
Ormolu: Generating Runtime Monitors from Alloy Models

by

Dwayne Lloyd Reeves

Submitted to the Department of Electrical Engineering and Computer Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science ARCHIVES

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2011

@ Massachusetts Institute of Technology 2011. All rights reserved.

Author
Departrffoit of Electrical Engineering and Computer Science

August 29, 2011

Certified by
Daniel N. Jackson

Professor
Thesis Supervisor

Accepted by s...........
Prof. Dennis M. Freeman

Chairman, Masters of Engineering Thesis Committee

Ormolu: Generating Runtime Monitors from Alloy Models
by

Dwayne Lloyd Reeves

Submitted to the Department of Electrical Engineering and Computer Science
on August 29, 2011, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

This thesis presents Ormolu, a runtime monitor used for monitoring distributed systems.
Given an Alloy model, Ormolu generates a database schema and translates the constraints
of the model to queries over the database. The translation preserves the semantics of Alloy,
especially in regards to its type system. Ormolu allows domain specific knowledge to be
expressed in Alloy, where it can be checked and verified. The same model can then be
used to check if the constraints of the model are still satisfied at runtime. The feasibility
of Ormolu is examined in the domain of air traffic control at a local airport, using data
provided by the Tower Flight Data Manager developed by Lincoln Laboratory.

Thesis Supervisor: Daniel N. Jackson
Title: Professor

3

4

Acknowledgments

I would like to thank Lincoln Laboratory for sponsoring my research. Without their financial
support I would not be able to pursue this graduate degree. I would also like to thank Robert
Seater and William Moser from Lincoln Laboratory as well. Their guidance was essential
in progressing my research beyond a theoretical idea to an actual working project.

A special thank you to Daniel Jackson for being a constant source of encouragement and
advice throughout my time at MIT. As a lecturer in 6.005, you helped me understand the
importance of quality in software engineering and understand the true challenge of writing
correct programs. As a recitation instructor in 6.033, you brought excitement to technical
papers and broadened my understanding of software systems. Finally as a thesis advisor
you provided clear instructions whenever we met, and worked extremely hard to ensure I
finished this thesis on time.

Thanks to Eunsuk Kang, Joe Near, Aleks Milicevic, Jonathan Edwards and all the mem-
bers of the Software Design Group. Thank you for the laughs we shared, the conversations
we had, and the time we shared together. The support each and everyone of you provided
was invaluable when I felt discouraged or lost.

Thanks to all my friends, family, and church family. Without your constant prayers
and words of encouragement I would not have had the strength to complete this thesis. A
special thanks to my mother who kept me from losing faith in myself, and to God whose
strength I rely on daily to make it through the day.

5

6

Contents

1 Introduction 15
1.1 A lloy . 16
1.2 Runtime Monitors 16

1.2.1 Specification Language . 17
1.2.2 State Model . 17
1.2.3 Event Handler . 17

1.3 Tower Flight Data Manager . 17

2 Translation of Alloy Object Model 19
2.1 Relations in Alloy and SQL . 19
2.2 Simple Translation . 19
2.3 Signature Schemas, Tables, and Views . 21

2.3.1 The Universal Set . 21

2.3.2 Top-level Signatures . 22

2.3.3 Extension Signatures . 22

2.3.4 Subset Signatures . 23
2.4 F ield T ables . 23

3 Translation of Alloy Expressions 25
3.1 Restrictions on Alloy Expressions . 25

3.1.1 Integer Expressions . 25
3.1.2 Closures and Other Restrictions . 25

3.2 Translation to OIL . 27
3.2.1 In-line Process . 27
3.2.2 Relation Expressions . 28
3.2.3 Formula Expressions . 28

3.3 Translation to SQL . 29

3.3.1 Boolean Expressions * 30
3.3.2 Query Generation .. 30

4 Time and State in Ormolu 39
4.1 Time and Ordering . 39
4.2 Instances in Alloy and Ormolu . 40

4.3 The State Library . 40

4.4 Translation of Stateful Fields . 42

7

5 Architecture of Ormolu 45
5.1 Analysis Database . 45
5.2 Observer. 45

5.2.1 Sig Object . 46
5.2.2 Field Object . 47
5.2.3 Value Object . 47

5.3 Updater . 48
5.3.1 Signature Insertion Procedure . 48
5.3.2 Signature Deletion Procedure . 50
5.3.3 Field Update Procedures . 50
5.3.4 Updating Stateful Fields . 50

5.4 Analyzer . 51

6 Conclusion 53
6.1 Evaluation. 53
6.2 Design Decisions and Limitations . 55
6.3 Future W ork . 56

8

List of Figures

1-1 The Components of a Runtime Monitor
1-2 Tower Flight Data Manager System Architecture

3-1
3-2
3-3
3-4
3-5
3-6
3-7
3-8
3-9
3-10
3-11
3-12

Grammar of Alloy 4 Core Elements
Restricted Alloy 4 Grammar Elements
Grammar of Ormolu's Intermediate Language
Translation from Alloy to OIL Formula Expressions
Definition of toSql for Boolean Expressions
Properties of Constants
Properties of Name Expressions
Properties of Example Name Expressions
Properties of Set Operators
Properties of Arrow, Join, and Transpose Operators
Properties of Override
Properties of Comprehension

5-1 Instances of the Aircraft Location Model
5-2 Instance of Aircraft Location Model in Ormolu
5-3 Chain Invocation of Signature Insertion Procedures . .

9

16
18

. 26

. 27

. 28

. 29

. 30

. 32

. 32

. 33

. 33

. 34

. 36

. 36

46
49
49

10

List of Tables

3.1 Properties of a SQL Query for Alloy Expression 31
3.2 List Properties and M ethods . 31

4.1 Views over the State Sequence . 43

11

12

Listings

2.1 Model of Aircraft Location . 20
2.2 Simple Translation of Location Model Objects 20
2.3 Translation of Univ . 22
2.4 Translation of Top-level Signature . 22
2.5 Translation of Extension Signature . 23
2.6 Translation of Subset Signature . 23
2.7 Translation of Field . 24
3.1 Example of In-line Process . 28
3.2 Example of Alloy Translated to OIL . 29
3.3 Example of Boolean Expressions Translated to SQL 30
3.4 Example of Set Operators Translated to SQL 34
3.5 Example Denesting of a Query by the Translator 35
3.6 Complete Translation of Example to SQL 37
4.1 Takeoff Event Modeled Using Explicit Notion of Time 39
4.2 Unary State Library . 41
4.3 Takeoff Event Modeled Using Explicit Notion of Time 42
4.4 Ord in util/ordering . 42
5.1 Observation Describing Transition from Current to New Instance 46
5.2 Observation and Sig JSON Specification . 47
5.3 Field JSON Specification . 47
5.4 Value JSON Specification . 48
6.1 Relevant Components of the TFDM Alloy Model 54
6.2 Explicit Mutual Disjointness . 55

13

14

Chapter 1

Introduction

Every software system has a specification that it must satisfy. Software verification is
the act of assuring software fulfills its specification. One approach for verifying software
is performing static analysis. Static analysis utilizes formal methods to verify a program
meets a requirement without actually executing the program. Static type systems are a
familiar example. A static type system ensures that a program when executed will not
contain type errors.

One method for performing static analysis is model checking. Given a model, a model
checker determines if it satisfies the requirements of the system [3]. It is often impractical, if
not impossible, to verify a system satisfies its specification statically, i.e., before a system is
deployed and running. Runtime testing before deployment can reveal some instances where
a system might fail to meet specification, but not all. Once a system is deployed there is
a chance that it will take an untested path through the code that will lead to a software
failure. For this reason, a companion system is often deployed that actively observes the
events of a system and determines if a system enters a state that violates the specification.
This companion system is known as a runtime monitor.

Model checking and runtime verification are closely related. In fact runtime monitors are
often specified using a model checking language such as LTL or other temporal logics [12].
Temporal logics are excellent tools for specifying safety properties and liveness conditions,
but as a specialized logic only have a narrow scope of expressible properties.

Temporal logics struggle in expressing constraints between several objects in a specific
domain such as an airport. An airport has various objects such as aircrafts, runways,
gateways, controllers, airlines, passengers, etc. that interact in complex ways. There are
rules and regulations that govern the relationship between these objects in order to maintain
safety of the system. An expressive language is needed to capture the specific domain
knowledge that describes correct interactions of the system.

This is the motivation behind Ormolu1 , a runtime monitor generated from a specification
written in Alloy. Alloy is a modeling language derived from first order relational logic that
excels at notating relationships [9]. Given an Alloy model, Ormolu creates an embedded

database, known as the analysis database, to store observations of the monitored system.

The Alloy model also specifies queries that analyze the contents of the analysis database to
ensure it has the properties of the model.

We begin by describing the steps taken to translate the objects and expressions of Alloy

to SQL in Chapters 2 and 3. We then examine the role time and state play in Ormolu in

'Ormolu is an alloy of metals such as copper, zinc, or tin combined to resemble, or imitate gold.

15

Chapter 4, before presenting the architecture of Ormolu in Chapter 5. Chapter 6 concludes

with an evaluation and discussion of the limitations of the approach. The evaluation is

performed on the Tower Flight Data Manager (TFDM), an air traffic control tool being

developed by MIT's Lincoln Laboratory.

1.1 Alloy

Alloy is a simple language used to model software systems. The language has been used in

various ways including generating test tables for a database, analyzing behavior models, and
as a specification for logic programs among others [6, 1, 14]. It combines relational algebra

with first order predicate logic succinctly into a single lightweight but highly expressive
logic.

One of the salient features of Alloy is the ability to check and verify assertions of a

model automatically. This is done, by translating the model into a SAT problem and using

a SAT solver to search for counterexamples to assertions. Alloy can only check an assertion

within a limited scope. A scope is an upper bound on the size of instances considered during

analysis. Alloy relies on the small scope hypothesis, which claims many bugs in software

systems can be detected in small examples [11].

