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Abstract

Ion collection by dust grains and probes in plasmas with a neutral background is of
interest in the study of both space and terrestrial plasmas, where charge-exchange
collisions can play an important role in ion collection. Further, background drifts or
magnetic fields can significantly affect the ion collection by and the potential structure
near such objects, and should therefore also be included. These effects, however, are
difficult to include in a theoretical treatment, and thus this problem lends itself to a
computational approach.

To be able to tackle problems with a neutral background, the 3D3v hybrid particle-
in-cell code SCEPTIC3D has been upgraded to include charge-exchange collisions.
This required the development of a new Monte Carlo based reinjection scheme. The
new reinjection scheme and other upgrades are described in detail, and the colli-
sionless operation of the reinjection scheme is validated against the old SCEPTIC3D
reinjection scheme, while its collisional operation is validated through comparisons
with the reinjection scheme in SCEPTIC (2D). The new reinjection scheme can easily
be modified to allow the injection of an almost arbitrary distribution function at the
domain boundary, enabling future studies of the sensitivity of ion collection to the
injected velocity distribution.

Studies of ion collection in magnetized or drifting plasmas using the upgraded
code extend earlier stationary, unmagnetized results, which showed an enhancement
of ion current at intermediate collisionality. It is found that this enhancement is
gradually suppressed with increasing background neutral drift speed, and is entirely
absent for speeds above the ion sound speed. Adding a magnetic field rather than a
neutral drift appears to in fact increase the collisional ion current enhancement.

Thesis Supervisor: Ian H. Hutchinson
Title: Professor of Nuclear Science and Engineering

Thesis Reader: Jeffrey P. Freidberg
Title: Emeritus Professor of Nuclear Science and Engineering
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Chapter 1

Introduction

There are countless settings in which objects interact with a plasma, ranging from dust

grains in space and laboratory or industrial plasmas, Langmuir and Mach probes used

to diagnose plasma experiments, and spacecraft, to objects like the moon. In many

of these cases the plasma is flowing, and there may be a background magnetic field.

Further, there may be a significant neutral population with which the ions undergo

charge-exchange collisions, so there is a wide range of conditions under which one

may need to understand the interaction of objects with a plasma.

If an isolated object is introduced into a plasma, it will charge until it reaches some

equilibrium potential (typically negative) for which the electron and ion currents to

the object balance. The equilibrium potential and electron and ion currents affect

the dynamics of dust-grains, for instance in tokamak edge plasmas, and one can

also use the floating potential of probes to infer some properties of a plasma. This

can be extended to flux-sensing (electric) probes, which measure the dependence

of the collected current on the bias voltage (Langmuir probes). However, relating

the current-voltage curves to plasma properties is a difficult problem because the

conducting surface acts as a boundary to the plasma, thereby strongly perturbing it

locally. More sophisticated flux-sensing probes aimed at measuring plasma flow (Mach

probes) can be even more challenging to interpret, so advancing the understanding

of current collection by electric probes is important in verifying and improving the

interpretation of such probes (which are ubiquitous in plasma experiments).

13



A background plasma drift, magnetic field, and/or collisions with background

neutrals greatly complicates any theoretical model of ion collection, so models are

typically restricted to specific limits. Experiments can investigate the ion collection

in specific settings, but to explore the parameter space to develop a quantitative

understanding of the impact of collisions, flow, and magnetic fields, simulations are

needed. The focus of this thesis is on extending the capabilities of the SCEPTIC3D1

code [1, 2, 3], such that it in the future can be used to run simulations aimed at

developing such a quantitative understanding, and at bridging the gaps between the

various limits that can be studied theoretically.

1.1 Basic Problem

The basic problem considered is that of a spherical absorbing object perturbing a

plasma. In particular, the ion collection by the object and potential structure near

it is of interest, as well as the forces on the object for some applications. The large

range of physical systems in which an object interacts with a plasma introduces

dependencies on a number of parameters characterizing the system, all of which can

have wildly different values for different problems.

Of paramount importance in determining the perturbation to the plasma by the

object is the ratio of the electron Debye length to the object radius: ADe/Tp. If this

ratio is large, the object will introduce a Coulomb-like potential perturbation; if it is

small, the plasma will shield the perturbation, and thus limit the size of the perturbed

region. Note that the actual size of the object is of little importance, so the same

simulation could in principle apply to problems on vastly different physical scales.

The details of ion collection are mostly of interest for strongly electron-repelling

objects, i.e. ones with object potentials V < -Te/e, where the electron temperature

Te is in units of energy. Thus, another important parameter is the ion to electron

temperature ratio: Ti/Te, since the random velocities of the ions will greatly affect

their orbits around the object, and thus their probability of collection and the ion

'Specialized Coordinate Electrostatic Particle and Thermals in Cell 3D (SCEPTIC3D)
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density near the object.

A number of other parameters can affect ion collection, like charge-exchange col-

lisionality, background ion drift, and magnetic field strength, but discussion of the

effects of those parameters is deferred to chapters 2 and 4.

1.1.1 Orbital Motion Limited Theory

Orbital motion limited (OML) theory treats ion collection for spherically (and cylin-

drically) symmetric problems where ADe > rp, and traces back to work by Mott-Smith

and Langmuir [4]. The discussion in this section also draws on later work by Allen,

Boyd, and Reynolds [5] and Allen [6].

The basis of OML theory is conservation of the energy and angular momentum

of ions along their orbits. This allows one to relate the impact parameter h of an ion

to the corresponding distance of closest approach rh, through the potential Vh at rh

and the initial ion energy qiVo (for ion charge qi):

h = rh (1 -- .2.

V 1

For ions of a fixed energy, those with an impact parameter corresponding to a distance

of closest approach that is smaller than the object radius rp will be collected. The

collected ion current is thus

I, =47rr I 1 - ), (1.2)

where I R is the positive ion current per unit area in the unperturbed plasma, and V is

the object potential. Averaging over a Maxwellian distribution of initial ion velocities

gives the same result, but using a drifting Maxwellian gives a more complicated

expression [7].

A requirement for the OML method to apply is that

V r,2
> (rP (1.3)

VP r

15



for all r, which is the condition for there not to be an absorption radius outside the

object. This condition is satisfied for a Coulomb potential, so as mentioned OML

tends to be valid for cases where ADe > rp.

If there is an absorption radius outside the object, that distance would have to be

used in the calculation of the current, and its location and potential would need to

be known to apply OML. That problem was tackled by Bohm, Burhop, and Massey

[8], relying on a method by Tonks and Langmuir [9] for calculating the potential

distribution in the plasma.

1.1.2 Allen-Boyd-Reynolds Theory

In sharp contrast to OML, Allen-Boyd-Reynolds (ABR) theory [5] considers ions

with purely radial velocities, which are dominated by the change in potential from

the unperturbed plasma. This effectively neglects the initial random ion velocity, i.e.

assumes cold ions. Further, the electrons are assumed to be Maxwellian, such that

they satisfy a Boltzmann relation (see sec. 4.1.2) in the perturbed potential. The

resulting expression for the ion current to the object is

2Te (i
i = 47rr ni exp , (1.4)

where r, is the sheath radius (= r, if the sheath thickness is neglected), mi is the ion

mass, and ni, is the ion density at infinity. Note that the ion current in this case

depends on the electron temperature, not the ion temperature as in OML.

1.2 Applications

There are many situations where objects interact with plasmas, and this section gives

some examples of where calculations of ion collection may be relevant.

16



1.2.1 Dust Grains

Dust grains are found in a variety of plasmas, ranging from industrial plasmas and

dedicated dusty plasma experiments [10] to tokamak edge plasmas [11] and planetary

disks [12]. The grains have a floating potential, may or may not be conducting, and

are typically smaller than the electron Debye length.

Dusty plasma experiments tend to have have much higher neutral density than ion

density, making charge-exchange collisions important in setting the floating potential

of and forces on the dust grains. In earth-based experiments, gravity drives the

dust particles to the sheath entrance, where the gravitational force is balanced by

the electric field in the sheath. Thus, to tackle problems relating to dusty plasma

experiments SCEPTIC3D needs to include charge exchange collisions and an electric

field, and in some cases also a magnetic field.

In tokamak edge plasmas charge-exchange collisions are unlikely to be important

for dust grains, but there could be regions of very tenuous plasma behind divertor

plates etc. where charge-exchange collisions cannot be neglected. There, the magnetic

field must also likely be included, offering another possible application for studies of

dust grains in magnetized collisional plasmas.

1.2.2 Langmuir Probes

Interpreting Langmuir and other electric probes has been a driving force behind

studies of ion collection by objects for almost a century, but new computational

and experimental capabilities are still opening up new interesting areas of study.

For example, laser-induced-fluorescence measurements at the VINETA experiment

[13] will allow measurement of the ion distribution function near a spherical object.

This enables detailed code-experiment comparisons, which may further advance the

understanding of Langmuir probes and the interactions of objects with plasmas in

general.

17



1.2.3 Moon and Spacecraft

The solar wind provides a plasma environment for objects in space, including space-

craft and even the moon. Recently there have been both observations and accompa-

nying simulations of the solar wind in the vicinity of the moon [14, 15], highlighting

the interest in the magnetized plasma wake formed by the moon in the solar wind.

1.3 SCEPTIC3D

The SCEPTIC3D code is a 3D upgrade to the 2D code SCEPTIC [16, 17, 18]. It cal-

culates self-consistent steady-state solutions to the Poisson-Vlasov equations, under

the assumption of Boltzmann electrons. The code has been described in detail by

Patacchini [19], but a brief description is given here for convenience.

1.3.1 Particle-In-Cell Method

The canonical works on the particle-in-cell (PIC) method are by Birdsall and Langdon

[20] and Hockney and Eastwood [21], but there is also a nice review by Verboncoeur

[22]. The basic principle of the method is to statistically represent the ion and elec-

tron distribution functions with computational particles, while storing the electric and

magnetic fields on a grid, and then to alternate between updating the particle posi-

tions and the solution for the fields while taking time-steps to evolve the distribution

functions from some initial guess at the solution. In the electrostatic approximation

the currents due to the particles are ignored, so only the Poisson equation needs to

be solved to update the fields on the grid.

PIC simulations make few physical assumptions, but are computationally demand-

ing. In particular, the small mass of electrons compared to ions means that very fine

time steps must be taken to accurately capture the motion of electrons. Therefore,

many time-steps are required to achieve convergence of the ion distribution to a

steady-state solution, which is the aim for the problems tackled with SCEPTIC3D.

One way to reduce the computational cost is to not treat electrons using the PIC

18



method, but to rather assume that they satisfy a Boltzmann relation. This allows

a time-step appropriate to the ion motion to be used, thereby greatly reducing the

computation time required. A discussion of the validity of the Boltzmann electron

assumption is given in sec. 4.1.2.

1.3.2 Unit System

The units used for quantities in SCEPTIC3D carried over from SCEPTIC, and are

described by Patacchini [7]. Four fundamental units are used: Mass is in units of

M = mi/Z, where mi is the ion mass and Z its charge state; charge is in units of

e, the elementary charge; distance is in units of the radius r, of the spherical object;

and energy is in units of Te, the electron temperature (which includes the Boltzmann

constant kB).

From these fundamental units, the other relevant units can be derived. In particu-

lar, speed is measured in units of ion sound speed c, = VTe/M, time in sound-crossing

times rp/cs, potential in units of Te/e, and magnetic fields as cyclotron frequency in

units of inverse time.

1.3.3 Coordinates

SCEPTIC3D is a 3D3v PIC code, so each computational particle has a three-dimensional

position and a three-dimensional velocity. The three spatial dimensions hold a spher-

ical mesh, which has grid-points spaced evenly in r between r, and the outer domain

size rb, spaced evenly in cos(O) for the inclination angle, and spaced evenly in the

azimuthal angle 7P. The coordinates are illustrated in fig. 1-1, and the grid in fig. 1-2.

1.4 Outline

In addition to this introductory chapter, the thesis has four other chapters:

* Chapter 2 describes the model background plasma and the implementation of

charge-exchange collisions in SCEPTIC3D, and covers the new Monte Carlo

19
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Figure 1-1: SCEPTIC3D coordinate system, reproduced from [19]. The spherical
object is labeled 'probe', and the convective electric field Eco,,, ion drift Vd, and
magnetic field B are illustrative only, since the upgraded SCEPTIC3D also allows for
neutral drift and a parallel electric field. Further, the magnetic field can be set in any
direction in the y-z plane.
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Figure 1-2: SCEPTIC3D mesh in the =' r/2 half-plane, reproduced from [191.
Again the 'magnetic axis', convective electric field, and ion drifts are illustrative only,
since this specific setup is only one possibility in the upgraded SCEPTIC3D.
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based reinjection scheme and its validation in some detail.

" Chapter 3 describes various other upgrades made to SCEPTIC3D in the past

two years, which include a new binary output system based on HDF5, a new

distribution function diagnostic, and an upgraded Poisson solver.

" Chapter 4 introduces the first results obtained using the newly upgraded SCEP-

TIC3D, examining the ion density near and ion collection by conducting spher-

ical objects at floating potential in the presence of a background magnetic field

or neutral drift.

* Chapter 5 offers some concluding remarks and thoughts on future work, marking

the end of the thesis.
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Chapter 2

Charge-Exchange Collisions in

SCEPTIC3D

2.1 Unperturbed Plasma Model

The unperturbed system is taken to be a single-element monatomic gas of neutral

atoms, and a neutral plasma consisting of electrons and singly ionized ions of that

element. The gas and plasma occupy the same space, and both are homogeneous

(translation invariant).

There are six types of binary collisions possible between the three particle species:

Neutral-neutral, neutral-ion, neutral-electron, ion-ion, ion-electron, and electron-

electron collisions. Each collision type has associated time scales for momentum and

energy transfer between and among species, as well as characteristic length scales

(i.e. mean free paths). Thus, a system that is started away from equilibrium will go

through a series of equilibration stages, starting with the quantity associated with

the shortest time-scale. While in any of these equilibration stages (or if driven in a

way that emulates one of them), the system can be considered quasi-steady on time

scales much shorter than the relevant equilibration time-scale.

The neutral gas is taken to have a (drifting) Maxwellian distribution function,

assumed to be unaffected by the ions and electrons. Thus, either the time-scale

considered is much shorter than that required for collisions with ions and electrons

23



to perturb the distribution function, or neutral-neutral collisions are fast enough to

thermalize the neutrals before their distribution can be significantly perturbed.

