
Short Tandem Repeat (STR) Profile

Authentication via Machine Learning Techniques

by

Anna Shcherbina

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Computer Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 2012

@ Massachusetts Institute of Technology 2012. All rights reserved.

A u th or ..
Department of Electrical Engineering and Computer Science

May 21, 2Q12

Certified by......... a p d l
S r4 Anhony Lapadula

MIT Lincoln Laborat r Technical Staff
/hpis Sypervisor

Certified by................

Accepted by

(~7~N~

V

z::: VKanolis Kellis
Associate Professor

Thesis Supervisor

Prof. Dennis M. Freeman
Chairman, Masters of Engineering Thesis Committee

Short Tandem Repeat (STR) Profile
Authentication via Machine Learning

Techniques

by
Anna Shcherbina

Submitted to the Department of Electrical Engineering and
Computer Science

on May 21, 2012, in partial fulfillment of the
requirements for the degree of

Master of Engineering in Computer Science and Engineering

Abstract
Short tandem repeat (STR) DNA profiles have multiple uses in forensic analysis,

kinship identification, and human biometrics. However, as biotechnology progresses,
there is a growing concern that STR profiles can be created using standard laboratory
techniques such as whole genome amplification and molecular cloning. Such technolo-
gies can be used to synthesize any STR profile without the need for a physical sample,
only knowledge of the desired genetic sequence. Therefore, to preserve the credibility
of DNA as a forensic tool, it is imperative to develop means to authenticate STR
profiles. The leading technique in the field, methylation analysis, is accurate but also
expensive, time-consuming, and degrades the forensic sample so that further analysis
is not possible.

The realm of machine learning offers techniques to address the need for more effec-
tive STR profile authentication. In this work, a set of features were identified at both
the channel and profile levels of STR electropherograms. A number of supervised
and unsupervised machine learning algorithms were then used to predict whether a
given STR electropherogram was authentic or synthesized by laboratory techniques.
With the aid of the LNKnet machine learning toolkit, various classifiers were trained
with the default set of parameters and the full set of features to quantify their base-
line performance. Particular emphasis was placed on detecting profiles generated by
Whole Genome Amplification (WGA).

A greedy forward-backward search algorithm was implemented to determine the
most useful subset of features from the initial group. Though the set of optimal
feature values varied by classifier, a trend was observed indicating that the inter-locus
imbalance error, stutter count, and range of peak widths for a profile were particularly

2

useful features. These were selected by over two thirds of the classifiers. The signal-
to-noise ratio was also a useful feature, selected by seven out of 16 classifiers.

The selected features were in turn used to tune the parameters of machine learning
algorithms and to compare their performance. From a set of 16 initial classifiers, the
K-nearest neighbors, condensed K-nearest neighbors, multi-layer perceptron, Parzen
window, and support vector machine classifiers achieved the best performance. These
classification algorithms all attained error rates of approximately ten percent, defined
as the percentage of profiles misclassified with the highest performing classifier achiev-
ing an error rate of less than eight percent. Overall, the classifiers performed well
at detecting artificial profiles but had more difficulty accurately distinguishing natu-
ral profiles. There were many false positives for the artificial class, since profiles in
this category took on a greater range of feature values. Finally, preliminary steps
were taken to form classifier committees. However, combining the top performing
classifiers via a majority vote did not significantly improve performance.

The results of this work demonstrate the feasibility of a completely software-based
approach to profile authentication. They confirm that machine learning techniques
are a useful tool to trigger further investigation of profile authenticity via more ex-
pensive approaches.

Thesis Supervisor: Dr. Anthony Lapadula
Title: MIT Lincoln Laboratory Technical Staff

Thesis Supervisor: Manolis Kellis
Title: Associate Professor

This work is sponsored by the Assistant Secretary of Defense for
Research and Engineering under Air Force Contract FA8721-05-C-0002.
Opinions, interpretations, conclusions and recommendations are those of
the authors and are not necessarily endorsed by the United States
Government.

3

Acknowledgments
First and foremost I want to thank my supervisor at Lincoln Laboratory, Dr.

Anthony Lapadula. Thank you for providing mentorship and advice throughout my

thesis research. Your help and support has been invaluable, and I appreciate your

many great ideas that have helped me overcome sticking points over the course of my

research. I would also like to thank Dr. Martha Petrovick and Johanna Bobrow for

providing the raw STR profile data needed for my research and suggesting features

to examine in the feature identification phase of the project. I am also extremely

grateful to Edward Wack, group leader of the Biological Engineering Group at MIT

Lincoln Laboratory, for accepting me into the group and enabling the funding of my

MEng work.

Additionally, I would like to thank Professor Manolis Kellis, my MEng advisor

at MIT, for providing great suggestions about machine learning algorithms and tech-

niques. I have learned a lot about the application of machine learning techniques to

problems in biology by speaking to you about my thesis work and taking your course

on computational biology.

I would furthermore like to thank the staff who run the VI-A program for pro-

viding such an amazing opportunity for students like me to obtain valuable industry

experience while completing an MEng degree.

Finally, I would like to thank my parents, Tatyana Proshko and Yuri Shcherbina,

for working extremely hard to give me extensive opportunities in education and more

generally in life. Thank you for encouraging me to pursue my academic interests

and for providing emotional (and financial) support as I navigated the frequently

uncertain waters of my education at MIT.

4

Contents

1 Short Tandem Repeat (STR) Profiles: Natural and Synthetic Ap-

proaches 19

2 Data Analysis 25

2.1 Source STR Profile Availability 25

2.2 Profile Acquisition 26

2.3 Extracting Electropherogram Information from .fsa Files 29

2.4 Feature Identification . 30

2.5 Feature Granularity/Establishing Patterns for Classification 36

2.6 High Level Feature Analysis . 37

3 Machine Learning Algorithms for STR Profile Classification 41

3.1 Classifier Training: Developing Accurate Discriminant Functions Be-

tw een C lasses . 42

3.2 N-Fold Cross Validation . 43

3.3 Classifier Taxonomy . 46

3.4 Improving Classifier Performance . 50

4 Feature Selection 51

4.1 Replicate Analysis . 52

4.2 Feature Selection Algorithms . 53

5

4.3 Clustering Algorithms . 56

4.4 Effects of Feature Selection . 57

5 Parameter Optimization 61

5.1 Motivation for Parameter Tuning . 61

5.2 Parameter Tuning Algorithm . 63

5.3 Performance Evaluation . 64

5.4 Parameter Tuning Examples for the Gaussian and ARTmap classifiers 65

5.5 Full Parameter Sweeps . 71

6 Results of Feature Selection and Parameter Tuning: Determining

Optimal Classifier Behavior 75

6.1 Classifier Comparison with Performance Score Weights [1,1,1,1,1] 75

6.2 High-Performing Classifiers . 78

6.2.1 K-Nearest Neighbors (KNN) 78

6.2.2 Condensed K-Nearest Neighbors (CKNN) 79

6.2.3 Multi-Layer Perceptron (MLP) 80

6.2.4 Parzen W indow . 85

6.2.5 Support Vector Machine (SVM) 87

6.3 Emphasis on Minimizing False Negatives for WGA Class 88

6.4 Emphasis on Correctly Classifying Natural vs. Correctly Classifying

W G A . 92

6.5 Machine Learning on the PowerPlex STR Typing Kit 98

6.6 Distinguishing Natural Profiles from Bacterial Clones 100

7 Committee Classifiers 105

7.1 Committee Generation by Stacking 106

7.1.1 Majority Vote Results . 107

7.1.2 Majority Vote of High-Performing Classifiers 108

6

7.1.3 Average of Classifier Results 110

7.1.4 Median of Classifier Results 112

7.2 Random Forest . 114

8 Project Extensions 119

8.1 Classifier Committees via Boosting 119

8.2 M ulti-Class Classification . 120

8.3 Identify the Source of Classifier Errors 120

8.4 Determining ROC Curves . 121

8.5 Other Cost Metrics: Time and Memory 121

8.6 Quantitative Estimate of Classifier Generalization 123

9 Summary of Major Conclusions 125

A Raw Feature Data for Identifiler Kit 131

B Features Selected by a Variety of Classifiers 139

C Individual Classifier Tuning 147

D Combined Classifier Performance as a Function of Scoring Weights

and Feature Optimization Parameters 157

E Raw Feature Data for Powerplex Kit 161

7

THIS PAGE INTENTIONALLY LEFT BLANK

8

List of Figures

1-1 Each person inherits two alleles at an STR locus, one from each parent.

The two alleles can differ in the number of base pair repeats. 20

1-2 Bacterial cloning summary. For purposes of this project, the pink

strands of "foreign DNA" refer to DNA segments that contain the

CODIS loci and Amelogenin [24]. 22

1-3 Whole genome amplification (WGA). (1) The random hexamers (rep-

resented by a blue line) bind to the denatured DNA (represented by

a green line). (2) The DNA polymerase (represented by a blue circle)

extends the primers until it reaches newly synthesized double-stranded

DNA (represented by an orange line). (3) The enzyme proceeds to

displace the strand and continues the polymerization, while primers

bind to the newly synthesized DNA. (4) Polymerization starts on the

new strands, forming a hyper-branched structure [11]. 22

2-1 Two cycles of PCR are illustrated. The red and orange lines represent

the DNA template to which primers (pink and green ovals) anneal. [19]. 26

2-2 AmpFLSTR Identifiler allelic ladder (Applied Biosystems). A total of

205 alleles are included in this ladder used for genotyping a multiplex

PCR reaction involving 15 STR loci and the amelogenin sex-typing test. 28

9

2-3 A natural profile obtained via multiplexed PCR with the Identifiler kit.

The alleles of interest are indicated by fluorescence peaks. The size

standard, in the bottom channel, was aligned with the size standard

from a ladder. The aligned sample was then compared with the ladder

to identify allele peaks based on their size. 30

2-4 Sample natural STR profile from Identifiler kit with 4 Channels, 16

Loci, and a size standard. Boxed values represent called alleles. . . . 31

2-5 Intra-locus imbalance. 32

2-6 Differences in intensity between natural and WGA profiles are noted

with the blue and red circles. A drop-in allele is present in the WGA

(lower) channel. 33

2-7 Ski slope and stutter peaks. 35

2-8 Peak shape and signal-to-noise ratio. 35

2-9 Split peaks due to incomplete adenylation do not follow the expected

Gaussian shape [5]. 36

3-1 The training phase of classifier development involves creating a dis-

criminant function that forms decision boundaries between the natural

and WGA classes in multi-dimensional space. 44

3-2 K-fold cross validation was used to combat low data availability by

using each profile for both training and testing [42]. Four folds were

used (K = 4). 45

3-3 Classifier approaches to forming decision regions [35]. 47

3-4 Machine learning classifier development overview. 50

4-1 A natural profile with four replicates. 53

4-2 A WGA profile with four replicates. 54

10

4-3 Support vector machine feature selection. The results of feature selec-

tion for other classifiers are included in Appendix B. 55

4-4 Identifiler profile misclassification pre- and post- feature selection. Fea-

ture selection led to a drop of 13 percentage points in the overall num-

ber of classification errors. 58

4-5 Some features are particularly useful across a variety of the classifiers

exam ined. 59

5-1 The covariance matrix of a Gaussian classifier can be calculate in four

w ays [38]. 62

5-2 The performance of the Gaussian classifier depends on its covariance

m atrix [38]. 63

5-3 Gaussian classifier with parameters full, per-class 67

5-4 Fuzzy ARTmap classifier schematic [24]. 68

5-5 Artmap classifier with parameters alpha test- vigil, alpha-train-vigil, al-

pha, beta, beta-vigil. 70

5-6 Parameter sweep for the Gaussian classifier with covariance matrix

determined by parameters full and per-class. 72

5-7 Parameter sweep tuning for the ARTmap classifier with parameters

alpha-train vigil, alpha-test vigil, and beta. 73

6-1 Identifiler, weights =[1,1,1,1,1], column 1: default performance, col-

umn 2: performance after feature selection, column 3: performance

after parameter tuning. 76

6-2 Identifiler, weights =[1,1,1,1,1]. Performance after parameter tuning

is show n . 76

6-3 K nearest neighbors with parameter K. 79

6-4 K nearest neighbors with parameters K and epochs 80

11

6-5 Multi-layer perceptron with parameters epochs, alpha, nodes, etta, etta-change-type,

hfunction, ofunction, cost-fun, init-mag, sigmoid-param. 83

6-5 (continued). 84

6-6 Parzen classifier with parameters per-input, per-class, minvar, spread,

lin ear. 86

6-7 SVM classifier with parameters sigma and cbound. 88

6-8 Identifiler, weights = [1,1,1,10,1]. p(natlwga) was assigned a cost 10

times higher than any other error. Column 1: default performance,

column 2: feature selection, column 3: parameter tuning. 90

6-9 Identifiler, weights = [1,1,1,10,1], tuned parameters. p(natlwga) was

assigned a cost 10 times higher than other errors. 90

6-10 Identifiler, weights =[1,1,1,1,1] compared with weights [1,1,1,10,1]. . 92

6-11 Identifiler, weights = [3,1,1,3,1], features optimized for natural profile

classification. 96

6-12 Identifiler, weights = [1,3,3,1,1], features optimized for WGA profile

classification. 96

6-13 Identifiler, comparison between classifiers optimized for identifying nat-

ural profiles (weight vector [3,1,1,3,1]), and classifiers optimized for

identifying WGA (weight vector [1,3,3,1,1]). 97

6-14 PowerPlex, natural vs WGA, weights = [1,1,1,1,1], column 1: default

performance, column 2: performance after feature selection, column 3:

performance after parameter tuning. 99

6-15 PowerPlex, natural vs. WGA, weights = [1,1,1,1,1]. Performance after

param eter tuning. 99

6-16 PowerPlex, natrual vs. bacterial cloned/synthetic, weights = [1,1,1,1,1],

column 1: default performance, column 2: feature selection, column 3:

param eter tuning. 102

12

6-17 PowerPlex, natural vs bacterial, tuned parameters, weights = [1,11,1,11].102

6-18 Parameters optimized, weights =[1,1,1,1,1. The three columns in

each bar represent Identifiler natural vs. WGA, PowerPlex natural vs.

WGA, PowerPlex natural vs. bacterial. 103

7-1 Majority vote committees. 107

7-2 Majority vote committee test data misclassifications. 108

7-3 Natural profile that was classified as WGA by all six majority vote

com m ittees. 109

7-4 Natural profile that was classified correctly by all six majority vote

com m ittees. 109

7-5 Majority Vote of Five Top-Performing Classifiers: CKNN, KNN, MLP,

Parzen, SVM .111

7-6 Committees formed by averaging individual classifier results. 112

7-7 Mean committee test data misclassifications. 113

7-8 Committees formed by taking the median of individual classifier results. 113

7-9 Median committee test data misclassifications. 114

7-10 Random forest out-of-bag error: individual trees compared with cumu-

lative forest. 117

8-1 Method to generate receiver operating characteristic (ROC) curve [43]. 122

8-2 A single layer of the MLP algorithm on a separable data set can be

implemented via logical "and", "or", "majority" functions, which all

return correct outputs, but differ in training and test time [35] 123

9-1 Some features are particularly useful across a variety of the classifiers

exam ined. 126

9-2 Identifiler, weights =[1,1,1,1,1], features optimized, column 1: baseline

performance, column 2: feature selection, column 3: parameter tuning. 128

13

9-3 Identifiler, weights = [1,1,1,1,1], fine-tuned parameters. 128

A-I Gaussian Error For Each Channel and Profile (Normalized, No Outliers) 132

A-2 Heterozygote Intralocus Imbalance For Each Channel and Profile (Nor-

m alized, No Outliers) . 132

A-3 Interchannel Intensity For Each Channel and Profile (Normalized, No

O utliers) . 133

A-4 Interlocus Imbalance Error For Each Channel and Profile (Normalized,

N o O utliers) . 133

A-5 Interchannel Intensity For Each Channel and Profile (Normalized, No

O utliers) . 134

A-6 Off Ladder Inside Bin For Each Channel and Profile (Normalized, No

O utliers) . 134

A-7 Off Ladder Outside Bin For Each Channel and Profile (Normalized,

N o O utliers) . 135

A-8 Peak Width For Each Channel and Profile (Normalized, No Outliers) 135

A-9 Ski Slope For Each Channel and Profile (Normalized, No Outliers) . . 136

A-10 SNR For Each Channel and Profile (Normalized, No Outliers) 136

A-11 Stutter Count For Each Channel and Profile (Normalized, No Outliers) 137

B-1 Artmap Classifier Feature Selection 140

B-2 Bintree Classifier Feature Selection 140

B-3 Condensed K Nearest Neighbors Classifier Feature Selection 141

B-4 Gaussian Classifier Feature Selection 141

B-5 Gaussian Mixture Model Feature Selection 142

B-6 Histogram Classifier Feature Selection 142

B-7 Hypersphere Classifier Feature Selection 143

B-8 Incremental Radial Basis Function Classifier Feature Selection 143

14

B-9 K Nearest Neighbors Classifier Feature Selection 144

B-10 Linear Vector Quantizer Classifier Feature Selection 144

B-11 Multi-Layer Perceptron Feature Selection 145

B-12 Naive Bayes Classifier Feature Selection 145

B-13 Nearest Cluster Classifier Feature Selection 146

B-14 Parzen Classifier Feature Selection . 146

C-1 Binary Tree Classifier with parameters leaf-minnpatterns, prune-val,

m ax-node. 148

C-2 Gaussian Mixture Classifier with parameters grand, full, var-spread,

epochs........ 149

C-3 Histogram Classifier with parameters grand-bins, bintype, nbins, range-factor. 150

C-4 Hypersphere Classifier with parameters grand-bins, bintype, nbins,

range-factor. 151

C-5 Incremental Radial Basis Function with parameters fclparam, weight eta,

max-magnitude, bias, grand, cost-fun 152

C-6 Learning Vector Quantizer with parameters epochs, alpha, lvqtype,

w indow , epsilon . 153

C-7 Naive Bayes Classifier with parameters range-factor, bins. 154

C-8 Nearest Cluster Classifier with parameters fclparam, gauss-dist, minvar. 155

C-9 Radial Basis Function with parameters hspread-default, exhspread-default,

fclparam-default, maxratio-default, minvar-default, bias-default. . . . 156

D-1 Identifiler, weights =[1,1,1,1,1], features optimized for "natural" . 158

D-2 Identifiler, weights =[1,1,1,1,1], features optimized for "wga" 158

D-3 Identifiler, weights = [1,1,1,10,1], features optimized for "natural" 159

D-4 Identifiler, weights = [1,1,1,10,1], features optimized for "wga" . 159

D-5 Identifiler, weights = [2,1,1,2,1], features optimized for "natural" . 160

15

D-6 Identifiler, weights = [1,2,2,1,1], features optimized for "wga" 160

E-1 Gaussian Error For Each Channel and Profile (Normalized, No Outliers) 162

E-2 Heterozygote Intralocus Imbalance For Each Channel and Profile (Nor-

m alized, No Outliers) . 162

E-3 Interchannel Intensity For Each Channel and Profile (Normalized, No

O utliers) . 163

E-4 Interlocus Imbalance Error For Each Channel and Profile (Normalized,

N o O utliers) . 163

E-5 Interchannel Intensity For Each Channel and Profile (Normalized, No

O utliers) . 164

E-6 Off Ladder Inside Bin For Each Channel and Profile (Normalized, No

O utliers) . 164

E-7 Off Ladder Outside Bin For Each Channel and Profile (Normalized,

N o O utliers) . 165

E-8 Peak Width For Each Channel and Profile (Normalized, No Outliers) 165

E-9 Ski Slope For Each Channel and Profile (Normalized, No Outliers) . . 166

E-10 SNR For Each Channel and Profile (Normalized, No Outliers) 166

E-11 Stutter Count For Each Channel and Profile (Normalized, No Outliers) 167

16

List of Tables

2.1 Data availability by profile type and test kit. 25

2.2 Commercially available STR multiplexes used to analyze STR profiles. 28

2.3 Identification of features at the channel level. 38

3.1 Machine learning algorithms used to train profile classifiers [7]. 49

4.1 Feature guide: each number indicates a specific feature value for a profile. 60

6.1 Performance of top classifiers: CKNN, SVM, KNN, MLP, Parzen. . . 77

6.2 Comparison of classifier performance with w=[1,1,1,1,1] and [1,1,1,10,11

by profile category. 92

6.3 Comparison of classifier performance with w=[3,1,1,3,1] and [1,3,3,1,1]

by profile category. 98

7.1 Six committees were formed by taking different combinations of indi-

vidual classifiers. In addition to the five committees presented, a sixth

committee was formed by taking a majority vote of all the classifiers. 106

7.2 Majority vote among high-performing classifiers: CKNN, KNN, MLP,

Parzen, SV M . 110

7.3 Standard deviation in out-of-bag error for individual trees and forests. 116

9.1 Feature guide: each number indicates a specific feature value for a

profile. In total, 44 features were examined. 127

17

THIS PAGE INTENTIONALLY LEFT BLANK

18

Chapter 1

Short Tandem Repeat (STR)

Profiles: Natural and Synthetic

Approaches

Eukaryotic genomes contain many repeated sequences. These vary in size, and are

typically identified by the length of the core repeat unit and the number of adjacent

repeat units. Alternatively, they can also be designated by the overall length of the

repeat region and fall into three categories: long repeat units with several hundred to

several thousand bases in the core repeat are referred to as satellite DNA; medium-

length repeat units with 10-100 bases in the repeat region are called minisatellites;

finally, DNA regions with repeat units that are 2-6 base pairs in length are termed

microsatellites, or short tandem repeats (Figure 1-1).

Thousands of polymorphic microsatellites have been characterized in human DNA,

and there may be more than a million microsatellite loci present [12]. These mark-

ers are scattered throughout the genome and occur roughly every 10,000 nucleotides,

jointly comprising approximately 3% of the human genome [13]. STRs are of particu-

lar interest in human identification and have become a popular DNA marker because

19

Human Chromosomes

MO" EA:A TG] AATG

Mel
7 Rapew

8 Repeat

Figure 1-1: Each person inherits two alleles at an STR locus, one from each parent. The two
alleles can differ in the number of base pair repeats.

they are short and can consequently be easily amplified by the polymerase chain

reaction (PCR) with minimal problems caused by differential amplification. Small

product sizes are also compatible with degraded DNA, and PCR enables recovery

of information from small amounts of material. Additionally, the number of repeats

in STR markers is highly variable among individuals, making combinations of STR

alleles particularly effective for human identification.

The thirteen loci included in the National DNA Index System (NDIS) are of

particular interest for forensics and human identification. NDIS is a DNA database

funded by the United States Federal Bureau of Investigation (FBI) that stores DNA

profiles created by federal, state, and local crime laboratories in the United States.

The associated software, the Combined DNA Index System (CODIS), provides the

ability to search the database to assist in the identification of criminal suspects.

The 13 loci in the NDIS database provide the bulk of the loci analyzed in this work.

20

These are CSF1PO, FGA, TH01, TPOX, VWA, D3S1358, D5S818, D7S820, D8S1179,

D13S317, D16S539, D18S51, and D21S11. For the full set of 13 loci, the probability

of a random match in the profiles of two unrelated individuals is less than one in

a trillion [20]. By generating STR profiles that also include Amelogenin (used to

determine gender) and two additional loci specific to individual multiplex PCR kits,

the random match probability can be further reduced. By October 2008, NDIS had

grown to include over 241, 685 forensic profiles and 6, 384, 379 offender profiles [3].

Many techniques exist to generate synthetic STR profiles, such as bacterial cloning

and whole genome amplification (WGA). These are summarized in Figures 1-2 and

1-3 respectively. These and other techniques can be performed using equipment com-

monly available in Biosafety Level 1 (BL1) 1 and Biosafety Level 2 (BL2) 2 labs. This

project focuses primarily on whole genome amplification, with a brief extension to

bacterial cloning. Qiagen, the manufacture of a commercials WGA kit, claims that

this process is unbiased and that a WGA profile should be indistinguishable from a

natural one. However, frequently this is not the case. Quantifying the Qiagen am-

plified DNA with the Identifiler kit, for example, revealed that WGA underestimates

the amount of DNA present.

