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Abstract

Monte carlo computationals methods are widely used in academia to analyze nuclear systems
design and operation because of their high accuracy and the relative ease of use in comparison
to deterministic methods. However, current monte carlo codes require an extensive knowledge
of the physics of a problem as well as the computational methods being used in order to ensure
accuracy. This investigation aims to provide better on-the-fly diagnostics for convergence using
Shannon entropy and statistical checks for tally undersampling in order to reduce the burden on
the code user, hopfully increasing the use and accuracy of Monte Carlo codes. These methods
were tested by simulating the OECD/NEA benchmark #1 problem in MCNP. It was found
that Shannon entropy does accurately predict the number of batches required for a source
distribution to converge, though only when when the Shannon entropy mesh was the size of
the tally mesh. The investigation of undersampling showed evidence of methods to predict
undersampling on-the-fly using Shannon entropy as well as laying out where future work should
lead.
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1 Background

1.1 Motivation

Computational analysis forms the bedrock of most nuclear systems design due to the high costs
inherent in building physical prototypes. As such, the development of tools which can handle
a large variety of geometries, energy spectrums and other user inputs while providing fast and
accurate results is a major goal of many national laboratories, universities and companies. Monte
Carlo codes and methods are used extensively in the modeling of nuclear systems and provide some
of the most accurate analysis currently available. However, use of codes such as Monte Carlo N-
Particle (MCNP), developed at Los Alamos national lab, require the operator to have a high level
of understanding of both the physics of a problem as well as the computational methods used to
solve the problem correctly. In particular, knowing that the source distribution of a model has fully
converged before beginning to collect results is critical to ensuring that those results are accurate.
However, some of the indicators used to judge convergence can be misleading or simply wrong,
telling the user that the source is converged when it hasn’t. Even if the user is aware of this issue,
their only solution is to make an estimate of when convergence will occur and then checking after
the run has finished, necessitating repeated runs and wasted time if this guess proves wrong. In all
cases,this problem can trip up users, either forcing them to waste time with extra runs or simply
giving them incorrect results. Previous work, which will be described below, has shown how this
problem may be solved, giving means for users to more accurately assess convergence and other
aspects of their simulation. This investigation continues that work, focusing on methods that may
be used to asses convergence on-the-fly as well as look for undersampling in tallied results.
This work has four deliverables:

1) Demonstration that, in the limit of high numbers of particles per batch, the Shannon
entropy eventually becomes smooth, even for difficult problems.

2) Demonstration that as mesh size for the Shannon entropy becomes smaller, the observed
convergence based on Shannon entropy is faster.

3) For varying tally sizes, determine how many particles per cycle are needed in order to
eliminate bias in the tallies.

4) Show that if one uses a Shannon entropy mesh size proportional to the tally volume,
convergence can be diagnosed with the Shannon entropy.

These will be explored in more detail in the methods section.

By working toward these goals, this investigation aims to reduce the difficulties faced by code
users by identifying the possible relationships between model inputs such as tally size, mesh size and
the number of particles per cycle in order to better inform them of appropriate inputs for different
situations and in the future perhaps allow codes like MCNP to self-select some inputs based on the
final results requested by the user. This will reduce the burden on the user and cut the computation
time required for this type of analysis by increasing the chance that it will be done correctly the
first time. In time other inputs could be handed over to the computer system, allowing the user
to focus on the bigger picture of the simulation and reducing the barrier to entry of these analysis
techniques. This in turn will hopefully increase the adoption of Monte Carlo methods in industry
and elsewhere, improving the quality of nuclear analysis.



1.2 Monte Carlo Code, Overview

Monte Carlo N-Particle (MCNP) is a powerful general purpose, continuous-energy, generalized ge-
ometry, time-dependent (sometimes), coupled neutron/photon/electron Monte Carlo transport code
[1]. MCNP functions by having the user build a geometry of their system, define all materials and
sources within, as well as list the surfaces and volumes over which particle paths, effects and/or
energies should be tallied. MCNP then uses a user-input initial distribution of source points and
runs a number of particles, again decided by the user, through the model one at a time, randomly
sampling from distribution of possible outcomes to determine the actions of the particles. These
particle histories are tracked and recorded in batches,

Computational analysis of radiation systems generally falls into one of two categories: time-
dependent and time-independent calculations. Both model the behavior of particles, materials and
geometries in a user-built geometry either for one point in time, as is the case with time-independent
calculations, or over time, as with time-dependtent calculations. Criticality are a type of (usually)
time-independent calculations which assume that there is no transmutation of materials or other
time dependent changes in the system and instead predicts the particles fluxes and tallies across all
the volumes and surfaces for one particular time. Depletion calculations are a typical type of time-
dependent calculation which combines the what is done in a usual criticality calculation with the
ability to model time dependent changes such as the transmutation of materials. While this makes
depletion calculations very useful it also makes them much slower, particularly when using Monte
Carlo methods. As such, criticality calculations are far more commonly used. With the correct
estimations of what a systems steady -state conditions will be, a handful of criticality calculations
can predict particle densities, source profiles or the fractional change in the number of neutrons per
neutron generation (Keff).

There are two means of solving both of these types of problems: deterministic codes and Monte
Carlo codes. Deterministic codes set up and solve an explicit eigenvalue equation, which will be
described in more detail later. The eigenvalue equation describes the particle populations in the
system being simulated and deterministic codes solve this directly for the different regions of the
system quite quickly, though at the cost of making certain assumptions which can make analysis
very difficult or reduce it’s accuracy. Monte Carlo codes, on the other hand, solve the problem using
stochastic methods. This involves monitoring and recording the actions of many individual particles
as they move through a system geometry and predicting average behaviors and the particle fluxes
from the patterns that these particles form.

Criticality calculations, as described above, are large eigenvalue equations, where the source
distribution of the particles, i.e. the initial positions of a generation of particles, is the eigenvector
and Keff is the eigenvalue. In a Monte Carlo code, rather than ever writing out the matrix in the
differential equation that is to be solved, the geometry of the system itself and how the particles
interact with it when they are modeled make up the matrix of the equation. MCNP and other
Monte Carlo codes use a power series method which involves using the results of previous batches
of particles as inputs to the next batch. This causes the initial guesses of the positions of the source
particles and Keff to gradually converge to their true values for the situation being modeled. This
information can then be used to quickly predict reactor behavior and radiation flux across critical
systems.