The dominant type of neutral-ion collisions is typically charge-exchange collisions,

which will be discussed in greater detail in sec. 2.1.1. Though the effect of these col-

lisions on the neutral distribution function is considered to be negligible, the same

is not necessarily true for the ions. If there is a non-negligible probability that any

given ion undergoes a charge-exchange collision on the time-scale considered, the ion

distribution function will be perturbed by the neutral distribution, unless Coulomb

collisions are fast enough to thermalize the ions. However, ion-ion and ion-electron

collisions are neglected in the PIC treatment, so only problems where they are unim-

portant for the ions can be considered.

The electrons are lighter and faster than the ions and neutrals, so drifts that are

significant for the other species can typically be neglected for the electrons (with the

exception of parallel electric field driven drifts, as discussed in sec. 2.1.4). The electron

distribution function can thus remain approximately Maxwellian despite having its

drift coupled to the ions or neutrals through (momentum transfer) collisions, and

even if electron-electron collisions are not especially effective at thermalizing the

distribution. However, to maintain a different electron temperature the time-scale for

energy transfer to and from electrons must be long. An approximately Maxwellian

distribution function is required for the Boltzmann treatment of the electrons, and

the applicability of this assumption is discussed further in sec. 4.1.2.

2.1.1 Charge-Exchange Collisions

The details of collision cross-sections for ions with neutrals are complicated, and

depend on the atomic element, relative velocity, type of collision, and the relevant

quantity of interest (e.g. momentum). An overview for the case of argon is given in

ref. [23], but covers a much larger energy-range than is typically relevant for SCEP-

TIC3D.

At low energies (< 0.01 eV), the largest contribution to the collision cross-section

of an ion with a neutral is typically that due to the polarization interaction [23, 24],
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where the ion polarizes the neutral to give an attractive force between them. Such

an interaction amounts to an elastic collision of the ion with the neutral, and if the

distance of closest approach is small enough an electron can be transferred from the

neutral to the ion. The cross-section for the polarization interaction scales inversely

with the relative velocity [25], giving a velocity-independent collision frequency for

the ions.

For ions and neutrals of the same element, quantum-mechanical resonances greatly

enhance the range over which an electron can be transferred from the neutral to the

ion. The cross-section for these resonant charge-exchange collisions decreases weakly

with energy (slower than 1/v) [23, 24], and they are the dominant contribution to the

momentum cross-section in the range 0.1 eV-100 eV. In that energy range, a charge-

exchange collision effectively swaps the identity (velocity) of the atom and the ion,

and the charge-exchange cross-section of argon (e.g.) is ~ 5 x 10-19 M2 .

At high energies, charge-exchange cross-sections can be measured accurately with

beam experiments, but at low energies this is not feasible. Rather, one relies on

models of the underlying physical processes, and then infers what the low-energy

cross-sections are from ion diffusion and mobility experiments [24]. The cross-sections

depend on the specific element considered, and their energy dependence is only as

good as the underlying model used.

As an approximation to the full charge-exchange cross-section, charge-exchange

collisions in SCEPTIC3D are taken to occur with constant frequency for ions of any

velocity, and a new ion velocity is drawn randomly from the neutral population after

each collision. This approach has also been used previously [26, 27, 28, 29, 30], and

is intended to capture the main effects of charge-exchange collisions without using

accurate cross-sections specific to a particular application. The collision cross-sections

used in SCEPTIC3D thus don't quite have the right energy-dependence, but since

typically a relatively narrow range of ion energies are important in a given application,

the variation of the cross-section over that range may not be very important.

One reason for using a constant collision frequency is the relative ease with which

such collisions can be implemented in SCEPTIC3D, since the time until the next
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collision for each ion can be calculated according to Poisson statistics, without regard

to the ion velocity. Further, drawing a random velocity from the neutral distribution

is easier computationally than making a biased draw based on the velocity of each

ion.

The constant collision frequency assumption for ions corresponds to a collision

cross-section that scales inversely with the magnitude of the relative velocity between

the ion and the atom. For this velocity dependence the change in cross-section is

balanced by an increased number of encounters, resulting in a constant collision fre-

quency and unbiased draw from the neutral population. The treatment of collisions

in SCEPTIC3D is thus self-consistent, though it may not accurately model a specific

physical system.

2.1.2 External Fields

An externally imposed electric or magnetic field (E or B, respectively) breaks the

isotropy of the system, and introduces a Lorentz force

FL = q(E + v x B) (2.1)

on the electrons and ions (for charge q and velocity v). In the case of a uniform mag-

netic field the motion of the electrons and ions perpendicular to the field is restricted,

giving rise to gyro-motion in the unperturbed system.

Perpendicular Electric Field

In the absence of collisions, a uniform background electric field perpendicular to the

magnetic field leads to E x B drift of the electron and ion guiding centers. The drift

velocity is

V E x B(2.2)
= B2

which is perpendicular to both the electric and magnetic fields. The perpendicular

electric field can be absorbed by a transformation to the drifting frame, where the
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electrons and ions can be treated as if there was only a magnetic field. However, in

this frame the neutrals have an additional drift compared to in the stationary frame

(equal and opposite to VE), which must be considered if charge-exchange collisions

cannot be neglected.

In the presence of charge-exchange collisions, a perpendicular electric field will

drive a net current due to the different drag on the ions and electrons. However, since

the E x B drift speeds considered typically are much smaller than the electron thermal

speed, it is expected that the modification to the electron distribution function due

to a perpendicular electric field will be negligible, and that the resulting current will

be small enough to be consistent with the electrostatic approximation.

Parallel Electric Field

A uniform electric field parallel to (or in the absence of) a magnetic field will effect a

constant acceleration of the ions and electrons. In a steady-state system without net

particle acceleration, the electric force on each species must on average be balanced by

the various drags on the particles, and there will be a current flowing in the direction

of the parallel electric field.

Since ion-ion collisions and ion-electron collisions are neglected in SCEPTIC3D,

the charge-exchange collisions with neutrals alone provide the drag to balance the

parallel electric field in the case of ions. Further, because the post-collision ion velocity

is uncorrelated with the pre-collision velocity (as a result of the constant collision

frequency assumption), there is no transfer of momentum from the parallel to the

perpendicular direction. Thus, the acceleration in the parallel direction does not

affect the perpendicular ion velocities.

For electrons, which of the collision types contribute significantly to the drag will

depend on the application. The electrons are much lighter than the ions, so electron-

ion collisions may be important, and both they and electron-neutral collisions may

allow the parallel acceleration to affect the perpendicular electron velocity distribu-

tion. The balance between the electric field and the collisional drags will determine

the overall drift, but the actual modification to the distribution function (long tail or
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small bulk shift) will depend on the specifics of the two mentioned collision types, as

well as the electron-electron collisions.

Since the drag on the electrons is not known in general, the form of the electron

distribution function could vary greatly from problem to problem. In particular, there

could be a large electron current due to a parallel electric field, possibly with a large

fraction of super-thermal (or even run-away) electrons. Such super-thermal electrons

do not necessarily preclude a uniform density solution for the model unperturbed

plasma, but (as will be discussed sec. 4.1.2) may have ramifications for the validity

of the assumption of Boltzmann electrons in perturbed systems with a parallel elec-

tric field. It should also be noted that for large electron currents the self magnetic

field could be important, and there would likely be overall electron heating unless a

mechanism for electron cooling and/or inelastic scattering is included. Thus, there

may be some issues with applying SCEPTIC3D to problems with a strong parallel

electric field, and this is elaborated upon in sec. 4.1.2.

A final point is that parallel electric fields in plasmas may not typically be uniform,

and even in if they are, the electron and ion densities may not be uniform. That

said, provided the gradient scale-length of the field is long compared to the region of

plasma considered, a constant field may be an appropriate approximation. Further,

situations with uniform electric field and charged particle densities can be conceived,

for instance relying on induction, or possibly by means of an external resistive cylinder

with a current flowing through it. Thus, calculations with a uniform electric field may

be directly applicable to some problems, and may capture the basic physics in others,

without necessarily getting the electric field drive for the ion drift quite right.

2.1.3 Neutral Drift

In the absence of a magnetic field, or parallel to one, a background neutral drift should

ultimately lead to the ions and electrons drifting with the same (parallel) velocity as

the neutrals. The drift velocity will be negligible compared to the electron thermal

velocity, so this drift is mainly important for the ions.

If there is a neutral drift perpendicular to a magnetic field, charge-exchange colli-
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sions introduce an effective drag on the ions. In the limit where the charge-exchange

collision frequency is much smaller than the cyclotron frequency of the ions, the prob-

ability of a collision is uniform with respect to the angle to the neutral drift. Thus,

the probability of a collision occurring while the ion is above or below the guiding

center (with respect to the neutral drift direction) is approximately equal, so there

will be no average motion of the ion guiding centers in the direction of the neutral

drift. However, since the velocities after a collision are larger in and preferentially

drawn in the direction of the neutral drift, there will be average motion of the guiding

centers perpendicular to the neutral drift and magnetic field directions. This limit

is thus analogous to a constant drag force acting on each ion, which gives rise to a

perpendicular drift much like the E x B drift.

In the opposite limit, where the collision frequency is much greater than the

cyclotron frequency, the gyro-motion is disrupted, and the ions simply drift with

the neutrals. Thus, there must be a transition between these two limits, where the

resulting ion drift shifts from perpendicular to parallel to the neutral drift. This

transition should occur where the collision and cyclotron frequencies are comparable,

since this is where the angular dependence of the collision probability is drastically

altered.

2.1.4 Overall Ion Drift

As has previously been discussed, perpendicular and parallel electric fields, as well as

neutral drift, can give rise to ion drift. In an average sense, there must be momentum

balance for the ions:

- vc mi ni (Vi - in) + e n (E + vi x B) = 0, (2.3)

where vc is the charge-exchange collision frequency, Vi/n the average ion/neutral veloc-

ity, ni the ion density, and e the electron charge. This section treats the components of

eq. 2.3 parallel and perpendicular to the magnetic field separately, and then combines

them in an expression for the overall ion drift in eq. 2.9.
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The parallel component of eq. 2.3 requires that in the presence of charge-exchange

collisions, any differential parallel drift between the ions and neutrals must be driven

by an electric field. The average parallel drift is thus

Vill = Vnl + VEl| , (2.4)

where the average parallel electric field driven drift is

e Eli
VEjJ vc = m- (2.5)

For the case of constant collision frequency considered here, an analytic solution

is available for the parallel part of the ion distribution function [31]. That solution

can be rewritten as

v e x 2v V n 11)2 v Vill - Vn|| (-6
fill (Vili) exp - (Vi 21  ) erfcx (- , (2.6)2 VE| vti 2 VE Vti

where vi 1 is the component of the ion velocity parallel to the magnetic field (or in the

direction of the electric field in the unmagnetized case), vti = V2 T/mj is the ion (i.e.

neutral) thermal velocity, and erfcx(x) = exp(x 2) erfc(x) is the scaled complementary

error function.

The perpendicular component of eq. 2.3 reduces to the familiar E x B drift in

the collisionless case. However, in the presence of charge-exchange collisions the

differential motion with the neutrals becomes important. As mentioned previously,

the E x B drift can be removed by a transformation to the drifting frame, in which

the problem is essentially that of drifting neutrals discussed in sec. 2.1.3. In that

frame, the equation for the perpendicular drift becomes

- vc mi ni (Vi -- 9n1) + e ni i_ x B = 0, (2.7)

where primed quantities are in the moving frame. By separating the components of
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V 1 perpendicular and parallel to v' , the solution to this equation is found to be

V/ V x b
V 1 -= , (2.8)

where wi = eB/mi is the ion cyclotron frequency, and b = B/B is the unit vector in

the direction of the magnetic field.

Transforming back to the stationary frame and adding the parallel drift gives the

total average ion drift:

2

VnI+ 2vE +( n vE) X b
v- -v + VE ll + 2 (2.9)

This average drift satisfies eq. 2.3, and reproduces the expected behavior for the

perpendicular drift in the collisionless and collision dominated limits (pure E x B drift

and tight coupling to the neutral drift, respectively). At intermediate collisionalities

a difference ini - VE-L between the perpendicular neutral drift and the E x B drift

gives a contribution to the total ion drift that is perpendicular to both that difference

and the magnetic field. Since -VE_ x b = EI/B, this shows that collisions can

enable a perpendicular electric field to drive a component of the ion drift along it.

For collisionless plasmas one can simply specify Vj when running SCEPTIC3D,

setting its magnitude with the -v input and its direction with the -cd input (cosine of

the angle to the z-axis). However, when including charge-exchange collisions, the ion

drift depends on the collision frequency, background electric field, and background

neutral drift, so specifying the ion drift directly is not necessarily the best choice. The

approach presently taken in SCEPTIC3D is to specify the charge-exchange collision

frequency through the -k input, the neutral drift through the -vn, -cnd, and -psind

(V) coordinate of the neutral drift) inputs, and the background electric field by setting

VE through the -v and -cd inputs. The total ion drift is then given by eq. 2.9,

though that expression is not used in SCEPTIC3D since the kinetic treatment there

automatically produces a distribution function with the right drift.

If the charge-exchange collision frequency is taken to tend to zero in the colli-
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sional drift specification scheme, the limit only reproduces the collisionless operation

of SCEPTIC3D if no parallel electric field is included. This is because the parallel

distribution function given in eq. 2.6 is independent of the collision frequency (Eli

decreases with vc at constant VE ll), while that used in the collisionless operation of

SCEPTIC3D is a drifting Maxwellian. What the correct ion distribution function

is will depend on the specifics of the problem (cause of the drift, how ion-ion col-

lisionality compares to ion-neutral collisionality, etc.), so if a drifting Maxwellian is

not thought to be the correct unperturbed distribution in a collisionless case, SCEP-

TIC3D can be run with negligible collision frequency and an appropriate combination

of VE and Vn to approximate the correct distribution function.

2.2 Monte Carlo Reinjection Scheme

When an ion leaves the SCEPTIC3D computational domain, either through crossing

the outer boundary or being collected by the central object, it is reinjected at the

outer boundary to keep the (computational) particle number constant. Previously

ions to be reinjected could only be drawn from a drifting Maxwellian distribution, so

to allow for the more general distribution functions resulting from charge-exchange

collisions in combination with external electric and magnetic fields, a new Monte

Carlo based reinjection scheme has been developed.

2.2.1 Generating the Unperturbed Distribution Function

The unperturbed system described in Section 2.1 is taken to describe the plasma at

the outer edge of the domain. However, though that discussion gave an expression for

the average ion drift, it did not give a general form for the ion distribution function.

