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Abstract
My research focuses on finding patterns in events - in sequences of data that happen
over time. It takes inspiration from a neuroscience phenomena believed to be deeply
involved in learning. I propose a machine learning algorithm that finds patterns in
timed data and is highly robust to noise and missing data. It can find both coincident
relationships, where two events tend to happen together; as well as causal relationships,
where one event appears to be caused by another. I analyze stock price information
using this algorithm and strong relationships are found between companies within the
same industry. In particular, I worked with 12 stocks taken from the banking,
information technology, healthcare, and oil industries. The relationships are almost
exclusively coincidental, rather than causal.
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1 Introduction

The field of machine learning has had a huge impact on our lives over the past decade.

Machine learning has allowed patterns that traditionally were visible only to humans to

be found automatically. This means that certain information can now be extracted at

speeds never before possible. Take webpage ranking for example. If the quality of web

pages were not decided automatically, web search would be too slow for all practical

purposes. Besides page ranking, machine learning has also made big advances in

automating speech recognition, and facial detection and recognition.

While advances in these fields have certainly been very impactful, it's arguable that one

of the most interesting kinds of data has been left out of the picture - in particular data

where precise timing matters. Webpage rank, facial detection, and recognition, are all

tasks that have no time component. Even speech, which is essentially a sequence of

sounds over time, has been traditionally treated using Bayesian networks, which

disregard timing and instead preserve only the ordering.

In real life, the things we see, hear, and feel every second are all pieces of data

happening at particular times and in a particular order. With the greatest of ease, we as

humans can see patterns in all this data - we can quickly get a feeling for the

relationship between things. We can even make conclusions (or assumptions) about

what events are causing what.

Machine learning has not focused on finding relationships between events in time.

However it is a crucial piece of the vision to emulate humans' pattern-finding abilities.

Even for problems that seem to be time-independent like object recognition, there is
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evidence that the human brain translates this task into a pattern matching problem of

events over time'. This makes sense given that neurons transmit information through

spikes whose timing is known to be crucial'.

In this thesis, I took inspiration from a neuroscience phenomenon that is believed to be

involved in learning called Spike Timing Dependent Plasticity (STDP). I implemented its

functional aspects to capture patterns in timed data. The goal is was approach the

problem from a machine learning perspective, rather than to simulate the biological

aspects.

1.1 Drawbacks of Current Approaches

Typical approaches to solve problems such as speech, gesture recognition, and other

kind of time-based problems use Hidden Markov Models (HMM) and Bayesian

networks (more specifically Dynamic Bayesian Networks). These type of networks can

detect relationships between events and can be trained to understand the conditional

probabilities of an event happening.

While Bayesian networks are great at discovering conditional probabilities in data, they

are not practical for discovering unknown relationships in data. This is because, in order

for a Bayesian network to be useful, the researcher must typically provide an initial

graph containing all the potential relationships between events. If the researcher

provides a complete graph as the initial graph, this results in a combinatorial explosion

- Bayesian networks are inefficient at dealing with graphs with a lot of edges.

Furthermore, the computation of conditional probabilities typically requires complete

1Metzner W, Koch C, Wessel R, Gabbiani F (March 1998). "Feature extraction by burst-like spike patterns in multiple
sensory maps". The Journal of Neuroscience 18 (6): 2283-300.
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availability of the data, meaning that Bayesian networks are ill-suited in a situation

where data is available incrementally. The final and main drawback is that, while

Bayesian networks are great at dealing with ordering, they do not take into account the

subtleties of timing information.

2 Steps and Thesis Outline

Animals are great at picking up patterns in events. Early experiments in classical

conditioning showed that many animals are able to understand relationships between

events. Pavlov famously showed that he could train a dog to associate a random event

like a bell ring with food just by consistently ringing a bell before serving the dog food.

While animal brains have a staggering complexity, neuroscience research over the past

ten years has begun to uncover some basic rules that govern neuron activity. One of

them is called Spike Timing Dependent Plasticity (STDP), and it quantifies how the

strength of neurons' connections changes as neurons fire2.

I picked a particularly recent STDP model presented by Clopath3 due to its

computational simplicity, and implemented its functionality. This allowed me to

simulate how neuron connections change as they fire. Because the original problem is to

find patterns in timed data, I map each piece of timed data to a neuron. When an event

is processed, I cause the corresponding neuron to fire. The idea is that the connections

formed by the neurons can tell you something about the relationships between the

events.

2 Bi GQ, Poo MM (15 December 1998). "Synaptic modifications in cultured hippocampal neurons: dependence on
spike timing, synaptic strength, and postsynaptic cell type". The Joumal of Neuroscience. 18 (24): 10464-10472.
3 Clopath, C., Busing, L., Vasilaki, E. & Gerstner, W. Nat. Neurosci. 13, 344-352 (2010).
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In section 4, I explain a little bit more about the functional aspects of the phenomenon

that inspired the pattern finding algorithm. In Section 5, I explain the details of how the

algorithm works and how it was implemented. In section 6, I apply the algorithm to

automatically generated data that can be carefully controlled and that contains known

relationships. In Section 6.6, the algorithm is applied to stock price fluctuations and

finds relationships between companies within the same industry. Finally, Section 7

covers future work that can be done to expand on this thesis and understand the limits

of this approach to pattern finding.

3 News

In this thesis, I show that it is possible to find relationships in timed-data using an

algorithm inspired in STDP. In a landmark experiment, I show that even amongst

overwhelming amounts of noise it is still possible to find timing patterns between events.

As a concrete example, when I generated data simulating 102 types of events where 2

were related in time and 100 were random, the algorithm easily identified the two that

were related.

The events were related in time, event A and B, consistently happened closely together

but in no particular order. More precisely, event A always caused event B to occur after a

short interval, and vice versa. The exact interval amount was chosen to be the average

timing between the random events. The other 100 events were random, distributed with

a Poisson distribution. All 102 events had equal frequencies (number of occurrences per

unit time). The algorithm was able to easily identify the two events that were related.