Currently, bisulfite sequencing is the state-of-the art technique used to authen-

ticate STR profiles. This technique involves performing methylation analysis of the

profile in question, based on the concept that human DNA is methylated but bacterial

DNA is not [25]. This is effective because most methods to produce artificial DNA

employ bacteria as a tool to amplify desired sequences. However, bisulfite sequencing

leads to 90% degradation of the DNA due to the need for long incubation times, high

temperatures, and elevated bisulfite concentrations. Furthermore, this technique is

'This level is suitable for work involving well-characterized agents not known to consistently
cause disease in healthy adult humans, and of minimal potential hazard to laboratory personnel and
the environment [2].

2 This level is similar to Biosafety Level 1 and is suitable for work involving agents of moderate
potential hazard to personnel and the environment. It includes various bacteria and viruses that
cause only mild disease to humans, or are difficult to contract via aerosol in a lab setting [2].

21

ForeignDNA

S rPlasnd EcoRI eoointerest

resistance EcoRI

Ec.R~
EcaRIEcR

Sticky ends

Hybridbuation
+ DNA Ugase

Recombina
DNA

DNA insertion

Bacteia acterial Bacteria platted on medium
cell6R omosome + anibotic

ciaug
__ _ _

Only bacteria containing
recombinant DNA vrow

Culture

CloneDNA

Cloning into a plasmid

Figure 1-2: Bacterial cloning summary. For purposes of this project, the pink strands of 'foreign
DNA" refer to DNA segments that contain the CODIS loci and Amelogenin [24].

2

-0--

3

4F
pM

Figure 1-3: Whole genome amplification (WGA). (1) The random hexamers (represented by a
blue line) bind to the denatured DNA (represented by a green line). (2) The DNA polymerase
(represented by a blue circle) extends the primers until it reaches newly synthesized double-stranded
DNA (represented by an orange line). (3) The enzyme proceeds to displace the strand and continues
the polymerization, while primers bind to the newly synthesized DNA. (4) Polymerization starts on
the new strands, forming a hyper-branched structure [11].

22

expensive and time-consuming.

The shortcomings of bisulfite sequencing suggest the usefulness of a software-based

approach based on machine learning models trained on low-cost, readily available

STR profiles. Thus, machine learning algorithms provide a valuable tool to detect

the bias introduced by WGA and other means of STR profile generation. Although

the conclusions inferred by these algorithms should not serve as a definitive test, they

provide a useful trigger to run more conclusive and costly tests.

23

THIS PAGE INTENTIONALLY LEFT BLANK

24

Chapter 2

Data Analysis

2.1 Source STR Profile Availability
Genetic data was obtained in accordance with COUHES protocols from buccal

swabs of volunteer donors. Since Identifiler kit data for WGA and natural samples

was most readily available, the majority of the analysis was performed on the datasets

in the "Identifiler Test Kit" column of Table 2.1. The low availability of data for the

Identifiler Test Kit PowerPlex 16 Test Kit
Natural 1 Sample, 4 Replicates 10 Samples, 1 Replicate
40/40 Unique Samples 16 Samples, 0 Replicates

23 Samples, 1 Replicate
WGA 1 Sample, 4 Replicates 5 Samples, 1 Replicate
58/5 Unique Samples 25 Samples, 0 Replicates

35 Samples, 1 Replicate
Bacterial (Cloned) 1 Sample, 16 Replicates
Bacterial (Synthetic) 1 Sample, 16 Replicates

Table 2.1: Data availability by profile type and test kit.

bacterial samples in the PowerPlex kit (one unique bacterial clone and one unique

sample synthesized from scratch) suggests that machine learning algorithms trained

on the bacterial PowerPlex samples should be verified on larger datasets. For many

of the donors in the study, several STR profiles were obtained. Thus, "1 sample, 4

25

replicates" means that one unique donor's profile, plus four additional profiles from

the same donor, were obtained for purposes of analysis. See Chapter 4 for a more

detailed discussion of replicate samples.

2.2 Profile Acquisition
STR profiles were obtained via the multiplexed polymerase chain reaction (PCR),

a rapid way of amplifying specific DNA sequences (Figure 2-1). PCR was performed

by adding the DNA to be amplified to a solution containing short tandem primers, the

four nucleotides, and DNA polymerase. Three steps were then performed iteratively

until a sufficient quantity of the desired sequence has been generated: (1)the DNA was

denatured at 94-96 'C. (2) annealed to primers at 65 'C(3) elongated at 72 'C. Using

this process, it is possible to obtain billion-fold amplification (32 cycles of PCR) in one

hour [19]. The 13 CODIS loci, the amelogenin sex-typing marker, and two additional

STR loci were co-amplified in a single reaction using existing commercial primer sets.

95 dog

mmom

4M1

DNA Synthsis

4 4 ~DNA Synthuuis

Figure 2-1: Two cycles of PCR are illustrated. The red and orange lines represent the DNA
template to which primers (pink and green ovals) anneal. [19].

The samples were then subjected to parallel analysis via capillary electrophoresis

using an Applied Biosystems 3130 genetic analyzer (AB13130) [41]. The AB13130

26

used amplicon sizing to identify individual alleles. Based on the analysis kit used,

different fluorescent dyes were attached to PCR primers that were incorporated into

the amplified target region of the source DNA. Amplified STR alleles were represented

by peaks in an electropherogram.

One or more allelic ladders were included in each batch of STR profiles analyzed

with the AB13130. An allelic ladder is an artificial mixture of the common alleles

present in the human population for a particular STR marker [9]. Such allelic ladders

serve as a standard for each STR locus (see Figure 2-2). These ladders are generally

created with the same primers as test samples and provide a reference DNA size for

each allele. They are used to adjust for different sizing measurements obtained from

different runs of the AB13130 instrument. Ladders are constructed by combining

locus-specific PCR products from multiple individuals in a population. The samples

are then co-amplified to produce an artificial sample containing the common alleles for

the STR marker. The allele quantities are balanced by adjusting the input amount

of each component so that the alleles are fairly equally represented in the ladder.

Internal standards labelled with a different color from the STR alleles were used

to perform the DNA size determinations and subsequent correlation with an allelic

ladder to obtain an STR genotype.

The rapid processing and multiplex capabilities of the ABI3130 genetic analyzer

encourage the development of machine learning techniques to authenticate the output

of this technique. For example, both 96-well and 384-well plates of samples can be

processed with the ABI 3130. With each run taking 45-60 minutes, a 96-well plate

can be analyzed in approximately 5-6 hours [9]. These capabilities make multiplex

PCR analysis of STR profiles more attractive to forensics and biometrics laboratories

in comparison to more expensive and time-consuming approaches such as methylation

analysis.

The Identifiler and PowerPlex kits were chosen for use with the AB13130 instru-

27

Ladder for AmpF/STR Identfier Kit (Appled Biosystems)
0801170 300 3179 40820 C00 50 0

15000 - 12ANe2 . aa 1 11s

,so I ~ LI' 1, I ' , u I JI

~00 3500 000 4000 4500 500 5500 6000 6500 7000

fVels (1008 (70moho. 77(0 ile) 9a8s) (1 .5le)

39)00 3500 4000 4500 5000 5500 600 650 7000

Figure 2-2: AmpFLSTR Identifier allelic ladder (Applied Biosystems). A total of 205 alleles are

included in this ladder used for genotyping a multiplex PCR reaction involving 15 ST R loci and the
amelogenin sex-typing test.

Name Source Release STR Loci included
Date

AmpF/STR Applied July 2001 CSF1PO, FGA, TPOX TH01, VWA,
Identifiler Biosys- D3S1358, D5S818, D7S820, D8S1179,

tems D13S317, D16S539, D18S51, D21S11,
D2S1338, D19S433, amelogenin

PowerPlex 16 Promega May 2000 CSF1P0, FGA, TPOX, TH01, VWA,
D3S1358, D5S818, D7S820, D8S1179,
D13S317, D16S539, D18S5', D21S11,
Penta D, Penta B, amelogenin

Table 2.2: Commercially available STR multiplexes used to analyze STR profiles.

ment because of their widespread usage in the forensics and biometrics communities

(Table 2.2). Both kits amplify the 13 CODIS loci/amelogenin and are able to iden-

tify repeat lengths within similar size ranges. The primary differences between them

lie in the additional loci analyzed (Penta E and Penta D for PowerPlex 16; D2S1338

and D19S433 for Identifiler). Additionally, the two kits differ in their dye-labelling

strategies: the PowerPlex 16 kit uses four dyes (three channels and a size standard),

while the Identifiler kit uses five dyes (four channels and a size standard). A third

28

difference is in the size standards used: ILS600 CXR for PowerPlex 16 and GS500

LIX for Identifiler.

2.3 Extracting Electropherogram Information from

.fsa Files

The AB13130 Genetic Analyzer stores STR profile data in the .fsa format. A

Python module was developed to convert the data to human-readable format, extract

signals for further analysis, and obtain relevant information about the electrophoresis

process. Code was written to identify the fluorescence value of each channel in the

electropherogram as a function of scan number (a measure of time). Timestamps

for each channel were used to identify the associated ladder. Multiple ladders were

included with each PCR sample to account for variations in experimental conditions

(i.e. changes in temperature, photo-bleaching) that could effect allele resolutions and

introduce artifacts into the STR profile. Consequently, each channel within a profile

was analyzed with respect to the nearest ladder. This custom code makes use of the

ABIFReader Python module published by Interactive Biosoftware [5,41].

The signals obtained from the files were then processed in MATLAB to identify

allele values for each locus, locate off-ladder alleles, and extract feature values for

each sample.Peak alignment techniques were used to overlay the size standard in

the bottom channel of an electropherogram over the size standard of the associated

allelic ladder. This was done to align the allele peaks in the ladder with corresponding

allele peaks in the individual sample and identify the allele value for each locus. An

example of a resulting STR profile is presented in Figure 2-3. A series of steps was

then performed to identify feature values for the sample. The individual features of

interest are summarized in Section 2.4, and Figure 2-4 demonstrates an example

of an STR profile with annotated alleles and feature values.

29

Natural Profile Obtained via Identifiler Kit
DBS1179 1179 D21Si D7 0 CSFPO

.3 3000 3504000 4500 5005500600600 T. I I A

103S3 D13S317~~~4 383s3 D2S133 1 1338

430 000 4500 5000 5500 6000 6500

200

1000 019S433 D19S433 VWA VWA TPX T151

3000 3500 4500 5000 5500 6000 65002000 L'

1000o -~ 053818 D5S818 FGA FGA

3000 3500 4000 45 5000 5500 6000 6500

0

100 -
100

p 139b10 1 bp p 200hp
25 5p 30bp 34-p *

3000 3500 4000 4500 5000 550 6000 6500

Scan Number

Figure 2-3: A natural profile obtained via multiplexed PCR with the Identifiler kit. The alleles of
interest are indicated by fluorescence peaks. The size standard, in the bottom channel, was aligned
with the size standard from a ladder. The aligned sample was then compared with the ladder to
identify allele peaks based on their size.

2.4 Feature Identification
Having obtained annotated STR profile from the MATLAB processing pipeline,

the next step was to identify features useful for distinguishing between natural and

artificial profiles. These features in combination served as the raw material on which

to train a suite of machine learning algorithms to perform authentication. Prior

research and examination of the data led to the identification of eleven features.

Many of these were based on common biological artifacts of STR markers, such as

stutter products, non-template nucleotide addition, microvariants, null alleles, and

mutations. The full set of 11 analyzed features included:

* Intra-locus imbalance: Ratio of peak heights between the alleles in a single

heterozygous locus (Figure 2-5). Intra-locus peak height ratios were calculated

for a given locus by dividing the peak height of an allele with a lower fluorescence

intensity (shorter peak) by the peak height of an allele with a higher intensity

(taller peaks). Theoretically, two alleles for an individual who is heterozygous

30

Natural_01_004_D01

2000

F ski slope
1500I

1000 - 152

206
500 - N22 2811

0 e IA | - I --L
3000 3500 4000 4500 5000 5500 6000 6500

Channel 1

3000 -

2000 -

1 278 stter
100 -128 1 7 peaks

0)

CA

3000 3500 4000 4500 5000 5500 6000 6500
Channel 3

2000 -

1500 [-
1000 F

3000 3500 4000 4500 5000 5500 6000 6500
Channel 4

2000 -

1500

1000

500 -t

0r13000 3500 4000 4500 5000 5500 6000 6500

Chz S anW(n 4ubr

Figure 2-4: Sample natural STR profile from Identifiler kit with ~4 Channels, 16 Loci, and a size
standard. Boxed values represent called alleles.

31

at a single locus should be present in equal amounts in the genome, amplify

equally, and have peak heights are that are approximately equal, with a peak

height ratio near 1. In practice, intra-locus imbalance may occur if the DNA

source is inhibited, degraded, preferentially amplified, or subject to unequal

sampling of true alleles [42]. The latter two conditions are more likely to occur in

a laboratory-synthesized profile, suggesting the use of this feature to distinguish

between natural and synthetic samples.

Intralocus Balance: Ratio of minor peak height to major peak height at heterozygous loci

Scanumber

Figure 2-5: Intra-locus imbalance.

9 Inter-locus imbalance: Ratio of peak heights among adjacent loci in an elec-

tropherogram. This feature was calculated in two ways. The first approach

involved computing the ratio of tallest locus to shortest locus in a channel.

The second approach involved finding the mean squared error between each

individual locus and the mean intensity for the channel.

32

0

0 C

C

* Fluorescence intensity: Measured by peak height (see Figure 2-6).

* Frequency and position of off-ladder alleles: STR microvariants are rare alleles

that result from point mutations or insertion/deletions of a block smaller than

the locus repeat block size. An off-ladder outside bin allele is a microvariant

that does not correspond to any of the standard STR loci included in a test kit

(Identifiler/PowerPlex 16); an off-ladder inside bin allele corresponds to a stan-

dard locus but does not match any of the standard alleles for that locus [28].

Natural and artificial samples were compared for the presence of both kinds of

microvariants. See Figure 2-6 for an example of a drop-in allele in a sample

profile. The feature analysis techniques used to annotated profiles were able to

detect allele drop-in, but not allele drop-out, which causes a heterozygous sam-

ple to look like a homozygous sample. The feature identification protocol could

be extended to accommodate allele dropout by obtaining STR profiles with both

the Identifiler and PowerPlex 16 test kits and comparing the heterozygosity of

each peak.

Intensity and Drop-in Allele

i.: I II -~J

Two channels of afour-chamel electrophetogran

Drop In WsA-

Scan iumbe

Figure 2-6: Differences in intensity between natural and WGA profiles are noted with the blue and
red circles. A drop-in allele is present in the WGA (lower) channel.

33

" Frequency and position of stutter peaks: Stutter product peaks are small peaks

that differ in size from an allele peak by one or two repeat units. Stutter

products are caused by slip-strand mispairing of the DNA polymerase during

replication. Insertion, caused by slippage of the copying strand, leads to a stut-

ter product one repeat unit longer than the main allele. Deletion, caused by

slippage of the copied strand, causes a stutter product one repeat unit shorter

than the main allele. Since different polymerases are used in natural and syn-

thetic DNA replication, and use of faster polymerase results in fewer stutter

products, it is possible that the frequency and position of stutter peaks may

differ between natural and artificial samples. Typically, a stutter product is

5-15% of the height of the adjacent allele peak [28]. In Figure 2-7, stutter

peaks are denoted by small golden dots located near the baseline.

" Ski slope: Biological samples become degraded when exposed to adverse en-

vironmental conditions. Since degradation breaks the DNA at random, larger

amplified regions are affected first and the height of the peaks in an electrophero-

gram decreases from left to right (Figure 2-7). Since artificial DNA samples

are less likely to be subject to adverse environmental conditions, it is possible

that the ski slope may be a distinguishing feature between the two classes [16].

* Presence of pull-up: Pull-up occurs when the analysis software is unable to

discriminate between the different dye colors used for sequencing. If matrix

color deconvolution in the fluorescence analysis process does not work properly,

a color may bleed from one spectral channel into another, usually because of

off-scale peaks [1].

" Signal to noise ratio: The peaks were interpreted as the signal; any non-relevant

disturbances in the baseline were interpreted as noise. Figure 2-8 illustrates

the higher noise observedfor some WGA profiles relative to natural profiles.

34

M1Ski Slope

t f tf -- t
3000 4000 50O 6000 700

Figure 2-7: Ski slope and stutter peaks.

Natural

I I

WGA

410F 4112 41 sno

Figure 2-8: Peak shape and sigqnal-to- noise ratio.

* Peak shape/area: In natural DNA, peak shape closely approximates a Gaussian

curve. Additionally, the peak distribution has a predictable pattern based on the

extraction method used and the extent of DNA degradation. Variations in peak

shape may be observed due to phenomena such as non-template addition [1]. In

the process of adenylation, the Taq polymerase adds an extra adenine nucleotide

to the end of a PCR product. Depending on the 5' end of the reverse primer, a

guanine can be added to the end of a primer to promote non-template addition.

Excess amounts of DNA template in a PCR reaction can result in incomplete

adenylation due to insufficient quantities of polymerase, which can be observed

on an STR profile as a split peak (Figure 2-9). Since this phenomenon depends

35

___ 1!!

1100

1200

1000

800

600

400

200

a

0o0o0

Noise

'I

I

5M

Incomplete
adenylation

+A +A

-A ,A

D8S1 179

Figure 2-9: Split peaks due to incomplete adenylation do not follow the expected Gaussian shape [51.

on both the amount of DNA present and the polymerase used to replicate the

DNA, it is possible that the frequency of incomplete adenylation is different for

WGA and natural profiles.

2.5 Feature Granularity/Establishing Patterns for

Classification
The full set of feature values was calculated for each profile with the goal of

combining many weak trends to build an accurate profile classifier. The optimal

feature granularity was determined experimentally. In one approach, individual peaks

served as the patterns for classifications, and feature values were calculated for every

peak. For example, the intra-locus imbalance for a peak was found by calculating the

ratio of the two peak heights in a heterozygous allele. This ratio was assigned as the

intra-locus imbalance for both peaks in the locus. For homozygotes, the intra-locus

imbalance was set to one for the single peak in the locus. When each peak was treated

as a separate classification pattern with a full set of feature values, the data shortage

problem was avoided, since each sample had a high number of peaks. However, some

features, such as ski slope and inter-locus imbalance, are not defined for individual

peaks, but rather for combinations of peaks. Multiple peaks must thus be assigned

the same feature value. For example, all peaks in a channel would be assigned the

36

same value for the ski slope feature. This approach functions like a smoothing filter

and leads to loss of information about the data.

Consequently, to avoid bias, channels were used as patterns for classification rather

than individual peaks. Table 2.3 presents the formulas used to calculate each feature

at the channel level. After features were calculated at the channel level, profile statis-

tics were obtained. For each profile, the minimum, maximum, mean, and range of

the feature values across the individual channels were calculated. For example, com-

puting the ski slope for the channels in an Identifiler profile results in four values, one

for each channel. The minimum of these four is defined as the profile minimum, the

maximum among the four is the profile maximum, the difference between the max-

imum and minimum is defined as the range of the ski slope feature for the profile,

and the mean of the four values is the profile mean. Empirically, examining features

at the profile level through the min, max, mean, and range statistics led to slightly

reduced error rates in the baseline classifier performance (mean reduction 2% across

all the classifiers examined). Consequently, all subsequent analysis was performed at

the profile level. That is, each sample had 44 unique features - a profile minimum,

maximum, mean, and range for each of the 11 features listed in Table 2.3.

2.6 High Level Feature Analysis

Once features had been identified and computed for each of the natural, WGA,

and bacterial profiles, a high level analysis was performed of the resulting distribu-

tions. The scatter plots in Appendix A and Appendix E show the feature values

for the Identifiler and PowerPlex datasets, respectively. The blue dots represent nat-

ural profiles, while the red dots represent WGA. In each subplot there are 87 red dots

and 37 blue dots, indicative of the 87 WGA and 37 natural profiles that were analyzed

with the Identifiler kit. The green dots in Appendix E represent bacterial profiles

(bacterial clones and synthetic samples were analyzed jointly). The process used to

generate the bacterial clones is discussed in Chapter 1, Figure 1-2. Although fea-

37

p

E

Value

across locus intensity

(locus intensity - p)2
E (E)2

E3 Me"aMloMs

Es EL intensity

]ZIEI
inter-channel
intensity

(Echannel intensity)

(Eprofile intensity)

signal-to-
noise ratio

A=locus intensity average
a-non-peak variance

0 0 00

Feature Value
Feature
inter-locus
imbalance
error

(E channel peak widths)

(E profile peak widths)

Gaussian er- E(error)2 over all peaks
ror in channel

ski slope
off-ladder count
outside bin
off-ladder in- count
side bin
stutter count

Best &t wrsLALLLALk

Table 2.3: Identification of features at the channel level.
Notes/Clarification

" All channel features are propagated to the profiles as Min, Max, Range, Average

* Locus intensity = E (Peak Intensity at Locus)

Locus
0 Intensity

Peak
Intensity

ture values were computed for the bacterial dataset, only one bacterial clone and one

bacterial synthetic profile was available for study. Consequently, additional data must

38

heterozyote * geometric mean over all
intra-locus heterozygous loci
imbalance * 1 if all loci in channel

are homozygous
inter-locus ratio of locus intensity
imbalance (Max:Min)
ratio
peak width

i

be gathered to draw solid conclusions about feature selection for bacterial profiles and

to train high-performing classifiers (Table 2.1).

Figure A-2 provides an illustrative example of differences in feature values be-

tween natural and WGA profiles. The figure illustrates intra-locus imbalance values

for each profile. The top row illustrates the intra-locus imbalance value of the four

individual channels, while the bottom subplot shows the minimum, maximum, range,

and mean of the intra-locus imbalance for the profile. In each of the eight subplots,

the WGA datapoints are more spread out than the natural. The blue natural feature

values cluster near 0.9, but the red WGA values have no significant clusters. Rather,

they are spread fairly uniformly through the range of valid intra-locus imbalance val-

ues, from zero to one. This trend is highly evident at the channel level (top row). It

is weaker at the profile level: the range and mean values for both WGA and natural

profiles are spread throughout the [0-1] range. However, the natural data is more

clustered than the WGA data for the profile min and max.

This observation can be generalized for the majority of the features examined.

For nearly each feature plot in Appendix A, the WGA profiles take on a higher

range of values, with a correspondingly higher standard deviation. This phenomenon

influences classifier performance and is discussed in Chapter 6. The higher spread

of feature values for WGA profiles results in a high incidence of false positives for

the WGA class, that is, natural profiles misclassified as WGA. Since WGA profiles

can take on a greater variety of feature values, classifiers are more likely to mark a

profile as WGA than natural. Thus, careful feature selection is necessary to discover

the subset of features for each classifier to minimize both false positives and false

negatives.

39

THIS PAGE INTENTIONALLY LEFT BLANK

40

Chapter 3

Machine Learning Algorithms for

STR Profile Classification

Once a set of features had been identified to differentiate between natural and syn-

thetic STR profiles, as described in Chapter 2, these features were used as inputs to

a set of machine learning algorithms. The algorithms operate on the principle that

a learner can use example data to identify relationships between observed feature

vectors. A major focus of machine learning research is to automatically learn to rec-

ognize complex patterns and make intelligent decisions based on data; the difficulty

lies in the fact that the set of all possible behaviors given all possible inputs is too

large to be covered by the set of observed examples (training data). Consequently,

the learner must generalize from the given examples, so as to be able to produce a

useful output in new cases (test data).

Machine learning classifiers are trained by partitioning data into two groups: train-

ing and test. If sufficient data is available, a third evaluation group may also be

created. A classification algorithm uses the training data set to learn the difference

between the classes. The evaluation set, if present, is used to evaluate classifier per-

formance and to determine whether further training is necessary. Ultimately, the

41

classification algorithm computes a set of parameters that form a discriminant func-

tion between the two classes. Given a new profile, the algorithm applies this function

to classify it.

The pattern classification approach is particularly relevant to STR profile authen-

tication for several reasons. First, this approach works well for noisy, complex, or

unknown processes, and there is a high level of noise and complexity in the acquired

STR profile data. Furthermore, pattern classification is particularly appealing when

features can be measured and training data is available, both of which are conditions

that hold for the STR profile sample set [38].

