
ARCHVEs

A Correction Function Method to Solve

Incompressible Fluid Flows to High Accuracy with

Immersed Geometries

Alexandre N7oll Marques
Submitted to the Department of Aeronautics and Astronautics

in partial fulfillment of the requirements for the degree of
Doctor of Philosophy

at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2012
@ Massachusetts Institute of Technology 2012. All rights reserved.

A u th or
I epartment o onauticsyd Astronautics

' e rur 27, 2012

Certified by........

Rodolfo R. Rosales
Professor of Applied Mathematics

Thesis Supervisor

C ertified by
Jean-Christophe Nave

Professor of Mathematics

Thesis Supervisor

Certified by.....

Jaime Peraire
Professor of Aeronautics and Astronautics

I /Thesis Committee
Certified by...

y ' Steven G. Johnson
Associate Professor of Applied Mathematics

Thesis Committee
A ccepted -by

Eytan H. Modiano
Chair, Department Committee on Graduate Theses

2

A Correction Function Method to Solve Incompressible

Fluid Flows to High Accuracy with Immersed Geometries

by

Alexandre Noll Marques

Submitted to the Department of Aeronautics and Astronautics
on February 27, 2012, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

Numerical simulations of incompressible viscous flows in realistic configurations are

increasingly important in many scientific and engineering fields. In Aeronautics, for

instance, relatively cheap numerical computations replace costly hours of wind tunnel

investigations in the early design stages of new aircraft. However, standard methods

to obtain numerical solutions over complex geometries require sophisticated meshing

techniques and intensive human interaction. In contrast, "immersed methods" incor-

porate complex boundaries and/or interfaces into regular meshes (Cartesian meshes

or simple triangulations). Hence, immersed methods simplify the task of mesh gen-

eration and are of great interest in the study of incompressible viscous flows.

The objective of this thesis is to advance current immersed methods by formula-

tions that yield highly accurate discretizations without compromising computational

efficiency. This is achieved by introducing a new type of immersed method, the cor-

rection function method. This new method is based on the concept of a correction

function that provides smooth extensions of the solution across boundaries and/or

interfaces, such that standard (accurate and efficient) discretizations of the governing

equations remain valid everywhere in the computational domain. Furthermore, the

key concept behind the correction function method is the introduction of the correc-

tion functions as solutions to partial differential equations, which are defined locally

around the immersed boundaries and interfaces. Then, we can solve these equations

to any desired order of accuracy, resulting in high accuracy methods.

Specifically, in this thesis the correction function method is implemented to 4 th

order of accuracy in the context of Poisson's equation, the heat equation, and the

nonlinear convection advection diffusion in 2D. Then, these techniques are combined

3

to solve the incompressible Navier-Stokes equations, which govern the dynamics of

incompressible viscous flows.

Thesis Supervisor: Rodolfo R. Rosales
Title: Professor of Applied Mathematics

Thesis Supervisor: Jean-Christophe Nave
Title: Professor of Mathematics

4

Acknowledgments

There are many people that I need to thank for their support and guidance during

this challenging journey. First I must thank my advisors, Profs. Ruben Rosales and

Jean-Christophe Nave. It was my first time working closely with Mathematicians,

and it was decisively one of the most interesting and rewarding experiences I ever

had. It was Profs. Nave's vision and enthusiasm that persuaded me to get involved

in this particular project and kept me on track to achieve so much. Prof. Rosales'

uncanny capacity to identify and simplify the hardest problems was crucial in the

development of this work. I am also thankful for their loyalty and commitment when

I needed to overcome bureaucratic hurdles so I could focus on science for most of the

time.

Furthermore, I thank all MIT professors with whom I had the pleasure to work.

In particular, I thank the members of my thesis committee for their constructive criti-

cism and recommendations: Profs. Jaime Peraire, Steven Johnson, Youssef Marzouk,

and David Darmofal. I also thank the help I received from all the colleagues that

I met in this time, specially the Applied Mathematics Fluids Lunch group, David

Shirokoff, and Anas Alfaris. In addition, I thank the always prompt assistance from

the Department of Aeronautics and Astronautics' staff, specially Jean Sofronas, Beth

Marois and Marie Stuppard, and the people at the Department of Mathematics head-

quarters.

This work counted with the financial support by Coordenagio de Aperfeigoamento

de Pessoal de Nivel Superior (CAPES - Brazil) and the Fulbright Commission through

grant BEX 2784/06-8. It was also partially funded by the National Science Foundation

through grant DMS-0813648, and the NSERC Discovery program.