1.3 Monte Carlo Code, Details

As mentioned briefly above, codes like MCNP and OpenMC [12], an open source Monte Carlo code
being developed at MIT, use a form of the power series method to solve for the source distribution
and Keff of a system as part of solving a criticality calculation. The codes organize the particles it
tracks through the geometry into equally sized batches (a.k.a. cycles), the size of which is chosen
by the user. Each of these batches uses the final positions of the particles in the previous batch as
initial locations and then the code models them, using their macroscopic cross section to calculate the
expected distance each particle will travel between each new interaction. In a criticality calculation,
MCNP and OpenMC model the creation of new particles as well as the destruction of existing ones
and once each particle in the cycle has passed, record their final locations. The next batch then uses
these positions as their initial source distribution. Because certain regions of the model will more
favorably retain particles, i.e. areas of high particle fluxes, gradually more particles will be created
in those regions and the source distribution will drift towards those locations. In order for each
batch to be equivalent and to avoid exponential growth in the number of particles being modeled,
the total number of particles is renormalized by randomly adding or removing particles. Figure 1
shows this process.
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Figure 1: Demonstration of source distribution converging. Each red dot represents a source site

The number of batches required for this process to complete depends on many different variables,
both to do with the geometry and materials of the problem itself as well as the statistics of the
numbers of particles per batch and the accuracy of the initial source distribution guess. One example
of when this can go wrong is if too few particles are tracked through the model each cycle which
can lead to one or two problems occurring. These particles may not be numerous enough to ’fill’
the model and be drawn to the parts that will retain them best, i.e. the places in the geometry
where the true source distribution will be high. This is especially the case in highly decoupled
geometries, where the parts of the model with high particle and source densities are separated
either by long distances, shielding or other particle-poor zones. This will slow down or completely
inhibit the Monte Carlo method from converging to the true source distribution. This issue is
often closely related to the dominance ratio of a problem. The dominance ratio describes the
ratio of the first harmonic solution to the fundamental solution. Generally, the ratio is quite small
and the fundamental solution, which applies to the first eigenvalue: Keff, has easily the greatest
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magnitude and dominates the other solutions. However, if the dominance ratio is close to one then
it will take many more iterations for the fundamental solution to overcome and stand out from the
first harmonic. A problem related to having too few particles, is when the adding or removal of
a significant portion of the particles causes too much information to be lost or randomly added,
inhibiting the speed at which the Monte Carlo system finds the true eigenvalue and eigenvector.
These two particle population problems are described in Figure 2.
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Figure 2: Demonstration of undersampling. Each red dot represents a source site

These early cycles, before the eigenvalue and eigenvector have converged, are referred to as
inactive cycles because MCNP and OpenMC do not collect tally data during these cycles. Tallies
are specific volumes of surfaces over which the user has asked for information, such as the number of
particles crossing, their energy, flux, reactions rates, whether they have been scattered beforehand
and many others. If this information is collected before the source distribution is converged, the
information could be wrong. For example, if a tally was taken across a surface near the right hand
edge of the core in Figure 1 and the code began tallying immediately at the first cycle, the flux
tallied would be artificially high, distorting the data unless the model was allowed to run for encugh
cycles that the initial incorrect data becomes insignificant, though that would be a time-consuming
and wasteful practice. Instead, tally data is only collected during active cycles, i.e. cycles after the
source distribution has converged.

The above has hopefully demonstrated the need for Monte Carlo users to know when their source
distribution has converged so that they do not accidentally start collecting tally data during what
should be inactive cycles. Keff, the eigenvalue in the criticality problem, can be easily calculated
and compared between cycles and many previous efforts have focused on using this to allow the user
to test whether they should swap to active cycles after Keff (and hopefully the source distribution)
converged to their true values. The calculation is easy because it involves simply dividing the final
number of neutrons after a given cycle by the number that began the cycle and it is easy to compare
single numbers for obvious reasons. However, Keff is a global value, i.e. it gives information about
the entire model but not each point that makes it up. Because tallies are generally only concerned
with local particle effects this means that while the entire model may appear converged, the source
distribution near the tally may not be. This is demonstrated in Figure 3. Each of the bitmaps
could be described as ’grey’, i.e. the sum of their color maps is two. However, each of these is very
different from the other. It is imaginable that this sequence of pictures describes the convergence of
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Figure 3: Demonstration of how local changes can be hidden when counted as part of a global
variable

a source distribution where the initial source distribution was entirely wrong. At each point Keff is
converged to two but the source distribution, given that it is made up of local information, is not.

The logical step from this is to develop methods to compare the convergence of the source
distribution directly; however, there are problems in doing this. First and foremost is that the
source distribution contains significant amounts of information, generally five double precision floats
for each particle (x,y,z positions, energy and an ID number). Given that some larger or more
complicated simulations may have millions or hundreds of millions of particles and thousands of
batches. Storing this amount of information even once per hundred cycles is impractical. Secondly,
even if this was a possibility, there is the problem of how to compare such large data sets, especially
given that any given particle/source point in cycle 'n’ may not be easily traceable to a particle/source
point in cycle 'n+1’ which makes it hard to compare how far they have traveled or how different each
source distribution is from the previous one, though this has been attempted with some success|2].
One significant suggestion on how to solve this is the use of Shannon Entropy, a concept from
information theory, to measure the randomness and amount of information in a system and describe
it using a single number. This number can then be easily compared between cycles.

1.4 Shannon Entropy

Shannon entropy (a.k.a information entropy) is a concept from information theory, originally pro-
posed by Claude Shannon as part of his masters thesis at MIT [11]. Shannon entropy is very
analogous to thermal entropy and is a measure not only of the chaoticness in a system but also
of the number of bits required to fully define a system. This is similar to how thermal entropy is
both a measure of ‘chaoticness‘ and the number of states required to fully define a system. Previous
work, especially by T. Ueki, has shown a high correlation between the source distribution and the
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Shannon entropy and it is thought that if one is converged the other will be as well, giving users a
means of checking the convergence of the source distribution [3]. Some work by Bo Shi at Georgia
Tech seemed to suggest that this was not true and that the Shannon entropy failed to sufficiently
predict when the source distribution converged. This will be discussed in more detail in the methods
section.

