 

spatial-temporal activity patterns of individuals obtained from a 

recent travel diary survey in the Chicago Metropolitan Area. The 

advances of this study lie in three folds.  

First, we expand the traditional understanding of urban structure 

from spatial dimension based on static density of population to 

spatial-temporal dimension, which we call urban spatial-temporal 

structure. We measure this structure by defining a spatial 

distribution of activity intensity with temporal information 

extracted from the travel survey data.  

Second, we cluster individuals according to their daily activity 

patterns and spatial-temporal traces. By doing so, it enables us to 

go from the traditional classification of individuals as students, 

workers and other types to more diverse groups, and enriches our 

understanding about human activities in the city. Combining the 

clusters of individuals with the spatial dimension, we identify sub-

regions of the metropolitan area with inherent connections to the 

performed activities.  

Finally, we combine the above measures together to analyze and 

visualize the time-cumulative spatial densities of various activity 

types by sub-regions of Chicago for different types of individuals. 

By comparing the spatial distributions of the intensity of various 

activities, we demonstrate that enormous information about urban 

spatial-temporal structure can be quantitatively analyzed and 

vividly illustrated. It will be very useful for urban planners to 

understand how urban areas have been used in space and time by 

different types of individuals, and will be crucial for them to 

propose solutions for sustainable cities.  

2. DATA SOURCE AND STUDY AREA 
To understand the urban spatial-temporal structure, in this 

research, we study the Chicago Metropolitan Area as an example. 

We employ a publicly available large-scale “Travel Tracker 

Survey” 1  conducted by the Chicago Metropolitan Agency for 

Planning (CMAP) in 2008 [27]. As this survey is designed to 

estimate the regional travel demand, the carefully planned 

sampling strategy ensures a good representation of the total 

population in the region, which includes eight counties—Cook, 

Du Page, Grundy, Kane, Kendall, Lake, McHenry, and Will—

from the Northeastern Illinois Region, and two counties—Porter 

and LaPorte—from the Northwestern Indiana Region.   

In this study, since we focus on the urban spatial-temporal 

structure on weekday, we use the survey records from Monday 

through Thursday as a sample to represent an average weekday, 

which contains daily activities of 23,527 distinct individuals. For 

each distinct individual, the survey records every activity 

destination, arrival and departure time, location (the longitude and 

latitude pair), activity type (such as home, work, school, shopping, 

recreation, etc.), and duration at the destination, in 24-hours of the 

surveyed day. To facilitate the analysis of this study, we transform 

the individuals' survey records as described above to minute-by- 

minute records with information of latitude and longitude location, 

time and activity type 2 . This data transformation allows us to 

                                                                 
1
 Source: http://www.cmap.illinois.gov/travel-tracker-survey. Retrieved on 

June 12, 2012. 
2

 Since we do not know individuals' exact travel path between 

destinations, and the movements usually amounts to a small portion of 

people's daily life within 24-hours (around 5%), in order to fill in the 
gap between two consecutive destinations, we make a simplified 

explore the spatial-temporal structure of the Chicago metropolitan 

area in this study.  

3. URBAN SPATIAL-TEMPORAL 

STRUCTURE 
Urban spatial-temporal structure (USTS) extends the traditional 

concept of urban spatial structure by incorporating the temporal 

information. Specifically, it contains information of time stamps 

of individuals’ activities, activity locations, activity types, and 

optionally, personal attributes (which are not indispensible, but 

may provide rich socioeconomic context). In this section, we use 

kernel density estimator (KDE) to estimate several measurements 

of USTS and present empirical findings of the Chicago urban 

spatial-temporal structure. 

3.1 Measurements of Urban Spatial-

Temporal Structure 
In order to capture the urban spatial-temporal structure, we 

propose to measure a “spatial-temporal activity density” at each 

time instant of the day and analyze it through KDE. For the 

purpose of visualization and demonstration, we integrate this 

density with respect to time, and get a “time-cumulative spatial 

activity density”, which measures spatial distribution of activity 

intensity— a normalized sum of individuals’ activity duration in a 

study area during a time period of interest. Human activity 

intensity can be crucial for many purposes, such as the analysis 

and prediction of energy consumption, infrastructure usage and 

business opportunities, etc. 