Writing down the ion distribution function analytically is complicated by the fact

that it is in general not separable into parallel and perpendicular parts (see the

example below). Thus, rather than pursue such a form, the approach taken here is

to represent the distribution function statistically by making random velocity draws

from the neutral distribution function, and then evolving each ion velocity for the
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time since the last collision. Further details of this process are given below.

To illustrate the fact that the ion distribution function is in general not separa-

ble, consider the following example: Monoenergetic background neutrals are flowing

perpendicular to a magnetic field, and there is a parallel background electric field.

The charge-exchange collision frequency is twice the cyclotron frequency of ions with

the same perpendicular energy as the neutrals, so on average an ion undergoes one

half gyro-orbit before colliding with a neutral. Since the ions have no initial parallel

velocity when drawn from the neutral population, their parallel velocity is directly

proportional to the time since the last collision. However, so is the absolute phase of

the gyro-orbit since all initial velocities are in the same direction. Thus, the parallel

and perpendicular components of the ion velocity cannot be treated separately, and

the distribution function is not separable.

Calculating the unperturbed ion distribution function is part of the initialization

phase of the Monte Carlo reinjection scheme, which is completed before SCEPTIC3D

starts the PIC time-stepping process. Since the initialization is only done once for

each run of SCEPTIC3D its computational cost is of little consequence, so the main

focus has been on making it clear and versatile rather than computationally efficient.

The first step is to generate some number Ni, (specified as an input) of post-

collision ion velocities, drawn randomly from the neutral distribution function. The

neutral distribution is a drifting Maxwellian corresponding to a neutral temperature

T, and drift velocity v-,, both specified as inputs to SCEPTIC3D.

Next, the time since the last collision must be calculated for each ion. Since the

probability that an ion undergoes a collision is constant per unit time, the collisions

are Poisson distributed. Thus, for a collision frequency vc specified as an input, the

probability that an ion undergoes k collisions in a time At is given by

(vc At) k e-"e At
p(k, vc At) = k! . (2.10)

Taking k = 0 (i.e. allowing no collisions in the time interval to find the time between
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collisions) the expression can be solved for At to give

At = np (2.11)
V-C

which for p a uniformly distributed random number in (0, 1] gives appropriately dis-

tributed times since the last collision.

One point about the Poisson distribution may be worth mentioning here: Since

the flight times are Poisson distributed, choosing a point in time and considering all

intervals that include that time amounts to sampling the distribution weighted by

the interval length, since longer intervals are more likely to contain the specific time

considered. The resulting sample is precisely that which one would get from adding

two Poisson distributed intervals, which is what is done in SCEPTIC3D when the

Monte Carlo reinjection scheme first evolves the injectable velocities for a Poisson-

drawn amount of time, and the PIC mover then essentially evolves them for another

Poisson-drawn amount of time until their next collision. In fact, the lack of depen-

dence of the time to the next collision on the time since the last collision is used

heavily in the PIC mover, where a new time until the next collision is drawn at the

beginning of each time step and after each collision, throwing away any knowledge of

the time since the last collision at the end of each time-step.

After drawing the initial ion velocities, they must then be evolved for the time

since their last collision. In the unmagnetized case this simply involves adding the

acceleration due to an external electric field:

e E
AVE -At, (2.12)

m

where the external electric field is specified through the input VE e E/(vc m).

In the presence of a magnetic field, evolving the ion velocities takes a few more

steps. First, the perpendicular component of the velocity in the frame moving at

the E x B velocity is rotated by an angle # = wci At around the magnetic axis,

corresponding to gyro-motion of the ion. Then, the parallel velocity component is

treated as in the unmagnetized case, using the parallel component of the input VE
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to set the parallel electric field. Finally, the perpendicular component of VE (i.e. the

E x B drift) is added to the velocity to give the ion velocity in the frame at rest with

respect to the object.

The resulting Ni, ion velocities statistically represent the unperturbed ion dis-

tribution function, and can in principle be replaced by any statistically represented

distribution function if future problems call for it. For example, if a more complicated

collision cross-section is used, the particle mover of the PIC part of the code can be

used to evolve the velocities from an initial guess until a steady-state solution is found

for the background distribution.

2.2.2 Determining the Reinjection Location

The next step of the initialization process for the reinjection scheme is to determine

the probability of injection from each location on the outer boundary. Further, the

probability of injecting at each of the Ni, ion velocities is calculated for each loca-

tion. The resulting discrete cumulative probability distributions can then be used

to determine where from and with which velocity to reinject an ion during the PIC

time-stepping.

To calculate the positional dependence of the injection probability, the outer sur-

face is divided into No, x Npr injection faces (both numbers specified as inputs to

the code). The faces are uniformly sized in cos(O) and in @, similarly to (but inde-

pendent of) the SCEPTIC3D computational mesh, and the center of the face is used

when defining normals etc. Only particles with an inward velocity component are

injectable by a given face, and the product of the face area (or solid angle subtended

in the spherical case) with the sum of the inward normal velocity of all the particles

injectable by a given face is proportional to the probability of injection through that

face. Thus, a discrete cumulative probability distribution can be generated (by ap-

propriate summation and normalization) for the probability that an injection occurs

from a given face.

For each face a list of references to injectable particles is generated, as well as a

cumulative probability function calculated by summing and normalizing the normal
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components of their velocities. This will allow an injection velocity to be chosen once

a face has been identified, and concludes the initialization process for the reinjection

scheme.

During the PIC time-stepping, a particle is reinjected if it leaves the computa-

tional domain through the outer boundary or through being absorbed by the central

object. To reinject a particle, first an injection face is chosen by drawing a uniformly

distributed random number and finding the corresponding face of the (discrete) cu-

mulative probability distribution by means of bisection. Then, one of the particles

injectable by that face is chosen by another random number draw and the (binned)

cumulative probability distribution for those particles. Finally, a random cos(O) and

Vb position is chosen on the given face, which is taken to be the injection position on

the outer boundary. It is possible at this point that the velocity is actually slightly

outwards at the injection position, since the normal direction there is slightly different

than that at the face center. However, such particles will simply leave the domain

again and be reinjected, so this is not expected to cause any problems for reasonably

sized injection faces.

2.3 Validating the New Reinjection Scheme

With the new Monte Carlo reinjection scheme implemented in SCEPTIC3D, it is use-

ful to validate it by inspecting the distributions of injected particles, and to compare

the distributions injected by the new scheme to those injected by SCEPTIC (2D)

and the original SCEPTIC3D reinjection scheme. This section covers such validation

in some detail, and includes examples that elucidate the discussion of ion drift in

sec. 2.1.4.

To examine the distributions of the injected particles, the injection locations and

velocities of the first 400000 particles injected by SCEPTIC and SCEPTIC3D were

stored in an array in the output file. Only particles injected by the master node

were stored, since the values of its arrays are the ones which are written to the

output file at the end of the run. However, there is no parallel computation aspect
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to the reinjection scheme at present, so the only differences expected for the particles

injected by another computational node are those due to a different seed being used

for its pseudo-random number-generator.

Since only the injected particles are of interest, and since the Monte Carlo reinjec-

tion scheme does not have a dependence on the potential at the boundary, the runs

used for the validation comparisons do not need a fine potential grid or to be run

to convergence; only to be run for long enough that 400 000 particles are injected by

the master node. Further, since the size of the PIC time-step is of no importance to

the injected particles, a large time-step can be used to ensure that many particles are

reinjected per step, thus making the comparison runs quite quick.

Because of the way SCEPTIC3D is parallelized, each node needs to be able to

inject a particle from any of the discrete faces that make up the outer boundary in

the Monte Carlo reinjection scheme. Thus, each node needs to store a list of, and

cumulative probability distribution for, the particles injectable by each of those faces,

which comes at a storage cost that scales like No, x N p, x Ni,. The parameters used

for each of the comparison runs are No, = 30, Nj, = 30, and Ni, = 100 000, which for

one real and one integer array give a total memory cost per node of 687MB. That is

already undesirably large, so the present parameters likely represent an upper limit for

the number of faces used to represent the outer surface on the current architecture.

To move beyond this limit, nodes with more memory would be needed, or a shift

towards a parallelization scheme where each node only needs to be able to reinject

particles from part of the outer surface.

2.3.1 Collisionless Validation Against SCEPTIC3D

The original SCEPTIC3D reinjection scheme could handle reinjection in the collision-

less case, allowing for magnetic fields and perpendicular and parallel ion drifts. The

newly implemented Monte Carlo reinjection scheme should thus be able to reproduce

the behavior of the old reinjection scheme for collisionless runs, and as this section

shows that is indeed the case.

Table 2.1 summarizes the results of the comparisons of the Monte Carlo reinjection
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scheme with the the old SCEPTIC3D reinjection scheme. The two schemes are in

agreement for all the cases considered, which range from the simplest possible run

with no drift or magnetic field, to a run with a magnetic field and ion drift, both of

which are misaligned with each other and the z-axis.

Input parameters

bz cB v cd Reinjection schemes agree?

0 0 0 0 Yes
0 0 2 0.2 Yes
1 0.2 0 0 Yes
1 0.2 2 0.2 Yes
1 0.2 2 0.4 Yes; see figures 2-1-2-9

Table 2.1: Summary of the comparisons performed between the Monte Carlo rein-
jection scheme and the old SCEPTIC3D reinjection scheme. The input parameters
are named and given as when calling SCEPTIC3D, with bz being the strength of the
magnetic field, cB being the cosine of the angle between the magnetic field and the
z-axis, v being the ion drift, and cd being the cosine of the angle between the ion
drift direction and the z-axis. All quantities are in the units used by SCEPTIC3D
(see sec. 1.3.2), so the ion drift is in units of cs, while the magnetic field is speci-
fied through the ion cyclotron frequency in units of c8/rp. Even the most complex
collisionless case possible in SCEPTIC3D, with a magnetic field and ion drift mis-
aligned with each other and with the z-axis, shows agreement between the Monte
Carlo scheme and the old reinjection scheme. This case is examined in more detail
in the text and listed figures.

The locations and velocities of the injected particles span a 5D subspace of their

6D coordinates. A rigorous comparison between two injected distributions is thus

difficult, but much confidence can be gained in the agreement of the two schemes by

considering projections of the distributions onto smaller subspaces. In particular, the

two 3D subspaces for velocities and positions can easily be compared qualitatively,

while a more quantitative comparison can be made in each of the six ID subspaces

simply by inspecting the binned histograms of the projected distributions.

In all cases considered in the comparison between the Monte Carlo reinjection

scheme and the old SCEPTIC3D reinjection scheme, the two appear to be in agree-

ment. Therefore, only the most complex of those cases is considered in detail here,

with the intention of illustrating the comparison procedure and offer insight into the



workings of the the reinjection scheme. The case considered corresponds to the last

row of tab. 2.1, and has a magnetic field lying in the y-z plane such that the cosine

of it's angle to the z-axis is 0.2, as well as an ion drift in that same plane with a

cosine of the angle to the z-axis equal to 0.4. The ion drift thus has components both

parallel to and perpendicular to the magnetic field, and neither the magnetic field

nor the drift are aligned with the z-axis.

Injected Velocities

Figure 2-1 shows the 3D velocity of the first 5000 injected particles for the above-

mentioned case. The samples from each of the two distributions appear to be in

qualitative agreement, with both distributions showing a clustering around a net

drift in the ey and ez directions, and similar tapering off with distance from the

average drift in all directions. The 1D projections of the two distributions onto each

velocity axis are examined in figures 2-2-2-4.

As is seen in figures 2-2-2-4, the agreement between the Monte Carlo reinjection

scheme and the old SCEPTIC3D reinjection scheme also holds in a quantitative sense.

The projections of the distribution of velocities injected by the Monte Carlo scheme

do exhibit larger fluctuations than those of the distribution injected by the old rein-

jection scheme, especially near the peaks of the distributions, and this is seen in all

three figures. The fluctuations in the Monte Carlo scheme are thus larger than what

one would expect from standard Gaussian counting fluctuations, since those are also

present for the old SCEPTIC3D reinjection scheme.

That the Monte Carlo scheme exhibits larger fluctuations in the injected distri-

bution is not surprising, since there are several ways in which the discretization of

the outer surface and the statistical representation of the injectable particle distri-

bution can contribute to such fluctuations. Ultimately, every injected particle on a

given computational node can be traced back to one of the Ni, velocities evolved

under the Monte Carlo scheme on that node. Those velocities statistically represent

a 3D velocity distribution, and a single node typically does not have a large enough

Ni, to keep the noise in that distribution low. However, since the nodes each use a
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Figure 2-1: Velocity of the 5000 first particles injected by the Monte Carlo reinjection
scheme (blue crosses) and the old SCEPTIC3D reinjection scheme (red circles). The
two samples of the respective distributions appear to be in good agreement, both
being centered at a net drift in the e, and ez directions, and with similar tapering off
with distance from the average drift in all directions.
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Figure 2-2: Projection onto the v.-axis of the distributions of injected velocities,
binned with bin-size 0.1. The two distributions are in good agreement, with slightly
larger fluctuations seen for that corresponding to the Monte Carlo reinjection scheme,
especially near the peak. As expected, no average drift is seen in the e, direction.
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Figure 2-3: Projection onto the vy-axis of the distributions of injected velocities,
binned with bin-size 0.1. Also here the most noticeable fluctuations are near the peak
of the distribution injected by the Monte Carlo scheme, but the two distributions are
in generally good agreement. The distributions peak just above v. = 2c,.
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Figure 2-4: Projection onto the vs-axis of the distributions of injected velocities,
binned with bin-size 0.1. Also here the most noticeable fluctuations are near the peak
of the distribution injected by the Monte Carlo scheme, but the two distributions are
in generally good agreement. The distributions peak around v, = Cs.
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different seed for their pseudo-random number-generator, fluctuations that arise in

the injected particle distribution due to inadequate statistical representation of the

injectable velocity distribution should average out when many nodes are used.

Distortions of the injected velocity distribution due to the discretization of the

outer surface is another issue. The fact that the injection probability is computed

for a discrete set of points, rather than in a continuous fashion, means that even

in the limit of perfect sampling the distribution of velocities injected by the Monte

Carlo scheme would differ from that injected by the old SCEPTIC3D reinjection

scheme. This is because each computational node discretizes the outer surface in the

same way, so the resulting distortions to the distribution are systematic rather than

random, and thus do not average out. However, given the good general agreement

between the distributions injected by the two reinjection schemes, it would appear

that the level of discretization used for the outer surface is adequate. Combined

with the averaging over the random fluctuation between computational nodes, it is

thus expected that using the Monte Carlo reinjection scheme should yield equivalent

results from SCEPTIC3D as if using the old reinjection scheme.