In MCNP, the Shannon entropy is calculated for a given cycle/batch by imposing a 3D mesh
on the model and counting the number of source sites / particles in each. This mesh can either be
user defined or MCNP will automatically generate a mesh it believes is appropriate based on the
average number of particles per bin. The number of particles in a given bin is then divided by the
total number of particles 'p’ to give a probability that a particle will be found in any given bin.
This is then input into Equation 1 to calculate the entropy for the whole system.

N
—Y “ploga(p) (1)

Where N is the number of bins in the mesh.

To understand this concept better it is useful to examine an example from Shannon’s thesis. If
we imagine a case with just two bins, A and B, the Shannon entropy, H, of a systemn containing
any number of particles is given by the graph shown in Figure 4, where p is the probability of a
particle being in bin A. If p equals one or zero, all the particles will be in one bin; the system is
very ordered and ’unchaotic’ and very little information is needed to describe it. As p goes to 0.5,
this is reversed and more information is required to describe the system till p = 0.5 exactly and you
have a uniform distribution of particles between the two bins. In this case this entropy is equal to
one but in general it can take any positive value. Depending on whether a user uses a uniform or
point initial source distribution, the Shannon entropy should grow or fall to it’s converged value.
The magnitude of the converged value could be compared to that of other systems but this would
likely be quite a difficult task to make worthwhile because the ’chaoticness’ of the system will be
highly dependent on the number of bins and source distribution of the system.

Shannon entropy presents a way to compare the source distribution between cycles easily without
needing to save large amounts of data. MCNP and most other codes delete the source distribution
of a model once the Shannon entropy has been calculated. Methods are also required to compare
the Shannon distribution between cycles accurately. While these methods could be used after
a calculation has finished running, these methods are most promising when they done on-the-fly
calculation so that the computer running the code could decide for itself when to swap from inactive
to active cycles, reducing the need for repeated runs. There have been many suggestions[4, 6, 7,
5] to this end but one promising suggestion, developed at MIT by Paul Romano, is the use of
a stochastic oscillator to quantitatively show when the Shannon entropy is ’flat’ enough to be
considered converged.

1.5 Stochastic Oscillator and Alternative Convergence Analytics

The stochastic oscillator works by reading trends in a single variable time series and determining
when it meets a level of stationarity decided by the user beforehand. It uses an indicator 'K’ to
determine whether the time series is increasing or decreasing in value and if K stays within a certain
bound from 0.5 then it is assumed to be stationary [8]. Applied to Shannon entropy the formula
looks like this:

13
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Figure 4: Shannon entropy for a system with two bins A and B where p = probability that a particle
will be found in A[11]

KM _ H™ — gD 9
-~ g _ g(np) (2)
mazx min
Where H is the Shannon entropy, H,(,?a’i) and H,(n’;f:)are the maximum and minimum Shannon

entropies for the previous 'p’ batches and K is the stochastic indicator. If the value is increasing,
H — Hpgzand K = 1, as the latest value is likely to have the greatest or close to the greatest
value historically. Similarly, when the value is decreasing H — H,,;,and K = 0. If the condition in
Equations 3 and 4 holds true at any point then the Shannon entropy is considered to have achieved
stationarity.

HK(") - 0.5H <e (3)
1=
~ ;} K®t) _ 05| <& (4)

Where m is another set of batches decided by the user. In other words, both K{™and it’s average
for the next 'm’ batches must be withine of 0.5 [8].

Applied to the OECD/NEA benchmark #1 problem, which will be described later in greater
detail, Romano found the following results for various p,m and &, shown in Table 1.

14



Histories per | Batch converged Batch converged
batch via inspection p " & via Eq. 24)
5000 Not converged 52(?0 :0% gi Not co61?verged
10000 2500 w00 500 1o 3661
20000 1700 52(;)0 550% g:i 2117795
7
40000 1800 0 0 o 1559
100000 1600 w0 o0 T ol 3200

Table 1: Comparison of the number of batches for convergence in OECD/NEA benchmark problem
#1 determined by visual inspection and by the stochastic oscillator diagnostic [8]

The second parameter set (p = 500, m = 500, € = 0.1) worked fairly well, except in the last
case, and this method definitely invites more work to see how the concept could be fleshed out and
applied to these geometries which are traditionally more difficult to model accurately, such as this
benchmark problem.

Other methods to assess source convergence include that built into MCNP as well as those
developed by Bo Shi, Taro Ueki, Forrest Brown and others. MCNP checks Shannon entropy conver-
gence by looking for the first cycle after which all Shannon entropy results are within one standard
deviation of the Shannon entropy value for the second half of the cycles (active or inactive) [1].
While this method has some usefulness and is similar to some modifications made to the stochastic
oscillator method that will be discussed late, on the whole it did not prove useful. As will be shown
in the results section, this method completely fails for simulations using less than 10,000 particles
per cycle, often evaluating convergence as being within the first hundred cycles and consistently
gives convergence points that are significantly early even up to 1M particles per cycle. It is unclear
whether this is a function of the difficulty of solving this problem and this method works well with
other models but some of the literature shows use of this method and as such it was decided to use
it as a comparison to other methods.

Bo Shi’s masters thesis involved an investigation of the usefulness of Shannon entropy as a
means of assessing convergence and the development of other methods to replace it [2]. As will be
demonstrated later, this benchmark problem requires significantly more histories to be run in order
to give accurate results than is suggested by the Expert Group on Source Convergence who made
the model. Shi used around 10,000 particles per cycle for his investigations which this work has
shown is about an order of magnitude too few to ensure timely convergence. As such, when Shi
correctly determines that the source does not converge he concludes that Shannon entropy is not
a valid method for judging source convergence. Instead, he suggests using the FMESH function in
MCNP to produce a plot of the flux and perform statistical checks on it to compare multiple cases for
varying numbers of completed batches and identify when convergence has occurred. Shi argues that
the benefit of using a flux map as opposed to source site map, as is done in the investigation, is that
the flux map will give information about non-fuel regions which allows any analysis to incorporate
more of the model. One downside however is that the use of FMESH bins to tally the flux as
opposed to finite source sites makes the data somewhat coarser. This method seemed effective for
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the simplified benchmarks in which it was applied but is not a method that can be used on-the-fly
very easily and as such was not pursued in this investigation.