3.1.1 Preliminary 
We use a 3-dimensional space   to describe time and 2-

dimensional activity locations as follows: 

                                                  (1) 

where  ,  , and   are the time, longitude, and latitude, 

respectively,         defines the time period of interest (e.g., one 

or several minutes, hours, days, weeks, etc.), and   is the set of 

(longitude, latitude)-pairs for the study area.  

3.1.2 Spatial-Temporal Activity Density 
We use the distribution density   on   of a particular activity in a 

study area   during a time period of interest (       ) as the 

measurement of urban spatial-temporal structure. We call the 

measurement   the spatial-temporal activity density, which is 

defined as the probability density of individuals' presence at 

destination3 (x, y) at time t for the corresponding activity purpose, 

and the density   satisfies 
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assumption that people move in a straight line with constant speed when 

they travel.  It is worth noting that this filled-in information is only used 

in subsection 4.2.2 Clusters of Daily Traces, and due to the small 

proportion of time spent in travel, the estimation error caused by this 
approximation is very limited. Readers should also note that since travel 

is not considered as activities at destinations, therefore this treatment of 

data transformation will have little effect on the estimation of urban 
spatial-temporal structure discussed in the paper.  

3 We define destination as a place where people go due to the need of 

committing a certain type of activity (e.g., work, school, shopping, 

recreation, etc.). Here, we do not consider individuals’ movement en 

route while measuring activity density. Therefore our treatment of traces 
will not affect the accuracy of the estimation of spatial-temporal activity 

density and the time-cumulative spatial activity density. 

http://www.cmap.illinois.gov/travel-tracker-survey


To understand the urban spatial-temporal structure, it would be 

helpful to visualize the spatial-temporal activity density. 

However, as it is defined on a 3-dimensional space  , a direct 

static visualization becomes impossible. To circumvent the 

visualization barrier of spatial-temporal activity density, we 

explore two alternatives. One is to examine the distribution 

density      on   at a fixed time instant   .4 The other is to consider 

a time-cumulative spatial activity density. 

3.1.3 Time-cumulative Spatial Activity Density 
A time-cumulative spatial activity density      on   is defined as 

follows  

                         
     

                       (3) 

where              , and      is a positive constant to make 

     satisfy the restriction that the integral of density      on   

equals 1, i.e.,      is a constant of normalization.5 We use this 

measurement to understand the spatial distributions of intensity of 

various activity types and explore urban spatial-temporal structure 

quantitatively, which will be presented in section 3.2. 

3.1.4 Kernel Density Estimation 
In this study, we use the kernel density estimator to estimate the 

time-cumulative spatial density of a certain set of activities. 

Suppose that we have n observations of a set of activities       

                  
         , then the corresponding time-

cumulative spatial density is estimated by 
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where the bandwidth matrix   is a     symmetric positive 

definite matrix, 

    
 
                   

 
   , 

and   is a 2-variate kernel function that satisfies 

    
 
    

      . 

Here we follow the popular practice to take   to be the standard 

2-variate normal density, a spherically symmetric kernel,6  
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which implies that     
 
    

  
  
   is the    

  
  
     density 

in vector  
 
    To simplify the selection of  , we assume that 

     , where     and   is the     identity matrix. It is 

clear that a larger bandwidth parameter   leads to a smoother 

estimation and a smaller   gives more fluctuations. In this study, 

the bandwidth   is chosen to minimize the mean integrated 

squared error (MISE). For detailed discussion about 

nonparametric kernel density estimation and the MISE criterion, 

                                                                 
4
 The notation    means that it is obtained from   via normalization. 

5
 Note that      and      are closely related: If we assume that   is 

continuous in t (which is a very reasonable assumption), then we have 

         , as       . 
6 Normal density is in the class of admissible kernel functions, and people 

often choose it for the simplicity of interpretation. For detailed 
discussion about choice of kernel functions, please refer to [28] Wand, P. 

and Jones, C. Kernel Smoothing. Chapman & Hall, 1995. 

and the applications of KDE on topics of interests in the urban 

realm, readers may refer to Wand and Jones [28], Kwan & Hong 

[29], and Yuan et al.[14], respectively. 