Finally, I must thank the unwavering and unconditional love and support I received

from my family. I am specially grateful to my loving and caring wife, Nielle Marques,

who gave me strength and purpose to move forward, and always made everything

possible.

5

6

Contents

1 Introduction

1.1 M otivation .

1.2 Literature Review: Immersed Methods

1.3 Contributions .

1.4 Organization of the thesis

2 The Correction Function Method

2.1 Definition of the problem

2.2 The basic idea

2.3 The correction function and the equati

2.4 A 4 th order accurate scheme in 2D . .

2.4.1 Overview

2.4.2 Standard Stencil

2.4.3 Definition of Q2 j)........

2.4.4 Solution of the local PDE

2.4.5 Computational Cost

2.4.6 Interface Representation . . .

2.4.7 Error analysis

2.4.8 Computation of gradients . .

2.5 Results

2.5.1 Example 1

2.5.2 Example 2

2.5.3 Example 3

27

28

. 29

on defining it 31

. 35

. 35

. 36

. 38

. 42

. 44

. 45

. 4 6

. 4 6

. 4 7

. 48

. 50

. 5 1

7

15

. 15

. 18

. 23

. 25

2.5.4 Example 4 55

3 Extensions of the Correction Function Method 59

3.1 Boundary conditions on complex geometries 60

3.1.1 Overview . 60

3.1.2 The correction function and the equation defining it 61

3.1.3 Definition of .j..) 63

3.1.4 Solution of the Local PDE . 64

3.1.5 Neumann boundary condition 66

3.1.6 Results . 67

3.2 Poisson's equation with discontinuous coefficient 69

3.2.1 Overview . 69

3.2.2 Smooth extensions of the solution 71

3.2.3 Solution of the Local PDE . 73

3.2.4 Results . 76

4 Alternative Method to Solve the Poisson equation - using boundary

integral equations 81

4.1 Solution procedure . 82

4.1.1 Laplace equation . 83

4.1.2 Including a non-homogeneous source 86

4.1.3 Poisson equation with Piece-wise constant coefficients 87

4.1.4 Sum m ary . 90

4.2 R esults . 93

4.2.1 Example 1. Imposing boundary conditions over arbitrarily shaped

surfaces . 94

4.2.2 Example 2. Poisson equation with piece-wise constant coefficients 96

5 Dynamic Problems 99

5.1 Heat equation . 100

5.1.1 Overview . 100

8

5.1.2 A compact discretization .

5.1.3 The Correction Function Method

5.1.4 R esults .

5.2 Convection-Diffusion equation .

5.2.1 Overview .

5.2.2 A compact discretization .

5.2.3 Results .

6 Incompressible Navier-Stokes Equations

6.1 Formulation .

6.2 Numerical Scheme .

6.3 R esults .

6.3.1 Purely periodic boundaries

6.3.2 Immersed Boundary .

6.3.3 Flow over a cylinder .

7 Conclusion

7.1 Final Remarks. .

7.2 Future work .

A The 9-point stencil for the Poisson equation

B Bicubic interpolation

C Issues affecting the construction of Q''

C.1 Naive Grid-Aligned Stencil-Centered Approach. .

C.2 Compact Grid-Aligned Stencil-Centered Approach.

C.3 Free Stencil-Centered Approach

C.4 Node-Centered Approach

D Ill-posed problem

9

101

103

105

106

106

109

112

115

116

119

123

124

125

129

137

137

139

141

143

145

147

148

149

150

153

10

List of Figures

1-1 Examples of body-fitted and immersed meshes for the domain between

circles of radius 0.1 and 1. 16

2-1 Example of solution domain Q. The solution is discontinuous across

the interface r. 29

2-2 Example in 1D of a solution with a jump discontinuity. 30

2-3 (a) The 9-point compact stencil next to the interface F. (b) The set

QO 'j) for this stencil. 37

2-4 Configuration where multiple QOf') are needed in the same stencil. (a)

Same interface crossing the stencil multiple times. (b) Distinct inter-

faces crossing the same stencil. 41

2-5 Example 1. (a) Solution domain embedded in a 33 x 33 Cartesian grid.

(b) Solution obtained with a 193 x 193 grid. 49

2-6 Example 1. Convergence of the error in the solution and its gradient

in the L 2 and L, norms. 49

2-7 Example 1. Convergence of the error in the solution and its gradient

evaluated along the interface. 50

2-8 Example 2. Convergence of the error in the solution and its gradient

in the L 2 and L. norms. 52

2-9 Example 2. Convergence of the error in the solution and its gradient

in the L 2 and L, norms. 52

2-10 Example 2. Convergence of the error in the solution and its gradient

evaluated along the interface. 53

11

2-11 Example 3. Convergence of the error in the solution and

in the L 2 and L, norms.