Finally, other methods have been developed by Ueki and Brown to assess source convergence
using Shannon entropy and other techniques [6, 4, 5]. Most of these involved the creation of two
or more data sets from one simulation and the comparison of these sets using statistical checks
to see where they became similar, showing convergence. Some of these methods are only possible
after a simulation has completed whereas others, such as Ueki’s source ratio vector method can
be performed on-the-fly[7]. Due to the complexity and long-winded explanations for most of these
methods and the fact that the investigation largely made use of the stochastic oscillator, both for
its ease of use and relative accuracy, these methods will not be described here but interested parties
are recommended to read the references included above if interested further.
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2 Method

2.1 Project Objectives

Before looking at the methods used in this investigation we will look at the objectives that were set
out at the beginning of this paper in more detail.

1) Demonstration that, in the limit of high numbers of particles per batch, the Shannon
entropy eventually becomes smooth, even for difficult problems.

2) Demonstration that as mesh size for the Shannon entropy becomes smaller, the observed
convergence based on Shannon entropy is faster.

3) For varying tally sizes, determine how many particles per cycle are needed in order for
there to be no bias in the tallies.

4) Show that if one uses a Shannon entropy mesh size proportional to the tally volume,
convergence can be diagnosed with the Shannon entropy.

The ultimate aim of the project is to reduce errors in MCNP calculations by developing tools for users
and eventually the system itself to setup and diagnose problems and how well they are running.
These tasks build towards that, culminating in third and fourth objectives, which demonstrate
undersampling and the use of Shannon entropy as a convergence check.

The first two objectives are concerned with demonstrating that when used correctly, Shannon
entropy can diagnose source convergence in criticality calculations. As discussed in the background
section, this method has been rejected by some investigators who have produced experimental results
where the Shannon entropy in their simulation has converged before the flux in their system has
stopped changing, i.e. before source convergence. However, these researchers did not discuss how
they were managing the size of the Shannon entropy bins in their model, suggesting they used the
MCNP defaults which allow for very large bins. If these bins were significantly larger than the areas
on which the users were tallying flux then it is possible that while the macroscopic Shannon entropy
is converged there would be still be local areas which are changing. This would cause premature
Shannon entropy convergence for most of the same reasons as Keff does.

Completing objectives one and two involved modeling the OECD /NEA benchmark problem #1
in MCNP and comparing how the Shannon entropy curves with the flux convergence for runs with a
variety of numbers of particles per cycle, number of active and inactive batches and differently sized
Shannon entropy meshes (i.e. the mesh which divides the bins). This hinged on being able to read
the source distribution of the simulations after intermediate batches as well as just the final batch,
as is usually the case and then being able to take one number which summarizes the convergence
of that distribution so that its convergence over multiple batches could be compared to that of the
Shannon entropy. In order to this, the MCNP simulations were terminated at intermediate cycles so
that the source distribution could be read before using a CONTINUE card to restart the simulation.
This was automated using a python script, with the source distribution being extracted every fifty
cycles. A second python script, written by Paul Romano, then converted the binary source file into
a comma separated value (csv) format which could be read by most software packages, including
matlab. Matlab was then used to organize the data from multiple runs together so it could be
plotted or analyzed easily. After developing this method it was found that something similar had
been suggested previously by H. Shim and C. Kim in 2007 [5].
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The next challenge was to find one number to describe the state of the source distribution so it
could be compared with the Shannon entropy. It was decided to take 3D tallies from the model by
using matlab to plot the number of particles in the volume against the number of batches completed
by the simulation. The curve produced could then be easily compared to the Shannon entropy and
the model was considered to have converged when this curve became flat. This method could be
scaled to assembly, pin or any other sized tallies which was convenient when trying to compare the
same source distribution to multiple different Shannon entropy curves. As will be discussed early,
because the OECD/NEA benchmark used has an almost linear decrease in Keff going from left to
right in the geometry, it was possible to investigate whether the closeness of the relationship between
the source and entropy convergences is dependent on Keff.

The third objective is concerned with the problem of undersampling, namely how it can be
avoided and diagnosed. This involved measuring the bias in differently sized tallies in the system
when using different numbers of particles per cycle. In each case, the total number of active histories
was the same which should have meant that the quality of the statistics was the same in each case.
However, because the histories are divided into differently sized batches and the manner in which
information is carried by MCNP between batches, as discussed earlier, there will be very different
results. By comparing tally results to those from a simulation which included many particles per
cycles and active cycles, i.e. a case which has had enough particles that it should definitely be close
to the true tallies, this bias effect from undersampling can be measured and compared for different
numbers of particles per cycle.

The last objective then brings the previous objectives together, showing that if used appropri-
ately, Shannon entropy is an appropriate means of measuring source convergence and that as long
as the user avoids undersampling their tallied results will be meaningful.

2.2 OECD/NEA Benchmark Problem #1

Throughout this investigation the most commonly used model was the OECD/NEA benchmark
problem #1. This problem was designed by the Expert Group on Source Convergence to greatly
undersample the fissionable regions as well as being highly decoupled, with a very high dominance
ratio and hence much slower to converge[9]. The model describes a spent fuel storage pool, with
thirty six fuel assemblies arranged in a checkerboard pattern submerged in water and enclosed by
concrete on three sides. This is shown in Figure 5, where the darkest squares are fuel and the
lightest are water.
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Figure 5: x-y view of OECD/NEA benchmark #1 [9]

MCNP simulations were always initiated with a uniform source distribution in the fuel regions.
The final flux profile of the model is very unique, with almost all of the source points being con-
centrated in the three upper left assemblies. This is because of the reduced neutron leakage in that
corner due to the concrete lining two of the three sides of the upper left assembly. When the model
is fully converged there will be almost no source particles in the middle or to the right of the model.
A picture of this final source distribution is given in Figure 6.
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Figure 6: Flux map of OECD/NEA Benchmark Problem #1 MCNP made using FMESH command

Where red indicates high flux and blue low flux.
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3 Results
3.1 Characterizing Model

In their report, the Expert Group on Source Convergence suggests using 5,000 particles per cycle
when simulating the #1 benchmark problem [9]. Very quickly however, it became clear that, at least
when using a uniform initial source distribution, that was completely inadequate. It was found that
at least 50,000 particles per cycle were needed to get relatively speedy convergence of the Shannon
entropy and that in most cases 3000 inactive cycles needed to be run to ensure convergence. Figure
7 shows the Shannon entropy curves for the simulation using various numbers of particles per cycle.
Note that these have not been normalized by dividing each of them by their maximum possible
Shannon entropy ( log(N), where N is the total number of mesh bins).