3.1 Classifier Training: Developing Accurate Dis-

criminant Functions Between Classes
A classifier consists of a discriminant function that is constructed during the train-

ing phase. This function consists of a linear combination of feature values multiplied

by weights w (Figure 3-1). It has the following mathematical form:

D

y(x) = f(Xi * wi)
i=O

e x refers to the input feature vector. In Chapter 2, 44 distinct features were

identified, so the feature vector for each sample STR profile consists of 44 values.

" w is the vector of coefficients that produce the desired characteristics in the

discriminant function. The focus of the training phase is to optimize this weight

vector so that the function y takes on dissimilar values for input samples that

belong to different classes and similar values for inputs that belong to the same

class.

" D is the number of features used to train the classifier. It is equal to 44 for the

STR data.

42

* f refers to the function that governs the behavior of the machine learning al-

gorithm. Step functions, linear separators, and sigmoids area all commonly

used by classification algorithms. Binary trees, support vector machines, and

Gaussian mixture models respectively implement these functions. Examples are

illustrated in Figure 3-1.

The discriminant function takes a feature vector as an input and projects this

vector into a higher-dimensional feature space. This feature space is partitioned by

decision boundaries, and an input feature vector is classified based on the location

of the projection relative to these boundaries [40]. For example, the right half of

Figure 3-1 illustrates the projection of two input feature vectors (A and B) onto a

two-dimensional space defined by features x1 and x2. Since one vector is projected

above the decision boundary and the other one is projected below the boundary, the

two vectors get assigned to different classes.

Training a classifier consists of performing discriminant analysis to find the optimal

vector of weights w. At each iteration the current discriminant function is used

to project the input data to a high-dimensional feature space and to classify them

according to their position relative to a set of decision boundaries. The algorithm then

identifies training samples that were misclassified. The weight vector w is updated

to reduce the number of misclassifications in future iterations. The exact manner in

which this vector is updated is algorithm-specific. When the number of misclassified

training data samples drops below a pre-defined threshold, training is complete and

the weight vector is fixed at its current value. The classifier is said to be trained.

3.2 N-Fold Cross Validation
Due to the small sample sizes for both the Identifiler and PowerPlex test kits,

there was insufficient data to split the profiles into training, evaluation, and test sets.

To deal with the scarcity of data, four-fold cross validation was performed to select

43

Training a Classifier Discriminant Function

44 Input Features

<x 1 x2, x3 ,-..X 4 4>

'I
o =1 I w. Compute Discriminant

X, Output Function y for Each Class

e-y(x) V(x) = ZxA

t1ai a

+1 m m +1

H AR 0 (AR 0 G

-1 -i -1

HARD LUMITER LUNEAR SIGMOID

I YNatural

Decision
"Natural"

or
"WGA"

Figure 3-1: The training phase of classifier development involves creating a discriminant function
that forms decision boundaries between the natural and WGA classes in multi-dimensional space.

features and tune parameters for individual classifiers [42]. The advantage of the cross

validation technique is that all available samples were used as both test objects and

training objects. To perform four-fold cross validation, samples were separated into

four folds, and each was tested against a classifier trained on the data in the other

three folds (Figure 3-2). The error rates from the individual test folds were summed

to obtain the overall error rate of the classifier.

As demonstrated in Figure 3-2, classifier training and evaluation via four-fold

cross validation can be summarized as follows:

44

YWGA I

Select Maximum y (2D Example)

Classification Rule

Class Natural if y>=O
Class WGA if y <0

Decision Boundary

N-Fold Cross Validation

1.) - Prnfi .

6.

Figure 3-2: N-fold cross validation was used to combat low data availability by using each profile
for both training and testing [42]. Four folds were used (N=4).

1. The sample STR profiles were randomly assigned to four folds. At each iteration

of the validation algorithm, three of the folds were used to train a classifier and

the fourth was used to test the classifier performance.

2. The inputs to the classifier were assigned. These consisted of training data

(STR profiles), feature vectors calculated for the data, and classifier parameters,

discussed in Chapter 5.

3. The classifier was then trained in the manner described above with the aim of

developing a discriminant function between the natural and WGA classes.

4. The performance of the resulting classifier was evaluated by classifying the test

data and calculating the number of misclassifications.

45

5. The training and test steps were repeated K times. A new fold was selected

to serve as the test fold at every iteration. The remaining folds were used as

training data.

6. The test error was summed across the folds to produce a final performance score

for the classifier. This score is discussed in Section 5.3.

3.3 Classifier Taxonomy

A set of 16 supervised and semi-supervised machine learning techniques were

used to classify sample profiles as natural or WGA. Additionally, four unsupervised

clustering algorithms were used in conjunction with the semi-supervised approaches

(Table 3.1).

" Supervised learning algorithms map labeled input data to desired output

classes. The classifiers compute discriminant functions mapping the feature

vectors for the input data to classes.

* Unsupervised learning algorithms cluster unlabeled input data into groups

of similar samples based on the input feature vectors.

" Semi-supervised algorithms use combinations of labeled and unlabeled in-

put data.

The classifiers were further grouped by their approaches to pattern classification.

Some produced continuous outputs in the form of likelihoods or posterior probabil-

ities. Others produced binary outputs in the form of nearest neighbor assessments

or decision boundary calculations. These four approaches are summarized below and

illustrated in Figure 3-3.

* Posterior Probability classifiers estimate the posterior class probabilities of

input patterns. Given an input pattern X and two class options "natural"

46

Classifier Approaches to Forming Decision Regions

P(SampleI WGA) P(SampleI Natural)

Ukelihoods A - 1

'(WGA I Sample)

Posterior Probabilities

U

P(Natural I Sample)

Nearest Neighbor

~*0

d-. i __
Boun aryFr gure3-

Figure 3-3: Classifier approaches to forming decision regions [35].

47

and "WGA", a posterior probability classifier estimates p(naturallX)' and

p(WGAIX). The classification decision is determined by the higher of these

two probabilities. Many neural network classifiers, such as the MLP, IRBF,

and RBF calculate posterior probabilities.

" Likelihood classifiers estimate a scaled probability density function, or likeli-

hood, for each class. Given an input pattern X and two class options, "natu-

ral" and "WGA", a likelihood classifier estimates p(X Inatural)P(natural) and

p(X|WGA)p(WGA). In these expressions, p(Xlnatural) and p(X|WGA) are

the likelihoods for the two classes, and p(natural), p(WGA) are the prior prob-

abilities that a pattern belongs to either of these two classes. The classification

decision is determined by multiplying the class with the highest likelihood by

the prior probablity of the class. Consequently, classification decisions are con-

tinuous probability distributions that assign X to the natural or WGA class.

The Gaussian, Gaussian mixture model, histogram, Naive Bayes, and Parzen

window classifiers compute likelihoods.

" Rule-based classifiers partition the input space into binary decision regions

using threshold logic nodes or rules. They can often be easily implemented in

hardware applications. This category includes the support vector machine, the

hypersphere classifier, and the binary tree classifier.

" Nearest neighbor classifiers work on the principle that a pattern is proba-

bly of the same class as those patterns nearest to it when feature vectors are

projected into a high-dimensional space. Nearest neighbor classifiers store in-

put patterns during the training phase and compute distances between them.

The computation necessary for testing can be prohibitive for large databases.

Most enhancements to the algorithm involve reducing the number of patterns

ip(naturallX) refers to the probability that the classifier assigns a pattern to the natural class,
given the particular set of feature values for that pattern.

48

stored and used for testing. Nearest neighbor classifiers are simple and easily

understood, but do not produce continuous outputs for later analysis and do

not generalize well where training and test data differ. Examples of nearest

neighbor classifiers are the KNN, condensed KNN, and LVQ algorithms.

Continuous Output Binary Output
Maximum Squared Nearest Rule Form-
Likelihood Error Fit Neighbor ing
Fit to Data to Posterior

Probability
Supervised Parzen Win- Multi-Layer Nearest Clus- Support Vec-

dow Perceptron ter tor Machine
(SVM)

Naive Bayes K-Nearest Hypersphere
Neighbors
(KNN)

Histogram Condensed K- Binary Tree
Nearest Neigh-
bors (CKNN)

Gaussian Lin-
ear Discrimi-
nant

Combined Gaussian Radial Basis Linear Vec- Adaptive
Supervised Mixture Function tor Quantizer Resonance
/ Unsuper- Model (RBF) (LVQ) Theory Map
vised (ARTmap)

Incremental
Radial Basis
Function
(JRBF)

Unsupervised Leader Clus-
tering
K Means Clus-
tering
Expectation
Maximization
Clustering
Random Clus-
tering

Table 3.1: Machine learning algorithms used to train profile classifiers [7].

49

Classifier Development

Figure 3-4: Machine learning classifier development overview.

3.4 Improving Classifier Performance

The performance of machine learning algorithms is highly influenced by the subset

of features used as inputs and by classifier-specific parameters [7]. By selecting the

optimal subset of features and tuning a classifier's parameters, performance gains

of 10% or more were observed in many cases. Chapter 4 describes the feature

selection process, while Chapter 5 focuses on parameter tuning. The full classifier

development process, incorporating the added steps of feature selection and parameter

tuning, is presented in Figure 3-4.

50

Chapter 4

Feature Selection

After generating a set of features for use in training and classification, the next

step involved performing selection on this set. Classifier training is an optimization

problem in a many-dimensional space. Increasing the dimensionality of the space

by adding more features causes an exponential increase in the problem complexity

[301. Consequently, feature selection was performed in order to achieve three goals:

improve classifier generalization by reducing classifier complexity, reduce classifier

computation requirements, and gain a greater understanding of the problem. In

regard to the last goal, classifiers with fewer features are easier to analyze and are

more likely to suggest new measures [30].

Feature selection was performed by identifying and eliminating two sets of undesir-

able features. The first set included features that provided redundant and irrelevant

information. Correlated features provide similar information and may be linearly

related. Such features make the results challenging to analyze, since omitting one

correlated feature does not have an effect on performance. Irrelevant features are

undesirable because they add noise to the dataset. The other category of undesirable

features are those that add incremental and insufficient information. Incremental

features provide a small amount of additional information and may improve classifier

51

performance only with large training datasets.

To eliminate such undesirable feature, selection was done based on actual classi-

fier performance. Forward search (add features incrementally) and backward search

(delete features incrementally) were used to identify useful features. These techniques

were chosen because they analyze features in combination rather than individually.

Such an approach is needed because individual per-feature analysis cannot predict

which features may combine to improve performance [30]. Classifier performance in

forward and backward search was measured via N-fold cross validation.

4.1 Replicate Analysis

Most samples were examined in replicate. In Table 2.1, "1 sample, 4 replicates"

indicates that the STR profile was generated from the donor sample five times. Ran-

domly, one of these five profiles was designated as the original, and the remaining

four were termed replicates. Replicate analysis was performed to determine whether

individual iterations of the multiplex PCR process introduce significant variation in

the output profile to influence algorithm development. The initial hypothesis was

that replicates should not differ significantly in the features of interest. The results of

replicate analysis for a natural profile and a WGA profile are summarized in Figures

4-1 and 4-2.

Replicate analysis for a natural profile showed that replicates had similar values

for some features, such as inter-channel intensity, peak width, and the presence of off-

ladder alleles. However, they differed in other feature values such as the intra-locus

imbalance ratio, the inter-locus imbalance rate, SNR, Gaussian error, ski slope, and

stutter count. The feature differences among replicates dictated the need to train

and test on multiple replicates of a given sample. However, the feature similarities

suggested the need to avoid testing on training data. Consequently, though all repli-

cates of a sample were used in classifier development, in the four-fold cross validation

process, replicates were always assigned to the same fold so that they jointly served

52

Feature Comparison for all Sets of Replicates (Natural Profile)

0
0

p'

E

08

E

06

04

e02

300

250

200

150

100

50

0 5

0

-05

2.5

2

15

1

0.35

03

025

02

0.15

01

0

-05

-1

0-O
C))

8

03

06

05

0.4

0.3

02

0 1

0

84 M

4

0 0002

U1

-.

o o oo o o o

'0000'.0000'

.0

Figure 4-1: A natural profile

0

C0

0

O

0

O0

0

5000 -

000

000

000

00
0

80 . - -

to
60

50

40

30 0 00

20

10 0 0

01

0 h ifu re

ith four replicates.

as either part of the training data or the test data, but not both.

4.2 Feature Selection Algorithms

AS demonstrated in Figure 4-3, greedy forward search was used to find the

subset of features that led to optimal performance, as measured by a weighted sum of

the true positives, true negatives, false positives, and false negatives. All continuous

feature values were normalized to zero-mean and unit variance. Outliers, defined as

any feature value more than three standard deviations from the mean, were removed

from the profiles prior to feature selection. Features were added one at a time in the

order that led to the best performance [43]. Performance was measured by four-fold

53

0.4

035

03

025

02

0 0

0 O

0 0)

0 00 0 0 00

O p
eaea-

*00000000 o o

11

0

-C)

0 Q 0

0

0,5

0

0.5

0 0

C - C)

a

o Natur_01 001_E01
NaturaI_01_002 F01

o Natual 01_003 001

N&VWa-01_004_DOI

9

0.9

S0.8

0.701
0.6

0.5

2 0.4

300

250

200

150

100

50

1

O056

0

-1

,e

6& 6

0 0 O0

O
0 0

0

0 0
00

0 0

0

0 0
0

8LC

05

0 0 0 0 0 0 0 0 0

*0 5

'-1

90 0

9

666 QQ

CL

0 0

0

6660 0

1.2

0 8

0-6

04

0
00

.2Q

0

5 x10 0 0

3

2

0

30

25

20

15

10

5

0

o O

O 0
0

o 0

0

0

a.

Figure 4-2: A WGA profile with four replicates.

cross validation for the chosen feature set. The subset of features that resulted in the

lowest error rate was selected. Up to a point, adding features improved performance,

but once feature 14 was added, the addition of all subsequent features caused an

increase in classification error. This phenomenon is due to over-fitting: the classifier

was adjusted to perform well on the training data, but this performance did not

generalize to the test data [7]. The overfitting problem arises because the datasets

available for classifier training were small. The four-fold cross validation process

ameliorates this problem, but is insufficient to completely avoid it.

It is also important to note that the order in which the features were selected had

significance. For example, from Figure 4-3, it appears that adding features 4 and 6

54

Feature Comparison for al Sets of Replicates (WGA Profile)
7 r 14 r

0.35

03

0.25

0.2

0.15

0.1

11

8

0.~ '2

045

0.4

0.36

03

0.25

02

0.1

0.05

0.

0

-1

0

0
0

000 0 0

' ' ' ' ~ - -

C4 M

CL 0

'2

0 WGA 1 001 E06

cWGA 1-003 C06

0 WGA 1 003 GOS
0 WGA 1 004_D06

WGA 1-004 HOS

0 0

0

0 0 0

produced the highest drop in classification error. However, features 4 and 6 were not

the first ones selected by the classifier because they produce such a high drop in the

error rate only in combination with the previously chosen features.

0 1 2 Feature Selection by SVM
30:

5

S25-

-0 20-

LL 6 20
7 25

8 30 27
5-- 21 42 17

1536
31

32 22 14 359 18 3412 29 2315 3339 41

10

5 I I | | |
0 5 10 15 Numer of Fealures 34

Figure 4-3: Support vector machine feature selection. The results of feature selection for other
classifiers are included in Appendix B.

Several variations on the feature selection algorithm were tested. In one imple-

mentation, features were added to the classifier one at a time via forward search. In

another implementation, the classifier began with the full set of features and removed

one at a time, at each iteration removing the feature that produces the smallest drop

in error. Another approach, forward-backward search, used a combination of the two,

alternating feature addition with feature removal.

Other variations in the feature selection algorithm dealt with the manner in which

optimal performance was measured. In the most straightforward approach, the goal

was to minimize overall classification error, as defined by the total fraction of test

profiles that were classified incorrectly. In another approach, the aim was to minimize

55

false positives for the WGA class, as defined by p(wgalnat). This quantity refers to

the probability that a classifier labels a profile as WGA when, in reality, the sample

is a natural profile. In a third approach the goal was to minimize false negatives for

the WGA class, defined as p(natlwga). This converse value refers to the probability

that a classifier labels a profile as natural when the sample is in fact a WGA profile.

Figure 4-3 indicates the results of feature selection for the support vector machine

classifier. The classifier performed best with a subset of 21 features. The figures in

Appendix B illustrate the feature selection process for the remaining 15 classifiers.

4.3 Clustering Algorithms
Some of the classifiers described in Chapter 3, initialized hidden nodes or other

parameters using pre-trained clusters. These include the radial basis function, incre-

mental radial basis function, Gaussian mixture model, nearest cluster classifiers, and

learning vector quantizer classifiers. Thus, though clustering algorithms were not a

feature proper, they functioned as a feature in the sense that the choice of clustering

algorithms strongly influenced classifier performance. Consequently, these algorithms

are worth noting. Clusters were trained on labeled data via four-fold cross validation.

That is, a separate set of clusters were trained for WGA and natural datasets respec-

tively, each of which had a mean and a diagonal covariance matrix. It was observed

that the choice of clustering algorithm influenced classifier performance. Further-

more, the number of clusters generated by each clustering algorithm was varied and

also treated as a parameter of the learning algorithm.

The goal of clustering is to group like samples together based on their feature

values. Four clustering algorithms were applied: K-means, estimation-maximization,

leader clustering, and random clustering.

1. The K-Means clustering algorithm positions a set of K centers in order to min-

imize the total squared error distance between each training pattern and its

56

nearest center; the position of that center is then moved to the mean of the

patterns assigned to it. Clusters are trained iteratively using a predefined value

of K. This clustering algorithm was shown to be effective for linear vector quan-

tization [7].

2. Expectation maximization clustering maximizes the likelihood of the training

patterns while training the means, variances, and mixture weights of Gaussian

mixture.

3. Leader clustering is a simple fast sequential clustering algorithm. Training

patterns are presented one at a time. The first pattern is the first cluster

center. Any other pattern that is farther away than delta from an existing

cluster center is stored as a new cluster center.

4. The random classifier selects K training patterns to use as the cluster centers.

These centers are the first K patterns presented to this clusterer. After centers

have been selected, cluster variances are calculated. Similar to the K-means

algorithm, the random clustering algorithm assigns each training pattern to the

cluster center nearest to it. The cluster is then assigned the variance of its

patterns.

4.4 Effects of Feature Selection

Figure 4-4 demonstrates the effects of feature selection on the number of mis-

classified profiles. Each Identifiler profile was classified with all 16 classifiers and the

full set of features, and the number of errors was summed. Feature selection was then

performed, and each profile was classified once more with the set of 16 classifiers, but

this time considering only the subset of the features identified by feature selection

led to an overall 13% reduction in classification error. The effect varied by profile

- some profiles were actually more likely to be misclassified post-feature selection,

57

but the majority saw a drop in error. The effect also varied by classifier, as will

be discussed in Chapter 5 and Appendix B). Although feature selection did not

dramatically improve the performance of all classifiers, individual classifiers such as

ARTmap, Parzen, MLP, KNN, and CKNN saw improvements in performance of over

10 percentage points.

Misclassification Statistics Prior to Feature Selection
15

S10

EW

(D4)

E
z 0

0 20 40 60 80 100 120 140
Profile Number | Tota Number of Misclassified Patterns = 427

Misclassification Statistics After Feature Selection
Q 15

10

Eu

z 0
0 20 40 60 80 10 120 140

Profile Number Tota I Number of Misclassified Pattems = 370

Change in Number of Misclassifications

(A

0

0 -2-

4 -

S -4 --

C 020 60 so8010 12 140

Profile Number |=Totalorop in Misciassifications=- -r(-3.34 %) |

Figure 4-4: Identifiler profile misclassification pre- and post- feature selection. Feature selection
led to a drop of 13 percentage points in the overall number of classification errors.

Furthermore, the feature selection algorithm did not assign similar sets of features

to most of the classifiers studied. Figure 4-5 and the accompanying Table 4.1

illustrate the usefulness of individual features. A feature was said to be useful if it

was selected by many classifiers during the feature selection process. The most useful

feature, the maximum inter-locus imbalance error across the channels, was selected

58

by 15 of the classifiers. Other useful features included the maximum stutter count

value for a profile, the range of peak widths, and the mean inter-locus imbalance ratio.

These features were chosen by at least three fifths of the classifiers. Other features

were demonstrated to be of minimal usefulness, selected by only one or zero classifiers.

These include the off ladder inside bin allele count. For most profiles considered, this

count was extremely low (generally zero or one), so it is quite possible that the rarity

of these alleles makes the off ladder inside bin allele count a poor feature for classifier

training.

Feature Usefulness
Max Interlocus Imbalance'Error

Max Stutter Count
4-Peak Width Range

Mean Interlocus Imbalance Ratio

94276-876151811123~21643435311423049370334

T U tT 1 1 1 1 1

I- I I I - I E
9422 7 1625283738111531 8 171819293244 2 212640 3 14333543 5 10 1 4 1213202439232730 3 3342

Feature Number

Figure 4-5: Some features are particularly useful across a variety of the classifiers examined.

59

15 r

'U

0
0,

0

E
03
'U

(A

0
I0

0
11-

0
E

Prof Prof Prof Prof
Min Max Range Mean

Heterozygote 0 1 2 3
intra-locus
imbalance
Inter-locus 4 5 6 7
Imbalance
Ratio
Inter-locus 8 9 10 11
Imbalance
Error
Inter-channel 12 13 14 15
Intensity
SNR 16 17 18 19
Peak Width 20 21 22 23
Gaussian 24 25 26 27
error
Ski Slope 28 29 30 31
Off ladder in- 32 33 34 35
side bin
Off ladder out- 36 37 38 39
side bin
Stutter count 40 41 42 43

Table 4.1: Feature guide: each number indicates a specific feature value for a profile.

60

Chapter 5

Parameter Optimization

The LNKnet machine learning toolkit was used to train and evaluate each classifier via

a three-step method [27]. First, to evaluate baseline performance, each classifier was

trained on the set of 44 profile-level features, as described in Section 2.4, with the

default set of parameters included in the LNKnet toolkit. The second step involved

performing feature selection via the approach described in Chapter 4. The final

step involved tuning the individual classifier parameters. The classifiers had between

one (KNN) and 10 (MLP) parameters. These were adjusted via a modified version

of gradient ascent with the goal of maximizing individual classifier performance.

5.1 Motivation for Parameter Tuning

Each classifier has a unique set of parameters that can be finely tuned to max-

imize performance. The Gaussian classifier, for example, is heavily dependent on

the specifications of its covariance matrix. Gaussian linear discriminant classifiers

are among the most straightforward and commonly used classification algorithms in

machine learning [38]. Consequently, the Gaussian classifier was the first to be ap-

plied to the STR profile authentication problem. A Gaussian classifier models each

class with a Gaussian distribution centered on the mean of that class. The variance

of these Gaussians can be calculated in four ways, as determined by the covariance

61

LINEAR

DIAGONAL
COVARIANCE A B

MATRIX

FULL jg

COVARIANCE

MATRIX 1 t
COMMON GRAND

COVARIANCE
MATRIX

Figure 5-1: The covariance matrix of a Gaussian

QUADRATIC

A B

PER-CLASS
COVARIANCE

MATRIX

classifier can be calculate in

matrix (Figure 5-1). The variance of each class can be calculated separately, re-

ferred to as a per-class covariance matrix. Alternatively, individual class variances

can be averaged to give a common grand variance used for all classes. The covariance

matrix can also be either diagonal or full. Diagonal covariance matrices constrain

equal-probability ellipses to have major axes parallel to the input feature axes. This

implies one variance calculation for each dimension of the input data. Full covariance

matrices, on the other hand, allow equal probability ellipses to have any orientation.

When there are many input features, full covariance Gaussian classifiers have many

more parameters than diagonal covariance classifiers and may perform worse with

limited training data. In addition, the variance can be limited to be above a mini-

mum value to prevent numerical problems when input features are unchanged across

training patterns. A linear discriminant classifier is a Gaussian classifier with grand

variances, where variances are the same for all classes. The simplest linear discrimi-

nant classifier uses the same diagonal covariance matrix for each class. A quadratic

classifier is a Gaussian classifier with separate variances for each class [43].