2-12 Example 3. Convergence of the error in the solution and

in the L 2 and L, norms.

2-13 Example 3. Convergence of the error in the solution and

evaluated along the interface.

2-14 Example 4. Convergence of the error in the solution and

in the L 2 and L, norms.

2-15 Example 4. Convergence of the error in the solution and

in the L 2 and L, norms.

2-16 Example 4. Convergence of the error in the solution and

evaluated along the interface.

3-1 Example of a solution domain with arbitrary shape. . . .

3-2 Steps involved in forming 4Q
3-3 (a) Solution domain embedded in a 65 x 65 Cartesian grid.

obtained with a 193 x 193 grid.

3-4 Convergence of the error in the L 2 and L. norms.....

3-5 Convergence of the error evaluated along the interface.

2-1 Example of solution domain with arbitrary shape.

3-6 Regions where the extended solutions are defined. This

sumes that node (i, j) lies in Q+...............

3-7 (a) Solution domain embedded in a 65 x 65 Cartesian grid.

obtained with a 193 x 193 grid.

3-8 Convergence of the error in the L 2 and L, norms....

3-9 Convergence of the error along the interface.

4-1 Rectangular domain B that involves Q.

4-2 (a) Solution domain embedded in a 33 x 33 Cartesian Grid.

obtained with a 193 x 193 grid.

4-3 Error convergence in L 2 and L, norms

its gradient

its gradient

its gradient

its gradient

its gradient

its gradient

(b) Solution

example as-

(b) Solution

(b) Solution

12

85

95

96

4-4 (a) Solution domain embedded in a 33 x 33 Cartesian Grid. (b) Solution

obtained with a 193 x 193 grid. 98

4-5 Error convergence in L 2 and L. norms. 98

3-1 Example of solution domain with arbitrary shape. 100

5-1 (a) Solution domain embedded in a 65 x 65 Cartesian grid. (b) Con-

vergence of the error in the L2 and L, norms. 106

5-2 Solution at different times. 106

5-3 Convergence of the error along the boundary. 107

5-4 Solution domain discretized with a 65 x 65 Cartesian grid. The internal

boundary is immersed in the grid. 113

5-5 Plot of the u component of the solution at different times. 113

5-6 Plot of the v component of the solution at different different in time. 113

5-7 Convergence of the error in the L, and L2 norms. 114

5-8 Convergence of the error along the boundary. 114

6-1 Solution at t = 10 for Re = 1. 125

6-2 L. norm of the divergence of velocity for Re = 1 x 106. 126

6-3 Convergence of the error in the L. norm. 126

6-4 Solution domain with the boundary immersed in a 96 x 96 Cartesian

grid. 127

6-5 Solution at t = 1 for Re = 1. 127

6-6 (a) Variation of the L, norm of the divergence of the velocity over

time. (b) Convergence of the error in the L. norm. 128

6-7 Convergence of the error along the boundary. 128

6-8 One period of the infinite array of cylinders. The boundary is immersed

in a 268 x 128 Cartesian grid. 130

6-9 Solution at t = 6 for Re = 1. Speed denotes s = vu2 + 2. 131

6-10 Streamlines of the flow around the cylinder at t = 6, with Re = 1. . . 131

6-11 (a) Variation of the L, norm of the divergence of velocity over time.

(b) Nondimensional forces acting over the cylinder: drag and lift. . . 132

13

6-12 Solution at t = 6 for Re = 30. Speed denotes s = / 2 + v 2 132

6-13 Streamlines of the flow around the cylinder with Re = 10. 133

6-14 (a) Variation of the L, norm of the divergence of velocity over time.

(b) Nondimensional forces acting over the cylinder: drag and lift. . . 133

6-15 Solution at t = 30 for Re = 20. Speed denotes s = /u2+ v2. 134

6-16 Solution at t = 60 for Re = 20. Speed denotes s = V2+ v2 134

6-17 Streamlines of the flow around the cylinder with Re = 20. 135

6-18 Streamlines showing vortex shedding behind cylinder for t > 50. . . . 136

6-19 (a) Variation of the L, norm of the divergence of velocity over time.