Shannon entropy, H (bits)

| | | 1 1 1
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
# of completed cycles

95 1 | L

Figure 7: Shannon Entropy curves calculated over pin cell sized bins. In descending order at BOL,
the runs have 1M, 100,000, 10,000 and 3000 particles per cycle. Note that the 1M particle per cycle
simulation was only run for 5000 batches; all data points past that are extrapolations of the 5000th
value.

Note that for cases with greater than 100,000 particles per cycle the runs were terminated after
5000 cycles as opposed to 10,000 cycles in order to reduce calculation times and the straight lines
that are plotted are simply extrapolations of the final value.

From the figure, it is clear that when using 5000 particles per cycle, the curve barely flattens in
comparison to the curves from cases where more particles per cycle were used, suggesting that even
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over 10,000 cycles there was relatively little movement of the source particles to the upper left hand
region. The idea that the source distribution is still very much changing after this many cycles is
also supported by the large fluctuations in the entropy value. In comparison, when using greater
than 50,000 particles per cycle and in particular past 300,000 particles per cycle, the curve shows
minimal fluctuations, suggesting a stable source distribution and the overall value drops significantly
as the source distribution presumably concentrates in the top left of the geometry. It was found in
general that using fewer than 100,000 particles per cycle and less than 3000 inactive batches was
unwise if you wanted a relatively quick convergence to a stable Shannon entropy.

3.2 Source Distribution Analysis Method

Having shown that the Shannon entropy converges for cases with enough particles per cycle, these
curves can now be compared to the source distribution curves. Figure 8 gives an example of what the
plots of the source distribution generally looked like for a converged simulation. The checkerboard
pattern of the benchmark can clearly be seen in the source particles and most of the particles have
moved to the top left of the geometry. Each red dot represents one source site. The information on
the particles energy is not used in this case but examples have been made where the color of the
particles indicated their energy.
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Figure 8: Example of OECD Benchmark Problem #1 source distribution. Run involved 100,000
particles per cycle for 5000 cycles.
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Figure 9: Small multiples plot of source distribution development from 300 to 3000 cycles using
10,000 particles per cycle 23



Figure 9 shows the source distribution of a simulation converging over multiple cycles, with
each image being taken every 50 cycles. It is clear that this is a useful technique for looking at
source convergence directly. The additional computation time due to using CONTINUE cards
in MCNP and having to restart simulations multiple times is minimal if managed by a python
script and careful cataloging of RUNTPE files (binary files saved periodically by MCNP during
simulations which contain all the information about a run and can be used as starting points to
continue or restart a simulation) can allow users to go back and make further investigations. One
drawback to this method is that MCNP does not allow CONTINUE runs to add inactive cycles to
a simulation, only active ones, which means there cannot be comparisons between simulations with
differing number of inactive cycles. There was also evidence found that MCNP treats active and
inactive cycles slightly differently because the Shannon entropy curves for the exact same situations
and random number seeds produced different results depending on whether they were operating in
active or inactive modes, as seen in Figure 10. The plot shows a four equivalent runs of a case, each
using the same random number seed, initial source distribution and geometry. Each simulation ran
for 800 total cycles but different numbers of inactive cycles, as described in the legend. Given that
nothing changes in each of these runs except whether they are using active or inactive cycles there
should be only one curve but at every point that a case changes to active cycles a new curve appears
(the curves are layered so the ones with more inactive cycles sit on top). This suggests a change
in the handling of active and inactive cycles. Given that it was unclear how much of an effect this
would have or how to fix it, all cycles in the python-iterated CONTINUE runs described above were
run as active cycles to avoid it completely. While this made any MCNP tally data meaningless it
should not have effected the source distributions.
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Figure 10: Shannon entropy curves from identical cases run on OECD benchmark problem #1 with
100,000 particles per cycle

As discussed above, in order to compare these source distribution plots to the Shannon entropy
curves, the number of source points in a volume of the same size as the Shannon entropy bins used
was summed, i.e. the number of particles in one pin or assembly if the Shannon entropy bins were
each the size of a pin or assembly respectively. These sums were then plotted as a curve against the
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number of cycles that the simulation had run. One weakness of this method was that the curves
would have a very large variance if there were relatively few particles in a given tally volume due to
the random movement of source sites. To mitigate this, all cases were run with 1,000,000 particles
per cycle. This produced very good results in most situations, the biggest exceptions being when
summing over a pin cell in a part of the model with relatively low flux, and was considered a good
compromise between running more particles per cycle (and increasing computation time) versus
having relatively large variance on all the results.

In order to mitigate this effect further, most of the source distribution curves were taken by
summing the number of particles in the regions with the highest particles fluxes. This also had the
benefit of allowing the curves to be taken out to higher numbers of batches because the number of
source particles didn’t just rapidly go to zero. This assumed that the highest flux assembly would
accurately represent the convergence rate of all of the assemblies in the geometry. Figure 11 tests
this assumption by showing a plot of the number of particles in each fuel assembly along the top
row of the model, and how quickly each of them converge. The flux largely decreases linearly as you
move to the right of the model, with a slight uptick at the furthest right assemblies which have less
leakage than the middles ones due to the concrete wall on the right hand side. The figure seems to
support the assumption made for the most part, though in some cases, the number of particles in
the volume descends to zero very quickly, making it difficult to be sure if the entire trend is shown.
To be more certain of this, the example could be run with more particles per cycle but instead,
as will be shown later, all of the experiments to see how source convergence related to Shannon
entropy convergence were repeated with volume tallies from just right of the middle of the model,
the assumption being that this region was representative of the lowest flux regions while not having
a particle count that immediately dropped to zero, necessitating (slow) runs with very high numbers
of particles per cycle.
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Figure 11: Number of particles in the twelve assemblies along the top row of the #1 benchmark
problem benchmark when run with 100,000 particles per cycle. Each curve represents an individual
assembly