Figure 1 shows the relative strength of the relationships found after an after an exposure
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to 1000 events (of which about 98% are the random events). Because the events are

randomly presented, each event is shown only 10 times on average. The algorithm finds

that the strength of the relationship between A/B is about 9 times stronger than the

relationship between any of the other events.

Relationship Strength Between
Random Events is 9 times lower

2.2
2

1.8
c. 1.6

1.4
o 1.2

S1
e 0.8

0.6
0.4
0.2

0- -
A/B Between Random Events

Figure 1 - Given 102 different types of events, where 2 of them (A and B) have a relationship between
them, the algorithm unequivocally identifies the existing relationship with an input with only 1000
randomly generated events.

In this thesis I also show that the same algorithm is capable of finding relationships

between company stock price data. Using information about which days stocks go up

and down for 12 major U.S companies, it finds strong relationships between companies

in the same industry. In fact, the top 10 strongest relationships are all between

companies in the same industry (see Table 1). Oil and gas companies as well as banking

companies had the strongest relationships among themselves.

12

Company i Company 2 Relationship Strength
Exxon Mobile UP Chevron UP 13.97
Chevron UP Exxon Mobile UP 13.94



Citigroup DOWN JPMorgan DOWN 13.05
ConocoPhillips UP Exxon Mobile UP 12.92

Exxon Mobile UP ConocoPhillips UP 12.89

AIG DOWN JPMorgan DOWN 12.87
Chevron UP ConocoPhillips UP 12.85
JPMorgan DOWN AIG DOWN 12.81

ConocoPhillips UP Chevron UP 12.72

JPMorgan DOWN Citigroup DOWN 12.62

Table 1 - List of the strongest relationships found between 12 major U.S. companies. The top 10
strongest relationships are all between companies in the same industry.

Furthermore, in this thesis I also demonstrate that the algorithm can indentify causal

relationships (events that seem to be causing other events) as well as coincident

relationships (events that tend to happen together in time).

Another feature of the algorithm is that it creates a graph of event relationships on the

fly, and updates it for each piece of data - it is an online algorithm. This also means that

the input can be a continuous stream of event data with no length restriction.

Finally, it does not require any a priori knowledge about the data. This means that

arbitrary or poorly understood timing data can be fed in, and is less likely to be

influenced by a human bias.

4 How Spike Timing Dependent Plasticity Works

The abilities of STDP were first highlighted a little over a decade ago4, but STDP has

been receiving more attention as mounting evidence shows that this rule plays a central

4 Bi GQ, Poo MM (15 December 1998). "Synaptic modifications in cultured hippocampal neurons: dependence on
spike timing, synaptic strength, and postsynaptic cell type". The Joumal of Neuroscience. 18 (24): 10464-10472.
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role in learning. In particular, theories on the mechanism of STDP have recently been

proposed5.

STDP is a Hebbian learning rule that quantifies the change in connection strength

between two neurons given their exact firing times. The graph in Figure 2 is typically

used to summarize the effects of STDP. So, for example, if neuron A spikes and then

neuron B spikes, the connection between A->B will be strengthened while the

connection B->A will be weakened. The magnitude of the connection strengthening

(LTP or Long-Term Potentiation) is thought to be stronger than the corresponding

weakening (LTD or Long-Term Depression), thereby allowing connections to become

stronger over time and over the course of many firings.

Weight change

LTP

Timing difference
between spikes

LTD

Figure 2 - Graph illustrating the connection weight change between a pair of neurons, given the timing
difference between their firing. More specifically, this is the timing difference between the pre-
synaptic and post-synaptic spikes. For example, if neuron A spikes and then B spikes, the connection
between A->B will be strengthened and the connection B->A will be weakened. The label "LTP" refers
to Long-Term Potentiation, or increasing connection weight, and "LTD" is Long-Term Depression, or
decreasing connection weight.

s Clopath, C., Busing, L., Vasilaki, E. & Gerstner, W. Nat. Neurosci. 13, 344-352 (2010).
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If you apply the weight changes described by this STDP curve to a sequence of firing

neurons, strong connections will be created between pairs of neurons that tend to spike

in a particular sequence. Figure 3 illustrates two different types of relationships: causal

and coincidental relationships. For example, in a causal relationship a spiking in neuron

A may be consistently followed by a spiking of B (Figure 3A). I call it causal because it

seems like A is causing B to fire. On the other hand, a coincidental relationship would be

one where, for example, A and B tend to spike together but not in a particular order

(Figure 3B).

A) Causal Relationship

time

NeuonA 

Neuron B
spiking

B) Coincident Relationship
time

Neuron A

I I I I Neuron B
spiking I I I

Connection Connection
Strengths \...#LK... Strengths G

Figure 3 - Above, a timeline of spiking is shown for both neuron A and B. Each dark line on the
timeline represents a spiking event. Below, the resulting connections as a result of STDP are shown.
Thicker darker arrows represent stronger connections. Part A) shows a causal relationship between
A and B. Part B) shows a coincidental relationship.

5 Method

I developed an algorithm that takes in a sequence of events happening over a period of

time. It outputs a graph illustrating the relationships between the events.
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5.1 Input

The input is a list where each element of the list has both a label and a time.

ex: [ ('falling glass', 1) , ('shattering sound', 2.2) , ('broken glass pieces', 2.5) ]

Throughout this thesis, I will illustrate the input on a timeline for clarity. The x-axis is

the time, and the labeled lines represent the events (see Figure 4 below).

I I I
falling glass shattaring sound broken gIa pieces

Figure 4 - Illustration of the input on a timeline. This is more intuitive to see than a sequence of
numbers, so this will be the format shown throughout the thesis.

5.2 Output

The output is a graph with nodes and directed weighted edges.