(b) Nondimensional forces acting over the cylinder: drag and lift. . . 136

3-1 Q~j as defined by the naive grid-aligned stencil-centered approach. . 147

3-2 Qbj as defined by the compact grid-aligned stencil-centered approach. 148

3-3 Q2j as defined by the free stencil-centered approach. 150

3-4 Q5j as defined by the node-centered approach. 151

14

Chapter 1

Introduction

1.1 Motivation

Many applications in science and engineering involve the dynamics of incompress-

ible viscous flows. From mixtures of immiscible fluids [1, 2], to motion of micro-

organisms [3], to flight of insects [4,5], to the flow of blood in the heart [6]. In Aero-

nautics, the airflow over low-speed aircrafts can often be idealized as incompressible.

Such is the case with many of the unmanned air vehicles (UAVs) in production today

(e.g. USAF's MQ-1B Predator cruises at Mach 0.11 [7]). Moreover, even though

many of the characteristics of the airflow over these vehicles can be estimated with

simplified inviscid models, there are important features that can only be accurately

determined by including viscous effects, such as drag force and flow separation.

The advances in computational power and memory over the last decades have

made it possible to study increasingly realistic and complex flow configurations with

numerical methods. However, an accurate representation of the complex geometries

involved in many applications demands sophisticated meshing techniques, such as

multi-block meshes [8,9], octree decomposition [10], automatic triangulations [11],

and hybrid methods [12,13] (for a thorough review, see [14]). Although these tech-

niques constitute very powerful tools for mesh generation, the task of creating ade-

quate meshes for complex geometries still requires a considerable amount of human

interaction. This issue is even more complicated if the boundaries or the interfaces

15

are moving in unsteady simulations. Since regular solvers require a body-fitted mesh

(see figure 1-1(a)), one needs an algorithm to adapt the mesh to the motion of the

boundary at every time step. A common practice is to deform the original mesh to

account for the motion of the boundary [15-17]. In some situations, it is possible

to construct a smooth mapping between the deformed mesh and a reference mesh.

In this case, one can use arbitrary Lagrangian-Eulerian (ALE) methods to account

for the mesh deformation in a accurate fashion [16]. However, in general situations

the process of mesh deformation can be costly and adds errors to the solution. More-

over, in extreme cases (e.g. large deformations, interfaces merging/splitting) complete

remeshing may be necessary.

crl o
0.2 .

-0.2 0 .
2

i

-0.4..... -0.2
-0.46-.

-0.8-r

-1 05 0 0. 1 0. 1
X X

(a) Body-fitted mesh. (b) Immersed mesh.

Figure 1-1: Examples of body-fitted and immersed meshes for the domain between
circles of radius 0.1 and 1.

To avoid the complications related to creating quality body-fitted meshes and

adapting the mesh to moving boundaries, a family of "immersed methods" for in-

compressible viscous flows has arisen over the last four decades. In these methods,

one does not need to fit the mesh to the boundary or interface (see figure 1-1(b)):

boundaries and/or interfaces are immersed into regular meshes (Cartesian meshes or

simple triangulations), and the methods automatically adapt the discretization to

the boundary or interface conditions. A thorough literature review of this class of

methods is presented in the next section.

Despite recent advances, many of these methods are at most second order accurate

16

- with a few exceptions. Moreover, in general, either immersed methods do not

offer clear extensions to higher orders of accuracy, or the extensions are excessively

convoluted and inefficient. The objective of this thesis is to contribute to the theory

of immersed methods by introducing a general formulation that allows the systematic

creation of numerical schemes with high order accuracy. Hence, this thesis is focused

on a completely new concept, rather than simply on extending the already existing

immersed methods.

The method presented in this thesis is based on the construction of smooth ex-

tensions of the solution across boundaries and interfaces. These extensions are then

used to define correction functions, which can be used to "complete" standard dis-

cretizations of the equations. Hence the name correction function method (CFM).

The key concept behind the CFM is characterizing the correction functions as solu-

tions to partial differential equations defined locally in the vicinity of the boundaries

and interfaces. The idea of extending the solution is not new, but defining these

extensions as the solution to PDEs is an entirely original concept. Furthermore, in

principle one can devise schemes to solve these local PDEs to any desired order of

accuracy. Therefore, this concept is the main feature of the CFM that allows us to

obtain high order of accuracy.

The incompressible viscous flows of interest in this thesis are described by the

incompressible Navier-Stokes equations (INSE). A common practice to solve these

equations is reformulate the problem in terms of a nonlinear convection-diffusion

equation for the velocity distribution, and a Poisson equation for the pressure distri-

bution [18-26]. The core contributions of this thesis are

(i) A new and highly accurate CFM to solve the Poisson equation with immersed

boundaries.

(ii) A new and highly accurate CFM to solve the nonlinear convection-diffusion

equation with immersed boundaries.