1.2 Runtime Monitors

The first form of monitoring developed for computer programs were program execution

monitors. These include debugging systems, runtime profile generators, and system perfor-

mance monitors. These program execution monitors would serve as the basis for runtime

monitors [15].
A runtime monitor is a system that observes the events of a target system and deter-

mines if it has entered a state that violates the target system's specification. There are

three primary components of a monitoring system, depicted in Figure 1-1. It consists of a

specification language that describes the specification, a state model that analyzes observa-

tions from the running system, and an event handler that reacts to the output of the state

model. These components are described thoroughly in [7], but a brief overview is presented
in the subsequent sections.

Figure 1-1: The Components of a Runtime Monitor

System to Monitor Runtime Monitor

System Specification

iState Model

Observer

Analyzer

| - -

16

1.2.1 Specification Language

The specification language is a runtime monitor's internal representation of a system's
specification. In some instances the specification is described directly in the language.
In other cases the specification must be translated into the specification language, either
manually or automatically using tools. Specification languages differ in runtime monitoring
systems in several ways, including the type of language it is based on (first-order logic,
relational algebra, etc.), the level of abstraction it provides for a domain, the properties
it can capture, and the level at which properties can be checked, i.e., statements, events,
system components, etc.

1.2.2 State Model

The state model is responsible for observing the events of a system and determining if the
system enters a state that violates the specification described in the specification language.
The state model is composed of two subsystems, the observer and the analyzer. The ob-
server receives event traces from the running system, which it then passes to the analyzer.
The analyzer updates the internal representation of the state of the system using the new
information. Once updated, the analyzer checks that the current state satisfies the specifi-
cation. If analysis determines a system fails to meet specification, an event will be generated
and passed to the event handler.

The level of intrusion a state model requires to monitor a system can vary widely be-
tween different runtime monitors. For instance a state model may require denoting manual
monitoring points in the source code of a system, at which point it will stop the execution
of the system in order to update the state model. Another state model may subscribe to a
message queue and perform analysis after a new message is retrieved without significantly
impacting the performance of a system. Most state models fall somewhere in between.

1.2.3 Event Handler

Once a violation is detected by the analyzer in the state model component, the event handler
will be notified. The event handler determines how the runtime monitor reacts to violations
to the specification. If a runtime monitor is used to enforce the specification it may interact
with the target system in order to correct the violation. If a monitor is used to enforce
safety, it may react by shutting down part or all of the target system. The runtime monitor
may be a passive observer that only logs when the specification is violated. The level of
control a user has in determining the actions of the event handler also depends on the
runtime monitor. Some will respond to all events the same way, while others allow a user
to determine how different events should be handled

1.3 Tower Flight Data Manager

The Tower Flight Data Manager (TFDM) is a prototype air traffic control system in de-
velopment at MIT's Lincoln Laboratory. The system attempts to combine various external
sources of information necessary for managing flights at a local airport, in order to provide
decision support tools to operational staff. External sources of information may include
flight plan data, traffic flow constraints, flight operations data, weather and hazard condi-
tions, along with terminal and surface surveillance. As a result TFDM will benefit airports
by reducing delays, enhancing safety, and improving the robustness of operations.

17

Figure 1-2: Tower Flight Data Manager System Architecture

External Data

Interface Adapters

Tower Flight Data Manager (TFDM)

Database

-NI
Information Bus

Decision Support Algorithms Computer-Human Interfaces

TFDM's system architecture relies heavily on a set of publish/subscribe message chan-

nels called the information bus. The information bus is composed of various Java-based
modules which are necessary to support its role as the primary means of communication

in the system. External data is fed into the system via interface adapters that publish the

data on the information bus. Decision support algorithms responsible for various opera-

tions of an airport, such as runway assignment or taxi routing, will collect data from the

bus, perform computations, and then republish the results on the bus. Computer-human

interfaces, such as display screens, will display the results of the decision support algorithms

that were published on the information bus. All messages sent over the information bus are

logged into a database and ultimately moved into a long-term data warehouse over time.

18

'K
0

I

I I I I

Chapter 2

Translation of Alloy Object Model

In this chapter we demonstrate how Alloy signatures and fields are translated to a series
of expressions written in SQL's Data Definition Language (DDL). Tables and foreign key
constraints are used to emulate the type system of Alloy. Views over these tables provide
a consistent abstraction for writing expressions. These elements form the foundation of
Ormolu's analysis database.

2.1 Relations in Alloy and SQL

Alloy is derived partly from relational algebra. The primitive structure in relational algebra
is the relation. Given sets S1, S2,.. -, S, a relation is a set of tuples of degree n, whose first
element is in S1, whose second element is in S 2 , and so on [4, 5]. Relations of degree, or
arity, 1, 2, or 3 are called unary, binary, and ternary relations respectively. Higher degrees
of n are called n-ary relations.

In Alloy, new relations are defined using signatures and fields. SQL is also derived
from relational algebra, and defines new relations using tables or views. Given the common
foundation Alloy and SQL share, it should be possible to translate Alloy's notation of
relations (signature and fields) to SQL's notation of relations (tables and views).

2.2 Simple Translation

Consider the model presented in Listing 2.1 that models an aircraft's location at an airport.
It defines six unary relations - Location, Gate, Runway, Occupied, Taxiway, and Aircraft
- and three binary relations - connections, clearConnections, and location.

The simplest translation to SQL is presented in Listing 2.2. It is a direct translation of
the relational structure. The unary relations in Alloy are translated to tables with a single
column. The binary relations in Alloy are translated to tables with two columns. Each
table is given a name that correlates to a name in the model.

While the translation is satisfactory, there are some potential deficiencies. The most
significant is the failure to capture the semantics of Alloy's type system. If Alloy's type sys-
tem is not enforced, inconsistencies can occur. For instance, Gate is a subtype of Location.
Any value in Gate must also appear in Location. The translation in Listing 2.2 does not
enforce this constraint and it is possible to have gates that are not locations. This will result
in expressions having different meanings in Ormolu than they do in Alloy. The expression
Gate in Location always evaluates to true in Alloy, but if the simple translation is used

19

Listing 2.1: Model of Aircraft Location

abstract sig Location {}
sig Gate extends Location{}

sig Runway extends Location {}
sig Occupied in Gate + Runway{}
sig Taxiway extends Location {

connections: set Gate + Runway,

clearConnections: connections - Occupied

}

sig Aircraft {
location: Location

}

fact{

all a: Aircraft

a.location in Gate + Runway => a.location in Occupied

}

pred HasDoubleOccupancy[al: one Aircraft, a2: one Aircraft] {
al != a2
(al + a2).location in Occupied

al.location = a2.location

}

fun DoubleOccupancies []: Aircraft->Aircraft {
{a, b: Aircraft HasDoubleOccupancy[a, b]}

}

run {no DoubleOccupancies}
check {no DoubleOccupancies}

Listing 2.2: Simple Translation of Location Model Objects

CREATE TABLE Location (coll VARCHAR(100))

CREATE TABLE Gate (coll VARCHAR(100))

CREATE TABLE Runway (coll VARCHAR(100))

CREATE TABLE Occupied (colt VARCHAR(100))

CREATE TABLE Taxiway (coll VARCHAR(100))

CREATE TABLE Aircraft (coli VARCHAR(100))

CREATE TABLE connections (colt VARCHAR(100), col2 VARCHAR(100))

CREATE TABLE clearConnections (colt VARCHAR(100), col2 VARCHAR(100))

CREATE TABLE location (colt VARCHAR(100), col2 VARCHAR(100))

20

the expression could evaluate to false in a SQL expression. It is critical for a translation to
enforce type constraints as well as reflect the relational structure of Alloy objects.

2.3 Signature Schemas, Tables, and Views

Signatures serve several important roles in Alloy. A signature:

e introduces a new basic type in Alloy's type system

9 introduces a new set of atoms

e contains declarations of new fields

Given these distinct roles, a signature is translated to a database schema. A schema
describes the structure of a database and introduces a new namespace. A signature's schema
contains:

* one or more type tables that store atoms of a given type

e a relation view that returns the atoms contained in a signature

e tables and views for fields declared in the signature

e stored procedures that handle updates to signature and field tables

This section discusses the type table and the relation view of a signature.

2.3.1 The Universal Set

The universal set, denoted by the identifier univ in Alloy, is the top of Alloy's type system.
All signatures have univ as an implicit supertype. The universal set can be viewed as a
container for all atoms in an instance of Alloy. The same is true for the translation of univ
to SQL.

The listing below contains the definition of the univ type table. The univ type table
consist of two columns, key and atom. The atom column stores the unique string represen-
tation of an atom. This string is passed into the system and is the external identifier of an
atom. No other type tables store this string; instead the key that references the atom string
is stored. The key is an integer generated by the database whenever a new atom string is
inserted.

Below the type table is the relation view. The relation view is used in Alloy expressions.
It has the same name as the schema. The relation view selects only the key from the type
table and renames the column as coll. The columns of a relation are always labeled coli,
where i is the position of the column in the relation. Since signatures are unary relations
only one column is needed.

21

Listing 2.3: Translation of Univ

-- Univ Type Table --
CREATE TABLE univ.type

key INTEGER

GENERATED ALWAYS AS IDENTITY

PRIMARY KEY,
atom VARCHAR(100)1

UNIQUE)

- Univ Relation View --

CREATE VIEW univ.univ (coll) AS

SELECT key FROM univ.type

2.3.2 Top-level Signatures

A top-level signature introduces a new type whose parent is the constant univ. Location

in Listing 2.1 is an example of a top-level signature. The type table of a top-level signature

is similar to the type table of univ, except it only stores an atom's key. The key is not

generated automatically, instead it must reference the key of the univ type table. This is
known as a foreign key constraint.