Each node has a name and can have multiple directed edges. I represent the weight of

the edges using both thickness and color (see Figure 5). Stronger edges are thicker and

are shown in red. Weak edges are thin and are shown in yellow. See Figure 6 for a more

precise color scale.

broken glass- pieces

shatterhg sound falfing glass

Figure 5 - Graph representation of the output of the algorithm. In this example you see that
"shattering sound" is related to "broken glass pieces" very strongly.
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t t t
Strongest Medium Weakest

Figure 6 - How strength of edges relates to the color of the edge. Stronger edges are also drawn thicker
than weaker edges for emphasis.

The output graph scale is normalized so that the strongest edges are always shown in

red (and thick) and edges with zero weight are shown in yellow (and thin). This is

merely for display purposes, to make the edge weight differences easier to perceive. This

normalization has no effect on the underlying edge weights.

5.3 Algorithm

The input list is read one element at a time. Every time an element with a new label is

seen, a new node is added to the output graph.

5.3.1 Node Potential

Every node stores a quantity called potential, a quantity that always decreases

exponentially over time. This quantity is boosted up by a constant amount when the

node's label is read from the input. Figure 7 illustrates this by placing the input and a

graph of the node's potential side-by-side.

Potential for node "a"

Input Timeline
a a a

Figure 7 - Relationship between the input and the potential of a node. Each time the node "a" is seen
on the input, the potential for node "a" is increased by a constant amount. Notice how potential decays

17



exponentially over time. As usual, time appears on the x-axis.

The potential at a given time t is calculated using a simple negative exponential:

potential(t) = potential (tje-d(t-ts)

where ts is the time of the last spike, d is a decay exponent, and e is Euler's number. The

value for decay d is decided experimentally and depends on the input data.

This decay time constant can be thought of as the strength of memory in the system -

the slower the decay, the longer the memory. For data that is more spread out over time,

a d that is closer to zero (slower) is better for picking up the patterns. For data that

happens quickly and in rapid succession, a larger (faster) d is preferred. Figure 8 shows

how the quality of the pattern extraction can be affected by the constant d that is chosen.

For values of d that are too small, the patterns are less clearly extracted. For values of d

that are too large, the output (the relationships discovered) become very sensitive to

small changes in the input (see Figure 9).

The "clarity" of the patterns extracted given the decay was measured using data that

contained known relationships (more precisely, it is the exact data used in section 6.3).

By knowing the relationships contained in the data, I know which edges should be

present in the output graph. The "clarity" of the patterns found is given by:

Average (Weight(Correct))

Average (Weight(Incorrect))

Where Correct is the set of edges that represent relationships present in the data, and

Incorrect is the set of edges that represent relationships that are not present in the data.

18



Weight returns the set of weights corresponding to the given set of edges. Average

simply returns the average value of the set.

Unless stated otherwise, for all the examples throughout this thesis, a value of d=2.0

was picked as a compromise between these two extremes.

How the Decay Exponent Affects
Clarity of Patterns Found

W.-
0
0

0

U,
VA

0

0.

100

90

80

70

60

50

40

30

20

10

0
0 2 4 6 8 10 12 14

Decay Exponent, d value

Figure 8 - As the decay exponent increases, the clarity of the pattern increases on average. 350 trials
were used to come up with the average clarity value.
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Variance of Results from Figure 8
25000

20000

8 15000
C

> 10000

5000

0

0 2 4 6 8 10 12 14
Decay Exponent, d value

Figure 9 - Variance of the results from Figure 8. As the decay exponent increases, the variance of the
data increases dramatically.

Now that I have gone over how the potential for nodes is determined, I will go over how

edge weights are changed.

5.3.2 Edge Weights

Edge weights are changed every time an event is processed. For example, imagine you

have event A coming in as input. If this event doesn't already have a corresponding node

in the graph, that node is created and added to the graph. Otherwise, if it already exists

in the graph, you consider its neighbors. We'll call neighbors the nodes that have edges

going into node A. In Figure 10 for example, nodes N,, N2 and N3 are neighbors of A.

However A is not a neighbor of N, because you can't go from A to N1 by following the

arrow.

For each neighbor N of A, I adjust the connection from Nto A depending on N's

potential. Following Clopath's model of STDP, there are 3 possible scenarios depending

on the node's potential:

20



e If Ns potential is low, no edge weights are changed.

e If Ns potential is medium, the strength of the connection from N->A is decreased.

" If Ns potential is high, the strength of the connection from N->A is increased.

See Figure 10 for a representation of these thresholds.

2

1

Potential

Th
Cnnnprtini

0.5
1.5

2.5

Figure 10 - On the right, a scale showing the different thresholds for different node potentials. The
shown scale is arbitrary. On the right, a sample arrangement of nodes. The label above neighbors N1,
N2, N3 corresponds to an example current potential. Given the scale on the left, the N1 -> A connection
would be unchanged, the N2 -> A connection would be weakened, and the N3 -> A connection would be
strengthened.

The exact amounts for the decrease and increase are proportional to Ns potential. The

increase is made twice as large as the decrease, obeying the traditional STDP curve

where potentiation is twice as strong as depression. Here is pseudo-code summarizing

what was mentioned above:

if (Npotential > smallthreshold):

N_to_A_edgestrength += Npotential
else if (Npotential > largethreshold):

N toA edgestrength -= 0.5 * N potential

For the purposes of this thesis, the exact threshold values they were inspired by the

values observed in STDP measurement experiments 6 and were fine-tuned by a little

6 Bi GQ, Poo MM (1998). "Synaptic modifications in cultured hippocampal neurons: dependence on spike timing,
synaptic strength, and postsynaptic cell type". The Journal of Neuroscience. 18 (24): 10464-10472.
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experimentation. Empirically, the actual values have little effect on the output as long as

smallthreshold > large-threshold. Throughout this thesis, the values used

are:

small-threshold = 0.01

largethreshold = 0.1

Another variable that goes hand-in-hand with these is the amount a node's potential is

increased by when a corresponding event is observed. As long as it is a positive number

and the potential decay exponent is chosen appropriately, the actual value has no impact

on the relative weights of the edges. The value used throughout this thesis is:

potential-increase = 0.5

Finding the optimal values for these three combined variables for a given input would be

an interesting area of further research.