(iii) The integration of these methods to solve the incompressible Navier-Stokes equa-

tions to high order of accuracy with immersed boundaries.

17

1.2 Literature Review: Immersed Methods

Immersed methods were originally conceived to solve problems with interfaces (or

infinitely thin membranes) dividing multiphase flows, and later extended to deal with

complex boundaries in a immersed fashion. Hence, much of the development in this

area happened around interface problems. Two important aspects must be considered

when using immersed methods: (a) the representation (and tracking) of the interface,

and (b) the discretization of the governing equations in the vicinity of the interface.

The latter ultimately characterizes the different methods, but the development of

both aspects is intertwined.

There are two classes of methods used to represent the interface: explicit and

implicit. Explicit methods are based on introducing fictitious particles that represent

the location of the interface. The advantage of explicit representations is that one can

follow the interface by simply tracking the individual particles that move according

to simple kinematics. Probably the first explicit method was the marker and cell

(MAC) method introduced by Harlow and Welch [27-29]. This method is aimed

at flows with a free surface. Basically, fictitious markers are introduced within the

fluid and the position of the outermost markers characterize the location of the free

surface. Another explicit approach is to place particles along the interface itself [30-

32]. The location of the neighboring particles is used to produce local interpolations

(e.g. splines), which are then applied to compute geometric information - such as

curvature and normal directions. Although this approach can be quite accurate, it

requires special treatment when the interface undergoes either large deformations

or topological changes - such as mergers or splits. This issue can be particularly

challenging in 3D [32].

On the other hand, in an implicit representation the location of the interface is

extracted from some function that is defined everywhere in the regular computational

grid. An early implicit representation was obtained by extending the MAC method

into the volume-of-fluid (VOF) method [2, 33, 34]. In the VOF, instead of using

markers, one registers the partial volume occupied by the fluid in each cell of the grid.

18

This approach is more efficient than MAC since it considerably decreases the number

of degrees of freedom necessary to track the free surface, but it does not result in

better accuracy. A more popular approach to represent the interface implicitly is the

level set (LS) method introduced by Osher and Sethian [35-39]. In the LS method, the

interface is given by the zero level of a function defined everywhere in the domain.

The basis of the LS method, however, is the effective and efficient algorithm that

is used to advance the interface by advecting the LS function with the local fluid

velocity. The success of the LS method gave rise to a vast literature that covers a

wide range of applications other than flow problems [40,41]. In particular, in this

thesis the gradient-augmented level set (GA-LS) method [42] was adopted. With this

extension of the LS method, one can obtain highly accurate representations of the

interface, and other geometric information, with the additional advantage that this

method uses only local grid information.

As mentioned before, a common practice to solve the incompressible Navier-Stokes

equations (INSE) is to reformulate the problem in terms of a nonlinear convection-

diffusion equation and a Poisson equation. When the solution is known to be smooth,

it is easy to obtain highly accurate discretizations to these equations on a regular

grid. Furthermore, these discretizations usually yield symmetric and banded linear

systems, which can be inverted efficiently [43]. On the other hand, when singularities

occur (e.g. discontinuities) across internal interfaces, some of the regular discretization

stencils will straddle the interface, which renders the whole procedure invalid.

Several strategies have been proposed to tackle this issue. Peskin [30] introduced

the immersed boundary method (IBM) [6, 30, 44-47], in which the discontinuities

are re-interpreted as additional (singular) force terms concentrated on the interface.

These singular terms are then "regularized" and appropriately spread out over the reg-

ular grid - in a "thin" band enclosing the interface. This approach is very appealing

since the discretization of the flow equations is not affected, only the right-hand-side

(RHS). The result, however, is a first order scheme that smears discontinuities. Gold-

stein [48] presents an extension of the IBM where linear control theory is used to

compute the singular forces needed to impose the no-slip condition on a boundary

19

of the domain. A more direct method to determine the singular forces for this prob-

lem was later introduced by Fadlun et al. [49]. A recent review of the IBM and its

applications was presented in [47].

In order to avoid the smearing of the interface information, LeVeque and Li [50]

developed the immersed interface method (IIM) [50-54], which is a methodology to

modify the discretization stencils, taking into consideration the discontinuities at their

actual locations. The IIM guarantees second order accuracy and sharp discontinuities,

but at the cost of added discretization complexity and loss of symmetry. The IIM was

also extended to treat no-slip boundary conditions by adding singular forces along

the boundary in the work of Le et al. [55]. This extension preserves the second order

accuracy of the IIM. Recently, Zhong [56] introduced a new version of the IIM where

the modified discretization stencils are obtained by matching polynomials on both

sides of the interface. The result is a high order method based on wide dimension-

by-dimension stencils.