3.3 Comparison of Shannon Entropy and Source Distribution Curves

Figures 12, 13 and 14 show a comparison of these curves to the Shannon entropy curves for equivalent
cases. Some of the Shannon entropy curves have been raised to higher powers in order to more
easily plot them against the source distribution curves. Note that the [1,3] co-ordinates refer to
the assembly in question being in first column from the left, third row up from the bottom. The
3x3 mesh means that the Shannon entropy and source distributions are summed over a 3x3x1 grid.
As well as the general result, of interest from these plots, though not something explored in great
length in this investigation, is the periodic oscillations in the source distribution curves, particularly
in Figure 14. The reason for this is unclear though it is not limited to just these cases and was seen
in most examples where the variance was low enough to produce a significant curve.
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Figure 12: Pin Mesh, 1M particles per cycle, High flux (middle pin of [1,3] assembly) Shannon
entropy curve raised to tenth power
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Figure 13: Assembly Mesh, 1M particles per cycle, High flux ([1,3] assembly) Shannon entropy
curve raised to tenth power
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Figure 14: 3x3 Mesh, 1M particles per cycle, High flux ([1,3] mesh bin) Shannon entropy curve
raised to tenth power

From visual inspection, the Shannon curves appear to converge at the same time or slightly after
the source distribution curves but the margin is quite small, as in the cases shown in the figures. If
true this would support the hypothesis put forward earlier in the paper that Shannon entropy will
be a good indicator of convergence when calculated over mesh bins that are appropriately sized and
hence deserves further investigation. A piece of evidence that seems to more clearly agree with what
was put forward earlier, is that the point of convergence of both curves seems to be after a greater
number of cycles if the mesh bins / tally volumes become smaller. This makes sense with what
was discussed earlier about multiple local variations, which may each take a long time to converge,
hiding one another when counted together, making larger areas converged seem converged too early.
This effect is less pronounced between the figures showing pin cell and assembly sized bins due to
the relative similarity in the bin sizes but is much clearer when comparing those two with the 3x3
mesh case.

3.4 Improved Source Distribution Analysis Methods

In order to make more accurate conclusions from the data, it was necessary to develop more accurate
means of assessing it. To begin with, it was hoped to use the same methods as were used with the
Shannon entropy curves but this didn’t work, largely because in this case the data sets were relatively
small, around sixty points, as opposed to thousands of points in the entropy curves. This meant
comparisons of trends, as is used by the stochastic oscillator, could only realistically compare a
handful of data points which made the method ineffective. Instead it was decided to make an
approximation to this method by taking lines of best fit and doing analysis on that curve. Matlab
was used to do this, using 6th order polynomial curves. These were chosen because, across all
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the different examples, they generally gave the best fit when assessed by summing the residuals.
When assessing the point of convergence on these curves, it was then found that judging the point
of convergence as being the batch at the midpoint between the first two peaks gave the most
consistently sensible results. This is demonstrated in Figure 15.
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Figure 15: Example of source dist curve fitting. Red line shows Shannon entropy for case with
100,000 particles per cycles on a 108x22 mesh. Blue line shows the line of best fit for the number
of source points in the upper left assembly for the same run

In this figure, the blue line is the line of best fit of the number of particles in a tally volume in
the top left of the model during a simulation with 100,000 particles per cycle, run for 5000 cycles.
The red line is the equivalent Shannon entropy curve. The blue line has had all of the values scaled
by a multiplier to allow it to fit more easily on the plot. Note how well the two curves match.
While this method may seem complicated, it was shown to work well across many cases, including
different tally volume sizes, fluxes and initial source distributions. It is also easy to code into Matlab,
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allowing the processing to be done rapidly, though only at the end of the run; other methods would
be needed for on-the-fly calculation.

3.5 Shannon Entropy Convergence Methods

In a similar manner to the source distribution, a rigorous method was needed to judge the conver-
gence of Shannon entropy curves. To judge how well various methods worked, a combination of
comparing the result to the by-eye result and seeing how well it fit the data from the equivalent
source tally distributions was used. It does not escape the investigators that using the curve you
are trying to approximate as your assessment of whether your method works might not always be
rigorous. In order to avoid the human tendency to pick methods or data that were convenient, i.e.
they estimated convergence to be near to the value predicted by the source distribution curves, the
differentials of both curves were compared for the entire curve, not just at the inflection points.
While again not perfectly rigorous it was believed to be the best means available.

# of particles per cycle  Stochastic Oscillator MCNP checker By eye

500 500 1 Does not converge
1000 500 1 Does not converge
2000 922 799 2393
3000 501 1677 3025
4000 561 1999 2861
5000 1388 873 3663
7000 1662 1030 3859
9000 1839 1156 3546
10000 1948 950 3238
12000 1401 935 : 3688
15000 2661 1739 2473
18000 1431 1343 2989
20000 2547 1642 3670
30000 3546 1522 3083
50000 1648 1339 2116
80000 2216 1720 2563

100000 1922 1459 1973
300000 3240 1624 2315
500000 3328 1871 2417
800000 2500 1846 2246

Table 2: Comparison of Shannon Entropy convergence points using various techniques

The stochastic oscillator came out very well compared to the built-in MCNP convergence checker,
comparative Shannon entropy and other methods, both in terms of accuracy and computational cost
and as such it was used in all the Shannon entropy analysis in this investigation. Table 2 summarizes
results from the stochastic oscillator in comparison to those from the built-in MCNP checker and
by-eye estimations of the convergence cycle. However, there were some occasions in which it did not
work as effectively, all of which were simulations which had less than 100,000 particles per cycle.
In these cases the stochastic oscillator would claim convergence well before it had actually occurred
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because large fluctuations in the Shannon entropy balanced out to produce a steady aggregate result.
An example of a case where this was a problem is shown in Figure 16.
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Figure 16: MCNP run from OECD Benchmark. 10,000 particles per cycle on a pin cell sized
Shannon mesh
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Figure 17: Source distribution after 3000 cycles for run described in Figure 16