Listing 2.4: Translation of Top-level Signature

-- Location Type Table --
CREATE TABLE Location.type

key INTEGER

PRIMARY KEY

REFERENCES univ.type(key)

ON DELETE CASCADE)

-- Location Relation View --

CREATE VIEW Location.Location (coll) AS

SELECT key FROM Location.type

If a foreign key constraint is declared, then an insertion is rejected if the value of the

column is not present in the referenced column. Foreign key constraints enforce type con-

straints when new atoms are inserted into a signature. ON DELETE CASCADE instructs the

database to delete a tuple if it is deleted in the reference table. This enforces type con-
straints when atoms are removed from a signature. Whether atoms are added or deleted,
Location will always be a subset of univ. The relation view is identical to the relation

view of univ.

2.3.3 Extension Signatures

An extension signature introduces a new type whose parent is another signature. Runway in

Listing 2.1 is an example of an extension signature. The type table of an extension signature

is identical to a top-level signature's type table, except the table referenced in the foreign

key constraint is the type table of the signature that is extended. In the case of Runway,
this would be Location.

22

Listing 2.5: Translation of Extension Signature

-- Runway Type Table --
CREATE TABLE Runway.type

key INTEGER
PRIMARY KEY
REFERENCES Location.type(key)
ON DELETE CASCADE)

-- Runway Relation View --
CREATE VIEW Runway.Runway (coll) AS

SELECT key FROM Runway.type

2.3.4 Subset Signatures

A subset signature is a signature that is a subset of one or more parent signatures. Unlike
other signatures, subset signatures do not introduce a new type, so instead they have an
ofType table. Subset signatures also differ in that it is possible to define a union of signature
types. Union types cannot be expressed using a foreign key constraint on a single table, so
a different table is created to store atoms of each type.

Listing 2.6: Translation of Subset Signature

-- Occupied OfType Tables -
CREATE TABLE Occupied.ofTypeGate(

key INTEGER PRIMARY KEY
REFERENCES Gate.type(key) ON DELETE CASCADE)

CREATE TABLE Occupied.ofTypeRunway(
key INTEGER PRIMARY KEY

REFERENCES Runway.type(key) ON DELETE CASCADE)

-- Occupied Relation View -
CREATE VIEW Occupied.Occupied (coll)

AS SELECT * FROM Occupied.ofTypeGate UNION
SELECT * FROM Occupied.ofTypeRunway

Listing 2.6 depicts the translation of the subset signature Occupied. Occupied is the
union of two signatures Gate and Runway. An ofType table is defined for each parent. The
relation view is the union of the ofType tables. If a subset signature has n parents, n ofType
tables will be created and the union of all tables is the relation view.

2.4 Field Tables

A field declaration in Alloy is of the form sig A {f : e}, where A is the name of the
signature, f is the name of the field and e is a bound expression. If e has arity n, the field
will have arity n +1. The type of a field is determined by its bound expression. The type of
an Alloy expression is a union of products. 2 The type of the connections field in Taxiway

2 A detailed description of the Alloy type system is found in [10, p. 107-117]

23

is Taxiway - Gate + Taxiway -+ Runway, where -* is the product operator and + is

the union operator. This type is used to translate the field to SQL.

Listing 2.7: Translation of Field

-- connections Type Tables --
CREATE TABLE Taxiway.connectionsGate

keyl INTEGER PRIMARY KEY

REFERENCES Taxiway.type(key) ON DELETE CASCADE,
key2 INTEGER PRIMARY KEY

REFERENCES Gate.type(key) ON DELETE CASCADE)

CREATE TABLE Taxiway.connectionsRunway

keyl INTEGER PRIMARY KEY

REFERENCES Taxiway.type(key) ON DELETE CASCADE,
key2 INTEGER PRIMARY KEY

REFERENCES Runway.type(key) ON DELETE CASCADE)

-- connections Relation View --

CREATE VIEW Taxiway.connections (coll, col2)
AS SELECT * FROM Taxiway.connectionsGate UNION

SELECT * FROM Taxiway.connectionsRunway

It is not possible to express unions types using foreign key constraints on a single table.

Instead multiple type tables are created. The name of the type table is the field name

with the type appended to the end. Listing 2.7 illustrates the translation of connections

in Taxiway. The types Taxiway -+ Gate and Taxiway -a Runway are translated to two

tables each with two columns. Each column references the respective type table.

The relation view of the field is defined below the type tables. The number of columns

of the view is equal to the arity of the field. It is expressed as the union of all type

tables for the field. In Listing 2.7, the connections with type Taxiway -+ Gate are stored

in Taxiway. connectionsGate while the connections with type Taxiway -+ Runway are

stored in Taxiway. connectionsRunway. The relation view is the union of both type tables,
creating a single relation.

24

Chapter 3

Translation of Alloy Expressions

In this chapter we present a methodology for translating an arbitrary Alloy 4 expression
to a valid SQL expression. We first define the restrictions that are placed on an Alloy
expression. Then we present a procedure that rewrites an Alloy expression to Ormolu's
Intermediate Language (OIL) 1 . Finally we describe how an OIL expression is translated to
a SQL expression.

3.1 Restrictions on Alloy Expressions

Alloy supports several operators taken primarily from predicate and relational calculus.
Most of these operators are easily expressed in SQL. However there are some that pose a
significant challenge and are not supported. If an unsupported expression is encountered,
the Ormolu compiler will reject the model.

3.1.1 Integer Expressions

There are two separate notions of integers in Alloy. An integer value is an integer in the
traditional mathematical sense. Each integer value is associated with an integer atom.
Integer atoms are regular atoms in Alloy, and can appear in sets and relations. The built-
in Int signature contains all integer atoms. The set of integers is then bounded during
analysis. 2

It is possible to translate simple integer values to SQL, but sets of integers pose a more
difficult challenge. If the Int signature is treated as other signatures then a table must
be created containing all the integer atoms. This will result in a table with an entry for
every possible integer. This approach would be inefficient thus requiring special treatment
of the Int signature. To prevent complicating the translation process integer expressions
and operations on integers are not supported. This includes the functions and predicates
defined in the util/integer module.

3.1.2 Closures and Other Restrictions

Transitive and reflexive-transitive closures are used to express reachability conditions. There
are two possible ways of translating a closure to SQL. One option is to create a user-defined

'Not to be confused with OIL, the Web-based ontology language.
2 This is true for Alloy 4.1.10. A future release of Alloy will eliminate the distinction between integer

values and sets of integers. All integers will be treated as sets of integers.

25

expr

decl
letDecl
quant
binOp

arrowOp
compareOp
unOp

block
blockOrBar
blockOrBar
name

Figure 3-1: Grammar of Alloy 4 Core Elements

26

let letDecl,+ blockOrBar
quant decl,+ blockOrBar

unOp expr
expr binOp expr

expr arrowOp expr
expr [not]? compareOp expr

expr implies expr else expr

expr [expr,*]
number I - number
none I iden | univ I Int I seq/Int
name
block
{ decl,+ blockOrBar }

disj] name,+ [disj] expr
name = expr
all no I some lone I one sum
or and iff implies

++ <: K>
<< >> |<<<
[some one I lone I set]? -+ [some one lone set]?
= | in < I > | <= | >=

not no some lone I one
set seq # * A

{ expr* }
block

I expr
[this I ID] [/ ID]*

function that recursively computes the closure and returns the final result set. Another
option is to express the closure as a recursive query. The standard method for expressing
recursive queries is using Common Table Expressions (CTE). CTE were introduced in
SQL:1999 and are supported by most major database vendors. However, CTE are not
allowed in subqueries. To avoid complicating the translation process, closures are not
supported in Ormolu.

There are some other miscellaneous restrictions placed on Alloy expressions in Ormolu.
If-else expressions that yield a relation or integer expression are not supported. It is possible
to translate these expressions to SQL case expressions, however this would complicate the
flattening procedure. The functions or predicates defined in the util/ordering module are
also not supported. The reason for this is explained in the next chapter.

expr ::= number I - number
Int I seq/Int

quant ::= sum
binOp :: << >> <<<
compareOp ::= < | > I <= I >=
unOp ::= seq I # I * A

Figure 3-2: Restricted Alloy 4 Grammar Elements

3.2 Translation to OIL

OIL is an intermediate language derived from a subset of Alloy that is easily expressible
in SQL. Figure 3-3 defines the syntax of OIL. There are two kinds of expressions, relations
and formulas. Relations are translated to queries in SQL, while formulas are translated to
boolean value expressions. In this section we describe how an Alloy expression is translated
to an OIL expression.

As a working example we will consider the body of the Doublefccupancies function
presented in Chapter 3. The relevant portion of the model is shown below.

pred HasDoubleOccupancy[ai: one Aircraft, a2: one Aircraft] {
al != a2

(al + a2).location in Occupied
al.location = a2.location

}

fun DoubleOccupancies []: Aircraft->Aircraft {
{a, b: Aircraft | HasDoubleOccupancy[a, b]}

}

3.2.1 In-line Process

A let expression introduces a variable x that is bound to an expression e. Whenever the
variable x appears in the body, it is replaced by expression e. This is accomplished by
utilizing methods provided by the Alloy 4 compiler API to in-line expressions. Function
calls are rewritten in a similar manner. The arguments of a function call are bound to

27

expr
relation ::

formula

decl
name

relation I formula
none I iden I univ
name
relation [& + -) relation
relation [<: :> .] relation
relation ++ relation
relation -+ relation

relation
{ decl,+ I formula }
formula [and or] formula
not formula

[some I lone one] relation
formula = formula
varName: relation
sigName fieldName I varName

Figure 3-3: Grammar of Ormolu's Intermediate Language

the parameters of the function or predicate. The parameter variables are replaced with
their respective bound expressions in the function body. The body is then in-lined in the
expression.