The new method advanced in this thesis builds on some ideas introduced by the

ghost fluid method (GFM) [57-62]. The GFM is based on defining both actual and

"ghost" fluid variables at every grid node that lies in a narrow band enclosing the

interface. The ghost variables work as extensions of the actual variables across the

interface - the solution on each side of the interface is assumed to have a smooth

extension into the other side. After the ghost values are computed, one can apply

standard discretizations everywhere in the domain. Moreover, in most GFM versions

the ghost values are written as the actual values, plus corrections that are inde-

pendent on the underlying solution to the problem. Hence, the corrections can be

pre-computed, and moved into the source term for the equation. In this fashion, the

GFM yields the same linear system as the one produced by the problem without

an interface, except for changes in the RHS only. Thus, this linear system can be

inverted just as efficiently as in problems with smooth solutions. The key difficulty

in the GFM is the calculation of the correction terms, since the overall accuracy of

the scheme depends heavily on the quality of the assigned ghost values. In [57-61]

the authors develop first order accurate approaches to deal with discontinuities.

20

It is relevant to note other methods developed to solve boundary problems in a

immersed fashion. Mayo [31] introduced a method to solve the Laplace equation in

which one first solves a boundary integral equation to obtain "jump conditions" over

the boundary. After these jump conditions are known, one can solve the Laplace

equation using finite differences. The jump conditions are used to create corrections

to the RHS of the discretized equation, similarly to the GFM (even though Mayo's

method preceded the GFM). Moreover, since the solution to the integral equation can

also yield jump conditions in derivatives of the solution, this method can be used to

create corrections to high order accuracy. Mayo [31,63] shows second and fourth order

results. Extensions of Mayo's method to the Poisson equation are presented in [63,64].

In §4 similar ideas are used to solve Poisson equations in general configurations.

Johansen and Colella [65] introduced a second order accurate finite volume dis-

cretization of the incompressible Navier-Stokes equations (INSE). This method is

based on building second order approximations to the fluxes on the edges of partial

cells (cells cut by the boundary) based on quadratic interpolations in the direction

normal to the boundary. The result is a second order accurate method that yields non-

symmetric linear systems. Jomaa and Macaskill [661 use a similar concept to obtain

a finite-difference discretization of the Poisson equation with immersed boundary.

In their work, however, Jomaa and Macaskill [66] show that stencil modifications

based on dimension-by-dimension linear interpolations suffice to yield second order

accuracy, resulting in a symmetric discretization. In addition, Linnick and Fasel [67]

were able to build a fourth order accurate method to solve the Navier-Stokes equa-

tions in stream function-vorticity formulation with complex boundaries in a immersed

fashion. This method introduces modifications to a fourth order accurate compact

finite-difference discretization of the equations using concepts similar to the IIM.

Similar methods were also developed for situations where Dirichlet-type condi-

tions are applied to an internal interface. Such is the case with Stefan problems that

describe the solidification/liquefaction of pure substances, including unstable solidifi-

cation that leads to dendritic crystal growth [37,68]. Udaykumar et al. [32] introduced

a method to solve the full INSE to second order of accuracy for problems with phase

21

transformation. In this method, the INSE are discretized using regular second-order

finite-difference stencils, except for the vicinity of the interface, where a first order

and non-symmetric discretization is devised to enforce the appropriate interface con-

ditions. Gibou et al. [69] introduced a formulation similar to the GFM to discretize

the Poisson equation to solve the Stefan problem. However, in this work, the final

discretization is second order accurate and symmetric. Later, Gibou and Fedkiw [70]

developed a fourth order accurate version of this discretization, at the cost of giving

up symmetry. More recently, the same problem has also been solved, to second order

of accuracy, in non-graded adaptive Cartesian grids by Chen et al. [71].

The finite element community has also made significant progress in incorporating

the IIM and similar techniques to solve the Poisson equation using immersed grids.

Finite element formulations have the advantage that they usually produce symmet-

ric discretizations of self-adjoint operators, and that they are (in principle) easily

extendible to high orders of accuracy and to higher dimensions. However, they also

require (at least for the current approaches for immersed problems) "special" elements

and/or integrations over partial elements. Hence, even though most of these methods

yield symmetric discretizations, most applications are still restricted to second order

accuracy in 2D.