Just to go over an example, consider event A followed by B. For simplicity, assume that

these are not the first events in a sequence, meaning A and B are already connected

together and both have a positive, but low, potential. When event A is processed, its

potential is increased. Then its neighbors are considered. The only neighbor is B, whose

potential is low. This means there are two possibilities:

1) The edge B->A is weakened if B's potential is above small-threshold but

below largethreshold

2) The edge B->A is not changed if B's potential is below small threshold

22



That completes the steps when processing event A. Now when the next event is

processed, event B, things are a little different. The main difference is that A now has a

very high potential (because the potential was recently increased). This means that A's

potential will be above largethreshold and the edge A->B will be strengthened

strongly.

The overall effect is that edge A- >B is strengthened. This was the desired effect because

A was directly followed by B. The closer together in time A and B are, the higher A's

potential will be, and the stronger the connection increase will be.

5.4 How connections are initially formed

I've mentioned how connections strengths change, but not how they are originally

formed. Working with a complete graph is too inefficient. Not only would a lot of

memory be spent on storing unimportant edges, but it would mean each node would be

a neighbor of all other nodes. If there are N nodes in the graph, each event would cause

N edges to be updated, mostly with an insignificant effect.

A simple solution was implemented using a short queue that keeps track of recent

events. This queue keeps the most recent events processed over a set interval. The

length of the interval is set so that over the interval the potential decays down to an

insignificant amount. Throughout this thesis I used an interval of 10 time units, at which

point the potential decays to about 10- of a percent of the original value.

The graph starts with no connections. When an event is processed, edges are created

between this event and all events in the queue. If the edge already exists, nothing is

changed. Since edges weights are only increased when neighbors have a significant
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potential, the use of this queue allows the algorithm to avoid adding edges that would be

very close to zero.

6 Results

In order to test the algorithm, I started out by running it on artificial data. This allowed

me to carefully control the patterns contained in the input data.

6.1 Causal Relationships

To start out, I created data that simulated a caused event. Consider two events, "A" and

"B".

Over a set span of time, "A" events were randomly distributed with a given frequency (a

given rate parameter /1), using a Poisson distribution. I then made sure that after a

certain interval every "A" event was followed by a "B" event (see Figure 11 for sample

data).

b b b b

Figure 11 - Sample data generated automatically to simulate causal events. "A" events are distributed
randomly (with a given frequency) and "B" events are forced to follow each "A" event after a given
interval of time.

The auto-generated input data had on average 20 A/B pairs that took place over 200

time units. The Poisson rate was A = 0.1, with an average of a pair every 10 time units.

The interval between the "A" event and the "B" event was o.1 time units.

Figure 12 shows the results of the algorithm. As you can see, it clearly extracts the causal

relationship indicating that A seems to be causing B. Across different trials that used
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different instantiations of the data (different due to randomness of the distribution), the

results were consistently the same.

b

a

Figure 12 - Graph illustrating the relative strength of the connections formed given data with causal
data. The strength of the connection between A->B is much stronger than B->A. This indicates that
there is an asymmetric relationship from A to B. It is called a causal relationship because A seems to
cause B.

The ratio of the edges weights A->B to B->A differed slightly across different trials. The

value averaged over 100 trials was 29.7, implying a strong causal relationship.

6.2 Coincidental Relationships

The goal of the following experiment was to find out if the algorithm could identify

symmetric relationships, also called coincident relationships. This is the kind of

relationship that represents events that tend to happen together in time, but in no

particular order.

Like before, there were two types of events, A and B. They were randomly spread out

with an equal frequency over a set amount of time. Then, for each of these events, the

opposite event was added after a certain interval. After each A, a B event was added.

Likewise, after every B event an A event was added (see Figure 13 for sample data). The

Poisson rates and the intervals were the same as those used before in the causal

experiments.
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Figure 13 - Data generated automatically to simulate coincident events. Both "A" and "B" events are
added randomly (with a given frequency) and then followed by the corresponding opposite event ("A"
by "B" and "B" by "A") after a given interval.

Figure 14 shows the results of the algorithm. Unsurprisingly given the symmetry of our

data, the relationships between our events now appear symmetric.

b

a

Figure 14 - The strength of the connections between A->B and B->A are very similar. This shows that
the symmetric relationship between them was successfully captured. I call this a coincident
relationship.

The ratio of the edges weights A->B to B->A differed slightly across different trials. The

value averaged over 100 trials was 1.02, implying a coincident relationship.

6.3 Putting it together

Any arbitrary combination of these relationships can be found. For example, consider

data with 4 events: A, B, C and D. Event A will cause B and events C and D will be

coincident, meaning they will tend to happen close in time but in no particular order.

Figure 15 shows a sample of the data, and Figure 16 shows the graph representing the

results.

a d a a a C c mc a
b c b b b d d b d b

Figure 15 - Sample timeline of events simulating a causal relationship between A->B, and a coincident
relationship between C<->D.
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Figure 16 - The relationships present in the data are visible and easily extracted. The unwanted edges
all appear in yellowish green, and the expected edges are much darker and thicker.

Here are the main ratios in this graph:

e A->B to B->A: 28.1

e C->D to D->C: 1.o

" A->B to C->D: 1.9

" Average(A->B, C->D, D->C) to Average(Remaining Edges): 9.6

The expected edges are on average almost 10 times stronger than the unwanted edges.

This shows that the algorithm clearly extracts the patterns present in the data for this

experiment.

Notice how the causal edge is stronger than the coincident edge (about 2 times stronger).