It is difficult to visualize the results of the Gaussian classifier for the STR profile

dataset in a three-dimensional rendering due to the high dimensionality of the data,

but a simpler example for vowel data classification illustrates similar effects of pa-

62

four ways [38].

rameter values on performance (Figure 5-2). In this example, spoken vowels were

classified into 10 classes based on the first (x-axis) and second (y-axis) formants. Each

decision region is formed by projecting a three-dimensional Gaussian representation

of the class. The ellipses in the figure correspond to these projections. The figure

indicates that classification results vary based on the covariance matrix used in the

Gaussian classifier, underscoring the importance of tuning classifier parameters to

achieve optimal classification results [32].

LINEAR QUADRATIC

I

Figure 5-2: The performance of the Gaussian classifier depends on its covariance matrix [38].

5.2 Parameter Tuning Algorithm
For each classifier, including the Gaussian model summarized above, parameters

were tuned via gradient ascent. The algorithm can be summarized as follows:

* For each parameter

- Sweep through the range of possible values while holding the other param-

eters constant at the LNKnet defaults.

- Perform cross validation and calculate the performance score (Section

5.3) corresponding to the current set of parameter values.

" Compare the highest performance score achieved for each parameter and choose

63

the maximal value. In case of ties in performance score, choose the parameter

value that is closest to the LNKnet default.

* Fix the value of the corresponding parameter.

* Repeat this process for the remaining free parameters.

This greedy process is not guaranteed to yield globally optimal results, and has the

potential to converge to local extrema of the performance score function.

5.3 Performance Evaluation

Classifier performance was measured by the formula:

score=

w1*p(natinat)+w2*p(synthjsynth) -w3*p(synthlnat)-w4*p(natisynth)-w5*1

If the goal of classification is to detect synthetic profiles:

Sp(natinat) is a true negative that refers to the probability of a classifier declaring

that a test profile is natural given that the profile actually is natural.

* p(synthlsynth) is a true positive that refers to the probability of a classi-

fier declaring that a test profile is synthetic given that the profile actually

is synthetic. WGA and bacterial profiles were tested separately against nat-

ural profiles. Thus, p(synthlsynth) = p(WGA|WGA) or p(synthlsynth) =

p(bacteriallbacterial), depending on the type of synthetic profile used to tune

the classifier. No combinations of bacterial, WGA and natural profiles were

included in the same data set due to the greater challenges associated with

multi-class classification. However, multi-class classification is a potential di-

rection to pursue in the future and is described in Chapter 8.

* p(synth nat) is a false positive that refers to the probability of a classifier declar-

ing that a profile is synthetic when the profile is actually natural.

64

Sp(natlsynth) is a false negative that refers to the probability of a classifier

declaring that a test profile is natural given that the profile actually is synthetic.

* p(fail) refers to the probability that the training algorithm did not converge

in the specified number of iterations or that some other type of error occurred

during the four-fold cross validation process.

The weights w1 through w5 were assigned manually and adjusted to place varying

levels of emphasis on correctly identifying natural profile, avoiding false positives,

or avoiding false negatives. The weights could also be adjusted to reflect the non-

uniform prior probabilities. For example, in the Identifiler dataset, roughly two-thirds

of the profiles are WGA and one third are natural. Thus, there is inherently a higher

probability of a classifier declaring that a profile is WGA. By increasing the values

of wl and w3, greater emphasis can be placed on the correct classification of natural

profiles, helping to counteract the initial skew in the classifier.

5.4 Parameter Tuning Examples for the Gaussian

and ARTmap classifiers

Parameter tuning for the Gaussian classifier is summarized in Figure 5-3. The

top left subplot illustrates the default performance of the classifier, with the full set

of features and the default parameter values (a full grand covariance matrix). As

indicated in the legend, the combined area of the green bars refers to the probability

that a profile is classified correctly (light green indicates the probability of classify-

ing a natural profile correctly, while dark green indicates the probability of correctly

classifying a WGA profile). The combined red area represents the probability of clas-

sifying a profile incorrectly (light red refers to the probability of stating that a WGA

profile is natural, while dark red refers to the probability of stating that a natural

profile is WGA). The baseline performance of the classifier was poor: only 65 percent

of profiles were classified correctly. The top right subplot represents the improve-

65

ment in performance due to feature selection: the probability of correct classification

increases from 0.65 to 0.70.

The gradient ascent algorithm was then used to determine the optimal covariance

matrix for the classifier. As described in Section 5.1, the covariance matrix of the

Gaussian classifier is defined in terms of two parameters. These are referred to as

full and per-class. Each of these parameters can take two values: a value of 0 for the

full parameter indicates a diagonal covariance matrix, while a value of 1 indicates

a full covariance matrix. A value of 0 for the per-class parameter indicates a grand

covariance matrix, while a value of 1 indicates a per class covariance matrix. Thus, in

the context of the Gaussian classifier, a parameter sweep simply involves calculating

the performance scores for the two possible values of the given parameter (0 and 1).

In accordance with the gradient ascent algorithm, sweeps were performed inde-

pendently over both the full and per-class parameters. In each case the non-target

parameter was held at the LNKnet default. The maximum performance scores were

calculated for each parameter. Comparing the two maximum performance scores in-

dicated that the score was higher for the full parameter. Consequently, this parameter

was fixed at the optimal value of 0. A sweep was then performed over the values of

the remaining parameter, per-class, while holding the full parameter at the optimized

value. This sweep revealed that setting the per-class value to 0 yielded the highest

performance score.

The Fuzzy ARTmap classifier (Figure 5-4) provides a more complex example of

parameter tuning. This supervised neural network classifier depends on five param-

eters: alpha, beta, alpha training vigilance, alpha test vigilance, and beta vigilance.

The adaptive resonance theory (ART) system is an semi-supervised learning model

that consists of a comparison field and a recognition field. It is composed of neurons, a

vigilance parameter, and a reset module. The vigilance parameters have considerable

influence on the system: higher vigilance produces highly detailed memories (many

66

gauss gauss, Weights = 11111 Optimizing correct gauss
Defaults Optimized Features

1 1

0.8 0.8
02

a 0.6 a 0.6

00 =Failure to Converge
o a

All Features, Default Params Selected Feature Set, Default Params

gauss optimizing: full gauss optimizing: per_class
1 1

0.8 0.8

0.6 0.6

0.4 0.4

0.2 0.2

0 0
0 1 0 1

selected value = 0 (Default = 0) selected value = 0 (Default = 0)
range = [0:1] Increment = 1 range = [0:1] Increment = 1

Figure 5-3: Gaussian classifier with parameters full, per-class

fine-grained categories), while lower vigilance results in more general memories (fewer

more-general categories). The comparison field takes a feature vector and transfers it

to its best match in the recognition field. Its best match is the single neuron whose

weight vector most closely matches the feature vector. The alpha parameter indicates

the degree of recoding in the neural network that is used to make this comparison.

There are two basic methods of training ART-based neural networks: slow and fast.

The learning rate is indicated by the beta parameter. In the slow learning method,

the weight updates for the recognition neurons are continuous values calculated via

differential equations. These updates depend on the length of time that an input fea-

ture vector is presented. With fast learning, simpler algebraic equations are used to

calculate weight adjustments, and more coarsely sampled values of time are used [24].

67

bopw ",a
I MAT. I

Figure 5-4: Fuzzy ARTmap classifier schematic [24].

As demonstrated in Figure 5-5, the alpha, beta, and vigilance parameters were

tuned using the modified gradient ascent algorithm. Among the classifier parameters

alpha, beta, alpha- train-vigil, alpha test-vigil, and beta-vigil, four of the parameters

were set to the default LNKnet values, and the remaining fifth parameter was swept

through the full range of possible values. The optimal parameter value was determined

by identifying the highest performance score, and performance scores were compared

for the individual parameters to determine which parameter value should be fixed at

the new value. The process was then repeated for each of the remaining ARTmap

parameters until all four remaining parameters were tuned. The parameters were

fixed in this order: alpha-test-vigil, alpha-trainvigil, alpha, beta, beta-vigil.

Figure 5-5 demonstrates that the alpha-test-vigil parameter can take on values

ranging from 0 to 0.8 with no effect on performance. In such a situation, the parameter

value closest to the LNKnet default was selected: for the ARTmap classifier the

68

AR~o
Tarpt vcct,

alpha-test-vigil parameter was set to 0.8 because that value was closest to the default

of 0.9. Additionally, turning the parameters alpha, beta, and beta-vigil did not

affect classifier performance. Consequently, the tuned values of these parameters were

kept at the LNKnet defaults.

69

artmap artmap, Weights = 111_1.1, Optimizing correct artmap
Defaults Optimized Features

1 1

-d 0.8 -~0.8
a..

e0.6 =0.6
MLabel Natural Narl

0.40 Label WGA WGA
=Label WGA I Natural

-0.2 0.2 Label Natural I WGA
=Failure to Converge

0 0
All Features, Default Params Selected Feature Set, Default Params

artmap optimizing: alphatestvigil artmap optimizing: alpha-train-vigil
1 1

0.8 0.8

0.6 0.6

0.4 0.4

0.2 0.2

0 0
0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 1

selected value = 0.8 (Default = 0.9) selected value = 1 (Default = 0.95)
range = [0:0.9] Increment = 0.1 range = [0:1] Increment = 0.1

artmap optimizing: alpha artmap optimizing: beta
1 1

0.8 0.8

0.6 0.6

0.4 0.4

0.2 0.2

0 0
0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 1

selected value = 0.001 (Default = 0.001) selected value = 0.95 (Default = 1)
range = [0.001:0.901] Increment = 0.1 range = [0.05:1.05] Increment = 0.1

artnap, Weights = 1_1.1.1_1 Optimizing correct
artmap optimizing: beta-vigil

0.8

0.6

0.4

0.2

0.2 0.4 0.6 0.8 1
selected value = 0.99 (Default = 0.99)
range = [0.09:0.99 Increment = 0.1

Figure 5-5: Artmap classifier with parameters alpha-test-vigil, alpha-train vigil, alpha, beta,
beta-vigil.

70

The parameter-tuning process for the highest performing classifiers is shown in

Chapter 6. Additional classifiers are summarized in Appendix C.

5.5 Full Parameter Sweeps

The drawback to the gradient ascent approach is its failure to capture interdepen-

dencies between parameters. If the performance metric is viewed as a function over

classifier parameters, the modified gradient ascent approach may produce a result

that is a local maximum but not a global maximum of the function. The risk of

converging to a local maximum in the performance score can be reduced by replacing

the gradient ascent approach with a full parameter sweep, although this imposes a

large performance penalty. Such a parameter sweep is illustrated in Figure 5-6 for

the Gaussian classifier. The top plot indicates the ratio of true positives (dark green)

to false positives (dark red) for the WGA class. The bottom plot presents this ratio

for the natural class. The center plot summarizes the total fraction of profiles that

fall into each of the four categories p(natinat), p(wgalwga), p(wgalnat), p(nat wga).

This plot helps to explain why the default values of 0 were chosen for both the full

and per-class parameters: though the individual ratios of true positives to true neg-

atives are higher for both the WGA and natural classes when the full parameter is set

to 1, the combined ratio of correct to incorrect profiles is higher when the parameter

is set to 0. This combined value was obtained by summing the height of the dark

and light green surfaces in the center plot and comparing the result to the sum of the

heights of the light and dark red surfaces.

71

gaussian: WGA
Parameter Sweep

full S r pera06 0s800 02 per-class

gaussian: All
Parameter Sweep

- P(wgatwg2)
P(natlnat)
P(Wgalnat)
P(natwga)0.4

0.3 -...-

U -0.2 0.4 0.6 0.8 1 0

per-class
gaussian: Natural

Parameter Sweep

P(natwa)
P(natin)

Figure 5-6: Parameter sweep for the Gaussian classifier with covariance matrix determined by
parameters full and per-class.

72

full

P(wgalnatral)
P(wgalwga)

The Gaussian classifier has only two tunable parameters, so a full parameter

sweep is computationally feasible. However, the high cost of this approach is evident

in Figure 5-7, which shows a full parameter sweep for the ARTmap classifier. For

ARTmap, it was determined that the parameters alpha and beta-vigil do not play

a significant role in determining the performance score, so to minimize computation

time, only beta, alpha-train vigil, and alpha-test vigil were used for the surface

sweep. The scatterplot reveals the drop in performance for alpha-test vigil = 0.9,

as well as the increase in performance for high values of the alphatrain-vigil pa-

rameter. However, the scatter plot also indicates that best performance is achieved

for low values of the beta parameter, while the gradient ascent approach suggested

that the value of the beta parameter does not have a significant effect on the classifier

performance. This discrepancy shows the limitations of the gradient ascent approach

and the effects of local maxima. However, due to computational costs associated

with performing full parameter sweeps, especially on classifiers with multiple param-

eter values, the gradient ascent approach alone was used to evaluate the performance

of all other classifiers.

artmap: WGA
Parameter Sweep

0.5 0.5

alpha train vigi 0 0 bt

a--~tan~ii 0 eaProbability of correct classification

Figure 5-7: Parameter sweep tuning for the A RTmap classifier with parameters alpha train vigil,
alphatest-vigil, and beta.

73

THIS PAGE INTENTIONALLY LEFT BLANK

74

Chapter 6

Results of Feature Selection and

Parameter Tuning: Determining

Optimal Classifier Behavior

Once feature selection and parameter tuning were performed for the individual classi-

fiers, their performance was compared to determine the overall optimal combination

of features, parameters, and classifiers for the STR profile authentication problem.

To evaluate performance, the weights w1 through w5 in the performance score were

all set to 1. This gave a score metric of

performance = p(wgajwga) + p(nat nat) - p(wgalnat) - p(natlwga) - p(f ail)

Other score metrics are presented in Section 6.3.

6.1 Classifier Comparison with Performance Score

Weights = [1,1,1,1,1]

Figure 6-1 shows the performance of all classifiers on the Identifiler data set

when all weights in the performance score were set to 1.

75

Unoptimized Feat., Unoptimized Params I Optimized Feat., Unoptimized Params I Optimized Feat. Optimized Params
weights:1.1_1

optimization goal: correct

0.9 -

0.8 -

0.7 -

* Label Natural I Natural
* Label WGA WGA
* Label WGA I Natural
* Label Natural I WGA
* Failure to Converge

Figure 6-1: Identifiler, weights = 1,1,1,1,1], column 1: default performance, column 2: perfor-
mance after feature selection, column 3: performance after parameter tuning.

Optimized Parameters for Identifiler Data Classification

0

Q

E

Figure 6-2: Identifiler, weights = [1,1,1,1,1]. Performance after parameter tuning is shown.

76

0.6

0.5

t 0.4

0.3 -

0.2-

0.1 -

0'
E 0 S Ii; j j

~' ~'

In the figure, each classifier is summarized in three bars. The first bar measures the

default performance of the classifier, the second bar measures the performance after

feature selection, and the third bar measures performance after both feature selection

and parameter tuning. The classifiers are sorted in ascending order by final perfor-

mance. Figure 6-2 focuses on only the final, tuned performance of each classifier.

These figures suggest that all classifiers performed reasonably well - most achieved

error rates below 20 percent, and even the worst performing classifier (histogram) cor-

rectly classified 64 percent of the samples. Of the classifiers analyzed, the condensed

K-nearest neighbors, K-nearest neighbors, multi-layer perceptron, Parzen window,

and support vector machine classifiers performed particularly well, all achieving error

rates near ten percent. Their performance is summarized in more detail in Table

6.1. The parameter tuning process for these classifiers is summarized in Figures 6-3

through 6-7.

All five of the top performers achieved higher values for p(wgalwga) compared to

p(natjnat). Furthermore, all were more likely to misclassify a WGA profile as natural

rather than misclassify a natural profile as WGA. These results are unsurprising: the

scatter plots in Appendix A indicate that most features take on a higher range

of values, with a higher standard deviation of values from the mean, for the WGA

samples. Thus, the features of a natural sample could have values that fall in the

WGA range, but it is less likely that a WGA sample would have features that fall

into the natural range.

Classifier p(correct) p(natInat) p(wgalwga) p(wgalnat) p(natlwga)
cknn 0.8871 0.8378 0.9080 0.1622 0.0920
svm 0.8952 0.7568 0.9540 0.2432 0.0460
knn 0.9113 0.7838 0.9655 0.2162 0.0345
mlp 0.9113 0.8919 0.9195 0.1081 0.0805

parzen 0.9194 0.8649 0.9425 0.1351 0.0575

Table 6.1: Performance of top classifiers: CKNN, SVM, KNN, MLP, Parzen.

77

6.2 High-Performing Classifiers
When all weights were set to one, the highest-performing classifiers were CKNN,

KNN, MLP, Parzen, and SVM. As demonstrated in Sections 6.3 and 6.4, these clas-

sifiers continued to perform well when the performance score weight vector was varied:

for a weight vector of [1,1,1,10,1], the highest-performing classifiers in descending or-

der were Parzen, MLP, KNN, CKNN, ARTmap, and SVM. With the exception of the

ARTmap classifier, these are the same as the top performers for the [1,1,1,1,1] vector.

Similarly, for the weight vector [3,1,1,3,1], the top performers were KNN, MLP, SVM,

Gaussian, Gaussian mixture model, and CKNN. The Gaussian and Gaussian mixture

model classifiers are new to the top five, and the Parzen classifier did not perform

as well as in the other test cases. Finally, using the [1,3,3,1,1] metric rendered the

top performers as KNN, Parzen, MLP, SVM, and ARTmap. These overlap with the

previous cases, with the exception of the missing CKNN classifier. This suggests that

a subset of the classifiers consistently perform well, and these are summarized below

in greater detail.

6.2.1 K-Nearest Neighbors (KNN)

During the training phase, a K-nearest neighbors classifier stores all the patterns

presented to it. In the subsequent test phase, it uses a Euclidean distance measure

to iterate through all stored patterns and identify the K neighboring patterns that

are closest to a pattern of interest. A vote is taken among the K neighbors and the

class that occurs the most is assigned to the test pattern. Ties are broken randomly.

As demonstrated in the top right plot of Figure 6-3, feature selection has a pow-

erful effect on the performance of this classifier, improving the probability of correct

classification from 82% to 91%. Additional performance improvements were achieved

by tuning the K parameter, which determines the number of nearest neighbors to

consider [36]. As demonstrated in Figure 6-3, the classifier performed best for K

78

=1, and performance declined nearly linearly as the value of K increased.

knn knn, Weights = 1_1_1_1_1 Optimizing correct
Defaults

1

0.8

a0.6

0.4

r00.2,

knn
Optimized Features

All Features, Default Params

knn optimizing: k

0.8

0.6

0.4

0.2

0

1

0.8

0.6

0.4

0.2

0

Selected F

Label Natural | Natural
Label WGA| WGA
Label WGA | Natural
Label Natural | WGA
Failure to Converge

Feature Set, Default Params

Figure 6-3: K nearest neighbors with parameter K.

6.2.2 Condensed K-Nearest Neighbors (CKNN)

The condensed K-nearest neighbor classifier (CKNN) functions similarly to the

KNN classifier, but stores fewer patterns. During the training phase, CKNN exam-

ines training patterns successively. It stores only those patterns that are classified

incorrectly during testing. As in the case of the KNN classifier, feature selection im-

proved the performance of CKNN by approximately 10 percentage points. In Figure

6-4, the parameter epochs refers to the number of times the patterns were examined

during training [38]. Adding epochs of training improved performance up to a point:

five epochs yielded higher performance than one epoch. This occurred because each

time the patterns were examined, the classification boundaries were adjusted to re-

duce the number of misclassifications. However, beyond five epochs, adding further

79

5 10 15
selected value = 1 (Default = 1)

range = [1:201 Increment = 1

iterations had no significant effect. Unlike the KNN classifier, the CKNN classifier

was not strongly affected by the value of the K parameter. Setting K to one still

gave the highest performance score, but higher values of K did not hurt performance

as significantly as for KNN. This is due to the fact that the CKNN classifier places

more emphasis on neighbors that are misclassified rather than on the entire set of

neighbors.

cknn cknn, Weights = 1_1_1_1_1 Optimizing correct cknn
Defaults Optimized Features

1

0.

0.

0

0

a0.8

r- 010
0.4

- 0.2

All Features, Default Params

cknn optimizing: k
1

0.8

0.6

0.4

0.2

0
5 10 15 20

selected value = 1 (Default = 1)
range = [1:20] Increment = 1

E Label Natural I Natural
Label WGA WGA
Label WGA I Natural
Label Natural I WGA
Failure to Converge

Selected Feature Set, Default Params

cknn optimizing: epochs

0.8

0.6

0.4

0.2

C
2 3 4 5 6 7 8 9 10

selected value = 5 (Default 5)
range = [1:101 Increment = I

Figure 6-4: K nearest neighbors with parameters K and epochs

6.2.3 Multi-Layer Perceptron (MLP)

The multi-layer perceptron (MLP) classifier (Figure 6-5) fits sigmoid discrimi-

nant functions to the input space. Weighted connections between layers of the MLP

are used to create hyperplanes that partition the input space into half spaces. The

half spaces correspond to decision boundaries that separate the natural class from

the WGA class. The structure of the classifier is defined by the number of hidden

80

layers, the number of nodes in each layer, and output node processing steps. The

decision made by the classifier is a weighted sum of the output nodes. If two classes

are separable, the MLP algorithm is guaranteed to converge in finite time and to find

a separating hyperplane [7].

A back propagation gradient descent algorithm was used to train the weights

between the perceptron nodes [23]. If the MLP algorithm misclassified a training

pattern, the weights in the discriminant function corresponding to that pattern were

adjusted so as to minimize the probability of future errors. Ultimately, the combined

magnitude of these weights determined the behavior of the classifier. 10 parameters

governed the behavior of the MLP. The first to be tuned was epochs, which refers

to the number of times the data was examined. The next parameter was alpha,

which refers to the weights of the connections between nodes in the hidden layer of

the network (Figure 6-5). With small weights (low alpha), the network behaved

linearly. With medium weights, smooth nonlinearity was observed, approximating

Gaussian posterior probabilities. Large weights induced threshold logic: the network

performed logical "AND" and "OR" operations. The MLP classifier performed best

for medium values of alpha in the 0.5 - 0.9 range; 0.5 was selected as the optimal

value. The number of nodes in the hidden layer of the network was then optimized

to a value of 25.

A gradient descent algorithm needs a step size, which is a multiplier applied to

the gradient when the weights are updated. For the MLP this is the etta parameter.

When set to zero, the etta-change-type parameter denoted a constant step size for

gradient descent; when set to one, it denoted a step size inversely proportional to

the number of steps taken. According to Figure 6-5, performance did not depend

strongly on the value of etta, but varying the etta-change-type led to a 30% range

in performance. This indicates that, for the STR data set, the classifier performed

much better when a constant step size was used for gradient descent. This result

81

is surprising, as the literature suggests that calculating an optimal step size at each

iteration generally leads to improved performance when compared to using a constant

step size [7]. It is likely that a confounding factor lead to better performance for the

constant step size.

The gradient descent algorithm was performed using a cost function collectively

defined by the parameters hfunction, ofunction, and cost-fun. Five cost functions

types were evaluated: the squared-error function (parameter value 0), maximum like-

lihood function, the cross-entropy function, the perceptron convergence procedure,

and the top-two difference function. Of these, the squared error and perceptron con-

vergence functions both led to correct classificantion rates greater than 90%. It is

unsurprising that the squared error function lead to optimal behavior, as this function

promotes small weights and simpler or smoother solutions. The choice of this func-

tion was in line with the choice of the alpha parameter (see above), as both choices

indicate Gaussian distributions and smooth nonlinearity in the input data set [31].

The behavior of the squared error function in turn depended on several other

parameters. One of these was the choice of the output function that is applied to the

weighted sum calculated for the output layer. Output functions could take the form

of a standard sigmoid (parameter value 0), a symmetric sigmoid (parameter value

1), or a linear weighted sum (parameter value 2). The tuning algorithm selected the

value of 0 for the ofunction parameter, indicating that a standard sigmoid function

led to the best performance.

