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Abstract

By using the hyperfine 21 cm transition to map out the distribution of neutral hy-
drogen at high redshifts, hydrogen cosmology has the potential to place exquisite
constraints on fundamental cosmological parameters, as well as to provide direct ob-
servations of our Universe prior to the formation of the first luminous objects. How-
ever, this theoretical promise has yet to become observational reality. Chief amongst
the observational obstacles are a need for extremely well-calibrated instruments and
methods for dealing with foreground contaminants such as Galactic synchrotron ra-
diation.

In this thesis we explore a number of these challenges by proposing and testing a
variety of techniques for calibration, foreground subtraction, and signal extraction in
hydrogen cosmology. For tomographic hydrogen cosmology experiments, we explore a
calibration algorithm known as redundant baseline calibration, extending treatments
found in the existing literature to include rigorous calculations of uncertainties and
extensions to not-quite-redundant baselines. We use a principal component analysis
to model foregrounds, and take advantage of the resulting sparseness of foreground
spectra to propose various foreground subtraction algorithms. These include fitting
low-order polynomials to spectra (either in image space or Fourier space) and in-
verse variance weighting. The latter method is described in a unified mathematical
framework that includes power spectrum estimation. Foreground subtraction is also
explored in the context of global signal experiments, and data analysis methods that
incorporate angular information are presented. Finally, we apply many of the afore-
mentioned methods to data from the Murchison Widefield Array, placing an upper
limit on the Epoch of Reionization power spectrum at redshift z = 9.1.

Thesis Supervisor: Max Erik Tegmark
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Chapter 1

Introduction

1.1 The Theoretical Promise of Hydrogen Cosmol-

ogy

In recent decades, cosmology has emerged as a mature experimental science. A wide

range of observational probes, including the cosmic microwave background, galaxy

surveys, gravitational lensing, supernova studies, cluster counts, chemical abundance

studies, and others have complemented theoretical models to provide a concordance

ΛCDM model of our Universe (Peebles, 2012; Reid et al., 2010; Komatsu et al.,

2011). In this model, primordial fluctuations in the density field were amplified by

gravitational clustering to produce the rich hierarchy of structures that we see today,

all in an expanding space that switched from decelerated to accelerated expansion

when our Universe was about half its current age.

Much of the success of observational cosmology comes from measurements of the

cosmic microwave background (the CMB) and galaxy surveys. Together, these probes

have (for instance) provided measurements of spatial curvature to within 1% and

provided independent confirmation of dark energy, complementing measurements of

supernova recession velocities (Tegmark et al., 2006). Remarkably, the CMB and

galaxy surveys are now sensitive enough to provide limits on fundamental physics

that have nothing to do with astrophysics. For instance, our best-fit models of the

CMB now weakly prefer a non-zero neutrino mass, although the data have yet to

provide a statistical significant detection (Komatsu et al., 2011).

Despite this success, there is much more that can be done. In particular, CMB

experiments and galaxy surveys map out only a tiny fraction of our Universe’s co-

moving volume, as we can see in Figure 1-1. The thick black line denotes the CMB,
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Figure 1-1: A scale diagram of the comoving volume of our observable Universe,
reproduced from Mao et al. (2008). We are located at the center of the diagram, the
red and yellow regions denote the reach of galaxy surveys, and the cosmic microwave
background is shown in the thick black line. Hydrogen cosmology using the 21 cm
line can potentially map out the entire region in light blue, while the dark blue strip
shows the range of redshifts probed by current generation experiments.
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which, as a surface of last scattering, provides information mostly from just a thin

shell at high redshift1. Galaxy surveys probe a three-dimensional volume, but limita-

tions on sensitivity and the abundance of galaxies at high redshifts limit their radial

extent to low redshifts. Since error bars on theoretical parameters typically scale

as 1/
√
N , where N is the number of independent cosmological modes measured, we

would clearly do much better if we could map out a larger fraction of our observable

Universe.

Hydrogen cosmology (also known as 21 cm cosmology) has the ability fill the un-

explored volume between galaxy surveys and the CMB. The basic idea is to use the

hyperfine 21 cm transition of the hydrogen atom to map the spatial distribution of

hydrogen. Since one is observing an optically thin spectral line, the resulting maps

are fully three-dimensional, because the observed wavelength of the signal can be

compared to the rest wavelength of 21 cm to determine the redshift. Moreover, the

technique only requires diffuse concentrations of hydrogen and not collapsed astro-

nomical objects such as galaxies, allowing it to probe epochs of our cosmic history

that come before galaxy formation.

In hydrogen cosmology, neutral hydrogen atoms in the inter-galactic medium are

backlit by the CMB, causing observable emission or absorption in the redshifted 21 cm

line. Whether the signal appears as an emission feature or an absorption feature (or

does not appear at all) depends on the interplay between the CMB temperature Tγ

and the spin temperature Ts, which is defined by

n1

n0

=
g1

g0

e−E∗/kBTs , (1.1)

where n1 and n0 are the relative number densities of neutral hydrogen atoms in the

excited and ground hyperfine states respectively, g1 = 3 and g0 = 1 are the statistical

weights, kB is Boltzmann’s constant, and E∗ = 5.9× 10−6 eV is the hyperfine energy

splitting. The spin temperature quantifies the relative number of hydrogen in the

excited versus the ground hyperfine state, and translates into an observed 21 cm

brightness temperature Tb via (Furlanetto et al., 2006)

Tb(r̂, ν) = (27 mK)xH

(
Ts − Tγ
Ts

)(
1 + z

10

)1/2

(1+δb)(1+δx)

[
∂vr/∂r

(1 + z)H(z)

]−1

, (1.2)

1There are some exceptions to this, such as the Integrated Sachs-Wolfe effect, the Sunyaez-
Zeldovich effect, and gravitational lensing of the CMB. These are all modifications to the primary
anisotropies of the CMB that are imprinted on the signal as CMB photons travel from the surface
of last scattering to our telescopes.
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where r̂ is a unit vector specifying a direction in the sky, ν is the measured frequency,

x̄H is the mean neutral hydrogen fraction, z is the redshift, H(z) is the Hubble

parameter, vr is the velocity along the radial (line-of-sight) direction r (including

both the peculiar velocity as well as the Hubble flow), δb is the fractional baryon

overdensity, and δx is the neutral fraction overdensity. Since xH , δb, δx, and Ts all

vary with position, the 21 cm signal is anisotropic. Mapping the signal at multiple

redshifts also provides information on the evolution of the underlying physics.

In Figure 1-2 we show theoretical predictions for the spatially averaged 21 cm

brightness temperature. One sees that the redshift range over which the brightness

temperature is non-zero is quite considerable, leading to the vast light blue region in

Figure 1-1, which shows the potential reach of hydrogen cosmology. Given this large

range of redshifts, the 21 cm line can in principle probe a wide variety of different

phenomena, and in what follows we will split our discussion into three epochs. First,

a high redshift epoch from z ∼ 200 to z ∼ 40 provides a view of our Universe

prior to the formation of the first luminous objects, allowing “clean” studies of the

underlying cosmology. A low redshift epoch from z ∼ 6 to z ∼ 2 comes after the

formation of the first luminous objects, allowing “late” effects such as dark energy to

be studied. In between these two epochs is an intermediate period from z ∼ 40 to

z ∼ 6, enabling studies of the formation of the first luminous objects. For each epoch

we will consider two main types of experiments: tomographic measurements seek to

measure the spatial fluctuation of the brightness temperature field, encapsulating the

information in statistical measures such as the power spectrum, while global signal

measurements constrain the evolution of the spatially averaged signal with redshift.

1.1.1 High redshifts (z ∼ 200 to z ∼ 40)

After recombination, the intergalactic medium (IGM) is mostly composed of neutral

hydrogen. However, a small density of residual electrons remain, and these can Comp-

ton scatter off CMB photons and subsequently collide with hydrogen atoms. This

causes a tight coupling between the spin temperature and the CMB temperature,

equilibrating them and causing there to be no net absorption or emission of 21 cm

photons. The result is a zero brightness temperature, and hydrogen cosmology is

impossible until the coupling becomes weak at z ∼ 200 (see Pritchard & Loeb (2010)

or Chapter 7 for more details).

Between z ∼ 200 to z ∼ 40, the hydrogen atoms trace the dark matter distribution,

and so a measurement of the 21 cm power spectrum amounts to a measurement of the
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Figure 1-2: The theoretically expected global (i.e. spatially averaged) 21 cm signal.
The solid black curve represents a fiducial model, and includes various effects such
as X-ray heating of the inter-galactic medium (IGM), Lyman-α interactions between
the first luminous objects and the IGM, and the reionization of the IGM. The other
curves represent extreme, pedagogical models that do not represent physically possible
scenarios, but are used to illustrate the various physical processes involved. In the
model given by the blue curve, star formation does not occur, and the resulting lack
of Lyman-α photons removes a coupling between the 21 cm transition and the gas
temperature of the IGM (known as the Wouthysen-Field effect Wouthuysen (1952)).
This has the effect of removing the absorption trough around 70 MHz. The red curve
is a saturated model, obtained by taking the limit Ts � Tγ and xH = 1 in Equation
1.2. The dotted curve represents a model where there is negligible reheating of the
IGM, and the dashed curve is one where the IGM is never ionized. Please see Chapter
7 for more details on the underlying physics of this figure. Reproduced from Pritchard
& Loeb (2010).
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matter power spectrum. Given the enormous volume that such a measurement would

cover, the error bars on such a power spectrum would be exquisite. Moreover, being

a higher redshift probe of the matter power spectrum than galaxy surveys, more

cosmological modes are in the linear regime, and the theoretical modeling of the

signal becomes simpler. Forecasts suggest that this may result in large improvements

in our measurements of cosmological parameters. The cosmological constraint on the

sum of the neutrino masses, for instance, may improve by two orders of magnitude

(Mao et al., 2008). The small-scale properties of dark matter would also be better

understood (Tegmark & Zaldarriaga, 2009). Studies of non-Gaussianity would also

improve, since at these high redshifts there are no luminous objects, so there is less

“gastrophysics” to worry about (Cooray et al., 2008).

1.1.2 Low redshifts (z ∼ 6 to z ∼ 2)

At low redshifts, our Universe has already been reionized by the first stars and galax-

ies, and there is little neutral hydrogen left in the IGM. Naively, this would suggest

that hydrogen cosmology should be impossible after reionization. However, studies

have suggested that pockets of self-shielded hydrogen residing in galaxies can give

rise to an aggregate signal that can be detected if averaged over a large number of

galaxies.

One application of this would be to once again use hydrogen as a tracer of the un-

derlying matter power spectrum (Visbal et al., 2009; Loeb & Wyithe, 2008). However,

now that the hydrogen resides in non-linear astronomical objects, work must be done

to model the bias factor, which can be scale and redshift dependent (Wyithe & Loeb,

2009). Another application is to look for the baryon acoustic oscillation (BAO) scale

(Wyithe et al., 2008; Chang et al., 2008; Masui et al., 2010; Mao, 2012). Doing so

using the redshifted 21 cm line rather than galaxy surveys has two advantages. First,

the 21 cm measurement can be made over a rather wide range of redshifts (z ∼ 2 to

4 for the first generation of experiments), providing a standard ruler over wide epoch

during which there is substantial cosmological evolution. This can be used to place

constraints on the time evolution of the dark energy equation of state w. The second

advantage is that these 21 cm BAO experiments do not require high angular resolu-

tion, for they need to average over multiple galaxies by design. In contrast, a galaxy

survey needs to distinguish between contaminant field stars and distant galaxies, so

good angular resolution is needed even if one is interested only in measuring large

scale features such as the BAO scale.
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1.1.3 Intermediate redshifts (z ∼ 40 to z ∼ 6)

At intermediate redshifts, the first luminous sources form, and our Universe undergoes

reionization, transitioning from being mostly neutral to mostly ionized during what is

known as the Epoch of Reionization (EoR). Unsurprisingly, this epoch contains rich

21 cm signatures. For instance, suppose one were to measure the 21 cm brightness

temperature distribution Tb(r). From this, one can obtain the power spectrum PT (k),

which is defined by the equation

〈T̂b(k)∗T̂b(k
′)〉 = (2π)3δ(k− k′)PT (k), (1.3)

where T̂b is the three-dimensional spatial Fourier transform of Tb, and δ is the Dirac

delta function. For convenience, it is sometimes useful to consider the quantity

∆21(k) ≡
√

k3

2π2
PT (k), (1.4)

whose square measures the contribution to the root-mean-square fluctuations in Tb(r)

per logarithmic bin in k. In Figure 1-3 we show some example plots of ∆21(k),

reproduced from Morales & Wyithe (2009). The different curves and percentages

refer to the averaged ionized fraction of the inter-galactic medium. Clearly, the shape

of the power spectrum changes with ionization fraction, and theoretical simulations

suggest that the ionization fraction is much more important in determining the shape

than the redshift z (McQuinn et al., 2006a) . Thus, by measuring the power spectrum

as a function of redshift, the ionization history of our Universe can be constrained.

As reionization proceeds, power shifts from fine scales (high k) to larger scales (low

k) before disappearing completely. Heuristically, this is because the fluctuations in

21 cm emission mostly trace fluctuations in the density field when the ionized fraction

is low, and the density fluctuations have much power at large k (at least as far as the

quantity ∆21(k) is concerned). As reionization proceeds, the fluctuations are domi-

nated by the topology of ionized “bubbles” from which there is no 21 cm emission.

These bubbles are formed in the vicinity of the first luminous sources as these sources

ionize the IGM around them, and imprint a “knee” in the power spectrum, which

moves to increasingly large scales as these bubbles grow. By studying the power spec-

trum in detail, then, constraints can be placed on the process of reionization (Madau

et al., 1997; Tozzi et al., 2000a,b; Iliev et al., 2002; Furlanetto et al., 2004a; Loeb &

Zaldarriaga, 2004; Furlanetto et al., 2004b; Barkana & Loeb, 2005b; Furlanetto et al.,

2009). For instance, a measurement of the EoR power spectrum will be a good probe
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Figure 1-3: Theoretical models for the quantity ∆21(k), with different curves signi-
fying different ionization fractions of the IGM. Reproduced from Morales & Wyithe
(2009).

of the nature of the first ionizing sources, since the characteristic masses of these

sources affect the sizes of the ionized bubbles (McQuinn et al., 2006a). Reionization

that is driven by larger mass objects can be thought of as reionization that is driven

by objects that are more biased relative to the overall density field. This gives rise

to larger bubbles, since the biased sources are more clustered and thus have greater

ionizing power.

EoR measurements using 21 cm techniques will be particularly valuable because

they are the only direct probe of the relevant redshifts. The CMB places constraints

on reionization, but these constraints are indirect. For instance, free electrons in the

post-reionization epoch will scatter CMB photons as they travel from the surface of

last scattering to our telescopes, and this scattering is measured when one fits for the

optical depth in the CMB data (Komatsu et al., 2011). However, the optical depth

is an integrated quantity, and is therefore insensitive to changes in the reionization

history as long as the column density of free electrons remains the same. The kinetic

Sunyaev-Zeldovich (kSZ) signature in the CMB also depends on reionization, but
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to go from the measured kSZ signal to reionization parameters requires elaborate

reionization simulations (Zahn et al., 2011; Mesinger et al., 2012). The Gunn-Peterson

effect limits our ability to directly probe all but the very end of reionization using

traditional optical or IR measurements (Fan et al., 2006), and studies of individual

high redshift galaxies using the Hubble Space Telescope (for example) are at best an

indirect probe of the statistical properties of reionization (Robertson et al., 2010).

Hydrogen cosmology thus has the potential to play a unique role in our under-

standing of the EoR, via both the tomographic experiments and the global signal

observations. These EoR measurements will be our focus for the rest of this thesis,

although it should be noted that many of the techniques that we develop are also

applicable to the high and low redshift regimes.

1.2 The Experimental Reality of Hydrogen Cos-

mology

While theoretically promising, hydrogen cosmology is observationally difficult. This

is for two principal reasons. First, hydrogen cosmology requires radio telescopes of

extraordinary sensitivity. From Equation 1.2 and Figure 1-2, we see that the cosmo-

logical signal is expected to be extremely faint, on the order of ∼ 10’s of mK. Thus,

it is essential that the noise levels in one’s instrument are comparable or below this.

The second difficulty in hydrogen cosmology is presence of non-cosmological sources

of radio flux i.e. foreground contaminants such as Galactic synchrotron radiation. In

this section, we will discuss these problems and the limitations they impose.

Consider first the issue of sensitivity. For concreteness, let us examine the noise

level in an imaging experiment2, where one seeks to measure the brightness temper-

ature of the redshifted 21 cm signal as a function of redshift and angle on the sky.

Manipulating the standard radiometer equation yields an r.m.s noise of

δTnoise =
D2
max

Atot

Tsys√
∆ν∆t

, (1.5)

where Atot is the total effective collecting area of one’s instrument, Tsys is the system

temperature, ∆ν is the frequency channel bandwidth, ∆t is the integration time, and

2In what follows we quote expressions for the instrumental noise level that are appropriate only
for imaging experiments. These expressions require modification to be directly applicable to to-
mographic measurements. However, the mathematics is provided only for concreteness, and the
conceptual arguments carry over to tomographic measurements.
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Dmax is the diameter over which receiving elements are spread (Furlanetto et al.,

2006). For instance, with a single dish radio telescope Dmax is equal to the physical

diameter of the dish, whereas with a radio interferometer array Dmax is given by the

distance between the most widely separated receiving elements. Naturally, one wishes

to design an instrument that minimizes δTnoise, and in the following paragraphs we

will briefly review the trade-offs to be considered.

Equation 1.5 clearly suggests that one should integrate for as long as possible, since

δTnoise → 0 as ∆t → ∞. However, given that one has finite resources, the problem

is somewhat more subtle. For instance, with a limited field of view, should the total

integration time be spread over multiple parts of the sky? Or should one concentrate

on getting the longest integration over a single field? This problem has been solved

in the context of CMB measurements (Tegmark, 1997a), and the answer depends on

the signal-to-noise (S/N) ratio of the experiment. At low S/N, the measurement is

limited by instrumental noise, so it is advantageous to focus on a single field on the

sky. At high S/N, cosmological measurements are limited by sample variance, where

a single field may contain cosmological fluctuations that are unrepresentative of the

“true” underlying statistics of the observable Universe. In this regime it is therefore

advantageous to sample multiple fields, reducing sample variance. Between these two

extremes, it can be shown mathematically that one should integrate over a single

field until one reaches S/N≈ 1 before imaging multiple fields. Current instruments

are firmly in the low S/N limit, and stand to gain from further integration.

Another way to increase sensitivity is to reduce Dmax. For an interferometer ar-

ray (say) with a fixed number of receiving elements (and thus fixed total collecting

area Atot), this corresponds to taking the receiving elements and placing them in as

tightly packed a physical configuration as possible. This results in an interferometer

with a large number of redundant baselines (pairs of antennas separated by some

displacement vector). Since a given baseline of an interferometer array measures a

particular Fourier mode on the sky, this provides us with an intuitive understanding

of why tightly packed arrays have high sensitivity—with a large number of identical

baselines, one measures the same Fourier mode multiple times, and the signal can be

summed coherently. This results in a power sensitivity that scales with Nb, where Nb

is the number of identical/redundant baselines that go into determining a particular

k mode. This is in contrast with combining measurements with the same wavenum-

ber k but with differing (non-identical) orientations, where the summations must be

performed incoherently, yielding only a
√
Nb gain (Parsons et al., 2011). Thus, in the

low S/N regime discussed in the previous paragraph, one improves the measurement
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by designing arrays that are maximally redundant. An example of such an array con-

figuration would one where the receiving elements are arranged in a regularly spaced

rectangular grid3. Such an arrangement has the added advantage that visibilities

can be computed in N logN time rather than N2 time, where N is the number of

receiving elements. There are thus many reasons to build compact, redundant arrays.

Conventionally, however, there has been resistance to the notion of building com-

pact arrays. Since the angular resolution of an instrument is roughly given by

θ ∼ λ/Dmax, the cost of building a compact array to increase sensitivity is decreased

angular resolution. From a theoretical perspective, this is fine as the cosmological

signal is expected to be isotropic, and thus one can compensate for poor angular

resolution by having high spectral resolution. From a practical perspective, how-

ever, critics of compact arrays point out that most calibration algorithms rely on

the ability to resolve known, bright point sources. They point out—correctly—that

if an instrument is not correctly calibrated, then the considerations of Equation 1.5

are irrelevant, for the dominant source of error would not be noise, but rather, cal-

ibration offsets. The problem is worse than simply an overall, multiplicative flux

scale, as calibration parameters may be off for individual receiving elements within a

larger array, distorting any resulting images. Whether or not highly redundant arrays

can be precisely calibrated without the luxury of high angular resolution is an open

question. One promising technique for doing so is known as redundant baseline cal-

ibration, where the fact that identical baselines should yield identical measurements

is used to self-consistently solve for calibration parameters. In Chapter 2 we examine

this possibility, and recently the technique has met with some experimental success

(Noorishad et al., 2012).

Unlike the parameters of Equation 1.5 that have been considered so far, the system

temperature Tsys is not one that can be easily improved upon by better instrumental

design, which reduces only the receiver noise temperature from the electronics of one’s

receiving elements. Receiver noise is not the dominant contribution to Tsys at the low

radio frequencies relevant to hydrogen cosmology. Instead, instruments tend to be sky-

noise dominated (Morales & Wyithe, 2009), where Tsys ≈ Tsky, the sky temperature.

This temperature is typically large, as it is dominated not by the cosmological signal

but instead by non-cosmological foregrounds such as Galactic synchrotron emission.

These foregrounds are extremely bright at low frequencies, reaching temperatures of

100’s to 1000’s of K (Wang et al., 2006; de Oliveira-Costa et al., 2008; Shaver et al.,

3The discussion that follows can in fact be generalized to any hierarchy of regular grids, not just
single rectangular grids. Please see Tegmark & Zaldarriaga (2010) for details.
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1999), giving rise to a large Tsky. Since receiver noise temperatures can be easily kept

to a magnitude of ∼ 10’s of K (Morales & Wyithe, 2009), the dominant source is

noise is sky noise.

While our discussion thus far has been guided by the mathematics of an imaging

experiment, the qualitative conclusions that we have reached carry over to tomo-

graphic experiments, where one seeks to measure a power spectrum of the 21 cm

brightness fluctuations P (k). In the noise-limited (as opposed to sample variance-

limited) regime, the errors in a power spectrum estimated by an interferometric mea-

surement can be approximated by the scaling relation

δP (k) ∝ A−3/2
e B−1/2k−3/2n(k⊥)

T 2
sys

∆t
, (1.6)

where B is the total bandwidth of the entire observation, k is the spatial wavenum-

ber of temperature fluctuations, and n(k⊥) is the number of interferometer baselines

sensitive to angular Fourier modes with wavenumber k⊥ (Furlanetto et al., 2006). It

is normalized so that the integral over the half-plane of angular Fourier space k⊥ is

equal to the number of baselines. Since all quantities that appear in the numerator of

Equation 1.5 appear in the numerator of Equation 1.6 and similarly for quantities in

the denominator, our qualitative arguments hold whether we are referring to imaging

or power spectrum measurements. Put succinctly, the foreground sky is bright at low

frequencies, giving rise to a high sky-noise dominated system temperature Tsys, which

necessitates compact arrays with large collecting area and long integration times to

sufficiently suppress noise fluctuations for a sensitive measurement of the cosmological

signal.

Besides being a source of noise in our measurement, foregrounds provide yet an-

other headache in our quest to detect the cosmological signal. Since they are truly a

sky signal (albeit not the signal we are after), foregrounds will appear in our images

of the sky, and need to be removed before the cosmological power becomes appar-

ent. Thus, even in the limit of an ideal, noiseless experiment, it is necessary to have

a robust way to remove foreground contamination from the data. The challenge is

daunting at frequencies relevant to hydrogen cosmology. At such frequencies (100 to

200 MHz, and potentially even lower for next-generation instruments), Galactic syn-

chrotron radiation, bright radio point sources, and a continuum of unresolved radio

sources all contribute to the radio sky. As mentioned above, Galactic synchrotron ra-

diation has a brightness temperature that can reach ∼ 100’s of K, and the unresolved

radio sources (mostly due to galactic synchrotron from distant unresolvable galaxies)
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will typically contribute another few ∼ 10’s of K (Wang et al., 2006; de Oliveira-Costa

et al., 2008; Shaver et al., 1999). The resolved point sources (being point sources) are

not directly comparable in temperature units, but do contribute significantly, and are

a significant contaminant that must be dealt with.

The aforementioned foreground sources must be subtracted in a way that not

only mitigates their effects on the data, but also leaves the cosmological signal un-

touched as far as possible. While the cosmological community has had much success

removing foregrounds from CMB measurements in the past, the foreground problem

in hydrogen cosmology is more difficult to deal with, for several reasons. First, CMB

measurements are typically conducted at much higher frequencies (∼ 100 GHz). Most

foregrounds decrease in amplitude towards higher frequencies, and thus are much dim-

mer at CMB experiment-appropriate frequencies. In fact, the foregrounds are so much

dimmer that the cosmological signal is the dominant signal in a CMB experiment that

is pointed away from the Galactic plane. In addition, the CMB spectrum is almost

precisely that of a blackbody (although extremely minor perturbations may arise

due to effects such as the thermal Sunyaev-Zeldovich effect). The formal brightness

temperature of the cosmological CMB signal is thus frequency-independent, which is

not the case for foregrounds. By measuring the CMB at different frequencies, then,

one has a set of redundant measurements that can be used to distinguish signal from

foregrounds. In hydrogen cosmology, we do not have this luxury, for as we mentioned

above, different observed frequencies of the 21 cm line correspond to different red-

shifts, and therefore contain unique information. Designing a foreground subtraction

algorithm that can clean effectively while being lossless (i.e. does not destroy infor-

mation about the cosmological signal) is therefore a non-trivial task, and we discuss

this in Chapter 6 after having built up to it in Chapters 3, 4, and 5.

1.3 Current and Near-Future Hydrogen Cosmol-

ogy Experiments

Despite the challenges highlighted in the previous section, the lure of rich scientific

rewards have led to a large number of hydrogen cosmology experiments in recent

years. A small number make use of existing telescope facilities [such as the Giant

Metrewave Radio Telescope (GMRT)]. The remainder represent new instrumentation

development, and the resulting experiments are in various stages of the scientific

cycle, with some currently in active data acquisition modes while others exist only as
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promising proposals. We shall now give a brief overview of the relevant intermediate

redshift experimental efforts.

1.3.1 Global Signal Experiments

Currently, the only global signal experiment with real data is the Experiment to

Detect the Global EoR Signal (EDGES) (Bowman et al., 2008; Bowman & Rogers,

2010). EDGES consists of a single dipole antenna deployed in Western Australia,

operating between 100 and 200 MHz. After three months of (non-continuous) obser-

vation, the instrument has produced a spectrum averaged over most of the southern

celestial sphere—a good approximation to the global spectrum.

Unfortunately, the global spectrum that has been measured is not simply that

of the cosmological signal. The thermal noise is quite well-suppressed (about 6 mK),

but the measured spectrum is dominated by strong foregrounds. Because foregrounds

are expected to be spectrally smooth (to a good approximation, they are well-fit by

power laws with small corrections (Wang et al., 2006)), EDGES is able to rule out

abrupt changes in the cosmological global signal. Such a signal would arise if, for

instance, our Universe experienced a rapid and abrupt epoch of reionization. This

would mean a sudden change in ionization fraction at some redshift, thus giving a

sudden drop-off of redshifted 21 cm emission. Based on such reasoning, EDGES has

been able to place a lower limit (at the 95% confidence level) of ∆z > 0.06 for the

duration of reionization.

Beyond EDGES, a number of other global signal experiments have been proposed.

The Dark Ages Radio Explorer (DARE) is a proposed satellite experiment that will

target a lower frequency range (40 to 120 MHz), making it a powerful probe of early

reionization physics, as discussed earlier in this chapter. If funded, DARE will be

placed in a lunar orbit, using the Moon as a shield for terrestrial sources of radio

frequency interference. The receiving elements on the satellite consist of a pair of

dipoles, with a ground plane that narrows the beam pattern to a full-width-half-

maximum power of 57◦ at 75 MHz (Burns et al., 2012). Among other factors, this

narrower beam pattern (compared to an experiment like EDGES) will help DARE

better separate foregrounds from the cosmological signal, and early simulations sug-

gest that the satellite will be able to easily detect signatures of reionization (Harker

et al., 2012). However, these simulations may be overly optimistic as far as foreground

models go, and in Chapter 7 we improve on the assumptions made in previous studies

and propose new data analysis algorithms.
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Targeting approximately the same frequency range as DARE but from the ground

is the Large-aperture Experiment to Detect the dark Ages (LEDA) experiment (Green-

hill & Bernardi, 2012). The instrument will be located at a Long Wavelength Array

(LWA) station, and uses four dipoles to make a global signal measurement at 30 to

88 MHz. These dipoles will also be correlated with 256 LWA receiving elements for

calibration and foreground subtraction purposes. Detailed projections of the LEDA’s

performance have yet to be published.

1.3.2 Tomographic Experiments

Tomographic hydrogen cosmology experiments are those that seek to either image

the redshifted 21 cm emission or to measure the power spectrum. They are typically

targeted at higher frequencies than global signal experiments. They therefore probe

late reionization scenarios, when ionized bubbles around the first ionizing sources

imprint strong spatial features into the data that are amenable to characterization

by power spectra. At higher frequencies, foregrounds are also fainter, lessening their

contaminating effect.

The GMRT-Epoch of Reionization (GMRT-EoR) experiment currently has the

best upper limit on the EoR power spectrum (Paciga et al., 2010). The experiment

consists of 30 antennas, each with a diameter of 45 m (thus giving a large collecting

area). The antennas are operated as an interferometer array, with 14 antennas ar-

ranged in a tight central core of less than 1 km. The rest of the antennas are spaced far

apart, with the longest baseline (separation between antennas) being 25 km. Operat-

ing with a bandwidth of 16.7 MHz centered around 150 MHz, GMRT-EoR targets a

redshift range of 8.1 < z < 9.2. Their limits on the fluctuation power per logarithmic

bin in k given by ∆2(k) = k3

2π2P (k) are ∼ 10−1 K2 and ∼ 10−3 K2 at k = 0.2hMpc−1

and k = 0.65hMpc−1 respectively. These limits are based on 50 hours of observation,

and more time has been granted for further integration.

Unlike GMRT-EoR, the Murchison Widefield Array (MWA) is a custom-built

instrument for EoR measurements (Lonsdale et al., 2009). The MWA consists of

groups of 16 dipoles that are analog beamformed into a single receiving element (a

“tile”). The eventual goal is to form an interferometer array with 512 such tiles, with

the outputs from the tiles individually digitized and correlated as an interferometer

array. A prototype 32-tile system has recently completed a series of data runs, and in

Chapter 8 we present preliminary results from a power spectrum measurement using

data centered around 140 MHz.
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The Precision Array for Probing the Epoch of Reionization (PAPER), like the

MWA, is custom-built for the EoR (Parsons et al., 2010). The two experiments,

however, differ in their design philosophies. The MWA’s antenna tiles are relatively

cheap but numerous, producing a well-controlled synthesized beam. The plan is then

to employ a real-time system to simultaneously fit for calibration parameters using

a large number of calibration sources. PAPER, on the other hand, currently uses

64 extremely stable and well-characterized antenna elements, each of which are dual-

polarization dipole antennas mounted on a ground-screen structure. The stability

of their antenna elements aids calibration, and all-sky foreground maps have been

published using data between 139 MHz and 174 MHz from the experiment (Parsons

et al., 2010). PAPER is currently experimenting with redundant baseline interferom-

eter layouts, the hope being that redundant calibration algorithms will be sufficient to

control calibration systematics, allowing the array to take advantage of the sensitivity

gains mentioned above.

The Low Frequency Array (LOFAR) is designed to be a general purpose low

frequency radio observatory, spanning a frequency range of 10 to 250 MHz (Jelic

et al., 2008). The observatory is comprised of a large interferometer array spread

over northwestern Europe, but the EoR measurement will primarily use 864 anten-

nas concentrated in a central core in the Netherlands. The 864 antennas are each

formed from 4× 4 collections of dipoles which are analog beamformed. These anten-

nas/collections of dipoles are further sorted into 36 stations with digital beamforming

(and therefore multiple-beamforming) capability. LOFAR intends to take advantage

of supercomputing resources to fit for calibration and nuisance parameters using a

maximum likelihood formalism. EoR results are expected from LOFAR next year.

In summary, the experimental reality of hydrogen cosmology is one that is best

described as a work-in-progress. Sensitivity and foreground subtraction requirements

are formidable, though hopefully not insurmountable, and multiple approaches to the

problem are being pursued simultaneously by different groups.

1.4 Roadmap

The goal of this thesis is to tackle many of the observational obstacles highlighted

in the previous section. The vast majority of the following chapters should be con-

sidered “theoretical experiment”, and involve forecasting, simulation, and algorithm

development:

• Chapter 2, titled “Precision Calibration of Radio Interferometers Using Redun-

42



dant Baselines” deals with the problem of sensitivity in hydrogen cosmology.

Specifically, we consider whether the technique of redundant baseline calibration

can be used to calibrate radio interferometers to a sufficient precision to meet

their design sensitivities for hydrogen cosmology. The chapter is based on a

published paper (Liu et al., 2010), written in collaboration with Max Tegmark,

Scott Morrison, Andrew Lutomirski, and Matias Zaldarriaga. The idea of ap-

plying redundant calibration to arrays designed for hydrogen cosmology orig-

inated from Max Tegmark, and Andrew Lutomirski and Scott Morrison did

some preliminary numerical explorations. I produced all the numerical results

presented in the paper and developed the generalized formalism for calibrating

near-redundant arrays.

• Chapter 3, titled “How well can we measure and understand foregrounds with

21 cm experiments?” moves onto the issue of foreground contamination. While

guided by the eventual need to remove foregrounds from the data, the focus

is on our ability to model foregrounds. Using a principal component analysis,

we show that foregrounds have “simple” spectra, in the sense that they can

be parameterized by a small handful of parameters. The chapter is based on

a published paper (Liu & Tegmark, 2012), written in collaboration with Max

Tegmark, who suggested the use of the Wiener filter. I performed all calcula-

tions.

• Chapter 4, titled “Will point sources spoil 21cm tomography?” deals with the ac-

tual subtraction of foregrounds. We simulate a popular proposal for foreground

subtraction in hydrogen cosmology, where low-order polynomials are subtracted

from spectra along individual lines of sight in the data. The chapter is based

on the published paper (Liu et al., 2009b), written in collaboration with Max

Tegmark and Matias Zaldarriaga. Max Tegmark suggested the project, Matias

Zaldarriaga provided critical feedback, and I performed all calculations.

• Chapter 5, titled “An Improved Method for 21cm Foreground Removal” is a

direct sequel to Chapter 4. We show that the method presented in Chapter

4 can be improved at virtually no extra computational cost by cleaning fore-

grounds Fourier-mode-by-Fourier-mode, instead of line-of-sight-by-line-of-sight.

The chapter is based on a published paper (Liu et al., 2009a), written in col-

laboration with Max Tegmark, Judd Bowman, Jacqueline Hewitt, and Matias

Zaldarriaga. I performed most of the calculations in this paper, while Judd
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Bowman simulated an independent pipeline to verify the results. Max Tegmark,

Jacqueline Hewitt, and Matias Zaldarriaga provided vital feedback.

• Chapter 6, titled “A Method for 21 cm Power Spectrum Estimation in the Pres-

ence of Foregrounds” generalizes the foreground subtraction methods presented

in previous chapters, and places foreground subtraction in a unified framework

with power spectrum estimation. The chapter is based on a published paper

(Liu & Tegmark, 2011), written in collaboration with Max Tegmark, who con-

ceived of this project and developed many of the relevant mathematical tools

in the context of previous CMB and galaxy survey work. I adapted these tools

for hydrogen cosmology and performed all the calculations.

• Chapter 7, titled “Optimizing global 21 cm signal measurements with spectral

and spatial information” moves away from tomographic measurements and fo-

cuses on measurements of the global 21 cm signal. An optimal algorithm for

extracting the cosmological signal is derived and simulated. The chapter is

based on research done in collaboration with Jonathan Pritchard, Max Tegmark,

and Abraham Loeb. Abraham Loeb suggested the project, Jonathan Pritchard

provided simulations of the theoretical signal, Max Tegmark provided critical

feedback, and I developed the formalism and performed all the calculations.

This chapter has yet to be published.

Following these chapters, we conclude with an attempted power spectrum measure-

ment using the Murchison Widefield Array:

• Chapter 8, titled “An Empirical Upper Limit on the Redshifted 21 cm Power

Spectrum with the Murchison Widefield Array” uses the 32-tile MWA system

to place an upper limit on the redshifted 21 cm power spectrum. The chapter

is based on research done in collaboration with Christopher Williams, Max

Tegmark, and Jacqueline Hewitt. Christopher Williams reduced the data from

its raw output to maps of the sky, while I took the maps of the sky and estimated

power spectra and error statistics from them using the quadratic estimator

formalism. Jacqueline Hewitt and Max Tegmark provided critical feedback and

experience. This chapter has yet to be published.

It goes without saying that in all of the projects listed above, Max Tegmark served as

my research advisor, providing feedback and guidance in every aspect of the research.
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Chapter 2

Precision Calibration of Radio

Interferometers Using Redundant

Baselines

2.1 Introduction

Technological advances of recent years have enabled the design and construction of

radio telescopes with broadband frequency coverage, low instrumental noise, moderate

angular resolution, high spectral resolution, and wide fields of view. As mentioned

in Chapter 1, these instruments have generated considerable scientific interest due

to their unique potential to do 21 cm cosmology, mapping the high-redshift universe

using redshifted radio emission from neutral hydrogen.

From a practical standpoint, however, none of the aforementioned applications

will be feasible without reliable algorithms for instrumental calibration. Compared

to traditional radio astronomy experiments, instruments designed for 21 cm tomog-

raphy will require particularly precise calibration because of the immense foreground

subtraction challenges involved. Epoch of Reionization experiments, for example, will

be attempting to extract cosmological signals from beneath foregrounds that are of

order 104 times brighter (de Oliveira-Costa et al., 2008). Such procedures, where one

must subtract strong foregrounds from a bright sky to uncover weak cosmological sig-

nals, are particularly susceptible to calibration errors. A prime example of this is the

effect that a miscalibration has on the subtraction of bright, resolved point sources.

Datta et al. (2009), for instance, argued that bright point sources must be localized

to extremely high positional accuracy in order for their subtraction to be successful,
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and Liu et al. (2009b) showed that failure to do so could comprise one’s subsequent

ability to subtract any unresolved point sources, making the detection of the 21 cm

cosmological signal difficult. This places stringent requirements on calibration accu-

racy.

While standard algorithms are available for calibrating radio interferometers, the

unprecedented challenges faced by 21 cm tomography and the advent of a new class

of large radio arrays (such as PAPER (Parsons et al., 2010), LOFAR (Jelic et al.,

2008), MWA (Lonsdale et al., 2009), CRT (Peterson et al., 2006), the Omniscope

(Tegmark & Zaldarriaga, 2010), and the SKA (Carilli & Rawlings, 2004)) mean that

it is timely to consider the relative merits of various algorithms. For example, several

authors (Bhatnagar et al., 2008; Morales & Matejek, 2009) have pointed out that these

new high precision radio arrays require close attention to be paid to heterogeneities

in the primary beams of different antenna elements. In this chapter, we focus on

the technique of redundant calibration, which takes advantage of the fact that these

new telescopes generically possess a large number of redundant or near-redundant

baselines. This property of exact or near-redundancy is not an accident, and arises

from the science requirements of 21 cm tomography1, where the demanding need for

high sensitivity on large spatial scales calls for arrays with a large number of short

baselines (Morales, 2005; Lidz et al., 2008). Since these arrays typically also have very

wide fields-of-view and in many cases operate at frequencies where all-sky survey data

is scarce, the fewer assumptions one needs to make about the structure of the sky

signal, the better. This is an advantage that redundant calibration has over other

calibration methods — no a priori assumptions need to be made about calibrator

sources.

The use of redundant baselines for calibration goes far back. For example, Noor-

dam & de Bruyn (1982) used this approach to produce high dynamic range images

of 3C84, and similar techniques have been used in Solar imaging (Ishiguro, 1974;

Ramesh et al., 1999). The methods used are described in detail in Wieringa (1992);

Yang (1988); Pearson & Readhead (1984), and closely resemble the logarithmic im-

plementation we review in Section 2.2.3. In this chapter, we build on this previous

work and extend it in several ways:

1. We provide a detailed examination of the errors and biases involved in existing

redundant baseline methods.
1Note that we are not advocating the redesign of arrays to achieve redundancy for the sake of

redundant baseline calibration. The design of an array should be driven by its science requirements,
and the ability to use redundant calibration should simply be viewed as an option to be explored if
there happens to be redundancy.
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2. We introduce methods to mitigate (or, in the case of biases, eliminate) these

problems.

3. We show how slight deviations from prefect redundancy and coplanarity can be

incorporated into the analysis,

with the view that it may be necessary to correct for all these effects in order to

achieve the precision calibration needed for precision cosmology.

The rest of the chapter is organized as follows. After defining our notation, we

describe the simplest possible calibration algorithm (i.e. point source calibration) in

Section 2.2.1. In Section 2.2.3 we review the redundant baseline calibration proposed

by Wieringa (1992). Readers familiar with radio interferometer calibration techniques

are advised to skip to Section 2.2.4, where we examine Wieringa’s scheme more closely

by deriving the optimal weightings for its fitting procedure. In Section 2.2.5 we focus

on simulations of redundant calibration for monolithic square arrays, which show that

existing redundant calibration algorithms have certain undesirable error properties.

These properties suggest a linearized variation that we propose in Section 2.2.7. In

Section 2.3 we consider redundant calibration algorithms and point source calibration

schemes as extreme cases of a generalized calibration formalism, which allows us to

treat the case of near-redundant baseline calibration. We summarize our conclusions

in Section 2.4.

2.2 Calibration Using Redundant Baselines

We begin by defining some basic notation. Suppose an antenna i measures a signal

si at a given instant2. This signal can be written in terms of a complex gain factor

gi, the antenna’s instrumental noise contribution ni, and the true sky signal xi that

would be measured in the limit of perfect gain and no noise:

si = gixi + ni. (2.1)

2More precisely, si refers to frequency domain data at a given instant. In other words, it is the
result of dividing the time-ordered data into several blocks, each of which is then Fourier transformed
in the time direction to give a signal si that is both a function of frequency and time (albeit at a
coarser time resolution than the original time-ordered data).
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Each baseline measures the correlation between the two signals from the two partici-

pating antennas:

cij ≡ 〈s∗i sj〉 (2.2a)

= g∗i gj〈x∗ixj〉+ 〈n∗inj〉+ g∗i 〈x∗inj〉+ gj〈n∗ixj〉 (2.2b)

= g∗i gj〈x∗ixj〉+ nresij ≡ g∗i gjyi−j + nresij , (2.2c)

where we have denoted the true correlation 〈x∗ixj〉 by yi−j, and the angled brackets

〈. . . 〉 denote time averages. The index i−j is not to be taken literally but is intended

to signify the fact that any given correlation should depend only on the relative posi-

tions of the two antennas. As is usual in radio interferometry, we have assumed that

noise contributions from different antennas are uncorrelated, and that instrumental

noise is uncorrelated with the sky signal3. This means that 〈n∗ixj〉 reduces to 〈n∗i 〉〈xj〉,
and since 〈ni〉 → 0 in the limit of long integration times, we can assume that the

last three terms in Equation 2.2b average to some residual noise level nres. The size

of nres will of course depend on the details of the instrument, but in general will be

on the order of Tsys/
√
τ∆ν, where Tsys is some fiducial system temperature, τ is the

total integration time, and ∆ν is the bandwidth. For the purposes of this chapter, the

details of the noise term do not matter, and for notational convenience we will drop

the superscript “res” from now on. The key qualitative results of this chapter (such

as the fact that many existing redundant baseline calibration schemes are biased) do

not depend on the noise level.

It should be noted that the equation for cij presented above does not represent the

most general form possible for the measured correlations. So-called non-closing errors,

for example, can result in gain factors that do not factor neatly on an antenna-by-

antenna basis. In this chapter we will forgo a discussion of these errors, with the view

that a good number of these contributions can be mitigated (although not eliminated

completely) by good hardware design. Alternatively, our results may be interpreted

as best-case scenario upper limits on calibration quality.

Since the gain factors in Equation 2.2c are in general complex, we can parameterize

them by an amplitude gain η and a phase ϕ by letting gi ≡ eηi+iϕi . Our equation

3This assumption is expected to be valid so long as the antennas are far enough apart that
mutual coupling effects do not significantly affect the data. Noorishad et al. (2012) found that such
effects mainly caused sidelobe beam patterns to be non-identical, which is in principle bad news for
redundant calibration. In practice, however, they found that it is still possible to use redundant
calibration to produce calibration results that are competitive with more traditional techniques.
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then becomes

cij = exp [(ηi + ηj) + i(ϕj − ϕi)] yi−j + nij. (2.3)

The goal of any radio interferometer is to extract the true correlations yi−j (from

which one can construct a sky map using Fourier transforms) from the measured

correlations cij. Formally, however, this is an unsolvable problem for the generic

case, as one can see from Equation 2.3 — with N antennas, one has N(N − 1)/2

measured correlations (cij’s), which are insufficient to solve for the N(N − 1)/2 true

correlations (yi−j’s) in addition to the 2N unknown η’s and ϕ’s. (The nij noise terms

are also unknown quantities, but are generally not treated as ones that need to be

solved for, but as noise to be minimized in a least-squares fit). In abstract terms,

all calibration schemes can be thought of as methods for reducing the number of

unknowns on the right hand side of Equation 2.3 so that the system of equations

becomes overdetermined and the η’s and ϕ’s can be solved (or fit) for.

2.2.1 Basic Point Source Calibration

The most straightforward way to calibrate a radio telescope is to image a single bright

point source. A point source has constant amplitude in uv-space, and thus yi−j is

a complex number whose complex amplitude is independent of baseline. Moreover,

the phase of yi−j must also be zero, since by definition we are only “looking” at the

bright point source if our radio array is phased so that the phase center lies on the

source. Thus, yi−j = S, and Equation 2.3 reduces to

cij = exp [(ηi + ηj) + i(ϕj − ϕi)]S + nij, (2.4)

which is an overdetermined set of equations for all but the smallest arrays, since we

have N(N −1)/2 complex inputs on the left hand side but only 2N real numbers (η’s

and ϕ’s) to solve for on the right hand side. The system is therefore solvable, up to

two intrinsic degeneracies: the overall gain
∑

i ηi is indeterminate, as is the overall

phase
∑

i ϕi. These degeneracies, however, can be easily dealt with by having some

knowledge of our instrument and our calibration source. For instance, the overall

gain can be computed if the calibrator source is a catalogued source with known flux

density.

It is important to note that the point source calibration method we have presented

in this section represents only the simplest, most straightforward way in which one
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could calibrate a radio telescope. There exist far more sophisticated methods4, such

as the many self-calibration schemes that are capable of calibrating a radio telescope

off most reasonable sky signals. In practice, one almost never needs to use basic

point source calibration, for it is just as easy to use a self-calibration algorithm. The

scheme described here should therefore be considered as no more than a “toy model”

for calibration.

2.2.2 Redundant Baseline Calibration

The main drawback of the approach described in the previous section is that it re-

quires the existence of an isolated bright point source. This requirement becomes

increasingly difficult to fulfill as cosmological science drivers push radio telescopes

towards regimes of higher sensitivity and wider fields of view. While self calibration

methods have been shown to produce high dynamic range maps over wide fields of

view and do not require the existence of isolated bright point sources, they are reliant

on having a reasonable a priori model of the sky. Thus, if possible it may be prefer-

able to opt for redundant calibration, which is completely model independent. With

the emergence of telescopes with high levels of redundancy (such as the Cylinder Ra-

dio Telescope — see Peterson et al. (2006) — or any omniscopes5 like those described

in Tegmark & Zaldarriaga (2009, 2010)) redundant baseline calibration becomes a

competitive possibility.

Mathematically, if an array has a large number of redundant baselines, then one

can reduce the number of unknowns on the right hand side of Equation 2.3 by de-

manding that the true visibilities yi−j for a set of identical baselines be the same.

Since the number of measured visibilities cij’s stays the same, our system of equa-

tions becomes overdetermined provided there are a sufficient number of redundant

baselines, and it becomes possible to fit for the η and ϕ parameters.

As an example, consider a one-dimensional array of five radio antennas where the

antennas are equally spaced. In this case, one has four unique baselines (of lengths

1, 2, 3, and 4), and 10 measured correlations. Thus, one must fit for 18 real numbers

(four complex numbers from the true visibilities of the four unique baselines, plus five

4See Cornwell & Fomalont (1999) or Rau et al. (2009), for example, for nice reviews.
5We define an omniscope as any instrument where antenna elements are arranged on a regular

grid, and full digitized data is collected on a per element basis without any beamforming.
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η’s and five ϕ’s) from 20 numbers (10 complex measured correlations):

c1,2 = exp [(η1 + η2) + i(ϕ2 − ϕ1)] y1 + n1,2

c2,3 = exp [(η2 + η3) + i(ϕ3 − ϕ2)] y1 + n2,3

... (all four baselines of length 1)

c1,3 = exp [(η1 + η3) + i(ϕ3 − ϕ1)] y2 + n1,3

c2,4 = exp [(η2 + η4) + i(ϕ4 − ϕ2)] y2 + n2,4 (2.5)
... (all three baselines of length 2)

c1,4 = exp [(η1 + η4) + i(ϕ4 − ϕ1)] y3 + n1,4

... (both baselines of length 3)

c1,5 = exp [(η1 + η5) + i(ϕ5 − ϕ1)] y4 + n1,5.

As is usual in radio interferometry, we have omitted equations corresponding to base-

lines of length zero, i.e. autocorrelations of the data from a single antenna. This is

because autocorrelation measurements carry with them correlated noise terms, and

thus are likely to be much noiser than other correlated measurements.

In the following sections we will present two methods for explicitly solving Equa-

tion 2.5. We begin in Section 2.2.3 with a logarithmic method, which is very similar

to one described by Wieringa (1992). This method is the simplest way to implement

a redundant baseline calibration scheme, but suffers from several problems which we

detail in Section 2.2.5 and 2.2.6. In Section 2.2.7, we show how these problems can

be solved with an alternative method based on linearization.

2.2.3 The Logarithmic Implementation

We proceed by rewriting our equations in the following way:

cij = g∗i gjyi−j

(
1 +

nij
g∗i gjyi−j

)
. (2.6)

Taking the logarithm gives

ln cij = ηi + ηj + i(ϕj − ϕi) + ln yi−j + ln

(
1 +

nij
g∗i gjyi−j

)
︸ ︷︷ ︸

≡wij

, (2.7)
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and requiring that the real and imaginary parts be separately equal gives linear equa-

tions of the form

ln |ci,j| = ηi + ηj + ln |yi−j|+ Rewij (2.8a)

arg |ci,j| = ϕj − ϕi + arg |yi−j|+ Imwij. (2.8b)

Note that the amplitude and phase calibrations have now decoupled6, and can thus

be written as two separate matrix systems. The amplitude calibration, for example,

takes the form

ln |c1,2|
ln |c2,3|
ln |c3,4|
ln |c4,5|
ln |c1,3|
ln |c2,4|
ln |c3,5|

...

ln |c2,5|
ln |c1,5|


︸ ︷︷ ︸

≡d

=



1 1 0 0 0 1 0 0 0

0 1 1 0 0 1 0 0 0

0 0 1 1 0 1 0 0 0

0 0 0 1 1 1 0 0 0

1 0 1 0 0 0 1 0 0

0 1 0 1 0 1 1 0 0

0 0 1 0 1 1 1 0 0
...