The average drift of the underlying distribution of injectable velocities is 2cs,

directed such that the cosine of the angle to the z axis is 0.4 in the y-z plane (with

positive average vy). Thus, the average drift of the underlying distribution is 1.8c, in

the ey direction and 0.8c, in the e, direction. However, since velocities with larger

inward radial velocity components are more likely to be selected, the distribution

resulting from the biased draw actually tends to have a larger average drift than

the underlying distribution. This is seen in figures 2-3-2-4, where the peak of the

projections of the distribution are at larger velocity than expected from the average

drift of the underlying distribution.

The projection of the injected velocity distribution onto the v-axis shown in

fig. 2-2 displays no average drift, and represents a symmetric distribution around

or = 0. The shape is not Gaussian, though that is the shape of the projection of

the underlying distribution of injectable velocities. The reason for this is that the

injection probability is weighted by the inward radial component of the velocity at
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the reinjection point, which leads to a non-uniform sampling of the distribution of

injectable velocities. Thus, another interesting thing to look at is the distribution of

injected radial velocity components, which is shown in fig. 2-5.
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Figure 2-5: Distribution of radial components of the injected velocities, binned with
bin-size 0.1. There is good agreement between the Monte Carlo reinjection scheme
and the old SCEPTIC3D reinjection scheme, though one notable deviation is the
presence of some velocities with an outward radial component for the Monte Carlo
scheme.

One notable point about the distributions of radial injected velocity components

shown in fig. 2-5 is the presence of 'injected' particles with an outgoing radial velocity

component for the Monte Carlo scheme. These are the result of the discretization of

the outer boundary into faces for the purposes of calculating the reinjection proba-

bility. Since the reinjection probability is calculated at a point, and the reinjection

location then chosen at random in the solid angle subtended by that face, particles

with small inwards radial velocity components at the point where the injection prob-
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ability is calculated can end up with small outwards radial velocity components at

the reinjection location. However, since velocities with small inward radial compo-

nents are unlikely to be drawn, this problem is less significant than one might expect,

and even at the level of discretization of the outer surface presently used the effect

appears negligible. Further, as is pointed out in sec. 2.2.2, particles with an out-

ward radial velocity component just leave the domain at the next time-step, and are

then reinjected. Thus, provided the discretization of the outer surface doesn't signif-

icantly perturb the injected velocity distribution, the effect of that discretization is

unimportant, as evidenced by fig. 2-5.

Injection Locations

Having examined the injected velocities, it is also useful to look at the locations

selected for particle reinjection. The locations selected by the Monte Carlo reinjec-

tion scheme should be consistent in an average sense with those selected by the old

SCEPTIC3D reinjection scheme, which it turns out they are.

Figure 2-6 shows the 3D injection locations of the 5000 first particles injected by

each of the two reinjection schemes. All the injection locations lie on a sphere of

radius 5rp, which was the size of the outer domain chosen for the comparison runs

of SCEPTIC3D. Since there is an average drift with positive components in the ey
and ez directions, particles are more likely to be reinjected on the side where that

corresponds to an inward radial direction. This is seen in the figure, where there is

a higher density of reinjection locations for negative y and z than for positive values.

The ID projections of the two distributions onto each coordinate axis are examined

in figures 2-7-2-9.

For an isotropic distribution of injectable velocities, each of the curves shown

in figures 2-7-2-9 would be flat since the probability of injection would be uniform

across the outer boundary. However, for the case considered in these figures there

is an average drift, and so the weighting of the injection probabilities by the inward

radial velocity components skews the distributions of injection locations.

Projected onto the x-axis the distributions of injection locations are seen in fig. 2-7
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Figure 2-6: Injection location for the first 5 000 particles injected by the Monte Carlo
reinjection scheme (blue crosses) and the old SCEPTIC3D reinjection scheme (red
circles). The two samples of the respective distributions appear to be in good qualita-
tive agreement, with a higher density of reinjection locations on the side with negative
y and z coordinates than on the opposite side.
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Figure 2-7: Projection of the distributions of injection locations onto the x-axis,
binned with bin-size 0.1. The Monte Carlo and old SCEPTIC3D reinjections schemes
are in good agreement, and both display similar levels of fluctuations. A larger number
of particles are reinjected near x = 0 than towards x = ±5rp, and the projected
distribution appears symmetric about x = 0.
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Figure 2-8: Projection of the distributions of injection locations onto the y-axis,
binned with bin-size 0.1. The Monte Carlo and old SCEPTIC3D reinjections schemes
are in good agreement, and both display similar levels of fluctuations except for a
possible artifact in the curve due to the Monte Carlo scheme near y = 0. Very
few particles are injected near y = 5rp, and the projected distributions increase
monotonically towards y = 5rp.
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Figure 2-9: Projection of the distributions of injection locations onto the z-axis,
binned with bin-size 0.1. The Monte Carlo and old SCEPTIC3D reinjections schemes
are in good agreement, and both display similar levels of fluctuations. There are six
times as many particles injected near z = -5r, as near z = 5rp, and the change
between those two extremes is monotonic.
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to be symmetric about x = 0, and to be peaked there. The symmetry arises from

the fact that there is no drift in the ex direction, so there is nothing to differentiate

the ex and -ex directions. The preferential injection near x = 0 is related to the

dependence of the inward radial direction on x: Near x = i5r, the inward radial

direction is almost entirely in the p-ex direction, while at x = 0 it has no component

in the ex direction. The average drift in the y-z plane thus affects the injection

probability near x = 0 by altering the inward radial velocity component, balancing

this by an opposite change near x = ±5rp, where the drift is perpendicular to the

radial direction and thus does not matter. One might think that the increase in

injection probability on the side of the sphere facing the drift would be canceled by

the decrease in injection probability on the side trailing the drift, which would be

the case for an unbiased draw of injection velocities, but since the probabilities are

weighted by the inward radial velocity component the increase in injection probability

of velocities with a large inward radial component is larger than the decrease in those

with a small such component on the opposite side of the outer boundary. Thus, the

injection probability near x = ±5r, is reduces to balance the net increase near x = 0,

since the integral of the probability density distribution must equal one.

Figure 2-8 shows the projection of the distribution of injection locations onto the

y-axis. The injection probability is largest near y = -5rp, and drops monotonically

to almost zero near y = 5rp. As mentioned, this is because the average drift in the e,

direction increases the injection probability on the side of the outer boundary facing

the drift, and decreases it on the side trailing the drift, as one would expect.

There is a noticeable feature near y = 0 in the curve corresponding to the Monte

Carlo reinjection scheme in fig. 2-8, which stands out as larger than the typical fluc-

tuations seen elsewhere on the two curves. This feature can likely be traced back

to the discretization of the outer boundary in the Monte Carlo reinjection scheme,

which prevents a smooth transition of the inward radial component of the average

drift from positive to negative as y passes through zero. Since the injection probabil-

ities are calculated at points offset from y = 0, particles injected at slightly negative

y will have an enhanced injection probability, while particles injected at slightly pos-
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itive y will have a suppressed injection probability. The feature seen in the figure is

consistent with this idea, and it is worth noting that this is unlikely to be important

in SCEPTIC3D runs since particles injected near y - 0 are likely to leave the domain

shortly thereafter, since they have a large average drift in the ey direction.

Figure 2-9 shows the projection of the distribution of injection locations onto the

z-axis. The injection probability is largest near z = -5rp, and drops monotonically

by about a factor of six towards z = 5rp. The behavior seen in this figure is a mix

between that seen for the projections onto the x and y axes, since there is a drift

in the ez direction, but the drift in the ey direction is large enough to affect the

projection onto the z-axis in a similar way to the projection onto the x-axis.

2.3.2 Collisional Validation Against SCEPTIC

The new Monte Carlo reinjection scheme can be validated against that in SCEPTIC

(2D) in the collisional regime. SCEPTIC allows one to specify both neutral and

ion parallel drifts with or without a magnetic field, and in all cases considered good

agreement is seen between SCEPTIC3D and SCEPTIC'.

Table 2.2 summarizes the comparisons of the new Monte Carlo reinjection scheme

in SCEPTIC3D with the reinjection scheme in SCEPTIC. In SCEPTIC the total ion

drift is specified through the input -v, while in SCEPTIC3D only the electric field

driven drift is specified through -v. Thus, specifying the same problem in the two

codes requires different -v inputs when a neutral drift is included, and this is reflected

in the table.

The projections of the distributions of injected velocities onto the v2-axis are

examined for three of the cases in figures 2-10-2-12. The three cases are chosen to

illustrate the effect of electric field and/or neutral driven drifts on the distribution of

injected particles.

The first of the three cases has no neutral drift, but an ion drift parallel to a

magnetic field. It is shown in fig. 2-10, and the two injection schemes are seen to be

'An initial comparison revealed that neutral drifts had not been fully implemented in the SCEP-
TIC reinjection scheme, but this was swiftly remedied by Ian Hutchinson.

52



Input parameters

V

kt bz (2D) (3D) vn Reinjection schemes agree?

0.01 0 0 0 0 Yes
0.01 1 0 0 0 Yes
0.01 0 2 2 0 Yes
0.01 1 2 2 0 Yes; see fig. 2-10

0.01 0 2 0 2 Yes
0.01 1 2 0 2 Yes; see fig. 2-11
0.01 0 2 -1 3 Yes
0.01 1 2 -1 3 Yes; see fig. 2-12

Table 2.2: Summary of the comparisons
reinjection scheme in SCEPTIC3D and

performed between the new Monte Carlo
the reinjection scheme in SCEPTIC. The

input parameters are named and given as when calling SCEPTIC(3D), with kt be-
ing the charge-exchange collision frequency, bz being the strength of the magnetic
field, v being the ion drift specified for SCEPTIC (2D) and SCEPTIC3D (3D), and
vn being the neutral drift velocity. All quantities are in the units used by SCEP-
TIC/SCEPTIC3D (see sec. 1.3.2), so the ion and neutral drifts are in units of c, and
the magnetic field is specified through the ion cyclotron frequency, which together
with the charge-exchange collision frequency is given in units of c8/rp. The -v input
differs for the two codes in some cases because they specify the ion drift differently,
but the two reinjection schemes are seen to agree for all cases considered.
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Figure 2-10: Projection onto the v2-axis of the distributions of injected velocities,
binned with bin-size 0.1, for a case with ion drift aligned with a magnetic field. The
Monte Carlo and SCEPTIC reinjection schemes are in good agreement, though there
are significantly larger fluctuations on the distribution injected by the Monte Carlo
scheme, especially at large v,.
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Figure 2-11: Projection onto the vz-axis of the distributions of injected velocities,
binned with bin-size 0.1, for a case with neutral drift aligned with a magnetic field.
Both injected distributions peak at a drift slightly above 2c8, and are in good agree-
ment.
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Figure 2-12: Projection onto the vz-axis of the distributions of injected velocities,
binned with bin-size 0.1, for a case with neutral and relative ion drift aligned with a
magnetic field. The injected distributions show similarities to those injected for only
a neutral drift, but with a tail drawn out towards negative vz. Again the two injected
distributions are in good agreement, though that of the Monte Carlo scheme appears
to have two sharp features near its peak.
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in good agreement. The parallel ion drift is driven by an electric field, and balanced

by the drag from charge-exchange collisions. This pulls out a tail of ions with large

v2, as is seen in the figure. The underlying distribution of velocities is characterized

by eq. 2.6, from which a biased draw gives that shown in fig. 2-10.

One thing to note in fig. 2-10 is that there are significant fluctuations in the

curve corresponding to the Monte Carlo reinjection scheme, especially at large v2.

This is due to the previously discussed fact that distribution of injectable velocities

is not statistically represented all that well on any individual computational node.

The fluctuations due to this are exacerbated by the fact that the poorly sampled

large velocities of the underlying distribution are preferentially selected, such that

the relative fluctuations get larger at higher v2. Again though, these fluctuations

should average out when using many computational nodes, which one typically does

for SCEPTIC3D.

The second of the three cases has no electric field driven drift, but has a neu-

tral drift aligned with a magnetic field. It is shown in fig. 2-11, where where both

SCEPTIC and SCEPTIC3D adds a drift in the e2 direction as expected.

The final of the three cases examined is shown in fig. 2-12. It has neutral and

relative ion drifts specified in opposite directions, but both parallel to the magnetic

field (as they must for comparison with the 2D code SCEPTIC). The main feature

is the neutral drift in the e; direction, but it is also seen that the relative ion drift

in the opposite direction is present through a tail drawn out as for the cases with

only ion drift. The projections of the distributions of velocities injected by the Monte

Carlo scheme and by SCEPTIC are in good agreement, though there appear to be

two sharp features near the peak of the Monte Carlo injected distribution, which have

not been investigated further at present.
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Chapter 3

Upgrades to SCEPTIC3D

In addition to the new reinjection scheme described in sec. 2.2, several other upgrades

and modifications have been made to SCEPTIC3D. The following sections detail that

work, which includes a new distribution function diagnostic, improvements to the

Poisson solver, and a new output system based on HDF5.

3.1 Distribution Function Diagnostic

Motivated by possible comparisons of SCEPTIC3D results with laser-induced fluo-

rescence (LIF) measurements of the ion distribution function near spherical probes at

the VINETA experiment [13], a new distribution function diagnostic has been added

to SCEPTIC3D. The LIF measurements can capture the ID (velocity) distribution

function along each of two axes at any point in a plane, and so matching (or better)

capabilities are required for the new diagnostic.

At each time-step the computational ions in a PIC code statistically represent

the ion distribution function. However, though the number of computational ions is

large enough to ensure a reasonably low noise level in the charge density used for

solving the Poisson equation, a distribution function generated from the velocities at

a single time-step would be quite noisy unless a far greater number of computational

ions were used. Thus, a better approach for the steady-state problems tackled with

SCEPTIC3D is to use the computational ions at many different time-steps to generate
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a binned distribution function. This approach is used for several other diagnostics

in SCEPTIC3D, which compute specific moments of the distribution function, and is

also adopted for the new diagnostic. To ensure that only the final converged solution

is sampled, only the last 20% of the time-steps are considered, and to decrease the

statistical dependence due to counting the same ion multiple times in one bin, only

every fourth time-step is sampled.