In our example, the function DoubleOccupancies invokes HasDoubleOccupancy so in-
lining occurs. The variable a replaces al and b replaces a2 in the body of HasDoubleOccupancy.
The body is then in-lined in place of the call HasDoubleOccupancy [a, b]

Listing 3.1: Example of In-line Process

{a, b: Aircraft {
a != b
(a + b).location in Occupied
a.location = b.location}

}

3.2.2 Relation Expressions

The majority of relation expressions have direct analogs in OIL. There are a few exceptions.
When an arrow operator is translated to Ormolu, the multiplicity constraints are dropped.
Disjointness constraints are also dropped from declarations. Multiplicity and disjointness
constraints are interpreted as facts by Ormolu. One of the design decisions of Ormolu is
not to translate facts. This is discussed in greater detail in Chapter 6. The constants none,
univ, and iden have analogous elements in OIL. The names of signatures and fields are
translated to sigName and fieldName elements respectively.

3.2.3 Formula Expressions

Unlike relation expressions, the majority of formula expressions do not have a direct analog
in OIL. The exceptions are not, or, and, some, lone, and one. Implication and conditional
implication are translated to conjunctive normal form. The subset operator is expressed

28

using the some and set difference operator. The relation left is in right if and only if
every element in left is in right. This means the set difference of left and right should
be the empty set. Quantified formulas are translated to comprehensions with quantifiers
applied.

One area of potential confusion is the equals (=) operator. The equals operator is
present in OIL, but it has a different semantic meaning. In Alloy the operator returns true
when two relations contain the exact same element and false otherwise, while in OIL it
tests if two formulas evaluate to the same value. The equals operator in OIL is really the
iff operator in Alloy. The equals operator in Alloy is rewritten as a predicate that returns
true if the left relation is a subset of the right relation and vice versa. Listing 3.2 depicts
the example after the translation to OIL.

Figure 3-4: Translation from Alloy to OIL Formula Expressions

not expr
left or right
left and right
left iff right
left implies right
cond implies left else right
left [not]? = right
left [not]? in right
no expr
some expr
lone expr
one expr
all decl,+| expr
no decl,+ expr
some decl,+ | expr
lone decl,+| expr
one decl,+ expr

{ expr* }

zz

not expr
left or right

left and right
left = right

not left or right

(cond and left) or (not cond and right)

[not]? (left in right and right in left)

[not]? not some left - right
not some expr

some expr
lone expr
one expr

no { decl,+ I not expr }
not some { decl,+ expr }

some { decl,+ expr }
lone { decl,+ expr }
one { decl,+| expr }

expr [and expr]*

Listing 3.2: Example of Alloy Translated to OIL

{a, b: Aircraft I
not (not some a - b and not some b - a
and
not some (a + b).location - Occupied

and
(not some a.location - b.location and

not some b.location - a.location

}

3.3 Translation to SQL

Once an Alloy expression is translated to OIL, the OIL expression is translated to a SQL
expression. As mentioned in the previous section, relation expressions are translated to

29

query expressions, while formulas are translated to boolean expressions. Translation from
OIL to SQL is performed by the function toSql. This will convert the OIL expression to
a SQL string. The target database is HyperSQL DB, but the translation method is easily
expressible in other SQL dialects.

3.3.1 Boolean Expressions

Listing 3.3: Example of Boolean Expressions Translated to SQL

{a, b: Aircraft |
NOT (NOT EXISTS toSql(a - b) AND NOT EXISTS toSql(b - a))
AND

NOT EXISTS toSql((a + b).location - Occupied)
AND

(NOT EXISTS toSql(a.location - b.location) AND

NOT EXISTS toSql(b.location - a.location))
}

Listing 3.3 is the example after the toSql method is applied to boolean expressions.
The definition of the toSql method for formula expressions is presented in Figure 3-5. The
basic structure of the translation is to call toSql on non-leaf elements while translating the

operator to an equivalent operator in SQL. For instance the some operator returns true

if and only if the relation is not empty. In SQL this is expressed by using the EXISTS
operator. Given a subquery, it returns true if the subquery returns some set of tuples and

false otherwise. The translation of lone and one use a special method count that returns

the number of tuples in the result set of a query. The details of the count method are

explained in the next subsection.

toSql(left and right) ' toSql(left) AND toSql(right)
toSql(left or right) =z toSql(left) OR toSql(right)
toSql(not formula) e NOT toSql(formula)
toSql(some relation) # EXISTS (toSql(relation))
toSql(lone relation) = toSql(count(relation)) >= 1

toSql(one relation) e toSql(count(relation)) - 1
toSql(left = right) # toSql(left) = toSql(right)

Figure 3-5: Definition of toSql for Boolean Expressions

3.3.2 Query Generation

Boolean expressions are translated by recursively calling the toSql method on non-leaf

elements. A similar approach applied to relation expressions would produce deeply nested

queries. The majority of database vendors perform query optimizations that automatically

denest or flatten queries. However, several database systems place explicit constraints on
subqueries, especially correlated subqueries and will reject queries if correlated values are

referenced too deeply in a query. Given these factors it is the goal of the translator to
flatten queries when it can do so easily.

Denesting of correlated subqueries is an active area of research with various techniques

including rewriting correlated subqueries using various aggregation functions. [2, 13, 16,

30

Table 3.1: Properties of a SQL Query for Alloy Expression

Property Description
Project (relation) List of projected columns of a SELECT clause
Tables(relation) List of tables or subqueries that appear in the FROM clause
Filter(relation) List of boolean value expressions that appear in the WHERE clause

17, 18, 19]. Ormolu uses a simpler technique inspired by a SPARQL-to-SQL translator
presented in [8]. We model a query as a series of properties. Each relation expression
defines the value of these properties. Table 3.1 describes these properties. The toSQL
method of a relation expression is defined using these properties as

SELECT DISTINCT Project(relation)
FROM Tables(relation)
WHERE Filter(relation)

The properties Project, Tables, and Filter all return list of strings. The lists are
similar to lists in Lisp, consisting of an empty list (Nil), and a list constructor (::). Table
3.2 defines the properties and methods of list.

Table 3.2: List Properties and Methods

Property Description

Nil The empty list

head :: tail Constructs a new list from element head and list tail
head(list) Returns the first element of the list

last(list) Returns the last element of the list

tail(list) Returns a list containing all but the first element of the list

int (list) Returns a list containing all but the last element of the list

reverse(list) Reverses the elements of a list

lstl ::: lst2 Appends lst2 to the end of 1stl

The Count Method

Now that the query model has been described, the count method introduced earlier can
be specified. When count is applied to a relation it overrides the Project property of that

relation. The list of strings is replaced with the string COUNT (*). This is an aggregate
function that returns the number of tuples in a result set.

Constants

The properties of the constants none, univ, and iden are shown in Figure 3-6. none
projects a single column from a dummy table. The dummy table is given a correlation

name alias that is generated uniquely for each expression. The Filter property is set to

false to ensure the query returns an empty result set. univ is defined in a similar way, except

31

the relation view of univ is selected
derived from the properties of univ,

Project(none)
Tables(none)
Filter(none)

Project(univ)
Tables(univ)
Filter(univ)

Project(iden)
Tables(iden)
Filter(iden)

and the Filter is set to true. The iden constant is
and projects the column of univ twice.

alias.coll
(VALUES(-1)) AS alias(coll)

FALSE

Nil
Nil
Nil

alias.coll :: Nil
univ.univ AS alias(coll)

TRUE :: Nil

Project(univ) ::: Project(univ)
Tables(univ)
Filter(univ)

Figure 3-6: Properties of Constants

Names

All three name expressions in OIL result in different translations. For a sigName a single
column is projected from the relation view of the referenced signature. For a fieldName all
n columns are projected from the relation view of the referenced field where n is the arity of
the field. The varName is the correlation name of an outer query. It projects all n columns
of the query referenced by the varName and selects from a dummy table.

Project (sigName)
Tables(sigName)
Filter(sigName)

Project (fieldName)
Tables(fieldName)
Filter(fieldName)

Project (varName)
Tables(varName)
Filter(varName)

alias.coll
sigName.signame AS alias(coll)

TRUE

= alias.coll :: alias.col2 :: :: alias.coln
= sigName.fieldName AS alias(coll, col2, ... , coln)

TRUE

= varName.coll, varName.col2, ... , varName.coln
(VALUES(-1))

TRUE

Figure 3-7: Properties of Name Expressions

Consider the expression (a+b).location - Occupied in the example. The table below
shows how the properties would be set by the translator. There are two varNames, a and
b. They are each bound to the Aircraft signature so a single column is projected, while
selecting from a dummy table. There is one fieldName, location. The location field has
an arity of 2, so the alias rell declares two columns. There is one sigName, Occupied. It
has a different alias assigned to it by the translator than the location field.

32

Nil
Nil
Nil

Nil
Nil
Nil

Nil
Nil
Nil

Expression Project Tables Filter
a a.coll :: Nil (VALUES(-1)) :: Nil TRUE:: Nil

b b.coll :: Nil (VALUES(-1)) :: Nil TRUE :: Nil

location rell.coll :: Aircraft.location AS TRUE :: Nil
rell.col2 :: Nil rell(coll, col2) :: Nil

Occupied rel2.coll :: Nil Occupied.Occupied AS TRUE :: Nil
rel2(coll) :: Nil

Figure 3-8: Properties of Example Name Expressions

Set Operators

The set operators +, -, and & are translated to the SQL operators UNION, EXCEPT, and
INTERSECT respectively. All three set operators invoke the toSql method on their left
and right subexpressions. As a result a nested query is created. If subexpressions contain
references to correlation names of an outer query, translation will fail. This occurs in the
translation of the example in Listing 3.4. The toSql function is invoked in the translation
of (a+b).location - Occupied. The toSql call contains references to varNames, which are
correlation names. There is a chance this query will be rejected, depending on the database
engine.