3.2 Chicago Metropolitan Area General 

Spatial-Temporal Structure  
By using kernel density estimation method described above, we 

estimate the activity intensity in the Chicago Metropolitan Area 

over 24 hours to understand the Chicago Urban Spatial-temporal 

structure.  Figure 1 shows the 

time-cumulative spatial 

activity densities in the 

Chicago metropolitan area by 

activity categories of home, 

work, school, shopping/ 

errands, and recreation/ 

entertainment.  

Figure 1 Chicago time-cumulative spatial densities of different 

activity types (a) home, (b) work, (c) school, (d) shopping and 

errands, and (e) recreation and entertainment, on an average 

weekday. 

We can see from the figure that areas with intensive person-hours 

for home activities are along the north lakeshore, south lakeshore, 

and around Oak Park.  Downtown Chicago alone has extremely 

intensive work activities—very high total person-hours for 

working—compared with the rest of the region. School activities 

in the region are mainly concentrated in the city of Chicago 

(where major universities and schools are clustered), and the 

southeastern part of the region (where Purdue University is 

located). Several regions with intensive person-hours for shopping 

activities exist, including the downtown and northern part of the 

City of Chicago, the City of Evanston, Schaumburg, southeast 

area of the region (cities of Hammond and Schererville). Areas 

that have been visited and used intensively for entertainment 

and/or recreational activities is narrower than their counterparts 

for shopping activities in space, but with some overlaps, including 

the downtown and northern part of the City of Chicago, City of 

Evanston, Oak Park, and the southeastern part of the Chicago 

metropolitan region. 

As discussed in the introduction section, these results are 

interesting and informative; however, we want to further explore 

how the urban spaces are utilized by different types of individuals 

with different activity patterns. In other words, we want to ask “do 

students, workers, or other types of individuals use urban spaces 

in similar or different ways?” “Are there differences in activity 

 

 



intensities by similar types of individuals across different subareas 

of the region?” “In what ways are their activity intensity and 

usage of urban areas in space and time similar or different?” 

4. CLUSTERING DAILY ACTIVITY 

PATTERNS AND TRACES 
In order to answer these questions and to further understand urban 

spatial-temporal structure, clustering individuals both by their 

daily temporal-activity patterns and by their spatial-temporal trace 

becomes important and natural components of this study.   

4.1 K-Means Clustering via PCA 
The K-means algorithm has been widely applied to partition 

datasets into a number of clusters [30]. It performs well for many 

problems. However, the computational cost can be very high, 

when the dimension of the data is large [31]. As the principle 

component analysis (PCA)/eigen decomposition method is widely 

employed for dimension reduction, it is a common practice to 

utilize the K-means algorithm via PCA and obtain successful 

applications [32, 33]. In an earlier study [34], we explain in detail 

the processes and validity of applying the K-means algorithm via 

PCA method to cluster individuals into different groups according 

to their activity patterns in the Chicago Metropolitan Area. For 

details about the K-Means clustering via PCA method, readers 

may refer to Section 4 of Jiang et al. [34]. 

4.2 Daily Activity Pattern and Trace Clusters 

in Chicago 
In this section, we first review the clustering results of activity 

patterns in the Chicago Metropolitan Area on an average weekday 

[34], and then we cluster individuals’ daily spatial-temporal traces 

using a similar process.  

4.2.1 Clusters of Daily Activity Patterns 
Figure 2 summaries the analysis results of individuals’ daily 

activity pattern clusters on an average weekday in the Chicago 

Metropolitan Area.  

 

Figure 2 Clustering of individuals' weekday activity patterns 

in Chicago, with clusters (a) students, (b) regular workers, 

(c) early-bird workers, (d) afternoon workers, (e) stay-at-

home, (f) morning adventurers, (g) afternoon adventurers, 

and (h) overnight adventurers. Adapted from [34] Jiang et al. 

The first column of Figure 2 displays individuals’ daily activity 

sequences for each cluster. The second column shows the 

aggregated volume of different types of activities in the 

metropolitan area during a specific time interval over 24 hours. 

The results contains 8 types of personal activity patterns, 

including students (12.50%), regular workers (17.90%), early-bird 

workers (13.50%), afternoon workers (3.10%), the stay-at-home 

(33.20%), the morning adventurers (13.00%), the afternoon 

adventurers (5.50%) and the overnight adventurers (1.30%). 