...
...

0 1 0 0 1 0 0 1 0

1 0 0 0 1 0 0 0 1


︸ ︷︷ ︸

≡A



η1

η2

η3

η4

η5

ln |y1|
ln |y2|
ln |y3|
ln |y4|


︸ ︷︷ ︸

≡x

+



s1,2

s2,3

s3,4

s4,5

s1,3

s2,4

s3,5

...

s2,5

s1,5


︸ ︷︷ ︸
≡Rew

, (2.9)

for the one-dimensional, five-element array considered in Section 2.2.2. The vector d

stores the measured correlations, the matrix A is completely determined by the array

configuration, and the x is what we hope to solve for.

As it currently stands, however, this set of linear equations has no unique solution

even in the absence of noise (i.e. even when w = 0). This can be seen from the fact

that the vector xnull = (1, 1, 1, 1, 1,−2,−2,−2,−2) (written here as a row vector for

convenience) lies in the null space of A (i.e. Axnull = 0), so for any solution x0, one

can form a new solution x0+xnull. The new solution corresponds to adding a constant

to all η’s, which — since g ≡ exp(η + iϕ) — is equivalent to multiplying all gains by

a constant factor and simultaneously dividing all the sky signals by the same factor.

6From a rigorous standpoint, it is not strictly true that the amplitude and phase calibrations of an
interferometer decouple. Indeed, this is evident even in our simple model, where Rewij and Imwij
both contain factors of the complex gain g ≡ eη+iϕ, which means that Equations 2.8a and 2.8b are in
principle coupled, even if only weakly so. However, one must remember that the noise parameters are
treated simply as given numbers which are not solved for when solving these calibration equations.
This means that in finding the best fit solution to Equations 2.8a and 2.8b, the η and ϕ calibrations
can be performed separately. It is only in this sense that the systems are “decoupled”.
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Physically, this is an expression of the fact that internal calibration schemes (i.e.

schemes like this one where the calibration is done by exploiting internal mathematical

consistencies) are insensitive to the absolute gain of the radio interferometer as a

whole, a problem which is present even performing a simple point source calibration,

as we noted in Section 2.2.1.

This mathematical degeneracy in absolute amplitude calibration can be broken by

arbitrarily specifying an absolute gain level. For example, one can add the equation

0 =
∑
i

ηi (2.10)

to the system of equations, thus ensuring that one cannot uniformly elevate the

gain levels and still satisfy all constraints. The set of equations governing the phase

calibration require the addition of a similar equation, since the absolute phase of

a system is not a physical meaningful quantity and therefore must be arbitrarily

specified:

0 =
∑
i

ϕi. (2.11)

With the phase calibration, however, there exist two additional degeneracies: the

calibration is insensitive to tilts of the entire telescope in either the x or the y direction,

since such tilts are equivalent to rotations of the sky and redundant algorithms are

(by design) independent of the nature of the sky signal. To break these degeneracies,

one adds the following equations:

0 =
∑
i

rx,iϕi (2.12a)

0 =
∑
i

ry,iϕj, (2.12b)

where ri ≡ (rx,i, ry,i) denotes the physical location of the ith antenna in the array.

While these extra equations are somewhat arbitrary (the L.H.S. of Equation 2.10,

for instance, can be any real number), the true gain, phase, and tilt parameters can

always be fixed after-the-fact by referring to published flux densities and locations of

known, catalogued bright point sources in the final sky maps.

With these four degeneracies broken, our equations can be solved using the familiar

least-squares estimator x̂ for the parameter vector:

x̂ =
[
AtN−1A

]−1
AtN−1d. (2.13)
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Here, N is the noise covariance matrix, which takes the form 〈Re w Re wt〉 for the

amplitude calibration and 〈Im w Im wt〉 for the phase calibration. In the following

section we examine the form of this matrix in detail. Note that since the parameter

vector x contains not only the calibration factors η and ϕ but also the true sky

correlations yi−j, one can solve for the true sky signal directly from the uncalibrated

correlations d, as one expects from any self or redundant calibration scheme.

This concludes our review of the Wieringa (1992) redundant calibration method,

cast in notation conducive to the development of the new material that follows. It

is worth noting that in Wieringa (1992), the noise covariance matrix N is set to the

identity. In the next section, we show that this is not the optimal weighting to use for

the calibration fit, and derive the noise covariance matrix that corresponds to inverse

variance weighting.

2.2.4 The Noise Covariance Matrix

The form of N will depend on one’s model for the instrumental noise. In what

follows, we will for convenience assume that the noise is Gaussian, small compared to

the signal, and uncorrelated between baselines; generalization to other noise models is

straightforward7. Although these assumptions are not necessary for calibration (since

Equation 2.13 can be implemented for any invertible choice of N), making them will

allow us to gain a more intuitive understanding of the errors involved. Recalling the

form of the noise term after taking the logarithm of our equations, we can say

wij = ln

(
1 +

nij
g∗i gjyi−j

)
≈ nij
g∗i gjyi−j

, (2.14)

where we have invoked the assumption of high signal (g∗i gjyi−j) to noise (nij) to

expand the logarithm. Since cij = g∗i gjyi−j + nij, we can rewrite this as

wij ≈
nij

cij − nij
≈ nij
cij
, (2.15)

where we have neglected higher order terms. Equation 2.15 is more convenient than

Equation 2.14 because it is written in terms of the measured correlation cij instead

of the noiseless g∗i gjyi−j. Since the logarithmic scheme separates the real and imag-

7Typically, the electronic noise will be uncorrelated between different antennas/amplifier chains.
This means that the noise correlation matrix N for the baseline will be highly sparse but not diagonal:
away from its diagonal, it will have nonzero entries for precisely those pairs of baselines which have an
antenna in common. This sparseness is very helpful, making the computations numerically feasible
even for massive arrays as described below.
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inary parts of the calibration, the crucial quantity is not wij but rather its real (or

imaginary) part:

wij ≈
nij
cij

=
e−iφ

|cij|
(nx + iny) (2.16a)

=
1

|cij|
(cosφ− i sinφ)(nx + iny) (2.16b)

⇒ Rewij =
1

|cij|
(nx cosφ+ ny sinφ), (2.16c)

where φ ≡ arg cij. With this result, we can form the noise covariance matrix N ≡
〈Re w Re wt〉. Since we are assuming that the noise is uncorrelated between different

baselines, our matrix must be diagonal, and its components can be written in the

form Nαβ = 〈(Re wα)2〉δαβ where δαβ is the Kronecker delta, and α and β are Greek

baseline indices formed from pairs of Latin antenna indices. For example, the baseline

formed by antennas i = 1 and j = 2 might be labeled baseline α = 1, whereas that

formed by antennas i = 1 and j = 3 might be given baseline index α = 2. The

diagonal components are given by

Nαα = 〈nαnα〉 (2.17a)

=
1

|cα|2
(〈nxnx〉︸ ︷︷ ︸
≡σ2

cos2 φ+ 2 〈nxny〉︸ ︷︷ ︸
=0

cosφ sinφ+ 〈nyny〉︸ ︷︷ ︸
≡σ2

sin2 φ) (2.17b)

=
σ2

|cα|2
, (2.17c)

where we have assumed that the real and imaginary parts of the residual noise n are

independently Gaussian distributed with spread σ2. This expression provides a simple

prescription for the inverse variance weighting of Equation 2.13: one simply weights

each measured correlation by the square modulus of itself (the σ2 in the numerator

is irrelevant in the computation of the estimator x̂ because the two factors of N in

Equation 2.13 ensure that any constants of proportionality cancel out).

For the phase calibration, the fact that inverse variance weighting corresponds to

weighting by 1/|c|2 has a simple interpretation. In Figure 2-1, we plot various corre-

lations on the complex plane. The green dots represent a set of simulated noiseless

visibilities, while the red triangles show what the baselines of a noisy 4 by 4 regu-

lar square antenna array would measure. From the plot, it is clear that for a given

amount of noise, visibilities that are closer to the origin of the complex plane (i.e.

those with smaller |c|) are more susceptible to loss of phase (arg c) information from
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Figure 2-1: A plot of true visibilities (green dots) and measured noisy visibilities
(red triangles) on the complex plane. The blue lines delineate the phase extent of the
noisy visibilities from two sets of redundant baselines. One sees that in the presence of
noise, visibilities closer to the origin are more susceptible to loss of phase information.

noise. The gain (log |c|) errors are similarly large for such visibilities. These visibili-

ties should be given less weight in the overall fit, which is what the inverse variance

weighting achieves.

2.2.5 Simulation Results and Error Properties

In Figures 2-2 and 2-3, we show simulated calibration results of a 16 antenna element

interferometer. The sky signal used in the simulations was that of a Gaussian random

field. That such a sky is somewhat unrealistic is irrelevant, since redundant calibration

schemes are sky-independent8 by construction.

Like in Figure 2-1, the antennas in these simulations were arranged in a 4 by 4

square grid, with the antenna spacings assumed to be completely regular. The pre-

8That is, provided we exclude unreasonable mathematical exceptions such as a sky devoid of any
sources.
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Figure 2-2: Scatter plot of simulated vs. recovered antenna gain parameter η for a 4
by 4 square array with a signal-to-noise ratio of 10.
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Figure 2-3: Scatter plot of simulated vs. recovered antenna phase parameter ϕ for a
4 by 4 square array with a signal-to-noise ratio of 10.
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cise physical separation between adjacent antennas need not be specified, because a

dilation of the entire array layout changes only the sky signal measured by the inter-

ferometer, and not the pattern of baseline redundancies. Repeating the simulations

with rescaled versions of the same array is therefore unnecessary, again because of

the fact that we can calibrate from any sky signal. The same reasoning makes it

unnecessary to specify an observing frequency for the simulations.

In the plots, it is clear that there is some scatter in the recovered antenna parame-

ters. This is due to non-zero instrumental noise, which was simulated to be Gaussian

i.e. nij in Equation 2.2c was taken to be a Gaussian random variable. Rather than

using a specific noise model to fix the amplitude of the noise, we simply parameterize

the problem in terms of the signal-to-noise ratio (SNR). Figures 2-2 and 2-3 show

the results for an SNR of 10. (Such an SNR would be typical for an interferome-

ter with bandwidth ∆ν ≈ 10 kHz and integration time τ ≈ 10 s observing Galactic

synchrotron emission at 150 MHz). The scatter seen in these figures can be viewed

as error bars in the final calibration parameters outputted from the calibration. To

quantify these errors, we can compute the deviation ε ≡ x− x̂ and form the quantity

Σ ≡ 〈εεt〉 =
[
AtN−1A

]−1
, (2.18)

where the last equality can be proved with a little algebra and Equation 2.13 (Tegmark,

1997b). The square root of the diagonal elements of Σ then give us the expected error

bars on the corresponding elements in x̂. For example, σ1, the expected error in the

calibration of the first antenna’s η, is given by (Σ11)1/2 if one arranges the elements

of the parameter vector x in the manner shown in Equation 2.9.

The fact that our system is linear means that to understand the errors in our

calibration, we need only compute error bars from simulations of systems with an

SNR of 1; the errors from systems of arbitrary SNR can be scaled accordingly. To

see this, consider Equation 2.17c, which we can rewrite by scaling out some fiducial

mean value |c0| for the magnitude of the visibilities:

Nαβ =
σ2

|cα|2
δαβ =

σ2

|c0|2|c′α|2
δαβ =

1

(SNR)2

δαβ
|c′α|2

(2.19a)

≡
N′αβ

(SNR)2
, (2.19b)

where we have defined normalized visibilities c′α and a normalized noise covariance
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matrix N′ ≡ δαβ
|c′α|2

. Plugging this into Equation 2.18 gives

Σ =
[
AtN−1A

]−1
=

1

(SNR)2

[
AtN′

−1
A
]−1

. (2.20)

We therefore see that in what follows, general conclusions for any SNR can be scaled

from our simulations of a system with an SNR of 1.

Although redundant calibration schemes make it possible to calibrate an interfer-

ometer using any reasonable sky signal, it is important to point out that the quality

of the calibration, or in other words, the error bars predicted by Equation 2.20, are

sky-dependent. To see this, consider a situation where the sky signal is dominated by

a small number of Fourier modes whose wavevectors are of precisely the right mag-

nitude and orientation for its power to be picked up by only the longest baselines of

an array. Since our noise covariance matrix is proportional to 1/|c|, using such a sky

to calibrate our array will give small error bars for the antennas that are part of the

longest baselines and relatively large error bars for all other antennas. On the other

hand, a sky that has comparable power across all scales is likely to yield calibration

error bars that are more consistent across different antennas. Given this dependence

of calibration quality on sky signal, in what follows we compute ensemble-averaged

error bars based on random realizations of our Gaussian skies to give a sense of the

typically attainable accuracy.

From our simulations, we find that the dependence of calibration quality on an-

tenna location is quite weak. This can be seen from the scale on Figure 2-4, where

we show the expected error bars (estimated by taking an average of 30 random real-

izations) in the recovered η for the antennas that comprise a regularly spaced 18 by

18 square interferometer. Far more important than antenna location in determining

the calibration errors is the total number of antennas in an array. In Figure 2-5, we

show the average9 error in η as a function of the number of antennas in a square ar-

ray. The error Σ1/2 roughly asymptotes to a 1/
√
N dependence, where N is the total

number of antennas in the array, as would be expected if the calibration algorithm is

thought of as combining independent information from different redundant baselines.

Precisely the same trend is seen in the ϕ errors.

In running the simulations, we find that minor variations in the baseline distri-

bution have little effect on the final calibration errors10. For instance, varying the

9Averaging both over different antennas in an array and over different simulations.
10Major variations, of course, can drastically affect the errors. An extreme example of this would

be a change in baseline distribution that completely destroys all redundancy, which would render
the algorithm unusable and formally give rise to infinite error bars.
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Figure 2-4: Expected error bars in recovered η for different antennas in an 18 by 18
square array with a signal-to-noise (SNR) ratio of 1, although in a realistic situation
one would expect a more favorable SNR. By examining the color bar in this figure, one
sees that the errors do not vary very much throughout the array. However, there is a
systematic effect where the errors are typically larger towards the edges and corners,
because antennas there participate in fewer identical baselines than their counterparts
near the center of the array.
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Figure 2-5: Expected average error bars in recovered η as a function of the size of
the simulated square array. All simulations have a signal-to-noise (SNR) ratio of 1,
although in a realistic situation one would expect a more favorable SNR.

aspect ratio of a 100 antenna system from a 10 by 10 array, to a 5 by 20, 4 by 25,

and a 1 by 100 array has mostly minimal effects on the η and ϕ errors. Thus, for an

array with baseline redundancies that are at roughly the same level as for a square

array, we can put everything together and arrive at the following rule of thumb for

the calibration errors:

∆η ≡ Σ1/2
η ≈ ∆ϕ ≡ Σ1/2

ϕ ≈ 0.5

SNR

1√
N
, (2.21)

where N is again the total number of antennas in the array.

Not captured by Equation 2.21 is the fact that antennas closer to the center of an

array tend to have lower calibration errors than those that are peripherally located, as

can be seen in Figure 2-4. Intuitively, this is due to the fact that while every antenna

forms the same number of baselines (because each antenna forms a baseline with all

other antennas in the array), antennas that are located in different parts of the array
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form different sets of baselines. An antenna that is in the corner of a square array,

for example, forms N − 1 baselines that are all different from each other, whereas an

antenna that is close to the center will form baselines in redundant pairs because of

the symmetry of the square array. In the system of equations, the centrally located

antenna will therefore be more tightly constrained by the data, and the resulting error

bars in its calibration parameters will be smaller. These differences are, however,

rather minimal and are unlikely to significantly affect the actual calibration of a real

(non-simulated) array.

As mentioned above, in addition to the antenna calibration parameters η and ϕ,

redundant calibration algorithms yield estimates yij for the true sky visibilities. In

Figures 2-6, 2-7, and 2-8, we show the visibility results that fall out of the calibration.

Figure 2-6 serves as a legend for the uv plane, with different colors and symbols

signifying the different unique baselines found in a 4 by 4 square array. These symbols

are used to plot the uncalibrated input correlations measured by the interferometer

(i.e. the cij’s) on a complex plane in Figure 2-7. Each color and symbol combination

may appear multiple times in Figure 2-7, because two baselines that are identical in

principle may give different readings in practice because of instrumental noise and

the fact that different antennas will have different calibration parameters. Indeed,

one can see from Figure 2-7 that the uncalibrated correlations are rather spread out

over the complex plane, and do not seem close to the simulated true sky visibilities,

which are denoted in the figure by solid magenta dots.

After calibration, however, one has estimates for the antenna calibration parame-

ters, and thus these uncalibrated correlations can be corrected to yield measurements

that are close to the correct sky visibilities. One simply divides out the complex gain

factors, since the measured correlations cij are related to the true sky visibilities yi−j

by cij = g∗i gjyi−j. The results are shown in Figure 2-8, where it is clear from the

color and symbol combinations that identical baselines now yield measurements that

cluster around the simulated true values, which are still given by the solid magenta

dots. The scatter that remains within a given set of identical baselines is due to in-

strumental noise (set at a level corresponding to an SNR of 10 for this simulation). It

should be noted, however, that while this is a perfectly workable method for comput-

ing estimates of the sky visibilities, it is unnecessary. Redundant calibration outputs

a parameter vector estimate x̂ (see Equation 2.13) that contains the true visibilities.

These are shown in Figure 2-8 using magenta x’s, and emerge from the calibration at

no additional computational cost11.

11In fact, it is not even strictly valid to consider any “extra” computational cost associated with
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Figure 2-6: Legend of baselines for Figures 2-7 and 2-8.

Since the true visibilities (like the antenna gain parameters) are simply compo-

nents of the parameter vector x, we can again use the machinery of Equation 2.20 to

compute the expected error bars in the estimated visibilities. The results are similar

to what was found for the antenna calibration parameters, and are summarized in

Figure 2-9. The errors are again found to asymptote to a 1/
√
N dependence, but

here N refers to the number of redundant baselines that go into determining a given

visibility, and not the total number of antennas in the array. That the error bars

do not depend on the total number of antennas is clear from Figure 2-9, where data

points from simulations of arrays of various sizes lie on top of each other. It is also

a property that is intuitively expected, since adding extra antennas increases the

mathematical constraints on a given visibility only if the extra antennas form new

baselines that correspond to that visibility’s location on the uv plane.

solving for the yij ’s, for as one can see from Equation 2.9, the inclusion of the yij ’s is necessary for
redundant calibration to work.
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Figure 2-7: Uncalibrated visibility measurements plotted on the complex plane ac-
cording to the uv plane baseline legend provided by Figure 2-6. The simulated (i.e.
true) sky visibilities are given by the magenta dots.

2.2.6 Problems with the logarithmic implementation

While our simulations and real-world applications like those detailed in Noordam & de

Bruyn (1982); Ishiguro (1974); Ramesh et al. (1999); Wieringa (1992); Yang (1988);

Pearson & Readhead (1984) have shown above that taking logarithms of Equation 2.3

yields a linear system that can be successfully used to fit for calibration parameters

and visibilities, this logarithmic implementation is not without its drawbacks. In

particular, the implementation has two undesirable properties:

Phase Wrapping

For the logarithmic implementation to work, the phase calibration parameter ϕ needs

to be close to zero for all antennas. This is because one must take the complex

logarithm of cij = g∗i gjyi−j, which is an operation that is determined only up to

additions or subtractions of multiples of 2π in the imaginary part (i.e. in the phase

of the original number). Thus, while the calibration solution may correctly recover
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Figure 2-8: Same as Figure 2-7, except the visibilities have been calibrated. The
simulated sky visibilities are again given by the magenta dots, while the best estimates
from the calibration algorithm for these visibilities are given by the magenta x’s.

the measured correlations (since one is insensitive to additions or subtractions of

2π in the phase when re-exponentiating to find cij = g∗i gjyi−j), it does not give

correct phases for g∗i , gj, and yi−j, which are ultimately the quantities of interest.

This is a problem even when only a small number of antennas have large phase

calibration parameters, since to find the visibilities and antenna gain parameters

redundant algorithms essentially performs a global fit, where all antennas are coupled

to each other via the visibilities.

In Figure 2-10 we show the phase calibration results for a noiseless simulation of

a 4 by 4 array with phases that are significantly greater than zero. The logarithmic

method is shown using the open blue circles, and since a noiseless simulation should

yield perfect parameter recovery, the scatter in the trend suggests a problem with the

method. A detailed examination of the simulation’s numerical results reveals that it

is indeed the multi-valued property of the complex logarithm that causes the trouble,

and from the plot one also sees that a small number of very badly fit antennas can

give rise to inaccuracies for all antennas, as is expected from the global nature of the
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Figure 2-9: Expected error bars on the estimated visibilities, as a function of the
number of redundant baselines that go into determining each visibility. A signal-to-
noise (SNR) ratio of 1 is assumed, although in a realistic situation one would expect
a more favorable SNR.

fit.

It is important to note that even when the phase calibration fails because of

large phases, the amplitude calibration can still be implemented successfully. This is

because the taking of the complex logarithm means that in our system of equations,

the amplitudes and phases separate into the real and imaginary parts respectively,

as we can see from Equations 2.8a and 2.8b. The two calibrations are therefore

completely decoupled, and instabilities in one do not affect the other. The fact that

an accurate gain calibration can be extracted regardless of the quality of one’s phase

calibration will be important in Section 2.2.8.

Bias

The logarithmic method is not unbiased, in the sense that ensemble averages of noisy

simulations do not converge to the true simulated parameter values. While Equation
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Figure 2-10: Scatter plots of simulated vs. recovered antenna phase parameter ϕ
for a noiseless 4 by 4 square array with relatively large phases. The results from
the logarithmic implementation described in Section 2.2.3 are shown using open blue
circles, whereas the results from the linear implementation described in Section 2.2.7
are shown using solid red circles. Large phases are seen to affect the accuracy of the
logarithmic method, but not the linear method.

2.13 can be shown to be unbiased (Tegmark, 1997b), the proof assumes that the noise

covariance matrix N is Gaussian and that the weights used in the fits (encoded by

N−1) are independent of the data. In our case both assumptions are violated. While

we may assume that nx and ny in Equation 2.17b are Gaussian distributed, this is

not the case in amplitude/phase angle space. In addition, since the diagonal entries

of N are taken to be 1/|c|, the measured data enter the least squares fit (Equation

2.13) not just through the data vector ~d but also via N−1, making the fitting process

a nonlinear one.

The bias in the method can be easily seen in Figure 2-11, where the blue dots

show the simulated results for η, averaged over 90 random ensemble realizations of a

4 by 4 array with an SNR of 2. There is clearly a systematic bias in the recovered

output η’s.
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Figure 2-11: Scatter plots of simulated vs. ensemble averaged recovered antenna
phase parameter ϕ for a 4 by 4 square array with a signal-to-noise ratio of 2. The
results from the logarithmic implementation described in Section 2.2.3 are shown
using open blue circles, whereas the results from the linear implementation described
in Section 2.2.7 are shown using solid red circles. The logarithmic algorithm gives a
biased result, whereas the linear implementation does not.

2.2.7 The Linearized Approach

Since both of the problems discussed in the previous section arise at least partly

from taking the logarithm of Equation 2.6, we now propose a method that does not

require that step. As an alternative to taking logarithms, one can instead linearize

the equations in Section 2.2.2. We do so by Taylor expanding our expressions about

some fiducial guesses η0, ϕ0, and y0 for the parameters η, ϕ, and y0. The gain of a

particular antenna, for example, becomes

g ≡ eη+iϕ (2.22a)

= g0 +
∂g

∂η

∣∣∣∣
η0,ϕ0

(η − η0) +
∂g

∂ϕ

∣∣∣∣
η0,ϕ0

(ϕ− ϕ0) + . . . (2.22b)

= exp (η0 + iϕ0) [1 + (η − η0) + i(ϕ− ϕ0)] + . . . (2.22c)
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Along with our fiducial guess for the true correlations (the y’s), we define guesses for

our measured correlations:

c0
ij ≡ y0

i−j exp
(
η0
i − iϕ0

i

)
exp

(
η0
j + iϕ0

j

)
. (2.23)

In addition, we define the deviation δij of the guessed correlations from the measured

correlations

δij ≡ cij − c0
ij (2.24)

as well as an analogous quantity for the true sky correlations

y1
i−j ≡ yi−j − y0

i−j. (2.25)

To calibrate our telescope, we take the measured deviations δij as our inputs and

compute the corrections to the guessed antenna parameters and guessed true sky

correlations that are required to match these deviations. Plugging our definitions

and expansions into cij = g∗i gjyi−j gives

δij ≈ exp
(
η0
i − iϕ0

i

)
exp

(
η0
j + iϕ0

j

) [
y1
i−j + y0

i−j (∆ηi + ∆ηj − i∆ϕi + i∆ϕj)
]

(2.26)

where we have defined ∆η ≡ η − η0, ∆ϕ ≡ ϕ− ϕ0, and have discarded second order

terms in the small quantities ∆η, ∆ϕ, and y1. The result is a linear system in ∆η,

∆ϕ, and y1, which means we can use the matrix formalism presented in the previous

section, the only differences being that the η and ϕ equations are now coupled, and

that the matrix analogous to the A used in the logarithmic method — which we will

call B for the linearized method — now depends on the fiducial guesses as well as the

array layout. A least-squares fit can once again be employed to solve for the ∆η’s, the

∆ϕ’s, and y1
i−j. Once the fit has been obtained, it can be used to update our fiducial

guesses, and if desired, one can continue to improve the quality of the calibration by

repeating the algorithm iteratively — the updated calibration parameters are simply

used as the fiducial guesses for the next cycle of fitting. Note that unlike before, it

is unnecessary to use a weighted fit i.e. one can set N = I in Equation 2.13. This is

because the linearized algorithm works with visibilities directly (as opposed to, say,

their logarithm or some other function of the visibilities), and since our assumption

of uncorrelated baseline errors means that individual baselines have the same noise

level, all correlations should be weighted the same in the fitting.

In Figure 2-12, we show plots of simulated and recovered visibilities on the complex

plane as one steps through each iteration of the algorithm. The top left plane shows
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Figure 2-12: Visibility simulations, measurements, and estimated visibilities plotted
on complex planes. The top left plane shows the simulated and measured visibilities
before any calibration scheme has been applied. The top right plane shows the simu-
lated visibilities, corrected visibilities, and best fit visibilities after one iteration. The
bottom planes show the same quantities after two and four iterations respectively.
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the simulated correlations as well as the measured correlations. After one iteration,

we plot the corrected visibilities as well as the estimated true visibilities in the top

right. The recovered visibilities are seen to be still quite different from the simulated

ones. The bottom left and bottom right planes show the second and fourth iterations

respectively, and one can see that the recovered visibilities converge toward their

simulated values.

Scatter plots showing the correlation between the simulated and estimated an-

tenna calibration parameters are qualitatively identical to Figures 2-2 and 2-3 for the

logarithmic implementation, so we do not show them here. However, the linearized

approach solves the two problems with the logarithmic algorithm discussed in Section

2.2.6. In Figure 2-10, the filled red circles representing the linearized method show

a perfect recovery of simulated phases in the noiseless limit. This demonstrates that

the linearized algorithm can tolerate arbitrarily large phases, which the logarithmic

method could not. Figure 2-11 shows that the ensemble-averaged parameter estimates

coming out of the linearized method converge to their true values, demonstrating that

the linearized algorithm is unbiased. That this is the case is particularly important

if one applies the algorithm to highly noisy systems, for then one can compensate

for the low SNR by using massive arrays with large numbers of baselines and by

averaging the results over long time periods12.

2.2.8 Numerical issues for the linearized approach

Although the linearized algorithm evades the problems with the logarithmic approach,

it is slightly more complicated to put into practice. Below we discuss two problems

that may arise in the numerical implementation of the method and how to solve them.

Convergence

Bad fiducial guesses can result in misfits, although such fits can be easily identified

and improved upon. Given that our basic measurement equation (Equation 2.3) is

nonlinear in our parameters, the linearization that we have presented in this section

can only be expected to stably yield good fits when our fiducial guesses are reasonably

close to their true values. In a naive implementation of the algorithm, bad fiducial

guesses can result in an inability to iterate out of a local maximum in goodness-of-fit.

However, bad fits can be readily identified by simply computing the goodness-of-fit

12That is, provided any natural drift in the calibration parameters occur over longer timescales
than the required averaging time.
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parameter, and if necessary, one can repeat the fit with a better search algorithm

such as simulated annealing to find the correct maximum.

Another way to avoid misfits is to use the results of the logarithmic algorithm as

our initial guess for the linearized method. Even though the phase calibration has

been shown to be unreliable when the phases are large, the amplitude calibration can

still be trusted since it comes from solving a completely separate system of equations.

The fact that the amplitudes estimated using the logarithmic method are biased is

not an issue, since our fiducial guess serves merely as a starting point for our iterative

linearized scheme.

An attractive approach to implementing our method in practice could be to update

the calibration on the timescale over which the calibration parameters are expected

to drift by non-negligible amounts (say once per second or once per minute), using

the previously determined calibration parameters as the initial guess and performing

merely a single iteration each time. Avoiding multiple iterations in this fashion has

the advantage that the noise from any given observation affects the output only

linearly, thus avoiding nonlinear mappings that can potentially bias the results. The

optimal duration between calibrations should be determined to minize the expected

errors: if we calibrate too frequently, the calibration parameters get unnecessarily

noisy because so little data is used to determine them, while if we calibrate too

rarely, the true calibration parameters can drift appreciably before we recalibrate. An

alternative way to determine this tradeoff is to re-estimate the calibration parameters

more frequently than needed and then smooth the time series, each time replacing the

calibration parameter vector actually used by p times the new estimate and (1 − p)
times the last estimate, and determining which choice for p ∈ (0, 1) minimizes the

rms calibration errors.

Computational Cost

The linear method is more computationally intensive than the logarithmic one, espe-

cially if more than one iteration is required. However, the computational cost is still

acceptable if one takes advantage of the sparseness of B. At first sight, the setting of

N = I in Equation 2.13 for the linearized method but not for the logarithmic method

would seem to make the linear method computationally quicker. However, the pres-

ence of a non-trivial N in the logarithmic method does not increase the computational

cost, for in the absence of cross-talk N is diagonal. The computational cost of its

inversion is therefore negligible, and its presence in Equation 2.13 simply changes the

weighting of matrix elements when finding matrix products.
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That the linear method is slightly more computationally intensive than the loga-

rithmic method is due to the fact that the matrices for the linear method are larger

than those in the logarithmic method. This is because the amplitude and phase cal-

ibrations do not decouple in the linearized scheme, and all the parameters must be

solved for in one big system. In particular, all vectors are now twice as long as before,

since a system where gains and phases are coupled is mathematically equivalent to one

where the real and imaginary parts of all complex numbers are dealt with together.

This has its greatest computational impact on the matrix inversion of BtB, which

can scale as strongly as the vector length cubed if one simply implements the most

straightforward matrix inversion routines. Since this inversion must be performed

every time the fiducial values (which are part of B) are updated, the computational

time also scales linearly with the number of iterations, and so naively the linearized

method seems rather expensive. However, the matrix B is by construction always

sparse, which means the matrix inversion can be performed more efficiently. As an

example, one may use the conjugate gradient method, where the sparseness of B

means that the inversion scales linearly with vector length, improving the numerical

cost scaling from O(N3) to O(N). This is very similar to the mapmaking approach

successfully implemented by the WMAP team in Hinshaw et al. (2003).

It should also be noted that if only one iteration is required and the gain pa-

rameters drift only by small amounts over time, then the linearized method can be

extremely efficient over long integrations. This is because a series of calibrations can

then be performed using the same fiducial values for the antenna parameters, and

thus the matrix [BtB]−1Bt never changes and can be computed once and for all13.

One then simply stores this matrix, which is applied to the data whenever calibration

is required. Note that this cannot be done with the logarithmic approach, since the

relevant matrix there is [AtN−1A]−1AtN−1 and from Equation 2.17c we see that N

changes as the measured correlations change, so the combination [AtN−1A]−1AtN−1

must be recomputed every time one would like to calibrate.

If an instrument with N antennas possesses a very large number of redundant

baselines (like any reasonably large omniscope, say, where almost all of the ∼ N2/2

baselines are redundant), Figure 2-9 suggests that the errors will be extremely small,

especially if the signal-to-noise ratio is high. With such an instrument, one will be able

to calibrate accurately by utilizing merely a small subset of the redundant baselines;

13In principle, one also requires that transients are not present in the data, since transients may
cause sudden changes in the visibilities yij and thus one cannot assume that the same fiducial guesses
are good ones over all time. In practice, however, transients can be easily identified in the data, and
one can simply ignore the data taken over time intervals where transients dominate.
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for example, if each antenna is correlated with merely 20 others, the resulting system

of equations will still be safely overdetermined while keeping the size of the B-matrix

and the computational cost reasonable. This is important for any array utilizing

fast Fourier transforms for the correlation process, since its attractive N log2N cost

scaling would be lost if an O(N2) correlator were needed for calibration.

In summary, our proposed calibration method can be performed rather cheaply,

especially when one compares the computational cost to that of initially computing

the interferometric correlations. To see this, note that one must compute correlations

roughly once every 10−8 seconds for an interferometer operating at a frequency of

∼ 100 MHz. This is much more expensive than the calibration step (especially if one

incorporates the computational tricks suggested in this section), which only needs to

be performed, say, once every second or minute. In other words, the correlation needs

to be repeated on the timescale on which the electromagnetic waves oscillate whereas

the calibration only needs to be repeated the time scale on which the calibration

parameters drift.

2.3 A Generalized Calibration Formalism: Cali-

bration as a Perturbative Expansion

In previous sections, the calibration algorithms that were discussed represented two

idealized limits: with the bright point source calibration (Section 2.2.1), the existence

of an isolated bright point source was key, while with redundant baseline algorithms

(Section 2.2.2) a large number of baselines of equal length and orientation were re-

quired. Both algorithms were “zeroth order algorithms” in that they required exact

adherence to these requirements. In this section, we perturb around these idealized

assumptions, and show that point source calibration and redundant calibration are

simply two extremes in a generalized continuum of calibration schemes.

Consider the sky response (i.e. the visibility) from a baseline b formed by two

antennas at locations ri and rj (i.e. b ≡ ri−rj). Assuming that our array is coplanar,

we have

c(b) =

∫
sky

g∗i gj
J(θ)B(θ)√
1− θ2

x − θ2
y

exp

(
−i2πb · θ

λ

)
d2θ, (2.27)

where J(θ) is the intensity of the sky signal from the θ direction, and B(θ) is the

primary beam. Suppose we now define an effective sky signal I(θ) ≡ J(θ)B(θ)√
1−θ2

x−θ2
y

.
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Writing this in terms of its Fourier space description

I(θ) =

∫
Ĩ(k) exp(i2πk · θ)d2k (2.28)

and inserting this into Equation 2.27, we get

c(b) = g∗i gj Ĩ

(
b

λ

)
, (2.29)

which is a well-known result: baselines of an interferometer probe different Fourier

modes of the effective sky signal.

Now suppose that our interferometer possesses a number of nearly-redundant base-

lines. In other words, suppose that there exist a set of vectors bα0 = {b1
0,b

2
0, . . . } on

the uv plane that baselines tend to cluster around. Nearly-redundant baselines are

considered part of the same cluster, and are associated with a single bα0 . On the other

hand, any baselines that are isolated on the uv plane are associated with “their own”

bα0 . Thus, for an array with N antennas the index α runs from 1 to N(N − 1)/2

if there are zero near or exact redundancies in the baselines, and to some number

substantially smaller than N(N − 1)/2 if there are many near or exact redundancies.

In other words, we have grouped the baselines into nearly-redundant clusters.

We now re-parameterize our baseline distribution in terms of δbij ≡ bij − bα0 ,

which measures each baseline’s deviation from perfect redundancy. Since δbij is a

small quantity, we can Taylor expand Equation 2.29:

cij = g∗i gj Ĩ

(
bα0 + δbij

λ

)
(2.30a)

≈ g∗i gj

[
Ĩ

(
bα0
λ

)
+∇uĨ

∣∣∣∣
b=bα0

· δbij
λ

+ . . .

]
, (2.30b)

where ∇u denotes a two-dimensional gradient in the uv plane. If we define cα0 ≡
Ĩ
(

bα0
λ

)
, we can rewrite our equation as

cij ≈ g∗i gjc
α
0

(
1 + hα0 ·

δbij
λ

+ . . .

)
, (2.31)

where hα0 ≡ ∇ ln Ĩ

∣∣∣∣
b=bα0

.

For algebraic brevity, we proceed using the logarithmic method of Section 2.2.3,

the generalization to the linearized method being straightforward. Taking logarithms
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of both sides yields

ln cij ≈ (ηi + ηj) + i(ϕj − ϕi) + ln cα0 + ln

(
1 + hα0 ·

δbij
λ

)
≈ (ηi + ηj) + i(ϕj − ϕi) + ln cα0 + hα0 ·

δbij
λ
, (2.32)

where we have assumed that hα0 ·
δbij
λ

is small in order to expand the last logarithm.

Before we proceed, it is worth examining the precise conditions under which our

Taylor series expansions are valid. The crucial quantity is hα0 ·
δbij
λ

, which will be

small if either hα0 or
δbij
λ

are small. Plugging Equation 2.28 into our definition of h,

we have

h =
∇Ĩ
Ĩ

= −i2π
∫
θI(θ) exp(−i2πu · θ)d2θ∫
I(θ) exp(−i2πu · θ)d2θ

, (2.33)

which is a quantity whose magnitude is at most the size of the primary beam in

radians. This dependence on the primary beam means that hα0 ·
δbij
λ

can be made to

be small in different ways depending on the instrument one is considering:

1. For widefield instruments, the primary beam width is on the order of 1 radian,

so one requires |δbij| � λ.

2. For instruments with narrow primary beams such as the VLA, we have |h| � 1,

so the deviations δbij from perfect redundancies need not be small compared

to the wavelength.

If the conditions listed above are satisfied, then calibrating our radio telescope

is similar to the zeroth-order case, in the sense that it is once again tantamount to

solving Equation 2.32. Here, however, we are not guaranteed to have enough equa-

tions to solve for all the relevant variables. In addition to the 2N antenna calibration

parameters (η’s and ϕ’s), we now potentially have up to 3N(N − 1) numbers to solve

for — the ln cα0 term contributes up to N(N − 1) numbers, since as we discussed

above α can run to N(N − 1)/2 in a worst-case scenario, and specifying a single ln cα0

requires two numbers: a real part and an imaginary part; the hα0 term contributes

up to 2N(N − 1) numbers — twice that required to specify the ln cα0 terms, because

hα0 is the logarithmic gradient of cα0 in the uv plane, which is two dimensional. The

δbij’s do not need to be solved for since they can be computed from the layout of the

array. Putting this all together, we see that in general there can be up to 3N(N − 1)

unknowns.

To properly solve Equation 2.32, one must therefore find ways to reduce the range
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of the index α so that the number of equations exceeds the number of unknowns. In

the next few subsections, we will consider different scenarios in which this is the case.

2.3.1 Zeroth Order: Perfect Point Sources or Perfect Redun-

dancies

The zeroth order solution to Equation 2.32 involves setting up situations where the

hα0 ·
δbij
λ

term can be set to zero. There are two ways to accomplish this:

1. Design an array with perfect redundancies, so that δbij = 0. The form

of hα0 is then irrelevant (which is another way of saying that we can calibrate

with any sky signal), and the only requirement is for the number of unique

baselines to be small enough that the maximum possible α is modest and there

are only a small number of cα0 terms to fit for. This is precisely the redundant

calibration algorithms discussed in Sections 2.2.2 to 2.2.8.

2. Have some knowledge of the sky signal used for calibration, so that cα0

and hα0 are known. For example, if one uses a phased array to image a point

calibrator source, then cα0 becomes a real constant independent of α, while the

hα0 ’s all vanish. This is the point source calibration discussed in Section 2.2.1.

2.3.2 First Order: Unknown Sources and Near Perfect Re-

dundancies

If one is unable to satisfy the conditions listed in Section 2.3.1, it may still be pos-

sible to calibrate by solving for cα0 and hα0 as well as all the calibration parameters

simultaneously. For example, taking the real part of Equation 2.32 gives

ln |cij| = (ηi + ηj) + ln |cα0 |+ Re(hα0u)
δbuij
λ

+ Re(hα0v)
δbvij
λ
, (2.34)
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which can be written as a matrix system:



ln |c12|
ln |c23|
ln |c34|
ln |c45|
ln |c56|

...

ln |c29|
ln |c19|


=



1 1 . . . 1 0 . . .
δbu12

λ
0 . . .

δbu12

λ
0 . . .

0 1 . . . 1 0 . . .
δbu23

λ
0 . . .

δbu23

λ
0 . . .

0 0 . . . 1 0 . . .
δbu34

λ
0 . . .

δbu34

λ
0 . . .

0 0 . . . 0 1 . . . 0
δbu45

λ
. . . 0

δbu45

λ
. . .

0 0 . . . 0 1 . . . 0
δbu56

λ
. . . 0

δbu56

λ
. . .

...
...

...
...

...
...

...
...

0 1 . . . 0 0 . . . 0 0 . . . 0 0 . . .

1 0 . . . 0 0 . . . 0 0 . . . 0 0 . . .





η1

η2

...

ln |c1
0|

ln |c2
0|

...

Re(h1
0u)

Re(h2
0u)

...

Re(h1
0v)

Re(h2
0v)

...



,

(2.35)

where for illustrative purposes we have chosen a nine-antenna system with the first

three baselines almost-redundant. This set of equations can again be solved using

Equation 2.13, provided the design of the interferometer is such that the baselines

can be grouped into a relatively small number of near-redundant clusters. Fundamen-

tally, the method here is the same as it has been in all previous sections — we have

simply written the interferometer response as a linear function of the calibration pa-

rameters and the sky signal, and have found ways to reduce the number of parameters

(whether by mathematical approximation, interferometer design, or careful selection

of calibration source) so that the equations are solvable. In the first order expansion

considered in this section, if r denotes the number of bα0 ’s with two or more baselines

clustered around them and l denotes the number of completely isolated baselines, the

calibration can be solved for provided our array satisfies

N(N − 1)

2
> N + 3r + l, (2.36)

where as usual N is the number of antenna elements in the array. The left hand side

is simply the number of measured complex correlations, while the right hand side

counts the number of complex unknowns we need to solve for: N complex antenna

gains, r complex visibilities at each cluster center, 2r complex numbers quantifying

deviations in the complex visibilities due to departures from perfect redundancy in

the two directions of the uv plane, and l complex visibilities for the isolated baselines.
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For the s× s regular square arrays simulated in Section 2.2, the condition is satisfied

if s ≥ 4.

Like before, however, one must be cognizant of possible degeneracies in the matrix

system. In particular, consider a cluster comprising of one or two baselines. In fitting

for this cluster’s visibility, we have one or two inputs (i.e. correlations) but need

to solve for three parameters: cα0 , hα0u, and hα0v. Our matrix system thus becomes

singular. The same problem arises if either δbuij or δbvij are identical for a large number

of baselines in a particular cluster. For instance, if all but one of the baselines in a

cluster are perturbed in precisely the same way, then as far as the cluster goes we

effectively only have two different baselines and cannot fit for three parameters. These

degeneracies can be dealt with in a similar fashion as before: one simply imposes

extra constraints on the system of equations, like requiring that hα0u and hα0v be zero

for single-baseline clusters.

Simulation results for a 4× 4 square array with Gaussian antenna position errors

are shown in Figure 2-13, where we show the root mean square errors in the recovered

gains ∆η as a function of the spread σb in the Gaussian from which the position errors

are drawn. The simulations were run with precisely the same parameters as those in

Section 2.2, except with zero instrumental noise, so any non-zero error is due purely

to position errors (i.e. to the non-perfect redundancy of baselines). Plotted using the

solid circles are the results that one obtains if one simply ignores the fact that the

baselines are not perfectly redundant i.e. if one applies a zeroth order algorithm based

on Equation 2.6. The errors are clearly linear in σb. Correcting for baseline errors to

first order by implementing an algorithm based on Equation 2.31 gives errors that are

smaller and quadratic in σb. It is also clear from the plot that the wider the primary

beam of an instrument, the greater the errors in the calibration. Formally, this is

because the beam width is directly proportional to the size of the linear baseline error

correction term, as we noted above. This result can also be understood intuitively by

considering the effect that a primary beam has on uv visibilities. A narrow primary

beam acts as a wide convolution kernel on the uv plane, which effectively “averages”

together visibilities over a wide neighborhood. This smoothes the visibilities on the uv

plane, making the errors incurred by baseline errors more amenable to a perturbative

correction.

In principle, there is no need to stop at the first order correction. One could, for

instance, correct baseline errors to second order by using the following equation as
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Figure 2-13: R.m.s. errors in recovered η for one antenna in a noiseless 4× 4 square
array as a function of antenna position spread σb. Shown in red dashed lines are the
results for a primary beam with width 1◦, while the results for a primary beam with
width 2◦ are shown using the blue solid lines. The solid circles denote results from
an algorithm that does not correct for baseline position errors, and the stars denote
results from an algorithm that corrects these errors to first order.

the basic measurement equation:

cij ≈ g∗i gjc
α
0

(
1 + hα0 ·

δbij
λ

+
δbtij
λ
· jα0 ·

δbij
λ

. . .

)
, (2.37)

where hα0 ≡ ∇ ln Ĩ

∣∣∣∣
b=bα0

as before, and jα0 is a symmetric matrix of second derivatives

of Ĩ evaluated at bα0 and normalized by Ĩ
(

bα0
λ

)
. It is important to note, however, the

somewhat counterintuitive fact that for a realistic array (i.e. one with instrumental

noise), the errors in the recovered gain parameters may increase as one corrects

to increasing order in baseline position error δbij. This is because the higher the

order that one corrects to, the greater the number of parameters that one must solve

for. The number of correlation measurements, however, remains the same as before
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(with N(N − 1)/2 of them), so the system of equations becomes less constrained.

This makes the calibration algorithm more susceptible to noise, which can negate

the benefit that one obtains by correcting baseline position errors to higher order.

Put another way, when we introduce a large number of parameters in an attempt to

correct for baseline position errors, we run the risk of over-fitting the instrumental

noise instead of averaging it down using redundant baselines.

In running the baseline error simulations, we find the errors in recovered ϕ to be

much worse than those in the recovered η’s. This is likely due to the fact that a

small perturbation in antenna position can result in large changes in phases, which

(as explained in Section 2.2.6) can cause problems in a logarithmic implementation.

The reader should also note that because quantities like hα0 are dependent on

the sky signal, we find that the calibration errors induced by baseline position errors

cannot be easily captured by simple formulae analogous to Equation 2.21. An extreme

example of this was already discussed above in Section 2.3.1, where we saw that the

correction terms for baseline errors approach zero as the sky becomes increasingly

dominated by a single bright point source. The values on the vertical axis of Figure

2-13 are thus not generically applicable; in general, one must simulate the relevant

array arrangement and sky signal to estimate the errors incurred by antenna position

errors.

2.3.3 First Order: Non-coplanar Arrays

The methods described above can also be used to calibrate radio interferometers even

if there are slight deviations from planarity. Suppose the antenna elements of our array

are all almost (but not quite) located at a height of z = 0. The slight deviations from

perfect coplanarity of the antenna elements result in slight deviations from coplanarity

of the baselines, which we denote δbijz . With these deviations, Equation 2.27 becomes

c(b) =

∫
sky

g∗i gj
J(θ)B(θ)√
1− θ2

x − θ2
y

exp

(
−i2πb · θ

λ
− i2π

λ
δbijz

√
1− θ2

x − θ2
y

)
d2θ. (2.38)

Like before, this equation can be manipulated into a form conducive to calibration if

one (or both) of the following conditions are met:

1. Narrow primary beam. With a narrow primary beam, one has
√

1− θ2
x − θ2

y ≈
1− θ2

x

2
− θ2

y

2
· · · ≈ 1. The part of the expression corresponding to the non-coplanar
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correction thus factors out of the integral, giving

c(b) = exp

(
− i2π

λ
δbijz

)∫
sky

g∗i gj
J(θ)B(θ)√
1− θ2

x − θ2
y

exp

(
−i2πb · θ

λ

)
d2θ

= exp

(
−i2π

λ
δbijz

)
g∗i gj Ĩ

(
b

λ

)
, (2.39)

where we have adopted the notation defined in Equation 2.28. This illustrates

the fact that so long as the primary beam is narrow, deviations from coplanarity

simply results in phase shifts in the measured correlations. Aside from these

phase shifts, Equation 2.39 looks completely identical to Equation 2.29, and

thus the calibration of a non-coplanar array is no harder than the calibration of

a planar array when the primary beam is narrow. One simply defines adjusted

correlations c̃ ≡ c exp
(
−i2π

λ
δbijz
)

and the ensuing analysis proceeds like before,

with no additional computational cost.

2. Near coplanar array. If the array is close to coplanar (δbijz � 1), the calibra-

tion can still be performed, but this time at a slight increase in computational

cost. With near coplanarity, Equation 2.38 can be Taylor expanded in δbz:

c(b) =

∫
sky

g∗i gj
J(θ)B(θ)√
1− θ2

x − θ2
y

exp

(
−i2πb · θ

λ

)(
1− i2π

λ
δbijz

√
1− θ2

x − θ2
y

)
d2θ(2.40)

= g∗i gj Ĩ

(
b

λ

)
− ig∗i gj

2π

λ
δbijz K̃

(
b

λ

)
, (2.41)

where Ĩ is defined as before in Equations 2.27 and 2.28 and

K̃(k) ≡
∫
J(θ)B(θ) exp(−i2πk · θ)d2θ. (2.42)

Perturbing this equation around perfectly redundant baselines using exactly the

same methods as those employed between Equations 2.30a and 2.31, one obtains

c(b) = g∗i gj

[
cα0

(
1 + hα0 ·

δbij
λ

)
− i2πδb

ij
z

λ
dα0

]
, (2.43)

where dα0 ≡ K̃
(

bα0
λ

)
. Note that whereas Ĩ is expanded to first order in δb, we

are only required to keep the zeroth order term for K̃ since any linear term in

δb would be multiplied by δbz and end up a second order term. Proceeding as
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before, the analog of Equation 2.32 takes the form

ln cij ≈ (ηi + ηj) + i(ϕj − ϕi) + ln cα0 + hα0 ·
δbij
λ

+ i2πqα0
δbijz
λ
, (2.44)

where qα0 ≡ ln(dα0/c
α
0 ). From here, we can once again form a linear system

of equations that can be solved to yield the calibration parameters, the only

difference being that we must solve for yet one more parameter per cluster of

baselines.