Storing the full 3D3v (three spatial, and three velocity dimensions) distribution

function quickly becomes prohibitive for fine spatial and/or velocity resolutions, and

a very large number of computational ions is required to populate it. Further, com-

parisons with LIF measurements only require two 2Dlv distribution functions, so a

full 3D3v distribution is not required. Thus, to allow comparisons with LIF measure-

ments in any plane on the basis of a single SCEPTIC3D run, the new diagnostic is

designed to store all three 3Dlv distribution functions on a Cartesian grid.

For a full 3D3v distribution function fi(x, v), the 3DIv distribution in the ey
direction is

(fi)VXV (x,v) jj f(x, v) dx dvz, (3.1)

with the 3Dlv distributions in the two other directions defined similarly. Though

much information is lost in this averaging, the remaining 3Dlv distributions still

capture most of the aspects of interest, especially if the drifts and fields are chosen

to be aligned with the Cartesian axes.

3.1.1 VINETA-Relevant Velocity Distributions

As an example to illustrate the capabilities of the new diagnostic, SCEPTIC3D has

been run for parameters relevant to what are considered strongly magnetized runs on

the VINETA experiment: Probe potential p = -Te/e, ion to electron temperature

ratio TI/Te = 0.05, ion cyclotron frequency wc = 0.03c,/r, (with B 1 e2), and

electron Debye length ADe= 0. The velocity distribution in the ey direction has been

examined in the cells of the Cartesian grid closest to but not intersecting the probe in

each of the three directions, and are presented in Figures 3-1, 3-2, and 3-3. Because
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of the symmetries of the problem considered, the distributions at the two points for a

given direction should be consistent with each other provided one is plotted against

-vy.

Figure 3-1 shows that the ions have a strong inward radial drift close to the probe,

which is of magnitude - 0.5 cs. The velocities of the injected ions have standard

deviation 0.05 c, ~ 0.22 c8, so the distributions shown in the figure appear to be

consistent with the injected distribution being accelerated towards an attracting probe

biased to p = -Te/e. The slight asymmetry about the mean drift is not surprising,

since particles from the initial distribution that have large inward radial velocities

also are likely to have significant angular momentum, which may prevent them from

reaching the locations considered. The velocity distribution near the probe is thus

partially suppressed for the largest inward radial velocities, as is seen in the figure.

The distributions shown in fig. 3-2 show significant broadening of the distribution

of tangential velocity compared to the injected distribution. This is because angular

momentum conservation requires that the tangential velocity increase as the radial

distance is decreased, broadening the distribution near the probe.

The distributions shown in fig. 3-3 are broadened similarly to those in fig. 3-2, but

have an additional asymmetry corresponding to a drift in the -ey direction. This is

essentially E x B drift from the component of the radial electric field due to the probe

perpendicular to the background magnetic field. However, the Larmor radius is not

small compared to the gradient scale-length of the electric field, so the impact on the

distribution function is more complicated than the pure shift one would expect from

the guiding center picture.

3.1.2 VINETA-Relevant Distribution Moments

Often what is actually presented from LIF measurements are the first two moments

of the distribution function: The drift

VY(x) = VY ey (fi),vz d (3.2)
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Figure 3-1: Distribution of v, velocity components in the cells of the Cartesian grid
closest to but not intersecting the sphere, offset from the center along the y-axis.
There is a strong inward radial drift of ~0.5 cs, and the distributions at the two
points are in good agreement (should match if one is plotted against -vy).
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Figure 3-2: Distribution of v, velocity components in the cells of the Cartesian grid
closest to but not intersecting the sphere, offset from the center along the z-axis. The
distributions have been significantly broadened from their initial Maxwellian forms,
and now have a FWHM of ~ c,. As they should be, the two distributions are in good
agreement.
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Figure 3-3: Distribution of v velocity components in the cells of the Cartesian grid

closest to but not intersecting the sphere, offset from the center along the x-axis. The

distributions at these locations are broadened similarly to those in fig. 3-2, but have

an additional asymmetry giving a drift in the -ey direction. Again the distributions

are in good agreement if one is plotted against -vy.
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and the temperature

T Y = V (fi) , dv (3.3)

in a given direction (ey here). Their spatial dependence can then easily be examined,

and the noise on these quantities is significantly less than on the measured distri-

bution functions. It is thus interesting to see what sort of features show up when

examining the moments of the SCEPTIC3D computed distributions, so that these

can be compared qualitatively and quantitatively to experimental results.

Figure 3-4 shows the two moments for an x-y planar cut of cells of the Cartesian

grid as close to but not intersecting the probe as possible (offset in the e, direction).

Since the problem considered is symmetric about the z-axis the distributions in the

ex directions are identical to those in the ey direction. Adding the two drift moments

and averaging the temperatures recovers this symmetry, as shown in fig. 3-5. The

dominant drift in the two figures is the projection onto the plane of the inward radial

drift. Moving in from the edge of the figures the radial drift increases (as does its

projection) because the distance to the probe is decreasing. However, as the point

(x, y) = (0, 0) is approached the projection of the radial drift vanishes because the

radial direction becomes perpendicular to the plane, even though the radial drift is

largest there. The counter-clockwise drift is due to the previously discussed E x B-

like drift, and displays a similar behavior when moving from the edge towards (0, 0)

since the projection of the radial electric field behaves similarly to the projection of

the radial drift. The increase in the temperature towards the point (0, 0) seen in

the figures is capturing the broadening of the distribution function due to angular

momentum conservation.

3.2 Modifications to the Poisson Solver

When applying SCEPTIC3D to problems with large domains and low ion tempera-

ture, it was discovered that the original Poisson solver occasionally failed and cor-

rupted the potential solution. The original solver was based on the minimum residual

method, which assumes that the sparse matrix is symmetric. However, the matrix
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Figure 3-4: Average drift 9, ey (blue arrows in a.u.) and temperature Ti, (contours)
of (fi)v, shown for an x-y planar cut of cells of the Cartesian grid as close to but
not intersecting the probe as possible (offset in the e, direction). The projection of
the radial velocity onto the plane can be seen to increase towards x = 0, while it first
increases and then decreases when moving from the edge towards towards y = 0. The
temperature increases from the unperturbed value at the top and bottom to twice
that value near (x, y) = (0, 0). Along y = 0 a slight counter-clockwise drift can be
seen.
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set up in ref. [19] is not quite symmetric, and so this was identified as the likely cause

of the solver failing. Thus, the solver was modified to use the biconjugate gradient

method, which allows for asymmetric matrices, but requires the ability to multiply

by the transpose matrix.

3.2.1 Finite Volume Matrix

The finite volume discretization of the Poisson equation for SCEPTIC3D is described

in section 111.3.1 of ref. [19]. For completeness, and to correct a few sign errors, parts

of that development are repeated and expanded upon here.

The unknown potential # is assumed to be close to the potential #* at the previous

time-step, allowing the exponential in the source term due to the Boltzmann electrons

to be linearized. The Poisson equation thus becomes

. 2 . exp(#*) [1 + (# - #*)] - n
A #2 (3.4)

De

where n is the ion density and ADe is the electron debye length.

Treating eq. 3.4 as a conservation relation for -V# allows the application of finite

volume methods to discretize it. The equation is volume-integrated over each cell to

give

l ounaryV# dS = icen {exp($*) [1 + (# - #*)] - n} dQ, (3.5)
Celbonay De Cl

where dS is an infinitesimal surface area element taken with outward normal, dQ is

an infinitesimal volume element, and the divergence theorem has been applied to the

left hand side.

Labeling the cell center coordinates ri, cos 0j, and $k, for i E [2 : nr - 1], i E

[2 : no - 1], and k E [1 : no], the integral on the right hand side of eq. 3.5 can be

approximated as

Qi,,k=- {exp(#,Tk) [1 + (#i,j,k - #jjk)] - ni,j,k} r,9 2,ArA cos 0A4 (3.6)

where A cos 0 is taken to be negative, i.e. cos O+1 < cos O since 6j+1 > 0,.
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The left hand side of eq. 3.5 can also be discretized under the assumption that

V#5 is constant on the six cell boundaries:

V# - dS =
i+1/2,j,k

1 (0#
rj 860 ij+1/2,

ri+1/2 ar

Sin Oj+1/2 -

k

r'i 1/2) A cos OA@b
i-1/2,j,k

Ssin Oj-1/2) riArA
00i,j-1/2,k

+± 1 # i

ri sin 6j (07 i,j,k+1/2
(3.7)

The derivatives can be approximated with finite differences, so together with the

approximation A cos0 = - sin OAO the expression can be rewritten as

VO -dS =
,j,k

(i+1,j,k - #i,j,k 2 i,j,k - i-1,j,k -1/2 A Cos BAV/

- i,j+1,k - i,j,k sin 2 Oj+1/2
A cos 60

1 #i,j,k+1 - #i,j,k
sin 2 o AO

- i,j,k - Oi,j-1,k sin 2 
jA cos6 

i,j,k -- i,j,k-1 ArA cos 0.

Combining the derived discrete forms of the integrals with eq. 3.5, and dividing by

-r2 ArA cos OA //ADe, allows the equation to be written in the matrix form A#+wO

o, where A has contributions from the differential operator, the linearized implicit

electron response, and the Neumann part of the outer boundary condition, W carries

the Dirichlet part of the boundary conditions, and

(3.9)gi,j,k exp (zj,k) [1 - ,j,k] -ni,j,k

is the source term. Gathering terms according to the indices i, j, and k, the product

A# can be written as

(A#)i~k = ai~i+1,j,k - b#/-1,j,k + ci,j~i,j+1,k- d± j ij_1,k

+ eij (0i,j,k+1 + Oij,k-1) - [fi,j + exp (# ,j,k)] ti,j,k

(3.10)
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-
2

De7.2Ar2 ,I

cj . = 2 sin 2 Oj+1/2
' De T 2(A COS g)2

1
ej ADe s 2  2 ,

T 2 sin 2 o Ao,

-

2

__ 2 i--1/2
De7.2,r2 I

d.- A2  sin 2 Oj-1/2
De r 2(A COS 0)2

fij ai bi + Cij + dij + 2ei,,

and the index k is taken to be periodic (i.e. #ij,O = #ij,n, and #i,j,n,+1 = #ij,). The

cells on axis (i.e. with j = 1 or j = no) have half the volume, and are treated with

the following modifications to the coefficients given in eq. 3.11:

2 sin 2 01+1/2De T 2(A COS 0)2 1 Cine = 0

di = 0 ,

e A2 1i,1 De s 2 1+1/4 2 2

di 2A 2 sin 2 no-1/2no De T 2(ACOSO)2

2 1
i,no De 2sin2 A 2

The inner boundary condition is Dirichlet, with a specified potential at each point

(j, k) for i = 1. This is implemented by excluding #1,j,k from the solution vector

(setting it to zero there, and not considering the index i = 1), and rather including

its contribution to (A#)2,j,k through the vector w:

W2,j,k = b2#1,j,k . (3.13)

For the outer boundary condition, ghost cells

+1,j,k = gj,k,1#nr-1,j,k + gj,k,2#n,,j-1,k - gj,k,3#nr,j+1,k - gj,k,5/nr,j,k (3.14)

are used, along with the element

Wn,j,k anrgj,k,4 , (3.15)

such that (A#)n,j,k can be treated like the remaining elements of A#. The coefficients

gj,k,o (o E [1 : 5]) depend on the chosen outer boundary condition, which can in general
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be Robin. Note however that the present implementation does not allow the outer

boundary condition to depend on 4,,j,k±1.

3.2.2 Asymmetry of the Finite Volume Matrix

The matrix A as defined by eq. 3.10 can be expressed (for i < n,) as

Ai,j,k;1,m,n = ai 3 I,i+16 m,j 6 n,k - bj6j,j_1 3 m,j 6 n,k

" Ci,j6l,im,j+16n,k + di,j 6i,i6 m,j-1 6 n,k

" ei,j6 1,i 6 m,j(6n,k+1 + 6n,k-1)

(3.16)- (fi,j + exp(o*,j,k)) 6 1,i 6 m,j 6 n,k ,

where the Kronecker 6 m,j equals one for j = m and zero otherwise. For i = n, the

expression for the ghost cell from eq. 3.14 must be substituted for #nr+1,j,k in eq. 3.10,

giving

An,,j,k;1,m,n = (bn, + angj,k,1)6 1,n,_16 m,j 5 n,k

" (cn1,j ± an,9j,k,3)6 l,n,6m,j+16 n,k + (dn,,j I an,9j,k,2)6 1,nr6 m,j-1 6 n,k

- Cnr,jl,nr m,j(6n,k+1 + 6 n,k-1)

- (fnr,j + exp(n,,j,k) nrgj,k,5) 6 I,nr6 m,jon,k (3.17)

From these expressions the transpose matrix AT can be found using the property

(A T)i,j,k;I,m,n = A,m,n;i,j,k, which gives

(AT#)i,j,k= ai_1#i_1,j,k + bi+14i+1,j,k + i,j_14i,j1,k + di,j+1i,j+1,k

+ e+i,j i,1(i,j,k-1 - Oi,j,k+1) - i,j + exp(o*,j,k)) Oi,j,k (3-18)
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for i < n, - 1,

(AT#)n,l,j,k = anr-2#n2,j,k + (bir + anr,j,kgj,k,1)$n,,j,k

+ Cn,-1,j-1nr-1,j-1,k + dnr-1,j+1nr-1,j+1,k

+ enr-1jnr-1,1(0nr-1,j,k-1 nr -l1,j,k+1)

- (fnr-,j + exp (*-1,j,k)) Onr-1,j,k (3.19)

for i = n, - 1, and

(AT#),,j,k - anr1#n,_1,j,k

+ (Cn,,j-i + anrgj-1,k,3)/nr,j-1,k + (dn,,j+1 + anrgj+1,k,2)nnrj+1,k

+ enr,j4nr, (nrj,k-1 + On,,j,k+1)

- (fnr,j + exp(nr,j,k) - anr9j,k,5) nr,j,k (3.20)

for i = nr. For arbitrary gj,k,o it is clear that A is in general not symmetric, as can be

seen for instance from the fact that (AT#)nr-1,j,k

does not.

depends on gj,k,1, while (A#)n,_1,j,k

For elements of A - AT that are unaffected by the boundary conditions, the

difference is

(A - AT)i,j,k;l,m,n = (ajoi,i+1 - aloi,l+1)6 m,j 6 n,k

+ (bj6jj 1 - b~io,I1 )6mj6n,k

" 6 ici,jtm,j+I - C1,m 6 j,m+1)6n,k

+ 6ii(dijm,j-1 - dl,mtj,m-1)6n,k , (3.21)

where the terms involving the e and f coefficients cancel exactly and are thus not
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present. This can be rewritten as

(A - AT)i,j,k;l,m,n = Kas - bi+1)61,i+1 - (ai_1 - bj)c 1,j-] 6m,jon,k

+ 61,i [(ci,j - d-,+1)6m,j+1 (ci,y1 - dij)6m,j-1] 6 n,k , (3.22)

where the coefficient differences evaluate to

ai - b+1= e 2- ')1/ (3.23)

_- b = 2De - ' (324)

{2srn291+1/2 -1

c -- d i = D r(c2 (3.25)
0De1 < j < n ,

and

cij-1 - dij= . 2< (3.26)
2 smn Ong-1/2-_

De r2 (A COS 0)2 , j no.