Notice that this represents much richer information about urban 

groups than the traditional classification in which only 47% of the 

individuals can be categorized as students or workers based on 

their daily activity patterns. 

4.2.2 Clusters of Daily Traces 
We cluster individuals’ spatial-temporal traces according to their 

space-time similarities by applying the K-Means algorithm via 

PCA in a very similar procedure to the study we conducted earlier 

[34].  

First, we sample the individuals’ locations and activities every 

five minutes, using the transformed data described in Section 2. 

Let    denote the total number of individuals in the sample, then 

for each individual i =1, …,   , we have an 576 (=288×2) 

dimensional vector                                   to 

describe his/her trace, where      and      is individual i's 

longitude and latitude in the j-th time instant being sampled.  

Second, we deal with    in the same way as we deal with    in 

Section 4 of Jiang et al [34]. We arrange the thus obtained 576 

eigenvalues in descending order, i.e.,               , 

and the eigenvector    that corresponds to the k-th eigenvalue is 

called the k-th eigentrace. 

Third, we reconstruct the individual i’s spatial-temporal trace   , 
by using a subset of eigentraces as follows. Let         , 

where    
 

  
   
  
    is the sample mean, and suppose the 

projection of    onto the first h eigentraces            are 

          .  According to formula                      

                                                   (4) 

we obtain a vector                                                . 

We define the reconstruction error       for     as the average 

reconstruction deviation, namely,                        

       
 

   
                                
   
                 (5) 

where                                 is the distance (in kilometers) 

between two locations             and              . Given any ε > 0, 

we can find some h > 0, so that the average reconstruction 

error,  
      
  
   

  
, caused by neglecting the projections onto the 

ignored eigentraces               is no greater than ε. Let ε0 > 0 

be the acceptable error level, and define h(ε0) to be the smallest h 

such that the average reconstruction error induced by using the 

first h eigentraces is no greater than ε0. We then call h(ε0) the 

appropriate number of eigentraces. In this study, we take ε0 = 0.5 

kilometers, and we get h(ε0) = 33. Thus, eigentraces            
are used in the reconstruction of    and in the K-means clustering 

of individuals’ spatial-temporal traces.  

Lastly, according to Dunn's Index (DI), which maximizes inter-

cluster distances while minimizing the intra-cluster distances,  our 

analysis shows that with a clustering number of 2, it provides the 

most stable partition of individuals (i.e., the higher the index, the 



 

Figure 4 Counties in the 

Northeastern Illinois 

Region and Northwestern 

Indiana Region 

 

better the clustering results) (see Table 1). However, since we are 

more interested in a sophisticated clustering of individuals than 

the dichotomy grouping, we find that when the clustering number 

is 5, it provides a second-best alternative yet much richer partition 

of individuals’ daily traces.  

Table 1. Cluster numbers (k) and the Dunn’s Index (DI)  

k 2 3 4 5 6 

DI 2.431 1.501 1.853 2.017 1.253 

k 7 8 9 10 11 

DI 1.288 1.365 1.38 1.387 1.230 

k 12 13 14 15 16 

DI 1.370 1.059 1.063 1.088 1.092 

 

Figure 3 shows the clustering results of individuals’ spatial-

temporal traces with k=5 in space. The left panel of the figure 

shows a 2-D view of the clustering results with each color 

representing a cluster, and x-, y-axes representing longitude and 

latitude; while the right panel of the figure shows a 3-D view of 

the same clustering results, with an additional vertical z-axis 

representing the time dimension. This type of 3-D view of 

individuals’ traces is called spatiotemporal prism by geographers 

[35], and is visually helpful to understand people's movement in 

space and time.  

 

Figure 3 Clustering of individuals' daily traces on an average 

weekday in Chicago (cluster number=5). 

As we know, in people's daily 

life, their travel from one 

destination to another in space 

and time is not usually 

confined by administratively 

defined boundaries such as 

county boundaries. Therefore 

clustering a region into 

subdivision by using 

individuals' spatial-temporal 

traces can reveal underlying 

inherent connections in the 

region better than using 

administratively defined areas 

such as counties.  