This was expected given that there are just as many causal events as there are

coincidental events. Causal events always strengthen the same edge (in this case A->B),

while coincidental events are spread out strengthening two edges (in this case both C-

>D and D->C). Each of these pairs of events increases the connection strength by a

constant amount since the interval between the pairs is the same. Therefore it follows

that the causal edge ends up about twice as strong.
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6.4 Introducing Noise

6.4.1 Missing Information

So far the patterns have been extracted under idealized conditions. The data is perfect in

the sense that there is nothing missing - we observe all the relevant events. However, in

real life we often miss important information. Sometimes events are not visible or our

senses are imperfect.

More concretely, imagine that you are learning that a falling glass is followed by a

shattering sound. It's possible that you hear the shattering sound but don't look to see

what shattered. On the other hand, you might see a glass falling but it's too noisy for you

to clearly hear the sound. A robust learning system should be able to handle these

imperfections that sometimes cause information to be missing.

I used the three sets of data used for sections 6.1, 6.2 and 6.3, representing causal,

coincident, and the combined relationships. I modified them so that 50% of the data is

randomly removed (See Figure 17 for a sample).

A)

B)

C)

b b b

a a a b b
b b

| |I |I ||
a

I I
d

C
d a

b
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Figure 17 - Sample data for the A) causal relationship and B) coincident relationship. 50% of the
original data was removed, so instead of pairs you can often see isolated "a" or "b" events.

Surprisingly, even with half of the data removed, the algorithm manages to fare well and

clearly extract the patterns contained in the data. The patterns consistently resemble

those extracted with complete information (see Figure 18).

A) B) C)

Figure 18 - Even though half of the data was removed, the relationships are still clearly discovered. A)
shows the causal relationship B) shows the coincident relationship C) shows a combination of these.
These are the same relationships used in Figure 16 where A->B and C<->D. The fact that the C<->D
relationship doesn't appear perfectly symmetrical reflects the fact that when 50% of the data is
removed, some result variance is already observed across trials.

This algorithm seems to be robust against missing information. It does well when up to

50% of the information is gone. However, when more than 50% is removed, the results

start to quickly deteriorate. The results start to become unpredictable, or in other words,

start having too much variance across trials (see Figure 19).
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Variance Increases as More Data is Missing
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Figure 19 - As a greater percent of the input data is randomly removed, the algorithm's output
becomes more unpredictable. I compared the strength of edges in the output that represent
relationships present in the data, with the strength of edges that are not present in the data. The
graph shows the variance of the ratio of these two quantities. This ratio quantifies the quality of
relationship extraction. When the variance becomes too high, the relationship extraction becomes too
erratic.

6.4.2 Extra Information

Still the pattern extraction is a little idealized. Often not only is there missing

information, but there is extra information. Often, we observe information that has

nothing to do with the pattern we are trying to extract.

Consider the example where you are learning that a falling glass is followed by a

shattering sound. While learning, there will likely be other things going on

simultaneously. There may be dogs barking, wind blowing, people chatting, colorful

balls bouncing - generally things that could confuse the learning process. A robust

algorithm should be able to learn even amid these unrelated distractions.

I re-generated the three data sets in 6.4.1, except this time I added 3 distracting events

which I call ni, n2, and n3 (n stands for noise). These represent random events with no

particular relationship with one another. For this experiment, I controlled the amount of
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distracting events so that the sum of the frequencies of ni, n2, and n3 are the same as

the sum of the frequency of A and B events. This essentially means that there is as much

noise as there is useful data. Figure 20 shows a sample of this input data.

I | II|| I
b b

| | | I | | |
b rri n2 a
a b

Figure 20 - Subset of the data illustrating the kind input that the algorithm receives. The top timeline
represents the causal data, and the bottom one represents the coincidental data.

A) B)
113 11.3

On2 112

Figure 21 - Attempting to find patterns in noisy data. Three noise events (n1, n2, n3) are introduced
at a frequency equal to the frequency of useful data (a, b). Even so the relationships present in the
data are still clearly extracted (indicated by the strong red arrows). Part A) shows a causal
relationship between a->b and part B) shows a coincident relationship between a<->b.

As you can see in Figure 21, even though there is as much random noise as useful data,

the patterns are still clearly discovered. In the coincident case (part B in Figure 21), the

weights of the strongest edges (shown in red) are on average 11 times stronger than

those of the weaker ones (shown in green). In the causal case (part A in Figure 21), this

value is 41 times.
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Naturally, as the amount of noise is notched up, the patterns become harder and harder

to extract. Figure 22 illustrates more precisely how the amount of noise affects the

relationship extraction.

So far we've been using only 3 different types of noise for simplicity. It is important to

point out that this is not very realistic. When learning patterns, there's a wide variety of

distracting factors which are certainly not limited to 3 types. A realistic number might

be closer to 100 or 1000. Figure 23 illustrates how the extracted relationships hold up to

noise when there are 100 different types of noise. In this more realistic case, the

algorithm can tolerate extremely high levels of noise while still clearly extracting the

true relationships present in the data.

Signal to Noise Ratio as Noise
Increases (3 distractors)
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Figure 22 - How the strength of the extracted signal decays as amount of noise in the data increases.
More precisely, the x-axis shows the ratio of the frequency of noisy events to the frequency of A/B
event pairs. The y-axis shows the ratio of the average strength of relevant edges (red in Figure 23) to
the average strength of noise edges (green in Figure 23). If the amount of noise is reduced to zero, the
strength of the extracted pattern becomes infinitely stronger in comparison to the strength of the
edges between the noisy events.
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Figure 23 - Same as Figure 22, except using 100 different types of noise. It is now far more resistant to
noise. Even when there is 4 times more noise than signal, the strength of the weights of the extracted
relationships are still 500 times stronger than that of the other edges.