Project(x + y)
Tables(x + y)
Filter(x + y)

Project(x - y)
Tables(x - y)
Filter(x - y)

Project(x&y)
Tables(x&y)
Filter(x&y)

alias.coll :: ... :: alias.coln

(toSql(x) UNION toSql(y)) AS alias(coll, ... , coln)
TRUE

alias.coll :: ... :: alias.coln

(toSql(x) EXCEPT toSql(y)) AS alias(coll, col2, ... , coln)
TRUE

alias.coll :: ... :: alias.coln
(toSql(x) INTERSECT toSql(y)) AS alias(coll, col2, ... , coln)

TRUE

Figure 3-9: Properties of Set Operators

The best way to work around this problem is to distribute operations over set operators
if possible. For example, the join operator in the expression (a+b) .location should be
distributed over the union operator and written as a.location + b.location instead.
The first expression will nest the union inside the join operator when translated, while the
second expression will not cause any additional nesting.

33

Nil
Nil
Nil

Nil
Nil
Nil

Nil
Nil
Nil

Listing 3.4: Example of Set Operators Translated to SQL

//a + b
SELECT rel3.coll
FROM (

SELECT DISTINCT

UNION

SELECT DISTINCT

) AS rel3(coll)

WHERE TRUE

a.coll FROM (VALUES(-1))

b.coll FROM (VALUES(-1))

//(a+b).location - Occupied

SELECT rel4.coll

FROM (
toSql((a+b).location)
UNION

SELECT DISTINCT rel2.coll FROM Occupied.Occupied AS rel2(coll)
) AS rel4(coll)

WHERE TRUE

Non-Set Operators

The advantages of the model based approach to generating SQL queries is seen in Figure
3-10. The properties of the operators in the table are defined in terms of the properties of
other relations. No invocation of the toSql method is needed, resulting in a flat query.

Project(x -+ y)
Tables(x -+ y)
Filter(x - y)

Project(x.y)

Tables(x.y)
Filter(x.y)

Project(x <: y)
Tables(x <: y)
Filter(x <: y)

Project(x :> y)
Tables(x :> y)
Filter(x :> y)

Project(x) ::: Project(y)
Tables(x) ::: Tables(y)

Filter(x) ::: Filter(y)

init(Project(x)) ::: tail(Project(y))

last(Project(x)) = head(Project(y))

head(Project (x)) = head(Project (y))

tail(Project(x)) head(Project(y))

Tables(x) ::: Tables(y)
Filter(x) ::: Filter(y)

Project(y)
Tables(x) :: Tables(y)
Filter(x) ::: Filter(y)

Project(x)
Tables(x) ::: Tables(y)

:: Filter(x) ::: Filter(y)

Project (- x)
Tables(~ x)
Filter(~ X) =

reverse(Project (x))
Tables(x)
Filter(x)

Figure 3-10: Properties of Arrow, Join, and Transpose Operators

This is seen in the listing below. The first query, depicts the translation of (a +
b) .location if toSql was called on the left and right subexpressions of the join opera-
tor. The left subexpression - a + b - is wrapped in a subquery. However the translator

34

knows the projected columns, selected tables, and filter of the subexpressions. It can use
this information to flatten the query.

For a join expression the tables of both subexpressions are needed, so the Tables lists
are concatenated together to form a single list. The filters of the subexpressions must also
be applied so the Filter list are concatenated. The last column of the left subexpression
must match the first column of the right subexpression, so this constraint is added to the
Filter list as well. Finally the matching columns are dropped and the remaining columns
are joined together. This means the init, all but the last element of a list, of the left
subexpression's Project list is concatenated with the tail, all but the first element of a list,
of the right subexpression's Project list.

Listing 3.5: Example Denesting of a Query by the Translator

//(a+b).location With Nesting
SELECT re16.col2
FROM (

SELECT rel3.coll
FROM (

SELECT DISTINCT a.coll FROM (VALUES(-1))
UNION
SELECT DISTINCT b.coll FROM (VALUES(-1))
) AS rel3(coll)

WHERE TRUE
) AS rel5(coll),
Aircraft.location AS rel6(coll, col2)

WHERE

rel5.coll = rel6.coll AND TRUE AND TRUE

//(a+b).location Without Nesting
SELECT rel5.col2

FROM (
SELECT DISTINCT a.coll FROM (VALUES(-1))
UNION

SELECT DISTINCT b.coll FROM (VALUES(-1))
) AS rel3(coll),
Aircraft.location AS rel5(coll, col2)

WHERE

rel3.coll = rel5.coll

The same reasoning is applies to the remaining operators. For instance, the transpose
operator reverses the columns of a binary relation. It leaves the Tables and Filter properties
unchanged in the subexpression, but reverses the Project list of the subexpression. For
domain and range restriction, the right or left subexpression is projected, but an additional
filter is applied requiring the first or last column of the relation to match the first column
of the other subexpression. In order to apply this filter, the tables of both subexpressions
are needed, so the Tables list are concatenated. The arrow operator simply concatenates
the Project list of the two subexpressions together, while doing the same for Tables and
Filters.

Override

The override operator creates a helper relation that selects all the tuples from the left
relation that do not match tuples in the right relation. The union of the helper relation and

35

Project(x ++ y) = Project((x help y) + y)
Tables(x ++ y) = Tables((x help y) + y)
Filter(x ++ y) = Filter((x help y) + y)

Project(x help y) = Project(x)

Tables(x help y) = Tables(x) ::: Tables(y)
Filter(x help y) = head(Project)(x) <> head(Projection(x)) :: Filter(x) ::: Filter(y)

Figure 3-11: Properties of Override

the right relation is used to define the properties of the operator. Since a union operator is

used, the override operator will produce a nested query.

Comprehensions

A comprehension consists of a series of declaration statements followed by a formula. Each

declaration consists of a variable name and a relation. The relation is converted to a

subquery. The variable name is used as the correlation name of the subquery. The formula

is used as the filter. Figure 3-12 defines the properties for a comprehension with a single

declaration, but it is easily generalized to multiple declarations.

Project({ var:rel | form }) var.coll :: ... :: var.coln :: Nil

Tables({ var:rel I form }) = toSql(rel) AS var(coll, ... , coln) :: Nil

Filter({ var:rel I form }) form :: Nil

Figure 3-12: Properties of Comprehension

The listing below is the complete translation of the body of the DoubleOccupancies

function. The body contains a single comprehension statement. The Aircraft table is chosen

twice in the from clause. The tables are given correlation names that map to the variable

names in the declaration. This "binds" the Aircraft signature to the variables. The formula

is translated to SQL and placed in the where clause. Finally it projects the columns of a

and b in the select clause.

36

Listing 3.6: Complete Translation of Example to SQL
SELECT DISTINCT a.coll, b.coli
FROM

Aircraft.Aircraft AS a(coll),
WHERE

NOT (
NOT EXISTS

SELECT DISTINCT
EXCEPT

SELECT DISTINCT

)
AND
NOT EXISTS (

SELECT DISTINCT
EXCEPT

Aircraft.Aircraft AS b(coll)

a.coll FROM (VALUES(-1))

b.coll FROM (VALUES(

b.coll FROM (VALUES(

SELECT DISTINCT a.coll FROM

)
AND
NOT EXISTS (

SELECT rel2.col2

FROM

SELECT DISTINCT a.

UNION

SELECT DISTINCT b.

) AS rell(coll),
Aircraft.location

WHERE

1))

1))

(VALUES(-1))

col1 FROM (VALUES(-1))

colt FROM (VALUES(-1))

AS rel2(coll, col2)

rell.coll = rel2.coll
EXCEPT

SELECT DISTINCT rel3.coll FROM Occupied

)
AND

.Occupied AS rel3(coll)

NOT EXISTS

SELECT DISTINCT rel4.col2

FROM (VALUES(- 1)), Aircraft

WHERE a.coll = rel4.coll

EXCEPT

SELECT DISTINCT rel5.col2
FROM (VALUES(- 1)), Aircraft

WHERE b.coll = rel5.coll

AND
NOT EXISTS

SELECT DISTINCT rel4.col2

FROM (VALUES(- 1)), Aircraft.

WHERE a.colt = rel6.coll

EXCEPT

SELECT DISTINCT rel5.col2
FROM (VALUES(-1)), Aircraft.

WHERE b.coll = rel7.coll)

location AS rel4(coll,

location AS rel5(coll,

location AS rel6(coll,

location AS rel7(coll,

37

col2)

col2)

col2)

col2)

(

.

.

38

Chapter 4

Time and State in Ormolu

This chapter presents the state library provided by Ormolu. We begin by discussing how
time and state are modeled in Alloy and the difficulties of translating this to SQL. This is
followed by the definition of the state library. We conclude by demonstrating how the state
library is used in an example.

4.1 Time and Ordering

The natural way of modeling a system is describing how it evolves over time. Time is so
important in describing a system that many modeling languages add some notion of time
or state to their logic. Alloy is not one of those languages. There is no notion of time or
state in Alloy. Excluding time keeps the logic of Alloy simple and flexible, allowed several
idioms of time to be supported.

Many of these idioms rely on the ordering library provided by Alloy to model stateful
systems. Consider the challenge of specifying an aircraft taking off. There are several ways
of modeling this. Listing 4.3 depicts a very simple model. There are two locations Ground
and Air. There is also a Time signature that is ordered and an Aircraft signature. There
is a single location field that associates an aircraft with a location at every point in time.
Taking off is then specified as changing location from the ground to the air.

Listing 4.1: Takeoff Event Modeled Using Explicit Notion of Time

open util/ordering[Time]

sig Time{}
abstract sig Location{}
one sig Ground, Air extends Location{}
sig Aircraft {

location: Location one -> Time

}

pred TakeOff[a: Aircraft, t: Time] {
let before = t.prev, after = t {

before[a.location] Ground

after[a.location] = Air

}
}

Despite how simple this model is, the Ormolu translator will reject it. This is because

39

the ordering library is used and as stated in the previous chapter, the ordering library is
not supported. Instead Ormolu provides a state library that supports a similar modeling
idiom but without exposing the ordering library directly. The natural ordering of Ormolu
instances is exploited to provide a simple method for translating the state library to SQL.