2.4 Conclusions

Redundant calibration schemes calibrate radio interferometers by taking advantage of

the fact that — once calibrated — redundant sets of baselines should yield identical

visibility measurements regardless of what the sky looks like. In this chapter we have

performed simulations to examine the error properties of redundant calibration, and

have found that the usual logarithmic implementations are statistically biased. The

linearized implementation introduced in Section 2.2.7, on the other hand, is both

unbiased and computationally feasible, being far less computationally intensive than

the standard initial step of computing the signal correlations.

Though for many of our simulations we deliberately chose unfavorable SNRs to

exaggerate the effects of instrumental noise, the errors are seen to scale inversely with

SNR, which means that Equation 2.21 and Figure 2-9 predict that redundant baseline

calibration can yield high precision calibration parameters in a realistic application.

Moreover, the fact that the linearized method of Section 2.2.7 is unbiased means that

even if the SNR were unfavorable, one could simply build larger arrays and average

over long time periods, in principle suppressing calibration errors to arbitrarily low

levels.

We have also shown that both point source calibration and redundant calibration

can be considered special cases within a generalized framework of algorithms, all of

which find ways to reduce the number of calibration and visibility parameters so that

there are few enough of them to be solved for using the N(N − 1)/2 measurement

equations. This can be done either by making a priori assumptions about the cali-

bration sources, or by taking advantage of baseline redundancy. If one has many more

constraints than unknowns, non-exact redundancy and non-coplanarity can also be

taken into account, which may be essential as the precision requirements for calibra-

tion become more and more stringent. That redundant baseline calibration appears
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able to satisfy such requirements while being computationally feasible is encouraging

for large radio arrays, suggesting that calibration will not limit the vast scientific

potential of 21 cm tomography.
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Chapter 3

How well can we measure and

understand foregrounds with 21 cm

experiments?

3.1 Introduction

In this chapter, we turn to the issue of foreground contaminants. As we mentioned in

previous chapters, foreground contamination (both from within our galaxy and from

extragalactic sources) is expected to be at least four orders of magnitude brighter

than the expected cosmological signal (de Oliveira-Costa et al., 2008), so any viable

data analysis scheme must also contain a robust foreground subtraction algorithm.

Foreground subtraction is a problem that has been studied extensively in the

literature, and many schemes have been proposed for tackling the issue. Early ideas

focused on using the angular structure of the foregrounds to separate them from the

cosmological signal (Di Matteo et al., 2002, 2004; Oh & Mack, 2003; Santos et al.,

2005; Zaldarriaga et al., 2004), while most recent proposals focus on line-of-sight

(i.e. spectral) information (Wang et al., 2006; Gleser et al., 2008; Jelic et al., 2008;

Harker et al., 2009; Bowman et al., 2009; Liu et al., 2009a,b; Harker et al., 2010;

Petrovic & Oh, 2011). By making use of spectral information, these proposals take

advantage of the extremely high spectral resolution available in all 21 cm experiments,

and indeed it was shown in Liu & Tegmark (2011) that because of the nature of the

foregrounds and the instrumental parameters, an optimal estimation of the power

spectrum should involve a foreground subtraction scheme that operates primarily

using frequency information.
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Most line-of-sight proposals so far have been blind schemes1 in the sense that they

do not require any prior foreground modeling. All such proposals take advantage of

the smooth nature of the foreground spectra, and separate out the rapidly fluctuating

cosmological signal by (for instance) subtracting off a predetermined set of low-order

polynomials (Bowman et al., 2009; Liu et al., 2009a,b) or by imposing a predetermined

filter in Fourier space (Paciga et al., 2010; Petrovic & Oh, 2011). The blind nature

of these schemes may seem at first to be an advantage, because the low frequency

(∼ 50 to 300 MHz) regime of radio foregrounds is as yet fairly unconstrained observa-

tionally and most models are based on extrapolations and interpolations from other

frequencies, where the instruments are optimized for different science goals. However,

even if our foreground models are not entirely accurate initially, a non-blind scheme

can always be performed iteratively until the models converge to the true measured

foregrounds. Moreover, blind schemes do not improve as one makes better and better

measurements of the foregrounds, whereas non-blind schemes will continually im-

prove as measurements place increasingly strong constraints on foreground models.

In this chapter we therefore examine the foreground modeling process, and deter-

mine whether or not it will be possible to construct a foreground model that is good

enough for foreground subtraction purposes if only a small number of independent

parameters can be measured. In the spirit of “one scientist’s noise is another scien-

tist’s signal”, we also quantify the ability of 21 cm experiments to place constraints

on phenomenological foreground parameters.

The rest of this chapter is organized as follows. In Section 3.2 we introduce our

foreground model, and we show in Section 3.3 that the foregrounds can be described

to an extremely high precision using just three parameters. This is good news for

21 cm cosmology, for it implies that by measuring just a small handful of empirical

parameters, it is possible to construct a foreground model that is sufficiently accurate

for high precision foreground subtraction. However, this also implies that the large

number of (physically motivated) parameters present in a typical foreground param-

eterization are redundant and highly degenerate with each other, so the prospects for

using 21 cm experiments to gain a detailed understanding of foreground physics are

bleak. We show this in Section 3.4, and summarize our conclusions in Section 3.5.

1See Liu & Tegmark (2011) for an example that is not blind.
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3.2 Foreground and Noise Model

For the purposes of this chapter, we limit our analyses to foregrounds in the frequency

range 100 to 250 MHz, which roughly speaking covers the “sweet spots” of most

21 cm experiments that are designed to probe the Epoch of Reionization. At these

frequencies, there are three dominant sources of foreground contamination (Shaver

et al., 1999; Wang et al., 2006):

1. Extragalactic point sources.

2. Synchrotron emission from our Galaxy.

3. Free-free emission from our Galaxy.

Since foreground subtraction is best done using spectral information (Liu & Tegmark,

2011), we will ignore the spatial structure of these foregrounds for this chapter, as

well as any polarization structure2. We now examine the spectra of each of these

sources, and in particular compute their means and variances, which we define in the

next section. With some minor modifications, our models are essentially those of Liu

& Tegmark (2011).

3.2.1 Definition of the mean and the foreground covariance

Consider a multifrequency sky map of brightness temperature T from a typical 21 cm

tomography experiment. The map T (r̂, ν) is a function of the direction in the sky r̂

as well as the frequency ν. We define a random function x(ν) such that

x(ν) ≡ T (r̂, ν) (3.1)

is the spectrum measured at a randomly chosen pixel centered at r̂. Since the cos-

mological signal is expected to be dwarfed by the foregrounds, this spectrum will

essentially be a spectrum of the foregrounds.

To quantify the statistical properties of this random function, we can calculate its

mean and covariance. In principle, doing so requires taking the ensemble averages.

In practice, we instead take averages of the pixels of the sky map. The mean is thus

given by

m(ν) = 〈x(ν)〉 ≡ 1

Ω

∫
T (r̂, ν)dΩ, (3.2)

2See de Oliveira-Costa et al. (2008) for a discussion of the spatial structure of foregrounds, and
Bernardi et al. (2010) and Geil et al. (2010) for discussions of polarized foregrounds and their
removal.
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where Ω is the total area covered by the sky map3. The statistical covariance can be

similarly defined in the usual way:

C(ν, ν ′) ≡ 〈x(ν)x(ν ′)〉 −m(ν)m(ν ′), (3.3)

where

〈x(ν)x(ν ′)〉 =
1

Ω

∫
T (r̂, ν)T (r̂, ν ′)dΩ. (3.4)

3.2.2 Extragalactic point sources

Extragalactic point sources can be thought of as consisting of two populations. The

first consists of bright, isolated point sources that can be resolved by one’s instrument.

Following previous foreground studies, we assume that these bright point sources

have already been removed, prior to the main foreground cleaning step that attempts

to subtract off the rest of the foregrounds. Techniques such as forward modeling

(Bernardi et al., 2011) and peeling have been explored for this purpose, and peeling

simulations suggest that the bright sources can be removed down to Smax ∼ 10 to

100 mJy (Pindor et al., 2010). To be conservative we will use Smax = 100 mJy in all

calculations that follow.

Below Smax is the second population of extragalactic point sources, consisting of

a “confused” continuum of unresolved point sources. Along a given line-of-sight, we

imagine the number of sources to be Poisson distributed with an average of nΩpix

sources, where n is the number of sources per steradian and Ωpix is the pixel size. We

model the spectrum of each source as a power law with a random spectral index α

drawn from a Gaussian distribution

p(α) =
1√

2πσ2
α

exp

[
−(α− α0)2

2σ2
α

]
, (3.5)

where α0 is the mean spectral index (with its numerical value to be determined later)

and σα = 0.5 (Tegmark et al., 2000). If all of the unresolved point sources had the

same flux S∗ at some fiducial frequency ν∗ ≡ 150 MHz, the mean intensity would be

mps(ν) =

(
Aν

Ωpix

)
(nΩpixS∗)

∫ (
ν

ν∗

)−α
p(α)dα, (3.6)

3Note that this sky map need not cover all 4π steradians of the full sky. For instance, in an
estimation of the power spectrum one may choose to use only the data from the cleanest parts of
the sky.
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where the quantity Aν/Ωpix converts our expression from having flux units to tem-

perature units, and is given by(
Aν

Ωpix

)
=

λ2

2kBΩpix

≈ 1.4× 10−6

(
ν

ν∗

)−2(
Ωpix

1 sr

)−1

mJy−1 K, (3.7)

where λ is the wavelength, kB is Boltzmann’s constant, and Ωpix is the pixel solid

angle. Of course, in reality the sources do not all have the same flux. To take this into

account, we extrapolate a source count distribution from an empirical study done at

higher flux levels:
dn

dS∗
= B

(
S∗

880 mJy

)−γ
, (3.8)

where following Di Matteo et al. (2002) we take B = 4.0 mJy−1Sr−1 and γ = 1.75 as

our fiducial values4. Integrating over the distribution, Equation 3.6 becomes

mps(ν) = (17.4x2−γ
max K)

(
B

4.0 mJy−1Sr−1

)
×

(
2− γ
0.25

)−1(
ν

ν∗

)−αps+σ2
α
2

ln( ν
ν∗ )

, (3.9)

where xmax ≡ Smax/880 mJy, and αps ≡ α0 + 2 takes on a fiducial value of 2.5 to

match measurements from the Cosmic Microwave Background (Tegmark et al., 2000).

Note also that this implies α0 ≈ 0.5, which is consistent with both Toffolatti et al.

(1998) and Jackson (2005).

To compute the covariance of the distribution, we once again begin by considering

a population of point sources of brightness S∗ whose number density is determined

by Poisson statistics (thus giving a result proportional to nS2
∗). We then integrate

4Despite the fact that the source count distribution was obtained by extrapolation, we expect
that whatever the true distribution is, it should be well-approximated by a power law. This is
because the key quantity is the integral of the source count, which is dominated by the brightest
sources of the population. In that regime, we can linearize the distribution in log-log space, giving
a power law in S∗.
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over the source count distribution to get

Cps(ν, ν ′)=
AνAν′

Ωpix

∫ Smax

0

dn

dS∗
S2
∗dS∗

(
νν ′

ν2
∗

)−α0+
σ2
α
2

ln

(
νν′

ν2∗

)

=(4274x3−γ
max K2)

(
Ωpix

10−6 Sr

)−1(
B

4.0 mJy−1Sr−1

)

×
(

3− γ
1.25

)−1(
νν ′

ν2
∗

)−αps+σ2
α
2

ln

(
νν′

ν2∗

)
. (3.10)

Note that no further subtraction of the mean term is necessary, since it was implicitly

accomplished when we invoked Poisson statistics.

3.2.3 Galactic Synchrotron Radiation

For Galactic synchrotron radiation, we imagine the foreground spectrum in each pixel

to be well fit by a power law with spectral index α, but that the value of the spectral

index may vary from pixel to pixel. In a given pixel, the spectrum is thus

x(ν) = Async

(
ν

ν∗

)−α
, (3.11)

where Async = 335.4 K (Wang et al., 2006). Similar to the point sources, we assume

that the indices in different pixels to be Gaussian distributed, only this time with a

mean of αsync = 2.8 and a standard deviation of ∆αsync = 0.1 (Wang et al., 2006).

Performing the same integral as for the point sources, we obtain

msync(ν) = Async

(
ν

ν∗

)−αsync+ ∆α2
sync
2

ln( ν
ν∗ )

. (3.12)

Forming the foreground covariance using Equation 3.3, we obtain

Csync(ν, ν ′) = A2
sync

(
νν ′

ν2
∗

)−αsync+ ∆α2
sync
2

ln

(
νν′

ν2∗

)

−msync(ν)msync(ν ′). (3.13)
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Parameter Description Fiducial Value
B Source count normalization 4.0 mJy−1 Sr−1

γ Source count power-law index 1.75
αps Point source spectral index 2.5
σα Point source index spread 0.5
Async Synchrotron amplitude 335.4 K
αsync Synchrotron spectral index 2.8
∆αsync Synchrotron index coherence 0.1
Aff Free-free amplitude 33.5 K
αff Free-free spectral index 2.15
∆αff Free-free index coherence 0.01

Table 3.1: Free parameters in our foreground model and their fiducial values.

3.2.4 Free-free Emission

Free-free emission can be modeled in much the same way as the synchrotron radiation:

mff (ν) = Aff

(
ν

ν∗

)−αff+
∆α2

ff
2

ln( ν
ν∗ )

(3.14)

Cff (ν, ν ′) = A2
ff

(
νν ′

ν2
∗

)−αff+
∆α2

ff
2

ln

(
νν′

ν2∗

)

−mff (ν)mff (ν ′). (3.15)

but with Aff = 33.5 K, αff = 2.15, and ∆αff = 0.01 (Wang et al., 2006).

3.2.5 Total Foreground Contribution

To obtain total contribution to the mean signal, we simply sum the means of the

various components:

m(ν) = mps(ν) +msync(ν) +mff (ν). (3.16)

For the total covariance we sum the individual covariances:

C(ν, ν ′) = Cps(ν, ν ′) + Csync(ν, ν ′) + Cff (ν, ν ′). (3.17)

In total, then, our foreground model consists of 10 free parameters, which are listed

in Table 3.2.5 along with their fiducial values.
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3.2.6 Noise model

In general, the noise level in a given pixel of a sky map produced by a radio tele-

scope/interferometer scales as

σnoise ∝
λ2Tsys

Ae
√

∆ν∆t
, (3.18)

where ∆ν is the channel width of a frequency bin, ∆t is the integration time, Ae is

the collecting area of an antenna element, Tsys is the system temperature, and λ is the

wavelength. To keep the discussion in this chapter as general as possible, we do not

explicitly model the effective area and the system temperature, since both depend

on one’s specific instrument in complicated ways. Instead, we take a minimalistic

approach and simply anchor our noise to levels that are expected for current genera-

tion 21 cm tomography experiments. From Bowman et al. (2009), we know that with

360 hours of integration at a channel width of 40 KHz, the MWA has a single pixel

noise level at 158 MHz that is approximately 330 mK. Scaling this to our fiducial

values, we obtain

σnoise ∼ (39 mK)

(
1 MHz

∆ν

) 1
2
(

1000 hrs

∆t

) 1
2

. (3.19)

In the numerical studies conducted in this chapter, we will always be keeping ∆t fixed

at 1000 hrs. The frequency bin width ∆ν will also be fixed at its fiducial value of

1 MHz, except when explicitly stated (for instance when we investigate the dependence

of our results on ∆ν).

In the next section, we will be working almost exclusively in dimensionless units

where the foreground power (quantified by the diagonal ν = ν ′ elements of the fore-

ground covariance) is equal to unity across all frequencies (see Equation 3.22). In such

units, the noise can be taken to be approximately white i.e. frequency independent.

To see this, note that the effective area Ae of an antenna scales as λ2, which means that

the quantity λ2/Ae has no frequency dependence, and σnoise depends on frequency

only because of Tsys. Typical 21 cm experiments are sky noise dominated (Morales &

Wyithe, 2009), which means that Tsys should be dominated by the foreground tem-

perature, and therefore should have roughly the same frequency dependence as the

foregrounds do. However, this frequency dependence was precisely the dependence

that our choice of units was designed to null out. The noise thus becomes white to a

good approximation, and is effectively a noise-to-signal ratio (henceforth denoted by
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κ). Note that while we adopt this approximation for the rest of the chapter, it is by

no means crucial, and in general one should always use units where the foreground

covariance is white, even if in such units the noise is chromatic. For further discussion

of this point, please see Section 3.3.2.

3.3 The Ease of Characterizing Foregrounds

While the foreground parameters described in Table 3.2.5 are certainly conventional

choices, they are not the most economical, in the sense that many of them are re-

dundant. That this is the case is not surprising, since so many different foreground

sources can be accurately described by spectra that deviate only slightly from power

laws. In Section 3.3.1 we will reparametrize our foreground model using a principal

component analysis. In Section 3.3.4 we will determine the effective number of prin-

cipal components that need to be measured to accurately describe the foreground

spectra, and find the number to typically be three or four.

3.3.1 Eigenforeground Modes

Since a measured foreground spectrum will necessarily be discrete, we begin by dis-

cretizing the mean and the covariance of our foreground model from Section 3.2, so

that

mα ≡ m(να) (3.20)

and

Cαβ ≡ C(να, νβ), (3.21)

where the indices run from 1 to Nc, the total number of frequency channels in one’s

instrument. We define a correlation matrix

Rαβ ≡
Cαβ√

CααCββ

, (3.22)

and work with it instead of the covariance matrix.

We now perform a principal component analysis on the foregrounds5. That is, we

5We perform the principal component analysis using the correlation matrix R instead of the
covariance matrix C because the challenge with foreground modeling is to successfully describe
the fine relative perturbations about the smooth predictable power law spectrum. Since the relative
fluctuations are quantified by R, not C, we should correspondingly use R for our principal component
analysis.
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rewrite the correlation matrix in a basis of “eigenforeground” vectors6, where each

eigenforeground vector vn satisfies the eigenvalue equation

Rvn = λivn. (3.23)

Normalizing the eigenforeground vectors to unity and forming a matrix V where the

columns of the matrix are the normalized eigenvectors, the correlation matrix can be

expressed as

R = VΛVt =
Nc∑
n=1

λnvnv
t
n, (3.24)

where Λ ≡ diag{λ1, λ2, λ3, . . . }. Note that since R is real and symmetric, Vt = V−1,

so VVt = VtV = I. In the last equality of Equation 3.24, we see that each eigenvalue

λn measures the contribution of its corresponding eigenforeground vn to the total

foreground variance.

In Section 3.3.4, we will seek to describe measured foreground spectra in terms

of eigenforeground components. In other words, we wish to find the weight vector a

(with component ak for the kth eigenforeground) in the equation

y ≡ x + n =
Nc∑
k=1

akvk + n = Va + n, (3.25)

where y, x, and n are all vectors of length equal to the number of channels Nc,

containing the measured spectrum of foregrounds, the true foregrounds, and the noise

respectively. The vector x, for instance, is simply a discretized and whitened version of

x(ν) in Equation 3.1. Once an estimate â of a has been determined, one can multiply

by V to obtain an estimator x̂ of the foreground spectrum. We will find that by

measuring a small number of parameters, we can characterize foreground spectra to

a very high precision, thanks to the special properties of the eigenforegrounds, which

we describe in Section 3.3.2.
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Figure 3-1: Eigenvalues of R with no noise for an experiment with 50 frequency
channels, equally spaced from 100 MHz to 200 MHz.
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Figure 3-2: Eigenvalues of R for an experiment with 50 frequency channels, equally
spaced from 100 MHz to 200 MHz, and noise levels given by the fiducial model of
Section 3.2.6.
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3.3.2 Features of the Eigenforegrounds

Since the foreground spectra do not contain any sharp features7, we expect their

rather featureless frequency dependences to be well-described by a small number of

eigenforegrounds, i.e. we expect the eigenvalues λn to be large only for the first few

values of n. Performing the analysis using the foreground model of Section 3.2 for a

noiseless experiment with 50 equally spaced frequency channels going from 100 MHz

to 200 MHz, we see in Figure 3-1 that the eigenvalues do fall off rapidly with mode

number; indeed, the fall-off is exponential (a fact that we will explain later in this

section), and in going from the first eigenvalue to the third there is a drop of more than

three orders of magnitude. This means that if we select as our foreground parameters

the expansion coefficients ak of Equation 3.25, we can account for almost all of the

foreground signal by measuring just a few numbers. In fact, in a realistic experiment

it is impossible to measure more than the first few eigenvalues, as the foreground

signal quickly becomes subdominant to the instrumental noise. This can be seen

in Figure 3-2, where we once again show the eigenvalues, but this time including

the noise model of Section 3.2.6. After the fourth eigenforeground, we see that the

eigenvalues hit a noise floor because by then the eigenmodes are essentially measuring

the noise. Note also that the large drop in magnitude of successive eigenvalues makes

the qualitative results of this chapter robust to our assumption that the noise is white

in our non-dimensionalized units — because the various eigenmodes contribute to the

total foreground at such different levels, a slight chromaticity in the noise will not

change the mode number at which the eigenmodes hit the noise floor in Figure 3-2.

Violating our assumption will thus have very little effect on our results.

It should also be pointed out that in an analysis where the cosmological signal is

included and is larger than the instrumental noise (as would be the case for a long

integration time experiment), one would expect to hit a “signal floor” rather than

a noise floor. The break in the eigenvalue spectrum in going from the exponential

decay of the foreground dominated region to a flatter signal region can potentially be

used as a diagnostic for separating foregrounds from signal. To properly investigate

the robustness of this method, however, requires detailed simulations of the signal.

Since the focus of this chapter is foreground modeling (and not signal extraction), we

6Throughout this chapter, we will use Greek indices to denote different frequencies and lowercase
Latin indices to denote different foreground components/modes. In Section 3.4 we will use uppercase
Latin indices to denote the different foreground parameters listed in Table 3.2.5.

7Following Morales et al. (2006); Gleser et al. (2008), we assume that narrowband contaminants
such as terrestrial radio stations and radio recombination lines have been excised from the data prior
to this point in the analysis.
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Figure 3-3: First few eigenvectors of R (“eigenforegrounds”) for an experiment span-
ning a frequency range from 100 MHz to 200 MHz.

defer such an investigation to future work.

In Figure 3-3, we show the first few foreground eigenvectors, and in Figure 3-4

we restore the frequency-dependent normalization factors that were divided out in

Equations 3.22. In both cases the eigenvectors are the ones defined by Equation

3.23 i.e. for the noiseless case, and henceforth we will only be using these noiseless

eigenvectors. Even though we will include noise in our subsequent analysis, the use

of the noiseless eigenvectors represents no loss of generality because the eigenvectors

simply form a convenient set of basis vectors that span the space. In addition, with

our assumption of white noise (in the units defined by Equation 3.22), the inclusion

of noise alters only the eigenvalues, not the eigenvectors.

Several eigenforeground features are immediately apparent from the plots. First,

the nth eigenforeground is seen to have n − 1 nodes. This is due to the fact that

correlation matrix R is Hermitian (since it is real and symmetric), so Equation 3.23

takes the mathematical form of a time-independent Schrödinger equation for a one-

dimensional system, and the node theorem of quantum mechanics applies. As a

consequence, each successive foreground eigenmode probes a more rapidly fluctuating

component of the spectrum, which explains the rapid fall in eigenvalues seen in Figure

3-1 — since foregrounds are such smooth functions of frequency, the more rapidly

oscillating eigenmodes are simply not required.

Another characteristic feature of Figure 3-3 is that the nth eigenforeground ap-

pears to look like a polynomial of order (n − 1), albeit with some slight deviations
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Figure 3-4: First few eigenvectors of R (“eigenforegrounds”) for an experiment span-
ning a frequency range from 100 MHz to 200 MHz, but with the Cαα normalization
factor restored so that the eigenforegrounds have units of temperature.

(the “linear” 1st eigenmode, for instance, has a small curvature to it). This approxi-

mate polynomial behavior explains the success of line-of-sight foreground subtraction

schemes (Wang et al., 2006; Bowman et al., 2009; Liu et al., 2009a,b) that subtract

low-order polynomials from foreground spectra — by subtracting out low-order poly-

nomials, one is subtracting the modes with the largest eigenvalues, and since the

eigenvalues fall so quickly (indeed, exponentially) with mode number, the result is

that most of the foregrounds are cleaned out by the process. Together, Figures 3-3

and 3-4 also explain why it was found in Liu et al. (2009b) that polynomial foreground

cleaning performs well only over narrow (∼ 1 MHz) frequency ranges. In Figure 3-4,

it is seen that over large frequency ranges the eigenforegrounds do not behave like

polynomials, and that the polynomial behavior is only evident after dividing out a

power-law-like normalization. In other words, the eigenforegrounds in Figure 3-4 still

have a rough power law dependence to their spectrum, and thus are not well-fit by

polynomials. Only if the frequency range is narrow will the power law dependence

have a negligible effect, and so only in such a scenario would polynomial subtrac-

tion do well. Fortunately, there is a simple solution to this problem — if one wishes

to perform polynomial subtraction over a wide frequency range, one can still do so

successfully by first dividing out a fiducial spectrum (in the same way as we did in

writing down Equation 3.22) before performing the fits8. Put another way, we simply

8Alternatively, one can fit foregrounds over a large frequency range by using polynomials in
logarithmic frequency space. As noted in Bowman et al. (2009), however, one may want to avoid
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have to perform the fits in Figure 3-3 (where the modes always look like polynomials)

rather than in Figure 3-4.

3.3.3 Understanding the Eigenforegrounds

Despite the fact that it can be useful (in our whitened units) to think of the eigen-

foregrounds as polynomials of successively higher order, we caution that this inter-

pretation is not exact. For instance, the first eigenmode in Figure 3-3 is clearly not

precisely constant, and contains a small quadratic correction. Indeed, we will now

show that it is more useful to think of the whitened eigenmodes as functions that

would be sinusoids in ν were it not for an instrument’s finite frequency range and

spectral resolution.

Suppose that unresolved point sources were the sole contributor to our measured

foregrounds. Working in a continuous description (to avoid finite bandwidth and

resolution), the analog of Equation 3.22 takes the form9

R(ν, ν ′) =
C(ν, ν ′)

σ(ν)σ(ν ′)
, (3.26)

where C(ν, ν ′) is given by Equation 3.10 and

σ(ν) ≡ [C(ν, ν)]
1
2 =

(
ν

ν∗

)−αps+σ2
α ln(ν/ν∗)

. (3.27)

The resulting correlation function R(ν, ν ′) is given by

R(ν, ν ′) = exp

[
−σ

2
α

2
(ln ν − ln ν ′)2

]
≈ exp

[
−(ν − ν ′)2

2ν2
c

]
, (3.28)

where we have Taylor expanded about ν∗ to obtain an unnormalized Gaussian with a

coherence length of νc ≡ ν∗/σα ln ν∗. Despite the fact that this expression was derived

by only considering point sources, we find that it is an excellent approximation even

when the full foreground model is used, provided one uses a longer coherence length

doing this because of the interferometric nature of most 21 cm experiments — since interferometers
are not sensitive to the mean emission, negative values will be measured in certain pixels, making it
problematic to take the logarithm.

9Aside from the omission of the noise term here, what follows is precisely the toy model introduced
in Liu & Tegmark (2011).
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to reflect the smoother Galactic synchrotron and free-free components (∼ 64.8 MHz

gives a good fit to the foreground model of Section 3.2).

Since R(ν, ν ′) now just depends on the difference ν − ν ′, the continuous analog of

Equation 3.23 takes the form of a convolution:∫
R(ν − ν ′)fn(ν ′)dν ′ = λnfn(ν) (3.29)

where fn is the nth eigenforeground spectrum. Because convolution kernels act mul-

tiplicatively in Fourier space, the fi’s are a family of sinusoids. Indeed, plugging the

ansatz fn(ν) = sin(γnν + φ) into Equation 3.29 yields∫ ∞
−∞

exp

[
−(ν − ν ′)2

2νc

]
sin(γnν

′ + φ)dν ′ = λn sin(γnν + φ), (3.30)

where the eigenvalue is given by

λn =
√

2πν2
c exp

(
−2ν2

c γ
2
n

)
. (3.31)

The eigenforegrounds shown in Figure 3-3 should therefore be thought of as a series of

sinusoid-like functions that deviate from perfect sinusoidal behavior only because of

“edge effects” arising from the finite frequency range of an experiment. As expected

from the exponential form of Equation 3.31, the modes quickly decrease in importance

with increasing wavenumber γn, and the more coherent the foregrounds (the larger

νc is), the fewer eigenfunctions are needed to describe the foreground spectra to high

accuracy.

One discrepancy between the eigenvalue behavior in our analytic treatment and

the numerical results earlier on in the section is its dependence on wavenumber γn.

Analytically, Equation 3.31 predicts that γn should appear quadratically in the expo-

nent, whereas numerically Figure 3-1 suggests something closer to a linear relationship

(provided one imagines that the mode number is roughly proportional to γn, which

should be a good approximation at high mode numbers). We find from numerical

experimentation that part of this discrepancy is due to the finite frequency range

edge effects, and that as one goes from a very small range to a very large range, the

dependence on γn steepens from being linear in the exponential to being a power law

in the exponential, with the index of the power law never exceeding 2. In any case,

the role of Equation 3.31 is simply to provide an intuitive understanding of the origin

of the exponential fall drop in eigenvalues, and in the frequency ranges applicable to
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21 cm tomography, we have verified numerically that a linear exponential fall-off fits

the foreground model well. In particular, we can parametrize the eigenvalues with

two parameters A and B, such that

λn ≈ B exp (−An) , (3.32)

and find that A = 6.44 and B = 5.98 × 105 fits the foreground model well for an

instrument with a frequency range of 100 to 200 MHz and frequency bins of ∆ν =

2 MHz. We caution, however, that these parameters vary with the frequency range,

frequency bin width, and foreground model, and in general one must fit for A and

B for each specific set of parameters. This is what we do to generate the numerical

results of the following subsection. Generically, though, A will always be somewhat

larger than unity, so the foreground spectra will always be dominated by the first few

eigenmodes.

3.3.4 Eigenforeground Measurements

So far, we have established that foreground spectra should be describable to a very

high accuracy using only a small number of principal foreground components, with

the importance of the kth foreground component quantified by the ak coefficient in

a, which was defined in Equation 3.25. In a practical measurement, however, the

presence of noise means that one does not know the true value of a, but instead must

work with an estimator â that is formed from the data. There are many different

ways to form this estimator, and one possibility would be to minimize the quantity

χ2 ≡ (y −Vâ)tN−1(y −Vâ), (3.33)

where N is defined as 〈nnt〉 using the noise vector n of Equation 3.25. This least-

squares minimization (which is optimal if the noise is Gaussian) yields

âLS = [VtN−1V]−1VtN−1y = V−1y = Vty, (3.34)

since the number of eigenmodes (i.e. the length of âLS) is equal to the number of

frequency channels (i.e. the length of y), so that V is a square orthogonal matrix

and Vt = V−1. Equation 3.34 states that even in the presence of noise, the least

squares prescription calls for us to follow the same procedure as we would if there

were no noise, namely, to take the dot product of both sides of Equation 3.25 with
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each eigenforeground vector.

Defining an error vector ε ≡ δa = â− a as the difference between the true a and

the estimator â, we could instead choose to minimize the diagonal quantities 〈|εi|2〉.
This corresponds to so-called Wiener filtering (Tegmark, 1997b), and the estimator

is given by

âWiener = SVt
[
VSVt + N

]−1
y, (3.35)

where S ≡ 〈aat〉 is the signal covariance matrix for the vector a.

In Sections 3.3.4 and 3.3.4, we examine Wiener filtering and least-squares mini-

mization. We will find that the estimated foreground spectrum x̂ = Vâ from Wiener

filtering is expected to be closer to the true foreground spectrum, and that the least-

squares method can be adapted to give similar results, although with errors larger

than for Wiener filtering.

Wiener Filtering

With the Wiener filtering technique, our estimate of the foreground spectrum is given

by

x̂Wiener = VâWiener = VSVt
[
VSVt + N

]−1
y ≡Wy (3.36)

Understanding Wiener filtering thus comes down to understanding the filter W. We

first rewrite the expression slightly:

W ≡ VSVt
[
VSVt + N

]−1
= VS

[
S + VtNV

]−1
Vt, (3.37)

where we have made liberal use of the fact that Vt = V−1. From Section 3.2.6, we

know that N is proportional to the identity if we use whitened units. In the notation

of that section, we have N = κ2I, so

W = VS
[
S + κ2I

]−1
Vt. (3.38)

Now consider S:

S = VtVSVtV = Vt〈(Va)(Va)t〉V

= Vt〈xxt〉V = VtRV = Λ, (3.39)

where x denotes the true whitened foreground spectrum, as it did in Equation 3.25. In

the penultimate step we used the fact that 〈xxt〉 is precisely our whitened foreground

covariance, i.e. R, and in the last step we used Equation 3.24. Inserting this result
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into our Wiener filter gives

Wij =
(
VΛ

[
Λ + κ2I

]−1
Vt
)
ij

=
Nc∑
l,m

Vil

(
λl

λl + κ2

)
δlmVt

mj, (3.40)

where as before Nc is the number of frequency channels (which is equal to the number

of eigenforegrounds). This in turn means that our estimator takes the form

x̂Wiener
i =

Nc∑
j

Vij

(
λj

λj + κ2

)
(Vty)j

=
Nc∑
j

Vijwjâ
LS
j =

Nc∑
j

wjâ
LS
j vj(νi), (3.41)

where vj is the jth eigenforeground as defined in Equation 3.23 and wj ≡ λj/(λj +κ2)

can be thought of as “Wiener weights” for the jth eigenforeground. Since wj ≈ 1 for

λj � κ2 and wj ≈ 0 for λj � κ2, this weighting factor preserves eigenmodes that have

high signal to noise while suppressing those that have low signal to noise. In words,

the Wiener filtering procedure thus amounts to first performing a least-squares fit to

obtain estimates for the eigenforeground coefficients, but then in the reconstruction

of the foreground spectrum, downweighting modes that were only measured with low

signal-to-noise.

In Figure 3-5 we show the Wiener weights for the first ten eigenmodes for an

experiment with 50 frequency channels, equally spaced from 100 MHz to 200 MHz,

and noise levels given by the fiducial model of Section 3.2.6. The weights are seen to

be small after the first few eigenmodes, suggesting that most of the information in our

foreground spectrum estimate comes from a mere handful of parameters. The other

parameters (i.e. eigenforeground coefficients) are too noisy to have much constraining

power. Since the Wiener weights tend to unity in the limit of large signal-to-noise, we

can define an effective number of measurable parameters neff by summing the Wiener

weights:

neff ≡
Nc∑
i

wi. (3.42)

For the fiducial scenario in Figure 3-5, the numerical value of neff is 4.06.

In general, neff depends on both the nature of the foregrounds and the noise level.

If the noise levels were high, the difficulty in measuring the higher (and therefore sub-

dominant) eigenmodes would result in those measurements being noise dominated.
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Figure 3-5: First few Wiener weights (defined as w = λ/(λ + κ2), where λ is the
eigenvalue of a foreground mode and κ is the whitened noise) for an experiment with
50 frequency channels, equally spaced from 100 MHz to 200 MHz, and noise levels
given by the fiducial model of Section 3.2.6.

The Wiener filter would thus suppress such modes, driving neff down. In the opposite

limit where the noise levels are low, one would expect neff to be higher, but still to

be relatively small. This is because we know from Section 3.3.2 that the foreground

spectra are relatively simple functions that are dominated by the first few eigenmodes,

and thus even if the noise levels were low enough for the higher modes to be measur-

able, it is unnecessary to give them very much weight. In general, neff varies roughly

logarithmically with increasing foreground-to-noise ratio since the foreground eigen-

values drop exponentially. This nicely explains one of the results from Liu & Tegmark

(2011). There it was found that in performing foreground subtraction by deweight-

ing foreground contaminated line-of-sight Fourier modes, the number of modes that

needed to be deweighted increased only logarithmically with the foreground-to-noise

ratio. We now see that this is simply a consequence of Equation 3.32.

In Figure 3-6, the red/grey dotted line shows neff as a function of the total fre-

quency range of an experiment. In changing the frequency range, we keep the in-

tegration time and the channel width ∆ν constant so that the noise level remains

unchanged. Any change in neff therefore reflects the nature of the foregrounds, and

what one sees in Figure 3-6 is that as the total frequency range increases, more and

more modes are needed when estimating the spectrum. This is because effects like

the spread in the spectral indices are apparent only over large frequency ranges, so
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Figure 3-6: Shown with the red/grey dashed curve, the effective number neff of fore-
ground parameters used (defined by Equation 3.42) in the Wiener filtering method.
In solid black is the optimal m (Equation 3.48 adjusted for the fact that m must
be an integer) for the truncated least-squares method. In both cases the behavior
is shown as a function of the total frequency range of an instrument, with channel
width and integration time (and thus noise level) held constant at 1 MHz and 1000 hrs,
respectively.

increasing the frequency range makes foregrounds more complicated to model.

To quantify the success of a foreground model generated from Wiener filtered

measurements, we consider the quantity δx̂w ≡ x̂Wiener − x:

δx̂wi =
Nc∑
j

Vij(wjâ
LS
j − aj)

=
Nc∑
j

Vij(wj − 1)aj −
Nc∑
j,k

VijwjVkjnk

=
Nc∑
j

(wj − 1)ajvj −
Nc∑
j

Wijnj (3.43)

where in the penultimate step we substituted âLS = a + Vtn (which follows from

Equations 3.25 and 3.34), and in the ultimate step recognized that
∑

j VijwjVkj is
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the Wiener filter W of Equation 3.40. The covariance of this quantity is

〈δx̂wδx̂tw〉=
Nc∑
i,j

〈aiaj〉(wi − 1)(wj − 1)viv
t
j + W〈nnt〉Wt

=
Nc∑
i

λi(wi − 1)2viv
t
i + WNWt

=
Nc∑
i

λi(wi − 1)2viv
t
i + κ2

Nc∑
i

w2
i viv

t
i (3.44)

where in the penultimate step we used 〈aiaj〉 = Sij = Λij = λiδij, and in the last

step used Equation 3.40 as well as N = κ2I. Note that there are no cross terms

in going from Equation 3.43 to 3.44 because such terms would be proportional to

〈
∑

i aivin
t〉 = 〈xnt〉, which is assumed to be zero because the foregrounds and the

noise are uncorrelated. The diagonal terms in Equation 3.44 give the expected mean-

square measurement error at a particular frequency. Averaging over frequency to

obtain a figure-of-merit for the entire spectrum, our mean-square measurement error

becomes

ε2
Wiener≡ 〈δx̂wδx̂tw〉

=
1

Nc

Nc∑
α

Nc∑
i

λi(wi − 1)2v2
i (να)

+
κ2

Nc

Nc∑
α

Nc∑
i

w2
i v

2
i (να)

=
1

Nc

Nc∑
i

λi(wi − 1)2 +
κ2

Nc

Nc∑
i

w2
i , (3.45)

where in the last step we permuted the sums and used the fact that the eigenfore-

ground vectors are normalized. From this expression, we can see that there are es-

sentially two sources of error, each represented by one of the terms in Equation 3.45.

The first term is only significant for the higher order eigenmodes, where wi ≈ 0. With

each element in the sum proportional to λi, this term quantifies the error incurred

by heavily de-weighting the higher order modes (which are de-weighted so much that

they are essentially omitted from the estimator). Of course, we have no choice but to

omit these modes, because their measurements are so noisy that there is essentially

no foreground information contained in them. The second term is significant only

for the first few eigenforegrounds, which have wi ≈ 1. Being proportional to κ2, this
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term quantifies the error induced by instrumental noise in the measurement of the

lower order modes (which are included in the estimator).

In Figure 3-7, we show (with the red/grey dashed line) the fractional error in

an estimate of a foreground spectrum as a function of the total frequency range of

an instrument. The channel width ∆ν and integration time ∆t are held constant, so

there is no change in the noise level. From the plot, we see that as the frequency range

of the instrument increases, one is able to construct an increasingly accurate estimator

of the foreground spectrum. To understand why this is so, note that as the frequency

range increases, there are two effects at play — first, a larger frequency range means

more complicated foregrounds, possibly increasing the errors in the fits; however, a

larger frequency range with fixed channel width results in more data points to fit to,

as well as a longer “lever arm” with which to probe spectral features, thus reducing

the errors. What we see in Figure 3-7 is that the second outweighs the first. This is

unsurprising, since we saw from Figure 3-6 that as the frequency range is increased,

the number of modes required to describe the foregrounds increases rather slowly,

suggesting that the foreground spectra are only getting marginally more complicated.

Truncated Least-Squares

In a conventional least-squares fitting of a foreground spectrum, one forms an estima-

tor for the spectrum by taking âLS and multiplying by V. In other words, one fits for

all the eigenforeground coefficients (i.e. the vector a) and multiplies each coefficient

by the spectrum of the corresponding eigenforeground. This, however, is a subopti-

mal procedure for estimating the true spectrum because the higher order eigenmodes

have very low signal-to-noise and measurements of them tend to be noise dominated.

Such modes should therefore be excluded (or heavily downweighted), which was what

the Wiener filtering of the previous section accomplished. In this section we explore

a simpler method where we measure all eigenforeground coefficients, but include only

the first m eigenmodes in our estimate of the spectrum, truncating the eigenmode

expansion so that the noisier measurements are excluded.

In this truncated least-squares scheme, our estimate of the spectrum for the ith

frequency channel takes the form

x̂LSi =
m∑
j

âLSj vj(νi), (3.46)

where m is an integer to be determined later. Written in this way, we see that we can
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Figure 3-7: Expected error on measured foregrounds divided by the root-mean-square
(r.m.s.) foreground intensity to give a fractional foreground modeling error. In dashed
red/grey is the error for the Wiener filtering of Section 3.3.4 (the square root of
Equation 3.45 divided by the r.m.s.). In solid black is the error for the truncated least-
squares method of Section 3.3.4 (Equation 3.49 divided by the r.m.s. and adjusted
for the fact that m must be an integer). In both cases we have plotted the errors
on a log-log scale as functions of the total frequency range for an instrument with
a fixed 1 MHz channel width and 1000 hrs of integration time, ensuring a constant
noise level. The black dotted lines are included for reference, and are proportional to
1/
√
Nc∆ν.

reuse all the expressions derived in the previous section as long as we set wi = 1 for

i ≤ m and wi = 0 for i > m. Put another way, the truncated-least squares method

approximates Wiener filtering by replacing the plot of Wiener weights shown in Figure

3-5 with a step function. Using Equation 3.45, we thus see that the mean-square error

for the truncated least-squares method is

ε2
LS =

1

Nc

Nc∑
i=1

λi(wi − 1)2 +
κ2

Nc

Nc∑
i=1

w2
i

=
1

Nc

Nc∑
i=m+1

λi +
κ2

Nc

m∑
i=1

1

≈ B

Nc

exp [−A(m+ 1)] +m
κ2

Nc

, (3.47)

where in the last step we used the fact that the eigenvalues fall off in a steep exponen-

tial (Equation 3.32) that decays quickly enough that we can to a good approximation
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omit all but the first term in the sum.

From Equation 3.47, we see that the truncated least-squares method gives large

errors for extreme values of m, both large and small — at large m, many modes are

included, making the exponential term in the error small, but at the cost of large noise

contamination from the second term; at low m, the noise term is small, but too few

eigenforegrounds are included in the estimator of the spectrum, and the first term is

large. To obtain the best possible error from the truncated least-squares method, we

must therefore choose an intermediate value of m that minimizes ε2
LS. Differentiating

with respect to m and setting the result to zero allows one to solve for the optimal

m:

mopt =
1

A
ln

(
AB

κ2

)
− 1, (3.48)

and inserting this into our expression for the error gives a best error of

εbestLS ∼
κfid√
Nc∆ν∆t

[
1

A

[
ln

(
AB
√

∆t∆ν

κ2
fid

)
+ 1

]
− 1

] 1
2

, (3.49)

where we have made the substitution κ → κfid/
√

∆t∆ν to emphasize the scalings

with integration time ∆t and channel width ∆ν. Note that Equation 3.49 is only

approximate, since m must take on an integer value.

In Figure 3-6, the solid black curve shows mopt as a function of Nc∆ν, fitting

numerically for A and B (Equation 3.32) for each Nc∆ν. The channel width ∆ν

and ∆t are held at 1 MHz and 1000 hrs respectively, as described in Section 3.2.6.

Since ∆ν and ∆t are constant, the normalized noise level κ is also constant, and the

variation in mopt is due purely to changes in A and B. This variation is seen to be

quite weak, and we see that the optimal number of components to solve for is always

a rather small number, and that this number increases only slowly with the number of

channels Nc (or equivalently with the total frequency range Nc∆ν, since the channel

width ∆ν is being held constant). This is unsurprising, given that the first term in

Equation 3.47 decays exponentially while the second term rises only linearly, forcing

the optimal m towards small m. With any current-generation experiment, we find

mopt to be no larger than 4. Also note that mopt behaves like a discretized version of

neff from the Wiener filtering, as is expected.

In Figure 3-7, we show how the optimal m values of Figure 3-6 translate into

the error εbesttotal, again as a function of Nc∆ν. The error is divided by the root-mean-

square value of the foregrounds over the entire spectrum to give a rough percentage

error, and is plotted as the solid black line, while reference lines proportional to
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1/
√
Nc∆ν are shown in dotted black. The error is seen to decrease mostly with the

inverse square root of the total frequency range Nc∆ν, as one would expect from the

prefactor in Equation 3.49. The deviation from this behavior is due to the fact that

the second part of Equation 3.49 depends on A and B, which in turn vary with Nc.

This, however, is a rather weak effect, since the relevant parts of Equation 3.49 look

a lot like our expression for mopt, which we know from Figure 3-6 rises slowly. The

result is that deviations from a 1/
√
Nc∆ν scaling occur only when one is close to the

transition in mopt (which remember, must be an integer). Again, we see that that

truncated least-squares method closely approximates the Wiener filtering method,

with only slightly larger errors.

With both methods, we find that there is very little change in the error if one

changes the channel width ∆ν while correspondingly adjusting Nc so that Nc∆ν (i.e.

the total frequency range of the instrument) is kept constant. For the truncated

least-squares method, such changes keep the prefactor in Equation 3.49 fixed, and

any variations in the error are due purely to the corrections in the second part of the

equation. Numerically, the lack of sharp spectral features in the foregrounds means

that these corrections are found to be completely subdominant. This implies that

to an excellent approximation, the errors in our measured foregrounds are dependent

only on the total frequency range of our instrument, and are independent of how we

bin our data — binning more coarsely results in a lower noise per frequency bin, but

this is canceled out (to a very high precision) by the larger number of bins with which

to perform our fits10. From this, we see that the decrease in errors seen in Figure

3-7 (where we increased the number of data points by increasing the total frequency

range of the instrument) is due not to intrinsically better fits, but rather to a longer

“lever arm” over which to probe foreground characteristics.

Which method to use?

In summary, we can see from Figure 3-6 that it is indeed the case that 21 cm fore-

grounds can be accurately characterized using just a small number (∼ 3 or 4) of

independent components. From Figure 3-7, we see that both Wiener filtering and the

truncated least-squares method allow foregrounds to be estimated to an accuracy of

roughly one part in 10−5 to 10−6. This is fortunate since the cosmological signal is

expected to be ∼ 10−4 smaller than the foregrounds, so a failure to reach at least that

10This is provided one makes the (usually excellent) assumption that the number of frequency
bins is much larger than the number of independent foreground modes, seen in this section and the
previous one to be 3 or 4.
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level of precision would ruin any prospects of a cosmological measurement.

With the Wiener filtering and the truncated least-squares giving such similar

results, for most applications it should not matter which method is used. However, if

one requires the very best foreground model achievable, then Wiener filtering should

be used, since it was derived by minimizing the error. On the other hand, the least-

squares method has the advantage of being simpler, and in addition is more immune

to inaccuracies in foreground modeling. This is because Wiener filtering explicitly

involves the foreground covariance S, and for the method to minimize the modeling

error, it is important that the foreground-to-noise ratio be accurate. On the other

hand, the foregrounds only enter the least squares method via the choice of basis (i.e.

through V), and since this basis spans the vector space, the role of the foreground

model in least-squares fitting is simply that of a prior model. Ultimately, though,

the Wiener filtering method’s need for an estimate of the foreground covariance is

unlikely to be an obstacle in practice. As demonstrated in de Oliveira-Costa et al.

(2008), it is possible to derive a principal component basis (and the corresponding

eigenvalues) empirically.

3.4 The difficulty in measuring physical parame-

ters

In the previous section, we saw that the foregrounds can be accurately described

using only a small number of foreground eigenmodes. Put another way, there are

very few distinguishing features in radio foreground spectra, so there are really only

a few independent parameters in the data. In this section, we will see that this places

severe constraints on our ability to measure the physical parameters listed in Table

3.2.5.

We employ a Fisher matrix formalism to estimate the best possible error bars

on measurements of these parameters. To do so, we imagine that one has already

used Equation 3.34 to compute an estimator â of the expansion coefficient vector

from the data11. The precise value of this estimator will vary because of the random

nature of instrumental noise, whose effect can be quantified by computing the error

covariance matrix of â. Since both the Wiener filtering method and the truncated

11Instead of considering the expansion coefficients, one could instead deal with the foreground
spectrum x and its estimator x̂ directly. However, unlike for the expansion coefficients, the spectra
themselves have the unfortunate property of having non-diagonal error covariances (e.g. Equation
3.43 for Wiener filtering), which makes the subsequent analysis and interpretation in this section
more cumbersome.

111



least-squares method require as a first step a full least-squares estimation of a, we can

use the standard formula for the error covariance Σ for least-squares fitting (Tegmark,

1997b):

Σ ≡ 〈[â− 〈a〉][â− 〈a〉]t〉 = [VtN−1V]−1 = κ2I, (3.50)

where like before we used the fact that in our whitened units, N = κ2I. Once

again, the angle brackets 〈. . . 〉 denote an ensemble average, or (equivalently from the

standpoint of practical observations) an average over many independent lines-of-sight.

With this covariance, the probability distribution L of â is given by

L(â; Θ) =
1√

(2π)Nc det Σ
exp

[
−1

2
[â− 〈a〉]tΣ−1[â− 〈a〉]

]
, (3.51)

where Σ is the error covariance matrix, and Θ ≡ (θ1, θ2, θ3, . . . ) is a vector of model

parameters (such as the parameters in Table 3.2.5), which enters our expression be-

cause the true expansion coefficient vector a depends on these parameters. Interpreted

as a function of Θ for a given measurement â, L is the so-called likelihood function for

the parameters that we wish to constrain. The tightness of our constraint is closely

related to the Fisher information matrix, which is defined as

FAB ≡

〈
∂2L

∂θA∂θB

〉
, (3.52)

where L ≡ − lnL. If our estimator for the parameters is unbiased, i.e.

〈Θ〉 = Θ0, (3.53)

where Θ0 is the true parameter vector, then the Cramer-Rao inequality states that

the error bars on θA (defined by the standard deviation ∆θA ≡
√
〈θ2
A〉 − 〈θA〉2) satisfy

∆θA ≥ (F−1)
1/2
AA (3.54)

if we estimate all the parameters jointly from the data. Computing the Fisher matrix

thus allows us to estimate the ability of an experiment to constrain physical param-

eters, with the covariance between the parameter estimates equal to F−1 if the data

analysis is done in an optimal fashion.