The asymmetry due to the differences ai - bj+ 1 and a_11 - bi could in principle be

eliminated by multiplying the discrete form of eq. 3.5 by r2 before defining the coef-

ficients, but this would not take care of the other asymmetries, and is not presently

done in the modified Poisson solver.

3.2.3 Biconjugate Gradient Method

The biconjugate gradient method [32] is closely related to the minimum residual

method, but does not require the matrix A to be symmetric. It does however require

the ability to multiply by AT, so implementing it requires using equations 3.18-3.20

to create a function for returning the product AT#.

SCEPTIC3D has been modified to use the (Jacobi) preconditioned' biconjugate

1Jacobi preconditioning entails multiplying the matrix equation to be solved by the inverse of

the diagonal entries of A, and helps speed the convergence of iterative solution techniques.
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gradient method, both for the serial and parallel versions of its Poisson solver. The

code is based on the original minimum residual based solver, which was adapted for

Fortran from a C++ routine in ref. [32]. As such, the solver uses uses single precision

floating arithmetic throughout, and may be susceptible to breakdown or convergence

issues for large systems due to rounding error. If this becomes an issue in the future,

a possible strategy to overcome it is to switch to double precision for the calculations

in the iterative procedure, but to then cast the potential to a floating point version

to not compromise the speed of the particle moving step. Since the solution to the

Poisson equation is a small fraction of the overall cost of running SCEPTIC3D, this

approach should not have significant impact on the total run time (though storage

and communication burdens do increase).

The convergence criterion used for the biconjugate gradient based solver is the

same as that which was used with the minimum residual method: A# = 10-5 Te/e,

where the change in # is taken from one iteration of the biconjugate gradient method

to the next. Provided the change from one iteration to the next is representative of

the distance to the converged solution (which is not guaranteed for the biconjugate

gradient method), that level of convergence should be sufficient for the particle moving

done in SCEPTIC3D. For many cells the error on the potential due to particle noise

will be greater than the convergence error, so provided it is not a systematic effect the

convergence error is unlikely to be more important than the particle noise. Further,

since the particle energies are typically much larger than the potential error, the

overall effect on the particle dynamics is expected to be small.

The parallel version of the solver can be set to only check for convergence after

taking 80% of the number of iterations required for convergence at the previous time-

step, and then only at each fifth iteration thereafter. Doing so should give some

speed-up over doing a reduce across nodes and checking for convergence at each

iteration, but provided the Poisson solver takes up a small fraction of the overall

computation time the gain may be minimal. In fact, there may be a net cost since a

single time-step which for some reason requires many iterations for convergence will

force subsequent time-steps to also use many iterations, regardless of whether they
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are all required for convergence. The default mode of operation for the parallel solver

is thus to check for convergence at every iteration.

3.2.4 Parallel Version of the Poisson Solver

As described in ref. [19] the particle moving step in SCEPTIC3D is parallelized by

assigning a fixed number of computational ions to each node, without domain de-

composition or other attempts at ensuring data-locality. This removes the need for

load-balancing, passing particles, and other implementation complications associated

with domain decomposition, but will ultimately limit the parallel scalability of SCEP-

TIC3D. However, for the problems presently considered (using <512 cores) large parts

of the potential array typically fit in the available processor cache, limiting the gain

that could be achieved from better data locality.

The parallelization of the Poisson solver is not described in ref. [19] beyond stating

that the multiplication by the matrix A is an easily parallelizable step. Some details

are therefore given here to clarify what went into upgrading to the biconjugate gra-

dient method for the parallel solver, as well as discussion of some limitations of the

present approach.

The routines from ref. [32] which were the starting point for both the minimum

residual and biconjugate gradient based solvers are serial routines. They solve the

problem Ax = b iteratively, with each iteration relying on a number of matrix-

vector products and vector additions and inner products. Parallelizing the solver

thus requires parallelizing each of those operations, which as alluded to in ref. [19] is

not especially difficult.

A natural way to parallelize operations on vectors is to make each node responsible

for certain elements of each vector. The grid on which the potential is computed is

three dimensional, and the elements of the solution vector can couple directly to

neighboring elements in each of the three dimensions, so to minimize the dependence

on values held by other nodes the vectors should be partitioned according to those

three dimensions such that the elements held by a node corresponds to a block of

the actual 3D grid. Further, the partitioning should be chosen such that the blocks
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have a small surface area to volume ratio (in terms of the number of elements). This

partitioning is presently done heuristically in SCEPTIC3D, requiring at least two

blocks in each dimension (for a minimum of eight blocks/nodes). For runs with fewer

than eight nodes the serial solver should be used (particle moving is still parallelized

when running the parallel version of SCEPTIC3D without the parallel solver -- sp

option). Also note that total number of nodes may not be conducive to a practical

division of three separate dimension (e.g. if it is prime), so not all the particle moving

nodes are necessarily used for the parallel solver.

With each node responsible for the elements of each vector corresponding to a

block of the grid, vector additions are trivially parallelized by each node operating

on its own elements of the vectors, and inner products can be performed separately

for each block, with only the local sum having to be communicated from each node

for a reduction sum to find the total inner product. A matrix-vector product could

in principle have an element of the resulting vector Ar depend on any element of

a vector r, but the particular structure of the matrix A due to the finite volume

stencil used in SCEPTIC3D only introduces a dependence on the adjacent elements

of r in each of the three dimensions. Thus, it suffices to communicate only the values

immediately outside the surface of the block of the grid held by each node before each

matrix-vector product is computed. Provided this is done, each node then has the

values it needs to compute its elements of the vector resulting from the product, so

the matrix-vector products are also parallelized with minimal communication.

Since the particle moving done by each node is not localized to the block of the

potential grid on which it computed the potential, each node must obtain a copy of

the entire potential through a broadcast after the solution has been found by the

solver. This does not presently appear to be a significant communication cost, but

could limit scaling to larger problems in the future.

3.2.5 Verification of the Upgraded Solver

To verify that the transpose matrix multiplication is calculated correctly in both the

serial and parallel versions of the solver, and that the biconjugate gradient based
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solver is converging to the right solution, new debugging outputs have been added to

SCEPTIC3D. The idea is to store dense versions of the matrix A and its transpose

(for very coarse grids), as well as the right hand side y and the solution vector #, and

then inspect the matrices and check the solution to A# = y using MATLAB.

A dense version of the matrix A is generated by successively setting each element

of an otherwise zero vector r to the value one, and storing the entire output vector Ar

as the corresponding column of A. This process scales like n2 n2in2 both in storage

and computation, and can therefore only be done for very coarse grids. It is activated

by passing the -- savemat option to SCEPTIC3D, but is only typically useful for

verifying that the solver still works correctly if it has been modified.

The structure of the matrix A for n,= no = np = 6 is shown in fig. 3-6. The

radial size of the domain is taken to be rd 60 rp, and the electron Debye length to

be ADe = 20 rp. Since problems with such a coarse grid have little physical relevance,

and since the only purpose of this SCEPTIC3D run is to examine the functioning

of the solver, only a few time-steps are taken. The charge-distribution is thus not

consistent with a steady-state solution, but nonetheless provides a valid source term

for the Poisson equation. Long Debye lengths and grids with large Ar are among

the most challenging problems for the Poisson solver, so this represents one type of

worst-case scenario for the solver.

Figure 3-6 shows explicitly the previously discussed fact that elements of the

product Ar only depend the adjacent elements in each of the three dimensions. The

asymmetry of A only manifests itself here through a sign difference for one element

of each row corresponding to i = n,, but examining the actual values reveals asym-

metries where expected based on the discussion in sec. 3.2.2. Note that as previously

mentioned the elements riJ,k are set to zero and not considered in the vector Ar, so

as can be seen in the figure the rows corresponding to i = 1 have all zero elements.

Further, the elements in columns corresponding to i = 1 but rows corresponding to

i = 2 always multiply zeros in the vector r, and do therefore not really make A

asymmetric (though it may look that way in the figure).

The transpose matrix AT is generated and stored in the same way as A, but
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20 40 60 90 100 120 140 160 180 200

Figure 3-6: Structure of the matrix A for nr = no = np = 6, where negative elements
are shown in blue, zero elements in green, and positive elements in red. The counter
i varies most rapidly (i increases when going down and to the right in the figure), so
the elements adjacent to the diagonal give the coupling in the r variable, while the
next set of non-zero elements going away from the diagonal gives the 0 coupling, and
the final set the 0 coupling (including the periodicity through the elements in the
bottom left and top right corners).
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with the newly implemented transpose flag passed to the function that returns the

matrix-vector product. That the transpose is computed correctly can then be verified

by comparing the output AT with that computed by transposing A in MATLAB.

This has been done for both the serial and parallel versions of the matrix-vector

multiplication routine, and both appear to compute the transpose matrix correctly.

Storing the matrices in the parallel case does take some care to ensure that the

communication is done correctly, but is done using the same machinery as the actual

solution to ensure that any bugs there would also show up when examining the matrix.

Figure 3-7 shows the solution # to the problem A# = y as computed by the

biconjugate gradient based solver in SCEPTIC3D, as well as the difference between

it and the exact solution as computed by MATLAB. The solver in SCEPTIC3D

appears to be computing a good approximation to the exact solution, with errors

that for all elements are well below the convergence threshold of 10 Te/e. Note

however that this is for a specific case, and does not guarantee that the solution is as

accurate for instance when dealing with solutions that are not spherically symmetric,

but does provide a good indication that the upgraded solver is working correctly. The

solver took 19 iterations to reach convergence for the solution shown in the figure.

For comparison, the same problem was run using the old minimum residual based

solver in SCEPTIC3D (accessible through the -- minres option). The results are

presented in fig. 3-8, and show that the old solver was only able to get to within

~0.1 T/e of the exact solution, i.e. much worse than the convergence criterion.

What happened in this case is that the solver reached the maximum number of

iterations (216 for the given grid size), and therefore stopped iterating despite not

having reached convergence. It should be pointed out that this problem was selected

precisely to exaggerate the asymmetry of the matrix A, and thus the weaknesses of

the minimum residual method, so these results are not typical of the performance

of the old solver (which appeared to work satisfactorily for most problems). It does

however demonstrate that the upgraded solver is able to handle problems that the

old solver could not, and the general impression is that the upgraded solver reaches

convergence more quickly and is less susceptible to breakdown than the old solver.
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Figure 3-7: Solution to A#O y from the biconjugate gradient based solver in SCEP-
TIC3D (left, in units of Te/e), and the difference between that solution and the exact
solution computed with MATLAB (right). Note that the elements #1,j,k are set to zero
as previously discussed, since the values there are imposed by the Dirichlet bound-
ary condition. The difference between the solution from SCEPTIC3D and that from
MATLAB is ~ 10-6 Te/e or below for all elements.
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Figure 3-8: Same as fig. 3-7, but using the old minimum residual based solver in
SCEPTIC3D. The difference between the solution from SCEPTIC3D and that from
MATLAB is in this case as large as ~ 10-1 Te/e for some elements.
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3.2.6 Nonlinear Solution to the Poisson Equation

The default approach to solving the Poisson equation in SCEPTIC3D is to assume

that the potential varies little from one time-step to the next, such that the expo-

nential dependence on the potential in the Boltzmann electron source term can be

linearized around the potential at the previous step. This gives the linearized Poisson

equation given in eq. 3.4, which can then be solved with the biconjugate gradient

method. However, the PIC method is based on the assumption that the full Poisson

equation is solved correctly at each time-step, so this approach is only really self-

consistent in the limit where the potential does not change from one time-step to the

next. Therefore, to enable verification that the use of the linear equation does not

adversely affect the solution, an option to perform a nonlinear loop of biconjugate

gradient solutions to the linear problem has been added.

Rather than require each linear solve to iterate until the A# = 10- Te/e conver-

gence criterion is reached, the convergence criterion for each linear step is tightened

towards that limit as the nonlinear loop progresses. The nonlinear loop continues

until the A# = 10- Te/e criterion holds both when comparing the potentials of two

different steps of the nonlinear loop, and when comparing the potentials of the two

last iterations of the last linear solve.

No detailed comparison of SCEPTIC3D results using the linear and nonlinear

solvers has been performed at present, but the initial impression is that the nonlinear

solve does not require a much larger total number of linear iterations, nor does it

appear to noticeably affect the overall results. This suggests that the approach of

just using the linear solver at each time-step is probably adequate for the present

applications, though that assertion may (if desired) be verified for specific problems

in the future by running the problem both with and without the nonlinear solver

activated.
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3.3 HDF5 Output

The original output system of SCEPTIC3D is based on ASCII output of arrays to a

single text file, coupled with a custom-written MATLAB script to parse and load the

data from the output file. This approach requires simultaneous development of both

the output routines and the MATLAB script, and generates large files even when

storing low-precision data (an ASCII character is used for each digit of precision).

Further, loading and parsing the data file becomes slow when large multidimensional

arrays are included, so in order to allow quick access to only the smaller datasets

they must be grouped at the beginning of the file. Doing so restricts the options for

backwards-compatibility of the MATLAB script and data files, thus further compli-

cating the maintenance of the output system and associated plotting scripts. For these

reasons, the existing output system was deemed inappropriate for the data-intensive

outputs associated with the various new diagnostics being added to SCEPTIC3D (e.g.

those described in sections 2.3, 3.1, and 3.2.5), and so a new output system based on

the Hierarchical Data Format2 version 5 (HDF5) has been developed.

HDF5 is a versatile and powerful format for storing large and/or complex data

sets, and the source code is freely available for download. It was chosen both because

it does not share any of the discussed shortcomings of the ASCII output system, and

because it offers advanced features, such as parallel I/O and complex datasets, that

may be useful in future development of SCEPTIC3D.