4.2 Instances in Alloy and Ormolu

An Alloy model defines a set of possible instances. An instance of an Alloy model is an
assignment of values to its variables. Given a constraint and a scope for the variables of
the model, the Alloy analyzer will find an instance that satisfies the constraint. An Alloy
instance is created automatically by the Alloy Analyzer when executing a command. There
is no syntax for specifying an instance in Alloy. An Alloy model defines a set of instances
through the constraints placed on a model. An instance is immutable. Atoms cannot be
added, deleted, or rearranged in an instance.

This differs greatly with instances in Ormolu. An Ormolu instance is derived from obser-
vations of the running system. These observations are supplied by the user and the system
has no knowledge of what the final set of values are for a signature or field. Observations de-
scribe changes or modifications to the current instance, and do not describe a complete new
instance. When a new observation is received the current instance is overwritten and tuples
are inserted into or deleted from the analysis database. An Ormolu instance is dynamic
and unbounded with unpredictable inputs.

4.3 The State Library

The state library is a series of modules that are used to model stateful fields in Alloy. A
different module is used for each degree of field. Listing 4.2 is the unary state module.
It accepts a Value and Version as parameters. The binary state module accepts Value1,
Value2 and Version as parameters, and so on for higher arities1 .

State is modeled as a series of versions. The state field is a binary relation mapping
a set of values to a version. There is a maximum version, maxVer. The quantified formula
in the appended fact forces a transition between versions of states. It states that for all
versions less than or equal to the maximum version, the set of values does not equal the
set of values of the previous version. For instance, if the first version of a state is empty,
the next version cannot be empty as well. It must map to a different set of values. If the
version is greater than the maximum version it has the same set of values as the maximum
version.

It is important to note that the user of the library does not have access to the state field
directly because it is marked private. Instead views over the versions of state are exposed.
There are three views provided: current, previous and past values. The current view is the
set of values associated with the maximum, or current, version. The previous view is the
set of values associated with the previous version before the maximum version. The past
view is the union of the set of values of all previous versions of state.

These views of states are easy to update as observations are received. An observation
updates the current view if and only if it adds or removes values from that view. If it does

'Currently only the UnaryState and BinaryState modules are created because higher arities are rarely
needed.

40

Listing 4.2: Unary State Library

module state[Value, Version]
open util/ordering[Version]

sig UnaryState {
private state: Value set -> Version,

private maxVer: one Version,

current: set Value,
previous: set Value,
past: set Value,

all version: Version - first
lte[version, maxVer] =>

version[state] version.prev[state]
else

version[state] = maxVer[state]

current = maxVer[state]

previous maxVer.prev[state]
past = maxVer.prevs[state]

}

sig OneUnaryState in UnaryState{}{ state in Value one-> Version }
sig LoneUnaryState in UnaryState{}{ state in Value lone-> Version }
sig SomeUnaryState in UnaryState{}{ state in Value some-> Version }

cause an update the old set of values is mapped to the previous view. Finally the union of
the past values and the old set of values is taken and set as the past view.

The OneUnaryState, LoneUnaryState, and SomeUnaryState signatures define multi-
plicity constraints over the state field. For example OneUnaryState adds an appended fact
that says the state field must have exactly one value for each version. The same is done for
LoneUnaryState and SomeUnaryState.

Using the state library is very simple. To have a stateful view over a signature A,
the user opens the state/unary module passing in A and another signature to serve as the
version 2 . The UnaryState signature with the correct multiplicity is used in declaration for
fields.

Listing 4.3 demonstrates how the original takeoff specification is expressed using the
state library. A stateful view is opened over the Location signature. The unary state
replaces the Location-Time bound expression for the location field. The takeoff predicate
does not pass in a time, only a single aircraft. The previous value of the location state is
then constrained to be on the ground and the current value in the air.

Looking at the use of the state library, a user may believe it is possible to traverse
the versions of a state and write statements such as previous [previous [a. location]] or
next [previous [a. location]]. These are not valid statements and will lead to type errors

2 The reason a Version signature is passed into the module is to prevent multiple orderings from being
created. A large number of orderings can slow down analysis of a model. If multiple stateful fields are
opened, the same Version signature can be passed in for each, resulting in only a single ordering being
defined over the Version.

41

Listing 4.3: Takeoff Event Modeled Using Explicit Notion of Time

open state/unary[Location, Version] as location

abstract sig Location{}
one sig Ground extends Location{}
one sig Air extends Location{}
private sig Version{}
sig Aircraft {

location: location/OneUnaryState

}

pred TakeOff[a: Aircraft] {
previous[a.location] = Ground

current[a.location] - Air

}

or warnings when executed. Exposed fields in the state library are views and return only

the set of values associated with a specific version or set of versions. The actual versioning

is hidden from the user so traversal between versions is not possible.

4.4 Translation of Stateful Fields

The state library is designed to eliminate the need for directly using the ordering library

in some cases. The state library adds a level of indirection and standardizes the use of the

ordering library. When an ordering is opened on a signature, a special constraint is placed
on the signature to enforce the ordering. Listing 4.4 contains the definition of the main

component of the ordering library provided by Alloy, the Ord signature. The First field
is the first atom in the ordering, and the Next field contains the mapping from one atom

to another in the ordering. The actual ordering constraint is handled by the totalOrder
predicate. This predicate is treated specially by the Alloy compiler and utilizes symmetry

breaking to implement ordering efficiently.

Listing 4.4: Ord in util/ordering

private one sig Ord {
First: set elem,
Next: elem -> elem

} {
pred/totalOrder[elem,First,Next]

}

To translate the ordering constraint to SQL, two things must be supplied. An atom

must serve as the first atom, and the next mapping must be supplied. The reason why the

ordering library is not supported is that the value of the first atom and the next mapping

cannot be determined in general.

One case which the ordering can be determined automatically is the order of Ormolu

instances. Instances build upon each other and evolve as observations are made. For

example, imagine a single aircraft whose current location is Ground. An observation updates

the current location to be the Air. The ordering is now clear that the location's first value

42

was Ground and its successor is Air. If another observation states the aircraft's location is
Air, the current location is not updated, and the previous location is still Ground. Finally
the aircraft will land and the location will change to Ground. The final ordering of the
aircraft location is Ground then Air then Ground.

The sequence of states for the location field could be arbitrarily long. In the case of
TFDM, only the end of this ordering is needed for modeling the system. Because of this
the state library limits how far back into the ordering of states the model can reference.
The three views are presented in Table 4.1 with the corresponding values for the example.

Table 4.1: Views over the State Sequence

View
current

previous
past

Description
The current (last) value of the stateful field

The previous value of the stateful field
The union of all previous values of the stateful field

I
Example
Ground

Air
Ground, Air

The key insight is that Ormolu knows how to maintain this relationship
views. The signatures and fields specified in the state library act exactly the
analysis. They are only treated specially when the field is updated. This is
greater detail in the following chapter.

between the
same during
discussed in

43

I

,I

44

Chapter 5

Architecture of Ormolu

In this chapter we describe the architecture of Ormolu. We begin by discussing the analysis
database that contains the structure of the model and stores the actual data supplied to
the system. This is followed by discussing the observer that listens for observation from the
system being monitored. The updater is then described that translates the observations
received from the observer to updates to the analysis database. Finally we present the
analyzer that executes queries over the analysis database and outputs the results of analysis.

5.1 Analysis Database

The schema of the analysis database is generated during startup of Ormolu. The Alloy
source file is passed through the Alloy 4 compiler. The compiler type checks the source
file to ensure there are no errors in the model. It also generates an abstract syntax tree.
The abstract syntax tree is passed to the Ormolu translator. The translator creates the
necessary schemas, tables, and views as specified in Chapter 2.

The HyperSQL Database (HSQLDB) is the relational database engine used in Ormolu.
HSQLDB is written in Java and has several attractive features. The most important of
these features is the ability to run in memory-only mode. By running in memory-only
mode, expensive writes and reads from disk are avoided, vastly improving the performance
of updates to the analysis database and query speed. If performance is not the primary
concern, HSQLDB also has a file mode to decrease memory usage at the cost of query time.

5.2 Observer

The analysis database initially contains no tuples. Tuples are added as observations are
made. Figure 5-1 depicts two instances. There are two aircrafts, AircraftO and Aircraftl,
and two locations, a Gate and a Runway. The current instance has AircraftO located at the
Gate, while Aircraft1 is on the Runway. This instance transitions to a new instance where
Aircraft1 moves from the Runway to the Gate. An observation is the description of this
transition.

Observations are sent by the running system to Ormolu as JSON strings. JavaScript
Object Notation (JSON) is a popular format used to transmit semi-structured data across
networks. There are two structures in JSON, objects and arrays. Objects are key-value
pairs while arrays are list of elements. JSON is simple, lightweight, and easy for humans to

45

Aircraftl AircraftO
ArcraftO Aircraftl ($al) ($a2)

location location location location

Gate Gate
(this/Occupied) (this/Occupied) U

(a) Current Instance (b) New Instance

Figure 5-1: Instances of the Aircraft Location Model

read and understand. The observation that describes the transition of Figure 5-1 is depicted

in Lisingt 5.1. This section specifies the JSON structure of an Ormolu observation.

Listing 5.1: Observation Describing Transition from Current to New Instance

{
sigs ' '

'namel'' ''Aircraft'',

''type'': ''Aircraft'',
''id'' : ''Aircraftl'',
''remove'' : false,

''fields'' :
''name'' : ''location'

'arity'' : 1,
''replace'' : [{

''value'' : [{
''name'' : ' 'Gate'

' id' ' : ''Gate ' '

}}

5.2.1 Sig Object

An observation has a single key sigs. The sigs key maps to an array of Sig objects. The

name key of the Sig object is the name of the signature in the model that is being updated.