Let us now compute the Fisher matrix for the foreground parameters listed in

Table 3.2.5. Inserting Equation 3.51 into Equation 3.52 and performing some matrix
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algebra, one can show (Tegmark et al., 1997) that the Fisher matrix reduces to

FAB =
1

2
Tr

[
Σ−1 ∂Σ

∂θA
Σ−1 ∂Σ

∂θB

]
+
∂〈at〉
∂θA

Σ−1∂〈a〉
∂θB

. (3.55)

Referring back to our expression for Σ, we see that the first term vanishes because Σ

depends only on the noise level and not on the physical parameters. This gives

FAB =
1

κ2

(
∂〈at〉
∂θA

)(
∂〈a〉
∂θB

)
. (3.56)

Note that this expression depends on the mean vector 〈a〉, not the estimator â. This

is because the Fisher matrix formalism tells us what the error bars are for the optimal

method, whatever that method happens to be. We thus do not expect â to appear

in FAB, for if it did we would have the freedom to plug in a possibly sub-optimal

estimator of our choosing, and by construction the Fisher matrix formalism contains

information about the optimal errors.

With 〈a〉 signifying the true expansion coefficient vector, we know from Equations

3.2 and 3.25 that

〈a〉 = Vt〈x〉 = Vtm. (3.57)

Inserting this into our expression for the Fisher matrix, we obtain12

FAB =
1

κ2

(
∂mt

∂θA

)
VVt

(
∂m

∂θB

)
=

1

κ2
sA · sB, (3.58)

where we have used the fact that Vt = V−1 since the eigenforegrounds are orthogonal,

and have defined

sA ≡
∂m

∂θA
. (3.59)

Each component of Equation 3.58 can be geometrically interpreted as a dot prod-

uct between two s vectors in an Nc-dimensional space. As m encodes the whitened

foreground spectrum (Equation 3.22), each s vector quantifies the change in the ex-

pected foreground spectrum with respect to a physical parameter. And since the

final covariance matrix on the parameter errors is given by F−1, the greater the dot

product between two different s vectors, the more difficult it is to measure the two

corresponding physical parameters. The forms of different sA’s thus give intuition for

12We have implicitly assumed that the whitening procedure performed in Equations 3.22 was with
respect to some fiducial foreground model, so that V does not depend on the foreground parameter
vector Θ.
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B γ Async Aff αps αsync αff σα ∆αsync ∆αff
B 1.00 1.00 0.998 0.998 0.0603 0.111 -0.00425 0.683 0.664 0.705
γ — 1.00 0.999 0.998 0.0603 0.111 -0.00425 0.683 0.664 0.705
Async — — 1.00 0.993 0.113 0.163 0.0489 0.696 0.680 0.713
Aff — — — 1.00 -0.00413 0.0465 -0.0684 0.661 0.639 0.688
αps — — — — 1.00 0.997 0.996 0.333 0.389 0.254
αsync — — — — — 1.00 0.987 0.399 0.454 0.322
αff — — — — — — 1.00 0.245 0.303 0.164
σα — — — — — — — 1.00 0.998 0.996
∆αsync — — — — — — — — 1.00 0.987
∆αff — — — — — — — — — 1.00

Table 3.2: Dimensionless dot products between sA vectors (Equation 3.59) for the
foreground parameters listed in Table 3.2.5, or equivalently, a normalized version
of the Fisher matrix (given by Equation 3.58) so that the diagonal elements are
unity. The derivatives were evaluated at the fiducial foreground parameters for the
foreground model described in Section 3.2. The frequency range of the experiment
was taken to go from 100 MHz to 200 MHz, with 50 equally spaced channels. The
matrix is symmetric by construction, so the bottom left half has been omitted for
clarity.

the degeneracies in a set of parameters.

Shown in Figures 3-8 and 3-9 are plots of the sA vectors for the foreground pa-

rameters shown in Table 3.2.5. For clarity, we have separated the derivatives into

two plots that have different vertical scales. Many of the parameters derivatives have

similar shapes, suggesting that they will have a large “dot product” in Equation 3.58

and therefore large degeneracies between them. Note that the overall normalization

of the curves is irrelevant as far as degeneracies are concerned. This is because two

parameters with identically shaped curves but different normalizations are still com-

pletely degenerate as one can perfectly compensate for changes in one parameter with

smaller (or larger) changes in the other. Thus, to quantify the degree of degeneracy,

we can form a matrix of normalized dot products between the sA vectors, where the

magnitude of each vector is individually normalized to unity. The results are shown

in Table 3.2, where we see that the parameters form three degenerate groups — the

normalization parameters (B, γ, Async, Aff ), forming a degenerate 4 × 4 block of

≈1’s in the top left corner; the spectral index parameters (αps, αsync, αff ), forming a

degenerate block in the middle; and the frequency coherence parameters (σα, ∆αsync,

∆αff ), forming a degenerate block in the bottom right corner. Indeed, computing the

eigenvalues of the normalized Fisher matrix (i.e. of Table 3.2), one finds only three

eigenvalues of order unity and higher, with the next largest eigenvalue of order 10−3.
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B γ Async Aff αps αsync αff σα ∆αsync ∆αff
θ′1 0.368 0.368 0.374 0.36 0.14 0.164 0.108 0.366 0.365 0.366
θ′2 0.184 0.184 0.155 0.219 -0.532 -0.522 -0.542 -0.053 -0.088 -0.005
θ′3 0.283 0.283 0.293 0.275 0.167 0.13 0.215 -0.442 -0.429 -0.455
θ′4 0.006 0.006 0.002 0.01 -0.007 -0.046 -0.049 0.089 0.665 -0.739
θ′5 -0.001 -0.001 0.001 0. 0.002 0.088 -0.087 -0.81 0.472 0.327
θ′6 -0.001 -0.001 -0.018 0.019 0.81 -0.293 -0.506 0.004 -0.041 0.008
θ′7 0.247 0.248 -0.125 -0.369 -0.097 0.646 -0.534 0.05 -0.081 -0.072
θ′8 0.408 0.41 -0.236 -0.58 0.057 -0.411 0.311 -0.033 0.049 0.043
θ′9 0.181 0.114 -0.823 0.524 0.004 0.048 0.026 0. -0.003 0.
θ′10 0.7 -0.712 0.038 -0.026 0. -0.002 -0.001 0. 0. 0.

Table 3.3: Eigenvectors (Equation 3.60) of the normalized Fisher matrix (Table 3.2).
Each row represents an eigenvector, and going from top to bottom the eigenvectors
are arranged in descending value of eigenvalue.

This suggests that there are really only three independent foreground parameters that

can be measured.

To gain an intuition for what these independent parameters quantify, consider the

first few eigenvectors of the normalized Fisher matrix F̂ shown in Table 3.2, that is,

vectors that satisfy

F̂θ′n = λnθ
′
n. (3.60)

These parameter eigenvectors are listed in Table 3.4, where each row gives the weighted

average of the original parameters that one must take to form the “eigenparameters”.

To see what foreground parameters are well characterized by 21 cm tomography, we

look at the first few eigenvectors, which can be measured with the highest signal-to-

noise ratio:

θ′1 ≈ 0.4(B + γ + σα + Async + Aff + ∆αsync + ∆αff )

+0.1(αps + αff ) + 0.2αsync

θ′2 ≈ 0.2(B + γ + Aff + Async)− 0.1(σα + ∆αsync)

−0.5(αps + αsync + αff )− 0.02∆αff

θ′3 ≈ 0.3(B + γ + Async + Aff ) + 0.2(αps + αff ) + 0.1αsync

−0.4(σα + ∆αsync)− 0.5∆αff , (3.61)

where for clarity the coefficients have been rounded to one significant figure (see

Table 3.4 for more precise values). The first eigenparameter weights all the parame-

ters equally except for the spectral indices, which are somewhat downweighted. The
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first eigenparameter is thus roughly an “everything but spectral indices” parameter.

Crudely speaking, this parameter is a generalized normalization parameter because it

is mostly comprised of normalization parameters (B, γ, Async, Aff ) and frequency co-

herence parameters, whose spectral effects are not apparent until the frequency range

is large. Examining the third eigenvector, we see that it is most heavily weighted

towards the frequency coherence parameters, suggesting that we do have an indepen-

dent parameter that acts as a “generalized frequency coherence”. However, being the

third eigenvector, our ability to make measurements of it is lower than with the first

eigenvector or the second eigenvector, which is a “generalized spectral index”.

To see which degrees of freedom we cannot constrain in our foreground model, we

consider the last couple of eigenparameters:

θ′9 ≈ 0.18B + 0.11γ − 0.82Async + 0.52Aff

θ′10 ≈ 0.7B − 0.71γ, (3.62)

where we have omitted all terms with coefficients less than 0.1. The last eigenvector

is dominated by B and γ, which appear with almost equal and opposite magnitudes.

This suggests that differences between B and γ are extremely hard to measure. In the

penultimate eigenvector, the sum of coefficients for B, γ, and Aff is roughly equal

and opposite to the coefficient of Async. This implies that the collective difference

between Async and the linear combination of B, γ, and Aff is also difficult to tease

out from the data, but less so than the difference between B and γ.

That we can only measure a small number of foreground parameters independently

is perhaps unsurprising, given that in Figure 3-1 we saw that most of the foreground

power comes from a small number of eigenforeground modes that lack distinctive

features. Note that since κ enters our expression for the foreground parameter Fisher

matrix (Equation 3.58) as an overall multiplicative constant, instrumental noise has

no effect on the foreground parameter degeneracies we examined in this section. The

parameter degeneracies are due purely to the form of the foregrounds, and have

nothing to do with the noise. On the other hand, when quantifying the effective

number of parameters in the Wiener filter (Equation 3.42) or when solving for the

optimal number of eigenforeground modes to measure in the truncated least-squares

method (Equation 3.48), our expressions explicitly depend on the noise level. For

instance, in the limit of a noiseless experiment the best characterization of foregrounds

is obtained by measuring all the eigenmodes, not the three or four modes found in

Sections 3.3.4 and 3.3.4. In general, however, the results of this section show that one
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must be able to measure at least three eigenmodes at a reasonable signal-to-noise in

order to adequately model the foreground spectrum. If Equation 3.42 or Equation

3.48 suggest that fewer eigenmodes should be used in the model, it is simply because

one’s experiment is too noisy to allow the foregrounds to be measured accurately.

3.5 Conclusions

In this chapter, we have shown that despite the complicated dependence that low-

frequency radio foregrounds may have on physical parameters, the resulting spectra

are always rather generic and featureless. The bad news from this came in Section

3.4, where we saw that even the most careful foreground spectrum measurements are

unlikely to yield interesting constraints on foreground physics, thanks to high levels

of degeneracies between different foreground parameters. This, however, is good news

for those who simply consider foregrounds an impediment to 21 cm tomography. In

Section 3.3 we saw that it was precisely because the foreground spectra were so

featureless that they could be characterized to a greater accuracy than necessary for

foreground subtraction using only three or four independent parameters. This bodes

well for 21 cm astrophysics and cosmology, for it suggests that extremely detailed and

physically motivated foreground models will not be necessary for successful foreground

cleaning.
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Chapter 4

Will point sources spoil 21 cm

tomography?

4.1 Introduction

In Chapter 3, we discussed the problem of foreground modeling. We now turn to

actual foreground subtraction. Foreground subtraction in 21-cm tomography is par-

ticularly challenging because current-generation instruments are not optimized for

imaging. Instead, most experiments are designed to provide cosmological informa-

tion through statistical measurements such as the power spectrum. Images of the

21-cm sky are expected to be of a rather poor quality in terms of both signal-to-noise

and synthesized beam, and image-processing techniques devised to optimally mitigate

this problem may be too computationally intensive to be useful.

In this chapter, we take a conservative approach and investigate how well fore-

ground cleaning can be done with a computationally simple method using only the

the so-called dirty maps – distorted maps of the sky as seen by an instrument at

many different frequencies. Specifically, we clean out the foregrounds in any given

sky direction by fitting a model of the contamination to the corresponding sky pixels

in all the dirty maps. This approach of cleaning one sky pixel at a time along the

line-of-sight allows one to take advantage of the high spectral resolution offered by

most 21 cm tomography experiments. The key idea is that explored in Wang et al.

(2006): the point source emission (mainly synchrotron radiation from distant galax-

ies) is expected to vary smoothly with frequency while the redshifted 21 cm signal

of interest varies rapidly, because a small change in frequency (and hence redshift)

corresponds to many Mpc in the radial direction and hence a major difference in local
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Figure 4-1: Sample synthesized beam profile for a typical 21-cm tomography ex-
periment with 500 antenna tiles. The tiles are distributed within a diameter
Darray ∼ 1500 m according to the density function ρ(r) ∼ r−2. From the profile,
it is clear that a realistic evaluation of foreground subtraction techniques should take
into account the fact that beam widths vary as λ/D. This is particularly important
when subtracting off unresolved point sources, because a point source can fall on an
off-beam “spike” that has an effectively unpredictable dependence on frequency.

density fluctuations etc. High spectral resolution should thus allow one to separate

out a rapidly oscillating cosmological signal from the spectrally smooth foreground

using a low-order polynomial fit.

While previous studies (Wang et al., 2006; Jelic et al., 2008) have already high-

lighted the potential of this approach, such studies are incomplete because they do

not take frequency dependent beam effects into account. At a given frequency, the

dirty map is the true sky multiplied by a broad (say 10◦) function known in radio

astronomy as the primary beam and then convolved with a function referred to as the

synthesized beam. The primary beam width is of order θ ∼ λ/Dantenna, where Dantenna

is the physical size of the individual array elements, whereas the synthesized beam
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is the Fourier transform of the array layout. Figure 4-1 shows a synthesized beam

example illustrating several key features:

• There is a narrow central peak whose width is of order θ ∼ λ/Darray, where

Darray is the size of the whole antenna array. This peak width is usually referred

to as the angular resolution of the experiment.

• There is positive and negative “frizz” extending far beyond the central peak,

corresponding to incomplete coverage of the Fourier plane, causing random-

looking low amplitude oscillations on the angular resolution scale.

• The synthesized profile is the same at all frequencies except for an overall scaling

with the wavelength λ.

As one shifts to higher frequencies, the synthesized beam therefore shrinks like ν−1,

causing the contributions from individual point sources to oscillate rapidly as posi-

tive and negative parts of the frizz moves across them. This produces an effective

foreground signal looking not like a smooth synchrotron spectrum, but more like the

rapidly oscillating cosmological signal.

Early work on this problem has provided cautionary but encouraging results (Bow-

man, 2007). Our goal in this chapter is to quantify in detail how well the simple

pixel-by-pixel foreground subtraction strategy can deal with this problem, using sim-

ulations including realistic radio arrays and beams. Bowman et al. (2009) have inde-

pendently studied this problem with a complementary approach, and we compare our

results with theirs below. Whereas they perform a detailed case study of how well

the MWA experiment can meet this challenge, including all foregrounds, we instead

tackle the broader question of how residual point source contamination depends on

experimental specifications, and what the experimental design implications are. We

ignore non-point-source contributions to the foregrounds, with the expectation that

such components (such as Galactic synchrotron radiation) are rather benign relative

to the unresolved sources. Being spatially smooth, the off-beam contributions of such

foregrounds tend to average out, unlike the point sources, even though their expected

amplitude is larger. Bowman et al. (2009) confirm this expectation.

In this chapter, we deal only with the removal of unresolved point sources, assum-

ing that resolved and detected sources can be eliminated by standard radio astronomy

techniques as well as discarding the most contaminated pixels. We thus envision the

cleaning of foregrounds as a two-step process: first masking or deconvolving out bright

resolvable point sources that exceed some flux cut, then proceeding with our proposed
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algorithm. We focus solely on the viability of the second step, but explore how the

results depend on the flux cut from the first step.

The rest of this chapter is organized as follows. In Section 4.2, we outline the

simulation methodology. We go through the simulation of foregrounds, the simulation

of radio interferometers, and the proposed foreground subtraction strategy itself. The

overall results of our analysis are presented in Section 4.3.2, where we consider three

possible scenarios for foreground subtraction, ranging from the most pessimistic to

the most optimistic. In Section 4.3.3, we quantify which design and algorithm choices

are most important, and examine how the interplay between various instrumental

and algorithmic parameters gives rise to these results. Table 4.1 lists the parameters

that we explore as well as the ranges over which we vary them. In Section 4.4, we

summarize our results and discuss future prospects.

Assumptions Low-
Performance
Extreme

Fiducial
Model

High-
Performance
Extreme

Experimental Tile Arrange-
ment

ρ(r) ∼ r−2 ρ(r) ∼ r−2 Monolithic with
tiles separated
by 40 m

Rotation syn-
thesis

None 6 hours, continu-
ous

6 hours, continu-
ous

Noise level σT ∼ 1 mK Noiseless 1 Noiseless
Analysis Primary

beam width
adjustments

None None Adjusted to
be frequency-
independent

Bright point
source flux
cut Scut

100 mJy 10 mJy 0.1 mJy

synthesized
beam width
adjustments

None None Resolutions
equalised by
extra smoothing

u-v plane
weighting

None (natural) Uniform Uniform

Order of poly-
nomial fit

Constant Quadratic Quintic

Range of
polynomial
fit

80 MHz 2.4 MHz 2.4 MHz

Table 4.1: Range of our parameter space exploration for foreground cleaning. Param-
eters pertaining both to experimental specifications and to analysis method impact
the success of the cleaning.
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4.2 Methodology

Our basic approach is to simulate a point source sky, simulate observed maps of it at

multiple frequencies, clean these maps and quantify the residual contamination that

remains after the cleaning. We repeat this a large number of times to explore the

range design and algorithm options listed in Table 4.1.

A key feature of our cleaning method (which, again, is essentially that proposed

in Wang et al. (2006), but with dirty map effects taken into account) is that the algo-

rithm is blind, in the sense that our method does not rely on any physical modeling

of foregrounds. This is important because the foregrounds relevant to 21-cm tomog-

raphy are still relatively poorly understood (as compared to, say, the foregrounds

relevant to cosmic microwave background experiments), and models are often based

on interpolations and extrapolations from other frequency bands (de Oliveira-Costa

et al., 2008). Because of this, we choose to use only the generic property that ra-

dio frequency foregrounds are smooth functions of frequency. This means that in

our analysis, the foreground and instrumental simulation steps are not only separate

from each other, but also completely decoupled from the foreground subtraction step.

Thus, in what follows we divide our description of the methodology into each of those

steps.

4.2.1 Step I: Simulation of Foregrounds

While point sources tend to cluster and are therefore not randomly distributed, the

clustering is rather weak, and for simplicity we make the the assumption that they

are uncorrelated. We thus simulate the contribution to each sky pixel independently,

with its flux being the sum of the fluxes of a large number of of randomly generated

point sources. The brightness of each point source is randomly drawn from the source

count distribution

dn

dS
= (4.0 mJy−1 sr−1)

(
S

880 mJy

)−1.75

, (4.1)

1Our baseline simulations are run without noise because we show in Section 4.3.2 that the noise
contribution can be included analytically and is unimportant for evaluating the effectiveness of our
foreground subtraction strategies.
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which is applicable at ν∗ ≡ 150 MHz (Di Matteo et al., 2002; Lidz et al., 2008). The

spectral dependence of each point source is given by

S(ν) = S(ν∗)

(
ν

ν∗

)−α
, (4.2)

where the spectral index α is randomly chosen from a Gaussian distribution

p(α) =
1√

2πσ2
exp

[
−(α− α0)2

2σ2

]
, (4.3)

with α0 = 2.5 and σ = 0.5 (Tegmark et al., 2000). Putting this all together, the

brightness of each pixel is found by simply summing the simulated point sources

within that pixel:

I =

(
dB

dT

)−1

Ω−1
sky

N∑
i=1

S∗i

(
ν

ν∗

)−αi
, (4.4)

where S∗i is the flux of the ith point source at 150 MHz, and dB/dT = 6.9×105(ν/ν∗)
2 mJy K−1 sr−1

is the standard conversion between intensity and brightness temperature. We use a

pixel size of Ωsky = 4.3 arcmin2 in our simulations. In generating our point sources,

equation 4.1 is truncated at some maximum flux Smax = Scut because the bright-

est point sources are assumed to be detected and separately removed as mentioned

above. We leave the threshold Scut as a free parameter, and we investigate how the

effectiveness of our foreground subtraction algorithm changes as Scut is varied from

0.1 mJy to 100 mJy. At the dim end of the distribution, we truncate at a minimum

flux Smin because the source count distribution diverges as S → 0. We find that

it is unnecessary to have Smin be any lower than 10−3 mJy, as the total flux I has

converged by then. These values for Smin and Smax mean that we typically simulate

N ∼ 2000 point sources point sources for the sum in equation 4.4.

All the simulations were performed on 1024 × 1024 grids, and we verified that

increasing the resolution to 4096 × 4096 had essentially no effect on the results. In

the line-of-sight direction, the lowest frequency that we simulate is ν = 158.73 MHz

(corresponding to z = 8), and (except for in section 4.3.3) the frequency increases by

∆ν = 0.03 MHz from one frequency slice to another over 80 slices. In section 4.3.3

we continue to simulate 80 slices starting at ν = 158.73 MHz, but we increase ∆ν to

0.3 MHz and 1.0 MHz to quantify the effect of increasing the range of the polynomial

fit. A sample sky at ν = 159 MHz is shown in figure 4-2.

Performing the sum in equation 4.4 at all frequencies for all 10242 pixels would

take on order a month with our software. We therefore accelerate our algorithm by

124



Figure 4-2: A sample sky with point source foregrounds at ν = 159 MHz

exploiting the fact that the pixels are independent random variables. We first generate

a database of 1000 pixels for which we compute the full frequency dependence. We

then give each sky pixel the frequency dependence of a random pixel from the archive.

It is easy to show that this procedure does not bias the residual power spectra low or

high, but merely increases the variance in our estimation of these power spectra. By

computing the scatter between multiple analyses using different random seeds and

database sizes, we find that this excess scatter becomes unimportant for our purposes

once the database exceeds a few hundred pixels.

We re-emphasize that the process used here pertains only to the simulation of

foregrounds. The foreground subtraction itself is blind and therefore does not depend

on the assumed properties of the foregrounds.

4.2.2 Step II: Simulation of Radio Interferometer

As mentioned above, the response of a radio interferometer array can be described

by two beam functions: the primary beam and the synthesized beam. The primary

beam function encodes the power response of an individual interferometer element

to different parts of the sky, while the synthesized beam is a convolution kernel that
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describes the interferometric effects of the array as a whole. To a good approximation,

what an interferometer sees is not the true sky, but the true sky multiplied by the

primary beam and then convolved with the synthesized beam.

In our simulations, we approximate the primary beam by a Gaussian. Its width

scales as λ/Dantenna, and is chosen so that the width matches simulated antenna

patterns of the Murchison Widefield Array (MWA) dipole antennas at 150 MHz

(approximately 30◦ full-width-half-max). The synthesized beam is found by taking

the Fourier transform of the distribution of baselines (in the so-called u-v plane),

which depends on the arrangement of tiles in the interferometer array. While our

simulations of course require specific realizations of the array layout, we expect our

results to hold for any radio array whose tile distribution is qualitatively similar to

the various scenarios we consider in the results section. Roughly speaking, this means

that our results should be applicable to any array with a relatively large number of

short baselines and a number of long baselines that span up to ∼ 1 km, giving an

angular resolution that is on the order of arcminutes. For an array with very different

dimensions, our results can be straightforwardly scaled.

Integration time affects the response of the interferometer array in two ways that

are important here. First, detector noise averages down with time as t−1/2 as long as

it is uncorrelated over different time periods. A typical point source sensitivity for

a current-generation experiment like the MWA is S = 0.27 mJy, with a 4.6 square

arcminute pixel, and a 32 MHz bandwidth. This corresponds to an r.m.s. detector

noise per a pixel of (Wang et al., 2006):

σMWA
T = 0.22 K

(
32MHz

∆ν

)1/2(
1 hour

t

)1/2

, (4.5)

where ∆ν is the bandwidth, and t is the integration time. The MWA has a channel

bandwidth of 32 kHz, and with ∼1000 hours of integration the detector noise level

is ∼ 0.2 K. In our simulations we consider not only current-generation experiments

with this level of noise, but also the noise levels of hypothetical future experiments,

which we take to be of order ∼ 1 mK.

The second effect of taking measurements over an extended period of time pertains

to the concept of rotation synthesis. The rotation of the Earth during observations

means that interferometer baselines are not static points on the u-v plane, but instead

sweep out of u-v tracks. This results in a change in the properties of the synthesized

beam, as one can see in figure 4-3. In our analysis, we explore a range of rotation

synthesis scenarios from none at all (i.e. taking a snapshot of the sky) to having 6
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hours of rotation synthesis.

4.2.3 Step III: Foreground Subtraction

As mentioned above, we use a pixel-by-pixel line-of-sight cleaning strategy for remov-

ing the unresolved foregrounds below the flux threshold. For each pixel, its frequency

dependence is fit by a low-order polynomial. Such a polynomial is by definition a

smooth function, and thus the hope is that by subtracting off the fit from the signal,

one subtracts off mainly the smooth foregrounds and not much of the cosmological

signal, which is expected to oscillate wildly with frequency. We leave the order of

the polynomial as a free parameter, and explore the effects of varying it from 0 (con-

stant) to 5 (quintic). This involves a tradeoff between two separate effects. On one

hand, the higher the order of the fit, the lower the residual foregrounds will be. On

the other hand, high order fits come at the expense of fitting more power out of the

cosmological signal. Crudely speaking, one therefore wishes to select the lowest order

capable of adequately subtracting off foregrounds.

4.3 Results

In this section, we quantify the extent to which point source contamination can be

removed with line-of-sight cleaning, and how this depends on the many parameters in

Table 1. To get a sense of the extent to which the parameters matter, we then analyze

three scenarios designed to bracket the range of possibilities in Section 4.3.1. As seen

in Figure 4-4, this range is broad, extending all the way from utter failure to recover

the cosmological signal to success in pushing foregrounds two orders of magnitude

below the signal. After discussing some general findings that are independent of all

these parameters in Section 4.3.2, we devote Section 4.3.3 to examining the parameters

one by one to quantify which ones make the greatest difference.

4.3.1 Three scenarios

We now analyze three scenarios designed to bracket the range of possibilities:

1. Pessimistic scenario (PESS)

• Experimental assumptions: In this scenario, we simulate an array whose

tiles are arranged in a radial density profile that goes as r−2. The array
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Figure 4-3: The left hand column shows sample beam profiles (a real-space description
of the beam) while the right hand column shows the corresponding u-v distribution
of baselines (a Fourier-space description of the beam). The top row illustrates an
array with no rotation synthesis, while the bottom row shows an array with 6 hours
of rotation synthesis. The real-space beams are normalized so that their peaks are at
1.
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Figure 4-4: 2D power spectra of foregrounds and foreground residuals for the various
scenarios outlined in the text. It is clear that except for the most pessimistic scenario,
a dirty-map pixel-by-pixel cleaning strategy can be used to get within at least striking
distance of the cosmological signal. As we will explain in Chapter 5, the rise in
foreground residuals towards higher k is due to incomplete u-v coverage as one moves
away from the origin in u-v space. The spike just prior to the general rise is due to
the specific baseline distribution used in this chapter’s simulations. The u-v coverage
simply happens to have a hole at some location closer to the origin than the beginning
of the general “thinning” of baselines towards the edge of the coverage, giving rise to
a premature spike
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takes a single snapshot of the sky.

• Analysis: No extra weighting is imposed on the u-v plane (see Section

4.3.3 for details on weighting schemes), and no attempt is made to adjust

for the fact that both the primary beam and the synthesized beam have

frequency-dependent widths. It is assumed that only sources that are

10 mJy or brighter can be removed prior to the subtraction of unresolved

point sources. We also assume that the highest order polynomial that one

can fit without taking out significant power from the cosmic signal is a

quadratic.

2. Fiducial scenario (MID) — this scenario is designed to be reasonably rep-

resentative of current-generation experiments.

• Experimental assumptions: Same as PESS except that the array samples

the u-v plane continuously for 6 hours.

• Analysis: Same as PESS except that the u-v plane measurements are

weighted so that all parts of the u-v plane that are covered are given a

uniform weight.

3. Optimistic scenario (OPT)

• Experimental assumptions: Same as MID.

• Analysis: Same as MID except that we assume that bright point sources

can be removed down to 1.0 mJy, and that one can safely fit up to a cubic

polynomial.

Our fiducial model is a middle-of-the-road (MID) case intended to be representative of

current generation experiments, while the pessimistic (PESS) and optimistic (OPT)

scenarios refer to worst and best case experimental expectations, respectively. The

PESS and OPT scenarios in general differ less than the low-performance and high-

performance extremes outlined in Table 4.1 because the parameters of these extreme

scenarios are in some cases unrealistic, and are considered in Section 4.3.3 solely to

better understand how the various parameters affect foreground subtraction.

As our measure of how well or poorly the cleaning works, we use the two-dimensional

spatial power spectrum of the cleaned map. We do this because the power spectrum

of the cosmological signal is the key quantity that the 21 cm tomography community

aims to measure in the near term, and the residual point source power spectrum

will simply add to this. In all our power spectrum plots (starting with Figure 4-4),
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we have removed the distorting effect of convolution with the synthesized beam, so

that P2D(k) for the point sources is a constant (k-independent) white noise spectrum.

The detector noise also has a constant spectrum, and the cosmological 21 cm signal

plotted is what would be seen by an ideal instrument making a distortion-free image

of the sky. The deconvolution step is trivial to perform in Fourier space, correspond-

ing simply to dividing the measured power spectrum by the radial distribution of

baselines.

Rather than plot P2D(k) itself, we plot the dimensionless quantity [k2P2D(k)]1/2,

which can be roughly interpreted as the dimensionless fluctuation lever, analogous to

the standard quantity δT/T ∝ [`2C`]
2 for the cosmic microwave background and the

quantity ∆ ∝ [k3P3D(k)]1/2 for three-dimensional galaxy surveys. In the figures that

follow, [k2P2D(k)]1/2 is always plotted for the frequency slice at ν = 158.73 MHz. This

translates to a redshift z = 8, around the “sweet spot” of most current generation 21

cm experiments.

Our cleaning method is linear, i.e., the “data cube” containing the cleaned maps

at different frequencies is simply some linear combination of the input data cube,

and the weights in this linear combination (implementing the polynomial fits) are

fixed, independent of what the data cube contains. This means that if we have three

data cubes, containing cosmological 21 cm signal, detector noise and point source

signal, respectively, we get the same result if we sum them and then clean as if we

first clean them individually and then sum them. Since these three components are

all statistically independent, this also implies that their post-cleaning power spectra

simply add. We take advantage of this fact (which we also verify numerically in

Section 4.3.3) to simplify our analysis, performing most of our simulations with both

the cosmological signal and the noise set to zero. A perfect foreground subtraction

algorithm would thus produce a residual power spectrum that is zero everywhere.

Figure 4-4 shows the results. For comparison, the figure also shows the simulated

EOR signal for z = 8 (taken from McQuinn et al. (2006a) and McQuinn et al.

(2007)). Figure 4-4 shows that except for in the PESS scenario, our simple foreground

subtraction algorithm is successful on large scales but not on small scales. Let us now

focus on understanding this better, and clarifying the key properties of the cleaning

method.
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Figure 4-5: The spectra of a three typical dirty-map pixels, with fits given by the
dotted curves. The top panel assumes no instrumental noise and no point sources
brighter than 0.1 mJy. The middle panel assumes no instrumental noise and no point
sources brighter than 100.0 mJy. The bottom panel assumes an instrumental noise
level of σT = 200 mK and no point sources brighter than 0.1 mJy.

132



4.3.2 Why the method can work well on large scales

In the top panel of figure 4-5, we show the spectrum for a pixel randomly chosen

from the dirty map produced by a noiseless but otherwise MWA-like instrument that

has been continuously observing a fixed patch in the sky for 6 hours. A bright point

source flux cut of Scut = 0.1 mJy has been assumed. In figure 4-5 we can see that

while the overall trends of the spectrum can be captured by a low-order polynomial

fit, the finer features generally remain as residuals.

The effectiveness of the polynomial fit depends on a variety of factors. We find

that the greatest variation comes from varying Scut and the noise level. In the middle

panel of figure 4-5, we show a typical pixel with Scut = 100.0 mJy2. Similarly, the

addition of noise can decrease the quality of the fit. In bottom panel of figure 4-5,

we have added σT = 200 mK (note the larger amplitudes on the y-axis compared to

what is shown in the top panel).

From figure 4-5, the reader may be surprised that our subtraction strategy works

at all. Indeed, it seems from the figure that low order polynomial fits do extremely

poorly, and that most of the foregrounds will remain after the subtraction. So why,

then, does Figure 4-4 show that the foregrounds can be suppressed by many orders

of magnitude?

The above-mentioned linearity holds the key to the success. To understand why,

consider again the 3-dimensional data cube, and imagine it arranged so that the 2-

dimensional dirty maps are all horizontal, stacked vertically on top of one another

so that the vertical direction corresponds to frequency. To generate a plot such as

Figure 4-4, we perform two operations on this cube of simulated data:

1. Clean one pixel (vertical column) at a time

2. Fourier transform one frequency map (horizontal slice) at a time

Since both of these steps are linear, they can each be thought of as multiplying

all the data (rearranged into a single vector) by some matrix. Since the two steps

mix data purely horizontally and purely vertically, respectively, it is easy to see that

the corresponding two matrices must commute. In other words, we get the same

result if we perform the steps in the opposite order (our simulations confirm this).

An analogous and more familiar example is the 3-dimensional Fourier transform,

which decomposes into successive Fourier transforms in the vertical and two horizontal

2Note that in general, dirty-map pixels may be negative. Such negative brightness temperatures
arise from the fact that in radio arrays, the signal from a single tile is never correlated with itself.
We thus never sample the origin of the u-v plane, and therefore lose the mean of the signal.
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directions, and again gives the same result regardless of the order in which these

operations are performed.

This means that we get the exact same result in Figure 4-4 if we first Fourier

transform the maps, then perform the cleaning one Fourier mode at a time instead

of one pixel at a time. Figure 4-6 shows the spectral fit to a sample pixel in the

Fourier (u-v) plane, revealing a very smooth curve that can be fit with exquisite

accuracy. The success for this particular Fourier mode hinges on the fact that it

lies in the central part of the Fourier plane which has been well sampled by the

array at all frequencies. This explains the low plateau in the residual power spectra

in the left side of Figure 4-4. The sharp rise in residual power on smaller scales

corresponds to incomplete Fourier coverage, with certain interferometric baselines

missing. Converting this intuitive understanding back to real space, the small-scale

synthesized beam frizz seen in Figure 4-1 is largely averaged away when expanding the

sky into long-wavelength Fourier modes, whereas the small-scale modes are severely

affected. The characteristic scale separating “short” and “long” Fourier modes is

determined by the longest baseline radius for which u-v coverage is complete. As one

moves outwards from the origin in Fourier space, one eventually reaches a pixel where

u-v coverage is incomplete at some frequency along the line of sight. Once there is any

such missing information along the frequency direction, our simple fitting algorithms

fail to find a good fit and the result is a large increase in residuals. Since this increase

is caused by incomplete u-v coverage, the scale at which this occurs depends on

the rotation synthesis scenario being considered. We find, however, that for most

reasonable cases the upswing takes place between k = 0.3h/Mpc and 0.4h/Mpc.

The reader may also be concerned (based on figure 4-5) that there may be much

residual power in the frequency direction, leading to problems for experiments aiming

to measure the 3D power spectrum. A full discussion of the 3D power spectrum is

beyond the scope of this chapter, but for now we note that plots like figure 4-5 are

simply real space plots in the line-of-sight direction. Fourier transforming in the

perpendicular direction, the fit becomes quite good in the central parts of the u− v
plane as mentioned above. Fourier transforming in all three directions (which is what

one would ultimately do in order to find estimate the 3D power spectrum), one does

not expect the residual power to depend on both the line-of-sight and transverse wave

number. Indeed, Bowman et al. (2009) find that while there is some contamination

along the line-of-sight, there do exist clean regions in the full 3D Fourier space.

Aside from residual foregrounds, another problem that may arise is the fact that

blind algorithms such as ours have no way to distinguish between signal and fore-
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Figure 4-6: The spectrum of a Fourier space pixel, taken from the part of the plane
where u-v coverage is complete. A fit to the spectrum is shown.

ground except for through differences in smoothness as a function of frequency. Thus,

if the signal possesses any smooth large-scale component, the foreground subtrac-

tion algorithm may inadvertently remove this component of the signal with the fore-

grounds. Deciding whether this is a problem or not (and quantifying the seriousness

if it is indeed a problem) requires the detailed examination of the properties of the

signal, which is beyond the scope of this chapter. Intuitively, however, one can say

(at the very least) that there will be no loss of cosmological signal in the transverse

Fourier components, since our algorithm subtracts along the line-of-sight.

4.3.3 Exploration of parameter space

Above we saw that there was a huge difference in foreground removal ability between

the three scenarios. Let us now investigate which of the instrumental and algorithmic

parameters in Table 4.1 make the greatest difference. We do this by varying one of

them at a time, over the range given in Table 4.1, while keeping all others fixed.
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Figure 4-7: Dependence on array layout: 2D power spectra for the fiducial model
with various arrangements of tiles. Monolithic and r−2 arrangements both seem to
work well.

Array Layout

In a radio array, it is the arrangement of antenna elements that determines the distri-

butions of baselines, and it is the distribution of baselines that determines the shape

of the synthesized beam. Thus, our ability to subtract foregrounds depends strongly

on the layout of the array.

In an experiment such as the MWA, each antenna element consists of a tile of 16

crossed dipole antennas, arranged in a 4 by 4 grid with the dipoles spaced roughly

1 m from each other. In this configuration, the dipoles give rise to a complicated

primary beam pattern which may include structures such as sidelobes. As mentioned

in previous sections, we neglect these complications and assume that each tile of

dipoles has a primary beam that takes the form of a Gaussian with a 30◦ full-width-

half-max.

We consider two different types of tile arrangement. One has the density of tiles
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varying as r−2, where r is the radius from the centre of the array. The other, which

we categorize as a “monolithic” arrangement, is a regular square grid densely packed

near the centre of the array. A few tiles are placed farther from the centre to provide

some long baselines for calibration purposes and for good angular resolution. In both

cases, we have a total of 500 tiles in our simulations; for the monolithic cases 400 tiles

form the central core, while 100 tiles scattered outside the core provide some short

baselines (which can be formed between two close-by tiles that are both outside the

core) and many long baselines (which are formed by pairing up a tile within the core

to one outside the core). We consider two realizations of the monolithic cases, one

with tiles in the central core separated by 25 m and with them separated by 40 m.

In both cases, the combination of short-to-medium-length baselines formed between

tiles in the core and the extra few short baselines provided by closely separated tiles

outside the core allow complete coverage of the u-v plane near the origin with the

help of rotation synthesis.

The results are shown in figure 4-7. From the plot, it is clear that good foreground

subtraction can be done using either an r−2 arrangement or a monolithic arrange-

ment, and that on large scales there is no difference in performance. Monolithic

arrangements, however, seem capable of pushing foreground subtraction to slightly

finer scales. The explanation for this is that with an r−2 arrangement, the high density

of tiles at small r means that the inner parts of the u-v plane are vastly oversampled

given the rotation synthesis, and one can spread out the tiles slightly to extend the

perfectly covered regions of the u-v plane without introducing any gaps thanks to the

tight monolithic core.

Noise Level

As mentioned above, we consider three different scenarios in our analysis of noise

effects: a noise level σT ∼ 200 mK (representative of current-generation instruments),

a noise level σT ∼ 1 mK (hopefully representative of next-generation instruments),

and a hypothetical noiseless case. The resulting power spectra are shown in figure

4-8. For all but the noiseless case, there are in fact two sets of curves plotted, corre-

sponding to two different computations—in one case, noise was included prior to the

foreground subtraction, whereas in the other a noiseless foreground subtraction was

performed, and the resulting power spectrum was added to a power spectrum of noise

(which is a constant). One obtains the same result in both cases. Indeed, the two

sets of curves lie on top of each other and are visually indistinguishable, confirming

that our linear cleaning method leaves the noise power essentially unaffected. It is
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Figure 4-8: Effect of noise: 2D power spectra for the fiducial model with various
levels of instrumental noise show that the power spectrum of detector noise simply
gets added to the power spectrum of the residual foregrounds.

therefore unnecessary to run simulations with noise, since the results can be predicted

analytically given a noiseless simulation.

A naive reading of Figure 4-8 suggests the pessimistic conclusion that current-

generation 21 cm tomography experiments have no hope of seeing a cosmological

signal. However, the additive contribution to the power spectrum from noise can be

completely eliminated by measuring the power spectrum by cross correlating maps

made at different times, since their noise will be uncorrelated. The WMAP team have

successfully used an analogous procedure for noise bias removal, where they cross

correlated maps made not at different times but with different receivers (Hinshaw &

et. al. [WMAP collaboration], 2007). In contrast, the contribution from residual

point sources can not be eliminated in this way.

Just like for WMAP, the noise will still contribute to the error bars ∆P (k) on

the measured power spectrum, but these error bars can be shrunk by averaging many

Fourier modes with comparable wave number k. For the case where noise and signal

have a Gaussian distribution, ∆P (k) =
√

2/NP (k) where P (k) is the total power

spectrum (including noise and residual point sources) and N is the number of Fourier

modes averaged. For example, the noise power exceeds the signal power around the

third acoustic peak of the CMB power spectrum measured by WMAP, but N is large
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enough that the error bars nonetheless become significantly smaller than the cosmic

signal. In our case, binning radially in annuli of thickness k = 0.1h/Mpc, we typically

have N ∼ 104 to 105 (depending the value of k), which would suggest percent level

relative errors on the plotted power spectrum curves.

In summary, our results regarding noise are quite encouraging: the promising

forecasts that have been made in the past for what can be learned from 21 cm cos-

mology all included detector noise, but not the point source contribution in the full

complexity that we are modeling. Our results show that the fact the point sources

can be removed without having much effect on the noise levels.
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Figure 4-9: Effect of rotation synthesis: 2D power spectra are show for the fiducial
model but with various total rotation synthesis times. The effect of lengthening
integration time to increase u-v coverage is seen to saturate after about 4 hours.

Rotation Synthesis

In a maximally optimistic situation, rotation synthesis can dramatically boost one’s

ability to image the sky, since for every baseline, one effectively obtains an entire arc

of baselines on the u-v plane. However, rotation synthesis is not always as readily

available as one might hope. For instance, a declination zero object as viewed from

the equator does not rotate but merely translates across the sky, allowing no rotation

synthesis.
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Figure 4-10: Effect of temporal binning: 2D power spectra for the fiducial model
but with varying binning time ∆t, showing that one should strive for continuous u-v
coverage.

As another example, consider a patch of the sky that lies close to the horizon.

The short time interval between the rising and setting of the patch means that even

if continuous rotation synthesis is possible, one may not obtain sufficient total rotation

synthesis time. (Observing the patch again on the next night does not alleviate the

problem, for a sidereal day later one is simply sampling the same points on the u-

v plane again). One can also imagine a situation where u-v coverage is poor even

for a patch that remains in the sky for most of the night because of limitations in

hardware calibration and data flow. In such a scenario, each baseline would sweep

out a long track on the u-v plane, but this track would only be sparsely sampled by a

series of snapshots of the sky. We thus use two separate parameters to parameterize

the quality of rotation synthesis: the total rotation synthesis time and the time ∆t

between snapshots of the sky.

As expected, the performance of our foreground subtraction algorithm improves

as one increases the total rotation synthesis time. In figure 4-9, we show the effect

of allowing integration time to increase from a single snapshot to 6 hours (beyond

which there is no significant improvement in foreground subtraction). Each curve

was simulated by assuming continuous rotation synthesis (i.e. ∆t → 0) using an

instrument located at latitude and longitude (λ, φ) = (−27◦, 0◦) for a field with right
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ascension and declination (α, δ) = (60◦,−30◦)3. We see that the first few hours of

integration give rise to dramatic improvements, and that the gains begin to saturate

after about 4 hours. Intuitively, the saturation occurs because after several hours of

integration, one is revisiting parts of the plane that have already been well sampled by

other baselines, and so there is no further improvement4. As mentioned earlier in this

section, the effectiveness of rotation synthesis depends on the location of the array

as well as the sky coordinates of the patch being observed. We find, however, that

our conclusion is fairly robust to changes in array location and sky coordinates. In

other words, after 4 hours of observation one has essentially exhausted the potential

of rotation synthesis, however small or large this potential may be.

In figure 4-10, we instead fix the integration time at 6 hours and vary ∆t. It is

clear that one should strive for continuous u-v coverage if possible. It should also be

noted that with both parameters, it is generally the smallest scales that benefit from

rotation synthesis – the r−2 array layout provides enough short baselines to ensure

reasonable coverage on large angular scales even without exploiting Earth rotation.

Primary beam width adjustments

As mentioned in Section 4.2.2, the width of a radio array’s primary beam is propor-

tional to λ. Thus, even if one has perfect coverage of the u-v plane, the sky will look

different at different frequencies. In doing foreground subtraction, we consider two

possible ways to analyze the data:

1. Do nothing, and simply accept the fact that the primary beam width changes

with frequency.

2. Smear the u-v plane data to smooth out the primary beams so that all the

primary beams have the same width as the widest beam in the frequency range.

The results are shown in figure 4-11. A close look at the plot reveals that adjust-

ing for the frequency dependence of the primary beam does in fact bring about an

improvement, albeit a small one, in our ability to subtract foregrounds.

3The latitude, right ascension, and declination were chosen to match planned observations by the
MWA. The longitude was set to zero for computational simplicity since its precise value does not
result in qualitative changes in rotation synthesis.

4That does of course not imply that one should stop integrating after 4 hours of observation, for
repeated measurements of the same u-v points increases signal-to-noise. Indeed, current observation
plans call for thousands of hours of integration.

141



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
10

-2

10
0

10
2

10
4

10
6

10
8

Comoving k in h/Mpc

[k
2

 P
z=

8
(k

)]
1/

2  in
 m

K

 

 

Original sky

21 cm Theory

No primary beam adjustment

Primary beams adjusted

Figure 4-11: Effect of primary beam equalization: 2D power spectra for the fiducial
model but with different algorithms for dealing with the fact that the primary beam
width changes with frequency. Adjusting for the frequency dependence is seen to
improve foreground subtraction slightly.

synthesized beam width adjustments

The synthesized beam width is also expected to scale as λ, as illustrated in figure

4-1. In addition to the “frizz” issue that we have focused on so far, a second potential

cause for concern is the width change of the central peak, as it means that sources

slightly off from the centre of the beam will appear dimmer at higher frequency. This

can potentially degrade the spectral fits. One way of adjusting for this is to convolve

the dirty maps with frequency-dependent kernels whose frequency dependence exactly

compensates for the changing width of the central part of the synthesized beam. The

effect of this extra step is to ensure that, aside from the frizz effect, the sky has been

convolved with the exact same beam at all frequencies. In other words, the angular

resolution is made frequency independent by degrading the resolution of all maps to

that of the lowest frequency map. In figure 4-12, we show the profiles of the beams

from figure 4-1 after convolution with Gaussians of appropriate widths.

As mentioned above, the procedure tested in this section deals with the central

peak, and has no mitigating effect on the “frizz”. Since the “frizz” is responsible for

non-cosmological line-of-sight structure, one expects the beam adjustment to have

very little effect in the frequency direction. Figure 4-13 shows how this beam adjust-
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Figure 4-12: Beam profiles after an extra Gaussian convolution, designed to make the
heights and widths of the central peaks frequency-independent. Parts of the beam
beyond the central peak, however, will in general remain dependent on frequency.

ment affects the the foreground subtraction in the spatial directions. On the largest

and smallest scales, the extra convolution is seen to have no effect, and on interme-

diate scales smaller scales it is seen to make things slightly worse. This procedure of

adjusting for changes in angular resolution with frequency therefore does more harm

than good. The harm presumably comes from the exacerbating the frizz-related prob-

lems (by causing departures from uniform weighting in the Fourier plane discussed

in Section 4.3.3 below). The good comes from correcting for the above-mentioned

dimming effect. However, since λ and hence the angular resolution varies by only a

couple of percent across our frequency band, the point dimming effect will be very

small for most point sources. Moreover, it will be a smooth function of frequency

which can be accurately matched by our fitting polynomial, thus making angular

resolution adjustments rather redundant.

Flux Cuts

Since it remains unclear down to what flux cut Scut one will be able to resolve and

remove point sources with upcoming 21 cm tomography experiments, we examine how

varying Scut affects our algorithm for cleaning out unresolved point sources. In figure

4-14, we vary Scut from 0.1 mJy to 100.0 mJy. The results are shown in Figure 4-14,
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Figure 4-13: Effect of synthesized beam adjustment: the attempt to smooth all maps
to a common resolution before cleaning is seen to do more harm than good.

and reveal a simple and useful scaling: raising the input power spectrum by some

factor by increasing the flux cut raises the output by the same factor. This means

that there is no need to rerun simulations with many flux cut levels, as the results

from a single simulation can be analytically scaled to apply to all other cases. All

we need to extract from simulations is the factor by which the cleaning algorithm

suppresses the point source fluctuations — in this case, the suppression is seen to be

about six orders of magnitude on large scales.

Quantitatively, the residuals are seen to lie below the theoretical 21-cm signal as

long as the flux cut is below the 100.0 mJy level. However, there is some variability

in results with frequency, both from variations in the residual power spectrum and in

the magnitude of the theoretical curve. To be conservative, it is therefore prudent to

aim to be able to remove bright point sources down to the 10 mJy level. This is con-

sistent with the results in Bowman et al. (2009), where it was found that foreground

contaminants could be subtracted to an acceptable level starting from a sky model

with a flux cut of 10 mJy.

These results were derived using quadratic fits. In section 4.3.3, we will see that

the order of the polynomial has a strong effect on residuals, so if this 10 mJy goal

cannot be met, then the residual power spectrum can alternatively be brought down

further by increasing the order of the fitting polynomial.
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Figure 4-14: Effect of flux cut for bright source removal: 2D power spectra for the
fiducial model but with various bright point source flux cuts.
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Figure 4-15: Effect of u-v plane weighting: 2D power spectra for the fiducial model
but with two different weighting schemes for the u-v plane. A uniform weighting of
the u-v plane is seen to far outperforms natural weighting.
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Weighting scheme on u-v plane

In general, a radio array will not provide uniform coverage of the u-v plane – typically,

some parts of the plane will be sampled more than once, while other parts will not

be sampled at all. To compensate for this, one may decide to weight different parts

of the u-v plane differently. In figure 4-15, we examine a “uniform” weighting scheme

(where all sampled parts of the u-v plane are given equal weight) as well as a “natural”

weighting scheme (where the u-v measurements are not given any weighting beyond

their “natural” density as determined by the instrument). It is clear that a uniform

weighting far outperforms a natural one. An intuitive explanation for why the uniform

weighting so outperforms the natural weighting can be found in Bowman et al. (2009).

Because the filling of the u-v plane is accomplished slowly by a discrete set of baseline

loci, the final distribution of baselines will not be particularly smooth. The frequency

dependence of the synthesized beam then maps this u-v lumpiness into an incoherence

in the frequency direction that is difficult to fit out using smooth polynomials. With

a uniform weighting, one artificially normalizes the baseline distribution so that each

pixel in the sampled part of the u-v plane has the same weight, thus ensuring that

the distribution of baselines is smooth.
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Figure 4-16: Effect of fitting range: 2D power spectra for the fiducial model but with
the foreground subtraction performed by fitting polynomials of various degrees to the
spectra.
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Figure 4-17: Effect of fitting range: 2D power spectra for the fiducial model but with
the foreground subtraction performed by fitting quadratic polynomials to the spectra
over a variety of frequency ranges.