The final parameters to be tuned were init-mag and sigmoid param. init-mag

refers to the maximum magnitude of the initial weights, and the sigmoid-param pa-

rameter adjusts the steepness of the sigmoid cost function. A higher steepness value

sharpens the decision region boundaries. Parameter tuning revealed that optimal

performance was achieved when the sigmoid steepness was set to one. Performance

was significantly worse for values of sigmoid-param in the 0.1 - 0.6 range, and dropped

82

gradually for values of the parameter greater than one. This suggests that the sharp-

ness of the decision boundaries is important, and that the classifier prefers decision

boundaries that are neither too smooth nor too sharp.

mip, Weights = 1_1_1_11 Optimizing correct mip
Optimized Features

0.

0.

0.

0.

Selected Feature Set, Default Params

mlp optimizing: epochs
1

0.8

0.6

0.4

0.2

0
10 15 20 25 30 35 40 45 50

selected value = 35 (Default = 30)
range = [10:50] Increment = 5

mlp optimizing: nodes
1I...---------------------..............

0.8-

0.6-

0.4-

0.2-

0
10 15 20 25 30

selected value = 25 (Default = 25)
range = [10:30] Increment = I

mIp optimizing: alpha

0.8-

0.6-

0.4-

0.2-

0- """-"""" A=a .Ma...A..........'.- I
0 0.5 1 1.5 2

selected value = 0.5 (Default = 0.6)
range = [0:2] Increment = 0.1

mlp optimizing: etta

0.8

0.6

0.4

0.2

0.2 0.4 0.6 0.8 1
selected value = 0.1 (Default = 0.1)

range = [0.1:1] Increment = 0.1

Figure 6-5: Multi-layer perceptron with parameters epochs, alpha, nodes, etta, etta-change type,
hfunction, ofunction, cost-fun, init-mag, sigmoid-param.

83

1

mip
Defaults

2

a

0.8

0.6

0.4

0.2

0
All Features, Default Params

1

mip, Weights = 1_1_1_1_1 Optimizing correct

mip optimizing: ettachangeype mip optimizing: hfunction

0.

0.

0.

0.

0
selected value = 0 (Default = 0)

range = [0:1] Increment = 1

mip optimizing: ofunction
1

0.8

0.6

0.4

0.2

0

selected value = 0 (Default = 0)
range = [0:1] Increment = 1

selected value = 0 (Default = 0)
range = [0:1] Increment = I

mip optimizing: cost-fun

0 1 2 3
selected value = 0 (Default = 0)

range = [0:4] Increment = 1

mip optimizing: init mag

0.8

0.6

0.4

0.2

0.2 0.4 0.6 0.8 1
selected value = 0.1 (Default = 0.1)

range = [0.1:1] Increment = 0.1

1

0.8

0.6

0.4

0.2

0

mip optimizing: sigmoidparams

0.5 1 1.5 2
selected value = I (Default - 1)
range - [0.1:2] Increment = 0.1

Figure 6-5: (continued).

84

0.1

0.1

0.1

0.:

0

0.8

0.6

0.4

0.2

0

6.2.4 Parzen Window

Tuning of the Parzen window classifier is summarized in Figure 6-6. This clas-

sifier places kernel functions over each training pattern. The classifier calculates the

likelihood that an input sample is WGA or natural by summing across the likelihoods

for each kernel function in the class and subsequently normalizing by the number of

training patterns in the class. Kernel functions can be either Gaussians or rectangular

pulse functions [13], as noted in the linear parameter. This parameter was set to 0

for Gaussian functions and 1 for the rectangular pulse function. The classifier per-

formed better with Gaussian kernel functions, achieving a correct classification rate

of 93%, compared to only 60% with rectangular pulse functions. The strong tendency

to prefer Gaussian functions correlates with the preference for Gaussian parameters

by the MLP classifier. The sigma value of this kernel, modelled by the spread param-

eter, strongly influenced performance, with sigma = 1.5 leading to optimal results.

Higher values of sigma led to increased classifier complexity and ultimately to poorer

results [13].

Additionally, Parzen kernel functions can be uniform (circular or square func-

tions), or the length of each side can be proportional to the variance of each input

feature (elliptical or rectangular). The per-class parameter regulated this and was

set to 0 for uniform functions and 1 for feature-based functions. Figure 6-6 demon-

strates that uniform functions were strongly preferred. The preference for uniform

kernel functions correlates with the preference of the Gaussian classifier discussed

in Chapter 5 for grand and full covariance matrices. The shape of the kernel was

determined by the perinput parameter, which was set to 0 to indicate that all kernel

functions have the same shape, or 1 to indicate separate kernel function shapes for

each class. The value of this parameter did not strongly affect the performance of the

classifier.

85

parzen parzen, Weights 11111, Optimizing correct parzen
Defaults Optimized Features

1

0

0

0.4

0.2

All Features, Default Params

-00.8

e 0.6

0.4

0.2

0

1

0.8

0.6

0.4

0.2

0

E Label Natural I Natural
Label WGA| WGA
Label WGA I Natural
Label Natural I WGA
Failure to Converge

Selected Feature Set, Default Params

parzen optimizing: perclass

0.A

0.1

0.1

0

0
selected value = 0 (Default = 0)

range = [0:1] Increment = 1
selected value = 0 (Default = 0)

range = [0:1] Increment = I

parzen optimizing: minvar

0.

0.

0.

0.

0 1 2 3 4
selected value = 2 (Default = 2)

range = [0:5] Increment = I

parzen, Weights = 11_1_11, Optimizing correct
parzen optimizing: linear

parzen optimizing: spread

0.8-

0.6-

0.4-

0.2-

0
0 1 2 3 4 5 6

selected value = 1.5 (Default = 1.5)
range = [0.1:7] Increment = 0.1

0"
0 1

selected value = 0 (Default = 0)
range = [0:1] Increment = 1

Figure 6-6: Parzen classifier with parameters per-input, per-class, minvar, spread, linear.

86

parzen optimizing: per_input

U

7

0.8

0.6

0.4

0.2

1

6.2.5 Support Vector Machine (SVM)

A support vector machine separates data into two or more classes using a hyper-

plane. The separating hyperplane is positioned to maximize the margin, which is

defined as the separating distance from the patterns in two classes. The SVM imple-

mentation used by the LNKnet software utilizes sequential minimal optimization [23].

The algorithm begins with zero Lagrange multipliers. It then sweeps through all train-

ing patterns to find those where the Kuhn Tucker (KT) optimality condition is not

satisfied. The KT requirement states that only support vectors can have non-zero

dual variables [43]. The Lagrange multipliers are then adapted so that all patterns

satisfy the KT conditions.

A support vector machine with a Gaussian kernel was used, and the performance

of this machine depended on the Gaussian standard deviation of the kernel (sigma) as

well as the Lagrange Multiplier Upper Bound (cbound). Sigma determined the width

of the Gaussian kernel. Figure 6-7 indicates that the classifier performed best when

sigma was set to 4.9. This suggests that the SVM classifier had high generalizability,

as the order of the optimal kernel was low. In general, higher order kernels reduce

errors on the training data but do not generalize well. Conversely, low-order kernels

generalize well, but tend to make errors on the training data. [43].

The parameter cbound controls the trade off between errors of the SVM on training

data and margin maximization; cbound = 0 yields a hard margin SVM. If the cbound

is chosen to be too large, the result is a high penalty for non-separable datapoints,

which ultimately results in many support vectors and overfitting. If it is too small,

underfitting will occur instead. The soft margin solution (cbound > 0) was used

because the WGA and natural classes are not linearly separable, as can be observed

from the feature scatter plots in Appendix A. The optimal value of cbound was 11.

This value lay toward the center of the range, suggesting that neither underfitting

nor overfitting were serious problems.

87

svm svm, Weights = 1_111, Optimizing correct svm
Defaults Optimized Features

1 1

0.
0.6 0.6

Label N
40.4 0.4 Label W

2 Label WA
A0.2 0.2 Label N

0 01Failure

All Features, Default Params Selected Feature Set, Default

svm optimizing: sigma svm optimizing: cbound

0.8

0.6

0.4

0.2

0

atural I Natural
GA| WGA
GA I Natural

atural I WGA
to Converge

Params

0 1 2 3 4 5 5 10 15 20
selected value = 4.9 (Default = 0.3) selected value = 11 (Default = 10)

range = [0.1:5] Increment = 0.1 range = [1:20] Increment = 1

Figure 6-7: SVM classifier with parameters sigma and cbound.

6.3 Emphasis on Minimizing False Negatives for

WGA Class
For purposes of forensic analysis, synthetic STR profiles are particularly note-

worthy, as they bring into question the validity of forensic evidence. Thus, in this

context, the performance score for a classifier should penalize the case p(natlwga)

more severely than any of the other cases, as this denotes the probability that the

classifier labels a WGA profile as Natural. Parameter tuning was thus performed for

all classifiers using this performance score, which has a weight vector of [1,1,1,10,1]:

performance =

p(wgajwga) + p(nat~nat) - p(wgalnat) - 10 * p(natlwga) - p(f ail)

88

iA:

0.8-

0.6

0.4-

0.2

-

Note the higher weighting of the p(natjwga) term to emphasize the high cost of

false positives for the natural class. The results are demonstrated in Figure 6-8.

This figure includes the default performance, performance after feature selection, and

performance after parameter tuning in columns one through three for each classifier.

Figure 6-9 includes only the tuned performance sorted in ascending order. This

performance is compared to the tuned performance of all classifiers with the default

weight vector [1,1,1,1,1] (Figure 6-10).

89

Unoptimized Feat., Unoptinized Perams I Optimized Feat., Unoptimized Params I OpUnized Feat. Optimized Params
weigits: 111101

opimization goal: correct

0.9

0.8

0.7

0.6

0.5

S0.4

0.3-

0.2 -

0.1 -

0

-Labe Natural I Natural
i Labe WGatu Isatral

L abe Natural I WGA
Falkre to Converge

E CL 06

Figure 6-8: Identifiler, weights = /1,1,1,10,1]. p(natlwga) was assigned a cost 10 times higher than
any other error. Column 1: default performance, column 2: feature selection, column 3: parameter
tuning.

Classifier Performance: Optimized Features Optimized Params
weigts: 1 1_1_10_1

optimization goal: correct

I
8

I ~

Figure 6-9: Identifiler, weights = [1,1,1,10,1], tuned parameters.
10 times higher than other errors. 90

p(natlwga) was assigned a cost

For the two sets of weight vectors, the combined area of the dark green bars

(true positives) and light green bars (true negatives) is identical and equal to 13.41

units. This was calculated by summing the areas of all green bars (one set of bars per

classifier). The area of the red and green bars must sum to one for each classifier (and

consequently to 16 for the full set of classifiers examined). The combined red areas

were consequently also the same for each set of weights, equal to 2.59 units. However,

as indicated in Table 6.2, the area corresponding to wgalwga is relatively higher

for the classifiers with weights [1,1,1,10,1] compared to the classifiers with weights

[1,1,1,1,1]. Similarly, the area corresponding to nat wga is cumulatively lower for

classifiers with weights [1,1,1,10,1]. Thus, if performance is averaged across classifiers

with weight vector [1,1,1,10,1], the overall probability of classifying a profile correctly

doesn't change, but there is a higher likelihood of correctly classifying profiles that

belong to the WGA class.

The same phenomenon is observed if the five high performing classifiers are an-

alyzed separately. For both the [1,1,1,1,1] and [1,1,1,10,1] weightings, the top per-

forming classifiers are KNN,CKNN, MLP, Parzen, and SVM. Combining the total

green area across all classifiers yields a value of 4.52 for both sets of weights.This

suggests that for the top five classifiers, as for the entire set of classifiers as a whole,

the probability of classifying a profile correctly does not change when the weight vec-

tor is altered. However, the total dark green area p(wgalwga) increases from 3.29 to

3.36 and the total light red area p(natjwga) decreases from 0.22 to .15 for the top

performers with weights = [1,1,1,10,1]. This suggests a slightly higher probability of

identifying a WGA profile correctly (Table 6.2), which may be of value in a forensics

application.

91

Perfomae Com Goason for
Opfirrizad Classifers with Opt~mIzallon Goal "comedW

[2 Label Natural | Natra

LaW GA | Natural

.oelNtuaI

Figure 6-10: Identifiler, weights

Table 6.2: Comparison of classifier

category.

= [1,1,1,1,1] compared with weights [1,1,1,10,1].

performance with w=[1,1,1,1,1] and [1,1,1,10,1] by profile

6.4 Emphasis on Correctly Classifying Natural vs.

Correctly Classifying WGA

In another experiment, the performance score was altered in two ways to place

varying emphasis on correct classification of natural and WGA profiles. In the first

approach, the w1 variable in the score was set to 3 to place heavier emphasis on the

92

I
I
&
S

I

M 9

Area Area Area Area
natinat wgalwga wgalnat natlwga

Sum of Classifiers with 3.54 9.87 1.19 1.40

-Weights =[1,1,,1,]
Sum of Classifiers with 3.00 10.41 1.72 0.86

Weights =[1,1,1,10,1]
Sum of Top 5 with 1.23 3.29 0.26 0.22

Weights = [1,1,1,1,1]
Sum of Top 5 with 1.15 3.36 0.35 0.15

Weights = [1,1,1,10,1]

p(natlnat) term, which denotes true positives for the natural class. w4 in the score

was also set to 3 to place a heavier penalty on the p(natlwga), false positives for the

natural class, yielding a weight vector of [3,1,1,3,1]. Thus, the modified performance

score was

performance

3*p(natlnat) + p(wgalwga) - p(wgalnat) - 3*p(nat wga) - p(fail)

In the second approach, the opposite was done: w2 and w3 were set to 3 to place

greater emphasis on p(wgalwga) and a higher penalty on p(wgalnat), the false positive

and false negative rates for the WGA class, yielding a weight vector of [1,3,3,1,1]. The

score in this case was:

performance = p(natlnat) + 3*p(wga wga) - 3*p(wga nat) - p(natlwga) - p(fail)

Here, there is a higher emphasis on classifying WGA profiles correctly, and a higher

penalty on false positives for WGA. The purpose of these two weightings was to

explore the behavior of the classifiers when the importance of correct classification is

class-dependent.

Additionally, by adjusting the weights for different subsets of parameters, the

prior probabilities of classification can be altered. In the Identifiler data set, there

are roughly twice as many WGA profiles as there are natural profiles. By weighing

p(natinat) higher and penalizing p(wgalnat), the goal was to determine whether these

unequal priors could be adjusted for in the performance score.

The classification results for the two sets of weights are presented in Figures 6-11

and 6-12. It can be concluded from these figures that the same set of classifiers that

performed well with the weight vector [1,1,1,1,1] also perform well with the skewed

weights. For both the [3,1,1,3,1] and [1,3,3,1,1], the top five performers included

KNN, MLP, SVM. However, some unexpected results were observed: the Parzen

classifier had been the top performer for the classifiers scored with weights [1,1,1,1,1].

93

This classifier was also the second best performer with weights [3,1,1,3,1], achieving a

correct performance rate around 92%. However, it did quite poorly on the [1,3,3,1,1]

dataset and classified only 75% of the sample profiles correctly. A reverse phenomenon

was observed for the CKNN classifier: it classified 85% of the profiles in the [1,3,3,1,1]

set correctly, but classified only 70% of the profiles correctly in the [3,1,1,3,1] set. This

result is surprising because the Parzen classifier and the CKNN algorithm are both

adaptations of the KNN algorithm, so it was expected that the he performance of one

would correlate with the other [37]. However, as indicated above, the opposite effect

was observed: CKNN performed well when Parzen performed poorly and vice versa.

Furthermore, the feature selection algorithm did not improve performance for

either the [1,3,3,1,1] classifiers nor the [3,1,1,3,1] classifiers as significantly as for the

default case with weights [1,1,1,1,1]. In the default case, feature selection led to a

slight drop in performance for the hypersphere classifier, did not significantly change

the performance of six of the classifiers, and significantly improved the performance

of the nine remaining classifiers (Figure 6-1). However, for the [1,3,3,1,1] case,

feature selection led to a performance loss for four of the classifiers, no change in

performance for six classifiers, and a performance gain for 6 of the classifiers (Figure

6-12). Thus, a net performance gain was still observed, but it was not as pronounced

as for the default case. Similarly, when feature selection was used with the weight

vector [3,1,1,3,1], there was a performance decline for three of the classifiers, no change

for seven of the classifiers, and an improvement for the remaining six (Figure 6-11).

In conclusion, the feature selection algorithm is not robust to different weight

vectors used to score classifier performance. This algorithm was developed with the

default set of weights [1,1,1,1,1], and leads to a high performance improvement for

most classifiers with this weight vector. However, the performance gain is much lower

when other weight vectors are used to score classifier performance.

94

Finally, it is important to note that for all three weight vectors considered, the

classifiers had nearly identical default performance. Among the three sets of weight

vectors, the sum of the areas of the bars corresponding to p(WGA|WGA) was in the

range [2.78,2.79], the sum of the bars for p(nat nat) was in the range [9.44,9.45], the

sum of the bars for p(wgalnat) was in the range [1.63,1.64], and the sum of the bars for

p(nat|WGA) was equal to 0.2016. This serves as a check for classifier development:

classifiers are expected to perform equally well with default feature and parameter

sets since the influence of the weight vector isn't expressed until the feature selection

step.

95

Unoptimized Feat.. Unoptimized Params I Optimized Feat., Unoptimized Params I Optimized Feat. Optimized Params
welghts: 31_1_3_1

optimization goal: nat

0.9

0.8

0.7

0.6

0.5

0.4

0.3 -

0.2-

0.1 -

01

uti

Label Natural I Natural
Label WGAJ WGA
Label WGA I Natural
Label Natural I WGA
Failure to Converge

5,

Figure 6-11: Identifiler, weights = [3,1,1,3,1], features optimized for natural profile classification.
Unoptimized Feat., Unoptimized Params I Optimized Feat., Unoptimized Params I Optirnized Feet. Optimized Params

weigtts: 1_3311
optimization goal : wga

0.9-

0.8-

0.7 -

0.6

0.5

5 .4

0.3

0.2

S LbiNatural I Natural
0.1 LblWGAJ W4GA

abel WGA I Natural
Label Natural WGA

Figure 6-12: Identipiler, weights =[1, 3,3, 1, 1], features optimized for WGA profile classification.

96

The tuned performance of classifiers with weight vector [1,3,3,1,1] and classifiers

with weight vector [3,1,1,3,1] is compared in Figure 6-13 and Table 6.3. From

this data, it appears that the cumulative probability of correct classification across

all 16 classifiers is slightly higher for the [1,3,3,1,1] weight vector than the [3,1,1,3,1]

vector (the sum of the green bars is 13.21 for the former and 12.31 for the latter).

This difference in overall performance is fairly small, and even smaller when only

high-performing classifiers are considered. As expected, the [1,3,3,1] classifiers are

better at classifying WGA profiles, while [3,1,1,3,1] classifiers are better at classifying

natural profiles. The performance difference between [1,3,3,1] and [1,1,1,1,1] classifiers

is higher than between [3,1,1,3,1] and [1,1,1,1,1] classifiers. This can be explained by

the fact that WGA profiles take on a higher range of feature values than natural

profiles, a difference that is amplified by the [1,3,3,1,1] weighting.

Pftornue Compaison for Oplminzed Class~lIrs
"Nakwar Feahge Oplimizato with WeoIlts 13.11.3,11 vs 'WWA Feathe OpfUnizat in wtth [1 ,3,3,111
1-

0.9 - M M-

0.8-

0.7 -

0.6-

0.5-

0.4 -

0.3

0.2-

0.1

Figure 6-13: Identifiler, comparison between classifiers optimized for identifying natural profiles
(weight vector [3,1,1,3,1]), and classifiers optimized for identifying WGA (weight vector [1,2,3,1,1]).

97

Area Area Area Area
nat nat wgaIwga wga nat natlwga

Sum of Classifiers with 3.04 10.17 1.69 1.11
Weights =[3,1,1,3,1]
Sum of Classifiers with 3.75 8.56 0.97 2.63
Weights =[1,3,3,1,1]
Sum of Top 5 with Weights 1.15 3.23 0.34 0.27
= [3,1,1,3,1]_
Sum of Top 5 with Weights 1.31 3.01 0.19 0.50
= [1,3,3,1,1]

Table 6.3: Comparison of classifier performance with w=[3,1,1,3,1] and [1,3,3,1,1] by profile cate-
gory.

6.5 Machine Learning on the PowerPlex STR Typ-

ing Kit
The full process of feature selection and parameter tuning was repeated for the

STR PowerPlex kit. Fewer samples were available for PowerPlex analysis compared to

Identifiler (Table 2.1), so the results should be considered preliminary. However, the

results illustrate the degree to which the techniques of feature selection and parameter

tuning can be generalized, and are summarized in Figures 6-14 and 6-15. Overall,

the classification algorithms were less likely to classify PowerPlex samples correctly

than to classify Identifiler samples correctly. 10 of the 16 classifiers had error rates

below 20%. The Gaussian and MLP classifiers performed particularly well on the

PowerPlex data set, as both had error rates below 10%. However, of the five high

performing classifiers for the Identifiler data set, only the MLP and Parzen were in

the top five for the PowerPlex set, though CKNN, KNN, and SVM achieved error

rates below 18 percent and were ranked 6th, 7th, and 8th respectively.

98

Unoplimized Feat., Unoptimized Params I Optimized Feet., Unoptimized Params I Optimized Feat. Optimized Params
weights: 11 1 1_1

optimization goal correct

0.9-

0.8-

0.7

.6A -

0.3 - -l I

0.2

0.1
abel Natural I Natural
abel WGA| WGA
abel WGA I Natural
abel Natural I WGA
ailure to Converge

Figure 6-14: PowerPlex, natural vs WGA, weights = /1,1,1,1,1], column 1: default performance,
column 2: performance after feature selection, column 3: performance after parameter tuning.

Classifier Performance : Optimized Features Optimized Params
weights: 11111

optimization goal: correct

0.9-

0.8

0.7

0.6

0.4

iii .a| in [i 0 een8 S

Figure 6-15: PowerPlex,
tuning.

natural vs. WGA, weights = [1,1,1,1,1].

99
Performance after parameter

Several of the classifiers were more likely to classify a profile as natural for the

PowerPlex data set than for the Identifiler data set. The radial basis function, linear

vector quantizer, and nearest cluster algorithms classified profiles as natural more

than 90% of the time. Two factors may explain this trend. First, the Powerplex data

set had a 3:2 ratio of natural profiles to WGA profiles. This unequal distribution of

data likely biased the classifiers in favor of natural profiles. The reverse effect was

observed for the Identifiler dataset, were WGA profiles outnumbered natural profiles

by a ratio of 5:4. Since the data distribution among the two classes is more skewed

for the PowerPlex dataset, the tendency to misclassify a WGA profile as natural is

higher than the tendency to misclassify an Identifiler profile as WGA. Second, the

PowerPlex dataset is much smaller than the Identifiler data set, so worse performance

is expected.

6.6 Distinguishing Natural Profiles from Bacterial

Clones

Two types of artificial profiles were examined, bacterial synthetic, and bacterial

cloned. Chapter 1 summarizes the bacterial cloning process used to obtain these.

Though the results must be reproduced on a larger size for higher credibility, prelim-

inary performance data are presented in Figures 6-16 and 6-17. In this preliminary

study, classifier performance scores where high, but this may be an artifact of small

sample size. The majority of classifiers achieved correct classification rates near 90%,

with 100% correct classification for RBF, KNN, and ARTmap. The high-performing

classifiers from previous tests (CKNN, KNN, MLP, Parzen, SVM) performed well on

the bacterial samples as well: CKNN and KNN were in the top five, and the others

followed closely in 6th-8th place.

Figure 6-18 compares the performance of the 16 classifiers studied on the Iden-

tifiler data, the PowerPlex WGA dataset, and the PowerPlex bacterial dataset. The

100

figure demonstrates that, with a few exceptions, most classifiers performed better on

the Identifiler data rather than the PowerPlex data when comparing natural profiles

to WGA. Additionally, for most classifiers, performance was highest on the PowerPlex

bacterial dataset compared to both WGA datasets. This difference in performance

may indicate that profiles derived via bacterial cloning are less similar to natural

profiles than are WGA-derived profiles. However, the difference in performance may

also be an artifact of the small sample size of bacterial clones. More bacterial cloning

data must be analyzed to determine which of these explanations is legitimate.