The type key is the basic type of the signature atom. The id key is the external identifier

for an atom. It uniquely identifies an instance of the signature. The remove key is a boolean

indicating whether the signature is being inserted or removed from the analysis database.

The remove key is optional, and if it is not included it defaults to false. The fields key maps

to an array of Field objects. The example in Listing 5.1 contains a single Sig object. It

states that the atom Aircraftl is a member of the signature Aircraft with the type Aircraft.

46

Listing 5.2: Observation and Sig JSON Specification

''Observation' ':{
'sigs ' ' [Sig]

}

''Sig'': {
''name'': string,

''type'': string,
'id' ': string,
''remove '': boolean,

''fields' ':[Field]

}

5.2.2 Field Object

A Field object specifies an update to a field of a signature. The name key maps to the
name of the field to update in a signature. The arity key is an integer that denotes the
arity of the field's bound expression. If the field is bound to a unary relation, the arity
key should be one. If it is bound to a binary field the arity should be two and so on. The
add, remove, and replace keys are all optional. Each maps to an array of Value objects.
The add key denotes tuples that are inserted to the field, while remove denotes tuples that
should be deleted from the field. If the replace key is specified the add and remove field
are ignored. All tuples currently belonging to the field are deleted and the tuples specified
are inserted. The example in Listing 5.1 contains a single Field object. It states that the
relation Aircraft1.location should be replaced with the contents of the replace key and all
other tuples in Aircraft1.location should be removed.

Listing 5.3: Field JSON Specification

''Field' ':{
''name ' ': string,
'arity'': integer,
''add'': [Value],
''remove ': [Value],
''replace'':[Value]

}

5.2.3 Value Object

A Value object specifies a tuple. It consist of an array of SigRef objects. The number of
SigRef objects in a Value object must equal the arity of the enclosing field. For instance the
arity of Aircraft 1.location is one, so the Value object should contain only a single SigRef.
The name, type, and id keys are analogous to the name, type, and id keys of a Sig object.
The example in Listing 5.1 contains a single Value object. It states that the atom Gate in
signature Gate should replace the current value of the Aircraft 1.location field.

47

Listing 5.4: Value JSON Specification

''Value '':
''value'': [SigRef]

}

''SigRef '':
''name' ': string,

''type'': string,
''id' ': string

}

5.3 Updater

When Ormolu receives an observation, it parses the JSON string and updates the current
instance. Updating the analysis database is a non-trivial task. Recall in Chapter 2 that
foreign key constraints are utilized to simulate Alloy's type system. Foreign key constraints
are an example of integrity constraints on a database. If an update will result in a violation
in an integrity constraint, the database manager will reject the operation and the update will
fail. Ormolu generates a number of update procedures for every table to prevent integrity

constraints from being violated. We explain the concept behind each of the procedures in
this section.

5.3.1 Signature Insertion Procedure

Each signature has one or more insertion procedures associated with it. The name of the
insertion procedure is of the form sig.add, where sig is the name of the signature. Since

subset signatures can have multiple type tables, they can potentially have multiple insertion
procedures as well. To distinguish the insertion procedures of a subset signature apart, the

type is appended to the end of the name. This produces a name of the form subsig.additype,
where subsig is the name of the subset signature and type is the type table the atom is
added to.

A signature insertion procedure accepts as input an atom's string representation and

returns an atom's integer representation. Recall an atom's string representation is the

external identifier of an atom, and the integer representation is the internal identifier. The

procedure will insert the atom into the appropriate type table if it is not a member. If the
atom is already a member of the signature, no insertion occurs, but the internal identifier

is still returned. The insertion procedure is an idempotent operation.
Inserting into a signature's type table is a non-trivial task. In order to successfully insert

a value into a signature, several other insertions are often necessary. Consider the Ormolu

instance in Figure 5-2. Before a value is inserted into the Occupied.ofTypeRunway table,
it must be added to the Runway table. Before it can be added to the Runway table, it must
be added to the Location table, and before the Location table the univ table.

Each insertion procedure invokes its parent's add procedure before inserting into its
respective type table. Figure 5-3 illustrates this process. A series of invocations is made
until the top signature, univ, is reached. A new internal identifier is generated and passed

down the chain. Each of the respective signatures will add the internal identifier to its
type table before returning the identifier to the child signature. This ensures a foreign key
constraint is never violated and the insertions are performed in the correct order.

48

univ.type

col1 atom

0 Aircraft0

1 Aircraft1

2 Gate

3 Runway

Gate.type

Col 1

2 1

Runway.type

Col1l

3

Occupied.ofTypeGate
Col1

2

Occupied.ofTypeRunway
col1

3

Aircraft.locationLocation

Coil col2

1 3

Figure 5-2: Instance of Aircraft Location Model in Ormolu

univ.add

Location.add
external id I internal id

Runwav.add

tI
Occu ied.addRunway

Runway2 4

Figure 5-3: When Occupied.addRunway is invoked, the external identifier Runway2 is
passed up the invocation chain until the call to univ.add is made. The univ.add procedure
will add Runway2 to its type table and generate the internal identifier 4 for the atom. The
internal identifier is passed down the invocation chain and inserted into the respective type
tables, ultimately being returned by the original call to Occupied.addRunway.

49

'

I

5.3.2 Signature Deletion Procedure

The deletion procedure of a signature is similar to the insertion procedure. It's name is
the same with del swapped for add. The deletion procedure accepts as input the internal
identifier and removes it from the given signature. The chain of invocations for deletion
occurs in the opposite direction. When an atom is removed from a signature it is removed
from all children signatures and fields that reference the atom.

Several databases support a ON DELETE CASCADE trigger defined on a foreign key con-
straint. This instructs the database manager to remove the foreign key from the table when
the key is removed from the referenced table. For example, if the atom Gate is removed
from the univ type table, the deletion will cascade down to the Location, then Occupied
and finally the Aircraft.location table as well, removing the internal identifier 2 from all
tables in the analysis database.

5.3.3 Field Update Procedures

The update procedure for a field is more intricate than that of a signature. Each type table
of a field defines an insertion and deletion procedures of the form sig.field-additype and
sig.field-del-type respectively, where sig is the name of the enclosing signature, field is
the name of the field, and type is the type of the bounding expression of the field. Both
procedures receive as input n internal identifiers. The insertion and deletion procedure of
a field does not immediately make changes to the type table. The insertion and deletions
are logged in temporary tables.

To push the update to the type tables, a call to the commit procedure of a field is
required. The commit procedure takes as input a boolean value. If it is true, the update is
pushed to the field as a replace operation. There are several steps to a replace operation.

1. Generate a list of atoms whose field is being updated. This is done by selecting coll
from the temporary tables.

2. Select the current tuples in the field of the updated atoms and add them to the
temporary deletion table.

3. Remove from the type tables any tuple that appears in the temporary deletion table.

4. Insert into the type tables any tuple that appears in the temporary insertion table.

A replace operation essentially clears the field of any atom that is being updated and
replaces it with the contents of the temporary insertion table. If false is passed to the
commit procedure the first two steps of the replace operation are skipped. Only tuples
Ormolu is explicitly instructed to delete are removed from the type table.

5.3.4 Updating Stateful Fields

Updating stateful fields is exactly the same as updating fields without state. The only
difference is that the commit procedure is modified. If the field of an atom is being updated,
the current view of that field is copied over to the previous view and added to the past view.
After this is done, updating precedes just like any other field on the current view. This
shuffling of values from current to previous and past is the only overhead required for using
the state library.

50

5.4 Analyzer

In Alloy analysis is performed by writing run and check commands. Recall the model of
aircraft location portrayed in Listing 2.1. There are two commands. The constraint states
there are no two aircrafts that share the same occupied location. While both commands
have the same body, when executed they will produce different instances. A run command
will search for an instance that satisfies the constraint, while the check command searches
for a counterexample that violates the constraint.

Ormolu uses analysis functions to perform analysis. These functions are run when ever
an Ormolu instance is updated. Analysis functions are special functions in an Alloy model.
There are three conditions that a function must adhere to in order for it to be considered
an analysis function.

1. The function is not marked private

2. The function does not take any arguments

3. The function must appear in the main module of the Alloy source file

These requirements are somewhat arbitrary, but decreases the likelihood that an analysis
function is declared by mistake.

Listing 2.1 defines a single analysis function DoubleOccupancies. It is a function that
returns all pairs of aircrafts in a instance that occupy the same gate or runway. The analysis
function is translated to a SQL query. This query is run whenever the Ormolu instance is
updated. The execution strategy for analysis could be improved by only running an analysis
function if one of the relations it uses is updated.

51

52

Chapter 6

Conclusion

Ormolu is a unique approach to runtime monitoring. It uses an Alloy model to generate
an embedded database that is analyzed using queries. We conclude by presenting a limited
evaluation of Ormolu on a real dataset. This is followed by exploring the design decisions
and limitations of this unique approach. We end with a brief discussion of future works for
the project.

6.1 Evaluation

To test the feasibility of Ormolu in practice, we monitored a simulation of the TFDM
system. The simulation consist of almost four hours of actual data recorded from a local
Massachusetts airport with TFDM installed in a tower. The data is a dump from a database
between 11am and 2pm on January 4th, 2011. The database was ordered by time and
transformed to a single file containing a sequence of observations encoded in JSON. In total
there were over 23000 observations stored in a 4MB text file.

Listing 6.1 is the relevant portion of the TFDM Alloy model used in the test. It looks
for examples of bad arrivals to the airport. There are four main signatures in the model,
Location, Intent, Aircraft and TFDM. Location models the location of an aircraft, and
Intent is an enumertaion that describes the general action an aircraft is taking. Aircraft
contains two stateful fields for, location and intent. TFDM is the model of the information
known by the TFDM system and the flightData field is the set of aircrafts that it knows
about.