Order of the polynomial fit

As we mentioned above, one should aim to fit the spectra with polynomials that

are as low-order as possible, with the constraint that the residuals need to be below

the expected cosmic signal level. Figure 4-16 shows that a quadratic fit satisfies this

requirement for our fiducial case. If Scut cannot be pushed down to 10 mJy, however,

then a higher order fit may be necessary. For example, Scut = 100 mJy would require

a cubic fit.

Range of the polynomial fit

A choice must be made regarding the frequency range over which polynomial fits

are applied to spectra of dirty map pixels. In general, one expects post-cleaning

foreground residuals to increase with increasing frequency range, and this is what

is seen in figure 4-17, where the foreground cleaning was performed using quadratic

fits over various frequency ranges. If quadratic polynomials are used, one should

therefore not fit over the broad frequency range probed by a typical 21-cm tomography

experiment. Instead, one should divide the spectra into smaller frequency bands and

subtract foregrounds individually from each band.
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The effect of changing the frequency range is of course rather degenerate with

the effect of changing the degree of the fitting polynomial, since what matters is

ultimately the number of degrees of freedom that are fit out per unit frequency. As

we increase either the polynomial order or the number of frequency bands, we are

removing cosmological signal on ever smaller scales along the line of sight. One should

therefore fit over as broad a frequency range as possible subject to the constraint that

the predicted residuals lie comfortably below the expected cosmic signal. From figure

4-17, we see that a frequency range of a few MHz appears appropriate for quadratic

fits.

4.4 Summary and Discussion

We have studied the problem of cleaning out point source foreground contamination

from 21 cm tomography data, and investigated how the level of residual contami-

nation after the cleaning process depends on various experimental and algorithmic

parameters. Our results show that while successful foreground removal is far from

guaranteed, the signs are encouraging. For instance, the fact that the post-cleaning

residual foregrounds lie below the simulated cosmological signal in the fiducial model

of Section 4.3.2 is promising, since the scenario in question is considered to be rep-

resentative of current-generation experiments, and its cleaning algorithms are both

simple and computationally cheap. These conclusions agree with those of the inde-

pendent and concurrent analysis of Bowman et al. (2009), which is complementary

by focusing on the specifics of the MWA experiment. As a further consistency check

on our calculations and software, we and the authors of that paper agreed on a test

example that we both simulated, obtaining consistent results.

We also identified a number of aspects of the problem that can be understood

analytically. Noise and cosmic signal decouple from the point source problem as long

as the cleaning method is linear. The power spectrum of unresolved point sources

in the observed sky simply gets suppressed by a fixed k-dependent factor, so any

shifts in this input power spectrum due to revised source count estimates or altered

flux cuts for resolved source removal simply scale the output power spectrum by the

same amount. Finally, simple Fourier space considerations explain why line-of-sight

cleaning works as well as it does.

Based on our analysis, we can make several specific recommendations regarding

the foreground subtraction of unresolved point sources, pertaining to both instrumen-

tation and data reduction.
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• Instrumental recommendations:

– Tile arrangement should ensure good u-v after rotation synthesis; we

found both a monolithic arrangement and an r−2 arrangement to work

well with respect to foreground subtraction.

– Rotation synthesis is important, but once an array has achieved 3 to

4 hours of integration, the advantage gained from further u-v coverage is

minimal.

– Time between snapshots taken of the sky should be made as short as

possible. Ideally, one should have continuous u-v coverage, as is planned

for experiments such as the MWA.

• Data reduction/algorithmic recommendations:

– Uniform weighting of the u-v plane outperforms “natural weighting”.

– Adjusting for changes in the primary beam with frequency through

an extra convolution kernel in u-v space results in a modest improvement

in foreground subtraction. However, this conclusion may change if the

primary beam has sidelobes.

– Adjusting for changes in the synthesized beam with frequency

appears not to be worthwhile.

– Quadratic fits across a few MHz are adequate for subtracting off spec-

trally smooth foreground components from the data as long as bright point

sources can be resolved and removed down to the 10 mJy level — otherwise

higher orders should be considered.

– The frequency range over which the polynomial fitting is performed

should be narrow enough to allow one to see cosmic signal, but broad

enough to prevent over-fitting which excessively removes cosmic signal.

For quadratic fits, a range of a few MHz appears appropriate.

– The ability to remove bright point sources prior to the subtraction

of unresolved point sources is crucial, with the corresponding flux cut Scut

being the most important parameter of all in our analysis. If one can safely

fit a cubic to the spectra without loosing too much cosmic signal, then one

needs to be able to remove resolved points sources of flux down to 100 mJy.

Our results were deliberately conservative, obtained with an extremely simple line-

of-sight cleaning procedure, and it is likely that one can do better. An interesting
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question for future work is determining the optimal procedure. For example, other

classes of fitting functions may be worth considering, and it may be better to replace

multiple polynomial fits in disjoint bands by a single fit to a function with more

parameters, say a spline. Such work should quantify the extent to which one is

removing power from the cosmological signal, and optimize the tradeoff between more

foreground removal and less signal removal. Such an optimization should ideally

be done using a more complete sky model, including diffuse Galactic synchrotron

radiation.

For now, however, what is reassuring for the field of 21-cm tomography is the fact

that all of the recommendations listed above can be followed without any substantial

revisions to current experimental designs. Our results on point source cleaning suggest

that the foreground problem is surmountable, allowing 21 cm cosmology to live up to

its great potential.
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Chapter 5

An Improved Method for 21 cm

Foreground Removal

5.1 Introduction

The previous chapter and other studies have examined the feasibility of foreground

subtraction in neutral hydrogen tomography, and have generally found that variations

of the line-of-sight approach pioneered by Wang et al. (2006), McQuinn et al. (2006b),

and Zaldarriaga et al. (2004) should be able to clean out foreground contamination

to an acceptable degree. Wang et al. (2006); Bowman et al. (2009); Jelic et al.

(2008); Liu et al. (2009b); Gleser et al. (2008) performed simulations that took into

account various instrumental effects and found that the foreground cleaning could be

accomplished despite the many limitations of first generation instruments.

In this chapter we propose a new variation on the traditional line-of-sight meth-

ods. In particular, we describe a cleaning algorithm that (unlike most proposals) is

implemented in Fourier space. As we discuss in section 5.3, this allows one to com-

pletely sidestep any problems that may arise from the frequency dependence of an

instrument’s beam, which was previously the limiting factor in the quality of fore-

ground cleaning at high-wavenumber spatial Fourier modes (Bowman et al., 2009;

Liu et al., 2009b). The increase in performance at such wavenumbers can be easily

seen in figure 5-1, where we have plotted a 2D power spectrum of the data at z = 8.

The rest of the chapter is organized as follows. In section 5.2 we review the old

method used in Bowman et al. (2009); Liu et al. (2009b), and in section 5.2.1 we

recast it as an algorithm in Fourier-space. The Fourier-space description is then used

to introduce our new method in section 5.3. We conclude in section 5.4.
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Figure 5-1: 2D power spectra of foregrounds and foreground residuals using the “old
method” (Bowman et al., 2009; Liu et al., 2009b) and the “new method” (this chap-
ter). At low-k the two methods give identical results, while at high-k the new method
does much better.
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5.2 Review of Old Method

In general, the data collected from a typical 21-cm tomography experiment can be

thought of as populating a “datacube”: stacks of 2D images separated by redshift or

frequency along the line-of-sight direction due to the resonant nature of the 21-cm

hyperfine transition. Along the transverse directions, the axes are usually labeled in

one of three ways:

1. Real-space coordinates θx and θy. In this case the datacube is a literal map of

21-cm emission and foreground contaminants.

2. Interferometer coordinates u and v. Under the correct convention, these are

simply the Fourier-conjugate coordinates to θx and θy. The datacube is a stack

of 2D maps in Fourier space.

3. Fourier-space coordinates kx and ky. These are the Fourier-conjugate coordi-

nates to the physical lengths x and y. Up to factors of 2π (depending on one’s

Fourier convention), (kx, ky) ∼ (u, v)/DM , where DM is the transverse comoving

distance.

In a typical experiment the data (in the form of visibilities) are collected in uv-

coordinates, while the results are presented in either real-space coordinates (in the

case of sky maps) or in Fourier-space coordinates (in the case of power spectra).

Foreground removal is often done in either real-space coordinates (as demonstrated

in Wang et al. (2006); Bowman et al. (2009); Jelic et al. (2008); Liu et al. (2009b);

Gleser et al. (2008)) or in uv-space (as we propose in this chapter).

We first review the real-space removal algorithms. The fundamental idea behind

all such algorithms is the fact that the 21-cm signal is expected to oscillate rapidly with

frequency while the relevant foreground contaminants are spectrally smooth. The

contaminants along a given line-of-sight can therefore be separated from the signal

by plotting the flux as a frequency and subtracting off a smooth component (such

as a low-order polynomial) from the total signal. What remains is the cosmological

signal and a (hopefully small) residual contamination.

Previous studies have simulated the aforementioned real-space algorithms and

have estimated the level of residual contamination that can be expected for current

experiments (?Bowman et al., 2009) as well as how the residuals depend on the

properties of a generic interferometer (Liu et al., 2009b). Although these papers have

highlighted the fact that the quality of foreground subtraction is highly dependent

on a large number of parameters (both instrumental and those pertaining to data
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analysis), they also suggest that the qualitative behavior is rather generic. In what

follows we examine the qualitative behavior that emerges, emphasizing the various

features and their mathematical origin.

Consider the spectrum shown in the top panel of figure 5-2, where we show the

frequency dependence of a single pixel in real-space coordinates (i.e. the frequency

dependence of a particular line-of-sight), as seen by a typical 21 cm tomography in-

terferometer1. The spectrum contains foregrounds only, with no noise or cosmological

signal. Since the foregrounds are known (and are simulated2) to be spectrally smooth,

this suggests that the rapid oscillations seen in the figure are caused by the instru-

ment. This is bad news for the subtraction algorithm, as it means that simply fitting

out the smooth component of a spectrum will leave residuals that can be confused

with the cosmological signal. Indeed, it can be seen from the figure that the fit seems

rather poor.

One way of understanding the rapid oscillations is to consider the interferometer’s

beam in real-space. The left-hand panel of figure 5-3, shows that the beam of a

typical interferometer contains “frizz” outside the central peak that oscillates rapidly

with angle. Since beam widths scale as λ/D, this angular oscillation translates into an

oscillation in frequency, which is what is seen in figure 5-2. Alternatively, the behavior

of figure 5-2 can be understood by considering the effect of an interferometer’s beam

in uv-space. An interferometer samples pixels in the uv-plane, and with enough of

these uv-pixels one can produce a real space image by Fourier transforming. Thus,

the spectrum of a single pixel in real space like that shown in figure 5-2 can be

thought of as a linear combination of the spectra of different uv pixels sampled by

the interferometer. Exactly which pixels are sampled depends on the layout of the

interferometer in question, but in a typical 21-cm tomography experiment the uv

coverage is complete near the origin and drops off as one moves farther out.

In general, the spectra such as that shown in figure 5-2 can be decomposed into

the two components: a component that is formed from the linear combination of

uv-pixels where the interferometer’s coverage is complete (i.e. the inner parts of the

plane), and a component that is formed from uv-pixels residing in parts of the uv-

plane where coverage is sparse (i.e. the outer regions). These components are shown

by the solid black lines in the bottom panel of figure 5-2. The line with “x” markers

1We use the Murchison Widefield Array as our fiducial model for the simulations in this chapter,
but it should be noted that the algorithm we propose in section 5.3 can be applied to data collected
by any interferometric configurations.

2The simulation methodology used in this chapter was the same as that used in Liu et al. (2009b).
Please see Liu et al. (2009b) for details.
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Figure 5-2: The spectrum of a typical real-space pixel. Top panel: Instrumental
effects result in a jerky dependence on frequency, even though the foregrounds are in-
trinsically smooth. The red/dotted line gives the foreground fit using the old method,
while the blue/solid line gives the analogous real space “fit” using the new method
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Figure 5-3: The left hand column shows sample beam profiles (a real-space description
of the beam) while the right hand column shows the corresponding uv-distribution
of baselines (a Fourier-space description of the beam). The top row illustrates an
array with no rotation synthesis, while the bottom row shows an array with 6 hours
of rotation synthesis. The real-space beams are normalized so that their peaks are at
1.

(showing the part of the signal originating from the inner parts of the plane) is seen

to be smooth, whereas the line with “+” markers (showing the contribution from the

outer parts) is what contributes the rapid oscillations. This decomposition explains

why real-space pixel-by-pixel foreground subtraction algorithms have been shown to

be adequate even though the fits themselves seem terrible at first sight. Even though

the smooth fits cannot subtract off the jerky component of the spectrum, they are

capable of fitting out the smooth component that comes from the central parts of

the Fourier plane. Indeed, this is exactly what is seen in figure 5-1, where the low-k

parts of the power spectrum are cleaned effectively whereas the high-k parts remain

contaminated. It is simply the case that by examining pixels in real space, one is

viewing a “bad” linear combination of pixels that mixes together the well-fit, central

located uv-pixels with the outer uv-pixels where sparse baseline coverage results in

jerky spectra that are badly fit.
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5.2.1 Fourier space description of decontamination

In the previous section we examined how foreground fits of real-space pixels could be

understood by considering the flux in each pixel as being a linear combination of dif-

ferent uv-pixels. We now show that one can go further and perform the fits themselves

in uv-space and get exactly the same results. With slight modifications, this will lead

to section 5.3’s discussion of an improved method for subtracting foregrounds at high

k.

Consider the steps that must be taken to perform the foreground subtraction out-

lined above. The data is collected by the interferometer in Fourier space i.e. in a

u-v-ν datacube. This data must then be Fourier transformed in the two transverse

directions, giving an x-y-ν datacube. Fitting is subsequently performed in the fre-

quency direction. Mathematically, we can express this as follows. Let ỹijα represent

the initial datacube, with the first two (Latin) indices being the two spatial indices

and the last (Greek) index being the frequency index. With no loss of generality,

we can fold the first two indices into one and write ỹjα instead. In this notation the

Fourier transform can be written as

ykα =
∑
i

Fkiỹiα (5.1)

where F is the Fourier matrix and y is the real-space analog of ỹ. The fit in the

frequency direction can be represented by yet another linear operator3 G, and so we

have

ykβ =
∑
α

Gβαykα =
∑
i,α

GβαFkiỹiα (5.2)

where y represents the fit. In the last expression, note that G possesses only Greek

indices whereas F only has Latin indices. This means that the two operations per-

formed in our algorithm – the 2D spatial Fourier transform (F ) and the fitting in the

frequency direction (G) – in fact commute (i.e. FG = GF ).

The fact that the Fourier transform commutes with the fitting means that we

can perform the two operations in either order. In other words, we can think of the

foreground fitting and subtraction as taking place in Fourier space without changing

any of the results (which is something that we have also verified numerically). Viewing

the process as a pixel-by-pixel fitting in uv-space reveals exactly why there exists

3Explicitly, if X is an n × m matrix such that Xij equals the frequency of the ith frequency
channel taken to the jth power, then G is given by X[XtN−1X]−1XtN−1, where N is the noise
covariance matrix (Wang et al., 2006).
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Figure 5-4: Spectra of various uv pixels from different parts of the plane. From the
top panel to the bottom panel, one is moving away from the origin. It is clear that
the data can be easily fit by low-order polynomials in the top panel, but that the
old method of fitting (dashed red curves) becomes inadequate when baseline coverage
begins to drop out. The solid black curves show the fits done using the new method
describe in section 5.3.

such a vast difference between the quality of the cleaning at low-k and at high-k,

and why the transition between the two regimes appears as such an abrupt jump in

the power spectra. In figure 5-4 we show typical spectra from different parts of the

uv-plane. The top panel shows a typical pixel from the inner part of the plane. The

spectrum is plotted using so-called uniform weighting, so that in every Fourier pixel

the interferometer acts as an on/off switch: the interferometer “reads” a value of 0 if

no baselines fall in that pixel, and 1 otherwise (regardless of how many baselines are

binned into the pixel). It is evident that a simple polynomial fit does extremely well.

On the other hand, when one moves out to regions of the uv-plane where baseline

coverage becomes sparse, the fit becomes poor. A glance at the bottom two panels of

figure 5-4 makes the problem clear – when coverage is sparse, at certain frequencies

there is no baseline coverage, and a simple polynomial fit is unable to deal with this.

We emphasize that the trouble is not with incomplete Fourier coverage per se. It
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is the fact that the incomplete coverage is changing with frequency. In other words,

foreground subtraction becomes poor in this regime because the frequency dependence

of the beam (or “mode-mixing”, as emphasized in Bowman et al. (2009); Liu et al.

(2009b)) becomes important on these small (high-k) scales. Note that even though

this problem exists when the spectra are being fit in real space, it is not apparent

unless one fits in uv-space, where the pixels are “good” linear combinations of the

data.

5.3 New method

We now propose a slight modification to the foreground subtraction algorithm that

evades the aforementioned problem. From figure 5-4, one can see that an alternate way

of phrasing the problem is to say that the old fitting algorithm, being mathematically

equivalent to a fitting in real space, is unable to distinguish between pixels with no

data and pixels with values that happen to be zero. In uv-space, however, one can

easily identify pixels with no baselines, and so one can simply skip frequencies where

data is unavailable. In fact, one can find the optimal fit (in the sense of having

minimal r.m.s. errors) by employing an inverse-variance weighted fit. In this scheme,

the weight of each point in the least-squares sum is proportional to N , the number

of baselines that are binned into a particular uv-pixel at a particular frequency. This

way, points with lower signal-to-noise are given less weight4.

In figure 5-4 it can be seen that since missing frequencies are now given zero

weight in the fit, one obtains excellent fits even for uv-pixels where baseline coverage

is sparse. This improves the subtraction of foregrounds at frequencies where there

is data, whereas at the skipped frequencies nothing has been compromised since no

foregrounds were detected by the instrument in the first place.

The effect that the frequency-skipping has on the 2D power spectrum is shown

in figure 5-1. To be conservative, we have also tested our new algorithm using a

completely independent pipeline with a different foreground model (for details, please

4It is important to emphasize that while we are performing a weighted fit to the data, the data
itself is still uniformly weighted (as described in section 5.2.1). The key distinction here is the
difference between fitting to weighted data and making a weighted fit. In the former, one multiplies
the uv-space data by a weighting function and fits to the modified data, while in the latter one
does not apply any weighting function, but allows for the fit to treat different points with varying
importance. As an example of the difference, consider a linear fit to a series of points that happen
to lie exactly on a straight line. If one fits to a weighted version of this data, the result will not be
a perfect fit unless the weighting function is a constant. On the other hand, applying a weighted fit
will give a perfect fit regardless of the weighting used.
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Figure 5-5: Post-subtraction residuals shown in the uv-plane (left column) and as a
function of frequency (right column) for both the old method (top row) as well as the
new method (bottom row). The new method does offer any increase in performance
at low-k, but avoids the large increase in residuals at high-k.

see Bowman et al. (2009)). The results from the second pipeline are shown in figure

5-5, and the fact that the results agree demonstrate the fact that uv-plane cleaning is

generally applicable and not dependent on the foreground model. Qualitatively, one

can see that at low-k there is no improvement from the old method because in that

regime one is limited by the fact that simple low-order polynomials will not in general

be perfect fits to the foregrounds, even though the foregrounds are smooth functions.

At high-k, however, one avoids the dramatic increase in post-subtraction foreground

residuals, because previously the limitation at high-k was the mode-mixing problem.

With our new method, the limiting factor is the ability of the fitting function to match

the form of the foregrounds. For example, the fact that the foreground residuals in

figure 5-1 are a constant factor (∼ 106) off from the original foregrounds regardless of

scale (or equivalently, regardless of location on the uv-plane) means that the residuals

160



are due entirely to the quality of the fit. In other words, the residuals of one part in

∼ 106 come from the fact that the second-order polynomials used in the fits to produce

figure 5-1 are good fits to the foregrounds only to one part in ∼ 106. With the chief

limitation now being the fitting itself, one can in principle subtract foregrounds up

to Fourier modes that correspond to the longest baselines, although as one is forced

to skip many frequencies at high k, the signal-to-noise of the data is reduced.

As a weighting scheme that weights data points according to their information

content, inverse-variance weighting not only gives higher signal-to-noise data points

greater weight, but also automatically incorporates frequency-skipping, since the

skipped frequencies are simply those with N = 0 and therefore no information. While

both effects contribute to an improvement in the quality of foreground subtraction, we

find that the frequency-skipping is the dominant contribution to the improvements in

foreground subtraction. At noise levels that are typical for current-generation 21 cm

tomography experiments, we find that if only the frequency-skipping is done (i.e. if

all frequencies that are not skipped are given the same weight), the resulting residual

power spectra are only about 1% greater than if both techniques are used.

It is important to note that whereas without the skipping of empty frequencies the

transverse Fourier transform commuted with the fitting of the foregrounds, under the

new scheme proposed here the two operations no longer commute. This is because

the frequencies of the pixels that need to be skipped require knowing the baseline

distribution (which lives in uv-space) and therefore depend on the location of the

uv-pixel being cleaned. Mathematically, this means that in equation 5.2 the fitting

operator G acquires an extra i (spatial) index and the two sums no longer commute.

The significance of this is that the fit can no longer be done in real-space. To apply

this new algorithm for foreground subtraction, one must work in Fourier space.

However, while the skipping of frequencies in our fit dictates that we must work

in Fourier space, the improvements brought about by the new algorithm can still be

seen in real space. Consider the solid (blue) fit in figure 5-2. This fit was obtained by

taking the uv-space fits generated by the new algorithm and Fourier transforming real

space to give a real space “fit”. It is clear from the figure that the new method does a

much better job of tracking the behavior of the smooth foreground component. (The

“fit” is displaced vertically from the smooth component because the jagged component

itself has a non-zero mean that must also be fit out). On the other hand, the slope of

the fit from the old method is biased by the jagged foreground contribution (which,

remember, is an instrumental artifact that arises from incomplete baseline coverage),

and does a worse job tracking the smooth foregrounds.
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The fact that our new method traces the smooth foreground component better

means that it can be used to get better estimates of the foregrounds themselves. One

simply Fourier transforms the fits produced by the new algorithm to get real-space,

multi-frequency maps of the foregrounds. Such maps will be of a higher quality than

those that are simply imaged by the instruments. This is because our new fitting

algorithm can be interpreted as one where the missing frequencies are not so much

skipped as interpolated over. By fitting low-order polynomials over the frequencies

where data is available, one is essentially deriving a foreground model that can be

extrapolated to other frequencies. Without missing frequencies in the spectra, the

real space foreground maps will not have artificially jagged foreground components,

and will therefore be a more accurate representation of the true foregrounds.

5.4 Conclusions

In this chapter, we have shown that there is an easy explanation for the increased

foreground residuals at high-k: a frequency-dependent incompleteness of baseline

coverage in the outer parts of the uv-plane makes the foregrounds in certain uv-

pixels difficult to fit out using a simple unweighted polynomial fit. The solution to

this problem is to weight the fit so that frequencies with no information are given

zero weight, while other frequencies are given an inverse-variance weighting. As seen

in figure 5-1, this allows foreground cleaning to be performed at much higher k,

paving the way for higher quality power spectrum measurements in neutral hydrogen

tomography.
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Chapter 6

A Method for 21 cm Power

Spectrum Estimation in the

Presence of Foregrounds

6.1 Introduction

Having explored foreground subtraction on its own in previous chapters, we now add

power spectrum estimation to the picture and consider the two data analysis steps in a

single framework. Power spectrum estimation in 21 cm tomography has similarities to

and differences from power spectrum estimation for both the CMB and galaxy surveys.

As it is for the CMB, foreground contamination is a serious concern, especially since

the foregrounds are so strong at the lower frequencies (∼100 − 200 MHz) that EoR

experiments target. Unlike the CMB, however, 21 cm tomography probes a three-

dimensional volume (just like with galaxy surveys), so the final quantity of interest is

not an angular power spectrum but a three-dimensional power spectrum. Ultimately,

one wishes to obtain the spherically averaged matter power spectrum as a function of

redshift P (k, z), because one expects the cosmological power to be isotropic. However,

it is often preferable to first form a cylindrically averaged power spectrum P (k⊥, k‖; z),

since the isotropy may be destroyed by redshift-space distortions (Barkana & Loeb,

2005a), the Alcock-Pacyznski effect (Ali et al., 2005; Nusser, 2005; Barkana, 2006),

as well as residual foregrounds that arise from imperfect foreground removal.

The problem of foreground removal in 21 cm tomography has been extensively

studied in the literature. As noted in previous chapters, early foreground cleaning

proposals focused on using the angular structure of the foregrounds (Di Matteo et al.,
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2002, 2004; Oh & Mack, 2003; Santos et al., 2005; Zaldarriaga et al., 2004), while re-

cent studies have suggested that a line-of-sight (LOS) spectral subtraction method

may be the most promising approach (Wang et al., 2006; Gleser et al., 2008; Bow-

man et al., 2009; Liu et al., 2009b; Jelic et al., 2008; Harker et al., 2009; Liu et al.,

2009a; Harker et al., 2010). Though the detailed algorithmic implementations of the

LOS method vary amongst these studies, the core idea is always to take advantage of

the smooth spectral behavior of foregrounds to separate them from any cosmological

signals, which are expected to fluctuate rapidly with frequency. Simulations of this

approach have confirmed it as a successful foreground cleaning technique in the sense

that the post-subtraction foreground residuals can be suppressed to a level smaller

than the expected amplitude of the cosmological signal. Thus, foreground contam-

ination is unlikely to be an insurmountable obstacle to the initial detection of the

21 cm cosmological signal.

What remains unclear, however, is whether LOS subtraction techniques adversely

affect the quality of one’s final estimate of the cosmological power spectrum. For

instance, although spectrally smooth components of the cosmological signal are ex-

pected to be small, if any are present they will be inadvertently subtracted off with

the foregrounds when LOS cleaning is performed. LOS methods are thus not lossless,

in the sense that their destruction of cosmological information leads to a degradation

of error bars on the final power spectra (for a more rigorous definition of informa-

tion loss, see Tegmark (1997c) or Section 6.2 of this chapter for a quick review).

Foreground subtraction may also lead to residual systematic noise and foreground

biases in estimates of the power spectrum, a fact that was explored numerically using

simulations in Bowman et al. (2009); Harker et al. (2010); Petrovic & Oh (2011).

Finally, foreground subtraction along the LOS may lead to correlated errors in power

spectrum measurements, which can limit their usefulness for estimating cosmological

parameters.

The goal of this chapter is to adapt the existing mathematical formalism for power

spectrum estimation from the CMB and galaxy survey literature in a way that not

only respects the unique geometrical properties of 21 cm tomography experiments,

but also allows us to robustly deal with the issue of foreground contamination. This

will permit a more complete analysis of the errors involved in estimating 21 cm power

spectra, in a way that automatically incorporates the effect that foreground removal

has on the final results. In particular, we will be able to quantify not just the errors

on the power spectrum itself (the “vertical” error bars), but also the correlations

between the parts of the power spectrum (the “horizontal” error bars, or equivalently
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the power spectrum window functions1). In addition, we will quantify the noise and

foreground biases that are introduced by foreground subtraction and power spectrum

estimation so that such biases can be systematically removed. We accomplish all this

by considering the foregrounds not as an additional signal to be removed, but rather

as a form of correlated noise. Doing so in our formalism allows us to build on the

numerical simulation work of Bowman et al. (2009), Harker et al. (2010), and Petrovic

& Oh (2011) to analytically show how LOS foreground subtraction methods are lossy

and leave residual noise and foreground biases. The formalism also naturally suggests

an alternative method for foreground subtraction that leads to smaller error bars and

eliminates the residual biases.

The rest of this chapter is organized as follows. In Section 6.2, we introduce

the mathematical notation and formalism that we use for power spectrum estima-

tion. Existing LOS methods are cast in this language, and in addition we introduce

our alternative foreground subtraction scheme. In Section 6.4, we test our methods

on a specific foreground model, which we describe in Section 6.3. Provided that the

foregrounds satisfy certain generic criteria (such as having a smooth frequency depen-

dence), the details of the foreground model should have no effect on our qualitative

conclusions. In Section 6.5, we show how these qualitative conclusions can be un-

derstood through a simple toy model. We summarize our conclusions and discuss

broader implications in Section 6.6.

6.2 The Mathematical Framework

In this section we review the power spectrum estimation formalism introduced by

Tegmark (1997c), and adapt it for 21 cm tomography. Readers interested in the

mathematical details of power spectrum estimation are encouraged to peruse Bond

et al. (1998); Tegmark (1997c); Tegmark et al. (1998, 2004). Our development builds

on the quadratic methods presented in Tegmark (1997c); Tegmark et al. (1998). The

goal is to derive new expressions appropriate to 21 cm power spectrum estimation

(such as Equation 6.3 and the expressions in Section 6.2.3) as well as to systemati-

cally place different power spectrum estimation methods in a common matrix-based

1These are not to be confused with the instrumental window functions that are conventionally
defined in radio astronomy to quantify the effect of an instrument’s beam and noise properties (and
as used, for instance, in related 21 cm power spectrum papers such as Morales & Hewitt (2004) and
Bowman et al. (2006)). In this chapter, the “window function” can be thought of as a convolution
kernel that produces the measured power spectrum when applied to the true power spectrum. Please
see Section 6.2 for a rigorous mathematical definition.
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framework.

6.2.1 Quadratic Estimators

Our objective is to use the measured 21 cm brightness temperature distribution Tb(r)

to estimate a cylindrically symmetric power spectrum2 PT (k⊥, k‖) which is conven-

tionally defined by the equation

〈T̂b(k)∗T̂b(k
′)〉 = (2π)3δ(k− k′)PT (k⊥, k‖), (6.1)

where T̂b is the three-dimensional spatial Fourier transform of Tb, and δ is the Dirac

delta function. As written, this definition contains the continuous functions Tb and

PT . However, any practical numerical scheme for estimating the power spectrum

must necessarily be discrete. The simplest way to do this is to divide the measured

spatial distribution of brightness temperature into discrete voxels, so that Tb takes

the form of a data vector x that is essentially a list of the brightness temperatures

measured at various points on a three-dimensional grid. Note that in forming this

vector, one should not use the full radial extent of the data that are available in a

typical 21 cm tomography experiment. Instead, one should split the full data into

multiple x vectors, each of which spans only a very narrow range in redshift so that

the evolution of the cosmological signal is negligible. The analysis that we describe in

this chapter should then be performed separately on each vector to produce a number

of power spectra at different redshifts. Failure to do so would violate the assumption

of translational invariance that was implicit when we defined the power spectrum

using Equation 6.1.

To discretize the power spectrum, we parametrize it as a piecewise constant func-

tion3, such that PT (k⊥, k‖) = pab for k⊥a ≤ k⊥ < k⊥a+1 and k
‖
b ≤ k‖ < k

‖
b+1. If the

index a runs over M different values and the index b runs over N values, the power

spectrum can then be stored in an MN -dimensional vector pα, where index pairs

(a, b) have been folded into a single index α. Parameterizing the power spectrum

2Note that in this chapter, we are not examining the steps required to estimate the matter power
spectrum. Instead, we are focussing on estimating the temperature power spectrum PT (k⊥, k‖),
which is an important first step for finding the matter power spectrum. For details on how one might
extract a matter power spectrum from a temperature power spectrum, see for example Barkana &
Loeb (2005a); Mao et al. (2008).

3In a practical application of the methods described in this chapter, it is often preferable to
instead parametrize as a piecewise constant function the ratio of the power spectrum to a prior.
As shown in Hamilton & Tegmark (2000), doing so tends to give better behaved window functions
(Equation 6.8). Here for simplicity we employ a white (i.e. constant) prior simply because there are
as yet no observational constraints on the form of the 21 cm power spectrum.
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in this way (where each component pα is referred to as the band power of the band

α) represents no significant loss of information as long as the widths of the k bins

are small compared to the physical scales over which PT varies appreciably (Tegmark

et al., 1998).

A quadratic method for estimating our discretized power spectrum is one where

the estimator of pα takes the quadratic form

p̂α = (x−m)tEα(x−m)− bα (6.2)

for some family of symmetric matrices Eα and constants bα (one for each k-region

in our piecewise constant discretized power spectrum). The vector m is defined as

the ensemble average over different random realizations of the random variable data

vector x, i.e. m ≡ 〈x〉. The hat (̂ ) denotes the fact that what we have here is

an estimate of the true power spectrum pα from the data. The matrix Eα encodes

the Fourier transforms, binning, and — crucially — the weighting and foreground

subtraction steps required in going from the calibrated data vector x to the corre-

sponding estimate of the power spectrum pα. For example, if one chooses to forgo

any form of foreground subtraction and to form a power spectrum using a completely

uniform weighting of all voxels, the matrix takes the form

Eα
ij

∣∣∣∣∣
no fg

= (C,α)ij ≡
∫
V αk

eik·(ri−rj)
d3k

(2π)3

=
1

(2π)3

∫ 2π

0

∫ k⊥a

k⊥a−1

∫ k
‖
b

k
‖
b−1

eik·(ri−rj)k⊥dk‖dk⊥dϕk

=
(2π2)−1

(r⊥ij)
2r
‖
ij

(
sin k

‖
br
‖
ij − sin k

‖
b−1r

‖
ij

)
×[

k⊥a r
⊥
ijJ1(k⊥a r

⊥
ij)− k⊥a−1r

⊥
ijJ1(k⊥a−1r

⊥
ij)
]
, (6.3)

where r
‖
ij ≡ r

‖
i−r

‖
j is the radial line-of-sight distance between spatial grid points ri and

rj, r
⊥
ij ≡ |r⊥| = |r⊥i −r⊥j | is the projected perpendicular distance, ϕk ≡ arccos(k̂⊥ · r̂⊥ij)

is the angle between k⊥ and r⊥ij, V
α
k is the volume in Fourier space of the α-th bin,

and J1 is the 1st Bessel function of the first kind. (Recall that indices a and b specify

the k⊥ and k‖ bins, respectively, and are folded into the single index α). The notation

C,α is intended to be suggestive of the connection between the correlation function
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(or covariance matrix) C of the data and its discretized power spectrum pα:

C ≡ 〈(x−m)(x−m)t〉 = Cfg + N +
∑
α

pαC,α, (6.4)

where in the last equality we were able to take advantage of the fact that the fore-

grounds, instrumental noise, and signal are uncorrelated to write the total covariance

as the sum of individual covariance contributions (Cfg for the foregrounds and N for

the instrumental noise) and the contribution from the cosmological signal (the final

term) with no cross-terms. In this form, we see that C,α ≡ ∂C/∂pα is simply the

derivative of the covariance with respect to the band power. Intuitively, the last term

in Equation 6.4 is simply an expansion of the correlation function of the cosmological

function in binned Fourier modes. As a more familiar example, consider a situation

where one is trying to estimate the three-dimensional power spectrum PT (k) instead

of PT (k⊥, k‖). In such a case, there would be no spherical or cylindrical binning in

forming the power spectrum, and we would have (C,α)ij ∼ eikα·(rj−ri). Equation 6.4

then simply reduces to the well-known fact that the power spectrum is the Fourier

representation of the correlation function.

Different choices for the matrix Eα will give power spectrum estimates with differ-

ent statistical properties. A particularly desirable property to have is for our power

spectrum estimate to be free from noise/foreground bias, so that the final estimator

p̂α depends only on the cosmological power and not on noise or foregrounds. Taking

the expectation value of Equation 6.2 and substituting Equation 6.4 yields

p̂α =
∑
β

Wαβ pβ + tr [(Cfg + N)Eα]− bα, (6.5)

where Wαβ is a matrix that we will discuss below. From this expression, we see that

to eliminate the noise and foreground biases, one should pick

bα = tr [(Cfg + N)Eα] . (6.6)

The presence of Cfg in this expression means that in our formalism, we can consider

foreground subtraction to be a two-step process. The first step acts on the data x

directly through Eα in forming the quantity (x−m)tEα(x−m). As we will see ex-

plicitly in Sections 6.2.2 and 6.2.3, this step involves not just the Fourier transforming

and binning as outlined above, but also a linear foreground subtraction acting on the

data. The result is a biased first guess at the power spectrum. The second step (where
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one subtracts off the bα term) is a statistical removal of foregrounds from this first

guess, which acts on a quadratic function of the data (since it is applied to the power

spectrum estimate and not the data) and is similar in spirit to the methods suggested

in Morales et al. (2006). Our formalism builds on the work in Morales et al. (2006)

and allows one to compute the appropriate statistical foreground removal term bα for

any quadratic power spectrum estimate — one simply plugs the corresponding Eα

into Equation 6.6.

With bα chosen appropriately, Equation 6.5 reduces to a relation between our

power spectrum estimate and the true power spectrum:

p̂ = Wp, (6.7)

where we have grouped the components of the true power spectrum pα and our power

spectrum estimate p̂α into the vectors p and p̂ respectively4, and W is the window

function matrix, given by

Wαβ = tr[C,βE
α]. (6.8)

In general, W will not be a diagonal matrix, and thus each component of our power

spectrum estimate vector p̂ (i.e. each band power) will be a weighted sum of different

components of the true power spectrum. Put another way, the power spectrum esti-

mate at one particular point in the k⊥-k‖ plane is not merely a reflection of the true

power spectrum at that point, but also contains contributions from the true power

spectrum at nearby locations on the k⊥-k‖ plane. Neighboring points of a power

spectrum estimate are thus related to one another, and give rise to “horizontal error

bars” in one’s final power spectrum estimate. Equation 6.8 allows one to quantify

the extent to which foreground subtraction causes unwanted mode-mixing between

different parts of k-space, again because the Eα matrix can be written to include

any linear foreground subtraction process. As a general rule of thumb, the broader

one’s window functions the greater the information loss in going from the true power

spectrum to our power spectrum estimate. The window functions are thus a use-

ful diagnostic for evaluating one’s estimation method, and we devote Section 6.4.1

to examining the window functions from various methods for estimating the power

spectrum.

In addition to computing the window functions, a complete evaluation of one’s

4This grouping is not to be confused with our earlier grouping of data into the vector x. The
index on x runs over the spatial grid points of one’s measured brightness temperature distribution,
whereas the index of vectors like p runs over different bands of k⊥ and k‖.
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power spectrum estimation technique should also involve a computation of covariance

matrix V of the band powers:

Vαβ = 〈p̂αp̂β〉 − 〈p̂α〉〈p̂β〉. (6.9)

Roughly speaking, the diagonal elements of V give the “vertical error bars” on our

power spectrum estimate. If the signal is Gaussian, Equation 6.9 can be written as

Vαβ =
∑
ijkl

[CikCjl + CilCjk]E
α
ijE

β
kl. (6.10)

Ultimately, one of course wishes to minimize the variances (i.e. error bars) on

our power spectrum estimate. For a deconvolved power spectrum estimate5, i.e., one

where W = I so that

〈p̂〉 = p, (6.11)

the smallest possible error bars that can be obtained for a given experimental set-up

can be computed using the Fisher matrix formalism. The Fisher information matrix

is defined as (Fisher, 1935)

Fαβ ≡ −

〈
∂2

∂pα∂pβ
ln f

〉
, (6.12)

where f is the probability distribution for the data vector x, and is dependent on

both x and the band powers pα, which we defined above. Doing so and assuming that

the fluctuations are Gaussian allows one to write the Fisher matrix as

Fαβ =
1

2
tr
[
C,αC

−1C,βC
−1
]
. (6.13)

By the Cramer-Rao inequality, the quantity (F−1)
1/2
αα represents the smallest possi-

ble error bar on the band power pα that any method satisfying Equation 6.11 can

achieve if one is estimating all the band powers jointly, while (Fαα)−1/2 gives the best

possible error if the other band powers are already known. In our particular case,

this means that if a given foreground subtraction and power spectrum estimation

technique (specified by the set of Eαs) yields a covariance matrix V that is equal to

5A power spectrum estimator that respects Equation 6.11 is sometimes also said to be an unbiased
estimator. This is conceptually separate from our earlier discussion about choosing bα appropriately
to eliminate noise and foreground bias. Unfortunately, both usages of the word “bias” are stan-
dard. In this chapter we reserve the term for the latter meaning, and instead use “unwindowed” or
“deconvolved” when referring to the former.
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F−1, the technique is optimal in the sense that no other unwindowed method will

be able to produce a power spectrum estimate with smaller error bars. This method

will turn out to be closely related to the inverse variance scheme that we introduce in

Section 6.2.2, where we apply the formalism that we have developed so far to 21 cm

tomography. Similarly, in Section 6.2.3 we will take the traditional line-of-sight sub-

traction algorithms suggested by Wang et al. (2006); Bowman et al. (2009); Liu et al.

(2009b,a) and recast them in our mathematical framework. We will see in Section

6.4 that the traditional methods result in a substantial loss of information, resulting

in error bars that are larger than one obtains with the inverse variance method.

6.2.2 Inverse Variance Foreground Subtraction and Power

Spectrum Estimation

Suppose we form the quantity

qα ≡
1

2
(x−m)tC−1C,αC

−1(x−m)− bα, (6.14)

and take p̂ = F−1q to be our power spectrum estimate. In Tegmark (1997c) it was

shown that this estimate is precisely the unwindowed (i.e., W = I), optimal estimator

hinted at in the last section. This estimator gives error bars that are exactly those

specified by the Cramer-Rao bound.

In practice, however, using this estimator tends to give power spectra that are

quite noisy. This is because window functions naturally have a width of order the

inverse size of the survey volume, so insisting that W = I enforces a rather ill-

posed deconvolution that greatly amplifies the noise. This results in band power

estimates that have error bars that are both large (despite being the “best” allowed

by Cramer-Rao) and anticorrelated between neighboring bands (see Tegmark et al.

(2004) for a more extensive discussion). To avoid these issues, it is often preferable to

smooth the power spectrum on the k⊥-k‖ plane, which mathematically means having

a nondiagonal W. This in turn implies that we have p̂ = Wp, which allows us to

evade the Cramer-Rao bound since the p̂ = p requirement is no longer enforced. In

other words, by allowing some smoothing of our power spectrum estimate, we can

construct an estimator with smaller error bars than those given by the Cramer-Rao

inequality.
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In this chapter, we will construct such an estimator by choosing

Eα =
1

2Fαα

C−1C,αC
−1, (6.15)

where Fαα are diagonal elements of the Fisher matrix given by Equation 6.13. Just

like with Equation 6.14, the choice of Equation 6.15 for Eα represents an inverse

variance weighting of the data. This can be seen by inserting Equation 6.15 into

Equation 6.2:

p̂α =
1

2Fαα

(x−m)tC−1C,αC
−1(x−m)− bα. (6.16)

Since the covariance matrix C is symmetric, using Equation 6.15 corresponds to us-

ing an inverse variance weighted data vector (C−1x) to perform our power spectrum

estimate. This weighting procedure acts as our foreground subtraction step, since

in Equation 6.4 we included the foregrounds in our covariance matrix. The resid-

ual noise and foreground bias is subtracted by the bα term, which is obtained by

substituting Equation 6.15 into Equation 6.6. The (nondiagonal) window functions

are obtained by inserting Equation 6.15 into Equation 6.8, and it is by imposing the

normalization condition Wαα = 1 (as is standard) that the (Fαα)−1 normalization

factor appears. Throughout this chapter, Equations 6.15, 6.16, and the corresponding

window functions are what we refer to as “the inverse variance method”.

In Tegmark (1997c), it was shown that in the limit that the data vector x is drawn

from a Gaussian distribution6, the inverse variance method beats all other power

spectrum estimators, in the sense that no other method — windowed or not — can

deliver smaller error bars on the final power spectrum estimates. To compute these

error bars, we insert Equation 6.15 into Equation 6.10 and (assuming Gaussianity in

a manner similar to Tegmark (1997c)), obtain

Vαβ =
Fαβ

FααFββ

. (6.17)

6Gaussianity is certainly not a good assumption for 21 cm tomography. However, even if not
strictly optimal, an inverse variance weighting of data is often desirable. Moreover, in the presence
of strongly non-Gaussian signals, the power spectrum itself is a non-optimal statistic in that it fails
to capture all the cosmological information present in the raw data. Thus, the mere act of replacing
the data by a power spectrum is in this sense a Gaussian approximation, and in that limit the
inverse variance method is the optimal one. Note also that while the formulae for the error bar
estimates (such as Equation 6.18) may suffer from inaccuracies if there are non-Gaussianities, the
expressions for the window functions (Equation 6.7) and the noise and foreground bias (Equation
6.6) remain strictly correct. This is because the window functions and the bias terms are derived
from manipulating Equation 6.2, which only involves second moments of the data vector x (and
are therefore completely describable in terms of covariances), whereas the error bars come from
Equation 6.9, which implicitly depends on fourth moments of the data.
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In particular, the “vertical error bars” on a particular band power are given by the

diagonal elements of V, giving

∆pα ≡ V1/2
αα =

1√
Fαα

. (6.18)

This means that the inverse variance method delivers error bars that are smaller

than those given by the Cramer-Rao bound, because here our error bars are equal to

(Fαα)−1/2, something which can only be achieved by an unwindowed estimator if all

but one of the band powers are known beforehand. The windowing has thus achieved

our goal of producing a less noisy power spectrum with smaller error bars. Note that

this outcome was by no means guaranteed — for instance, in Section 6.4 we will

find that the traditional line-of-sight methods described in Section 6.2.3 essentially

smooth the k⊥-k‖ plane too much, resulting in window functions that are so broad

that there is a substantial loss of information, which in turn causes larger error bars

than one obtains with the inverse variance method.

Comparing the inverse variance method to the unwindowed estimator p̂ = F−1q

discussed earlier, we see that the difference lies in whether one normalizes the power

spectrum using F−1 or (Fαα)−1. While we have just seen that the latter gives smaller

error bars on the power spectrum, the choice of normalization becomes irrelevant

as one goes beyond the power spectrum to constrain cosmological parameters. This

is because both choices consist of multiplying by an invertible matrix, and thus no

information is lost. This is not true for the traditional line-of-sight algorithms, where

the non-optimal error bars on the power spectrum are due to an irreversible loss of

information, which will in turn cause larger error bars on cosmological parameters.

6.2.3 Line-of-Sight Foreground Subtraction

In a typical7 line-of-sight (LOS) foreground subtraction method, the measured signal

from each LOS is plotted as a function of frequency (or, if one prefers, of radial

distance) and a low-order polynomial is fit to the data. The low-order fit is then

subtracted from the data, with the hope that the remaining signal varies sufficiently

rapidly with frequency to be dominated by the cosmological contribution to the signal

and not by foregrounds (which are spectrally smooth and therefore expected to be

well-approximated by low-order polynomials). Mathematically, if one arranges the

elements of the data vector x so that one cycles through the radial/frequency direction

7As noted above, variants of the LOS method exist, but we expect the conclusions of this chapter
to be independent of our specific implementation.
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most rapidly and the perpendicular/angular directions less rapidly, the action of a

LOS foreground subtraction can be described by the equation z = Dx, where z is the

foreground-cleaned data and D is a block diagonal matrix. That D is block diagonal is

simply an expression of the fact that different lines-of-sight are independently cleaned

in this algorithm, i.e. there is no attempt to use the angular structure of foregrounds

for cleaning. If one’s data cube has n‖ pixels along the line of sight direction and a

total of n⊥ pixels in the perpendicular directions, then D consists of n⊥ blocks, each

of size n‖ × n‖ and of the form

Dsingle block = I−X[XtX]−1Xt, (6.19)

where I is identity matrix, X is an n‖ × (m+ 1) matrix such that Xij equals the ith

frequency (or radial pixel number) taken to the (j − 1)th power, and m is the order

of the polynomial fit. In Bowman et al. (2009); Liu et al. (2009b) it was found that a

quadratic polynomial ought to be sufficient for cleaning foregrounds below the level

of the expected cosmological signal. In general, one should select a polynomial that

is as low an order as possible to mitigate the possibility of accidentally removing part

of the cosmological signal during foreground subtraction.

Once foreground subtraction has been performed, we can form the power spectrum

by Fourier transforming, binning, and squaring. The Fourier transform and binning

are accomplished by the matrix C,α, which is given by Equation 6.3. Subsequently

multiplying by zt squares the results, so the final estimate of the power spectrum

takes the form

p̂LOSα = ztC,αz = (x−m)tDC,αD(x−m). (6.20)

Comparing this to Equation 6.2, it is clear that the LOS foreground subtraction

methods (and subsequent power spectrum estimations) proposed in the literature are

quadratic methods with Eα = DC,αD and bα = 0. The window functions can be

readily computed by substituting Eα = DC,αD into Equation 6.8, giving

WLOS
αβ = tr[C,αDC,βD]. (6.21)

As we shall see in Section 6.4, the off-diagonal elements of this matrix are large,

which implies that LOS foreground subtraction has the effect of introducing large

correlations between the power spectrum estimates at different parts of the k⊥-k‖

plane.

Comparing the LOS algorithm to the optimal inverse variance algorithm described
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in Section 6.2.2, we can identify three areas in which the LOS algorithm is non-

optimal:

1. The method produces power spectra that still contain a residual noise

and foreground bias. This conclusion has been numerically confirmed by

Bowman et al. (2009), Harker et al. (2010), and Petrovic & Oh (2011), and

trivially falls out of our analytic framework — Equation 6.6 shows that to

eliminate the residual bias, one must subtract

bLOSα = tr [(Cfg + N)Eα]

= tr [(Cfg + N)DC,αD] (6.22)

from the initial estimate, so the setting of bLOSα to zero means the method is

biased. Fortunately, since D and C,α are known a priori and Cfg and N can

be modeled (see Section 6.3 for details), this bias can be easily removed.

2. The method does not make full use of the available data. The fore-

ground cleaning in the LOS method can be thought of as a projection of the

data vector x into the subspace orthogonal to low order polynomials in the

frequency direction8. To see that, note that the matrix D defined above takes

the form of a symmetric (D = Dt) projection matrix (D2 = D), so using the

vector z = Dx to estimate our power spectrum essentially amounts to limiting

our analysis to the subset of data orthogonal to the polynomial modes. Such a

procedure, where one projects out the modes that are a priori deemed contam-

inated, is exactly analogous to similar techniques in CMB data analysis (where

one customarily removes the monopole and dipole modes, as well as pixels close

to the Galactic plane) and galaxy survey analysis (where one might project out

some purely angular modes in order to protect against incorrectly modeled dust

extinction).

The projecting out of contaminated modes will necessarily result in larger error

bars in one’s final power spectrum estimate, because cosmological information

is irreversibly destroyed in the projection procedure. Indeed, this has been a

concern with LOS subtraction, for any component of the cosmological signal

that is non-orthogonal to low-order polynomials in frequency will be inadver-

tently subtracted from the data. At best, if the cosmological signal happens

8A complementary treatment of LOS foreground subtraction that also casts the subtraction as a
projection of data onto a subspace of polynomials can be found in McQuinn et al. (2006b).
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to be completely orthogonal to the polynomial modes, estimating the power

spectrum from the projected data will give error bars that are identical to an

optimal method that uses the full data, since the optimal method can simply

assign zero weight to the contaminated modes.