Additionally, despite performance differences among the three datasets, for all

three datasets the CKNN, SVM, MLP, Parzen, and SVM classifiers performed well,

each achieving error rates around 10%.

In summary, for the majority of the 16 machine learning algorithms analyzed in

this work, classification performance was significantly improved by tuning classifier

parameters via a greedy gradient ascent approach. Most classifiers performed rea-

sonably well; all achieved error rates below 35% after tuning had been performed.

Five classifier outperformed the rest: the Parzen window, multi-layer perceptron,

support vector machine, K-nearest neighbors, and condensed K-nearest neighbors all

achieved error rates near 10%. Altering the weight vectors from the default value of

[1, 1, 1, 1, 1] to emphasize particular classification outcomes did not significantly effect

overall classifier performance. For example, heavily emphasizing false negatives for

the WGA class p(natlwga) did not change overall classifier performance, though the

error due to false negatives for WGA was relatively smaller as compared to the same

error for the classifiers with weight vector [1, 1, 1, 1, 1]. Using sample data generated

with the PowerPlex kit as well sample data generated by bacterial cloning suggests

that the results obtained with Identifiler data generalize fairly well to other datasets.

101

Unoplimized Feat., Unoptimized Params I Optimized Feat., Unoptimized Parems I Optimized Feat. Optimized Params
weitgh 11111

opt1mization goal owed

0.9

0.8 -

0.7

.
6

0.3-

0.2-

Label Natural| Natural
0.1 - MLablWGA|WGAua

MLabel WGA|INatural
MLabel Natural I WGA

0 -=Failure to Converge

default performance, column 2: feature selection, column 3: parameter tuning.
Classifier Performance :Optimized Features Optirnized Params

weighta: 1111
optimization gol correct

6

I
Figure 6-17: PowerPlex, natural vs bacterial, tuned parameters, weights = [1,1,1,1,1].

102

.9

Comparison: Identifiler Nat vs WGA I Poweqplex Nat. vs WGA I Powerplex Nat vs. Bacterial
IParameaters Optlmtdzed, Wei" =[..111

0.9

0.8

0.7

0.6

*
0.53

0.2 1

0.1-

02

Figure 6-18: Parameters optimized, weights = [1,1,1,1,1]. The three columns in each bar represent
Identifiler natural vs. WGA, PowerPlex natural vs. WGA, PowerPlex natural vs. bacterial.

103

THIS PAGE INTENTIONALLY LEFT BLANK

104

Chapter 7

Committee Classifiers

A single classifier often does not provide the best performance. In many cases, better

performance is attained by a committee. Committees may consist of different types

of classifiers. Alternatively, they may be built with one type of classifier but using

different samplings of the training data. Committees improve performance because

averaging several high-performing classifiers cancels out the biases inherent in each.

Furthermore, some classifiers, such as binary trees, are susceptible to noise, and

averaging across many trees by building a random forest can reduce variance while

not introducing additional bias [29]. If VC dimension theory is used to quantify the

complexity of a classifier committee, it is often the case that the VC dimension of a

committee with many members is small if all the members combine to minimize a

global loss function [42].

Consequently, several committee classifiers were used to combine the outputs of

the trained classifiers described in Chapter 5 to return a final combined classification

decision. Committee classification results indicated that improvements were greatest

for uncorrelated classifiers with large variance.

105

7.1 Committee Generation by Stacking
Stacking refers to combinations of heterogenous classifiers [42]. This technique was

performed on various combinations of the classifiers described in Chapter 3. The

same training data (124 Identifiler profiles) and output classes (WGA, natural) were

used for all committee members. All members used features at the profile level, but

the actual features for each member were determined by the feature selection algo-

rithm described in Chapter 4 and varied among the classifiers. To form committees,

all member classifiers were tuned as described in Chapter 3, using four-fold cross

validation. Each was then trained and tested independently on the Identifiler profile

data: the data was separated into training (60 percent), evaluation (20 percent), and

test (20 percent) samples. The resulting outputs were concatenated via the LNKnet

software and used as an input to a higher level committee classifier. Three types of

committee classifiers were formed by taking a majority vote, mean result, and median

result of the constituent members.

To form the committees, the classifiers were separated by type (Table 7.1). This

was done to ensure that average and median comparisons were performed on com-

patible datasets. For example, for the mean and median classifiers, it was necessary

to ensure that all constituent classifiers estimate either posterior probabilities or like-

lihoods. Furthermore, nearest neighbor classifiers were excluded from the mean and

median committees because they do not produce continuous outputs.

Posterior Proba- Likelihood Rule-Based Nearest Neighbor High Per-
bility formers
MLP Gaussian Binary Tree KNN KNN
RBF Gmix SVM CKNN CKNN
IRBF Histogram Hypersphere LVQ MLP
ARTmap Naive Bayes Nearest Cluster Parzen

Parzen SVM

Table 7.1: Six committees were formed by taking different combinations of individual classifiers.
In addition to the five committees presented, a sixth committee was formed by taking a majority vote
of all the classifiers.

106

7.1.1 Majority Vote Results

For each of the six committees in Table 7.1, a majority vote was taken among the

constituent members. That is, the results of the individual classifiers were compared,

and a majority vote among these classifiers determined the class of each test profile.

As indicated in Figure 7-1 this technique did not lead to improved performance. A

majority vote among the nearest neighbor classifiers actually led to poor performance,

as the committee concluded that all test profiles belonged to the natural class (only

light red and light green bars are present in the figure). The highest-performing

committee was formed by taking a majority vote among the top five performing

classifier. This committee is further summarized below.

Committee Classifiers
Major1y vote

0.9

0.8 -

0.7 -

0.6- -

0.5-

0.4-

0.3

0.2-
Label Natural I Natural
Label WGA WGA

0.1- Label WGA | Natural
Label Natural I WGA

=Failure to Converge
0

Figure 7-1: Majority vote committees.

In addition to analyzing overall committee performance it is useful to analyze the

number of times each test profile was misclassified. This data is presented in Figure

7-2. The question of interest is whether different committees are likely to misclassify

the same profiles, or, alternatively, whether the errors made by individual committees

107

are uncorrrelated. The figure suggests that most test profiles were misclassified by

one or two committees, pointing to the conclusion that errors made by the different

committees are uncorrelated. However, two of the test profiles were misclassified by

five committees, and one was misclassified by all six committees, suggesting that a

profile may have characteristics that make it more susceptible to misclassification.

The raw profile data for profile number 15, a natural profile that all six committees

classified as WGA, is presented in Figure 7-3. For comparison, Figure 7-4 presents

a natural profile from the same testing set that was classified correctly by all of the

majority vote committees. Visually, there do not appear to be major differences

between the feature values for the two profiles, so it is not trivial to conclude why

one performs well in testing and the other performs poorly. Further investigation of

the classifier performance is necessary to correlate specific profile properties with the

probability of misclassification.

Misclassification by Profile
M.1. vote

C

0

83Q

12-

00 5 10 15 20 25 30
Test Profile Number

Figure 7-2: Majority vote committee test data mis classificationis.

7.1.2 Majority Vote of High-Performing Classifiers

As indicated by Table 7.2 and Figure 7-5, taking a majority vote does not improve

performance when compared to the five top-performing classifiers individually. When

performing four-fold cross validation on 124 Identifiler profiles, taking a majority vote

108

Naturalostive40 02.07

I

j
I

15t00 3 00 00

1000 36

1 00

000) R74 ~5000

000

"121

SM -ai

: Natural profile that was classified correctly by all six majority vote committees.

among the classifiers led to a combined error rate of 0.081, equivalent to the error rate

for the Parzen classifier. Other metrics, such as the rate of false positives p(wgalnat)

and the rate of false negatives p(natlwGA) were also comparable for the individual

109

Figure 7-

Figure 7-4

top-performing classifiers and the majority vote. For example, the majority vote

gave p(wgalnat) = 0.1622 and p(natlwga) = 0.0460, equal to the values given by

the CKNN and SVM classifiers. These values are within once percent of the values

obtained by the overall highest-performing Parzen classifier p(wgalnat) = 0.1622 ,

p(natlwga) = 0.0575. These statistics suggest that using a committee formed by

combining the decisions of the best classifiers in a simple vote does not significantly

improve performance. It is possible that more sophisticated approaches, such as

boosting classifier performance with the Adaboost algorithm, would yield more fruit-

ful results.

majority vote 0.9194 0.8378 0.9540 0.1622 0.0460
Classifier p(correct) p(natlnat) p(wgalwga) p(wgalnat) p(natlwga)

cknn 0.8871 0.8378 0.9080 0.1622 0.0920
svm 0.8952 0.7568 0.9540 0.2432 0.0460
knn 0.9113 0.7838 0.9655 0.2162 0.0345
mlp 0.9113 0.8919 0.9195 0.1081 0.0805

parzen 0.9194 0.8649 0.9425 0.1351 0.0575

Table 7.2: Majority vote among high-performing classifiers: CKNN, KNN, MLP, Parzen, SVM.

7.1.3 Average of Classifier Results

Figure 7-6 demonstrates the performance of three committees that were formed

by averaging the results of rule-based classifiers, likelihood classifiers, and posterior

probability-based classifiers. None of these committees was able to achieve an error

rate below 14%. This is a higher error rate than that of the individual constituent

members: the likelihood committee includes the Parzen classifier, which by itself was

able to achieve an error rate of only 7%. However, the likelihood committee as a

whole had an error rate of nearly 40%. These results suggest that, for the STR

profile authentication problem, averaging classifier results is not beneficial.

Figure 7-7 illustrates the number of errors made by the average results committee

on each of the test profiles. As for the majority vote committee, the errors appear to

be well distributed among the test data: most profiles were classified incorrectly by

110

Misclassified Patterns for 5 Top-Performing Classifiers

cknn
knn
mlp
parzen
svm

I ~ I Ill . I

40 60 80
Pattern Number

100 120 140

Majority Vote Among KNN,CKNN, MLP, Parzen, SVM

± Actual Class
0 Majority Vote Class

majority error rate : 0.081

40 60 80
Pattern Number

100 120 140

Figure 7-5: Majority Vote of Five Top-Performing Classifiers: CKNN, KNN, MLP, Parzen, SVM

only one of the three committees. However, two of them, profile 16 and profile 20,

were classified incorrectly by all 3 committees. It is interesting to note that profile

20 was classified correctly by all 6 of the majority vote committees. This indicates

that taking a majority vote among the component classifiers produces a different set

of errors than taking the average of the classifier results.

111

S
w
U)

U

C

w
c12
.5
U
C
0)
U)
0)
a-

0 20

wga

U)
U)

0 20

natural&GiIII * @D O W9

1

0.9-

0.8-

0.7-

.0

0.3 -

0.2

0.1

01

Figure 7-6: Comm

Committee Classifiers
Mean Result

2

~ittees formed by averaging individual classifier results.

7.1.4 Median of Classifier Results

A committee was formed by taking the median result of the individual classifier

decisions. The committee decision was formed by ordering class probabilities for all

the component classifiers and choosing the class that corresponded to the median

probability. Though the median committees performed slightly better than the cor-

responding average-based committees, their performance was still no better than that

of the best individual member.

The error distribution among the test profiles is different for the median com-

mittees than for the majority vote and average-based committees. As illustrated in

Figure 7-9, most profiles that were misclassified were misclassified by at least two of

the three committees, suggesting a higher clustering of errors than for the other two

112

Misclassification by Profile
Mean Result

3T

1-

a s 10TestProfile Number 2 03

Figure 7-7: Mean committee test data misclassifications.

Committee Classifiers
Median Result

0g
2 0

Label Natural I Natural
Label WGA WGA
Label WGA I Natural
Label Natural I WGA
Failure to Converge

0L

Figure 7-8: Committees formed by taking the median of individual classifier results.

committees.

113

0.7

0

0.4

0.3

0.2

0.1 -

01

1

0.9-

0.8-

Misclassiticalon by Profile
Median Rest

3

2 --

5 10 15 20 25 30 35
Test Profile Numnber

Figure 7-9: Median committee test data misclassifications.

7.2 Random Forest
A random forest classifier was constructed as another approach to forming com-

mittees to reduce classification error. A random forest consists of a number of binary

trees whose classification decisions are averaged together to produce an aggregate

decision. Binary trees have high standard deviation (and consequently a high vari-

ance) in their output, but the standard deviation can be reduced by averaging the

results of many trees in a forest, which in many cases leads to a lower probability of

misclassification [23].

A second reason the random forest algorithm was chosen is its effectiveness in

performing regression on both binary and categorical features. Though most features

in the examined dataset are continuous, some can take on only discrete values and are

best treated as categorical for purposes of classification. These include the stutter

count, the off-ladder outside bin count, and the off-ladder inside bin count, which

were empirically observed to take on a limited range of discrete values.

The MATLAB Machine Learning Toolkit was used to construct binary trees,

which were then used as an input to the TreeBagger Bootstrap aggregation algo-

114

rithm to build ensembles of decision trees. Each tree in this ensemble was grown on

an independently-drawn bootstrap replica of the input data. Bootstrap sampling was

used to make the component trees uncorrelated. This process involved sampling with

replacement from the full set of Identifiler profiles to create uniformly sized training

sets. Each set contained 60 percent of the data (75 samples), selected randomly. The

unselected samples in each set were used for testing and evaluation, and are referred

to as "out-of-bag" observations. Thus, the term "out-of-bag classification error" refers

to the probability of misclassification on the test data. The bootstrap-sampled train-

ing sets were used to construct one hundred binary trees, each of which was built to

maximum size to reduce bias [13].

The TreeBagger algorithm was then used to compute the forest classification deci-

sions. Trees were added to the forest one at a time at each iteration of the algorithm,

with the goal of discovering the optimal forest size. Figure 7-10 compares the av-

erage out-of-bag error of an individual tree in the forest with the out-of-bag error of

the forest as a whole. The first metric, illustrated by the red asterisk symbols in the

figure, was obtained by classifying the test samples with each tree in the forest and

calculating the out-of-bag error for each individual tree. These error metrics where

then averaged. The result constituted an estimate for the out-of-bag error of a rep-

resentative tree in the forest. The cumulative out-of-bag error, on the other hand, is

represented by a solid red line in the figure. This metric was obtained by using each

tree in the forest to classify the test data, but with the added step of averaging the

classification decisions of the individual trees to produce a single aggregate classifica-

tion decision. The out-of-bag error was then calculated based only on the aggregate

classification decision (not on the decisions of the individual trees).

As the size of the forest was increased, the error estimates for a single repre-

sentative tree centered around a mean of .20 (20% of the out-of-bag profiles were

misclassified), with a standard deviation of 0.0284 (Table 7.3). There was no corre-

115

Calculation Method Standard Deviation
Individual,Non-Pruned 0.0284
Individual, Pruned 0.0298
Cumulative, Non-Pruned 0.0092
Cumulative, Pruned 0.0201

Table 7.3: Standard deviation in out-of-bag error for individual trees and forests.

lation between forest size and the out-of-bag error of a representative tree: the error

of the single tree in a forest of size one was 0.17. The error of a representative tree

in a forest of size 90 was also 0.17. However, the out-of-bag error of the forest as a

whole followed a different trend, decreasing exponentially as the size of the forest in-

creased. It was at its highest value (0.17) for a forest of size one. As trees were added,

the forest out-of-bag error declined exponentially until the forest reached a size of 20

trees. Adding more trees lead to a slow decline in error; once the forest reached a size

of 80 trees, the out-of-bag error plateaued at 11%, and adding additional trees had

little effect. The overall standard deviation of the forest out-of-bag error was 0.0092,

an order of magnitude lower than the standard deviation of a single representative

tree in the forest. Thus, the advantages of a forest committee classifier over a single

representative tree are two-fold: a reduced out-of-bag error rate as well as a lower

standard deviation in the error rate.

Figure 7-10 also analyzes the effect of pruning on random forest classifiers. Blue

asterisks represent individual pruned trees and a solid blue line represents the pruned

forest. The trees were pruned via Chi-square pruning, an algorithm that determines

whether a node is statistically relevant to the classification during tree induction. The

literature suggests that pruning should be avoided for random forests because tree

nodes with few cases are unlikely to pass the significance test. This causes trees to

become over-pruned and consequently leads to poor generalization [29]. Figure 7-10

supports this theory, as the out-of-bag error for the unpruned forest was consistently

lower than the error for the pruned forest.

116

Out-of-Bag Error for Random Forest (Cumulative vs. Individual Tree)
0.35 -

Cumulative
Cumulative Pruned

+ Individual
+ Individual Pruned

0.3*-

O+

*U++++ + + +

CM2 + +* ** + + +

CI * + ++ * ++ + +*

0 ++ + * * * +* + ++-4*

0.1

0 10 20 30 40 50 60 70 80 90 100

Number of Grown Trees

Figure 7-10: Random forest out-of-bag error: individual trees compared with cumulative forest.

Ultimately, the committees explored in this work were found to provide no sig-

nificant performance improvement over individual high-performing classifiers. Of the

multiple approaches to committee construction that were examined, the only one that

yielded an error rate below 10 percentage points was the majority vote among the

high performing classifiers (Figure 7-2). This committee had a misclassification rate

of 8.01%, only one percentage point lower than the constituent members. Since one

of the aims in machine learning is to reduce classifier complexity, the added com-

plexity of committee classifiers formed via stacking techniques and the random forest

approach does not outweigh the very slight performance gain.

117

THIS PAGE INTENTIONALLY LEFT BLANK

118

Chapter 8

Project Extensions

The results of this effort to authenticate STR profiles via machine learning tech-

niques suggest a set of features and classifiers that are useful in accomplishing this

task. However, in addition to answering questions about the most effective way to

distinguish natural profiles from synthetic ones, the results raise a number of new

questions about performance, multi-class capabilities, and classification costs that

would be useful to investigate further. Some of these are summarized below.

8.1 Classifier Committees via Boosting

The committees used in this project consisted of stacking approaches (majority

voting, averaging individual results, and computing the median of individual results)

and bootstrap sampling to create a random forest. Boosting techniques, such as the

Adaboost algorithm, are another avenue to explore. Though slightly more complex

than the above-mentioned techniques, Adaboost can improve performance for classi-

fiers whose error rates are uncorrelated [29]. In the Adaboost algorithm, classifiers

that make the fewest errors on the test data receive higher weights. Patterns that are

misclassified by high-performing classifiers are given more attention by subsequent

classifiers. The Adaboost algorithm generally reduces variability of the final decision

more than bagging, the approach used to construct the random forest in Chapter

119

7 [33].

8.2 Multi-Class Classification

In this project, the PowerPlex kit was used to generate natural, WGA, and

bacterial-derived STR profiles. Although there were three categories of data, they

were compared in a pairwise manner using two-class classification: natural profiles

were separately compared with WGA profiles and bacterial profiles. Ideally, the prob-

lem should be approached using multi-class classification, which would entail creating

training and test datasets that contain natural, WGA, cloned bacterial, and synthetic

bacterial profiles. Some classifiers have built-in functionality for multi-class classifi-

cation, but others, such as the SVM, are binary in nature. However, many strategies

exist that enable the use of these classifiers for multi-class classification. In the "one

versus all" strategy, a single classifier is trained for each class to distinguish that class

from all of the other classes. Testing and prediction are performed by each classi-

fier individually, and the prediction with the highest confidence score is selected. In

the case of ties, outputs for each class are scanned across all pairwise classifiers that

include that class, and the minimum is selected. These minimum values are com-

pared to find the class with highest minimum value. The final classification decision

corresponds to that class [21].

8.3 Identify the Source of Classifier Errors

As an extension of the project, it would be interesting to identify the source of

classification errors made by the individual and committee classifiers. Errors typically

arise when the data are non-separable, or when outliers are present. The feature

scatterplots in Appendix A and Appendix E indicate that both criteria hold for

the sample data. It would be interesting to determine profiles that are more likely to

be misclassified than other profiles, and the aspects of those profiles that make them

difficult to classify correctly. The misclassification results for committee classifiers in

120

Chapter 7 suggest that some profiles are indeed more likely to be misclassified by

multiple classifiers but do not explain why that is the case.

8.4 Determining ROC Curves
In the DNA authentication problem, costs and class prior probabilities are variable

and sometimes unknown. For example, it is difficult to determine the prior probability

that a genetic profile can be "faked" because few data currently exist. Additionally,

the cost of false positives p(natlwga) and false negatives p(natlwga) varies greatly

based on the context in which DNA authentication is being performed. To limit

the impact of these unknowns, it would be useful to develop Receiver Operating

Characteristic (ROC) curves for each of the classifiers and committees analyzed [43].

Figure 8-1 demonstrates an approach for calculating these curves. In a ROC curve,

the threshold for classifier results is varied to trace out different rates of detection and

false-alarms. To produce such a curve, the outputs of posterior probability classifiers

can be used directly. For likelihood classifiers, a posterior probability can be calcu-

lated, or the likelihood ratio can be used. In an ROC curve, a classifier dominates

other classifiers if its performance is above and to the left of other classifiers. Thus,

to determine the best classifier for a given problem, regardless of the weights used

in the performance score or the prior probabilities of the data distribution, one can

use the dominant classifier in an ROC curve, if such a classifier exists, or selected the

best classifier over the desired operating range. Such a range can be defined as the

acceptable rate of false positives for the classification problem.

8.5 Other Cost Metrics: Time and Memory
For the purposes of this work, highest performing classifiers were defined as classi-

fiers that made the fewest mistakes on the test data. Other metrics, such as memory

and time considerations, were not evaluated. However, these metrics are important

to consider in real-world applications and should be examined in greater detail.

121

Target = Detection

Other * FALSE
ALARM

YES
Discriminant

. Output > Thresh?

NO

Other True
Class = Rejection

Target = Miss

Figure 8-1: Method to generate receiver operating characteristic (ROC) curve [43].

For example, feature selection may be the critical component for obtaining rapid

training [35]. For a multi-layer perceptron with linearly separable classes, a single

layer of the network can classify simple non-overlapping class distributions via three

logical functions: "and", "or", and "majority" (Figure 8-2). These algorithms all

result in equal correctness, but training is fastest if input features are selected to

require "or" function learning, so this function should be selected for overall optimal

performance.

The difference in performance of the K-nearest neighbors classifier and other

neighbor-based classifiers provides another reason to consider cost metrics other than

accuracy. Both classifiers were high performers and had similar error rates on most of

the data sets analyzed. However, the K-nearest neighbors algorithm has large mem-

ory and computation requirements. Other classifiers operate on the same principle

as KNN, but reduce the number of samples that need to be stored to perform train-

ing [31]. For example, the CKNN classifier stores only training patterns that fall near

decision borders. The nearest cluster classifier clusters training patterns and mea-

sures the distance to cluster centers. The learning vector quantizer moves patterns

to improve classification accuracy, and the hypersphere classifier adds hyperspheres

to form decision regions instead of exemplars. Of these alternatives to KNN, CKNN

122

LOGICAL "AND" LOGICAL "OR" NON-OVERLAPPING
UNIMODAL CLASSES

1 Y=X, "AND" X2
x,

1

X2

Figure 8-2: A single layer of the MLP algorithm on a separable data set can be implemented via
logical "and", "or" , "majority" functions, which all return correct outputs, but differ in training and
test time [35].

generally provides comparable performance. Additionally, for some applications, the

savings in time and memory of the LVQ, hypersphere, and nearest cluster algorithms

may provide more important than slightly lower correctness. These tradeoffs are

useful to investigate in future extensions of the project.

Finally, though the Parzen classifier was the top performer for most of the ex-

periments, this classifier is not frequently used in practice [34]. This classifier is

computationally intensive and models class densities with more computation than is

typically required to achieve high accuracy.