It's very encouraging to see that this simple algorithm can be resilient to very high

amounts of noise, something that has traditionally been hard to deal with (in machine

learning techniques such as Bayesian networks and support vector machine).

6.5 Extracting Patterns from a Story

One way to test the ability of the algorithm to find patterns is to apply it to data that is

well understood and for which I can qualitatively gauge the results of.

An interesting such data set would be a well known children's story. When you listen to

a story, you are essentially listening to sequences of sounds at particular points in time.

These sounds form words, each of which could be thought of as an event in a sequence. I
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chose to work with the story "The Wizard of Oz" in particular because it is in the public

domain.

To run the algorithm over a text, I did some basic pre-processing to generate the events

from the story. I assumed the following:

e Each word is an event

" Periods represent long pauses

" Commas represent short pauses

" Period pauses are twice as long as commas pauses

Using these assumptions, I was able to turn the entire text into event-timings where

each word is an event in time.

A first run through the text, gave uninteresting results. Most of the strong relationships

were between very frequent words such as "the", "a" and "it." These words had hundreds

of connections with other words, even though they are irrelevant to the plot of the story.

The problem with these words is that they form strong connections with a large variety

of other words. This means that the list of strongest edges is overwhelmed by these

connections.

This qualitative problem was solved by limiting the number of connections a node could

make. More precisely, it limited the sum of weights of all outgoing connections. For

simplicity, I will call this quantity the degree of the node.

Instead of removing nodes above a particular degree altogether (which also affects the

connections to other important nodes), a softer option was taken. Once a node reaches a
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certain degree, the connection strengths are normalized as to keep the degree constant

(see Figure 24 for a more intuitive illustration). This means that words with very high

degree of connections quickly 'spread themselves too thin' and end up with very weak

connections.

If the resources available to each word are 8

A) B)

Figure 24 - Whenever a word reaches a certain limit, which I call the "available resources", the sum of
the edge weights starts being normalized. This means the sum of all the edge weights never goes
above this limit. This decreases the strength of the edges between very common words with very high
degree like "the", "and" and "it".

When this normalization was put into place, the list of strongest relationships became

very different. Surprisingly, the strong connections all came in pairs. The kind of pairs

found such as "Emerald City" and "Tin Woodman" are satisfyingly relevant to the story,

showing that qualitatively this algorithm can find basic patterns in simple stories (see

Table 2 for the top 10 pairs).

Picked Up
Winged Monkeys
Emerald City
Tin Woodman
Guardian Gates
Wicked Witch
Uncle Henry
Rule Over
Ball Fire
Aunt Em
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Table 2 - Top ten pairs of words found in "The Wizard of Oz" with strongest relationships between
them. Aside from "Picked Up" the other relationships are relatively important elements of the story.

It makes sense that the strongest relationships are between common compound

expressions or names because these are the words that when they appear, they tend to

appear together. Because a maximum degree is set, words that are connected to many

other words end up with weak edges. Words that are connected to only a few other

words but appear often are the ones that end up with the strongest edges.

It turns out, for example, that every instance of "Uncle" is followed by "Henry" (because

he is the only uncle in the story). The other pairs are in similar situations. "Picked," as

another example, is followed by "Up" in 8 out of 10 cases. The other 2 cases are "picked

them up" and "picked him up" which would also strengthen the "picked" -> "up"

relationship (although not as strongly as simply the expression "picked up").

This short experiment showed that the algorithm is working as expected and finding

patterns between events that happen together.

6.6 Extracting Patterns from Stock Prices

One type of data that lent itself well for analysis by this algorithm was stock prices. They

are essentially a series of values changing over time which have potentially interesting

correlations.

Stock prices are continuous values. In order to be processed by the algorithm, however,

they needed to be transformed into discrete events. The way I did this was to simplify

stock fluctuations as just "up" events and "down" events, depending on whether the

stock value increased or decreased across trading days. This way, each company's stock

fluctuations was reduced to just 2 types of events happening over time.
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The stock price data was collected from Google Finance, which makes this data publicly

available. I used values from over the course of one full year (from Jan 15, 2011 to Jan 14,

2012) and considered only the values at the start of each trading day. This provided

about 250 individual events for each company's stock.

So, for example, if the stocks being analyzed were Citigroup and Microsoft, there would

be 4 possible events: "Citigroup UP," "Citigroup DOWN," "Microsoft UP," "Microsoft

DOWN." This sequence of events along with their timestamps was provided to the

algorithm as input. The timestamps were simplified to be just the number of trading

days since the first data point (Jan 15, 2011). This means that weekends and public

holidays, for example, are not counted as days.

The companies that were chosen were picked from four different industries: finance,

health care, oil and gas, and information technology. The companies were picked as the

top three largest U.S. companies in their industries by revenue7. Table 3 lists the exact

companies used.

Finance Health Care Oil and Gas Information Technology
JP Morgan McKesson Exxon Mobil Hewlett-Packard
Citigroup Cardinal Health Chevron IBM
AIG United Health ConocoPhillips Microsoft

Table 3 - List of companies whose stock was chosen to be analysed by the pattern finding algorithm.

One initial issue that needed to be addressed was how to handle simultaneous events -

events that happen at precisely the same time. There were a lot of simultaneous events

because each trading day provided several data points, all of which had exactly the same

data stamp. The algorithm, however, has no well defined behavior for simultaneous

7i "Fortune 500 2011." Fortune on CNNMoney.com. May 23, 2011. CNNMoney. 23 Jan. 2012.
<http://money.cnn.com/magazines/fortune/fortune500/2011/full list/>
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events. The desired behavior would be to get coincidental relationships formed between

these simultaneous events.

The way to get around this was to introduce very small random shifts in the timing of

the events to break the ties. Because the shifts were random and very small, over time

and on average the simultaneous events formed the desired coincidental relationships.