3. The method is a non-optimal estimator even for the projected data.

The prescription given by Equation 6.20 calls for a uniform weighting of the

projected data z in the estimation of the power spectrum. In Tegmark et al.

(1998), it was shown that ideally one should instead apply inverse variance

weighting to the remaining data. Since the covariance matrix of the reduced

data C̃ ≡ DCD is singular9, the inverse variance weighting is accomplished

using the so-called pseudoinverse, given by

M ≡ D[C̃ + ηXXt]−1D, (6.23)

where η is a non-zero constant and the matrix X is the same as that defined

for Equation 6.19. This pseudoinverse can be shown to be independent of

η Tegmark (1997c), and has the property that C̃M = I in the subspace of

remaining modes, as one would desire for an inverse. To estimate a power

spectrum with an inverse variance weighting of the projected data, one simply

acts with the pseudoinverse after the projection:

z = MDx = Mx, (6.24)

where in the final step we made use of the fact that D2 = D, so MD = M from

Equation 6.23.

With this weighting, the resulting power spectrum estimate becomes optimal

for the projected data, in that the covariance matrix Vαβ becomes equal to

the expression given in Equation 6.17, except that one uses not the full Fisher

matrix F but the Fisher matrix of the projected data F̃. This Fisher matrix

can be proven (Tegmark, 1997c) to take the same form as Equation 6.13, except

with the pseudoinverse taking the place of the inverse covariance:

F̃αβ =
1

2
tr [C,αMC,βM] . (6.25)

In Section 6.4 we will use Equation 6.25 (inserted into Equation 6.18) to estimate the

9An unsurprising result, given that we have thrown away select modes in x.
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Observer

Resolved point sources Galactic synchrotron/
Unresolved point sources

Detector noise

Figure 6-1: Schematic visualization of various emission components that are measured
in a 21 cm tomography experiment. From left to right: The geometry of a data
“cube”, with the line-of-sight direction/frequency direction as the z-axis; resolved
point sources (assumed to be removed in a prior foreground step and therefore not
included in the model presented in Section 6.3), which are limited to a few spatial
pixels but have smooth spectra; Galactic synchrotron radiation and unresolved point
sources, which again have smooth spectra, but contribute to every pixel of the sky;
and detector noise, which is uncorrelated in all three directions.

errors for the LOS method, even though the LOS method as proposed in the literature

does not optimally weight the data. This is because once M has been computed, the

optimal weighting can be accomplished relatively easily, and moreover most forecasts

of the ability of 21 cm tomography to constrain cosmological parameters assume that

the weighting is optimal (see for instance Mao et al. (2008)). The LOS method that we

use to generate the results in Section 6.4 should therefore be considered an improved

version of the traditional methods found in the literature. Even so, we will find that

the inverse variance method does better.

6.3 Foreground and Noise Modeling

Unlike the original LOS subtraction discussed in the first part of Section 6.2.3, the

optimally weighted version of the LOS subtraction scheme and the pure inverse vari-

ance scheme of Section 6.2.2 perform foreground subtraction in ways that are not

blind. In other words, to inverse variance weight the data it is necessary to have a

model for the covariance matrix C, which in turn means that one must have a fore-

ground model, since the foregrounds appear in Equation 6.4. We note, however, that

since Equation 6.7 depends only on geometry (via C,β) and one’s chosen power spec-

trum estimation method (via Eα), the window function matrix Wαβ remains strictly

correct even if the foreground model is not. In other words, even though the Eα

matrix for our inverse variance scheme involves factors of C−1, this does not detract
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from the accuracy of our window functions, since an incorrect C will simply result

in a different Eα, which will in turn give different window functions that nonetheless

accurately reflect what was done to the data. It should also be noted that even with

schemes where the foreground subtraction is completely blind, a proper estimation

of the error bars will necessarily involve a foreground model. We also re-emphasize

that the methods presented in Section 6.2 are generally applicable to any foreground

model, and that the foreground model described in this section is used only for the

numerical case study presented in Section 6.4.

The foreground model that we use in this chapter contains the following features:

1. Following Wang et al. (2006); Bowman et al. (2009); Liu et al. (2009b,a), we

assume that bright, resolved point sources above some flux Smax have been

identified and removed from the data. This may be done using traditional radio

astronomy algorithms such as CLEAN (Högbom, 1974; Clark, 1980) or more

recently developed techniques suitable for low-frequency radio interferometers

(e.g. Bernardi et al. (2011); Pindor et al. (2010)).10

2. Based on extrapolations from CMB data (Tegmark et al., 2000), we assume

that free-free emission is negligible compared to Galactic synchrotron radiation

at the relevant frequencies. Since both free-free emission and Galactic syn-

chrotron radiation have spectra that are well-described by the same functional

form (Wang et al., 2006), we can safely ignore free-free emission for the pur-

poses of this chapter, because its contribution would be subdominant to the

uncertainties inherent in the Galactic synchrotron parameters.

3. With bright point sources removed and free-free emission safely ignorable, the

foreground sources that remain are unresolved point sources and Galactic syn-

chrotron radiation.

Since the two foreground sources in our model are independent in origin, we may as-

sume that their contributions to the signal are uncorrelated, thus allowing us to write

the foreground covariance Cfg as the sum of an unresolved point source covariance

Cpt and a Galactic synchrotron covariance Csync. Figure 6-1 provides a visualization

of these various components, and in the following subsections we consider each term

in turn.

10For an analysis of how such bright point sources can affect the errors on one’s final power
spectrum, see Datta et al. (2010). Their analysis is complementary to what is done in this chapter,
in that they consider the effects of bright point source removal, whereas we consider the effects of
spatially extended foregrounds.
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6.3.1 Unresolved Point Sources

Consider first the unresolved point source covariance. Since the unresolved point

sources can still be considered “local” in radial distance compared to the cosmo-

logical signal, the frequency dependence of these foregrounds is due entirely to the

chromaticity of the sources. This means that correlations in the LOS/frequency “di-

rection” are independent of the spatial distribution of the sources, and the covariance

matrix can be modeled as a separable function in frequency and angular position:

Cpt(r, r
′) ≡ 〈(x(r)−m(r))(x(r′)−m(r′))t〉

≡ Γ(ν, ν ′)Θ(r⊥, r
′
⊥). (6.26)

The function Θ(r⊥, r
′
⊥) encodes the spatial distribution of point sources, and is there-

fore where the clustering of point sources manifests itself. While point sources are

known to be clustered, the clustering is weak and for many applications it is permis-

sible to ignore the clustering (Tegmark & Efstathiou, 1996). If clustering is ignored,

the number of sources in a given pixel on the sky can be modeled using a Poisson

distribution, and the resulting angular power spectrum of point sources is flat (i.e.

independent of angular scale) (Tegmark & Villumsen, 1997). This gives rise to a

perpendicular correlation function/covariance Θ proportional to δ(r⊥ − r′⊥).

It should be emphasized, however, that it is certainly not necessary to assume that

point sources are unclustered. Whether or not clustering is included, the foreground

cleaning and power spectrum estimation procedure described in Section 6.2.2 remains

the same. One simply inserts a different covariance matrix C into the quadratic

estimator. In fact, the inclusion of clustering will aid foreground subtraction if the

clustering pattern differs significantly from that of the cosmological signal.

Unfortunately, only future experiments will be able to probe the angular cluster-

ing of point sources on the fine arcminute scales probed by 21 cm tomography. For

simplicity, we therefore model the Θ function as a Gaussian in the perpendicular sep-

aration r⊥ ≡ |r⊥ − r′⊥|. Without loss of generality, we can normalize so that Θ = 1

when r⊥ = r′⊥, because the overall amplitude of the foregrounds can be absorbed into

Γ(ν, ν ′). This means that

Θ(r⊥, r
′
⊥) = e

− r2⊥
2σ2
⊥ , (6.27)

where the σ⊥-parameter is chosen to take the small value ∼ 7 arcminutes to reflect

the weakness of the clustering.

In contrast to the perpendicular directions, one expects correlations in the LOS
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direction to be strong. In other words, Γ(ν, ν ′) should be large even for ν 6= ν ′ because

of the high spectral coherence of foregrounds. To compute this correlation, consider

first a simplified model where we have a population of point sources with an average

number density n per steradian, giving an average of nΩpix sources per sky pixel of

size Ωpix steradians. We imagine that all the point sources in this population have

the same flux S∗ at frequency ν∗ = 150 MHz, and a power law frequency spectrum

∝ ν−α, with a spectral index α drawn from a Gaussian distribution

p(α) =
1√

2πσ2
α

exp

[
−(α− α0)2

2σ2
α

]
, (6.28)

with σα = 0.5 (Tegmark et al., 2000) and α0 to be fixed later. With this foreground

model, the average signal along a particular LOS is given by

m(ν) ≡ 〈x(ν)〉 =

(
Aν

Ωpix

)
(nΩpixS∗)

∫ (
ν

ν∗

)−α
p(α)dα, (6.29)

where Aν/Ωpix is a conversion factor that converts our expression from flux units

to temperature units. The ν subscript serves to remind us that it is a function of

frequency, and numerically we have(
Aν

Ωpix

)
= 1.4× 10−6

(
ν

ν∗

)−2(
Ωpix

1 sr

)−1

mJy−1 K. (6.30)

Similarly, the covariance (or correlation function) is

Γ(ν, ν ′) ≡ 〈(x(ν)−m(ν))(x(ν ′)−m(ν ′))〉

=
AνAν′

Ω2
pix

nΩpixS
2
∗

∫ (
νν ′

ν2
∗

)−α
p(α)dα. (6.31)

Note that the covariance is proportional to n and not n2 because in a Poisson distri-

bution11 the mean is equal to the variance. Evaluating the integral gives

Γ(ν, ν ′) =
AνAν′

Ωpix

nS2
∗

(
νν ′

ν2
∗

)−α0+
σ2
α
2

ln

(
νν′

ν2∗

)
, (6.32)

which shows that the superposition of power law spectra with Gaussian-distributed

spectral indices gives exactly a power law with a positive running of the spectral

11This is not to be confused with the spatial distribution of the sources. What is being modeled
as Poisson distributed is the number of sources in a given pixel.

180



index.

Now, in reality one of course has multiple populations of point sources with varying

brightness S∗. If we treat these populations as independent (in a similar fashion to

what was done in Tegmark & Villumsen (1997)), then the total covariance due to all

populations is given by the sum of the covariances of the individual populations. In

the limit of an infinite number of populations, one has

Γ(ν, ν ′) =
AνAν′

Ωpix

∫ Smax

0

dn

dS∗
S2
∗dS∗

(
νν ′

ν2
∗

)−α0+
σ2
α
2

ln

(
νν′

ν2∗

)
, (6.33)

where dn/dS is the differential source count and Smax is a maximum point source flux

above which we assume the sources can be resolved and removed from the data prior

to applying our foreground subtraction and power spectrum estimation scheme. Sim-

ulations of so-called “peeling” techniques have suggested that resolved point sources

can be reliably removed down to Smax ∼ 10 to 100 mJy (Pindor et al., 2010). In this

chapter, we go a little above the middle of this range and take Smax ∼ 60 mJy. For

the differential source count we use empirical fit of Di Matteo et al. (2002), which

takes the form
dn

dS∗
=
(
4.0 mJy−1 sr−1

)( S∗
880 mJy

)−1.75

, (6.34)

and putting everything together, we obtain

Γ(ν, ν ′) = (149 K2)

(
Ωpix

10−6 sr

)−1(
νν ′

ν2
∗

)−αps+σ2
α
2

ln

(
νν′

ν2∗

)
, (6.35)

where αps ≡ α0 +2 = 2.5, with this numerical value chosen12 to match extrapolations

from CMB data (Tegmark et al., 2000). Combining this with Equation 6.27 gives us

our expression for the unresolved point source foreground covariance matrix.

6.3.2 Galactic Synchrotron Radiation

With the synchrotron contribution, it is more difficult to write down the form of

the covariance matrix, because it is unclear how to rigorously define the ensemble

averages required in the computation of the covariance. In the frequency direction,

we simply use the same expression as we obtained for the unresolved point sources.

12For the results presented in Section 6.4, we in fact used larger values for both αps and αsync.
We estimate the difference to be no larger than 1% at any frequency. Moreover, with larger spectral
indices the foregrounds become steeper functions of frequency, and are therefore harder to subtract
out, making our results more conservative.
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We expect this to be a reasonable model for two reasons. Physically, the emission from

unresolved point sources is also synchrotron radiation, albeit from distant galaxies.

Empirically, the spectrum of Galactic synchrotron foregrounds is well-described by

the same parametric fits that work well for the unresolved point sources, except with

slightly different parameters (Tegmark et al., 2000; Wang et al., 2006). We thus

reuse Equation 6.35 with αps → αsync = 2.8, σα = 0.4, and the amplitude of Γ

(including the Ωpix factor) to be 1.1 × 105 K2, all of which are values more suitable

for Galactic synchrotron radiation (Wang et al., 2006). As for the perpendicular

part of the covariance matrix, we once again run into the same problem we faced

with the unresolved point sources, namely that there is a lack of empirical spatial

correlation data on the fine scales of interest. For simplicity, we use Equation 6.27 for

the Galactic synchrotron foreground contribution as well, but with σ⊥ ∼ 10 degrees

to reflect the fact that the Galactic synchrotron contribution is expected to be much

more spatially correlated than the point sources are (Tegmark et al., 2000).

6.3.3 Instrumental Noise

To model the instrumental noise contribution to the covariance matrix, we use the

standard formula for the uncertainty in a measurement of the spatial wavevector k⊥

component of the sky brightness:

∆̃T (k⊥, r
‖) =

λ2Tsys

Ae
√
τk∆ν

, (6.36)

where λ is the observing wavelength, ∆ν is the channel bandwidth of the instrument,

Ae is the effective area of an antenna, Tsys is the system temperature of the instrument,

and τk is the total integration time that the instrument spends observing Fourier mode

k⊥ (see Morales (2005) for a pedagogical discussion). The dependence on the radial

distance r‖ enters via λ, whereas the dependence on k⊥ enters via τk. The amount

of time τk that each Fourier mode is observed for is greatly affected by the layout

of one’s interferometer array, since each baseline in the array probes a particular

Fourier mode k⊥ at any one instant. Once ∆̃T has been determined, one must take

Fourier transforms in the two perpendicular directions to obtain ∆T in position space.

One can then form the quantity N ≡ 〈∆T (r)∆T (r′)〉, with the additional standard

assumption that the noise is uncorrelated between different frequencies.

In this chapter, we pick fiducial system parameters that are similar to those of the

MWA. Specifically, the results in the following sections are computed for an interfer-
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ometer array with 500 antenna tiles randomly distributed with a density varying as

r−2, where r is the distance from the center of the array. The length of the maximum

baseline is taken to be 1500 m, and we assume 1000 hrs of observing time. Rotation

synthesis is performed with the telescope located at the South Pole for simplicity.

The channel width of a single frequency channel is set at ∆ν = 30 kHz, the system

temperature at Tsys = 440 K, and we take the effective area of each antenna tile to be

Ae = 15 m2. These quantities can be taken to be roughly constant over the narrow

frequency range of 150 to 150.9 MHz (corresponding to 30 adjacent frequency chan-

nels) that we take to define the radial boundaries of the survey volume we use for

the numerical case study of Section 6.4. In the perpendicular directions we take our

field of view to be 1.2 deg2, which gives 16 pixels along each perpendicular direction

if we take the natural pixel size of Ωpix ≈ 4.5 arcmin2 that is suggested by our array

configuration. This results in a data cube with 16 × 16 × 30 = 7680 voxels13, which

is a tiny fraction of the total data output of a typical 21 cm tomography experiment,

but a reasonable amount of data to analyze for several reasons:

1. Cosmological evolution of the signal. As we remarked in Section 6.2.1, the

power spectrum is only a sensible statistic if translational invariance is assumed,

and this in turn rests on the assumption that the cosmological evolution of the

signal is negligible over the redshift range of one’s data cube. In practice this

means that one must measure the power spectrum separately for many data

cubes, each of which has a short radial extent. The configuration that we use

for the numerical case study in Section 6.4 should be considered one such small

cube.

2. Comparisons between inverse variance subtraction and line-of-sight

subtraction. In Liu et al. (2009b), it was shown that line-of-sight foreground

subtraction is most effective over narrow frequency ranges. As we will discuss in

Section 6.6.2, the inverse variance method suffers no such limitation. However,

we select a narrow frequency range in order to demonstrate (see Section 6.4)

that the inverse variance method does a better job cleaning foregrounds even

in that regime.

3. Computational cost. Even with npix = 162 × 30 = 7680 voxels, the com-

13Note that while we speak of organizing the data into a cube (see the left-most graphic in Figure
6-1), the physical survey volume need not be cubical. In our computations, for instance, we take
into account the fact that light rays diverge, thus giving a survey volume that takes the form of a
small piece of a spherical shell. The formalism described in Section 6.2 can be applied to any survey
geometry, even ones that are not contiguous.
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putational cost is substantial. This is due to the fact that one must multiply

and/or invert many 7680 × 7680 matrices to use Equations 6.6, 6.8, and 6.10.

Because of this, the results in Section 6.4 required more than half a terabyte

of disk space for matrix storage and a little over a CPU-year of computation.

The problem quickly gets worse with increasing npix, since a straightforward im-

plementation of the computations involved scales as O(n3
pix). Fortunately, for

large datasets there exist iterative algorithms for power spectrum estimation

that scale as O(npix log npix) (Pen, 2003; Padmanabhan et al., 2003), and with

a few approximations (such as the flat-sky approximation) these fast algorithms

can be suitably adapted to perform unified foreground subtraction and power

spectrum estimation for 21 cm tomography as we have done in this chapter

(Dillon et al., 2012).

We stress, however, that the formalism described in Section 6.2 is in principle

applicable to arbitrarily large survey volumes of any geometry.

6.3.4 Cosmological Signal

For the computations in Section 6.4, we ignore the cosmological signal. This is jus-

tified for several reasons. First, the signal is expected to be at least a factor of

104 smaller than the foregrounds (de Oliveira-Costa et al., 2008), which means that

including the signal would make little difference to the inverse variance foreground

cleaning steps, as C would be essentially unchanged. The line-of-sight methods, of

course, remain strictly unchanged as they are blind. Despite this, one might still ob-

ject that if foreground cleaning is successful, then we should expect the cosmological

signal to be the dominant contribution to the power spectrum in at least a portion

of the k⊥-k‖ plane. This is most certainly true, and the simulation of an actual mea-

surement of a power spectrum would be incorrect without including the cosmological

signal as input. However, in this chapter we do not show what a typical measured

power spectrum might look like, but simply seek to quantify the errors and biases

associated with our methods. In this context, the main effect of a cosmological signal

would be to add a cosmic variance contribution to our error bars at low k‖ and k⊥,

but as we will see in Section 6.4 it is precisely at the large scale modes that foreground

subtraction is least successful. The cosmic variance errors would thus be dominated

by the errors induced by imperfect foreground subtraction anyway.

In short, then, it is not necessary to include the cosmological signal in our compu-

tations, and summing just Cfg and N yields a fine approximation to the full covariance
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matrix of the system C for our purposes.

6.4 Computations and Results

In this section we compute window functions, covariances, and biases for both the

inverse variance and LOS methods described above. Using Equations 6.6, 6.8, and

6.10, our computations can be performed without the input of real data, and depend

only on the parameters of the system.

In what follows, we choose the k-bands of our power spectrum parameterization

to have equal logarithmic widths. In the k‖ direction we have 30 bands spanning

from 0.1 Mpc−1 to 10 Mpc−1. In the k⊥ direction we again have 30 bands, but this

time from 0.01 Mpc−1 to 1 Mpc−1. Note that these bands can be chosen indepen-

dently of the instrumental parameters, in the sense that a quadratic estimator can

be formed regardless of what (k⊥, k‖)-values are chosen, although the quality of the

power spectrum estimate will of course depend on the instrument.

6.4.1 Window Functions

In evaluating the quality of one’s power spectrum estimator, one is ultimately inter-

ested in the size of the error bars. This means that the quantity of interest is the

covariance matrix V. In this section, however, we first examine the window functions.

As we saw from the discussion in Section 6.2.2, the window functions are intimately

connected to the covariances, and often provide a more detailed understanding for

why the error bars behave the way they do. In particular, window functions that are

wide and badly behaved tend to come hand in hand with large error bars. Moreover,

our expression for the window function matrix (Equation 6.7) remains strictly accu-

rate even in the presence of non-Gaussian signals (see footnote 6), so in many ways

the window function matrix W is a more robust diagnostic tool than the covariance

matrix V.

In the top panel of Figure 6-2, we examine a situation where C = I, corresponding

to a scenario where no foregrounds are present and the signal is dominated by white

noise. This is of course a highly unrealistic situation, and we include it simply to build

intuition. Rather than plotting the raw window functions, we show the normalized

quantities

W̃αβ ≡
Wαβ√

WααWββ

, (6.37)
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Figure 6-2: Normalized window functions W̃ (see Equation 6.37) for an unrealistic
situation with no foregrounds (top panel), the line-of-sight foreground subtraction
described in Section 6.2.3 (middle panel), and the inverse variance foreground sub-
traction described in Section 6.2.2 (bottom panel).
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where W is given by Equation 6.7, and like before, each Greek index corresponds to

a particular location on the k⊥-k‖ plane. Each set of contours shown in Figure 6-2

corresponds to a specific row of W̃. For example, the set of contours at the center

of the “cross” in each panel of Figure 6-2 has a fixed index β that corresponds to

(k⊥, k‖) = (0.092, 0.92) Mpc−1 and is plotted as a function of α, or equivalently, as a

function of k⊥ and k‖. From Equation 6.7, we see that each set of contours describes

the weighted average of neighboring points of the true power spectrum p that one is

really measuring when forming the power spectrum estimate p̂. With C set to the

identity, the nonzero width of the window functions is due solely to the finite volume

of our survey, and any apparent widening of the window functions towards low k⊥

and k‖ is due mostly to the logarithmic scale of our plots.

With foregrounds present, the precise shape of the window functions will depend

on the foreground subtraction algorithm employed. Shown in the middle panel of Fig-

ure 6-2 are window functions for the LOS foreground subtraction described in Section

6.2.3. These window functions have the same k⊥-widths as those in the top panel of

Figure 6-2, which is expected since the LOS foreground subtraction scheme operates

only in the frequency/radial direction. On the other hand, foreground subtraction

increases the k‖-widths of the window functions, although this effect is significant

only in the lower k‖ regions of the k⊥-k‖ plane. At high k‖, the window functions

are very similar to those for the case with no foregrounds, since (by design) the LOS

subtraction of low-order polynomials has a negligible effect on high k‖ Fourier modes

of the signal. As one moves to lower k‖, the foreground subtraction has more of an

effect, and the window functions widen in the radial direction. This results in large

“horizontal” error bars in the k‖ direction for the final power spectrum estimate. In

addition, the widening of the window functions represents a loss of information at

these low k‖ values (which is unsurprising, since the very essence of the LOS method

is to project out certain modes), and in Section 6.4.2 we will see this manifesting itself

as larger “vertical” error bars on the power spectrum estimate.

Shown in the bottom panel of Figure 6-2 are the window functions for the inverse

variance foreground subtraction described in Section 6.2.2. The same elongation

effect is seen in the k‖ direction, but the problem is less severe in the sense that severe

elongation does not occur until one reaches much lower values of k‖. This is illustrated

in Figure 6-3, where we plot the fractional increase (compared to the foreground-free

case) in window function width in the k‖ direction for both the LOS method (red,

solid line) and the inverse variance method (blue, dashed line) as a function of the

k‖ coordinate of the central peak of the window function. The width is defined to be
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Figure 6-3: Fractional increase (compared to the foreground-free case) in window
function width in the k‖ direction, plotted as a function of the k‖ location (on the k⊥-
k‖ plane) of the window function peak . The blue, dashed line is for inverse variance
foreground subtraction, whereas the red, solid line is for the LOS subtraction. The
various data symbols denote widths measured at different values of k⊥, and the fact
that they all lie close to the curves suggest that the window function width in the k‖
direction is largely insensitive to the k⊥ location of the window function peak. The
width is defined as the full-width of the window function in logarithmic k-space at
which the function has dropped 1% from its peak value. The solid line is to guide the
eye, and marks a fractional increase of unity i.e. where the width is double what it
would be if there were no foregrounds.
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the full-width-99%-max14 (in logarithmic k-space) of the window in either the k‖ or

k⊥ direction, and as expected there is essentially no elongation at regions of high k‖.

Foreground subtraction begins to have an elongating effect on the k‖ widths of the

window functions at k‖ < 1 Mpc−1, just like we saw from our comparisons of the three

panels of Figure 6-2. The effect is much more pronounced for the LOS subtraction,

and as an example we can consider the k‖ value at which the fractional increase in

width is unity (i.e. where foregrounds cause the window functions to double in width

in the k‖ direction). This occurs at k‖ = 0.7 Mpc−1 for the LOS subtraction, but not

until k‖ = 0.5 Mpc−1 for the inverse variance subtraction, which means that with the

latter scheme, one can push to lower values of k‖ before there is significant information

loss and the power spectrum band estimates become massively correlated. Note that

this conclusion holds for all k⊥, as evidenced by the way the various plot symbols for

different k⊥ all lie very close15 to the curves in Figure 6-3.

Unlike the k‖ widths, with the k⊥ widths we find that there are important qual-

itative differences in addition to quantitative differences between the two methods.

This is evident in Figure 6-4, where we compare inverse variance and foreground-

free window functions (solid and dashed contours respectively) centered at (k⊥, k‖) =

(0.0259, 0.2593) Mpc−1. The analogous plot for the LOS method is shown in Figure

6-5. As discussed before, there is an elongation in the k‖ direction that is more pro-

nounced in the LOS method than the inverse variance method. For the LOS method,

this is all that happens, because the foreground subtraction is performed using only

line-of-sight information. In contrast, since the inverse variance method works by

de-weighting parts of the data that are heavily contaminated by foregrounds, it is

capable of also leveraging information in the transverse direction. This results in the

slight widening in the k⊥ direction seen in Figure 6-4.

In Figure 6-6, we show the fractional increase in k⊥ width (again as compared to

the foreground-free windows) as a function of k⊥. The width increases towards lower

14We define the full-width-99%-max as the full width at which the function has dropped to 99%
of its peak value. A more conventional measure of the width like the full-width-half-max (FWHM)
is not feasible for our purposes, as the window functions are elongated so much by foreground
subtraction that if we defined the widths in such a way, the widths for the windows at the very
lowest k‖ would run off the edge of our simulation. Our measure of the width allows a quantification
of the elongation even for the lowest k‖ values. In all regimes where a meaningful measurement of
the band powers can be made, the window functions will be compact enough for the width to be
defined using the FWHM. With the inverse variance method, for instance, one sees from the bottom
panel of Figure 6-2 that the FWHM remains nicely within the simulation box even though it is
larger than for the foreground-free case.

15 For the LOS subtraction, this invariance is in fact exact since the algorithm performs the
same polynomial subtraction along the line-of-sight regardless of what happens in the transverse
directions.
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Figure 6-4: A comparison of two normalized window functions W̃ centered at
(k⊥, k‖) = (0.0259, 0.2593) Mpc−1 (marked by “x”). The dotted contours correspond
to a scenario with no foregrounds, while the solid contours correspond to the window
functions for the inverse variance foreground subtraction described in Section 6.2.2.
Note the linear scale on both axes.

k⊥ because the inverse variance foreground subtraction is taking advantage of the

smooth angular dependence of Galactic synchrotron radiation to accomplish some of

the foreground cleaning. One can also see that the width decreases with increasing

k‖, which is due again to the fact that the spectral smoothness of foregrounds mean

that they dominate mainly the low k‖ modes, and so the inverse variance subtraction

need not act so aggressively at high k‖.

In summary, what we see is that since the inverse variance method downweights

data selectively on the basis of expected foreground contamination, its approach to

foreground subtraction is more “surgical” than that of the LOS method. For instance,

at intermediate k‖ (where foregrounds are non-negligible but certainly not at their

peak), it subtracts foregrounds in a less aggressive manner than the LOS method does,

allowing for final power spectrum estimates in those regions to be less correlated with

each other. This is still the case in low k⊥, low k‖ regions, but here the algorithm also

uses angular information for its foreground subtraction. Put another way, the inverse

variance technique automatically “chooses” the optimal way to subtract foregrounds.

As a result, the fact that the elongation of window functions in the k‖ direction is so
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Figure 6-5: A comparison of two normalized window functions W̃ centered at
(k⊥, k‖) = (0.0259, 0.2593) Mpc−1 (marked by “x”). The dotted contours correspond
to a scenario with no foregrounds, while the solid contours correspond to the window
functions for the LOS foreground subtraction described in Section 6.2.3. Note the
linear scale on both axes.

much greater than the widening in the k⊥ direction (notice the different scales on the

vertical axes of Figures 6-3 and 6-6) means that we now have quantitative evidence for

what has thus far been a qualitative assumption in the literature — that foreground

subtraction for 21-cm tomography is most effectively performed using line-of-sight

information rather than angular information.

6.4.2 Fisher Information and Error Estimates

In the top panel of Figure 6-7, we return to the foregroundless scenario where C = I

and plot the diagonal elements of the Fisher matrix (which should roughly be thought

of as being inversely proportional to the square of the power spectrum error bars —

see Section 6.2.2). The Fisher information increases from the bottom left to the top

right, and in the middle of the k⊥-k‖ plane, their contours have a (logarithmic) slope

of −2. To understand this, consider the process by which one forms a power spectrum

in the k⊥-k‖ plane: the three-dimensional real-space data cube is Fourier transformed

in all three spatial directions, and then binned and averaged over concentric annuli in
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Figure 6-6: Fractional increase (compared to the foreground-free case) in window
function width in the k⊥ direction, plotted as a function of the k⊥ location (on the
k⊥-k‖ plane) of the window function peak . The blue, dashed line is for inverse variance
foreground subtraction, whereas the red, solid line is for the LOS subtraction. The
dotted and dash-dotted curves display the same quantity as the dashed line, but at
lower k‖. The width is defined as the full-width of the window function in logarithmic
k-space at which the function has dropped 1% from its peak value.

k-space. The averaging procedure has the effect of averaging down noise contributions

to the power spectrum estimate, and thus as long as the dominant source of error

is instrumental noise, the error bars on a particular part of the power spectrum will

decrease with increasing annulus volume. With k-bins of equal logarithmic width

(see Section 6.4), the volume increases twice as quickly when moving to regions of

higher k⊥ in the (logarithmic) k⊥-k‖ plane than when moving to regions of higher k‖,

giving a logarithmic slope of −2 for contours of equal Fisher information. Conversely,

Fisher information contours of slope −2 imply that one’s error bars are dominated

by instrumental noise.

At high k‖ or high k⊥, the contours shown in the top panel of Figure 6-7 are seen

to deviate from this behavior, although because of the range of the plot, the effects

are somewhat visually subtle. At high k‖ the contours get slightly steeper, implying

a lower information content (larger error bars) than one would expect if limited by

instrumental noise. This is due to the fact that at very high k‖ there is insufficient

spectral resolution to resolve the extremely fine small scale modes, resulting in power
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No foregrounds

With foregrounds, Inverse Variance method

Figure 6-7: A plot of the diagonal elements of the Fisher information matrix for an
unrealistic situation with no foregrounds (top panel) and with foregrounds cleaned by
the inverse variance method (bottom panel). The (unnormalized) contours increase
in value from the bottom left corner to the top right corner of each plot, and are
chosen so that crossing every two contours corresponds to an increase by a factor of
10. Dashed lines with logarithmic slopes of −2 are included for reference.
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spectrum estimates with large error bars there. Finite angular resolution has a similar

effect in the k⊥ direction.

With foregrounds, the Fisher information takes a markedly different form, as seen

in the bottom panel of Figure 6-7, where we have plotted the Fisher information

after carrying out inverse variance foreground subtraction. One sees that only small

regions of the k⊥-k‖ plane have contours with a logarithmic slope of −2, suggesting

that there are few — if any — parts that are dominated solely by instrumental noise.

The effects of foreground subtraction are more easily interpreted if one instead

considers the following quantity16, which has units of temperature squared:

∆2
21 cm(k⊥, k‖) ≡

k2
⊥k‖
2π2

PT (k⊥, k‖). (6.38)

This is exactly analogous to the quantity

∆2(k) ≡ k3

2π2
P (k) (6.39)

for galaxy surveys, which quantifies the contribution to the density field variance from

a particular logarithmic interval in k, and

(δT`)
2 ≡ `(`+ 1)

2π
C` (6.40)

for CMB measurements, which quantifies the contribution to temperature variance

per logarithmic interval in `. The quantity ∆2
21 cm thus measures the contribution to

21 cm brightness temperature variance per logarithmic interval in (k⊥, k‖)-space.

Since Equation 6.17 tells us that the error bar on a particular band of PT (k⊥, k‖)

is given by (Fαα)−1/2 for the inverse variance method, we can estimate the error on

16The expressions given by Equations 6.38 and 6.40 are often referred to as “dimensionless power
spectra”. This is of course somewhat of a misnomer, because both expressions carry dimensions of
temperature squared, and are “dimensionless” only in the sense that all units of length have been
canceled out.
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∆21 cm by computing the quantity17

ε(k⊥, k‖) ∼

[
k2
⊥k‖
2π2

√
1

Fαα

] 1
2

, (6.41)

which, having units of temperature, is convenient for gauging the quality of our

foreground cleaning. Note that this expression can also be used for the noiseless case

(since C ∝ I can be considered a special case of the inverse variance method) as well

as for the line-of-sight foreground scheme (as long as one uses the pseudoinverse and

forms the Fisher matrix using Equation 6.25, as outlined in Section 6.2.3).

Alternatively, we can think of the quantity ε introduced in Equation 6.41 as the

real-world degradation factor, because it can also be interpreted as the ratio (up

to an overall dimensionful normalization factor) of the actual error on the power

spectrum PT (k⊥, k‖) to the error that would be measured by a noisy but otherwise

ideal experiment with infinite angular resolution and infinite spectral resolution. In

other words, ε tells us how much larger the error bars get because of real-world

issues like foregrounds and limited resolution. To see this, note that such an ideal

experiment would have a constant ε, because the k2
⊥k‖ factor essentially nulls out

the geometric effects seen in the top panel of Figure 6-7 when one is not limited by

resolution.

In the top, middle, and bottom panels of Figure 6-8, we show ε for the noise-only

scenario, the inverse variance method, and the line-of-sight method, respectively.

With the foreground-free case in the top panel, we see that the error bars increase as

one goes from the bottom-left corner (low k⊥, low k‖) to the top-right corner (high

k⊥, high k‖). The instrument’s finite angular resolution causes the errors to increase

in the direction of increasing k⊥, whereas in the direction of increasing k‖ this is due

to the finite spectral resolution. The smallest error bars on the plot are ∼< 10 mK

whereas the largest are ∼ 20 mK.

Introducing foregrounds causes the errors to increase everywhere on the k⊥-k‖

plane, even after inverse variance cleaning (middle panel of Figure 6-8). However, in

addition to the effects of finite angular resolution and finite spectral resolution, we see

that there are now also significant errors at low k‖ (indeed, this is where the errors

17This expression is in fact an upper limit on the error. That it is not exact arises from our taking
of the square root of Equation 6.38 to obtain a quantity with temperature units. In the limit of small
errors, for instance, Taylor expanding Equation 6.38 with a perturbation suggests that we ought to
have a factor of 1/2 in front of our current form for ε(k⊥, k‖). It is only when the errors dominate
the signal (such as at low k‖ — see Figure 6-8) that ε tends to the expression given in Equation
6.41. For our illustrative purposes, however, Equation 6.41 suffices as a conservative estimate.
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Figure 6-8: Expected power spectrum error bars for a situation with no foregrounds
(top panel, Equations 6.13 and 6.41 with C ∝ I, scaled to match the noise-dominated
k⊥-k‖ regions of the other scenarios); the inverse variance method (middle panel,
Equations 6.13 and 6.41); the line of sight method (bottom panel, Equations 6.25 and
6.41). For the last two plots, the errors are high at low k‖, high k‖, and high k⊥ due
to residual foregrounds, limited spectral resolution, and limited angular resolution,
respectively.
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are largest). This is due to residual foreground contamination — being spectrally

smooth, the foregrounds have their greatest effect at low k‖, and thus that region of

the k⊥-k‖ plane is the most susceptible to inaccuracies in foreground cleaning. The

“downhill” gradients of the contours there point to higher k‖, suggesting that the

foregrounds are the dominant source of error.

Considering all the effects together, one sees that the “sweet spot” for measure-

ments of ∆21 cm (or, alternatively, where a realistic experiment compares the most

favorably to an ideal experiment for measuring the power spectrum PT ) is at low k⊥

(to avoid being limited by angular resolution) and intermediate k‖ (to avoid being

limited by spectral resolution or residual foreground contamination). In such a region

the typical errors are ∼< 10 mK, whereas in the resolution-limited region at the top-

right corner of the plot the errors are ∼ 30 mK and in the foregrounds and angular

resolution-limited region in the bottom-right corner the errors are ∼ 130 mK.

Although the features are seen to be qualitatively similar when we move from the

inverse variance method to the LOS method (bottom panel of Figure 6-8), quanti-

tatively we see that the errors have grown yet again, regardless of one’s location on

the k⊥-k‖ plane. The smallest errors (found in the low k⊥, intermediate k‖ “sweet

spot”) remain ∼< 10 mK, and the errors in the resolution-limited region (high k⊥,k‖)

remain ∼ 30 mK. However, the foreground contaminated regions take up a larger

portion of the k⊥-k‖ plane, and the most contaminated parts of the plot have errors

of ∼ 900 mK.

As explained in Sections 6.2.2 and 6.2.3, the higher errors are to be expected

with the LOS scheme, given that the method does not make full use of the available

data, having projected out the low-order polynomial modes. Put another way, the

broad window functions in the middle panel of Figure 6-2 indicate that information

has been lost and that power has been filtered out of the data. Thus, in order for

the power spectrum estimate to not be biased low (because of the power loss), it is

necessary to multiply by a large normalization factor. This normalization factor is

derived by imposing the Wαα = 1 window function constraint (see Tegmark (1997c)),

and manifests itself as the Fαα factor in the denominator of Equation 6.16 — if much

power has been filtered out of the mode corresponding to the k-space index α, the

remaining Fisher information Fαα in that mode will be low, and one must divide by

this small number so that the final estimate is of the right amplitude. However, this

also has the effect of magnifying the corresponding error bars, leading to the larger

errors in the bottom panel of Figure 6-8.

One may be initially puzzled by the trends shown in the last two panels of Figure
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6-8, which at first sight appear to differ from plots like those shown in Figure 9 of

Bowman et al. (2009). In particular, in Bowman et al. (2009) the post-subtraction

foreground residuals are the lowest at low k⊥ and low k‖, which seem to imply that

the cleanest parts of the final power spectrum ought to be there. This, however, is a

misleading comparison. A plot of residuals like that in Bowman et al. (2009) should

be viewed as a plot of the expected size of the measured power spectrum (containing

both the cosmological signal and the residual foregrounds), not the size of the error

bars associated with the measurement, which are shown in Figure 6-8. Put another

way, the power spectrum is not truly clean at low k⊥ and low k‖, for even if the

measured values are small, the error bars are large, rendering that part of the power

spectrum unusable.

6.4.3 Residual Noise and Foreground Biases

In Figure 6-9, we show the residual noise and foreground bias terms (Equations 6.6 and

6.22, but cast in temperature units in a way similar to Equation 6.41) for the inverse

variance (top panel) and LOS (bottom panel) subtraction methods, respectively. The

biases that need to be subtracted in both methods are seen to be qualitatively similar,

and the trends shown in Figure 6-9 can be readily understood by thinking of the bias

subtraction in Equation 6.2 as a foreground subtraction step in its own right. Acting

on the k⊥-k‖ plane directly, this step seeks to remove any residual foreground power

from the power spectrum itself. It therefore has its biggest effect where foreground

residuals are expected to be large, and in Section 6.5 we will develop a simple toy

model to gain intuition for how this works.

6.5 An Intuitive Toy Model

In this section, we develop a simple toy model for understanding the inverse variance

foreground subtraction and power spectrum estimation scheme. The goal here is not

to reproduce the exact results of the previous section, but rather, to provide intuitive

explanations for how the power spectrum estimation algorithms work.

For our toy model, we consider a one-dimensional survey volume in the line-of-sight

direction. This choice is motivated by the fact that it is generally the spectral rather

than spatial dependence of foregrounds that is most useful for foreground subtraction,

and consequently it is the algorithm’s behavior as a function of frequency that is the

most interesting. We again take the frequency range of the survey to be small.
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Inverse Variance method

Line-of-sight method

Figure 6-9: Bias term as a function of k⊥ and k‖ for the inverse variance method
(Equation 6.6, top panel), and for the line-of-sight method (Equation 6.22, bottom
panel). The LOS plot has been artificially normalized to match the inverse variance
plot at values of medium k⊥ and k‖, where we expect the two techniques to be
extremely similar.
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We employ a one-dimenstional covariance of the form

C(ν, ν ′) = δ(ν − ν ′) +NR(ν, ν ′), (6.42)

where we have written a continuous covariance instead of a discretized covariance

matrix because we will be working in the continuous limit in this section in order

to eliminate pixelization effects. The foregrounds are modeled by R(ν, ν ′), N is a

normalization constant to be determined later, and the noise is modeled by the delta

function. Without loss of generality, we can select units such that the r.m.s. fore-

ground covariance is equal to unity at all frequencies i.e. R(ν, ν) = 1 for all ν. This

amounts to dividing the line-of-sight covariance Γ(ν, ν ′) of Section 6.3 by a frequency-

dependent normalization σ(ν)σ(ν ′), where

σ(ν) =

(
ν

ν∗

)−α0+σ2
α ln(ν/ν∗)

, (6.43)

giving

R(ν, ν ′) = exp

[
−σ

2
α

2
(ln ν − ln ν ′)

2

]
, (6.44)

i.e. a Gaussian in logarithmic frequency. Since we are assuming a narrow frequency

range, the logarithmic terms can be expanded about ν∗, giving

R(ν, ν ′) ≈ R(ν − ν ′) = exp

[
−(ν − ν ′)2

2ν2
c

]
, (6.45)

where we have defined the foreground coherence length18:

νc ≡
1

σα

(
ν∗

ln ν∗

)
. (6.46)

Note that the foreground contribution now depends on just the difference between

ν and ν ′ i.e. it is translation invariant in frequency space. The same is true for the

delta function noise term, which accurately captures the fact that the instrumental

noise is uncorrelated between different frequencies. For simplicity, we model the noise

18While this definition of the foreground coherence length is what follows from Taylor expanding
R(ν, ν′), we caution that Equation 6.46 should not be taken too literally as a way to compute νc.
Doing so gives rather long coherence lengths, over which the linearized version of R(ν, ν′) becomes
a bad approximation. Indeed, it is somewhat unphysical for νc to depend on ν∗, which after all was
just an arbitrary frequency in the power-law foreground parameterizations of Section 6.3. In what
follows, we will choose a fiducial value of νc = 0.5 MHz to “anchor” our toy model to the results of
Section 6.4.

200



as being white in our chosen units19. Putting everything together, we see that our

toy model is one that is defined by the covariance

C(ν − ν ′) = δ(ν − ν ′) +
γ√
2πν2

c

exp

[
−(ν − ν ′)2

2ν2
c

]
, (6.47)

where we have redefined our normalization constant so that the noise and foreground

pieces are individually normalized to unity, allowing the constant γ to be interpreted

as a foreground-to-noise ratio.

Let us now apply the inverse-variance power spectrum estimation method of Sec-

tion 6.2.2 to our toy model. Interpreting C(ν − ν ′) as an integral kernel, an inverse-

variance weighting of the data corresponds to applying the inverse kernel C−1(ν−ν ′).
By the convolution theorem, a translation invariant kernel acts multiplicatively when

written in its dual Fourier basis20. This makes the computation of the inverse kernel

straightforward — one simply computes the reciprocal of the Fourier transform of C.

Defining η to be the Fourier dual of ν, the inverse kernel can be shown to take the

form of a logistic curve in η2:

C̃−1 =

[
1 + γ exp

(
−1

2
ν2
c η

2

)]−1

≈

[
1 + γ exp

(
−

ν2
c c

2k2
‖

2ν∗ν0H2
0 Ωm

)]−1

, (6.48)

where ν0 = 1420 MHz is the rest frequency of the 21 cm line, and Ωm, H0, and c have

their usual meanings. This kernel is plotted in Figures 6-10 and 6-11. In Figure 6-10,

we keep the foreground coherence length νc fixed at 0.5 MHz (chosen to calibrate our

toy model against the results of Section 6.4) and vary the foreground-to-noise ratio γ

from 0 to 105, whereas in Figure 6-11 we keep γ fixed at 105 (typical of first-generation

21 cm tomography experiments with 1000 hrs of integration time) and vary νc. In both

instances the fiducial experimental cases are plotted using solid black curves.

From the plots, ones sees that the action of the foreground cleaning kernel C̃−1 is to

suppress low-k‖ modes in the final power spectrum estimate. Foreground subtraction

19This is of course not strictly correct, but suffices for the illustrative purposes of this toy model,
especially given the narrow frequency ranges required for power spectrum estimation in 21 cm to-
mography.

20Strictly speaking, this is only true if the kernels are integrated from −∞ to∞, which is somewhat
unphysical since ν > 0 and moreover must be within the frequency range of one’s instrument.
However, since the foreground kernel decays quickly away from ν = ν′, we make this approximation
for the purposes of our toy model
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Figure 6-10: A plot of the foreground cleaning kernel C̃−1 (Equation 6.48) for different
values of the foreground-to-noise ratio γ, set at γ = 0 for the purple/dotted curve,
at γ = 1 for the blue/dashed curve, at γ = 100 for the red/dot-dashed curve, and
at γ = 105 for the black/solid curve. In all cases, the foreground coherence length
νc = 0.5 MHz. The black/solid curve is intended to be representative of a first-
generation 21 cm tomography experiment.
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Figure 6-11: A plot of the foreground cleaning kernel C̃−1 (Equation 6.48) for different
values of the foreground coherence length νc, with νc = 0.1 MHz for the purple/dotted
curve, at νc = 0.3 MHz for the blue/dashed curve, at νc = 0.5 MHz for the black/solid
curve, and at νc = 1.0 MHz for the red/dot-dashed curve. In all cases the foreground-
to-noise ratio γ is fixed at 105. The black/solid curve is intended to be representative
of a first-generation 21 cm tomography experiment.
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in the inverse variance scheme thus amounts to applying a high-pass filter in the

frequency/line-of-sight direction. The highest k‖ modes are left untouched, whereas

the lowest k‖ modes are suppressed by a factor of 1 + γ. This can be seen in Figure

6-10, where there is no suppression when γ = 0. Physically, this is because with γ = 0

there are no foregrounds and one only needs to deal with instrumental noise. Since

noise contributions from different frequencies are uncorrelated, the effect of noise is

best mitigated through simple averaging and binning, which is accomplished by the

C,α piece of Equation 6.16 and not by the inverse variance weighting. The C̃−1 kernel

is thus flat when γ = 0. At high values of γ, the low-k‖ modes are essentially taken

out completely because those are precisely the modes that are heavily contaminated

by foregrounds. In intermediate regimes, there is partial suppression of the low-k‖

modes to mitigate the foregrounds, but a complete suppression is unnecessary because

the foregrounds are relatively low in amplitude; thus, useful cosmological information

may still be extracted from these modes.

To understand the dependence of C̃−1 on the coherence length νc, it is useful to

define a cutoff scale kcut‖ . We define this scale to be the scale at which the k‖ modes

are “half-suppressed”, with a weighting that is the arithmetic mean of (1 + γ)−1 (the

weighting at k‖ = 0) and 1 (the weighting at k‖ =∞). A little bit of algebra reveals

that

kcut‖ =

(
c

H0

)−1(
ν∗ν0

ν2
c

) 1
2

Ω1/2
m

√
2 ln(2 + γ). (6.49)

For k‖ � kcut‖ , the modes are severely contaminated by foregrounds and are largely

thrown out, whereas for k‖ � kcut‖ the foregrounds are minimal and essentially no

cleaning is required. Equation 6.49 and Figure 6-10 show that as foregrounds become

increasingly important (i.e. as γ grows), kcut‖ increases. This is because with higher

foregrounds, one is forced to clean to higher k‖ modes before estimating the power

spectrum. Encouragingly, however, kcut‖ depends only logarithmically on γ, which

means that as the foregrounds become increasingly important, only a few more modes

need to be thrown out. For instance, as the foreground-to-noise ratio γ goes from 1

to 105, kcut‖ increases by only a factor of ∼ 3. In Figure 6-11 and Equation 6.49 we

see that as νc increases, kcut‖ decreases. Physically, this is because a high νc implies

foregrounds that are very spectrally coherent, which allows the foreground cleaning

to be confined to a handful of large scale (small k‖) modes.

As noted in Section 6.2, subtracting foregrounds using the inverse variance method

is a two-step process. The first step is a linear one that acts on the data itself, and we

have seen in this section that this first step can be roughly understood as a high-pass
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filter in the frequency direction. The second step involves foreground mitigation in

the power spectrum itself and amounts to the subtraction of the residual noise and

foreground bias term bα = tr[C,αC
−1]. This term can be approximated in our toy

model by replacing the discrete trace by a continuous integral:

bα = tr[C,αC
−1] =

∑
i,j

(C,α)ijC
−1
ji

≈
∫
C,α(νi, νj)C

−1(νj, νi)dνidνj

∝
∫
eiηα(νi−νj)C−1(νj, νi)dνidνj = C̃−1(ηα), (6.50)

where we used the fact that in one dimension, C,α(νi, νj) ∝ eiηα(νi−νj). With the final

integral being precisely the Fourier transform of C−1, we see that the bias term that

needs to be subtracted off is proportional to the C̃−1 function given by Equation

6.48. Intuitively, this can be thought of as a subtraction of the statistically expected

foreground residuals in k‖-space. From the form of Equation 6.48, we can see that

at low k‖ — where the linear foreground subtraction step acts more aggressively —

the residuals are expected to be small, and the extra foregrounds that need to be

removed in k‖-space are small.

Using similar manipulations, one can see that the bias term acts in a similar way

for the LOS polynomial subtraction. From Equation 6.22 we have bα = tr[C,αDCD]

for the LOS subtraction, where recall that D was the projection matrix responsible

for projecting out the lowest order polynomials in the frequency direction (which

hopefully contain most of the foregrounds). Comparing this to Equation 6.50 tells us

that one simply needs to substitute C−1 for DCD. This combination can be rewritten

as

DCD = 〈D(x−m)(x−m)tDt〉, (6.51)

which is the covariance of the residual foregrounds after LOS subtraction. Concep-

tually, then, the residual bias term works in the same way as it did in the inverse

variance subtraction — one is simply subtracting off the statistically expected fore-

ground residuals in power spectrum space.