Despite the large fluctuations in the Shannon entropy afterwards, the stochastic oscillator claims
the curve flattens around 1900 cycles. This does not seem right and inspection of the source
distribution plot in figure 17 supports that the the source distribution is not converged at this
point. To address this issue, a third condition was set on the stochastic oscillator when it was
checking for convergence: that past the point at which the first two conditions were met the entropy
could not rise or fall by more than a fixed percentage of the maximum possible entropy. This was
referred to as the limited stochastic oscillator. Initially, it was hoped to tie this percentage to the
entropy bin size but it was found this failed when used with very small bins, in particular when
calculating the entropy over pin cell sized bins. The method that came closest to working when
the limit was set to be #:logz2(N). This made some logical sense as might be argued to describe
the ’average entropy’ per bin given a uniform distribution of particles which could be seen as a
background variation in entropy, though this was never explored rigorously because the method was
set too tight a limit when using small bins, even if using normalized entropy values. In general
though, this issue was only a problem in cases with relatively few particles per cycle which should
be avoided anyway and this third condition was immediately true if the other two conditions were
true.
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3.6 Shannon Entropy as a Measure of Source Convergence Conclusions

Equipped with consistent methods to measure the convergence points of both the source distribution
and Shannon entropy curves it is possible to confirm the graphical result seen earlier. Table 3 shows
a comparison of convergence points for the source distribution curves and Shannon entropy curves
for simulations using 100,000 particles per cycles and a variety of mesh bin sizes, as described on
the table. Where the table describes an NxM mesh it means that there are NxM mesh bins along
the long and short sides of the geometry.

Mesh size
w/ 6" Orderall  3_3 12_5 Assembly 108x 22 pin
Shannon Ent. 1931 2160 2440 2895 3121
Source Dist. 1724 1816 1974 2242 2463

Table 3: Comparison of convergence points from Shannon entropy and source distribution curves
for runs using 100,000 particles per cycle and variously sized calculation bins

Two important points can be seen in this data. Firstly that the Shannon entropy curve always
converges after the source distribution curve. This means that users estimating convergence of their
simulations using the Shannon entropy will rarely if ever swap to active cycles before the source
is converged. This result has seen repeated for other examples with more particles per cycle but
those are not plotted here to allow for space. Secondly, there is evidence from the table that,
as expected, both the Shannon entropy and source distribution curves converge after fewer cycles
when the volume they are being calculates over is larger. This is consistent with the idea that local
information is lost or hidden when using larger volumes, giving the false impression of convergence
if the user then attempts to draw data from an area/volume that is on a smaller scale. This
relationship is shown graphically in Figure 18.
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Figure 18: Comparison of points at which Shannon entropy (red) and source distribution (blue)
curves claimed convergence had occurred for a variety of mesh sizes.

3.7 Undersampling

As well as investigating the link between source convergence and Shannon entropy, the objectives
of this investigation included exploring undersampling in MCNP and other systems, something
explored in work by others [10]but not characterized fully. This part of the project has not been
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carried to completion but the findings so far have raised interesting questions and possible avenues
for future investigations and this section of the thesis will seek to go through those current results
and questions.

As described earlier, undersampling was largely tested by comparing tally values for equivalent
runs that consisted of the same total number of active particle histories but different numbers of
inactive histories. Figure 19 shows the results from one attempt at this using MCNP and the
OECD/NEA benchmark problem #1. The values plotted were calculated by taking average values
of seven to ten results for the given tally using different random number seeds. This was done to get
an impression of the true variance of the results. MCNP returns an estimate of the variance in the
tallies but with so many particle histories run the result was always vanishingly small, with a relative
error around 0.0002. It was expected that this curve would have a positive gradient and upwardly
saturate and while this is arguably a general trend it is not what was seen specifically. The logic
behind this expectation was that the tallies of neutron flux taken in any assembly with relatively
high flux would have their value underestimated due to undersampling. This underestimating bias
would be due to the fact that undersampling would reduce the ability of the source sites to move
to the high flux region. creating an artificially low result. This effect should have been reduced as
more particles per cycles were used.
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Figure 19: Undersampling measured by recording average tally values from the benchmark problem
using increasing numbers of particles per cycle for a total of 600,000,000 active histories

It was not fully understood why this result was not as expected. After exploring multiple
options, it was decided that a potential reason was the inherently high undersampling that is part
of this benchmark problem making the problem very severe and hard to measure. The data for runs
with fewer than 100,000 particles per cycle is potentially a bit shaky because the persistent large
fluctuations in the Shannon entropy make it difficult to confirm source convergence and know that
the number of inactive cycles run was sufficient. To mitigate this, the cases with fewer particles per
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cycle were run with a few thousand extra inactive cycles, however, in the 3000 and 5000 particles
per cycle cases it is arguable that convergence is so slow that to all intents and purposes it never
occurs.

To remedy these problems it was decided to use the OpenMC code, developed at MIT by Paul
Romano, to test undersampling in relatively simpler geometries with much smaller dominance ratios.
This part of the work is still ongoing, denying final results at this point though given the closer
similarity to previous efforts (UEKI) it is thought to have a far higher chance of success.

In the meantime, efforts were made to draw more useful conclusions from the data that already
existed. The above analysis was repeated using 3D tallies of different volumes in the source dis-
tributions of the runs performed. Figure 20 shows the results of that effort and while the plot is
closer to the trend that was expected, it is still quite close to the results from Figure 19, suggesting
that the problem is a real one and not simply created by not having enough data points to make
accurate enough estimations of the tally values in Figure 19.

05 T T T T T

&
1

o
s
o
T
L

o
2
1

normalised # of particles in top left assembly

o o [=] = o
g 8 8 = &
T T

(

|
|

1 i 1 1 1

o

w

N
T
1

1 1 1 L
1 2 3 4 5 6
# of particles per cycle (total of 600M histories) x10°

o
()

Figure 20: Undersampling measured by recording the number of particles in the upper left assembly
in the benchmark problem using increasing numbers of particles per cycle for a total of 600,000,000
active histories

There was also a question of whether the Shannon entropy curve for a given simulation could
predict in some way the presence of undersampling. Figure 21 shows the Shannon entropy curves
for runs using 500 to 1M particles per cycle (in ascending order at the first batch) when calculated
using assembly or pin sized bins. Given that the Shannon entropy describes the distribution of
the source points it is arguable that the presence of undersampling would stunt the ability of the
Shannon entropy to converge. This can be seen in Figure 21, where the 500 particles per cycle
curve (the lowest one) hardly moves at all except due to random oscillation. This suggests that the
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source distribution hardly changed at all or that any movement towards the true flux profile was
destroyed by random particle movement in the opposite direction or the manner in which MCNP
renormalizes cases with Keff < 1 introduced too much random data compared to the amount being
generated with each iteration.
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Figure 21: Shannon entropy curves for runs from benchmark #1 problem using 500 to 1M particles
per cycle in ascending order. In ever case the Shannon entropy is calculated over pin cell sized bins