Something else that needed to be decided was the potential decay exponential. Because

this data's distribution over time is different from the data I dealt with before, I needed

to determine which was the best decay exponential to use. The decay exponential is

important because it affects the algorithm's ability to detect patterns over different time

spans. If the value is too high, the potential decays too fast and patterns happening over

longer periods of time cannot be detected.

I wanted to find patterns on the order of a day because each entry of the data set is

equivalent to one trading day. The way I handled this was by running experiments with

different decay exponentials on data that I knew should have strong causal relationships

on the order of a day.

The data that I used was stock price data for Shell alongside the same data shifted back

by one day. This meant that the latter data would be able to predict the Shell stock

increases and decreases perfectly. I then measured the strength of the causal

relationship by taking the ratio of strengths of one edge direction to the other. More

exactly:

Strength(Shell Shifted -> Shell)

Strength(Shell -> Shell Shifted)
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Figure 25 shows how the potential decay exponential affected this quantity. It shows

that the decay exponent of about 1.1 was ideal to detect causal relationships I was

looking for. The choice of Shell's stock was arbitrary, it just needed to be data in the

same format as the ultimate dataset but not included in it (to avoid any kind of

overtraining).

Strength of Causal Relationship Given
Potential Decay
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Figure 25 - Plot illustrating the how causal relationships can become clearer if the right potential
decay is picked. A decay of 1.1 is ideal to find causal relationships where the interval between
corresponding data is 1 (corresponding to 1 day). For decays that are larger (faster) than 1.7, the
relationship is not even visible. Smaller (slower) decays make longer patterns more visible, while
higher (faster) decays make patterns taking place over short periods more visible.

Table 4 shows the strongest 15 edges in the graph resulting from processing the stock

price information. It is very encouraging to see that out of these top 15 strongest edges,

the majority are between companies in the same industry. In fact, only three of the 15

are across different industries. The algorithm can essentially predict which companies

are related simply by looking at how stocks go up and down each trading day.
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Node 1 Node 2 Edge Weight

Exxon Mobile UP Chevron UP 13.97

Chevron UP Exxon Mobile UP 13-94

Citigroup DOWN JPMorgan DOWN 13-05

ConocoPhillips UP Exxon Mobile UP 12.92

Exxon Mobile UP ConocoPhillips UP 12.89

AIG DOWN JPMorgan DOWN 12.87

Chevron UP ConocoPhillips UP 12.85

JPMorgan DOWN AIG DOWN 12.81

ConocoPhillips UP Chevron UP 12.72

JPMorgan DOWN Citigroup DOWN 12.62

Citigroup DOWN AIG DOWN 12.54

JPMorgan DOWN Cardinal Health DOWN 12.46

JPMorgan DOWN Hewlett-Packard DOWN 12.30

AIG DOWN Citigroup DOWN 12.21

HewlettPackard DOWN JPMorgan DOWN 12.20

Table 4 - List of strongest edges in the graph resulting from analyzing stock prices fluctuation events
over the course of one year. Rows shaded in orange indicate edges between companies within the
same industry. The 10 strongest connections are all between companies in the same industry.

It is interesting to see that all the 15 strongest edges are for companies going up together

or going down together. This is certainly not a coincidence - this is consistently the case

up to the 2 18th strongest edge (out of 678 edges). This may be a result of the fact that

markets tend to be in sync to a large degree and tend go up and down together.

Another interesting thing to note is that the weight of the relationships is very close to

symmetrical, the weight of edges in opposite directions are consistently within 5% of

each other. The slight differences between symmetrical edge weights can easily be

attributed to the small timing randomness that was introduced.

The top two strongest edges, for example, are "ExxonMobile UP" and "Chevron UP" and

vice versa. This implies that the two events seem to be happening simultaneously, rather

than being shifted in time (by a trading day for example). A delay between the two

would create a causal (asymmetric) relationship between the two. The fact that these
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kinds of relationships are not observed is reasonable - if any strong causal relationships

were detected, this would mean there existed market inefficiencies that could be

exploited to predict stock prices. If there was a strong asymmetrical relationship

between Exxon Mobile and Chevron, it would mean you could probabilistically predict

the rise or falls of one price given the other. Unsurprisingly (and unfortunately) this is

not the case.

While companies in the "Oil and Gas" and "Finance" seem to have strong relationships

between each other, the same is not true of "Health Care" and "Information Technology."

One way to make it clearer which companies are related is organize the data a little

differently. For each pair of companies I took the average weight of edges connecting

two "UP" events or two "DOWN" events. I also took the average weight of edges

connecting opposite events: one "UP" and one "DOWN". The difference between these

quantities gives a measure of how in correlated the companies' stock is. I call this

quantity "net correlation". Table 5 lists the top two net correlations for each company.

Rows in orange indicate pairs of companies that are in the same industry.

Company 1 Company 2 Net Correlation
AIG JPMorgan 10.35
AIG Citigroup 9.52
Cardinal Health McKesson 10.11
Cardinal Health JPMorgan 9.83
Chevron Exxon Mobile 12.63
Chevron ConocoPhillips 11.05
Citigroup JPMorgan 10.69
Citigroup AIG 9.52
ConocoPhillips Exxon Mobile 11.26
ConocoPhillips Chevron 11.05
Exxon Mobile Chevron 12.63
Exxon Mobile ConocoPhillips 11.26
Hewlett-Packard JPMorgan 9.37
Hewlett-Packard Cardinal Health 8.93
IBM IBM 2.42
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JPMorgan Citigroup 10.69
JPMorgan AIG 10-35
McKesson Cardinal Health 10.11
McKesson ConocoPhillips 7.66
Microsoft Hewlett-Packard 8.52
Microsoft AIG 7.71
UnitedHealth Exxon Mobile 8.80
UnitedHealth Cardinal-Health 8.74

Table 5 - List of the top two net correlations for each company. Entries shaded in orange indicate
relationships between companies in the same industry.