Finally, we can make a similar estimate of the Fisher information for the inverse
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variance method. Starting from Equation 6.13, we have

Fαβ =
1

2
tr
[
C,αC

−1C,βC
−1
]

≈ 1

2

∫
C,α(νi, νj)C

−1(νj, νk)×

C,β(νk, νm)C−1(νm, νi)dνidνjdνkdνm

∝

∣∣∣∣∣
∫
e−iηανjC−1(νj, νk)e

iηβνkdνjdνk

∣∣∣∣∣
2

∝
∣∣∣C̃−1(ηα)

∣∣∣2 ∝ δαβ[
1 + γ exp

(
−1

2
ν2
c ηα
)]2

≈ δαβ

[
1 + γ exp

(
−

ν2
c c

2k2
‖

2ν∗ν0H2
0 Ωm

)]−2

, (6.52)

which looks exactly like the curves plotted in Figure 6-10, but squared. This shows

that the Fisher information content is much higher at high values of k‖ than at low

values of k‖. In other words, after foreground subtraction removes power from large

scales (small k‖) there is little information left there and the error bars are large. This

is in accordance with the middle panel of Figure 6-8, where the expected errors are

seen to decrease as one moves away from the lowest k‖ values. Note, however, that

the finite spectral resolution effects that we saw in the high k‖ regions of Figure 6-8

are not captured by Equation 6.52. This is to be expected, since here we have a toy

model whose covariance is a continuous function of frequency.

The results of this section suggest that the inverse variance foreground subtraction

can be qualitatively thought of as a scheme where the data are high-pass filtered in

the frequency direction. This can be done by applying a multiplicative filter in k‖

space, an example of which is given by Equation 6.48. In fact, such line-of-sight

filtering can be considered a computationally cheap approximation to the full inverse

variance method, requiring just a simple multiplication instead of the inversion of an

npix×npix covariance matrix. The results should be almost as good, since we saw from

the bottom panel of Figure 6-2 that even in the full method, the algorithm “chooses”

to perform foreground subtraction almost exclusively in the line-of-sight direction.

Filtering in the line-of-sight direction is an approach that is extremely similar to

one that was proposed in Petrovic & Oh (2011). There, the authors suggest cleaning

foregrounds by excluding all modes with k‖ < kcrit‖ , where kcrit‖ is some critical line-

of-sight mode below which foregrounds are expected to dominate. This corresponds

to applying a step-function filter, and in Petrovic & Oh (2011) it was found that
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this dramatically reduces systematic biases in the spherically averaged 3D power

spectrum. However, the authors also caution that some foregrounds may have some

small (but nonzero) high k‖ component that will not be alleviated by a sharp filter.

This problem is solved by instead using the filter C̃−1(k‖) given in Equation 6.48.

From Figures 6-10 and 6-11 one sees that the filter is qualitatively similar to a step

function, but the fact that the filter is itself dictated by a foreground model allows it

to enact slight suppressions of foregrounds even at high k‖ modes.

6.6 Discussion and Conclusions

In this chapter, we have presented a unified matrix-based formalism for 21 cm fore-

ground removal and power spectrum estimation. Using this framework, we compared

existing line-of-sight (LOS) polynomial foreground subtraction schemes with a pro-

posed inverse variance method, quantifying their errors and showing how to eliminate

their biases. We now review our basic results, and follow with a discussion of their

general applicability before summarizing our conclusions.

6.6.1 Basic Results

Through the numerical case study performed in Section 6.4, we have established a

number of qualitative results:

1. LOS polynomial foreground subtraction is non-optimal, and gives rise to larger

error bars in final power spectrum than inverse-variance subtraction does. This

is mostly due to the fact that the LOS method projects out low-order polynomial

modes, destroying information. The inverse variance method, on the other hand,

preserves all modes, even if it does downweights some of them substantially. As

a result, the error bars on the final power spectrum are larger for the LOS

method (bottom panel of Figure 6-8) than for the inverse variance method

(middle panel of Figure 6-8).

2. Traditional LOS polynomial subtraction methods contain residual noise and

foreground biases in estimates of the power spectrum. Fortunately, this bias

can be easily quantified and removed using Equation 6.6.

3. In the low k‖ regions of the k⊥-k‖ plane, the LOS polynomial foreground clean-

ing gives rise to power spectrum estimates that are highly correlated between

neighboring k‖ bins, or equivalently, to window functions that are elongated
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in the k‖ direction. The LOS polynomial subtraction has no effect on the k⊥

direction and exhibits the same qualitative behavior regardless of the value of

k⊥ since it does not use angular foreground information in its cleaning.

4. The behavior of the inverse variance window functions, on the other hand,

depends strongly on the value of k⊥:

(a) In regions where neither k⊥ nor k‖ is small, the post-inverse variance sub-

traction power spectrum estimates are no more correlated than what would

be expected from the finiteness of the survey geometry alone. In other

words, the inverse variance window functions in this region are unchanged

by the presence of foregrounds. This is due to the fact that foreground

contamination was mild to begin with, resulting in a less aggressive fore-

ground subtraction by the inverse variance weighting in order to keep power

spectrum estimates as uncorrelated as possible.

(b) In regions where both k⊥ and k‖ are small, the inverse variance window

functions widen in both directions, but the effect in the k⊥ direction is

minimal. This indicates that inverse variance subtraction operates mainly

in the radial direction, even though this is not an a priori mathematical

constraint. Put another way, the nature of the foregrounds and the avail-

ability of high spectral resolution instruments makes it much more fruitful

to leverage frequency information (rather than angular information) in

performing foreground subtraction. This confirms intuitive expectations

in the existing literature.

(c) The inverse variance window functions show less k‖ widening than the LOS

polynomial window functions do, regardless of the location on the k⊥-k‖

plane. This suggests that with the inverse variance scheme, one should

be able to push to lower values of k‖ before correlations between neigh-

boring k‖-bins make the resulting power spectrum estimates scientifically

unusable.

In summary, the inverse-variance method that we have presented has several advan-

tages over the LOS polynomial subtraction methods proposed in the literature: they

produce power spectrum measurements with smaller and less correlated error bars as

well as narrower window functions.
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6.6.2 Applicability of Results to general arrays

While the results presented in Section 6.4 were computed for a set of specific MWA-like

array parameters and a specific foreground model, we emphasize that the formalism

presented in Section 6.2 is completely general and can be applied to any 21 cm tomog-

raphy experiment and any foreground model. In addition, as we will now argue, our

qualitative conclusions from the last subsection should in fact hold quite generally.

Consider first an experiment’s location, antenna layout, integration time, rotation

synthesis, and thermal noise level. These factors may initially seem to form a high-

dimensional parameter space that needs to be thoroughly explored, but from Section

6.2 we know that the only place where they enter our mathematical framework is

Equation 6.36, which determined our noise covariance matrix N. Their effects are

thus degenerate with each other, and we saw in Section 6.5 that the resulting differ-

ences in the power spectrum estimation can be captured by a single parameter: the

foreground-to-noise ratio γ.

Changing the frequency range of one’s data cube has several effects, one of which

is to alter the instrumental noise of the array, depending on the chosen frequency

binning of the data. This, too, is captured by the foreground-to-noise parameter.

More subtly, an increased frequency range changes the polynomial fit in the LOS

scheme and affects foreground subtraction. While this can result in large changes to

the final power spectrum, it was shown in Liu et al. (2009b) that for LOS subtraction

to be effective in the first place, one must perform the fits only over narrow frequency

ranges anyway. Moreover, as we have discussed above, cosmological evolution also

imposes a constraint on the frequency range of any one data cube (one may of course

separately analyze as many data cubes as necessary to cover the full data set). Thus,

the small frequency range used in Section 6.4 is a good range to use, regardless of the

full bandwidth of one’s instrument. For the inverse variance method, our conclusions

are even more general than for the LOS method. As we saw in the previous section,

inverse variance subtraction can be thought of as a multiplicative filter in k‖ space,

and increasing the frequency range simply increases the resolution in k‖-space without

affecting the overall shape of the filter.

Another tunable parameter in our analysis is the flux cut Scut above which the

bright point sources can be considered identifiable and removable in an earlier stage

of data analysis. In principle, varying Scut can affect the results in a complicated way,

but from Liu et al. (2009b), we know that the amplitude of foregrounds essentially

scales with Scut, since the foregrounds are dominated by the brightest sources in a

population. Therefore, Scut is simply yet another parameter that can be folded into
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the foreground-to-noise ratio γ.

6.6.3 Future challenges

In this chapter, we have shown that inverse variance foreground subtraction is able

to clean foregrounds more effectively than traditional LOS methods can, resulting in

power spectrum estimates with smaller error bars. Perhaps the only disadvantage of

the inverse variance method is its computational cost, since it requires the inversion

of an npix×npix matrix, where npix ∼ n2
⊥n‖ is the total number of pixels in one’s data

cube. An LOS polynomial algorithm, on the other hand, only requires the inversion

of an n‖×n‖ matrix. Since matrix inversion naively scales as O(n3), the difference is

substantial.

Fortunately, by making a number of reasonable approximations one can speed up

the method considerably. As long as the fields of view are relatively narrow, a series of

basis changes and matrix prewhitening techniques allow the relevant computations to

be performed using algorithms that scale as O(npix log npix), and such algorithms are

now being tested numerically for 21 cm tomography (Dillon et al., 2012). Moreover,

since the inverse variance method operates mostly in the radial direction, one can

define an “effective” LOS algorithm that closely mimics the behavior of the full inverse

variance subtraction. This was demonstrated in Section 6.5, where we developed an

example of such an algorithm and saw that the inverse variance scheme can be thought

of as a high-pass filter in the frequency direction, with the detailed properties of the

filter dependent on noise and foreground characteristics.

To further improve the quality of foreground subtraction, it will be necessary

to construct better foreground models. This is because inverse variance foreground

cleaning is not blind, but instead depends on our empirical knowledge of foreground

properties. It is important to note, however, that this is an advantage and not a

disadvantage of the inverse variance method — whereas the traditional LOS methods

(being blind) will not improve with better knowledge of the foregrounds, the inverse

variance method is virtually guaranteed to get better as 21 cm tomography experi-

ments begin to take science-quality data that are able to put tight constraints on our

foreground models. Combining the inverse variance method with the improved mea-

surements to be expected from the low frequency radio astronomy community should

therefore bring us closer to fulfilling the potential of 21 cm tomography to improve

our understanding of the Epoch of Reionization, the Dark Ages, and fundamental

physics.
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Chapter 7

Optimizing global 21 cm signal

measurements with spectral and

spatial information

7.1 Introduction

In previous chapters, we explored various techniques for extracting tomographic

statistics (such as the power spectrum) from noisy measurements of the highly-

redshifted 21 cm line. These tomographic statistics use data from fully three di-

mensional (angular plus spectral) maps and thus contain a wealth of information

about our Universe, as we discussed in Chapter 1. However, this information comes

at a high cost, requiring instruments that are expensive not only from a hardware

perspective, but also from the standpoint of computational resources.

It is for this reason that in recent years there has been growing interest in a

cheaper form of hydrogen cosmology, consisting of measuring the global 21 cm signal.

The global signal is “global” in the sense that one is seeking to measure the 21 cm

brightness temperature as a function of frequency (or redshift) after having spatially

averaged over the entire sky. As we shall see in the next section, the global signal con-

tains key observational signatures that can be used to constrain reionization. While

global signal measurements are in principle not as informative as tomographic experi-

ments are expected to be, they have the advantage that they are cheaper experiments

to build. Without the need for spatial information, global signal experiments have

typically been built (or envisioned) as single element instruments with no need for

hardware correlators. In addition, while tomographic measurements contain cosmo-
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logical information at fine frequency resolution, the global signal is theoretically ex-

pected to vary much more smoothly with redshift. As a result, larger bandwidths can

be averaged into single frequency bins, giving higher signal-to-noise measurements.

Global signal experiments thus have the potential to be quicker, cheaper alternatives

for EoR science, and as we noted in Chapter 1, the EDGES experiment has already

begun to report scientific results (Bowman et al., 2008; Bowman & Rogers, 2010).

In this chapter, we pose the following question—what is the statistically optimal

way to measure the global 21 cm signal, both in terms of experimental design and

data analysis? To answer this question, we will construct a systematic framework for

quantifying error properties, essentially doing for global signal measurements what

we did for power spectrum estimation in Chapter 6. Our framework includes the

effect of foregrounds, foreground subtraction, and instrumental noise in a statistically

consistent fashion.

The rest of this chapter is organized as follows. In Section 7.2 we construct models

for both the cosmological signal as well as for the foregrounds and instrumental noise.

In Section 7.3 we establish the formalism for extracting the cosmological signal amidst

foregrounds and instrumental noise. Our formalism comes in two flavors, one adapted

for experiments that have no angular sensitivity (thus automatically integrating over

large portions of the sky), and one adapted for experiments with angular sensitivity

(thus requiring a “manual” spatial averaging step in the data analysis pipeline). In

Sections 7.4 and 7.5 we compute the measurement errors predicted by our formal-

ism, and find that instruments with fine angular sensitivity will be able to mitigate

foregrounds more easily, yielding better measurements of the cosmological signal. We

summarize our conclusions in Section 7.6.

7.2 The global spectrum and what we’re trying to

measure

In this section we describe the global spectrum. We begin in Section 7.2.1 with a

fiducial model for the cosmological signal. For the purposes of this thesis, we will

consider the cosmological signal—what we want to measure—to be fixed. In Section

7.2.2 we construct models for various contaminants in the data, such as foregrounds

and instrumental noise. In Section 7.3 we discuss the challenge that one faces when

trying to extract the faint cosmological signal from the data.
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7.2.1 Model of the signal

In Chapter 1, we saw that the brightness temperature Tb of redshifted 21 cm line is

given by

Tb(r̂, ν) = (27 mK)x̄H

(
Ts − Tγ
Ts

)(
1 + z

10

)1/2

(1+δb)(1+δx)

[
∂vr/∂r

(1 + z)H(z)

]−1

, (7.1)

where r̂ is a unit vector specifying a direction in the sky, ν is the measured frequency,

x̄H is the mean neutral hydrogen fraction, Ts is the spin temperature, Tγ is the CMB

temperature, z is the redshift, H(z) is the Hubble parameter, vr is the velocity along

the radial (line-of-sight) direction r, δb is the fractional baryon overdensity, and δx

is the neutral fraction overdensity (Furlanetto et al., 2006). Since Ts, δb, and δx are

spatially dependent quantities, the overall brightness temperature is a function of both

frequency and angle on the sky. Tomographic measurements seek to measure this full

three-dimensional dependence. In a global signal measurement, on the other hand,

one seeks to measure the spatially averaged isotropic component of the signal, given

by T̄b(ν) ≡ 1
4π

∫
Tb(r̂, ν)dΩ. Any anisotropies should therefore be formally thought of

as a form of noise in our measurement (see Section 7.2.2).

In our calculations, we take the model of Pritchard & Loeb (2010) to be our

fiducial model for the global cosmological signal. The model consists of the following

ingredients:

• A spin temperature that is determined by couplings with:

– The CMB temperature, via direct 21 cm photon absorption or emission.

– The kinetic/gas temperature of hydrogen clouds, via collisional excitations

and de-excitations of the hyperfine transition, as well as the Wouthysen-

Field effect (Wouthuysen, 1952). The Wouthysen-Field effect couples the

kinetic temperature to the spin temperature via Lyman alpha photons

because a Ly-α photon can excite a neutral hydrogen atom from an n = 1

state to an n = 2 state, only to have the subsequent spontaneous emission

be to a different hyperfine state than the one the atom was originally in.

– The CMB temperature via the kinetic temperature as an intermediary. At

high redshifts, CMB photons can Compton-scatter off free electrons that

are left over from recombination. The free electrons can then collide with

hydrogen gas, coupling the gas temperature to the CMB temperature.

• Further couplings from astrophysical sources:
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Figure 7-1: The theoretically expected global 21 cm signal.

– The first luminous sources provide a large number of Ly-α photons that af-

fect the spin temperature via the Wouthysen-Field effect mentioned above.

Ly-α photons may also heat the IGM, altering the gas temperature. As

more and more luminous sources turn on, the Ly-α flux will of course also

slowly reduce the mean neutral fraction x̄H to zero.

– Early active galactic nuclei (AGN) provide X-ray photons which have a

strong heating effect on the IGM in late reionization.

Putting all these ingredients together and integrating the relevant rate equations

numerically gives the global signal shown in Figure 7-1.

Taken as a whole, the global spectrum succinctly describes much of the important

astrophysics that governs reionization. At high redshifts (low frequencies), the 21 cm

brightness temperature is zero because it is proportional to the spin temperature’s

contrast against the CMB. As discussed above, the Compton scattering of residual

electrons off CMB photons has the effect of driving the spin temperature into equi-

librium with the CMB temperature, so the temperature contrast and consequently

the brightness temperature are zero. Eventually this coupling becomes negligible,

and the spin temperature equilibrates with the gas temperature instead, which by

now is cooler than the CMB, since Tgas ∝ a−2 while TCMB ∝ a−1, where a is the

scale factor. This causes the absorption trough at ∼ 10 MHz. As the gas further

dilutes, collisional excitations and de-excitations of the hyperfine transition become

rare, and the dominant coupling is that of direct absorption and emission of 21 cm
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CMB photons, which drives the temperature contrast and Tb towards zero again.

As the first luminous sources turn on and provide Ly-α photons, the aforemen-

tioned Wouthysen-Field effect once again drives the spin temperature to the gas

temperature, producing the second, deeper absorption trough at ∼ 70 MHz. As

reionization proceeds, the first X-ray sources reheat the IGM, causing the gas tem-

perature and spin temperature to exceed the CMB temperature. The 21 cm signal

thus appears in emission, until reionization rids our Universe of most of its neutral

hydrogen content, and the signal vanishes.

Given the large number of physical processes at play during reionization, it is

perhaps unsurprising that the quantitative details of Figure 7-1 depend sensitively on

a large number of astrophysical parameters. This can be turned around, of course,

and a good measurement of the cosmological signal can be used to constrain these

parameters. For instance, the second absorption trough “starts” when there are

sufficient Ly-α photons for the Wouthysen-Field effect to be important and “ends”

when X-ray heating becomes substantial. Its depth and shape therefore allow one to

place constraints on the Ly-α and X-ray emissivities from the first luminous objects.

This second trough is thought to be particularly promising from an observational

standpoint, given its large amplitude. As a result, we focus on a 30 to 70 MHz

window for the rest of this chapter.

7.2.2 Generalized foreground and noise model.

We now construct our noise model. We define the noise to be any contribution to the

measurement that is not the global 21 cm signal as described in the previous section.

Our noise thus contains more than just instrumental noise and foregrounds, and in

fact contains a contribution from the anisotropic portion of the cosmological signal.

In other words, the “signal” in a tomographic measurement (where one measures

anisotropic fluctuations on various length scales) is an unwanted contaminant in our

case, since we seek to measure the global signal (i.e. the monopole). Thus, if we

imagine performing an experiment that images Npix pixels on the sky over Nfreq

frequency channels, the noise contribution in various pixels at various frequencies can

be grouped into a vector n of lengthNpixNfreq that is comprised of three contaminants:

nαi ≡ nfgαi + ninstαi + nsαi, (7.2)

where nfg, ninst, and ns signify the foregrounds, instrumental noise, and anisotropic

cosmological signal, respectively. Throughout this paper, we use Greek indices to sig-
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nify the radial/frequency direction, and Latin indices to signify the spatial directions.

Note that n is formally a quantity with a single index (i.e. a vector) even though we

assign separate spatial and spectral indices to it for clarity. In the following subsec-

tions we discuss each contribution to the noise, with an eye towards how each can be

mitigated or removed in a real measurement.

Foreground Model

Given that foregrounds are likely to be the largest contaminant in a measurement

of the global signal, it is important to have a foreground model that is an accurate

reflection of the actual contamination faced by an experiment, as a function of both

position and frequency. Having such a model that describes the particular realization

of foregrounds contaminating a certain measurement is crucial for optimizing the

foreground removal process, as we shall see in Section 7.3. However, constructing such

a model is difficult to do from first principles, and is much more difficult than what

is typically done, which is to capture only the statistical behavior of the foregrounds

(e.g. by measuring quantities such as the spatial average of a spectral index). It is

thus likely that a full foreground model will have to be based at least partially on

empirical data.

Constructing an empirically-based foreground model would be trivial if one simply

had high angular resolution, full-sky survey data at the relevant frequencies — the

model would simply be the survey itself. Unfortunately, full-sky measurements are

currently lacking in the low frequency regime of interest to global signal experiments.

Foreground models must therefore be constructed via interpolations and extrapola-

tions from measurements that are incomplete both spatially and spectrally. One such

effort is the Global Sky Model (GSM) of de Oliveira-Costa et al. (2008). In that study,

the authors obtained foreground survey data at 11 different frequencies and formed

a dimensionless frequency correlation matrix, given by

G̃αβ ≡
GGSM
αβ√

GGSM
αα GGSM

ββ

, (7.3)

where GGSM
αβ ≡ 1

N

∑N
i=1 gαigβi, with N being the number of pixels in a spectrally well-

sampled region of the sky, and gαi denoting the measured foregrounds in the ith of the

αth frequency channel. By decomposing G̃ into principal components, the authors

found that the spectral features of the foregrounds were dominated by the first three

principal components, which could be used as spectral templates for constructing
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empirically-based foreground models. The GSM approach was found to be accurate

to ∼ 10%.

Being relatively quick and accurate, the GSM has been used as a fiducial fore-

ground model in most studies of the global 21 cm signal to date. However, this may

be insufficient for two reasons. First, as mentioned above, the GSM approach pre-

dicts the magnitude of foregrounds by forming various linear combinations of three

principal component (i.e. eigenmode) templates. Thus, if the GSM is considered the

“true” foreground contribution in our models, it becomes formally possible to achieve

perfect foreground removal simply by projecting out three spectral modes from the

data, which is too optimistic an assumption. The other weakness of the GSM is that

it does not include bright point sources, which are expected to be quite numerous at

the sensitivities of most 21 cm experiments.

In this paper, we use the GSM as a starting point, but add our own extensions

to deal with the aforementioned shortcomings. The extensions come partly from

the phenomenological model of Liu & Tegmark (2012), which in our notation can be

summarized by writing down a matrix GLT that is analogous to GGSM defined above:

GLT ≡ Gps + Gsync + Gff , (7.4)

where Gps, Gsync, and Gff refer to foreground contributions from unresolved extra-

galactic point sources, Galactic synchrotron radiation, and Galactic free-free emission,

respectively. Each contribution takes the generic form

Gηβ = A2

(
νηνβ
ν2
∗

)−α+ ∆α2

2
ln

(
νανβ

ν2∗

)
, (7.5)

where A = 335.4 K, α = 2.8, and ∆α = 0.1 for the synchrotron contribution, A =

70.8 K, α = 2.5, and ∆α = 0.5 for the unresolved point source contribution, and

A = 33.5 K, α = 2.15, and ∆α = 0.01 for the free-free contribution. Our strategy is

to perform a principal component decomposition of this model, and to use its higher

order principal components to complement the three components provided by the

GSM, completing the basis. We check that this is a sensible strategy by forming

G̃ (Equation 7.3) for both the GSM and the phenomenological model. Each index

specifies one of 70 frequency channels, each with bandwidth 1 MHz spanning the

30 MHz to 100 MHz frequency range (relevant to early reionization observations). We

then compute the eigenvalue spectrum of both models, and the result is shown in

Figure 7-2. The GSM, built from three principal components, contains just three
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Figure 7-2: Comparison with the global sky model (de Oliveira-Costa et al., 2008).
Our eigenvalues are in red, while those of the GSM are in blue.

eigenvalues. The first three eigenvalues of the phenomenological model agree with

these values quite well, with the phenomenological model slightly more conservative.

It is thus reasonable to use the higher eigenmodes of the phenomenological model to

“complete” the foreground model spectrally. From Chapter 3 we expect this to be

necessary because there are more than three eigenvalues above the thermal noise limit.

Spatially, we form an angular model by averaging the GSM maps over frequency, and

give all of the higher eigenmodes this angular dependence. While in general we

expect the spatial structure to be different from eigenmode to eigenmode, our simple

assumption is a conservative one, since any additional variations in spatial structure

provide extra information which can be used to aid foreground subtraction.

Next, we add bright point sources to our model. The brightness of these sources

are distributed according to the source count function

dn

dS
= (4 sources mJy−1 sr−1)

(
S

880 mJy

)−1.75

, (7.6)

and we give each source a spectrum of

S(ν) = S0

( ν

150 MHz

)−α
, (7.7)

where the S0 is the brightness drawn from the source count function, and α is the

spectral index, drawn from a Gaussian distribution with mean 0.5 and a standard

218



deviation of 0.25 (Liu et al., 2009b). Spatially, we distribute the bright point sources

randomly across the sky. This is in principle an unrealistic assumption, since point

sources are known to be clustered. However, a uniform distribution suffices for our

purposes because it is a conservative assumption — any spatial clustering would

constitute an additional foreground signature to aid with foreground removal.

Putting all these ingredients together, the result is a series of foreground maps

like that shown in Figure 7-3, one at every frequency. This collection of maps forms

the foreground model vector nfg of Equation 7.2. Now, while our foreground model

is based on empirical constraints, it will naturally have a finite level of accuracy. A

robust method for foreground subtraction thus needs to be able to account for possible

errors in the error model. To set the stage for this such a method, we define the mean

of our foreground model to be the “best guess” model described above, i.e.

mfg
αi ≡ 〈n

fg
αi 〉. (7.8)

The covariance of the foregrounds is defined as the error in our foreground model:

Nfg
αiβj ≡ 〈n

fg
αin

fg
βj〉 − 〈n

fg
αi 〉〈n

fg
βi 〉 = ε2mfg

αim
fg
βjRijQαβ, (7.9)

where we have assumed that the error in our foreground model is proportional to

the model mfg itself, with a proportionality constant ε between 0 and 1. In other

words, we assume that there is some constant percentage error in every pixel and

frequency of our foreground model. The matrices R and Q encode the spatial and

spectral correlations in our foreground model errors respectively, and are constructed

to have 1’s along their diagonals. If we imagine that our foreground model was based

on a foreground survey with some finite angular resolution, the matrix would roughly

consist of a near-diagonal band of ∼< 1’s and zeroes elsewhere, with the width of the

band corresponding to the width of the survey instrument’s beam. Note that this

width may or may not be the same as that of the instrument used for the actual

global signal measurement.

For computational convenience, we will often treat the spatial correlations in the

continuous limit. The matrix R is then chosen to correspond to a continuous kernel

R(r̂, r̂′) ≡ exp(σ−2r̂ · r̂′)
4πσ2 sinh(σ−2)

, (7.10)

which is known as a Fisher function, the analog of a Gaussian on a sphere. For the

spectral correlation matrix Q, we imagine that our foreground model was constructed
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Figure 7-3: Foreground template at 30MHz.

by fitting to the spectrum of every pixel a power law of the form t(ν) = A(ν/ν∗)
−α,

where A is a normalization constant that will later cancel out, ν∗ = 150 MHz is a

reference frequency, and α is a spectral index. This spectral index will have some

error associated with it, due in part to uncertainties in the foreground survey and in

part to the fact that foreground spectra are not perfect power laws. We model this

error as being Gaussian distributed, so that the probability distribution of spectral

indices is given by

p(α) =
1

2πσ2
α

exp

[
−1

2

(α− α0)2

σ2
α

]
, (7.11)

where α0 is a fiducial spectral index for typical foregrounds, which in this paper we

take to be 2.5. With this, the mean spectral fit to our foreground survey is

msurvey(ν) = A

∫ (
ν

ν∗

)−α
p(α)dα. (7.12)

Sampling this function at a discrete set of frequencies corresponding to the frequency

channels of our global signal experiment, we can form a mean vector msurvey. A

covariance matrix Csurvey of the power law fits is then given by

Csurvey ≡ 〈ttt〉 −msurveymsurvey, (7.13)

where t is a discretized version of t(ν), and

〈ttt〉βη = A2

∫ (
νβνη
ν2
∗

)−α
p(α)dα. (7.14)

Finally, we take the covariance Csurvey and insert it into the left hand side of Equation
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7.3 (just as we did with GGSM earlier) to form our spectral correlation matrix Q. Note

that the normalization constant A cancels out in the process, as we claimed.

Instrumental Noise

We consider the instrumental noise ninstiα in every pixel and every frequency channel to

be uncorrelated. Additionally, we make the assumption that there are no systematic

instrumental effects, so that 〈ninstiα 〉 = 0. What remains is the random contribution

to the noise. Assuming a sky-noise dominated instrument, the amplitude of this

contribution is given by the radiometer equation. In our notation, this gives rise to

covariance of the form

Ninst
αiβj = 〈ninstαi ninstβj 〉 =

mfg
αim

fg
βjδijδαβ

∆t∆ν
, (7.15)

where ∆t is the integration time per pixel and ∆ν is the channel width.

Cosmological Anisotropy Noise

In measuring the global signal, we are measuring the monopole contribution to the

sky. As mentioned above, any anisotropic contribution to the cosmological power

is therefore a noise contribution as far as a global signal experiment is concerned.

By construction, these non-monopole contributions have a zero mean after spatially

averaging over the sky, and thus do not result in a systematic bias to a measurement

of the global signal. They do, however, have a non-zero variance, and therefore

contribute to the error bars.

Despite its a priori existence, we can safely ignore cosmological anisotropy noise

because it is negligible. Through a combination of analytic theory (Lewis & Challinor,

2007) and simulation analysis (Bittner & Loeb, 2011), the cosmological anisotropies

have been shown to be negligible on scales larger than ∼ 1◦ to 2◦, which is a regime

that we remain in for this chapter.

Generalized noise model summary

In the subsections above, we have outlined the various contributions to the generalized

noise that plagues any measurement of the global signal. Of these contributions, only

foregrounds have a non-zero mean, so the mean of our generalized noise model is just

that of the foregrounds:

mαi ≡ 〈n〉 = mfg
αi . (7.16)
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Foregrounds therefore have a special status amongst the different components of our

generalized model, for they are the only contribution with the potential to cause a sys-

tematic bias in our global signal measurement. The other contributions appear only

in the total noise covariance, taken to be the sum of the foreground and instrumental

noise covariances:

Nαiβj ≡ Nfg
αiβj + Ninst

αiβj, (7.17)

where as noted above, we are neglecting the cosmological anisotropy noise.

In the foreground subtraction/data analysis scheme that we describe in Section

7.3, we will think of the mean m as a foreground template that is used to perform a

first subtraction. However, there will inevitably be errors in our templates, and thus

our scheme also takes into account the covariance N of our model. In our formalism,

the mean term therefore represents our best guess as to what the foreground con-

tamination is, and the covariance quantifies the uncertainty in our guess. We note

that this is quite different from many previous approaches in the literature, where

either the foreground modeling error is ignored, or the mean is taken to be zero and

the covariance is formed by taking the ensemble average of the outer product of the

foreground template error. The former approach is clearly unrealistic, while the lat-

ter approach has a number of shortcomings. For example, it is difficult to compute

the necessary ensemble average, since foregrounds are difficult to model from first

principles, and empirically the only sample that we have for taking this average is

our Galaxy. As a solution to this, ensemble averages are often replaced by spatial

(i.e. angular) averages. But this is unsatisfactory for our purposes, since in Section

7.3.3 we will be using the angular structure of foregrounds to aid with foreground

subtraction, and this is impossible if the information has already been averaged out.

Even if an ensemble average could somehow be taken (perhaps by running a large

suite of radiative transfer foreground simulations), a foreground subtraction scheme

that involved minimizing the resulting variance would be non-optimal for two rea-

sons. First, in such a scheme one would be guarding against foreground power from a

“typical” galaxy, which is irrelevant — all that matters to an experiment are the fore-

grounds that are seen in our Galaxy, even if it is atypical. In addition, foregrounds are

not Gaussian distributed, and thus a minimization of the variance is not necessarily

optimal.

Our approach — taking the mean to be an empirical foreground template and

the covariance to be the errors in this template — solves these problems. Since

the covariance arises from measurement errors (which can usually be modeled to

an adequate accuracy), taking the ensemble average is no longer a problem. And
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Figure 7-4: Angularly averaged foregrounds

with the mean term being a template for the foregrounds as seen by our experiment,

our foreground model is tailored to our Galaxy, even if our Galaxy happens to be

atypical. Finally, while the foregrounds themselves are certainly not Gaussian, it is a

much better approximation to say that the uncertainties in our model are Gaussian,

at least if the uncertainties are relatively small. Constructing our foreground model

in this way thus allows us to take advantage of the optimal data analysis techniques

that we introduce in Section 7.3.

7.2.3 Why it’s hard

Before we proceed to describe how the global 21 cm signal can be optimally extracted,

we pause to describe the challenges ahead. As an initial “straightforward” approach,

one can imagine measuring the global 21 cm signal by taking a simple spatial average

of a measured sky. The corresponding foreground contamination would be obtained

by spatially averaging our model, which yields the spectrum shown in Figure 7-

4. A quick comparison between the scales on Figure 7-1 (showing the theoretical

signal), and the foreground spectrum underscores the magnitude of the problem. In

addition, both the foreground contamination and the theoretical signal are smooth as

a function of frequency, making it difficult to use proposed techniques for foreground

subtraction in tomographic maps, where the cosmological signal is assumed to vary

much more rapidly as a function of frequency than the foregrounds. It is therefore

crucial that optimal foreground cleaning methods are employed in the analysis, and

in the following section we derive such methods.
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7.3 How to measure the global signal

In this section, we provide a general mathematical framework for estimating the global

signal from data. Section 7.3.1 establishes general notation. Section 7.3.2 considers

data analysis algorithms that use only spectral information, and we argue that such

methods are unable to robustly deal with errors in one’s foreground models. The

method presented in Section 7.3.3, on the other hand, guards against such errors

by making use of spatial information as well as spectral information, making it our

preferred method for the rest of the paper.

7.3.1 The general mathematical framework

We begin with our measurement equation, which is given by

y = Axs + n, (7.18)

where y is a vector of length Nvox ≡ NpixNfreq containing the measurement, n is

the generalized noise contribution of Section 7.2.2, xs is a vector of length Nfreq

containing the global signal that we wish to measure, and A is a vertical stack of Npix

identity matrices of size Nfreq ×Nfreq. The effect of multiplying the global signal by

A is to copy the theoretical spectrum to every pixel on the sky before the noise and

foregrounds are added. The term Axs therefore represents a data ball1 that contains

ideal (noiseless and foregroundless) data that depends only on the radial distance

from the center, and not on the direction. To every voxel of this data volume the

combined noise and foreground contribution n is added, giving the set of measured

voxel temperatures that comprise y.

Having obtained y from our experiment, we wish to construct an estimator for

xs. As a general form for the estimator x̂s, we write

x̂s = MAtH(y − b), (7.19)

where b is a vector of length Nvox, H is a matrix of size NpixNfreq × NpixNfreq,

and M is a matrix of size Nfreq × Nfreq. Intuitively, we can understand the various

components of this estimator as follows. The subtraction of b is a direct subtraction

of a predetermined signal (for instance, a foreground model) from the data. The

multiplication by H is an operation that potentially mixes voxels, and thus represents

1Or perhaps a “data shell”, since there is a lower limit to the redshift of the experiment.
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a data analysis/foreground cleaning operation that takes into account both angular

and spectral information. The summing together of spatial pixels into a spectrum is

done by applying At, and M is a final data analysis/foreground cleaning step that

uses spectral information only.

In the sections that follow, we will examine various algorithms that are defined

by different choices for M, H, and b. We will find that beyond simply subtracting

off one’s best guess for the foreground contamination, it is formally impossible to

mitigate the effects of foregrounds using only spectral information, which is the only

information available to instruments that integrate over a large portion of the sky and

lose all spatial information. While such a method does remove foreground bias, it does

not remove foreground covariance. In other words, foregrounds are removed according

to the model, but nothing is done to immunize oneself against errors in the model.

We will find that the situation is quite different for experiments that take advantage

of even just modest angular resolution. The errors in the foreground models can be in

some sense averaged down, making it possible to suppress foregrounds to a sufficient

level for a statistically significant detection of the global 21 cm signal.

7.3.2 Methods using only spectral information

We begin with methods that seek to distinguish foregrounds from cosmological signal

using spectral information only. In other words, these methods attempt to extract the

signal using only the spectral information contained in plots such as those in Figures

7-4 and 7-1, and not any spatial information. These methods therefore have H = I,

and we can define z ≡ 1
Npix

Aty to be the globally averaged measurement. In this

notation, our measurement equation becomes

z = xs +
1

Npix

Atn = xs + c, (7.20)

where c ≡ 1
Npix

Atn is the angularly averaged noise and foreground contribution, with

mean 〈c〉 = 1
Npix

At〈n〉 = 1
Npix

Atm (where in the last step we used the definition in

Equation 7.16) and covariance C ≡ 〈cct〉 − 〈c〉〈ct〉 = 1
N2
pix

AtNA. Correspondingly,

our estimator x̂s simplifies to:

x̂s = Mz− 1

Npix

MAtb ≡Mz− d, (7.21)
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where we have made the definition d ≡ 1
Npix

MAtb. This is the general form of the

estimator that must be used when analyzing data from experiments with no angular

resolution, or if one deliberately chooses not use the angular information. We now

seek to minimize the variance of this estimator by selecting M and d appropriately.

Taking the ensemble average of our estimator and inserting Equation 7.20 gives

〈x̂s〉 = Mxs + M〈c〉 − d, (7.22)

which shows that in order for our estimator to avoid having a systematic additive

bias, one should select

d ≡M〈c〉. (7.23)

With this choice, we have 〈x̂s〉 = Mxs, and in what follows we will impose the

normalization constraint Mαα = 1. The variance of this estimator can be similarly

computed, yielding

Σ = 〈x̂sx̂ts〉 − 〈x̂s〉〈x̂ts〉 = MCMt. (7.24)

We can minimize this variance subject to the normalization constraint by using La-

grange multipliers, minimizing the function

(MCMt)αα − λαMαα (7.25)

with respect to the elements of M. Taking the necessary derivatives and solving for

the Lagrange multiplier λ that satisfies the normalization constraint, one obtains

Mαβ =
C−1
αβ

C−1
αα

. (7.26)

Inserting this into our general form for the estimator, we find

x̂αs =
1

C−1
αα

∑
β

C−1
αβ (z− 〈c〉)β . (7.27)

Intuitively, this prescription states that one should take the data, subtract off the

known foreground contamination, and then to inverse variance weight the result be-

fore re-weighting to form the final estimator. The inverse variance weighting performs

a statistical suppression/subtraction of instrumental noise and foreground contamina-

tion. Loosely speaking, this step corresponds to the subtraction of polynomial modes

in the spectra as implemented in Bowman & Rogers (2010). The final re-weighting

by C−1
αα rescales the modes so that the previous subtraction step does not cause the
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estimated modes to be biased high or low. For instance, if a certain mode is highly

contaminated by foregrounds, it will be strongly down-weighted by the inverse vari-

ance weighting, and thus give an artificially low estimate of the mode unless it is

scaled back up.

The corresponding error covariance for this estimator is given by

Σαβ =
C−1
αβ

C−1
ααC

−1
ββ

. (7.28)

It is instructive to compare this with the errors predicted by the Fisher matrix for-

malism. By the Cramer-Rao inequality, an estimator that is unwindowed (i.e. one

that has 〈x̂s〉 = xs) will have a covariance that is at least as large as the inverse of

the Fisher matrix. Computing the Fisher matrix thus allows one to estimate the best

possible errors bars that can be obtained from a measurement. In the approximation

that fluctuations about the mean are Gaussian, the Fisher matrix takes the form

Fαβ =
1

2
Tr
[
C−1C,αC

−1C,β

]
+ 〈z〉†,αC−1〈z〉,β, (7.29)

where commas denote derivatives with respect to the parameters that one wishes

to measure. In our case, the goal is to measure the global 21 cm spectrum, so the

parameters are the values of the spectrum at various frequencies. Put another way,

we can write our mean measurement equation as

〈z〉 =
∑
α

xαs eα + 〈c〉, (7.30)

where eα is a unit vector with 0’s everywhere except for a 1 at the αth frequency

channel. The derivative 〈z〉,α with respect to the αth parameter (i.e. the derivative

with respect to the mean measured spectrum xαs in the αth frequency channel) is

therefore simply equal to eα. Since the measurement covariance C does not depend

on the cosmological signal xs, our Fisher matrix reduces to

Fαβ = eαC
−1eβ, (7.31)

which shows that the Fisher matrix is simply the inverse covariance i.e. F = C−1.

This implies that the covariance of the optimal unwindowed method is equal to the

original noise and foreground covariance, which means that the error bars on the

estimated spectrum are no smaller than if no line-of-sight foreground subtraction
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were attempted beyond the initial removal of foreground bias (Equations 7.22 and

7.23). In our notation, an unwindowed estimator would be one with M = I (from

Equation 7.22 plus the requirement that the estimator be unbiased, i.e. Equation

7.23). But this means our optimal unwindowed estimator is

x̂s = z− 〈c〉, (7.32)

which says to subtract our foreground spectrum model but to do nothing more!

Intuitively, our optimizations yielded a “do nothing” algorithm because the global

signal that we seek to measure is itself a spectrum (with unique cosmological informa-

tion in every frequency channel), so a spectral-only measurement provides no redun-

dancy. With no redundancy, one can only subtract a best-guess foreground model,

and it is impossible to minimize statistical errors in the model itself.

The key, then, is to have multiple, redundant measurements that all containt

the same cosmological signal. This can be achieved by designing experiments with

angular information (i.e. ones that do not integrate over the entire sky automati-

cally). Because the global signal is formally a spatial monopole, measurements in

different pixels on the sky have identical cosmological contributions, but different

foreground contributions, allowing us to further distinguish between foregrounds and

cosmological signal. We now develop optimal algorithms for processing data from

such experiments.

7.3.3 Methods using both spectral and angular information

We now turn to data analysis methods for experiments with both angular and spectral

information. These experiments provide us with y rather than z ≡ 1
Npix

Aty, the

already-spatially-averaged signal. Such experiments give us the freedom of processing

the data in some way before the 1
Npix

At spatial averaging step. In the notation of

Equation 7.19, they provide us with the freedom of setting H to be something other

than I.

With this freedom, the problem of selecting M, H, and b to minimize the error

bars on the estimator x̂s becomes a solved problem (Tegmark, 1997b). The answer is

to pick H = N−1, b = n, and M = [AtN−1A]
−1

, so that

x̂s =
[
AtN−1A

]−1
AtN−1(y −m). (7.33)
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With an estimator of this form, the error covariance can be shown to be

Σ ≡ 〈x̂sx̂ts〉 − 〈x̂s〉〈x̂ts〉 =
[
AtN−1A

]−1
. (7.34)

Although these equations in principle encode all we need to know for data analysis,

it is necessary to manipulate them a little further. Doing so not only allows us to

build intuition for what the matrix algebra is doing, but also makes the algorithm

computationally feasible. In its current form, Equation 7.33 is too computationally

expensive to be practical because it involves the inversion of N, which is an Nvox×Nvox

matrix. Given that Nvox is likely to be large for a 21 cm with full spectral and angular

information, it would be wise to avoid direct matrix inversions2.

We thus seek to derive analytic results for Σ ≡ [AtN−1A]−1 and AtN−1, where

N is given by Equation 7.17. We begin by factoring out the foreground templates

from our noise covariance, so that N = DWD, where Dαiβj ≡ mαiδαβδij. This is

essentially a whitening procedure, making the noise term independent of frequency

or sky pixel. Since both Σ ≡ [AtN−1A]−1 and AtN−1 involve N−1, we proceed by

finding N−1 = D−1W−1D−1, and to do so we move into a diagonal basis. The matrix

D is already diagonal and easily invertible, so our first step is to perform a similarity

transformation in the frequency-frequency components of W in order to diagonalize

Q. In other words, we can write W as

Wαiβj = (VWVt)αiβj =
∑
ηλkm

Vαiηk

(
ε2ληRkm +

δkm
∆t∆ν

)
δηλVβjλm, (7.35)

where Vαiηk ≡ (vη)αδik, with vηα signifying the value of the αth component (fre-

quency) of the ηth eigenvector of Q. The ηth eigenvalue as given by λη. Note also

that V−1 = Vt.

Our next step is to diagonalize R, the spatial correlations. If we assume that

the correlations are rotationally invariant3, the matrix will be diagonal in a spherical

harmonic basis. For computational convenience, we work in the continuous limit, so

that we have

R(r̂, r̂′) ≡ exp(σ−2r̂ · r̂′)
4πσ2 sinh(σ−2)

, (7.36)

2Although sometimes they are inevitable, as we saw in Chapter 6.
3Recall that R encodes the spatial correlations in the errors of our foreground model. It is

thus entirely possible to break rotation invariance, for instance by using a foreground model that is
constructed from a number of different surveys, each possessing different error characteristics and
different sources of error. For this paper we ignore this possibility in order to gain analytical intuition,
but we note that it is easy to correct for — one simply finds the eigenvectors and eigenvalues of R,
just as we did with Q.
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which is known as a Fisher function, the analog of a Gaussian on a sphere. For

σ � 1 rad, this reduces to the familiar Gaussian:

R(r̂, r̂′) ≈ 1

2πσ2
exp

[
−1

2

θ2

σ2

]
, (7.37)

where θ ≡ arccos(r̂ · r̂′) is the angle between the two locations on the sphere. Switch-

ing to a spherical harmonic basis involves the usual integrals, but in order to be

dimensionally correct when moving back and forth between the continuous limit and

the discrete, pixelized sky, each integral receives an extra factor of Npix/Ωsky, where

Ωsky is the sky solid angle surveyed. Similarly, our Fisher function is augmented by

a factor of Ωsky/Npix so that it converges to Kronecker delta function in the limit

σ → 0. We thus have

R`m`′m′ ≡
Npix

Ωsky

∫
dΩdΩ′Y ∗`m(r̂)R(r̂, r̂′)Y`′m′(r̂

′) ≈ Npix

Ωsky

exp

[
−1

2
σ2`(`+ 1)

]
δ``′δmm′ ,

(7.38)

where Y`m denotes the spherical harmonic with azimuthal quantum number ` and

magnetic quantum number m, and the last approximation holds if σ � 1 rad. Doing

the same for the instrumental noise term in Equation 7.35 and putting everything

together gives

Ŵ`mη`′m′λ =
Npix

Ωsky

[
ε2ληe

− 1
2
σ2`(`+1) +

1

∆t∆ν

]
δ``′δmm′δηλ. (7.39)

The diagonal nature of Ŵ in this equation allows a straightforward inversion:

Ŵ−1
`mη`′m′λ =

Npix

Ωsky

[
ε2ληe

− 1
2
σ2`(`+1) +

1

∆t∆ν

]−1

δ``′δmm′δηλ, (7.40)

thus allowing us to write the inverse matrix in the original (frequency-frequency) basis

as

(W)−1
αiβj = (F†Ŵ−1F)αiβj =

Npix

Ωsky

∑
ηλ``′mm′

F†αiη`m

[
ε2ληe

− 1
2
σ2`(`+1) +

1

∆t∆ν

]−1

δ``′δmm′δηλFλ`′m′βj,

(7.41)

where Fβ`mαi ≡ δαβf`mi and f is a unitary matrix that transforms from a real-space

angular basis to a spherical harmonic basis. Obtaining the inverse of W from here is

done by evaluating W−1 = VW
−1

Vt.

We are now ready to assemble the pieces to form Σ ≡ [AtN−1A]−1 which, re-

230



member, is equal to [AtD−1F†VW
−1

VtFD−1A]−1. We first compute

(VtFD−1)α`mβj = f`mj(vα)β(mβj)
−1 ≡ f`mj(vα)βuβj, (7.42)

where uαi ≡ 1/mαi is the reciprocal map (at all frequencies) of our foreground tem-

plates. Note that in the above expression, there is no sum over j yet. This is

accomplished by the angular summation matrix Aαiβ = δαβ, giving

(VtFD−1A)α`mβ = (vα)β
∑
j

f`mjuβj = (vα)βûβ`m, (7.43)

where there is similarly no sum over β, and û signifies our reciprocal foreground

templates in spherical harmonic space. The inverse covariance Σ−1 is thus given by

Σ−1
αβ =

Npix

Ωsky

∑
η

(vη)α(vη)β
∑
`m

ûα`mûβ`m

ε2ληe
− 1

2
σ2`(`+1) + 1

∆t∆ν

. (7.44)

At this point, we note that ε itself may be a function ofNpix — our degree of confidence

in our foreground model will likely depend on the angular resolution that we are

dealing with. In particular, a foreground model is likely to be more accurate at

low resolutions, since a low resolution map can be thought of as being derived from

combining separate independent measurements at high resolution. We may thus

crudely say that ε(Npix) = ε0

√
Npix/Nref , where ε is the error parameter for our

foreground model at its “native” angular resolution, with Nref pixels. Using this

form for ε and letting tint ≡ Npix∆t be the total integration time over the survey, we

have

Σ−1
αβ =

1

Ωsky

∑
η

(vη)α(vη)β
∑
`m

ûα`mûβ`m
ε20
Nref

ληe
− 1

2
σ2`(`+1) + 1

tint∆ν

. (7.45)

At this point, notice that the angular cross-power spectrum Cαβ
` between two recip-

rocal maps uαi and uβi at frequencies α and β respectively is given by

Cαβ
` ≡

1

2`+ 1

∑̀
m=−`

ûα`mûβ`m, (7.46)

so our expression for the inverse measurement covariance Σ−1
αβ can be written as

Σ−1
αβ =

1

Ωsky

∑
η

(vη)α(vη)β
∑
`

2`+ 1
ε20
Nref

ληe
− 1

2
σ2`(`+1) + 1

tint∆ν

Cαβ
` . (7.47)
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This provides a fast prescription for computing Σ ≡ [AtN−1A]−1. One simply uses

publicly available fast routines for computing the angular cross-power spectrum, mul-

tiplies by a function of `, sums over all `’s, and performs some sums over eigenvectors

v of Q, which can be precomputed. Note that the matrix inversion to go from

our inverse measurement covariance Σ−1 to the measurement covariance Σ is not

computationally expensive because in a global signal experiment our measurement

covariance has dimensions Nfreq × Nfreq, and not Nvox × Nvox as is the case for the

full data set.

While Equation 7.47 is convenient for computational purposes, for purposes of

intuition it useful to rewrite Σαβ in the following manner. Incorporating the de-

nominator of Equation 7.45 into one of the copies of û, we can recast the equation

as

Σ−1
αβ =

1

Ωsky

∑
η

(vη)α(vη)β
∑
`m

ûηα`mũηβ`m, (7.48)

where ũηα`m is a weighted version of the reciprocal foreground template in spherical

harmonic space:

ũηα`m ≡ ûα`m

[
ε2

0

Nref

ληe
− 1

2
σ2`(`+1) +

1

tint∆ν

]−1

. (7.49)

Using the spherical harmonic generalization of Parseval’s theorem, we can rewrite our

inverse error covariance as

Σ−1
αβ =

∑
η

(vη)α(vη)β

(
1

Ωsky

∫
dΩ

m(r̂, να)mη
hp(r̂, νβ)

)

→
∑
η

(vη)α(vη)β

(
1

Npix

∑
i

1

miα(mhp)
η
iβ

)
, (7.50)

where in the last step we moved back from the continuous limit to a discretized (i.e.

pixelized) system, and defined the filtered foreground template

mη
hp(r̂, να) =

∑
`m

ûα`mY`m(r̂)
ε20
Nref

ληe
− 1

2
σ2`(`+1) + 1

tint∆ν

−1

, (7.51)

which is essentially a high-pass filtered version of our original foreground template.