8.6 Quantitative Estimate of Classifier Generaliza-

tion
A common problem in machine learning is the tendency to overfit classifier pa-

rameters to the training data. This results in good performance on the training data,

but poor generalization to test data. Small data samples, such as the one used in

this project, are particularly vulnerable to the overfitting problem [7]. Techniques

like feature selection and four-fold cross validation help to reduce overfitting, but it

would be useful to obtain a quantitative measure of classifier generalization. This can

123

be achieved via the Vapnik-Chervonenkis (VC) dimension, which provides a worst-

case upper bound for generalization error. Other metrics of generalization include

the minimum description length approach and regularization theory [7]. These tech-

niques measure predicted generalization as a function of the training error and a

penalty term related to classifier complexity. Less complex classifiers, such a KNN

and CKNN, have a lower penalty than more complex classifiers such as non-linear

SVMs. The generalization of the tuned classifiers can further be improved, if nec-

essary, using a number of techniques. These include reducing the number of input

features by performing more aggressive feature selection, principal component analy-

sis (PCA), or linear discriminant analysis (LDA). For the SVM and KNN classifiers,

the internal smoothing can be increased by altering values of the sigma and K param-

eters, respectively. For the MLP classifier as well as the random forest, the number

of nodes can be pruned. The ranges of parameter values may also be constricted to

smaller values than used for the tuning algorithms in Chapter 5. Other potential

techniques include stopping stochastic training early and sharing parameters across

classes ("grand" or "pooled" covariance matrices) [35].

124

Chapter 9

Summary of Major Conclusions

This project aimed to address the short tandem repeat (STR) authentication prob-

lem via an in silico approach. Currently, bisulfite sequencing is the state-of-the-art

method most often used to establish STR profile authenticity, but the cost of this

approach is high in both time and resources. The goal of this work was to facili-

tate STR profile authentication by developing a set of machine learning algorithms

to differentiate between STR profiles and synthetic profiles generated by standard

laboratory techniques such as whole genome amplification and bacterial cloning.

Toward this end, sample profiles were obtained and amplified via the commer-

cial Identifiler and PowerPlex analysis kits. A set of promising features, described

in Chapter 2, were identified and a set of 16 machine learning classifiers were cho-

sen. Table 9.1 summarizes each of the features that was analyzed. The default

performance of each classifier was measured and quantified via a performance score:

performance score= wl * p(natlnat) + w2 * p(synth synth) - w3 * p(synthlnat) -

w4 * p(nat synth) - w5 * p(fail)

Greedy feature selection was performed on each classifier to determine the optimal

subset of features to use for improved performance. This selection was performed at

the level of individual peaks, profile channels, and entire profiles. It was found that

125

the best performance was achieved when feature selection was performed at the profile

level, considering the minimum, maximum, and average values of a given feature for

a profile, as well as the range of feature values for that profile. Though the optimal

feature set differed for each classifier, certain trends emerged during feature selection

and are summarized in Figure 9-1 (repeated from Chapter 4). In particular, the

inter-locus imbalance, stutter count, and peak width features were selected by many

classifiers.

Feature Usefulness

UL

.0
EU
U)

0
LL

0

0

Max Interlocus Imbalance Error

4--Max Stutter Count
A,'__ Peak Width Range

, - Mean Interlocus Imbalance Ratio

9 4122 71625283738111531 8 171819293244 2 212640 3 14333543 5 10 1 4 1213202439232730 6 343642
Feature Number

Figure 9-1: Some features are particularly useful across a variety of the classifiers examined.

Once feature selection had been performed for each classifier, the selected fea-

tures were used to tune classifier parameters. Each classifier had a given number of

tunable parameters, ranging from one for the KNN algorithm to 10 for the MLP.

Consequently, since a full feature sweep was infeasibly expensive, a gradient ascent

algorithm was used to select the best value for each parameter from a supplied range

of choices. In case of ties, values closest to the LNKnet default were used. The final

126

I I I 1--=

Prof Min Prof Prof Prof
Max Range Mean

Heterozygote 0 1 2 3
inter-locus im-
balance
Inter-locus Im- 4 5 6 7
balance Ratio
Inter-locus Im- 8 9 10 11
balance Error
Inter-channel In- 12 13 14 15
tensity
SNR 16 17 18 19
Peak Width 20 21 22 23
Gaussian error 24 25 26 27
Ski Slope 28 29 30 31
Off ladder inside 32 33 34 35
bin
Off ladder out- 36 37 38 39
side bin
Stutter count 40 41 42 43

Table 9.1: Feature guide: each number indicates
features were examined.

a specific feature value for a profile. In total, 44

tuned classifier performance was quantified and is presented in Figures 9-2 and 9-3

(reproduced from Chapter 6). In Figure 9-2, the first column for each classifier

represents its default performance, the second column represents performance after

feature selection, and the third demonstrates performance after parameter tuning.

Figure 9-3 illustrates only the tuned performance of all classifiers, presenting in as-

cending order. All classifiers achieved overall error rates below 35%. The top five

performers were: CKNN, KNN, MLP, Parzen, and SVM. Each of these achieved an

overall error rate below 10% percent, with the Parzen classifier performing best of all.

Subsequently, an effort was made to improve classifier performance by forming

committees via stacking techniques (taking a majority vote of constituent member

results, averaging the results, or calculating the median value of the results). In

another approach, binary tree classifiers were combined to create a random forest.

127

Unoptimized Feat., Unoptimized Params I Optimized Feat., Unoptimized Params I Optimized Feat. Optimized Params
weIghts:1. 111

optimization goal : correct
1, -- . - - . - - - - - - - m

0.9 -

0.8-

0.7 -

0.6

0.5

S0.4

0.3

0.2|-

0.1 - LaNel VU A
Label WGAI Natural
Label Natural I WGA
Failure to Converge

0

Figure 9-2: Identifiler, weights [1,1,1,1,1], features optimized, column
column 2: feature selection, column 3: parameter tuning.

Optimized Parameters for Identifiler Data Classification

0

I I~ ~ I j I I I

1: baseline performance,

Figure 9-3: Identifiler, weights = [1,1,1,1,1], fine-tuned parameters.

Ultimately however, committee performance was no better than that of the top-

performing members.

128

In conclusion, the machine learning approach to STR profile authentication is

currently not robust enough to definitively authenticate sample profiles for real-world

applications. However, it can serve as a highly valuable preliminary assessment tool

used to trigger the need for further profile analysis via more costly and complex

techniques.

129

THIS PAGE INTENTIONALLY LEFT BLANK

130

Appendix A

Raw Feature Data for Identifiler

Kit

131

Normalized Combhed)ata No Outliers
35 7 c 8x10 6

3 6 75

25o 5

2 4
C 0

104 3
1503

(92
2- 2- 3 2

1 2 2
00

0 20 0 200 0 8gS 200 0 200

oNatural ProfileoWGA Profile

000 o 8 8 x 25 x 10"

00

5070
2 0

6 6 .0

.4000 4 4

s 0 o C15

0 :10 3- 3
6DO Q6- 8 068

o 2 2
1000 0Cot C

7) io c I i e (

inin Prin 20' 0 Pro ax 200 0 Prof
10ang 200 0 Pro ean

Figure A-1: Gaussian Error For Each Channel and Profile (Normalized, No Outliers)

Normalized CombnedData, No Outliers

0. 1L

.8 08 0

207 0.7 2 00 o

40.
80~ 0 C8

*~0678 8 ,60

03 0.3 2

0200.2 &

Qi 0.1 0 c- ' 'E 0

200 0 200 200 20 2

x 0 0 200
a 0l 0.1 0 ;)

) 0.7 0

C0.6 c; Y 059 8

0 0. 00
Pr n2 0 .8 r x20 0 0

Figure A-2: Heterozygote Intralocus Imbalance For Each Channel and Profile (Normalized, No
Outliers)

132

Normalized Combired Data, No Outli
0.4 0.7 1 ea

0.35 0.6 0.9

Z. 0.5S E C E0.7
&.250.

S02'K C o
0O.3 o - 0.5

0.15
0.

-E 0120.1 -Q,0.3
0.0 0.1 0.2

00 e 0 ' 0.1
0O g 200 0 8h$200 0 8 S 20

02

0.15

*1

4)

C

C

0

0.1 -

05-

0
0 00O 200

oNatural Profile
oWGA Profile

1r0.2 1 eo

S-0.9

Z,.15 0a8

c we0.7
0.1

-0.6

50.050.
0.4

0 e '~.
2 O 2

Pro in 200 0 Pro 0 200

Figure A-3: Interchannel Intensity For Each

I

2

I

0

100
Ch 1

200

2
-a
C
4)
C

*83

4)

1

05

0

-05[

0.11 -11 1
0 Profhnge20 0 Pro ean 2 00

Channel and Profile (Normalized, No Outliers)

Normalized Combined Data, No Outliers
8 12 9 >

7
10

6w Lu w
35 U8

4 6

3 8

2

1 2

0 100 200 0 100 200
Ch 2 Ch 3

6

5

4

3

2

0
0 100 200

Ch 4

oNatura Pro.]oWGA Profile

.5 12 12 4.5

10 10
2 35

.8 28

6 6 2
12

4 0o 4- 1.5-

.5 1

0 0.5,

0 100 200 0 100 200 0 100 200 0 100 200
Prof Min Prof Max Prof Range Prof Mean

Figure A-4: Interlocus Imbalance Error For Each Channel and Profile (Normalized, No Outliers)

133

ers

'N"

1

15

1010

5

0
3.5

.3

2.5

2

1

0.5

00
0

Norm

-o450
400

0 350
0

0 300

0 00

S~250

0200

~~50
1 100 200

Ch 1

alized Combined Data No Outliers
x 10o

r
5

r 0

04

2

0

S 2

00

100 200
Ch 2

x 10
5 r

04

3

2

100 200
Prof Min

5

0 4

2
8

0 100 200
Prof Max

.20o

100 200
Ch 3

0

0 100 200
Prof Range

Figure A-5: Interchannel Intensity For Each Channel and Profile (Normalized, No Outliers)

Normalized Combined Data, No Outliers
1

0.8

0.6

0.4

0.2

04

0.5

-0

~-0.5

0.8

0.6-

0.4

0.2

100 200
Ch 1

0.8

0.6

0.4

0.2

0 100 200
Prof Min

1 0.5

04

8-0.5

0 10 200
Ch 2

0.8

0.6

0.4

0.2

0 100 200
Prof Max

1

0.8

0.6

0.4

0.2

0 100 200
Ch 3

0 100 200
Ch 4
Natural Pro.

oWGA Proe

0.5

0.4

0.3

0.2

0.1

0 100 200
Prof Range

0 100 200
Prof Mean

Figure A-6: Off Ladder Inside Bin For Each Channel and Profile (Normalized, No Outliers)

134

25

20

15

10

5.-
100

0 100 200
Ch 4

oNatural Profile
o 1 WGA Profile

14

12 0

10

8

6

4

2

0 100 200
Prof Mean

1I 1I

1 1I 0

Normalized Combined Data, No Outliers
4 3 0

3.5
2.5-

.S 3

2.52 -0 0 o12.5
2 o oo 1

1.5
15

0.5 0.5

0L 010 100 200 0 100 200
Ch 2

4

3.5

3

2.5

2 o

1.5

1 o
0.5

0 100 200
Prof Max

Ch 3

4

3.5

. 3

2.5

0 2,

1.5

0.5

0
0 100 200

Prof Range

31

2.5 [

2

1.5

0.5 [

. 1

0.

0 100 200
Ch 4

= aua Profieo GA Prfl

2

.5 0.

5

0 100 200
Prof Mean

Figure A-7: Off Ladder Outside Bin For Each Channel and Profile (Normalized, No Outliers)

Normalized Combined Data, No Outliers

a-

0.36-

0.34

0.32

0.3

0.28'

0.26 *

0.24

0.22

0.2

0.18
0 100 20

Ch 1
0

0.24-

0.22

0.2f

0.18i

0.16

0.14

0.12

0.1

0.08 o

0.06'
0 100 200

Prof Min

05

0.35

0 3
jo

0.25

0.2
0 100 200

Ch 2

0.4-

0.38

0.36

0.34

0.3

0.28

0.26'
0 100 200

Prof Max

0.35-

0.3 E o
annanW Q

0.25

0.2
0 100 200

Ch 3

0.4

0.35

0.3

0.25 -

0.2

0.15

0.1

o
0.05 - '

0 100 200
Prof Range

0.24

0.22

0.2' o.

0.18 o

0.16
30

0.14 9

0.12 o 0 o

0.1 0

0.08 D

0.06
0 100 200

Ch 4

1 Natu ProoWGAPrfl
1.5 r

0.5

0

-0.5

Figure A-8: Peak Width For Each Channel and Profile (Normalized, No Outliers)

135

2 1

.G 1.5

0 1

0.5

1 r

100 200
Ch 1

0 Mr

0.8

0.6-

0

0.4

0.2-

C

0 100 200
Prof Min

0~
J9 a.

a. a. a.

-1
0 100 200

Prof Mean

1I o

0.14 r

1

Normalized Combined Data, No Outliers

05

0 100 200
Ch 2Ch I

ir 16-

14.

12

10

-4

-5
0 100 200

Prof Min

8

6

4

2

0

10'

05

2

0

-2

iX1016x

14 0

12

10.

8

6

4-

2

-20 10 100 200
Ch 3

-3

-4 0

0 100 200
Ch 4

Sx 10'
4

3.5

3

2.5

2

1.5

1

0.5

-0.50 100 200
Prof Mean

15

10

4)

5

-21
0 100 200

Prof Mar

(1 iO

ii
C,,

j 0
0 100 200

Prof Range

Figure A-9: Ski Slope For Each Channel and Profile (Normalized, No Outliers)

Normalized Combined Data No Outliers
300 3.5

250 3

2.5

100 Ix Ix 2.)

100 0o o

50 0 6

0 100 200
Ch 2

35x 108
3.5

3

2.5

2

1.5-

1

0.5

zCo

0 100 200
Prof Max

1.5

0.5

0
100 200

Ch 3

3

2.5

2

1.5

0.5

0 100 200
Prof Range

Figure A-10: SNR For Each Channel and Profile (Normalized, No Outliers)

136

2

-1

V5 -2

-3

C,,

1,

Ch 1

zZ,

00 Z8

0 A-
50

50

00 100 200
Prof Min

0 100 200
Ch 4

o Natural Profa
o WVGA Profie

9x 10,

8

7

6

r 5

3o

2

0 100 200
Prof Mean

9

I

2

Normalized Combined Data, No Outliers

30 80

25 70

60

20
c c .50 e

15 40-

0

10 o -C 1,0 c

Mo 10 1-'
0~30

0 100 200 0 100 200
Ch2 Ch3

E

8

7

6

5

4

2

1

0
100 200
Ch 4

oNatral Profile
c WGA Profie

80 80 30

70 70
25

60 60

50 50

40 40 15 -

30 o- 30 co
10

20 020

0 ' 0 00 100 200 0 100 200 0 100 200
Prof Max Prof Range Prof Mean

Figure A-11: Stutter Count For Each Channel and Profile (Normalized, No Outliers)

137

18

16

14

12

10

8

6

4

21

0

4

3

2

3 M C

0100 200
Chi 1

IN

0 100 200
Prof Min

5 i

===ENw

THIS PAGE INTENTIONALLY LEFT BLANK

138

Appendix B

Features Selected by a Variety of

Classifiers

139

Feature Selection by artmap
30

u.

4 2
25 -7-

702
10 - 4

LL
'

44
15

4453 AN421

U 5 10 15 20 25 30 35 40 45

Number of Features

Figure B-1: Artmap Classifier Feature Selection

Feature Selection by bintree
2 0 -,42

V26 -

> 24 -

22 -

-o8
20-

'.15 4

18 A9
3-11 8

16 - -

L 14 49 40

12 - 4 42 t6 R7 -
43 7 5

E \4A1 41 1 4A10 - A77/S64
V2 446

11 5 10 15 20 25 36 40 45
Number of Features

Figure B-2: Bintree Classifier Feature Selection

140

Feature Selection by cknn
24

lis
" 22 -

20 -
4

2 18-0 4

5 16-6 7
U- 6

~14 -8

0 1 9
'12 -2 0

3 7 950
- 10 -- 1 -0 8

~3 8

M -
5

-- 4 a I I I I I
0 5 10 15 20 25 30 35 40 45

Number of Features

Figure B-3: Condensed K Nearest Neighbors Classifier Feature Selection

Feature Selection by gaussian

D24 - 443 ,63

22- 2

20 -

48 411
1L -

16-
18

14- 02

149 8
w12- 54

4 7 R0
10- 024 %,91423 A 0 '018

66

8 41

Ca iI I I I I 1
0 5 10 15 20 25 30 35 40 45

Number of Features

Figure B-4: Gaussian Classifier Feature Selection

141

Feature Selection by gmix
S 30 I I

2 6

00
120-

77
IL

4 1

1016 66

~0 -4 A 4! 3 - 420-450% 4 4-J2 WEE 94 145O 4 2

0 5 10 15 20 25 30 35 40 45

Number of Features

Figure B-5: Gaussian Mixture Model Feature Selection

Feature Selection by histogram

34 - 27 6
(h

4832 8 40 Q *7 A5
O0 21

Z1 4342 19 -14
u 30 ~ 1 34 23 10 29 431116 80

-6Z2 24 17

28- 4 25
a6 37 26

1 2 63
W 26-

8 1 se

o 24-
2

- mI I I |

00 5 10 15 20 25 30 35 40 45

Number of Features

Figure B-6: Histogram Classifier Feature Selection

142

Feature Selection by hypersphere

CU

0

Feature Selection by irbf

I , 1 2 2 3 3 4
5 10 15 20 25 30 35 40 45

Number of Features

Figure B-8: Incremental Radial Basis Function Classifier Feature Selection

143

10 15 20 25 3r
Number of Features

Figure B-7: Hypersphere Classifier Feature Selection

S35
ca

30

025

8

"-

20

15
w
9
as 10

Cu3

L
6

I

Feature Selection by knn
6 30

-o

>25

020

IL

1~5

10
w

CU

0(30 35 40

Figure B-9: K Nearest Neighbors Classifier Feature Selection

Feature Selection by Ivq

10 15 20 25 30 35

Number of Features

Figure B-10: Linear Vector Quantizer Classifier Feature Selection

144

6

3

48 4f5

5 10 15 20 25

Number of Features

9

U-

w
9

45

-

-

Feature Selection by mlp

> 25

"0
-o
~ 20
U-

E

15

w

10

5
15 20

Number of Features
25 30 35

Figure B-11: Multi-Layer Perceptron Feature Selection

Feature Selection by nbayes

10 15 20 25 30 35 40 45
Number of Features

Figure B-12: Naive Bayes Classifier Feature Selection

145

10

~16

$6

'2Q8
6F-

408

5

.0

24-

I.. 22-

LL 20-

1a-

b
W 16-

8
ci 14-

(n)

12 -

,4 9
A 54 7 ,63 -.e742eg

VW-64 44

0

Feature Selection by ncclass
S35 I

025- 6
"a

757-

S20 -
-

08
w315 - 7 -

0 a 10 15 20 25 30 35 40 45

Number of Features

Figure B-13: Nearest Cluster Classifier Feature Selection

Feature Selection by parzen
535 I

w 20 -

25 -

7 5
W 10 - 9 2

7 8 1 2

0-

U 0 5 10 15 20 25 30 35 40 4

Number of Features

Figure B-14: Parzen Classifier Feature Selection

146

Appendix C

Individual Classifier Tuning

147

bintree bintree, Weights = 11_1_1_1 Optimizing correct bintree
Defaults Optimized Features

1

0.1

0.1

0.1

All Features, Default Params

bintree optimizing: leaf min-npattems

selected value = 5 (Default = 5)
range = [1:20] Increment = 1

bintree optimizing: maxnodes

50 100 150 200 250
selected value = 100 (Default = 100)

range = [10:300] Increment = 10

0

0.8

0.6

0.4

0402

0

300

M Label Natural I Natural
Label WGA| WGA
Label WGA I NaturalULabel Natural I WGA
Failure to Converge

Selected Feature Set, Default Params

bintree optimizing: pruneval

selected value = 0 (Default = 0)
range = [0:1] Increment = 1

Figure C-1: Binary Tree Classifier with parameters leaf-min-npatterns, prune-val, max node.

148

1

0.8

S0.6

E 0.4

-i0.2

0

0.8

0.6 -

0.4

0.2 F

0

1

0.8-

0.6-

0.4-

0.2[

0UJ
0

1

gmix gmix, Weights = 11111, Optimizing correct gmix
Defaults Optimized Features

~ 1

0.8

0.6

0.4

0.2

C
All Features, Default Params

gmix optimizing: grand

0.

0.

0O
0

0.

0.

0.

0.

U
selected value = 2 (Default = 0)

range = [0:2] Increment = 1

gmix optimizing: var spread

Selected Feature Set, Default Params

gmix optimizing: full

selected value = 1 (Default = 0)
range = [0:1] Increment = I

gmix optimizing: epochs

1 2 3 4 5 6 7 8 9 10
selected value = 8 (Default = 4)

range = [1:10] Increment = 1

2 3 4 5
selected value = 1 (Default = 1)

range = [1:6] Increment = 1

Figure C-2: Gaussian Mixture Classifier with parameters grand, full, var-spread, epochs.

149

2
a.

U

o

histogram histogram, Weights = 1111, Optimizing correct histogram
Defaults Optimized Features

1 __________________________

C

C

0.

All Features, Default Params

histogram optimizing: grand-bins

Selected Feature Set, Default Params

histogram optimizing: bintype

0.6

0.4

0.2

selected value = 0 (Default = 0)
range = [0:1] Increment - I

histogram optimizing: nbins

2 3 4 5 6 7 8
selected value = 2 (Default = 2)

range = [1:9] Increment = 1

9

U
selected value = 0 (Default = 0)

range = [0:1] Increment= I

histogram optimizing: rangefactor

0.8

0.6

0.4

0.2

0
1 1.2 1.4 1.6 1.8 2

selected value - 1.5 (Default - 1.5)
range = [1:2] Increment = 0.1

histogram, Weights = 1_1_1_1_1 Optimizing correct

histogram optimizing: user_min

-5 -4 -3 -2 -'
selected value = -3 (Default = -3)

range = [-5:0] Increment = 1

Figure C-3: Histogram Classifier with parameters grand-bins, bintype, nbins, range-factor.

150

a.i

0.8

0.6

0.4

0.2f

0

0.8

0.6

0.4

0.21

0

0.

U

0.E

0.6

0.4

hyperspherehypersphere, Weights = 1_1_1_1_1 Optimizing correcthypersphere
Defaults Optimized Features

0.

All Features, Default Params.

hypersphere optimizing: epochs

1 2 3 4 5 6 7 8 9
selected value = 1 (Default = 5)

range = [1:9] Increment = I

0.6

0.4

0.2

0

Label Natural I Natural
Label WGA WGA
Label WGA I Natural
Label Natural I WGA
Failure to Converge

Selected Feature Set, Default Params

hypersphere optimizing: r-init
1

0.8

0.6

0.4

0.2

0.2 0.4 0.6 0.8
selected value = 0.5 (Default = 0.5)

range = [0.1:1] Increment = 0.1

hypersphere optimizing: prune
1

0.8

0.6

0.4

0.2

25
selected value = I (Default = 1)

range = [0:1] Increment = 1

hypersphere optimizing: prune_n

50 75 100 125 150 175
selected value = 100 (Default = 100)

range = [25:200] Increment = 25

hypersphere, Weights = 1____, Optimizing correct

hypersphere optimizing: correct

0.1

0.1

0.4

0 1
selected value = I (Default = 1)

range = [0:11 Increment = 1

Figure C-4: Hypersphere Classifier with parameters grand-bins, bintype, nbins, range-factor.

151

0

0

2

-.

0.8

0.6

0.4

0.2

U

irbf
Defaults

irbf, Weights = 1_11_1_1 Optimizing correct

All Features, Default Params

irbf
Optimized Features

Label WGA4 WGA
Label WGA I Natural-Label Natural I WGA
Failure to Converge

Selected Feature Set, Default Params

irbf optimizing: fciparam

0.

0.

0.

0.