One popular finite element method to solve elliptic problems with immersed in-

terfaces is the penalty method [72-74], where interface conditions are added with

penalization parameters to the weak formulation of the problem. Mo~s et al. [75] in-

troduced the extended finite element method (X-FEM) in the context of modelling the

growth of cracks. In essence, the X-FEM uses an enriched basis to represent the so-

lution adjacent to cracks, incorporating appropriate enrichment functions that model

displacement discontinuities introduced by the cracks. Other more general immersed

finite-element formulations include the finite-element embedded interface method by

Dolbow and Harari [76], the virtual node method by Bedrossian et al. [77], and ex-

tensions of the IIM [54,78-80], and the exact subgrid interface correction method by

Huh and Sethian [81].

In the context of the finite volume method, the cut-cell method [82-84] became a

22

standard approach in fluid flow applications with immersed boundaries. This method

was later adapted to finite elements [85], and recently incorporate in a DG discretiza-

tion of the compressible Navier-Stokes equations [86].

1.3 Contributions

In this thesis a new method is presented - the correction function method - to solve

incompressible viscous flows to high order of accuracy. This new method is of the

"immersed" kind, in which the boundaries and/or interfaces are immersed into un-

derlying regular meshes.

One key step needed to solve the incompressible Navier-Stokes equations (INSE)

is the solution of the Poisson equation. Hence, one of the core contributions of this

thesis is the development of a correction function method that can be used to solve

the Poisson equation to high order of accuracy using immersed grids. Furthermore,

within the context of the Poisson equation there is a number of configurations of

interest to fluid flow applications. In this thesis the Poisson equation is solved in

the context of (i) discontinuous solutions across internal interface, (ii) discontinuous

coefficients, and (iii) immersed boundaries. The method used to solve situation (i) is

called the "original" correction function method, since it serves as the foundation for

the correction function method used in all other applications discussed in this thesis.

This original version of the CFM was published in the Journal of Computational

Physics [87].

Other contribution of the thesis is the extension of the CFM to dynamic problems

related to fluid flow phenomena. In particular, the thesis includes the solution of

the heat equation and of the nonlinear convection-diffusion equation with immersed

boundaries. This contribution involves the creation of a concept of extended solutions

and correction functions that stretches over time and is valid for dynamic equations.

In addition, this extension is crucial to fluid flow applications because we need to

solve a nonlinear convection-diffusion equation to obtain the velocity distribution in

incompressible viscous flows.

23

The final contribution of the thesis is putting the techniques mentioned above

together to create a numerical solver for the INSE. This numerical solver is capable

of obtaining solutions to high order of accuracy with boundaries that are immersed

into regular Cartesian grids. This step also involves writing the INSE in a formulation

that is suitable for an accurate CFM discretization.

In summary, the contributions of this thesis can be separated into three categories:

1. Poisson equation: development of a new family of immersed schemes - the cor-

rection function method (CFM). These schemes yield highly accurate discretiza-

tions that can be efficiently inverted for the following problems.

" Constant coefficients Poisson equation with jump discontinuities across an

internal interface.

" Discontinuous coefficient Poisson equation with jump discontinuities across

an internal interface.

" Poisson equation with "immersed boundaries."

2. Dynamic problems: extension of the CFM to dynamic equations of interest in

fluid flow applications. In particular, this thesis includes

" the heat equation.

" the nonlinear convection-diffusion equation.

3. Incompressible flow solver: use of the CFM to solve the incompressible Navier-

Stokes equations. This step involves splitting these equations into a nonlinear

convection-diffusion equation for the velocity distribuion, and a Poisson equation

for the pressure distribution. Then, the techniques developed in items 1 and 2 are

used to create a numerical scheme that can solve incompressible viscous flows to

high order of accuracy with immersed boundaries.

24

1.4 Organization of the thesis

The remainder of this thesis is organized as follows. In §2 the "original" version of

the correction function method is introduced. This version is designed to solve the

constant coefficients Poisson equation, with jump discontinuities (with some restric-

tions) imposed across an interface internal to the solution domain. In this chapter,

the basic concepts and machinery that are behind all other versions of the CFM are

discussed in detail.

Then in §3 the original CFM is extended to solve (i) the Poisson equation with

an immersed boundary, and (ii) the discontinuous coefficient Poisson equation. The

biggest difficulty in these cases is that the PDE that defines the correction function

is coupled to the underlying solution of the Poisson equation. The approach used to

handle this coupling between the equations is discussed in §3. Next, §4 presents an

alternative approach to solve these same problems. In this alternative approach, one

first solves a boundary integral equation to obtain new "jump conditions." After this

step, a general Poisson equation can be rewritten as an equivalent constant coefficients

Poisson equation with discontinuous solution. Then this equivalent problem can be

solved with the original CFM.