We now turn to computing AtN−1, which we also need for Equation 7.33. Instead

of computing this quantity directly, we compute w ≡ N−1A, which can be interpreted
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as an optimal set of spatial weights to be used when summing the measured sky maps

into a global spectrum. To see this, note that Equation 7.33 can be written as

(x̂s)α =
∑
βγ

[
AtN−1A

]−1

αβ

∑
i

wβiγ(y −m)iγ. (7.52)

Following manipulations similar to what we had above, we obtain

wαiβ =
[
D−1F†VW

−1
VtFD−1A

]
αiβ

=
1

Npix

∑
η

(vη)α(vη)β
1

miα(mhp)
η
iβ

. (7.53)

Armed with Equations 7.52 and 7.53, we can interpret our data analysis algorithm

as the following recipe:

1. Take the measured sky map at every frequency and subtract our best guess

foreground model. This corresponds to the y −m part of Equation 7.52.

2. Perform a weighted spatial average of the resulting sky maps to form a spec-

trum. The weights are given by Equation 7.53 and roughly speaking correspond

to downweighting each map first by a factor of our best-guess sky model m,

and then downweighting by a factor of a high-pass filtered version mhp of the

same model. Both steps have the effect of suppressing the most foreground-

contaminated part of the sky when forming our spatial average. The best-guess

sky model simply downweights in proportion to expected contamination (Fig-

ure 7-5), while the high pass filtered version (Figure 7-6) singles out the “worst

offenders” and suppresses them further4.

3. Multiply by the appropriate foreground eigenmodes vη and sum over all fore-

ground eigenmodes. This yields a spectrum in ordinary frequency space.

4. Normalize the spectrum using [AtN−1A]
−1

. This is necessary because our pro-

cedures may have resulted in uneven weightings at different frequencies. This

step also gets rid of unwanted correlations between frequency channels. Note

that in a strict sense, this final matrix multiplication has no effect on how well

one can constrain theoretical models. The reason for this is that the matrix

in question is invertible, and there is thus no change in information content.

Different choices for the final multiplication result in estimators with different

4A close examination of the numbers reveals that the high-pass filtered map in fact does a little
more—the map is negative in some regions, suggesting that there is also some differencing between
pixels to subtract out certain contaminants
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Figure 7-5: Best-guess sky model at 30 MHz, smoothed to approximately 1◦ resolu-
tion.

Figure 7-6: High-pass filtered sky model (given by Equation 7.51, with the parameters
of the model given by the MID fiducial scenario in Table 7.1) at 30 MHz, smoothed
to approximately 1◦ resolution.
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statistical properties, and our particular choice here has the desirable property

that it produces the smallest possible error bars (square root of the diagonal

elements of Σ) subject to the constraint that the final estimate of the global

signal spectrum is unwindowed.

7.4 Designing an experiment — an exploration of

parameter space

Having established an optimal procedure for the analysis of data from global signal

experiments, we now turn to the design of global signal experiments. In particular, we

consider the various parameters that go into determining our measurement covariance

Σ (our equivalently the error bars
√

Σαα), and ask how well different experimental

designs can perform given our data analysis algorithm.

7.4.1 Properties of the foreground model

We first consider parameters that deal with the foreground model. Some of these,

such as the “true” amplitude of Galactic synchrotron radiation, are “determined

by our Universe” and in our study we will simply pick fiducial values for them.

The remaining parameters—the foreground model error ε0, the spatial coherence of

foreground errors σ, and the spectral coherence of foregrounds σα—are determined

by the previous foreground surveys that were used to construct our model. These

parameters quantify, in a loose sense, the quality of our survey, and therefore affect

our ability to mitigate foregrounds in our global signal measurement.

Consider first the fractional foreground model error ε0. In Figure 7-7 we show

the expected error bars
√

Σαα as a function of frequency. The absolute value of

the theoretically expected cosmological signal is shown as a black dashed line. The

parameter ε is varied about a fiducial value of 0.01, while all other parameters are

fixed at the fiducial values of the MID scenario in Table 7.1. As expected, the lower

the error in our foreground model, the better we can subtract off foregrounds, and the

lower the error bars on our final measurement of the power spectrum. Importantly,

we see that in our fiducial scenario we can achieve error bars that are much smaller

than the size of the expected cosmological signal. While this fiducial scenario requires

a (currently non-existing) foreground model that is accurate to 1%, such a model is

not inconceivable, for at these low frequencies it only requires a survey of the radio

sky that is good to ∼ 10’s of Kelvin.
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Figure 7-7: Expected error bars as a function of frequency, varying the fractional
foreground model error ε0.

Now consider the spatial coherence σ of the errors in our foreground model. In

Figure 7-8 we vary the value of σ, once again showing the expected error bars as a

function of frequency. Since this is a spatial scale of error correlations, it is intimately

connected to the properties of the foreground survey instrument that was used to

construct the model. A survey instrument with a very wide beam, for instance, will

tend to produce foreground maps that are very spatially correlated, giving a large σ.

From Figure 7-8 we see that the larger the spatial coherence, the smaller the error

bars on our measured global signal. This is because a spatially correlated error is one

that can be potentially removed using the patterns of the correlation. Put another

way, if the errors in a large number of pixels are strongly correlated, the errors can

be described using a small number of modes, making them easier to marginalize over.

On the other hand, uncorrelated errors can only be averaged down. Note that this

does not imply that one ought to produce foreground models using instruments with

the worst possible angular resolution! Our final measurement errors on the global

signal are smallest with high σ if all other parameters are kept constant. In practice,

a foreground model constructed from surveys with very little angular sensitivity will

be quite inaccurate, resulting in a large ε0.

In Figure 7-9 we vary the spectral coherence of our foreground model errors. Two

competing influences are at work here. On one hand, we can make a similar argument

to the one we made for the spatial coherence: higher coherence means there are fewer

modes to be taken out in our subtraction. This is the behavior shown in Figure 7-9,

where the measurement errors on the global signal go down with greater coherence.

On the other hand, the situation is not strictly analogous to the spatial case because
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Figure 7-8: Expected error bars as a function of frequency, varying the spatial coher-
ence length scale σ.

our goal is to measure a global spectrum. With high spectral coherence, the errors in

our foreground model are highly correlated, and this correlation propagates through

to our final measurement of the global signal. The measured spectrum thus contains

fewer independent data points, representing a degraded constraint. However, the

extent to which this affects one’s ability to learn about the EoR depends on the

expected cosmological signal, and a detailed study of this is beyond the scope of this

work. In general, one should aim to produce a foreground model with errors that

are as spectrally uncorrelated as possible. The reason is the same as for the spatial

correlations—a foreground survey that is unable to make independent measurements

at different frequencies will give rise to a rather inaccurate foreground model, one

that has a high ε0.

7.4.2 Properties of the instrument

We now turn to properties of the instrument that we use to measure the global

signal. To keep the discussion general, we do not assume a specific instrument or

even a specific instrumental design. Instead, we consider a generic radio telescope,

characterized by its integration time and its beam pattern.

In general, a radio telescope may have a complicated beam pattern. Fortunately,

as we will now prove, complicated beams have no effect on our data analysis algo-

rithms. To take into account a (possibly complicated) beam shape, we can rewrite
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Figure 7-9: Expected error bars as a function of frequency, varying the spectral
coherence length scale.

our measurement equation (Equation 7.18) as

y = BAxs + Bnfg + ninst, (7.54)

where we have elected to separate the foreground noise and instrumental noise con-

tributions because the former is a sky signal and is thus multiplied by the beam,

whereas the latter is added by the instrument and is not affected by the beam. The

matrix Bαiβj = bαijδαβ, and bαij encodes the beam response in the ith pixel from the

jth direction, at the αth frequency. Note that the index j will in general run over a

wider range of values than the index i. In fact, the former should really be continuous

whereas the latter range is determined by the angular resolution of one’s instrument.

Now, we can say without loss of generality that
∑

j bαij = 1, i.e. the beam profiles

are normalized to unity. Using this fact, we have

(BA)αiβ = δαβ
∑
k

bαik = δαβ = Aαiβ, (7.55)

with the only subtlety being that the index i on the new copy of the A matrix runs

over a smaller set of values than before. The effect of multiplying by B, then, is

to reduce the number of rows of A while preserving its structure. Thus, as long as

we define binned and smoothed noise vector n′ ≡ Bnfg + ninst, our formalism from

previous sections remains intact. Put another way, having a complicated beam does

not complicate our analysis algorithm; it simply requires that we take this beam into

238



30 40 50 60 70 80 90 100

0.01

0.1

1

10

100

1000

Frequency in MHz

Er
ro

rs
in

m
K

�Theory�
20� beams

15� beams

10� beams

5� beams

Figure 7-10: Expected error bars as a function of frequency, varying the angular
resolution.

account when we construct our noise model5. Intuitively, the detailed shape of the

beam is unimportant because we are interested in the spatially averaged global signal,

and so we would integrate over the beam profile in our analysis anyway.

While the shape of the beam may not have a large impact on our analysis, its

width certainly does, for it controls the amount of spatial information that is available

for mitigating foreground errors (as discussed in Section 7.3.3). On one extreme, for

instance, an instrument with a beam that encompasses the entire sky would yield

no spatial information whatsoever, and one would have to resort to the spectral-only

analysis techniques of Section 7.3.2. To parameterize the dependence on beam width

(i.e. angular resolution), we perform calculations with Gaussian beams of various

widths (quantified by each beam’s full-width-half-max). In Figure 7-10, we show

the expected errors as a function of angular resolution. As expected, finer angular

resolution yields lower measurement errors, as a smaller beam allows one to better

isolate highly foreground-contaminated regions and to downweight them, as well as

to take advantage of any small scale correlations in the foreground model errors that

may be used to subtract foregrounds.

In Figure 7-11 we vary the integration time. We see that while longer integrations

do reduce the errors, the improvement is not dramatic as long as one is within the

5While it is only the foreground noise that appears explicitly in the expression n′ ≡ Bnfg+ninst,
the instrumental noise is in fact also affected. This is because our instrument is sky-noise domi-
nated, and thus the measured foregrounds affect the amplitude of the instrumental noise. However,
the beam does not result in any noise correlations, which is what the matrix B encodes. In our
calculations, we take into account the modifications to both the foreground noise and instrumental
noise.
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Figure 7-11: Expected error bars as a function of frequency, varying the integration
time.

Pessmistic scenario
(PESS)

Middle-of-the-road
scenario (MID)

Optimistic scenario
(OPT)

ε0 0.1 0.01 0.001
σ (spatial coherence) 0 degrees 10 degrees 20 degrees
σα (spec. coherence) 2 1 0.1
Angular Resolution 20 degrees 10 degrees 5 degrees
tint 500 hrs 1000 hrs 3000 hrs

Table 7.1: Fiducial scenarios examined in Section 7.5.

typical range of integration times for proposed measurements (roughly ∼ 100’s to

1000’s of hours). In this regime, instrumental noise (which is the only source of noise

that would average down with further integration) is a subdominant contribution to

the errors, and larger improvements can be obtained by instead reducing residual

foreground contamination.

7.5 Fiducial Results

We now present results from a set of three fiducial scenarios: a pessimistic scenario

(PESS), a middle-of-the-road scenario (MID), and an optimistic (OPT) model. Their

parameters are listed in Table 7.1. The error bars for them are shown in Figure 7-12

As we can see from Figure 7-12, the chances of a statistical significant detection

of the cosmological signal are high for both the MID and OPT scenarios. We can

crudely quantify the significance of a detection by computing the “number of sigmas”
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ν over which a cosmological signal can be seen over pure noise and foregrounds. This

is given by ν ≡
√

stΣs, where s is the cosmological global signal spectrum packaged

into a vector, and Σ is the measurement covariance. For the MID scenario, one

obtains ν = 90, suggesting a relatively easy detection.

7.6 Conclusion

In this chapter, we have considered the prospects for a detection of the global,

spatially-averaged 21 cm signal between 30 and 70 MHz. We focused on this par-

ticular frequency range because theoretical expectations suggest the existence of a

relatively large (∼ 100 mK) absorption signal. This arises from the coupling of the

21 cm spin temperature to the hydrogen gas temperature via the Wouthysen-Feld ef-

fect during early reionization, and the signal becomes even more pronounced if X-ray

heating of the IGM is small (Pritchard & Loeb, 2010).

We have also developed formalism for analyzing data from global signal experi-

ments that seek to measure the aforementioned absorption signature. This formalism

uses full spectral and spatial information, and allows one to use the spatial information

to correct for errors in one’s foreground model, yielding smaller error bars than would

be expected if only spectral information were used. Computing these error bars for

a wide range of instrumental and foreground parameters suggests that a statistically

significant detection of the cosmological global signal should be achievable.
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Chapter 8

A Measurement of the Redshifted

21 cm Power Spectrum with the

Murchison Widefield Array

In previous chapters, we have investigated various analysis techniques and algorithms

for extracting cosmological signals from redshifted 21 cm data. We now apply many

of these methods to real data. In particular, we use data taken from the Murchison

Widefield Array (MWA) to place an upper limit on the EoR power spectrum. Such an

upper limit is of course interesting in its own right, but also allows us to demonstrate

the feasibility of the methods that we have proposed in this thesis.

The rest of this chapter is organized as follows. In Section 8.1 we describe the

observations that went into the power spectrum measurement. Section 8.2 focuses

on the imaging portion of the data analysis pipeline. After having gone through this

pipeline, the data is in the form of images of the sky at various frequencies, which is

precisely the format needed for the quadratic estimator power spectrum formalism of

Chapter 6. In Section 8.3 we describe the minor modifications that were made to the

formalism for the purposes of this chapter. Our results are presented in Section 8.4,

and we summarize them in Section 8.5.
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8.1 Observations

Data was taken1 using the MWA in its 32-tile prototype form. As mentioned in

Chapter 1, each tile of the MWA consists of 16 dual-polarization dipole antennas

whose signals are combined (“beam-formed”) by analog means. The resulting primary

beam can be coarsely steered by a set of discrete delay-lines, and has full-width-

half-maximum of approximately 25◦
(

ν
150 MHz

)−1
. Importantly, different beam-former

settings (i.e. primary beam pointings in different directions) give rise to different

primary beam shapes, which must be taken into account in the data analysis.

Over two-weeks in March 2010, a series of short drift scans were performed to im-

age a field centered at RA(J2000) = 10h 20m 0s and Dec.(J2000) = −10◦ 0′ 0′′. Typ-

ically, a single beam-former setting would be used to image the field in a series of

∼ 1 second-long snapshots. These snapshots would be taken over a 5 minute interval,

at which point the beam-former settings would be changed to coarsely track the field.

For the results in this chapter, data from a total of 60 such intervals were used, giving

a total of 5 hours of integration on the field.

The MWA has an instantaneous bandwidth of 30.72 MHz, consisting of 768 chan-

nels each with a channel width of 40 kHz. For the observations relevant to this

chapter, the observing band was centered at 154.24 MHz. Having a relatively wide

frequency range of ∼ 30 MHz is useful for the calibration purposes of the next section,

but in the actual power spectrum estimation, we use only data from 139.065 MHz to

140.665 MHz for reasons pertaining to computational cost.

8.2 Calibration and Imaging

Since the power spectrum algorithms described in Chapter 6 require sky maps as

input, the first step in our data analysis pipeline is to calibrate our data and to make

maps at various frequencies.

For every frequency channel, the dataset consists of 2080 correlations per second

(64 × (64 + 1)/2 correlations between antenna tiles, where 64 = 2 polarizations ×
32 tiles). As an initial calibration step, auto-correlations were examined separately

for each time and each channel. Any antenna tile whose auto-correlation fluctuated

by more than ∼ 3σ would have all of its correlations discarded for the particular time

1The hard work of taking the data with the instrument and the subsequent reduction of data from
its correlator output to sky images was performed by Christopher Williams. We include Sections 8.1
and 8.2 for completeness only, and the contributions of this author are limited to the data analysis
in Section 8.3 and beyond.
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and frequency. This procedure was imposed to guard against possible systematics

such as radio frequency interference.

Following this, a bright point source calibration of the array was performed2. The

bright radio source Hydra A (∼ 600 Jy for the MWA) conveniently lies within the

field at a location 15◦ from the field center, facilitating the process. Based on cata-

loged values for the brightness of Hydra A, ideal complex visibilities (i.e. correlations

between antenna tiles) were theoretically predicted for the MWA. Calibration param-

eters were then computed using a least-squares fit of the observed visibilities to the

theoretical ones. In addition to the calibration parameters, this process also yields a

prediction for the contribution of Hydra A to our data. Hydra A can then be directly

subtracted, and this was performed for all the data used in this chapter.

Following Hydra A’s subtraction, a time series of sky maps (60 snapshots, each

integrated for 5 minutes) of both polarizations were constructed from the calibrated

visibilities for all 768 frequency channels. This was done by gridding the visibili-

ties onto the uv-plane with inverse variance weighting3, then Fourier transforming

and adjusting for wide-field deviations (from a pure Fourier transform) using the w-

projection algorithm (Cornwell et al., 2005). The separate polarization maps were

then combined to give total intensity maps.

Following the production of time-ordered data detailed above, different snapshot

maps Di(r̂) were combined by appropriately weighting each map according to its

calculated primary beam Bprim
i (r̂) and the spatial variance σi:

T (r̂) =

∑
i
Di(r̂)Bprimi (r̂)

σ2
i (r̂)∑

i
[Bprimi (r̂)]2

σ2
i (r̂)

. (8.1)

Combining the maps in this manner has the property of maximizing the signal-to-

noise ratio of the final map (Williams et al., 2012). From the time series maps, two

separate maps were constructed, one using odd data samples and one using even data

samples. Having these separate maps allows for cross-correlation studies, which we

discuss in more detail in the next section. It should be noted that at this point the

maps were dirty maps, in the sense that they represented an estimate not of the true

sky, but the sky convolved with the synthesized beam of the instrument.

2The MWA, at least in its 32 tile configuration, is not designed to give a particularly redundant
set of baselines. While we showed in Chapter 2 that slight off-redundancies can be accounted for in
redundant calibration algorithms, we choose in this chapter to be conservative and use traditional
calibration techniques instead.

3As conventionally defined in the Common Astronomy Software Applications (CASA) package
provided by the National Radio Astronomical Observatory (NRAO) http://casa.nrao.edu/
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Following mapmaking, another round of calibration and flagging was performed.

Three bright point sources were identified and matched to catalog data. The spectra of

the sources were simultaneously fit to power laws, and the maps at each frequency were

scaled to yield best fits. The spatial variances of the maps were computed frequency-

by-frequency, and frequencies with large variances (∼ 3 to 5σ) were discarded.

As a final step, the maps were reduced to a computationally manageable size by

spatially averaging pixels. In addition, in the following sections we analyze only a

subset of the frequencies, from 139.065 MHz to 140.665 MHz.

8.3 Power Spectrum Estimation

Having obtained a series of sky maps at various frequencies (a “data cube”, with the

sides of the cube being θx, θy, and ν), we are now in a position to estimate power

spectra. To do so, we will employ the quadratic estimator formalism of Chapter 6,

which we now briefly review. Following the general review, we will highlight the minor

changes that were implemented when apply the formalism to real data.

The data cube can be thought of abstractly as a series of sky temperatures stored

in a single data vector x. From this vector, a series of bandpower estimators p̂α can

be constructed according to the prescription

p̂α = xtEαx− bα, (8.2)

where each value of α corresponds to a different bin in Fourier space, Eα denotes a

series of matrices (one for each value of α) that encode the foreground subtraction,

Fourier transform, and binning steps. The bα term is included to ensure that our

bandpowers are unbiased, and takes the form

bα = tr [NEα] , (8.3)

where N is the total noise covariance (i.e. the covariance of everything but the

signal). The resulting bandpower estimates p̂α are related to the true bandpowers pα

by a window function matrix:

p̂α =
∑
αβ

Wαβpα, (8.4)
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where

Wαβ = tr[C,βE
α], (8.5)

with C,β being the Fourier transform and binning matrix (see Section 8.3.6 for explicit

expressions).

Different choices of Eα give power spectrum estimates with different statistical

properties. This can be quantified by computing the measurement covariance of the

bandpower estimates:

Σαβ = 2tr [C,αCC,βC] , (8.6)

where C is the total covariance matrix of the data.

So far in this section, our methods have been identical to those of Chapter 6. In

the subsections that follow, we will discuss the minor variations that we implement

in this chapter.

8.3.1 Choice of Eα

In a similar manner to what we did in Chapter 6, we select

Eα =
1

2

∑
β

MαβC
−1C,βC

−1, (8.7)

where M is an nbands×nbands matrix (where nbands is the number of bins that k-space

is partitioned into for our power spectrum estimation). If we define the Fisher matrix

F:

Fαβ =
1

2
tr
[
C,αC

−1C,βC
−1
]
, (8.8)

then with Equation 8.7, the expressions for the window function matrix and the

measurement covariance matrix become

W = MF (8.9)

Σ = MFMt. (8.10)

In Chapter 6 we saw that if M is taken to be diagonal and proportional to the

diagonal elements of F, the vertical error bars on p̂α are minimized. There we took

the constant of proportionality to be unity, so that Mαβ was exactly δαβFαα. In this

chapter, we choose the constant differently, so that the rows of the window function
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sum to unity:

1 =
∑
j

Wij =
∑
j

(MF)ij. (8.11)

Doing so facilitates our interpretation of the band power estimates, for then Equation

8.4 says that our estimates can be considered weighted averages of the true power

spectrum. We note, however, that ultimately our choice for M is irrelevant for the

purposes of fitting theoretical models, provided it is invertible. With an invertible

matrix, multiplying by the matrix results in no change in information content, and

the constraining power a data set is unchanged.

8.3.2 What is being measured

In Equations 8.2, 8.3, and 8.7, two different covariances (C and N) enter. The matrix

C is a covariance matrix of the data vector x, which includes all sources of signal in

our data, whether from the cosmological signal, foregrounds, or instrumental noise.

On the other hand, N contains only the covariance of contaminants, i.e. everything

but the signal we are interested in.

Precisely which portions of the total covariance are to be considered contaminants

depends on what one is attempting to measure. In Chapter 6 we envisioned an estima-

tion of the cosmological 21 cm signal, which meant that our contaminant covariance

N contained both foregrounds and instrumental noise. This is of course the ultimate

goal of an instrument like the MWA. However, to perform such a measurement re-

quires that one has an accurate foreground model, for otherwise it would be difficult

to definitively say that N contains only contaminants. To avoid such complications,

we instead choose to simply estimate the power spectrum of the total sky signal.

The contaminant covariance then just consists of instrumental noise. This allows us

to confidently establish an upper limit on the cosmological power spectrum without

the need for an exquisite foreground model, since the foreground contributions are

necessarily positive and would therefore only make an upper limit more conservative.

8.3.3 Cross-power spectra

Having elected to estimate the total sky power spectrum, our expression for the bias

term reduces to

bα = tr [NinstE
α] , (8.12)

where Ninst is the instrumental noise covariance. In principle, this can computed

and subtracted in our estimator for p̂α (as the prescription in Equation 8.2 requires).
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However, if this instrumental noise bias is non-negligible, one may end up in the

numerically perilous situation of having to subtract two large numbers from each

other.

Fortunately, the noise bias term can be eliminated entirely by measuring a cross-

power spectrum instead of an auto-power spectrum. The idea is that instrumental

noise fluctuations are uncorrelated with time, and thus a cross-correlation between

data samples from two different times should have no average noise contribution,

eliminating the noise bias term in our power spectrum estimator while preserving the

sky signal, which is constant in time. This technique was successfully implemented

by the WMAP team in their measurement of the CMB power spectrum (Hinshaw

& et. al. [WMAP collaboration], 2007), and in our pipeline we find the cross-power

spectrum of the two time-interleaved maps discussed in Section 8.2. The quadratic es-

timator formalism remains much the same, and our new estimator for the bandpowers

becomes

p̂α = xt1E
αx2, (8.13)

where x1 and x2 are the two maps formed from interleaved time-samples.

Note that while the noise bias has vanished from our estimator, our error bars will

continue to have a noise contribution to them. In other words, the copy of the total

covariance C in Eα continues to represent the total sky covariance plus instrumental

noise covariance. Our final measurement covariance (given by Equation 8.6) remains

the same with the cross-correlation.

8.3.4 Modeling the total covariance

Given the considerations of the previous two subsections, we only need to model the

total covariance C. We do so by looking at the data itself, since it is unclear as

to whether the models used in previous chapters are sufficiently accurate. (Indeed,

one of the goals of the first generation of instruments is to provide better foreground

models at low frequencies).

We consider the total covariance to be comprised of a term dominated by fore-

grounds (Cfg) and a term dominated by instrumental noise (Ninst):

C = Cfg + Ninst. (8.14)

From Chapter 6, we expect the main effects of the foreground covariance to be in the

frequency direction. We therefore make the approximation that Cfg is block diagonal,

249



with correlations only between different frequencies of the same pixel, and not between

different pixels on the sky. To estimate this covariance, we use the data and apply

a procedure similar to that used in Chapter 3 and estimate a frequency-frequency

covariance by averaging over spatial pixels:

〈x(ν)x(ν ′)〉 =
1

Ω

∫
T (r̂, ν)T (r̂, ν ′)dΩ, (8.15)

where Ω is the field of view of the observational field. The frequency-frequency co-

variance then forms the (identical) blocks of our block diagonal foreground covariance

Cfg.

To estimate the instrumental noise covariance Nfg, we difference two high-resolution

versions of our time-interleaved maps. This has the effect of removing any signals on

the sky, leaving what should in principle be a map that contains only instrumental

noise. Averaging over small cells of this map allows us to estimate the mean-square

noise σ2 in each spatial pixel of the map, providing us with the diagonal entries of

Nfg. The off-diagonal entries encode the spatial correlations between two cells, and

are obtained by multiplying together σ2 and two copies of the synthesized beam, one

centered at each of the cells:

Nij
inst =

∑
m

σ2
mBi(r̂m)Bj(r̂m), (8.16)

where Bi(r̂) is the synthesized beam pattern in direction r̂ when centered on the ith

pixel.

With Cfg and Ninst, we can form the full covariance C. This matrix is an nvox ×
nvox matrix, where nvox is the number of voxels in the data cube. It is therefore quite

unwieldy to examine on an element-by-element basis. However, we can gain intuition

for the behavior of the system by averaging the covariance C over frequencies or over

spatial pixels. The resulting covariances are reduced spatial-spatial and frequency-

frequency covariances respectively. Performing an eigenvalue decomposition of the

frequency-frequency covariance, we see in Figure 8-1 that the theoretical expectations

of Chapter 3 are borne out by our data-derived covariance—the eigenvalues fall off

exponentially and then hit a noise floor, suggesting that the foregrounds can be

sequestered to a small number of modes. The spectral eigenmodes, shown in Figure

8-2, also bear a strong resemblance to their theoretical counterparts. The first three

eigenmodes are seen to be roughly of the constant, linear, and quadratic forms of

Chapter 3, albeit with some extra noise. The fourth eigenmode appears to be pure
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Figure 8-1: Eigenvalues of the reduced frequency-frequency covariance matrix ob-
tained by spatially averaging over the full modeled covariance matrix.

noise, which is not surprising since Figure 8-1 suggests that we have hit the noise

floor by then. Note that it is not surprising that the noise floor is reached sooner here

than in the theoretical studies, for recall that in Chapter 3 we assumed much more

integration time (1000 hrs), which would give a lower noise floor.

Similar computations of the eigenvalues and eigenmodes of the reduced spatial-

spatial covariance yield essentially a white-noise eigenvalue spectrum and eigenmodes

that are mostly noise maps. The results are more illuminating if we plot a single row

of the spatial covariance (which, remember, has dimensions of a map). This can be

seen in Figure 8-3, and what is recovered is a map of the square of the synthesized

beam of the instrument.

8.3.5 Deconvolution

Implicit in the formalism of Chapter 6 was the assumption that the input sky maps

had already been deconvolved. In other words, to estimate the true power spectrum

of the sky, it is necessary to first undo the blurring effects of the synthesized beam.

Without this step, an estimation of the power spectrum can still be made, but the

result formally becomes the power spectrum of the sky as seen by the instrument,

not the power spectrum of the true sky.

With a radio interferometer, it is formally impossible to fully deconvolve the syn-

thesized beam from the data, since there are many parts of the uv-plane that are not

sampled. However, with some approximations it is possible to remove the effects of
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the beam from the final power spectrum. To see this, consider our power spectrum

estimator for a dirty map (i.e. one whose synthesized beam has not been removed):

p̂dirtyα = xt1B
tEαBx2, (8.17)

where B is a matrix describing the convoluting action of a synthesized beam, and we

have simply made the substitution x→ Bx. Now, Eα is a matrix that is diagonal in

Fourier space, so if B were also diagonal there, the factors of B would factor out of

our expression for p̂dirtyα . Deconvolving the power spectrum would then just amount

to taking the Fourier transform of the synthesized beam, binning it appropriately,

and dividing the dirty map power spectrum by its square.

Unfortunately, the synthesized beam matrix is not diagonal in a full, three-

dimensional Fourier space. Instead, it is diagonal in Fourier modes perpendicular

to the line-of-sight (i.e. in k⊥) and in image-space parallel to the line-of-sight, since

the synthesized beam smooths the maps frequency-by-frequency. In principle, then,

one must correct for the beam prior to Fourier transforming in the frequency direc-

tion. For the purposes of this thesis, however, we notice that the fractional change in

the synthesized beam over our bandwidth is sub-percent level, which means we can

approximate the beam as being achromatic over our band (but see the Section 8.4

for some chromatic effects that appear in our data). With this, our correction can

be made to the cylindrical power spectrum on the k⊥-k‖ plane, since it would only

require dividing by a function of k⊥, and so the Fourier transform in the line-of-sight

direction can be performed either before or after.

8.3.6 Cylindrical and spherical power spectra

As we discussed in Chapter 6, the presence of redshift space distortions and system-

atics such as foregrounds mean that it is often prudent to form a cylindrically binned

power spectrum P (k⊥, k‖) as an initial step. Doing so means using the cylindrically

binned expression for C,α discussed in Chapter 6:

Cij
,α =

(2π2)−1

(r⊥ij)
2r
‖
ij

(
sin k

‖
br
‖
ij − sin k

‖
b−1r

‖
ij

) [
k⊥a r

⊥
ijJ1(k⊥a r

⊥
ij)− k⊥a−1r

⊥
ijJ1(k⊥a−1r

⊥
ij)
]
,

(8.18)

where k⊥a and k⊥b delimit the k⊥ extent of the αth bin on the k⊥-k‖ plane, k
‖
a and

k
‖
b delimit the k‖ extent, J1 denotes the first cylindrical Bessel function, r⊥ij denotes

the distance between ith and jth voxels projected perpendicular to the line-of-sight,
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and r
‖
ij denotes the distance between ith and jth voxels along the line-of-sight. In

the following section, we will use the cylindrical power spectrum to understand the

systematics and error properties of our measurement.

Ultimately, however, it is the spherically-binned power spectrum P (k) that is

of most interest for comparisons with theoretical models. If the beam corrections

discussed in Section 8.3.5 were not necessary, computing a spherically-binned power

spectrum would be straightforward. One would simply use a different expression for

C,α in our formalism:

Cij
,α =

1

2π2r3
(sin kbr − sin kar − kbr cos kr + kar cos kar) . (8.19)

As mentioned above, however, one cannot go directly to the spherical power spectrum

because the beam corrections need to be performed on the k⊥-k‖ plane. We therefore

first compute a cylindrical power spectrum, and then re-bin the data along contours

of constant k =
√
k2
⊥ + k2

‖ to estimate a spherical power spectrum. For numerical

stability, we perform this binning in a uniformly-weighted fashion, except we exclude

regions on the k⊥-k‖ plane that are clearly foreground contaminated.

8.4 Results and Discussion

We now present the results of our power spectrum estimation. Instead of plotting the

cylindrical power spectrum directly, we plot the quantity

∆(k⊥, k‖) ≡
√
k2
⊥k‖
2π2

P (k⊥, k‖), (8.20)

which, as the contribution to the temperature field variance per logarithmic interval

in k, has units of temperature, making the results more intuitively interpretable. In

Figure 8-4 we show our minimum-variance quadratic estimator measurement of the

dirty map cylindrical cross-power spectrum. The discreteness of the plot is due to

the coarseness of the Fourier-space bins used in the computation (10 bins in the k⊥

direction, spanning k⊥ = 0.005 Mpc−1 to 0.1 Mpc−1; 18 bins in the k‖ = 0.05 Mpc−1

to 2.0 Mpc−1). Going to a finer set of bins is of course possible, but computationally

difficult. It is for similar computational reasons that only 12, 000 voxels were used

in this analysis (400 pixels × 30 frequencies as described in Section 8.2). The white

regions on the figure are regions that would be accessible if the full data set were

used.
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Figure 8-4: A minimum-variance quadratic estimator measurement of the dirty map
cylindrical cross-power spectrum. The absolute value of the cross-power spectrum
has been taken before forming ∆(k⊥, k‖) in this and the following figures, since cross-
correlations can be negative in low signal-to-noise regions.
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As a comparison, one can form a similar power spectrum by performing Fast

Fourier Transforms (FFT) and binning the results in annuli. The result is shown in

Figure 8-5 spanning the same region in k-space. The advantage of using FFTs is that

they are computationally quick, allowing the full data sample to be used, increasing

both the accessible range of Fourier modes and the raw sensitivity. The disadvantage

of using FFTs is that assumptions must be made about the physical geometry of the

data. In particular, the data are assumed to be rectilinear and contiguous, and neither

assumption is strictly correct. The rectilinearity assumption is violated because lines

of sight diverge in physical space, and because equally spaced frequency channels do

not map to equally spaced co-moving line-of-sight cells. As for contiguity, the need to

discard flagged frequency channels (as discussed in Section 8.2) means that there are

gaps in the data cube. To produce Figure 8-5, it was therefore necessary to interpolate

between missing channels. With the quadratic estimators, a power spectrum can be

produced exactly, regardless of the geometry of the input data.

A further difference between the FFT plot of Figure 8-5 and the quadratic estima-

tor plot of Figure 8-4 is in the weighting of the data, which is non-optimal in the FFT

method. The form of Eα detailed above involves a C−1 inverse variance weighting

of the data. As discussed in Chapter 6, this has the effect of downweighting fore-

ground and noise contaminated modes in an optimal way. Figure 8-5 performs no

such downweighting, and thus one sees what is almost certainly strong foreground

contamination at low k‖, consistent with theoretical expectations. The drop-off to

the left of the red, heavily contaminated region is due to the fact that our array has

a minimum baseline length of about ∼ 10 m, which maps to a minimum k⊥. The

drop-off to the right, similarly, is due to the maximum baseline of about ∼ 340 m.

Thus, to properly compare the FFT plot to the quadratic estimator plot, it is

necessary to perform some downweighting of contaminated modes before performing

the FFT. This was done to produce Figure 8-6, where foreground eigenmodes were

identified using the methods of Chapter 3 and Figure 8-2. In other words, eigenvalues

for the spectral covariance were plotted (for the full data set used to generate the FFT

plots), and a noise floor was seen to be reached after 50 eigenvalues. Correspondingly,

the first 50 eigenmodes were projected out of the data. Comparing Figures 8-5 and

8-6, one sees that such a projection affects mainly the low k‖ modes, but there is

still a non-negligible effect at high k‖. This is consistent with the theoretical work

in Chapter 3, where we saw that with our phenomenological foreground model, the

foreground eigenmodes were qualitatively similar but not identical to Fourier modes.

Taking out the first 50 modes thus mainly erases power from the lower parts of the
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Figure 8-5: An FFT-based measurement of the dirty map cylindrical cross-power
spectrum.
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Figure 8-6: An FFT-based measurement of the dirty map cylindrical cross-power
spectrum, with the first 50 frequency eigenmodes projected out.

Fourier plane, but the effects are not exclusive to that region.

Figures 8-4 and 8-6 are our best measurements of the dirty map cylindrical power

spectrum, and it is reassuring that they appear to be qualitatively similar in the

region where they overlap. One should not expect precise qualitative agreement for

several reasons. First are the geometric discrepancies described above. In addition,

the different amounts of data (albeit from the same master data set) went into pro-

ducing the two plots, so the sensitivities are formally different. Finally, the quadratic

estimator plot employs inverse variance weighting, which differs from the eigenmode

truncation of the FFT plots.

Focusing on the region of overlap, the predominant structure in both plots ap-

pears to be a triangular “wedge” with higher temperature and a cooler (and therefore

ultimately cleaner) region above the wedge. The wedge has been seen in previous

measurement simulations (Datta et al., 2010; Vedantham et al., 2012; Morales et al.,

2012; Trott & Wayth, 2012), and is attributed to the response of the instruments’

chromatic beam to bright point source foreground contaminations4. Essentially, a

4There were no signs of this wedge in the results of Chapter 6 because those computations did
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Figure 8-7: Error bars on the quadratic estimator measurement of the dirty map
cylindrical cross-power spectrum.

chromatic beam imprints extra frequency structure into a point source, producing

power higher up in the k⊥-k‖ plane than would otherwise be expected from a smooth

spectral source (which are confined to the low k‖ regions). The effect is more pro-

nounced at higher k⊥ because higher k⊥ values are sampled by longer baselines,

whose phases dilate more quickly with frequency. The result is the characteristic

wedge shape, seen clearly in observational data here.

In addition to the bandpower estimates, one can also compute error bars in the

quadratic estimator formalism. The results are shown in Figure 8-7. The rather

vertical orientation of the plot suggests that there is a strong component instrumental

noise components in the errors. However, the structures on the plot do have some k‖

dependence to them, suggesting that there is some residual foreground contamination.

Taking the ratio of Figures 8-4 and 8-7, we arrive at Figure 8-8, which is a rough

signal-to-noise ratio5. The most prominent feature is the bottom right corner, which

not include bright point sources
5Note that here, the “noise” includes all sources of error, such as the cosmic variance of the signal.
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8-4 and 8-7.

has a high signal-to-noise, confirming that have indeed observed the theoretically

predicted wedge6. The lower signal-to-noise at higher k‖ is not a cause for concern.

Since our current power spectrum estimates are estimates of the total emission on

the sky, a low power in those regions means that those parts of the k⊥-k‖ plane are

relatively free from foreground contamination, as is hoped. In addition, we have

already argued that the error bars are likely to decrease with further integration,

making the region a promising part of Fourier space for a future detection of the EoR

cosmological signal.

Having understood many of the characteristics of our measurement using dirty

map cylindrical power spectra, we now turn to producing a spherical power spectrum

P (k). Since the spherical power spectrum is a quantity of theoretical interest, we take

6Note that our error bars will not include a term corresponding to the power of the wedge itself
(i.e. a “cosmic variance” term if the wedge were considered a signal). This is because the wedge is
expected to be due to bright point source contamination as view through a chromatic beam, and by
construction our covariance modeling did not include such effects. The high signal-to-noise ratio in
the region of the wedge is thus truly a detection of the wedge over other foreground contaminants
and instrumental noise.
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Figure 8-9: An upper limit on the spherically binned, deconvolved power spectrum,

plotted as ∆(k) ≡
√

k3

2π2P (k). This serves as an upper limit for the EoR power

spectrum at z = 9.1. This work is denoted by the red circles, the PAPER limit
by the green squares (Parsons et al., 2010), and the GMRT-EoR limit by the blue
triangles (Paciga et al., 2010).

the extra step adjusting for the effective beam of the instrument in the final power

spectrum estimate (as discussed in Section 8.3.5). The result is shown in Figure 8-9,

where we have once again elected to plot the variance per logarithmic k:

∆(k) ≡
√

k3

2π2
P (k) (8.21)

This serves as our upper limit on the EoR cosmological power spectrum, which ranges

from 0.45 K at k = 0.06 Mpc−1 to 3.8 K at k = 0.81 Mpc−1. While this limit is several

orders of magnitude above the theoretically predicted signal, it is lower than the one

published by the PAPER experiment (Parsons et al., 2010), and competitive with the

GMRT-EoR limit (Paciga et al., 2010), which used 10 times more integration time

and vastly more collecting area. Our limit is thus an encouraging validation of the

MWA and our data analysis methods.
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8.5 Conclusion

In this chapter, we have established an observational upper limit on the EoR power

spectrum at ∼ 140 MHz, corresponding to z ∼ 9.1. The upper limit was at the sub-

Kelvin level. Using two independent pipelines, we also produced cylindrical power

spectra of the dirty maps. A theoretically expected “wedge” from bright point source

foregrounds and instrumental chromatic effects was observed, and a clear window on

the k⊥-k‖ plane emerged as a promising location to look for the EoR in future mea-

surements. Our current measurements are likely dominated by instrumental noise at

high k‖. This suggests that by simply integrating for longer and using more frequency

slices from the data, one should be able to improve on the limits set by this work,

which bodes well for the field of hydrogen cosmology as a whole.
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Chapter 9

Conclusion

In this thesis, we have tackled a number of the challenges that stand between the

theoretical promise and experimental reality of hydrogen cosmology. As we argued

in Chapter 1, these challenges are quite considerable, given the exquisite sensitivity,

calibration, and foreground subtraction requirements that are necessary to detect an

extremely faint (∼ 10 mK) signal from beneath a set of bright foregrounds (∼ 100’s to

1000’s of K). Following foreground subtraction, it is important to analyze the data in

a way that is lossless and unbiased to give the best possible constraints on theoretical

models.

In Chapter 2 we developed a method for calibrating radio interferometers with a

large number of redundant baselines. We also quantified the calibration errors of the

technique, and generalized the method to include near-redundant arrays. Given that

redundant (or close to redundant) baselines will be necessary to meet the sensitiv-

ity requirements of most 21 cm interferometer arrays anyway, redundant calibration

should be further explored as a practical technique. Indeed, this is what the LOFAR

group is in the process of doing, and early results are encouraging (Noorishad et al.,

2012). If redundant calibration does ultimately turn out to work sufficiently well

for the purposes of hydrogen cosmology, it would be wise to design next-generation

arrays with explicit considerations of baseline redundancy, as this can reduce the cost

of correlations from O(n2) to O(n log n), where n is the number of receiving elements.

Foreground modeling was considered in Chapter 3, where a phenomenological

foreground model was used to elucidate the fact that foreground spectra can typically

be described using a small set of smooth basis functions. Over small frequency ranges,

these functions appeared to look very much like polynomials, and in Chapters 4 and 5

we used this approximation to show that foregrounds could indeed be subtracted to a

reasonable residual levels by fitting out the smooth components of measured spectra.
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Chapter 6 generalized the foreground subtraction process to a matrix-based inverse

variance subtraction, which can be proved to be optimal in the limit of Gaussian noise.

Our framework was adapted from the quadratic estimator formalism commonly used

in CMB studies and galaxy surveys, and allowed us to consider foreground subtraction

and power spectrum estimation in a single unified step. Doing so provided a power

spectrum estimator that was optimal and unbiased by residual noise and foregrounds.

Chapter 7 turned to the optimization of global 21 cm experiments. Again de-

veloping a rigorous statistical framework for data analysis, we derived an optimal

way to extract a global signal spectrum from a noisy and foreground-contaminated

experiment. We found that the error bars on final measurement could be reduced

by incorporating angular information. This suggests that future global signal exper-

iments should be designed to have at least a coarse level of angular sensitivity.

The techniques explored in this thesis culminated in an application to real data in

Chapter 8. Data was taken for 5 hrs using the MWA in its 32-tile prototype configura-

tion, sky maps were produced, and a series of power spectra were computed. Using the

cylindrical power spectrum P (k⊥, k‖) of the dirty maps as a diagnostic, we detected

a theoretically expected “wedge” due to the chromatic convolution of bright point

source foregrounds by our instrument. We also confirmed the existence of promis-

ing regions in the k⊥-k‖ plane for future EoR signal detection, where contaminants

such as foregrounds are expected to contribute relatively little to the measurement.

Finally, we placed an upper limit on the spherically-binned power spectrum P (k),

finding it to be competitive with limits from other instruments.

In conclusion, we have derived a number of data analysis methods for hydrogen

cosmology. These include calibration, foreground subtraction, and signal extraction

techniques. Tests on real data have demonstrated their potential, yielding interesting

limits. This bodes well for hydrogen cosmology, as it suggests that even though there

is more work to be done, many of the proposed analysis methods appear to be robustly

applicable, providing the necessary tools for a successful detection of the EoR signal

in the near future and exquisite constraints on our Universe beyond that.
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Högbom, J. A. 1974, A&AS, 15, 417

Iliev, I. T., Shapiro, P. R., Ferrara, A., & Martel, H. 2002, ApJL, 572, L123

Ishiguro, M. 1974, Astronomy and Astrophysics Supplement, 15, 431

Jackson, C. 2005, PASA, 22, 36

Jelic, V., Zaroubi, S., Labropoulos, P., Thomas, R. M., Bernardi, G., Brentjens, M.,
de Bruyn, G., Ciardi, B., Harker, G., Koopmans, L. V. E., Pandey, V., Schaye, J.,
& Yatawatta, S. 2008, ArXiv e-prints: 0804.1130 (astro-ph)

Komatsu, E., Smith, K. M., Dunkley, J., Bennett, C. L., Gold, B., Hinshaw, G.,
Jarosik, N., Larson, D., Nolta, M. R., Page, L., Spergel, D. N., Halpern, M., Hill,
R. S., Kogut, A., Limon, M., Meyer, S. S., Odegard, N., Tucker, G. S., Weiland,
J. L., Wollack, E., & Wright, E. L. 2011, Ap. J. Supplement, 192, 18

Lewis, A. & Challinor, A. 2007, PRD, 76, 083005

Lidz, A., Zahn, O., McQuinn, M., Zaldarriaga, M., & Hernquist, L. 2008, ApJ, 680,
962

Liu, A. & Tegmark, M. 2011, Phys. Rev. D, 83, 103006

Liu, A. & Tegmark, M. 2012, MNRAS, 419, 3491

Liu, A., Tegmark, M., Bowman, J., Hewitt, J., & Zaldarriaga, M. 2009a, MNRAS,
398, 401

267



Liu, A., Tegmark, M., Morrison, S., Lutomirski, A., & Zaldarriaga, M. 2010, MNRAS,
408, 1029

Liu, A., Tegmark, M., & Zaldarriaga, M. 2009b, MNRAS, 394, 1575

Loeb, A. & Wyithe, J. S. B. 2008, Physical Review Letters, 100, 161301

Loeb, A. & Zaldarriaga, M. 2004, Physical Review Letters, 92, 211301

Lonsdale, C. J., Cappallo, R. J., Morales, M. F., Briggs, F. H., Benkevitch, L.,
Bowman, J. D., Bunton, J. D., Burns, S., Corey, B. E., Desouza, L., Doeleman,
S. S., Derome, M., Deshpande, A., Gopala, M. R., Greenhill, L. J., Herne, D. E.,
Hewitt, J. N., Kamini, P. A., Kasper, J. C., Kincaid, B. B., Kocz, J., Kowald, E.,
Kratzenberg, E., Kumar, D., Lynch, M. J., Madhavi, S., Matejek, M., Mitchell,
D. A., Morgan, E., Oberoi, D., Ord, S., Pathikulangara, J., Prabu, T., Rogers, A.,
Roshi, A., Salah, J. E., Sault, R. J., Shankar, N. U., Srivani, K. S., Stevens, J.,
Tingay, S., Vaccarella, A., Waterson, M., Wayth, R. B., Webster, R. L., Whitney,
A. R., Williams, A., & Williams, C. 2009, IEEE Proceedings, 97, 1497

Madau, P., Meiksin, A., & Rees, M. J. 1997, ApJ, 475, 429

Mao, X.-C. 2012, ArXiv e-prints: 1204.1812

Mao, Y., Tegmark, M., McQuinn, M., Zaldarriaga, M., & Zahn, O. 2008, PRD, 78,
023529

Masui, K. W., McDonald, P., & Pen, U.-L. 2010, PRD, 81, 103527

McQuinn, M., Hernquist, L., Zaldarriaga, M., & Dutta, S. 2007, MNRAS, 381, 75

McQuinn, M., Lidz, A., Zahn, O., Dutta, S., Hernquist, L., & Zaldarriaga, M. 2006a,
ArXiv e-prints: 0610094 (astro-ph)

McQuinn, M., Zahn, O., Zaldarriaga, M., Hernquist, L., & Furlanetto, S. R. 2006b,
ApJ, 653, 815

Mesinger, A., McQuinn, M., & Spergel, D. N. 2012, MNRAS, 2672

Morales, M. F. 2005, ApJ, 619, 678

Morales, M. F., Bowman, J. D., & Hewitt, J. N. 2006, ApJ, 648, 767

Morales, M. F., Hazelton, B., Sullivan, I., & Beardsley, A. 2012, ArXiv e-prints:
1202.3830

Morales, M. F. & Hewitt, J. 2004, ApJ, 615, 7

Morales, M. F. & Matejek, M. 2009, MNRAS, 400, 1814

Morales, M. F. & Wyithe, J. S. B. 2009, ArXiv e-prints: 0910.3010

268



Noordam, J. E. & de Bruyn, A. G. 1982, Nature, 299, 597

Noorishad, P., Wijnholds, S. J., van Ardenne, A., & van der Hulst, T. 2012, ArXiv
e-prints: 1205.1413

Nusser, A. 2005, MNRAS, 364, 743

Oh, S. P. & Mack, K. J. 2003, MNRAS, 346, 871

Paciga, G., Chang, T., Gupta, Y., Nityanada, R., Odegova, J., Pen, U., Peterson, J.,
Roy, J., & Sigurdson, K. 2010, ArXiv Astrophysics e-prints: 1006.1351

Padmanabhan, N., Seljak, U., & Pen, U. L. 2003, New Astronomy, 8, 581

Parsons, A., McQuinn, M., Jacobs, D., Aguirre, J., & Pober, J. 2011, ArXiv e-prints:
1103.2135

Parsons, A. R., Backer, D. C., Foster, G. S., Wright, M. C. H., Bradley, R. F.,
Gugliucci, N. E., Parashare, C. R., Benoit, E. E., Aguirre, J. E., Jacobs, D. C.,
Carilli, C. L., Herne, D., Lynch, M. J., Manley, J. R., & Werthimer, D. J. 2010,
The Astronomical Journal, 139, 1468

Pearson, T. J. & Readhead, A. C. S. 1984, Annu. Rev. of Astronomy and Astrophysics,
22, 97

Peebles, P. J. E. 2012, ArXiv e-prints: 1203.6334

Pen, U. 2003, MNRAS, 346, 619

Peterson, J. B., Bandura, K., & Pen, U. L. 2006, ArXiv Astrophysics e-prints: astro-
ph/0606104

Petrovic, N. & Oh, S. P. 2011, MNRAS, 413, 2103

Pindor, B., Wyithe, J. S. B., Mitchell, D. A., Ord, S. M., Wayth, R. B., & Greenhill,
L. J. 2010, ArXiv Astrophysics e-prints: 1007.2264

Pritchard, J. R. & Loeb, A. 2010, Phys. Rev. D, 82, 023006

Ramesh, R., Subramanian, K. R., & Sastry, C. V. 1999, Astronomy and Astrophysics
Supplement, 139, 179

Rau, U., Bhatnagar, S., Voronkov, M. A., & Cornwell, T. J. 2009, IEEE Proceedings,
97, 1472

Reid, B. A., Percival, W. J., Eisenstein, D. J., Verde, L., Spergel, D. N., Skibba,
R. A., Bahcall, N. A., Budavari, T., Frieman, J. A., Fukugita, M., Gott, J. R.,
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