0" 0 1 2
selected value = 2 (Default = 0)

range = [0:31 Increment = I

1 -

0.8-

0.6

0.4

0.2

irbf optimizing: weight-eta

-" 0
3 0 1 2 3 4 5 6

selected value = 0.5 (Default = 0.1)
range = [0:5.91 Increment = 0.1

irbf optimizing: max-magnitude

0.1 0.2 0.3 0.4
selected value = 0.01 (Default = 0.01)
range = [0.01:0.51 Increment = 0.01

0.5

irbf optimizing: bias

0.8

0.6

0.4

0.2

0
0

selected value = 0 (Default = 0)
range = [0:1] Increment = 1

irbf, Weights = 1_1_1_1 Optimizing correct

irbf optimizing: grand

0
selected value = 0 (Default = 0)

range = [0:11 Increment = 1

Figure C-5: Incremental Radial

max-magnitude, bias, grand, cost-fun.

U

irbf optimizing: costfun

4
selected value = 0 (Default = 0)

range = [0:41 Increment = 4

Basis Function with parameters fclparam, weighLeta,

152

0.8
a.

0.6

0.4

0.2

0

0.8 -

0.6-

0.4 -

.2

0

0.

0.

0.4

0.2

1

0

Ivq
Defaults

Ivq, Weights = 11111, Optimizing correct

0

0

0!

0.2

All Features, Default Params

Ivq
Optimized Features

E Label Natural I Natural
Label WGA WGA

=Label WGA I Natural
Label Natural I WGA
Failure to Converge

Selected Feature Set, Default Params

lvq optimizing: epochs

0.8

1 j 4

selected value = 2 (Default = 1)
range = [1:5] Increment = I

Ivq optimizing: Ivqjype

0 1 2
selected value = I (Default = 1)

range = [0:3] Increment = I

Ivq, Weights = 11111 Optimizing correct
Ivq optimizing: epsilon

lvq optimizing: alpha
1

0.8

0.6

0.4

0.2

0
5 0 0.2 0.4 0.6 0.8 1

selected value = 0.2 (Default = 0.3)
range = [0:1] Increment = 0.1

Ivq optimizing: window

0.8

0.6

0.4

0.2

0
3 0 0.2 0.4 0.6 0.8 1

selected value = 0.2 (Default = 0.2)
range = [0:1] Increment = 0.1

0 0.2 0.4 0.6 0.8 1
selected value = 0.2 (Default = 0.2)

range = [0:1] Increment = 0.1

Figure C-6: Learning Vector Quantizer with parameters epochs, alpha, lvq type, window, epsilon.

153

1

0.8

0.6

0.4

0.2

0

1

nbayes nbayes, Weights 1 1111, Optimizing correct nbayes
Defaults Optimized Features

0.8

0.6

0.4

.0.2

All Features, Default Params

nbayes optimizing: range_factor

0.8

0.6

0.4

0.2

0 0.5 1 1.5 2 2.5 3 3.5
selected value = 0.9 (Default = 1.5)

range = [0.1:4] Increment = 0.1

4

0.

0.6

0.4

0.2

0
Selected Feature Set, Default Params

nbayes optimizing: nbins

0.8

0.6

0.4

0.2

0 5 10 15 20 25 30 35
selected value = 6 (Default = 10)

range = [1:40] Increment = 1

Figure C-7: Naive Bayes Classifier with parameters range-factor, bins.

154

40

1 1

ncclass nc-class, Weights = 1_i_1_1_1, Optimizing correct ncclass
Defaults Optimized Features

0

0

All Features, Default Params

ncclass optimizing: fclparam

ELabel Natural | Natural
Label WGA WGA
Label WGA I Natural
Label Natural I WGA I
Failure to Converge

Selected Feature Set, Default Params

ncclass optimizing: gaussdist

0.6

O.A

0.2

0 1 2 3 0
selected value = 1 (Default = 0)

range = [0:3] Increment = 1
selected value = 0 (Default = 0)

range = [0:1] Increment = I

ncclass optimizing: minvar

0.

0.:

0 """
0 1 2 3 4 5 6

selected value = 2 (Default = 2)
range = [0:6] Increment = 1

Figure C-8: Nearest Cluster Classifier with parameters fclparam, gauss-dist, minvar.

155

-o 0.8

e 0.6

120.4

0.2

0.8

0.6

0.4

0.2

0

rbf
Defaults

rbf, Weights = 1_1_1_1_1 Optimizing correct

0.

0.

0.

0.

All Features, Default Params

rbf
Optimized Features

*Label Natural Natural
Label WGA WGA
Label WGA I Natural
Label Natural I WGA

lure to Converge

Selected Feature Set, Default Params

rbf optimizing: hspread_default

0 5 10 15 20
selected value = 9.3 (Default = 1)
range = [0.1:201 Increment = 0.1

1i
rbf optimizing: exhspreaddefault

0.8-

0.6-

0.4-

0.2-

'U
0

rbf optimizing: fclparamdefault

2 4 6 8
selected value = 0.8 (Default = 1)
range = [0.1:10] Increment = 0.1

rbf optimizing: maxratio_default

0.8

0.6

0.4

0.2

1 Y

selected value = 0 (Default = 0)
range = [0:3] Increment = 1

"" 0~
3 0 1 2 3

selected value = 2 (Default = 2)
range = [0:4] Increment = 1

rbf, Weights = 1_1_1.1_1 Optimizing correct

rbf optimizing: minvar default rbf optimizing: biasdefault

0.

0.

0.4

0.2

1 2 3
selected value = 2 (Default = 2)

range = [0:4] Increment = 1

4 0
selected value = 0 (Default = 0)

range = [0:1] Increment = 1

Figure C-9: Radial Basis Function with parameters hspread-default, exhspread-default,
fclparam-default, maxratio-default, minvar-default, bias-default.

156

1

0.8
a.
. 0.6

0.4

- 0.2

0

0.8-

0.6

0.4

0.2 F

0 10

0.8

0.6

0.4

0.2

U

0.

0.6

0.4

0.2

0

1

Appendix D

Combined Classifier

as a Function of

Performance

Weights

and Feature Optimization

Parameters

157

Scoring

Unoptirmzed Feat., Unoptinized Parms| Optimized Feat., Unoptimized Params Optimized Feat. Optimized Params

1

0.8

0.7

0.6-

0.4-

0.3-

0.2-

Label Natural|Natural

0.1 Le

Label Natural|IWGA

0Falure to Converge

0E

Figure D-1: Identifiler, weights = [1, 1,1,1,1], features optimized for "natural"

Unoptimized Feat., Unoptimized Params | Optimind Fed., Unoptinized Params | Optimized Feat. Optimized Params
weihs: 1_1 1_

1 ~optzan goal : wga

0.9

0.8-

0.7-

0.6-

0.5-

0.4-

0.3-

0.2-

v L Ne atural Natural
0.1 - bL PAWG

Ie WG I NajturalLabel oaturaI WGA

0

Figure D-2: Identifiler, weights = 111,features optimized for "wga"

Unoptirmized Feat., Unoptirized Params |Optimized Feat., Unoptinized Params | Optimized Feat. Optimized Params

1 optimization goal: nat

0.9

0.8

0.7

0 0.6

~0.5-

0.4

0.3

0.2

Label Natual Natral
0.1 -LblWA G

L0e 4A aua

Figure D-3: Identifiler, weights = [1,1,1,10,1], features optimized for "natural"

Unoptimized Feat., Unoptimized Params Optmized Feat., Unopmized Params | Optimized Feat. Optimized Params
wei~ts: 1 1110_1

1optimation goal : wga

0.9-

0.8

0.7-

0.6-

~0.5-

~6*0.4

o 3-

0.2

]L abe Natur-ail Natural
o.1 m o Label WGA WGA

SLabel WGA I Natural
tL/abel Natural I WGA

0 ~~Faikure to Cneg

Figure D-4: Identipiler, weights =[1, 1, 1,10, 1], features optimized for "wga"

159

Unoptimized Feat.. Unoptimized Params Optimized Feat., Unoptimized Params Optimized Fat. Optimized Parums
weight: 2_1.1.2.1

optimization goal: nat

0.9

0.8

0.7-

S05

0.4

0.3

0.2

0.1

01
I;

.i Natual INatural
Labe*GA4 "nA

Label WGA I Natural
Label Natural I WGA
Failure to Converge

y

Figure D-5: Identifiler, weights = [2,1,1,2,1], features optimized for "natural"

Unoptimized Feet., Unoptimized Params I Optimized Feet., Unoptimized Params
weigts: g1_2_2_11

opwztimzlo goal : wga

0.9-

0.8-

0.7-

0.6

0.5

1
0.4

0.3k

0.2

0.1

0

I Optimized Feet. Optimized Params

Labe Natural|NatrlW
La" wG wGA
Label WGA I Natural
Label Natural I WGA
Failure to Converge

Figure D-6: Identifiler, weights = [1,2,2,1,1], features optimized for "wga"

160

: 2

Appendix E

Raw Feature Data for Powerplex

Kit

161

x 10
10

8

6

4.

2

0.

0

0 100
Ch 1

x 100
10

8

0s 0 0 (

2 0

0
0 50 100

Prof Max

Figure E-1: Gaussian

1 .

ci 0.0

0.6

0.4

* 0.2

0

g

xi om 1

of 00.8

E

0.6

0.4

0 * 0.2

0
50 10 1

Ch 1

x 10

7

6

5

4
0

3

2

1

0

Normalized Combined Data, No Outiers
x 10

8 14000

7 12000

6 10000

5 C

.4
5 6000

3

2 0 4000

1 2000
0

5o 100 0 50 100 0
Ch 2 Ch 3

50 100
Prof Min

x I x1
10 3.5

3
8

2.5

6 2

:4 1.5
4 0

0 0 0C 0
1 0

20 0
0.5

0

0 50 100 0 50 100
Prof Range Prof Mean

Error For Each Channel and Profile (Normalized, No

Normalized Combined Data, No Outhers
-i a 1 0o em 1 o

000 0
:'f o o

oso50.8 ;.0 1 C00 0.

Q_ 0

C04 0.4 *
0o 0

00

0 0L
60 100 0 60 100 0 60 1

Ch 2 Ch3 Prof Min

1 o oai onA 1 1 1

r- C o

0.6 0.6 06_~. 0.40 .

.0.4 20.4 0 0 0

C C'

S0.2 0.2 0o o02

0 * O 10 '010 01
0 50 10o U 50 100 0 50 100

Prof Max Prof Range Prof Mean

Figure E-2: Heterozygote Intralocus Imbalance For Each Channel and Profile (Normalized, No
Outliers) 162

'xi

Outliers)

-5 -5

0.5

0.46

0.4,

035

0.3

0 25

0.2

0.15

0.1
50 100

Ch 1

0
Qo e

0
1

0

so0

Prof Max

0.45-

0.4

0.35

0.3-

0.25

0.2

0.15

0.1

0.05

01
0

Normalized Combined Data. No Outliers
0.6 r

0

4 8

0 e4

o ,f

0

50 100
Ch 2

0

e0 0

Z00 ' , .
00:00

0

50 10
Prof Range

0.55

0.5

0.45

0.4

0.35

0.3

E 0.25

0.2

0.5

0

-0.5

0o

o 0 -

2

50 100
Ch 3

0

D00 0

0.1'
0 50 100

Prof Min

-1'
0 50 100

Prof Mean

Figure E-3: Interchannel Intensity For Each Channel and Profile (Normalized, No Outliers)

Ei

50 100
Ch 1

p

L

0

50 100
Prof Max

Normalized Combined Data, No Outliers
10r

W

~0 *~.

50
Ch 2

100

8

7

6

5
4

3

2 0

00

0 50 100
Prof Range

0

-

Ch 3

6r

4

3-

2

0010

00 60 o 100
Prof Min

7

6

m9 5

2
-3

0
0 50 100

Prof Mean

Figure E-4: Interlocus Imbalance Error For Each Channel and Profile (Normalized, No Outliers)

163

O0O

R0O 0
w&

0.35 r

03

0.25

0.2

0.15|

0.5

0.46

0.4

0.35

0.3

0.25

1.50.55

0.5

D 0.45

- 0

0.4

0.35

10

8

6

4

2

ci-t

04
0

10

6

4

2

0
0

*

Normalized Combined Data, No Outliers
100 r

E

80

60

40

20

800

700

600

300

400

200
10

0
0

Sw

7W0

600

40

3W

200

100

0
0

140

120

100

so

so

40

20

0

0

700

600

500

400

200

100

0.

300

250

*200

160

S100

50 100
Prof Range

E

50 100
Ch 3

0
0 50 100

Prof Mean

Figure E-5: Interchannel Intensity For Each Channel and Profile (Normalized, No Outliers)

0.6

0.4-

0.2

0'
0 50

Ch 1

4

3.5

3

2

1.5

0.5

0,
100

4

3.5

3

25

2 -i

1.5

1 o o c ec"

0.5

00 50 100
Prof Max

Normalized Combined Data, No Outliers
3 r

25

-. d ii 2

2 1

0

1 50 100
Ch 2

4

35

3

25

2 *

1.5

1 0 o co .

0,5

0 50 100
Prof Range

0 5]

2.5

2

1.5

S1

0 0

s0 100
Ch 3

0 -' ::
0 50 100

Prof Mean

Figure E-6: Off Ladder Inside Bin For Each Channel and Profile (Normalized, No Outliers)

164

.2

.2

00
0

40

35

30

26

20

15

10

0 50 100
Prof Min

50 12 0
Ch 2

-

50 100
Ch 1

.2:

E

50 100
Prof Max

0.8

0.6-

0.4

0.2

0 50 100
Prof Min

.E

0

1I 1

e

3
8

0

-0.5

-1

3

2.5

0

1 :2

0.5-
0.5

3

2.5

M2

- 0 1.5

0.5

0
I 50 100

Ch 1

3

2.5

72
!2

'0 15

0.5

0 d
0 50 100

Prof Max

Normalized Combined Data, No Outliers
2 r 0

.51 5
72

01

0 .5

0
50 100

Ch 2

0.8

0.2

S0.4
0

0.2

:0

0 50 100
Prof Range

0
0

.G 0.5

0 -0.5

50 100
Ch 3

-1'
0 50 100

Prof Min

50 100

Prof Mean

Figure E-7: Off Ladder Outside Bin For Each Channel and Profile (Normalized, No Outliers)

0.5 r

0.46

0.4,

036

Normalized Combined Data, No Outliers
0.55

O 5[

oo

0000

0.45

04

0.35

03
0.3 F

0 50 100
Ch 1

0 50 100
Prof Max

0.2510

0.35

0.3

0.25

0.2

0.15

0.1

0.05

0,
0

5 100
Ch 2

0

0 0

o ov
(o

50 100
Prof Range

0.25

0.2

-. 1

00 0 2 a

S 50 100
Ch 3

0.34

0.32

0.3

0.28

0.26

0.24

0.22

0.2

0

0.18'0 50 100
Prof Min

1.5 f

0.5

0

-0.5 1

-1'
0 s0 100

Prof Mean

Figure E-8: Peak Width For Each Channel and Profile (Normalized, No Outliers)

165

0.4

0.35

0.3

025

a o

ctoo 0 o
-0 C

0 0 - 0-:1

a.

0.2

a-

0.55 r

0.5 [

(D

a.

0 -

oo 0

-0 0

0.45

04

0.35

co

M-

1 1

o

1

Normalized Combined Data. No Outliers
3 r

2

CL

50 100
Ch 2

-1

-2

3

2.5

2

1.5

1 ID

0.5 Co o

0 C

-0.5 ~
-1

0 50 100
Prof Max

6

5

4

Co
2

0

0.5

0.

0.5|

C64 -

0

50 100
Prof Range

0 0

0 0

1.5 [

-2'0 50 100
Prof Mean

Figure E-9: Ski Slope For Each Channel and Profile (Normalized, No Outliers)

200
r

00

0 0

0

C2o 0

50 100
Ch 1

150

100

50

0

Normalized Combined Data, No Outliers

o O

-&&6oo

- ~

50 100
Ch2

2

1'

'I

0

00
so

o0

000 0 -

0

050

0
0 50 100

Ch 3

150

100

o0

0
o 00

0 %
Q Q

0

50 100
Prof Min

250,

200

0 o

150 0

Z 00 0Z

100 o

0 's

0 00 100
Prof Max

2501

150

100

0

0 0 '

0
0 50 100

Prof Range

Z 100

50

0 c 0
000 k

0

0S

o0 db

0'
0 50 100

Prof Mean

Figure E-10: SNR For Each Channel and Profile (Normalized, No Outliers)

166

0

1.5

0.5

C0-0 0

-0.5

0,

-.1

o -2

-3

-4

-1

-1.5

0

-0.5

-1

-1.5

-2

-2.5

-3

-3.5

-4
050 100

Ch I

&

50
Prof Min

Co
Co

50 100
Ch 3

0)
CL

200

150

100

50

0

04

2

0
C)

200 r

20

15

10

0

15

50

40

00*w 0

000 ani a
I 50 100

Ch 1

30

0

10

0

30 r

Normalized Combined Data, No Outliers

35

30

50 100
Ch2

2540

0

20

15

20,

10

OL e ' : '
0 50 100

Prof Max

10 0

>00
0 o

:00cooom a

0 a
0 50 100

Prof Range

25

20

15

10.

05 woo

0
0 50 100

Ch 3

20

15

10
10

00 0
5 o: e

o oe
0 0

0

0 50 100
Prof Min

35-

30

25

6 20-
20

15-

10

5

0
0 50 100

Prof Mean

Figure E-11: Stutter Count For Each Channel and Profile (Normalized, No Outliers)

167

05

50r

Is 0

THIS PAGE INTENTIONALLY LEFT BLANK

168

Bibliography

[1] DNA Analyst Training. NFSTC: Science Serving Justice, Aug 2011.
http://www.nfstc.org/pdi/Subject00/pdi-s00.htm .

[2] Biosafety. Web site, Mar 2012. http://www.cdc.gov/biosafety/.

[3] Combined DNA Index System (CODIS). Web site, Jan 2012.
http://www.fbi.gov/about-us/lab/codis.

[4] DNA Typing Protocols : Molecular Biology and Forensic Analysis. Eaton
Publishers, c2000.

[5] Applied Biosystems. Applied Biosystems Genetic Analysis Data File Format,
Sep 2009.

[6] F Ausubel. Short Protocols In Molecular Biology. New York, 1992.

[7] C M Bishop. Pattern Recognition and Machine Learning. 2006. ISBN
0-387-31073-8.

[8] J M Butler. Allele Frequencies for 15 Autosomal STR Loci on U.S. Caucasian,
African American, and Hispanic Populations. J Forensic Sci, 48:908-911, 2003.

[9] J M Butler. Forensic DNA Typing: Biology, Technology, and Genetics of STR
Markers. Academic Press, 2 edition, 2005.

[10] J M Butler. Software Developed by the NIST Forensic/Human Identity Project
Team. Short Tandem Repeat DNA Internet Database, Sep 2010.
http://www.cstl.nist.gov/biotech/strbase/software.htm.

[11] M De Rycke L Van Haute A Van Steirteghem I Liebaers K Sermon C Spits, C
Le Caignec. Whole-Genome Multiple Displacement Amplification from Single
Cells. Nature Protocols, 1:1965 - 1970, 2006.

[12] D L Deuwer and J M Butler. Multiplex QA: an Exploratory Quality
Assessment Tool for Multiplexed Electrophoretic Assays. Electrophoresis,
27:3735-3746, 2006.

[13] H Ellegren. Nature Reviews Genetics. 5:435-445, 2004.

169

[14] B Leclair et al. Systematic Analysis of Stutter Percentages and Allele Peak
Height and Peak Area Ratios at Heterozygous STR Loci for Forensic Casework
and Database Samples. J Forensic Sci, 49(5):1-12, Sep 2004.

[15] D Frumkin et al. Authentication of Forensic DNA Samples. Forensic Sci. in.
Genet., 2009. doi: 10.1016/j.fsigen.2009.06.009.

[16] D Shinde et al. Taq DNA Polymerase Slippage Mutation Rates Measured by
PCR and Quasi-Likelihood Analysis: (CA/GT)n and (A/T)n Microsatellites.
Nucleic Acids Res., 31:974-980, 2003.

[17] F B Dean et al, editor. Comprehensive Human Genome Amplification Using
Multiple Displacement Amplifications, number 99 in Proc. Natl. Acad. Sci.
USA, 2002.

[18] J Gilder et al. Magnitude-Dependent Variation in Peak Height Balance at
Heterozygous STR Loci. International Journal of Legal Medicine. doi
10. 1007/s00414-009-0411-2.

[19] J Watson et al. Recombinant DNA. WH Freeman, NY, 1992.

[20] R Chakroborty et al. Electrophoresis. pages 1682-1696, 1999.

[21] Richard Lippmann et al. LNKnet: Neural Network, Machine-Learning, and
Statistical Software for Pattern Classification. The Lincoln Laboratory Journal,
6(2):249-268, 1993.

[22] Robert Pinard et al. Assessment of Whole Genome Amplification-Induced Bias
Through High-Throughput Massively Parallel Whole Genome Sequencing.
BMC Genomics, 7:7:216, 2006.

[23] William Thompson et al. Evaluating Forensic DNA Evidence: Essential
Elements of a Competent Defense Review. The Champion, 27(3):16-25, 2003.

[24] N Markuzon J Reynolds D Rosen G A Carpenter, S Grossberg. Fuzzy
ARTMAP: A neural network architecture for incremental supervised learning
of analog multidimensional maps. IEEE Transactions on Neural Networks,
3:698-713, 1992.

[25] Y. K. P. Lanlan Shen. Genome-Wide Profiling of DNA Methylation Reveals a
Class of Normally Methylated CpG Island Promoters. PLoS Genetics, (10),
2007.

[26] R S Lasken and M Egholm. Whole Genome Amplification: Abundant Supplies
of DNA from Precious Samples of Clinical Specimens. Trends in Biotechnology,
21:531-535, 2003.

[27] M Levitt. Forensic Databases: Benefits and Ethical and Social Costs. Br. Med.
Bull., 83:235-248, 2007.

170

[28] Jason Linville. Biology of STRs. Online Powerpoint, Aug 2011.
www.dpo.uab.edu/ jglinvil/JS674web/JS674SP07Istrbiology.ppt.

[29] Richard Lippmann. Committees, Bagging, Random Forests. Pattern
Classification and Machine Learning Class, May 2011.

[30] Richard Lippmann. Feature Selection and Projection. Pattern Classification
and Machine Learning Class, march 2011.

[31] Richard Lippmann. Local Neural Net Classifiers. Pattern Classification and
Machine Learning Class, Apr 2011.

[32] Richard Lippmann. Pattern Classification and Machine Learning. Pattern
Classification and Machine Learning Class, Feb 2011.

[33] Richard Lippmann. Selecting and Comparing Classifiers. Pattern Classification
and Machine Learning Class, May 2011.

[34] Richard Lippmann. Statistical Classifiers. Pattern Classification and Machine
Learning Class, Feb 2011.

[35] Richard Lippmann. Training, Tuning, and Regularization. Pattern
Classification and Machine Learning Class, Mar 2011.

[36] A Durand L Duponchel J Huvenne 0 Devos, C Ruckebush. Support vector
machines (SVM) in near infrared (NIR) spectroscopy: Focus on parameters
optimization and model interpretation. Chemometrics and Intelligent
Laboratory Systems, 96(1):27 - 33, 2009.

[37] N Riedel P Zheng, J Peng. Finite Sample Error Bounds for Parzen Windows.
Journal of Machine Learning Research, 1(48), 2000.

[38] D Stork R 0 Duda, P E Hart. Pattern Classification.

[39] Stephen Sherry and Lisa Forman. Expert Systems for Forensic Sample
Analysis: Incorporating Lessons Learned Into Next Generation Software.
Online Powerpoint, Aug 2011.
ftp://ftp.ncbi.nlm.nih.gov/pub/forensics/CHI_2004_forensics.ptt

[40] D Storti. UNESCO and Information Processing Tools: IDAMS Statistical
Software. Web site, Mar 2011. http://portal.unesco.org/ci/en/ev.php.

[41] Nicola Vitacolonna. Bio-Trace-ABIF-1.05: Perl Extension for Reading and
Parsing ABIF (Applied Biosystems, Inc. Format) Files. Computer Software,
Feb 2010.

[42] C Word. Peak Height Ratios. Online Powerpoint, Oct 2010.
http;//www.cstl.nist.gov/biotech/strbase/training.htm.

[43] Z R Yang. Machine Learning Approaches to Bioinformatics. World Scientific,
Hackensack, N.J., 2010.

171