Figure 4 shows the geographic location of counties that define the 

Chicago Metropolitan.  From the geographical coverage of the 

clustered traces in Figure 3, we find that Cluster #1, depicted in 

dark blue, covers the Lake County (south to Cook) and the 

southeast corner of Cook County. Cluster #2, depicted in cyan, 

covers most area of Du Page, the north part of Will and Grundy, 

and eastern side of Kane and Kendall counties, and the northern 

part of Grundy County. Cluster #3, depicted in green, covers the 

north part of Cook County, the Lake County (north to Cook), and 

the McHenry County. Cluster # 4, depicted in yellow, covers the 

Porter County and LaPorte County (in the State of Indiana).  

Cluster # 5, depicted in orange, covers the center of the Cook 

County, or the City of Chicago. It is interesting to analyze further 

the intrinsic reasons of this regional clusters defined by the user 

traces. It may be possible to find some demographic or economic 

reasons inherent in these aggregations. 

5. URBAN SPATIAL-TEMPORAL 

STRUCTURE BY REGION, ACTIVITY 

PATTERN AND TYPE 
With the previous analysis we obtained clusters of individuals by 

their daily activity patterns and their spatial-temporal traces (in 

Section 4). Together with the proposed measurement (i.e., time-

cumulative spatial activity density) to estimate urban spatial-

temporal structure (in Section 3), we are able to further explore 

the detailed urban spatial-temporal structure for individuals with 

different daily activity types defined as students, regular workers, 

early workers, afternoon workers, stay-at-home, morning 

adventurers, afternoon adventurers and overnight adventurers. We 

can observe now how these types of individuals distribute across 

different clustered sub-regions based on their time-cumulative 

spatial activity density. 

Due to limited space of the paper, and the importance of the City 

of Chicago, in terms of intensity of various activities (shown in 

subsection 3.2), as a demonstration, in this section we further 

explore the spatial temporal structure for individuals whose daily 

activities are heavily concentrated in this sub-division of the 

region (i.e., Cluster # 5 obtained from the trace clustering result in 

subsection 4.2.2), and focus on five types of activities for the eight 

types of individuals (obtained from the activity pattern clustering 

results in subsection 4.2.1). We first discuss the spatial 

distribution patterns of activity intensities on home, work and 

school activities for individuals engaged in a fixed daily activity, 

namely: students and workers (including early workers, early-bird 

workers and afternoon workers) in subsection 5.1. Then discuss 

the spatial distribution patterns of intensity of the same five types 

of activities for stay-at-homes and the three types of adventurers 

(i.e., morning, afternoon and overnight adventurers). The latter 

group includes individuals that are not traditionally classified by 

activity patterns and are much harder to model in urban simulators. 

5.1 The Students and Workers 
As depicted in Figure 5, we find that the spatial distribution of 

home activities for students and workers are quite similar—

heavily concentrated in the downtown area and northern part of 

the city of Chicago (Figure 5, row 1). It also shows similar 

patterns in the work activity intensity for the three types of 

workers, but quite different for the students (with multiple centers 

in the west part of the city) (Figure 5, row 2).  

The spatial distribution of school activity intensity for students 

matches in a very similar way to that of their home activity 

intensity. While for regular workers and early-bird workers, there 

are two centers—one in the north part of the city, and one in the 

downtown area of the city. For the afternoon workers, the school 

activity intensity is very weak, but mostly concentrated in the far 

northern and western edge of the city (Figure 5, row 3).  

Shopping activity intensity for the regular and early-bird workers 

are similar—concentrated in downtown Chicago; and with two 

additional sub-centers for the students—one in the north, and one 

in the northwest (around the O'Hare airport). And there are two 

centers hand-by-hand in the center of Chicago for the afternoon 

workers.  



Interestingly, we see that the intensity of recreational activity for 

regular and early-bird workers are similar in geographical location 

(concentrated in downtown Chicago) compared to their shopping 

activity, but with stronger intensity— meaning that for these two 

types of workers, there are either more of them doing recreational 

(e.g., eating out with friends)/entertainment activities and/or they 

spend longer time in these activities than in shopping on weekday 

in the downtown area (Figure 5, row 4).  The spatial distribution 

of recreation/entertainment activity intensity for afternoon 

workers are more dispersed in space and time than their 

counterparts of regular and early-bird workers. For students, their 

recreational activity centers are distributed along the lake shore 

from north to downtown Chicago, and also in the western part of 

the city. 