The approach taken to the new output system is to store the contents of every

common block to an HDF5 file at the end of the SCEPTIC3D program. HDF5 allows

named groups of datasets in a file, so each Fortran common block has an associated

identically named group in the HDF5 file, and then each variable and array in that

common block is a dataset in the corresponding group. In addition, a few variables

that are not members of a common block are stored in the group 'noncommonblock'

in the HDF5 file.

The choice to store just about everything is made to maximize the ability to go
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back and study aspects of past SCEPTIC3D runs not initially intended or of interest,

as well as to increase the ability to debug the code through inspecting the contents

of all the common blocks using the capabilities of other software such as MATLAB.

For this latter purpose the previous practice of exiting SCEPTIC3D if a problem is

detected has been altered to jumping to the output stage, which allows much easier

debugging of for instance errors that occur after many time-steps and are difficult to

reproduce.

Though it would be convenient if the process of outputting the common block

contents was automated, the present implementation requires the data set name, its

rank (number of dimensions), and the size of each storage and data dimension to

be passed to a custom wrapper function for the particular data type. The wrapper

functions are used to simplify outputting standard Fortran arrays, since the large

flexibility of HDF5 does leave it rather cumbersome to do even simple tasks. Further,

the wrapper functions set the storage dimensions in the HDF5 file to be the same

as the data dimensions, which avoids needlessly large output files. Thus, under the

present implementation, a variable added to a common block in the code should also

be added to the HDF5 output function, unless it is to intentionally be left out of the

HDF5 output file.

Some very large arrays associated with the reinjection scheme are presently not

output unless the -- fulloutput option is passed to SCEPTIC3D. This is done to

reduce the HDF5 file-size somewhat, since storing and moving very large files is

inconveniently slow. That said, the cost of reading a dataset from an HDF5 file is

mainly set by the size of the particular dataset, not the size of the file, so if storage

space and transfers are not an issue the -- fulloutput option can be used without

reservation.

Several command-line tools are available that allow browsing and manipulating

HDF5 files. For instance, h5ls allows the groups and datasets of an HDF5 file to be

browsed much like folders and files on a Linux system, while h5copy allows groups

and datasets to be copied to a different file, for instance for the purposes of storing

or transferring subsets of the HDF5 file. Further, h5dump allows the datasets to be
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inspected much as if they were in an ASCII file, but with greater flexibility and power

of selection. The availability of these tools is another good argument for outputting

as much data as possible, since scripts can easily be written to extract particular

subsets of the data required for a specific application, leaving storage requirements

as the only real argument against excessive output.

For parallel runs of SCEPTIC3D, only the master node presently outputs data,

though in some cases after a reduction across all nodes of a quantity of interest. If

desirable, it would be easy to enable each node to output its own HDF5 file, but an

alternative approach would be to use the parallel I/O capabilities of HDF5 to write

to a single output file from all the nodes. This has however not been explored at

present, and would likely lead to very large storage requirements.

Many of the issues brought up with regard to the ASCII output could alternately

have been resolved by switching to binary Fortran output. However, binary Fortran

output is specific to a certain architecture, and lacks many of the features that make

HDF5 so attractive as a storage format. For example, HDF5 captures not only

the names of the variables (datasets) and their organization into common blocks

(groups), but also the data type and precision in a platform-independent way. An

HDF5 file generated on a 32 bit architecture can thus easily be processed on a 64 bit

architecture and vice-versa. Further, the HDF5 file contains information about the

storage dimensions etc. of its arrays, allowing them to be read into other programs

such as MATLAB without additional external information. The capability to only

read a specific part of the output file is also lacking for binary Fortran output, so

ultimately it does not represent a viable alternative to the implemented HDF5 output.

The widespread support for HDF5 in mathematical and visualization software is

another strength of the format. In addition to frequent analysis and plotting of SCEP-

TIC3D HDF5 data using MATLAB, work is also underway to use VisIt to visualize

data from the HDF5 output files. This requires specifying additional information

about the data in and relationship between the arrays through an XML document,

as well as generating some custom coordinate arrays, but should in principle offer a

means to study the 3D outputs of SCEPTIC3D with a powerful visualization software.
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Chapter 4

Collisional Ion Collection by a

Conducting Sphere

4.1 Perturbation by a Collecting Object

Introducing a collecting object into the model plasma described in sec. 2.1 perturbs

it. For most cases, simple analytic models like those described in sec. 1.1 are not

adequate, and so computational approaches like using SCEPTIC3D are required to

model and understand the system.

Before delving into specific results obtained with the upgraded SCEPTIC3D, is

useful to go over some of the model assumptions and approximations implicitly and

explicitly made in the code. This will inform the choice of which problems to tackle

with SCEPTIC3D, as well as flesh out some caveats that come with the results.

4.1.1 Collecting Object

An ideal collecting object is considered in SCEPTIC3D. It is taken to absorb any

ions and electrons that strike it, while at the same time not emitting any charged

particles. The object can be either insulating or conducting, and in the latter case

can have either a floating or fixed potential.

For insulating or floating potential objects, a steady-state solution requires that
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the electron and ion currents to the object are equal. For an insulating object this

must be true locally everywhere on its surface, while for a conducting floating potential

object it need only hold in an integral sense. If the ion and electron currents to

the conducting object do not balance locally, there will be currents passing between

points on its surface, which must be considered for instance for force calculations in

the presence of a magnetic field.

In true steady state an insulating or floating potential object must emit a neutral

from its surface for each ion it absorbs. However, since the number of plasma ions

impacting an object typically is negligible compared to the number of atoms it com-

prises, a quasi-steady solution could very well involve ions being absorbed without

emitting a neutral, or each ion impact ejecting more than one neutral from the surface

on average.

SCEPTIC3D does not model or track neutrals being ejected from the object sur-

face, and is thus limited to regimes where these are not important. In terms of whether

charge-exchange collisions are affected this is probably not a large restriction, since

the neutral density for plasmas where charge-exchange collisions are important typ-

ically is much greater than the ion density, and any emitted neutrals thus represent

a negligible perturbation to the neutral density. However, in systems where the ion-

ization mean free path is comparable to the extent of the perturbation by the object,

emitted neutrals could be ionized in locations where they significantly affect the ion

density and/or populate trapped or depleted orbits. In that case the emission of

neutrals could affect ion collection in a way not presently captured by SCEPTIC3D.

Another consideration is the force on the object associated with emitted neutrals.

This is an issue that for instance comes up in the context of the rocket-force on dust

grains in tokamak edge plasmas. Presently SCEPTIC3D does not estimate this force,

but since it is not something that needs to be included self-consistently in the PIC

calculation, it could in principle be estimated based on the local ion currents to the

object, though it may be a very problem-dependent quantity.
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4.1.2 Boltzmann Relation

A key assumption in the hybrid-PIC approach used in SCEPTIC3D is that the elec-

trons can be adequately modeled by a Boltzmann relation. This is essential in avoiding

the hundred-fold increase in computational cost associated with also moving electrons

in a PIC manner, but does mean that one has to be careful when applying SCEP-

TIC3D to problems where Boltzmann electrons may not be a good approximation.

There are several ways to derive and/or think about the Boltzmann relation: One

is to consider a fluid model where momentum balance requires that a pressure gradient

(or density gradient at the constant T, assumed in SCEPTIC3D) balance the potential

gradient; another is that a kinetic solution with a Maxwellian distribution of electrons

at one point on a potential gradient is Maxwellian with the same temperature at every

other point on that gradient, but with the electron density varying according to the

Boltzmann relation:

ner= ne o exp(e#/Te), (4.1)

where e is the electron charge, # is the potential, and ne , is the electron density at

the point of zero potential.

In an unperturbed system with uniform density, there could in principle be a

uniform background electric field Ed= Ede, driving electron and ion drifts, balanced

by various drags on the two species (e.g. neutral drag). One can imagine such

a situation being arranged by means of an induced electromotive force (e.g. in a

tokamak), or an externally imposed uniformly varying potential (e.g. by flowing a

current through a cylindrical resistor surrounding the plasma). In such a situation,

it seems plausible to exclude the contribution of the uniform electric field from the

potential used in the Boltzmann relation, such that the constant-density solution is

recovered at infinity. If the total potential (including the contribution from Ed) is #',
then the modified Boltzmann relation is

ne = ne c exp(e[#' + zE]/Te) , (4.2)
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where the total potential satisfies the boundary condition #' = -Ez at infinity. This

is equivalent to regarding the force on the ions as being given by F = -eV# + eEd,

where # = #' + zEd is the potential without the contribution from Ed. One can

then consider eEd to be simply an external force driving the drift, while the electron

density is given by the traditional Boltzmann relation in eq. 4.1; this is the approach

taken to external electric fields in SCEPTIC3D (which are not restricted to be in the

ez direction as in the above example).

Though the modified Boltzmann relation was conveniently defined for an unper-

turbed plasma, and then camouflaged by defining #, it is important to consider the

implicit assumptions involved in then applying that relation to a perturbed poten-

tial, as well as the impact of those assumptions on the validity of using the modified

Boltzmann relation in applications to specific problems. A discussion of this issue in

the context of more specific situations is presented sec. 4.1.3, and it is something that

should be kept in mind when applying SCEPTIC3D to a new type of problem.

4.1.3 External Electric Field

An external electric field, whether in the absence of or perpendicular or parallel to

a magnetic field, is the source of several subtleties which should be discussed, both

in terms of the boundary condition for the potential on the object's surface, and the

implications for the assumption of Boltzmann electrons.

A conducting object shields electric fields in a vacuum, since the potential at its

surface must be constant (whether floating or fixed) in its rest frame. In the presence

of a plasma the potential at the object surface must still be constant, but the shielding

of the field is affected by the presence of the plasma, and must thus be solved for self-

consistently. As previously mentioned the approach taken in SCEPTIC3D is to not

include the external electric field in the outer boundary condition for the potential (#),

so rather the shielding of the external electric field must be included in the boundary

condition at the object surface. Combined with adding the constant acceleration due

to the external electric field to the ions this allows for a self-consistent solution of the

ion motion and potential.
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Insulating objects do not shield electric fields in a vacuum, but in a plasma the

external electric field affects the ion motion, and thus the charging of the object surface

required to locally balance the electron and ion currents. The electron currents are

assumed to depend only on # to be consistent with the use of a Boltzmann factor

in # for the density, and are calculated as described in ref. [33]. Thus, no special

treatment of the inner boundary condition on the potential is required for insulating

objects, but the solution is nonetheless different than in the absence of the electric

field.

Perpendicular Electric Field

In the case of an external electric field perpendicular to a magnetic field, the way

the external field is treated in SCEPTIC3D is equivalent to solving the problem in

the frame moving at the E x B velocity. Transforming to the drifting frame makes

the electric field vanish in the unperturbed region, and leaves the collecting object

moving with velocity equal and opposite to the drift velocity.

Since the E x B drift speed typically is much smaller than the electron thermal

speed, the electrons in the unperturbed region remain Maxwellian. Thus, in the mov-

ing frame the problem from the viewpoint of the electrons is essentially one without

an electric field, i.e. only with an external magnetic field. Along each magnetic field

line the arguments used to derive the Boltzmann relation still hold, so in the moving

frame Boltzmann electrons is an appropriate assumption provided the appropriate

boundary condition for the potential is used at the object surface.

If the object is an insulator, charge will build up on its surface until the ion and

electron currents to each point on the surface are balanced. The magnetic field and

motion of the object will affect ion collection, and thus lead to a varying potential on

the surface of the object.

If the object is a conductor, its charges will feel a v x B force from the object's

motion through the magnetic field in the moving frame, and a uniform electric field

will arise inside the conductor to balance that force. Thus, in the moving frame the

potential at the surface of the conductor is not a constant, and there is a (shielded)
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dipole electric field in the vicinity of the object.

Since the potential at the surface of the conductor is not constant in the moving

frame, neither is the electron density. Transforming back to the stationary frame,

the situation is thus that there is a varying electron density around the equipotential

conductor surface. Similarly, since the electron density near an insulating object is

set based on the potential # in the moving frame, the density will not correspond to

a Boltzmann factor based on the total potential 0' in the stationary frame.

That a varying electron density at the surface of an equipotential is the right

answer in the stationary frame may seems strange, but it is not an unreasonable

answer. Consider for instance a conducting sphere in a strongly magnetized plasma.

In that case the drift can be neglected for an external perpendicular electric field,

and ion and electron motion is restricted to the magnetic field lines. At the probe

surface, the potential is a constant, while at the outer surface the potential varies to

give rise to the electric field. If the density in the unperturbed region is taken to be

constant, then the electron density at the probe will vary since the potential drop

along different magnetic field lines intersecting the surface is different.

No matter how strong the magnetic field is, a conductor should be able to shield

the external electric field in steady state, since doing so only requires a static charge

which can build up over a time much longer than the simulation time. In the case

of a very strong magnetic field, it is possible that currents in the object could lead

to the Hall effect being important in setting the charge distribution on the surface of

the object. However, for realistic operating parameters and conductors this effect is

probably negligible in SCEPTIC3D, though the force due to internal currents crossing

a magnetic field should be considered when examining the forces on the object [3].

Parallel Electric Field

Though the modified Boltzmann relation appears to hold up well in the case of a

perpendicular electric field, its validity in the case of an external electric field parallel

to, or in the absence of a magnetic field, is much more questionable.

A parallel electric field cannot be transformed away, so maintaining Boltzmann
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electrons in the unperturbed case requires balancing the electric force with an average

drag force. To prevent distortions of the distribution function, the average drift ve-

locity must be much smaller than the electron thermal speed, and there should not be

a population of super-thermal (e.g. runaway) electrons, since they would practically

ignore any potential variations and thus clearly not be Boltzmann. Further, if the

distribution function is allowed to be noticeably asymmetric, the response to a left or

right sloping potential perturbation will be different, which is in clear contradiction to

the Boltzmann relation. The distribution function thus really does need to be quite

close to Maxwellian to justify using the Boltzmann relation.

A large enough drag on the electrons to prevent significant distortions of the

distribution function seems difficult to reconcile in a physical system where the ions

are not highly collisional. Further, such a strong drag may imply strong coupling

to another species, which may also lead to a different electron behavior than that

expected from the Boltzmann relation.

Another issue is that if the object is conducting, it will shield the external field,

which will probably make maintaining a balance between drag and the partially

shielded external field a problem. Maintaining such a balance would require the

drag to be proportional to the electric force, which seems an unlikely situation.