CreateArrivalFlightData determines if the flight data of an arrival was processed cor-
rectly. It considers only aircrafts that have been recently added to the flight data (not
in the previous, but now in the current flight data). Inside the negation it describes the
condition for a correct arrival. The aircraft's previous location was outside the air space of
the airport and the intent of the aircraft is to arrive at the airport or simply to fly over it.
By negating this condition, it finds all cases that don't meet this specification and reports
these aircraft.

The test was run on a laptop running Windows 7 with 4GB of RAM and a 2GHz dual
core processor. The data was read from the JSON text file and feed to Ormolu. After
each observation the analyzer ran the analysis query for a total of 23052 times. The whole
analysis was completed in less than 10 minutes.

While the test was not thorough, some conclusions can be made. The average execution
time for each query was 26ms. The rate at which observations were made was roughly two

53

Listing 6.1: Relevant Components of the TFDM Alloy Model

open state/unary[Aircraft, Version] as aircraft
open state/unary[Location, Version] as location
open state/unary[Intent, Version] as intent
private sig Version{}

abstract sig Location {}
abstract sig Airborne, Grounded extends Location {}
sig OutsideTowerSpace , InsideTowerSpace extends Airborne {}
abstract sig ActiveRegion, SurfaceDestination extends Grounded {}
sig Gate extends SurfaceDestination {}
sig Hangar extends SurfaceDestination {}
sig Taxiway, Ramp, HoldingPen extends ActiveRegion {}
sig Runway extends ActiveRegion {}

abstract sig Intent {}
one sig Arrive , Depart, Overflight, TransitionTaxi extends Intent {}

abstract sig Object {}
sig Aircraft extends Object {

location: one location/OneUnaryState,
intent: one intent/OneUnaryState,

}
one sig TFDM extends Object {

flightData: one aircraft/UnaryState,

}

fun BadArrival[]: Aircraft {
{aircraft: Aircraft I CreateArrivalFlightData[aircraft]}

}

pred CreateArrivalFlightData [aircraft: Aircraft] {
aircraft not in previous[TFDM.flightData]

aircraft in current[TFDM.flightData]

!{
previous[aircraft.location] in OutsideTowerSpace

previous[aircraft.intent] in Arrive + Overflight

}
}

54

observations per second. If the observation rate is accurate then query time would need to
be below 500ms for Ormolu to process observations fast enough to prevent observations from
being dropped. 26ms falls an order of magnitude below this mark implying that Ormolu is
feasible given a slow enough observation rate.

One informal observation is the query time increased as more observations were made.
This is an expected result. A more thorough evaluation is necessary to determine how
quickly query performance degrades. We favored simplicity over performance in the trans-
lator, so it is possible more optimized queries can be produced and indexes defined that
can speed up performance even more. Another possible solution for dealing with degrading
performance is to purge the analysis database of stale data periodically.

6.2 Design Decisions and Limitations

Ormolu is able to replicate the semantics of Alloy to some degree. There are cases where the
translation falls short. Many of these supposed limitations are a result of the design decision
for the translator to ignore facts. This decision was made because facts are interpreted as
constraints that are inherently true in the system. If the constraint of a fact needs to be
checked by Ormolu it should be written as a predicate and invoked when needed.

Listing 6.2: Explicit Mutual Disjointness

sig A{}
sig B, C, D extends A{}

predicate bcdDisjoint []{
no B & C
no B & D
no C & D

}

Constraint paragraphs marked explicitly with the f act keyword are not the only con-
straints Ormolu considers facts. There are several cases where a fact or constraint is implied
in Alloy. One example is for extension signatures. By definition extension signatures are
mutually disjoint and cannot contain the same atoms. The tables of extension signatures
do not prevent this from occurring. If the user wishes to enforce this constraint in Ormolu
then the mutual disjointness must be written out explicitly. Listing 6.2 illustrates one way
of expressing mutual disjointness explicitly. The predicate bcdDisjoint states there is no
intersection between any pair of extensions to A. In general, a signature with n extensions
would have (") possible pairs to write out explicitly.

Whether a constraint is explicitly marked as a fact or not, the Ormolu translator will
ignore it. All constraints must be explicit and appear in a predicate or function. Here are
known cases where this approach should be utilized if the constraints of a fact are to be
checked by Ormolu. This is not an exhaustive list and the Alloy specification should be
read to determine what constraints are implied in a model.

" Set multiplicity constraints, especially in field declaration

" Relation multiplicity constraints, especially in field declaration

* Disjoint or partitioned declarations

55

e Appended facts

" Disjointness of extension signatures

" Declaration constraints in fields

e Abstract signatures having no elements except those belonging to its extensions

Rewriting these constraints explicitly is a rather straightforward task. A future version

of the Ormolu translator could perform the rewriting automatically for the user if desired.

Since the user may or may not want to check these facts, possibly for performance reasons,
the rewriting should be configurable.

6.3 Future Work

Ormolu generates a runtime monitor from an Alloy source file. The current implementa-

tion shows that the approach is feasible. There are several areas where Ormolu might be

improved and areas of future research.

Full Support of Alloy Logic The Ormolu translator supports the most commonly used

elements of Alloy's logic. There are also some restrictions placed on the model. There are

a handful of operators that are not supported. The translator should support the complete

logic of Alloy. One possible way of supporting operators that do not map well to database

operators is creating user-defined functions that implement the operation. If the database

allows user-defined functions to be specified in a language such as Java, procedural code

can be used to implement the operations. For instance closures, which have limited support

through Common Table Expressions, could be implemented as a function in Java that

constructs the proper result set.

Optimization of Analysis Database Efficiency was not one of the design goals of

Ormolu. Since the queries that will run are known beforehand there is great potential

for optimizing the analysis database for these queries. This can include specializing the

translation of signatures and fields to use fewer or more tables, automatically creating indices

over commonly referenced columns, executing analysis functions in parallel, etc. Before

optimizing Ormolu, a more thorough evaluation of its performance and detailed profiling

to identify the bottle necks of the system is needed. Since the current performance with no

optimization is feasible, further refinement in this area will only increase the attractiveness

of this approach.

Time Library The state library is great for constraining how a single field changes over

time. However there is no way of expressing the relationship between changes in different

fields. For instance, after an aircraft takes off it should then lift its landing gear. The

ordering of events is important, after the ground to air transition, the landing gear should

be lifted, but not before. If the landing gears are retracted before take off that can indicate

a serious problem occurred. There is no way of sequencing these events currently in Ormolu.

A specially recognized timing library could be implemented in a similar way to the state

library to support this use case. The other alternative is to discover a way to support the

ordering library so these specialized libraries would not be necessary.

56

Bibliography

[1] M. Auguston. Software architecture built from behavior models. ACM SIGSOFT
Software Engineering Notes, 34(5):1-15, 2009.

[2] F. Bry. Logical rewritings for improving the evaluation of quantified queries. MFDBS
89, pages 100-116, 1989.

[3] E. Clarke. Model checking. In Foundations of software technology and theoretical
computer science, pages 54-56. Springer, 1997.

[4] E.F. Codd. Derivability, redundancy, and consistency of relations stored in large data
banks. IBM Research Report RJ, 599, 1969.

[5] E.F. Codd. A relational model of data for large shared data banks. Communications
of the ACM, 13(6):377-387, 1970.

[6] C. de la Riva, M.J. Sudrez-Cabal, and J. Tuya. Constraint-based test database gener-
ation for sql queries. In Proceedings of the 5th Workshop on Automation of Software
Test, pages 67-74. ACM, 2010.

[7] N. Delgado, A.Q. Gates, and S. Roach. A taxonomy and catalog of runtime software-
fault monitoring tools. Software Engineering, IEEE Transactions on, 30(12):859-872,
2004.

[8] B. Elliott, E. Cheng, C. Thomas-Ogbuji, and Z.M. Ozsoyoglu. A complete transla-
tion from sparql into efficient sql. In Proceedings of the 2009 International Database
Engineering & Applications Symposium, pages 31-42. ACM, 2009.

[9] D. Jackson. Alloy: a lightweight object modelling notation. ACM Transactions on
Software Engineering and Methodology (TOSEM), 11(2):256-290, 2002.

[10] D. Jackson. Software Abstractions: logic, language and analysis. The MIT Press, 2006.

[11] D. Jackson and C.A. Damon. Elements of style: Analyzing a software design fea-
ture with a counterexample detector. Software Engineering, IEEE Transactions on,
22(7):484-495, 1996.

[12] M. Leucker and C. Schallhart. A brief account of runtime verification. Journal of Logic
and Algebraic Programming, 78(5):293-303, 2009.

[13] N. May, S. Helmer, and G. Moerkotte. Nested queries and quantifiers in an ordered
context. In Data Engineering, 2004. Proceedings. 20th International Conference on,
pages 239-250. IEEE, 2004.

57

[14] J.P. Near, M. Hermenegildo, and T. Schaub. From relational specifications to logic pro-

grams. In Technical Communications of the 26th International Conference on Logic

Programming, volume 7, pages 144-153. Schloss Dagstuhl-Leibniz-Zentrum fuer Infor-

matik.

[15] B. Plattner and J. Nievergelt. Monitoring program execution: A survey. Computer,
14(1):76-93, 1981.

[16] J. Rao and K.A. Ross. Reusing invariants: A new strategy for correlated queries. In

A CM SIGMOD Record, volume 27, pages 37-48. ACM, 1998.

[17] P. Seshadri, H. Pirahesh, and T.Y.C. Leung. Complex query decorrelation. In icde,
page 450. Published by the IEEE Computer Society, 1996.

[18] H. Steenhagen, P. Apers, and H. Blanken. Optimization of nested queries in a complex

object model. Advances in Database TechnologyEDBT'94, pages 337-350, 1994.

[19] C. Zuzarte, H. Pirahesh, W. Ma, Q. Cheng, L. Liu, and K. Wong. Winmagic: subquery

elimination using window aggregation. In Proceedings of the 2003 ACM SIGMOD
international conference on Management of data, pages 652-656. ACM, 2003.

58