To summarize, similar spatial distribution patterns of intensity 

exist for students' home and school activity, as well as for 

workers' home and work activity. In terms of the spatial 

distribution of shopping and recreational activity intensities, they 

are quite similar for regular and early-bird workers (concentrated 

in the city center), but exhibit diverse and multiple centers for the 

afternoon workers (which can be explained by their space-time 

flexibility during the day compared with regular and early-bird 

workers). For students, their spatial distribution of recreational 

activity intensity is similar to that of their school activity, but with 

lower density, and their shopping activity are more concentrated 

in the center and northern part of the city, as well as in the 

northeastern corner of the city near the O'Hare airport.  

5.2 The Stay-at-Homes and Adventurers 
Different from the students and workers, who spend most of their 

day on (spatially and temporally constrained) activities of school 

and work, adventurers have more time flexibility; and the stay-at-

homes are more limited in terms of their spatial flexibility.  

 

We can see from Figure 6 that the spatial distributions of activity 

intensities of various types (except for home activity) are very 

diverse in space for the adventurers, but very uniformly 

concentrated for the stay-at homes. For the morning and afternoon 

adventurers, the second most intense activity right after the home 

activity is recreation/entertainment, and they are heavily 

concentrated in the city center, and moderately concentrated in 

both the north and south parts of the city for morning adventures, 

and only in the north for the afternoon adventurers.  

Shopping activities for the overnight adventures are heavily 

concentrated along the southwestern corridor, and their 

recreational activities are also distributed in the far north part of 

the city.   

The school and work activity intensity distribution in space for 

morning and afternoon adventurers are even more diverse  and 

dispersed compared with their shopping and recreational activities, 

which means that very few adventurers conduct work/school 

activities, and their spatial distribution is more spread in the city 

than concentrated in the downtown area.  

Interestingly, the spatial distributions of home and work activity 

intensities for the overnight adventures are very similar. But that 

of their school activity intensity is very diverse and spreads over 

different parts of the city.   

6. CONCLUSIONS 
This paper introduces a new concept of urban spatial-temporal 

structure, which expands the traditional theories of urban structure, 

and offers a framework to study and analyze it using activity-

based travel survey data. We discuss the advantages of travel 

survey data in terms of their richness in revealing individuals’ 

activity types, space and time presence, and we provide a new 

 

Figure 6 Time-cumulative spatial densities of shopping/ 

errands & recreation/entertainment activities in the Chicago 

sub-region by (c-1) stay-at-home, (c-2) morning adventurers, 

(c-3) afternoon adventurers, and (c-4) overnight adventurers. 

 

 

Figure 5 Time-cumulative spatial densities of home, work, 

and school activities in the Chicago sub-region by (a) 

students, (b-1) regular workers, (b-2) early-bird workers, 

and (b-3) afternoon workers on an average weekday. 

 



perspective on how to mine survey data as complements to the 

recently emerging massive urban sensing data.  

With the introduction of spatial distribution of activity intensity, 

measured by time-cumulative spatial activity density, and the 

employment of the kernel density estimator, we provide an 

approach to analyze the proposed urban spatial-temporal structure.   

In order to discover similarities and differences in human activity 

patterns and spatial-temporal traces, we apply K-means algorithm 

via PCA method to cluster individuals into groups. By estimating 

and visualizing the time-cumulative spatial densities of various 

activities by person types (obtained from the clustering of daily 

activity patterns) in one of the sub-regions of the Chicago 

Metropolitan Area (identified from the clustering of individuals’ 

traces), we are able to explore the diverse spatial-temporal 

structure of Chicago. Due to space limit, we do not demonstrate 

the results for the rest of the four sub-regions in the Chicago 

metropolitan area in this paper. However, abundant information 

obtained from other sub-regions will help planers gain solid 

understandings on “how different sub-regions of the metropolitan 

area have been utilized by different types of individuals for 

different activity types”.  

Answering these questions will be essential for urban planners 

and scholars to understand the dynamics and complexity of the 

polycentric city, and this paper offers new insights for urban 

planning through the estimates of spatial distributions of various 

activity intensities for different types of individuals. As activity 

intensity is very closely related to energy consumption, business 

opportunity and infrastructure usage, the measurements and 

approaches proposed here will be helpful for urban planners to 

design sustainable cities in the future.  
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