All this said, however, it may be that using Boltzmann electrons does not lead to

large errors in many cases despite it being a bad assumption. The reason for this is

that the electron density near electron-repelling objects such as those considered in

SCEPTIC3D is small, so the potential is mainly affected by the ion density. Thus, it is

possible that the results from SCEPTIC3D are more realistic for cases with a parallel

electric field than what one might think based on the discussion in this section. One

caveat to this though is that the electron current to the object is important for floating

potential objects, so the Boltzmann-like assumptions presently used to calculate the

electron currents in SCEPTIC3D could lead to incorrect floating potential and thus

potential structure.

Boltzmann electrons is a common assumption in simulation and theory [34, 35,

21, 36, 37, 38]. However, what sets the present use of Boltzmann electrons aside
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from most other applications is the possible presence of a significant electron drift

due to an electric field. A Boltzmann treatment for non-Maxwellian distributions

has been applied for instance by using a separate Boltzmann relation for each of two

components of a bi-Maxwellian approximation to the non-Maxwellian distribution

[38, 39], but neither of those components were drifting.

Since even the assumption of a uniform parallel electric field may not be a great

approximation to a given physical system, results from SCEPTIC3D for problems

with a parallel electric field are likely to be less quantitatively correct than those for

problems where its underlying assumptions are on more solid footing. Thus, even if

the Boltzmann electron assumption does affect the results noticeably in an unphysical

way, its effects may not be much worse than those of the other assumptions made

in SCEPTIC3D. Thus, provided the caveats listed in this section are kept in mind,

SCEPTIC3D is probably adequate also for a wide range of studies of parallel drifts

driven by an electric field, especially if one is mainly after qualitative changes and

general trends.

4.2 Ion Collection with a Background Neutral Drift

As discussed in sec. 4.1.3, there is question as to the validity of the Boltzmann electron

treatment in SCEPTIC3D for unmagnetized problems where the ion drift is driven by

a background electric field. Ion drift driven by a background neutral flow on the other

hand, or equivalently by motion of the object through the neutrals/plasma, should

be well modeled by SCEPTIC3D. A preliminary examination of how ion collection is

affected by a background drift and neutral collisions has thus been conducted with

the newly upgraded SCEPTIC3D, and is the focus of this section.

SCEPTIC3D was run for a grid of charge-exchange collision frequency vc and back-

ground neutral drift speed vd. A conducting floating potential object was considered,

with ADe = 20 rp and Ti = 0.1 Te. These parameters were chosen to be representative

of for example a dust grain in a dusty-plasma experiment, though there may be other

physical systems for which these parameters are relevant.
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The ion density near the object is shown in fig. 4-1 for a representative sample

of the runs. The ion density is examined to shed light on how collisions and drifts

affect ion collection, such as to better understand the dependence of the collected ion

current on the charge-exchange collisionality and neutral drift speed, which is shown

in fig. 4-2. A more detailed investigation could be carried out to investigate things

like the distribution of current to the object surface etc., but has not been done for

this initial application of SCEPTIC3D, which is intended mainly to showcase its new

capabilities and discuss some of its limitations.

c/fo= 10~-5 vc/fo 10-1 v/fo 3 x 101
20 5 20 5 20 5

15 15 15

10 10 10

5/3 5/ 3 8 5/ 3 .

- \2 -52 -5

-10 /10 -10

-15 -15 -15

- 0 - 0-Q0- -10 0 10 20 -0 20 029 -10 0 10 20 0
Z Z Z

20 5 20 5 20 5

15 15 15

10 10 10

5/ 3 _ 5/ 3 5/ 3

0 30. 3 0 3W

-5/ 2 5

-10 1 -10 -10

-15 -15 -15

-90 -10 0 10 20 0-0 10 0 10 20 - 0 -10 0 20
z z z

C1

20

15

10

5/

0

-5\

-10

-15

-$0 -10 0 10 20

4

5

2

0

20 5

15

10~ 4

5/3 
80

-10

-15

- 10 0 10 20

Figure 4-1: Ion density near the object for representative neutral drift speeds (Vd
increasing downwards) and collisionalities (vc increasing to the right, with fo = c,/r,
being the unit of frequency in SCEPTIC3D). Contours show where the ion density
ni is enhanced or reduced by 20% compared to the unperturbed ion density nio, and
a blue arrow in the lower left corner of each plot shows the direction and relative
strength of the drift.

Moderate levels of charge-exchange collisionality 'destroy' angular momentum by
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Figure 4-2: Collected ion flux against collisionality in an unmagnetized plasma, for

several neutral drift speeds (the legend order matches that of the curves at their

peaks). Here fo = c,/r, is the unit of frequency in SCEPTIC3D, and ji is the ion

current to the sphere. Moderate collisionality is seen to enhance ion collection for

sub-sonic drifts, while large collisionality reduces collection.
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randomizing the ion velocities. Since angular momentum in the collisionless case pre-

vents some ions from approaching the object, this 'destruction' of angular momentum

acts to shrink the region of enhanced ion density near or trailing the object. This is

seen when comparing the first and second columns of fig. 4-1.

Another consequence of the 'destruction' of angular momentum is that the ion

current to the object is enhanced for moderate charge-exchange collisionalities, as is

seen in fig. 4-2. This is only true for sub-sonic drifts, since most of the ions collected

by an object sweeping through the plasma at supersonic speeds are relatively unper-

turbed before being absorbed, and therefore are largely unaffected by charge-exchange

collisions. Thus, as is seen in fig. 4-2, the enhancement of ion collection at moderate

collisionalities seen for the stationary case is weakened as the drift speed increases

from the ion thermal speed to the ion sound speed, above which no enhancement is

seen.

As charge-exchange collisionality is increased beyond the level where it gives rise

to a large ion current enhancement by 'destroying' angular momentum, it also starts

'destroying' radial momentum. This introduces an effective drag on the ions, which

in turn reduces ion collection, causing the turnover and subsequent decrease of the

collected current with collisionality seen in fig. 4-2.

At high levels of charge-exchange collisionality the ions become tightly coupled to

the neutrals, and the moving object ends up sweeping out a region depleted of ions

both at super- and sub-sonic drift speeds, as is seen in the last column of fig. 4-1.

The sound speed is no longer important here since the ions are tightly coupled to the

neutrals, which are taken to be unaffected by the motion of the object. Ignoring any

perturbation of the neutrals by the object may not be a good approximation in the

large-collisionality limit, but the PIC code SCEPTIC3D isn't really designed to treat

this more Monte-Carlo relevant regime anyways, so a breakdown of the assumptions

there is not of great concern.

The dependence of ion collection on charge-exchange collisionality has previously

been studied for the stationary case [26] using SCEPTIC, and comparison of station-

ary runs of SCEPTIC3D with the equivalent runs of SCEPTIC reveals agreement to
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better than 1%, providing a good benchmark for the collision treatment in SCEP-

TIC3D. In principle SCEPTIC3D and SCEPTIC could also be compared for runs

with neutral drift, but this has not been done at present since the implementation of

neutral drifts in SCEPTIC was only recently completed (see sec. 2.3.2).

4.3 Ion Collection with a Background Magnetic

Field

Charge-exchange collisions enable transport of ions across magnetic field lines, offering

a means to repopulate the magnetic shadow associated with collecting objects in a

magnetic field. A preliminary examination of how ion collection is affected by a

background magnetic field and charge-exchange collisions has thus been conducted

with the newly upgraded SCEPTIC3D, and is the focus of this section.

SCEPTIC3D was run for a grid of charge-exchange collision frequency vc and

background magnetic field strength B. A conducting floating potential object was

considered, with ADe = 20 rp and Ti = 0.1 Te. These parameters were chosen to be

representative of for example a dust grain in a dusty-plasma experiment, though there

may be other physical systems for which these parameters are relevant.

The ion density near the object is shown in fig. 4-3 for a representative sample of

the runs. The ion density is examined to shed light on how collisions and a magnetic

field affect ion collection, such as to better understand the dependence of the collected

ion current on the charge-exchange collisionality and magnetic field strength, which

is shown in fig. 4-4.

In the unmagnetized collisionless case, angular momentum conservation limits the

ion current to the object. Adding a magnetic field restricts the perpendicular ion

motion, resulting in increased collection from regions along the field from the object,

and decreased collections from elsewhere. The result is a magnetic shadow of depleted

ion density extending from the object in the direction of the magnetic field. This is

seen in the first column of fig. 4-3, where the collisionality is low enough for the runs
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Figure 4-3: Ion density near the object for representative magnetizations (B increas-
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to be effectively collisionless.

For the magnetic shadow to be finite in extent, there must be a mechanism

by which the depleted regions are repopulated, which requires cross-field transport.

Charge-exchange collisions can produce such transport, since the new velocities drawn

randomly from the neutral distribution have no memory of the gyro-motion of the ion

being replaced. This is seen when comparing columns one and two of fig. 4-3, where

charge-exchange collisions are seen to gradually diffuse and repopulate the magnetic

shadow. Column three shows that for vc > fci (the ion cyclotron frequency) the

gyro-motion is disrupted, rendering the magnetic field unimportant.

Though the mechanism is different for the unmagnetized and highly magnetized

cases, moderate charge-exchange collisionality is seen in fig. 4-4 to enhance the col-

lected ion current for all magnetizations considered. In fact, the ratio of the maximum

current to the collisionless current increases from - 2 for the unmagnetized case to

~ 4 for the strongly magnetized case. However, there are caveats to this observation,

as elaborated upon below.

The SCEPTIC3D domain is spherical, while the magnetic shadow for strongly

magnetized cases is essentially a rod extending from the object. This causes some

difficulty, as the boundary conditions and reinjection scheme are not designed to

have the perturbation due to the object extend to the boundary. In the stationary

collisionless case there is no mechanism for repopulating the magnetic shadow, so it

extending to the boundary is inevitable. Even for moderate magnetizations at low

collisionalities the required size of the computational domain becomes very large, and

this is difficult to handle since the volume of plasma tracked scales with the cube of

the radius of the outer boundary, while the surface area of (and thus current collected

by) the object stays unchanged.

The results for cases where the magnetic shadow extends to the outer boundary

should be treated with caution: Since particles are injected at that intersection as if

the plasma was unperturbed, a larger flux of ions is likely injected into the magnetic

shadow than is realistic. This may lead to an incorrect ion current to, and thus

floating potential of, the object, and thus also an incorrect potential profile near the
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object.

102



Chapter 5

Discussion and Conclusions

5.1 New Capabilities of SCEPTIC3D

Several new capabilities have been added to SCEPTIC3D:

" Charge-exchange collisions are now included, allowing one to specify the charge-

exchange collision frequency through the -k option.

" The magnitude of a background neutral drift can be set with the -vn option,

and its direction specified through the -cnd (cos(O,,)) and -psind (V,) inputs.

" The -v and -cd options now specify the electric field driven drift relative to the

neutral drift for non-zero collision frequency, but the actual ion drift may be

more complicated (see sec. 2.1.4).

" A new Monte Carlo reinjection scheme has been added to handle reinjection

for the more complicated distribution functions that arise in the presence of

charge-exchange collisions, neutral drifts, and parallel electric fields. It can in

principle handle any statistically represented distribution function, and thus

enables future studies of the sensitivity of the solution to the injected distribu-

tion, as well as benchmarking against analytic models that inject a simplified

ion distribution.
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" The three ID distribution functions in each Cartesian coordinate can now be

stored on a 3D grid, allowing detailed examination of the ion distribution func-

tion, and enabling future code-experiment comparisons with (e.g.) the VINETA

experiment.

" The Poisson solver has been modified to make it more robust, enabling stable

runs for grids and parameters that were previously inaccessible.

* A -- nonlin option has been added, which leads SCEPTIC3D to solve the full

Poisson equation at each time-step, rather than linearizing the electron response

around the potential at the previous time-step.

" A new HDF5 output system has been added to allow binary output of large

data-structures, easing post-processing and analysis, as well as debugging of

certain parts of the code.

A version of SCEPTIC3D including some of these improvements is currently avail-

able for download', and a version including all these upgrades will be made available

in the future.

5.2 Collisional Ion Collection

The upgraded SCEPTIC3D has been applied to the problem of collisional ion col-

lection by a conducting sphere in a drifting or magnetized plasma. The preliminary

results presented in chap. 4 showcase the new capabilities of SCEPTIC3D, and pro-

vide a starting point for a more detailed analysis to be conducted in the future. A

discussion of the applicability of SCEPTIC3D to various problems is also given in that

chapter, and the following are the main points of that discussion and the presented

results:

* The assumption of Boltzmann electrons made in SCEPTIC3D is expected to be

adequate for problems with neutral drifts, magnetic fields, and perpendicular

lhttp: //silas,. ps-fc.mit . edu/sceptic/
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electric fields, but may be a less good approximation for problems with an

electric field not perpendicular to a magnetic field.

* The enhancement of the collected current at moderate collisionalities in the

stationary plasma case is also seen for sub-sonic neutral drift speeds (< c,),

though it weakens with increasing drift speed and is not present for super-sonic

speeds.

* For low to moderate collisionalities the ion density near the object and in its

wake are enhanced, since angular momentum prevents collection of many ions

orbiting near the object, and ion focusing into the wake enhances the density

there.

" For high collisionalities the object sweeps out a region of depleted ion density,

since the tight coupling to the neutrals prevents ions from immediately repop-

ulating the region behind the object.

" When considering a magnetic field rather than a neutral drift, the relative en-

hancement of ion collection at moderate collisionalities is seen to increase with

magnetic field strength. The results for low collisionalities may not be quanti-

tatively correct because the magnetic shadow extended to the domain edge, but

the general observation about the collisional enhancement is expected to hold.

* Charge-exchange collisions repopulate the magnetic shadow of the object by

providing cross-field transport, thereby increasing ion collection. In the limit of

high collisionality the gyro-motion is disrupted, so the magnetic field becomes

unimportant.

5.3 Future Work

A number of things could be investigated in the future:

e The difference in charging of conducting and insulating spheres in a magnetized

plasma is something that may shortly be examined experimentally by a group
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in Kiel, and might therefore be interesting to investigate with SCEPTIC3D.

" It would be useful to expand the preliminary results presented in this thesis on

drifting or magnetizing plasmas, to develop a more thorough understanding of

how charge-exchange collisions affect ion collection in those settings.

" More complicated scenarios that take advantage of the full 3D capabilities of

SCEPTIC3D with charge-exchange collisions should be pursued.

* The sensitivity of the solution and ion collection to the injected ion distribution

could be examined, both to investigate the impact of the simplifying assump-

tions made for the unperturbed plasma, as well as the sensitivity of probes and

dust grain charging to the background ion distribution.
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