This explanation says that during each cycle a certain amount of information about the true
source distribution is gained and eventually these small amounts are enough to make an accurate
guess of the true distribution. However, say 100 of our 500 source particles move in the correct
direction and produce some extra information but the Keff is 0.88192 + /- 0.00001 so 59 random
particles will be put into the geometry (500 * (1 — 0.88)), significantly reducing the amount of
useful information produced on aggregate. The same effect might also be seen if Keff was too
high in comparison to the ratio of particles producing useful information because of the random
destruction of too many of the useful particles as part of renormalization. This effect would likely
be less prominent for runs with more particles per cycle as a greater proportion of particles would
be producing useful information. This assessment could also be wrong if MCNP does not insert
new particles using a uniform distribution. Information regarding this could not be found in the
MCNP manual [1]or in other sources but it was thought that the uniform distribution was a good
assumption as using any other typical distribution or one that reflects the current estimation of the
source distribution would either insert too much incorrect information in the first case or reinforce
existing trends too much in the latter.
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Figure 22: Comparison of normalized Shannon entropy values, calculated over pin cell-sized bins,
at the beginning of a simulation (black) and after convergence (red) for an example using 100,000
particles per cycle

Returning to what was being said about Shannon entropy predicting the level of undersampling
in a system, evidence was found of a link between the the number of particles per cycle and the
Shannon entropy after one cycle and 5000 cycles (after most of the curves have converged). As
can be seen from Figure 22, the Shannon entropy clearly grows along a saturating function and is
roughly saturated for any run with more than about 200,000 particles per cycle. This concurs with
some of what has been seen earlier that reliable results could only be found when using runs with
more than 100,000 particles per cycle. Looking at the equivalent curve for the relative Shannon
entropies after 5000 cycles on the same figure, we see that the Shannon entropy, a measure of the
source distribution, is roughly equal for all values greater than again about 200,000 particles per
cycle. This suggests at least tentatively that the beginning of simulation Shannon entropy can be
used to predict undersampling. In this case the Shannon entropy was calculated over pin cell mesh
bins. Figure 23 shows the equivalent curves calculated using a 7x3 Shannon mesh. While we see a
similar curve after 5000 batches the curve at BOL is not as useful, saturating much earlier including
some cases where the eventual Shannon entropy is not that similar to that of runs with greater than
300,000 particles per cycle.
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Figure 23: Comparison of normalized Shannon entropy values, calculated over a 7x3 grid, at the
beginning of a simulation (black) and after convergence (red) for an example using 100,000 particles
per cycle

Anytime a new simulation was run, a managing code like python could be used to run a handful
of cycles with many millions of particles per cycle and if the early Shannon entropy results for
the run the user was doing were too far from these it may indicate undersampling. There are no
significant computational costs to running MCNP with smaller Shannon bins so using small bins to
ensure this technique works should be fairly easy. To be sure of its usefulness, more work would have
to be done to confirm the link between the Shannon entropies after convergence and determining
at what threshold the method begins to work well with larger Shannon bins. As a first avenue of
investigation, one reason that only smaller Shannon bins work might be that the effect is linked to
the mean path length of the system. Similar analysis of fluid systems require that their mesh bins
for analysis of various sort be sized on the order of the mean distance a fluid particle would travel
in one time step. While this is not directly equivalent it’s a possible explanation though there are
immediate problems. Firstly that it would be quite difficult to calculate the mean path length for
an entire model given how heavily that relies on the energy of the particles and secondly that these
analyses are not entirely equivalent, though they are a good start.

3.8 Possible Algorithm for an on-the-fly Monte Carlo Code

Based on the work produced by this investigation, it is possible to imagine versions of MCNP or
OpenMC with the ability to manage and make on-the-fly adjustments to many of its own inputs,
reducing the burden on the code user and helping to ensure that results are accurate.

39



In this casd the user can make ’'bigger picture’ requests of the code and allow it to handle the
details. For example, rather requiring the user to specifically ask for a simulation consisting of a
certain number of active and inactive cycles, each using a certain number of particles per cycle, the
user could simply determine how many active histories they would like to record information for.
The code could then begin the simulation by comparing the magnitude of the Shannon entropy for a
case with a modest number of particles per cycle with one many millions per cycle, both calculated
over very fine meshes. By successively increasing the number of particles per cycle in the run till the
Shannon entropy at the beginning of the simulation was within some range of that in the case with
many millions of particles per cycle the code could determine how many particles are required per
cycle to avoid undersampling. As long as this number was a few orders of magnitude smaller than
the total number of histories asked for by the user, the code is now ready to begin the simulation.

The code would then run inactive cycles till convergence was noted based on the Shannon entropy
curve and the limited stochastic oscillator. The Shannon entropy bins would be set by MCNP to
be no bigger than the smallest tally defined by the user (MCNP already has a function to change
the Shannon mesh fineness on-the-fly, though it is not accessible through the executable version).
If convergence was not seen for a very long time a flag could be sent to the user and the code could
increase the number of particles per cycle, eventually guaranteeing convergence as was shown in the
section 3.1. After this point the code could switch to active cycles and collect the required number
of active histories. Afterwards, the user or computer could use the final characteristics of the run,
i.e. the number of particles per cycle, inactive cycles, etc. as the initial inputs into subsequent
simulations using the same model, avoiding the need to repeat this potentially long process.
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4 Conclusions

The purpose of this investigation was to make Monte Carlo simulations easier for users to operate
as well as developing techniques to potentially offload some user responsibilities to the computer
running the code so that it can make on-the fly adjustments to the run. The methods investigated
here have been shown to work for a very difficult benchmark and suggests that they can be applied
generally. The algorithm presented is not foolproof but lays the groundwork for more intelligent
computational methods which reduce the burden on the user and may increase the use and accuracy
of Monte Carlo analysis. While these methods may make an individual run longer, they should
ensure that only one run is needed per task, reducing computational time overall.

Significant work is still to be done in developing these techniques and ensuring they are reliable
and can be applied generally. In particular, further work is needed to explore methods to help
users identify undersampling. However as an investigation intended to prove these techniques are
possible, there has been evidence of each of the concepts and overall this investigation has met it’s
goals.
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