It is encouraging to see that out of the 24 entries listed, 16 of them are for companies

across the same industry, demonstrating that the algorithm is finding very plausible

patterns. As for the remaining correlations, it is still possible that these represent real-

life relationships but they are less straightforward to verify.

The relationships that emerged from running over stock price data have been very

symmetrical relationships. To verify that this is not an artifact of the algorithm, I ran a

simple experiment where I shifted one of the stocks (Exxon Mobile) over by a single day.

Table 6 illustrates the relationships between the 3 oil and gas companies when Exxon

Mobile was not shifted. Table 7 shows the result for the same experiment when the

Exxon Mobile stock is shifted.

Node 1 Node 2 Edge Weight Wtio Edge

Chevron DOWN ExxonMobile DOWN 17.17 0.95
ExxonMobile DOWN Chevron DOWN 18.03
Chevron UP ExxonMobile UP 20.98 0.95
ExxonMobile UP Chevron UP 22.08
ConocoPhillips DOWN ExxonMobile DOWN 17.85 0.97
ExxonMobile DOWN ConocoPhillips DOWN 18.42
ConocoPhillips UP ExxonMobile UP 20.15 0.97
ExxonMobile UP ConocoPhillips UP 20.86
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Table 6 - Relationships between Exxon Mobile and both Chevron and Conoco Phillips are mostly
symmetrical. If the relationships were perfectly symmetrical, the ratio of the edge weights would be
1.0. They are less than 5% away from perfectly symmetrical and the difference can be attributed to
the randomness I introduced to resolve ties between simultaneous events.

Ratio of EdgeNode 1 Node 2 Edge Weight Weights
Chevron DOWN ExxonMobile DOWN 17.23
ExxonMobile DOWN Chevron DOWN 12.26
Chevron UP ExxonMobile UP 21.14 1.31ExxonMobile UP Chevron UP 16.19
ConocoPhillips DOWN ExxonMobile DOWN 18.07 1.39ExxonMobile DOWN ConocoPhillips DOWN 13.04
ConocoPhillips UP ExxonMobile UP 20.19 1.31ExxonMobile UP ConocoPhillips UP 15.38

Table 7 - Relationships between Exxon Mobile and both Chevron and Conoco Phillips are not
symmetrical anymore once the Exxon Mobile stock data is shifted by a day. The fact that the ratio of
edge weights is different from 1.0, implies that there is a causal relationship between both of these
companies and Exxon Mobile. The 3 companies tended to be in sync before, but when the Exxon
Mobile was shifted forward by one day, its stock lagged in relation to the other oil companies. This
gives the appearance it is the other companies stock changes that cause Exxon Mobile's stock changes
to happen one day later.

Table 6 has edge weight ratios that are close to 1.0 (within less than 5%), which matches

the expectation that the relationship would be symmetrical. Table 7 on the other hand,

shows a causal relationship with an edge weight ratio that is over 30% larger than the

perfectly symmetrical ratio of 1.0. Because the oil companies' stock prices are

coincidentally related, shifting Exxon Mobile's data forward in time by one day created a

causal relationship. With the data shifted, knowing the other companies stock trends

gave information about Exxon Mobile's future stock trend.

This little debugging experiment confirms that the algorithm successfully picks up

causal relationships between the stock prices, at least when causal relationships occur

on the order of a day. If the stock data was more granular (order of hours or minutes), it
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is likely that the algorithm would be able to find relationships across smaller time

intervals.

7 Future Work

There is a variety of next steps to do with this research. Right now the algorithm can

only extract relationships between given events. It would be very interesting to give it

the ability to look beyond the existing events, and allow it to create basic abstractions

(ex: go from "apple", "pear", "peach" and relate them by the idea of "fruit").

7.1.1 Abstraction Nodes

One step towards creating abstractions would be to create new nodes automatically.

When two nodes have a strong coincident relationship, it means that they tend to fire

together (or equivalently, two events tend to happen together). If that's the case, it

would make sense to create a new node that represents both these nodes. This new node

could be created and connected to both of the old nodes, thereby implying a strong

connection between them.

7.1.2 Potential Propagation

The idea of potential propagation is for the firing of one node to influence the firing of

another related node. A potential threshold could be set above which the node would

spontaneously "fire" (in the same sense that a neuron fires). So, in this model, if there is

a node A and its close neighbor N, when A fires the potential of N would increase. If

enough neighbors fire, that might be enough to raise the potential high enough to cause

N to fire. The ultimate goal here would be to create more indirect associations. Imagine

that nodes representing "round", "small", "lime color", "bouncy" all fire. It would be nice
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to have the related node "tennis ball" fire as well. It would serve as a first step towards

abstraction.

8 Conclusion

Machine learning has traditionally focused on data that is isolated from its context in

time. The algorithm presented in this thesis offers a new method to capture timing

patterns in series of events. It has shown to be very robust to noisy inputs, which makes

it promising in its usefulness to process sensor data. It is also an online algorithm,

meaning that it is able to process data on the fly as it receives it.

There are multiple potential applications for this algorithm. Essentially any data that

happens over time could benefit from analysis with this algorithm. I showed that it can

find patterns in artificially generated data, as well as in stock price events.

I truly hope more research is done in this field. I believe there are some great insights to

be made in this area. This research emulates a neuroscience phenomenon that is

thought to have the incredible potential to carry out basic learning in the brain, and it

would be fascinating to see how far this approach can be taken. Achieving the goal of

mimicking the pattern-finding abilities of the brain is still far out, but I believe that

taking inspiration from the new processes recently being discovered in neuroscience is

the right approach.
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9 Contributions

" Implemented a biologically inspired algorithm to capture relationships in time-

based data.

" Showed by simulation that relationships can be extracted even in situations of

extreme noise.

* Applied algorithm to a simple story text by turning words into events. Found that

subjectively the patterns extracted are relevant to the story.

* Applied algorithm to stock price data. Found that companies within the same

industry tend to have stronger coincident relationships between each other.
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