Chapter §5 is dedicated to the solution of the heat equation and of the nonlin-

ear convection-diffusion equation, both with immersed boundaries. In this chapter

the concept of a correction function is extended to the context of dynamic prob-

lems. Then, in §6 the techniques discussed in §3 and §5 are combined to solve the

incompressible Navier-Stokes equations. Finally, in §7 are the concluding remarks,

including a summary the most important features of the methods described in the

thesis, and a list of open areas for possible future work.

25

26

Chapter 2

The Correction Function Method

In this chapter the original version of the correction function method (CFM) [871 is

introduced. This original version was designed to solve the constant coefficients Pois-

son equation in situations where the solution is discontinuous across some arbitrary

interface. A formal definition of this problem is presented in §2.1. Extensions of the

CFM to solve the Poisson equation under more general circumstances are discussed

in in §3 and §4.

The basic idea behind the correction function method is to create smooth exten-

sions of the solution from both sides of the discontinuity into the other side. Once

these extensions are known, one can use a standard discretization of the Poisson

equation everywhere in the solution domain. This idea, and its relationship to the

ghost fluid method, are explained in detail in §2.2. Furthermore, these extensions

can be used to define a correction function, which is characterized as the solution to

a partial differential equation, as shown in §2.3. Next, in §2.4 this concept is applied

to build a 4 th order accurate scheme in 2D. In addition, the domain of definition

of the correction function deserves special attention, so appendix C is dedicated to

explaining some details that are left out of §2.4. Finally, in § 2.5 the robustness and

accuracy of the 2D scheme are demonstrated by applying it to numerical examples.

27

2.1 Definition of the problem

The original version of the CFM was designed to solve the constant coefficients Poisson

equation in a domain Q in which the solution is discontinuous across a co-dimension

1 interface IF. This interface divides the domain into the subdomains Q+ and Q-, as

illustrated in figure 2-1. The notation (.)+ and (.)~ is used to denote values in each

of the subdomains. Furthermore, the discontinuities across r are given in terms of

two functions defined on the interface: a = a(i) for the jump in the function values,

and b = b(s) for the jump in the normal derivatives. Finally, Dirichlet boundary

conditions are imposed on the outer boundary 8Q. Thus the problem to be solved is

AUs) = f V) for Y E Q, (2.la)

[u] = a(g) for Y E F, (2.1b)

[un] = b(Y) for Y E IF, (2.1c)

u(9) = g(g) for Y E a, (2.1d)

where

[. () G_()- (2.2a)

denotes jumps across an internal interface. Throughout this chapter, z = (x1, x2, . -.) E

R' is the spatial vector (where v = 2, or v = 3), and A is the Laplacian operator

defined by

A (2.3)

Furthermore,

U" = ft - iU =f - (U, UX2, ..)(2.4)

denotes the derivative of u in the direction of ft, the unit vector normal to the interface

F pointing towards Q+ (see figure 2-1).

Moreover, note that this version of the CFM is focused on the discretization of the

problem in the vicinity of the interface only. Thus, the method is compatible with

28

Figure 2-1: Example of solution domain Q. The solution is discontinuous across the
interface F.

any set of boundary conditions on &Q, not just Dirichlet, as long as these boundary

conditions are properly enforced. In the examples included in this chapter, OQ is

rectangular. Extensions of the CFM to arbitrarily shaped boundaries are discussed

in §3 and §4.

2.2 The basic idea

The correction function method is based on the concept of a correction function. This

concept is a generalization of the ideas of the ghost fluid method (GFM). In essence,

one starts with a standard finite-differences discretization of the Laplace operator

(e.g. 5-point or 9-point stencil). Whenever the discretization stencil straddles the

interface F, the corrections are used on the right-hand-side (RHS) of the discretized

equation to incorporate the jump conditions. As a consequence, the linear system

that results from the finite-differences discretization is not altered, only the RHS.

Thus, this linear system can be inverted as efficiently as in the case of a solution

without discontinuities.

The following example illustrates the key concept in the GFM. Consider the one

29

a

b .

i-1] Q +1

Figure 2-2: Example in 1D of a solution with a jump discontinuity.

dimensional Poisson equation: uX (x) = f(x), for XL < X < XR. Then, assume that u

is discontinuous at xr, with Q+ X : XL < x < xr}, and Q RX : XF <-X <XR}

The standard 2 nd order centered differences discretization of the equation is

+ ~ -1 - 2 +1 (2.5)uX, ~" h2

where h = xi+1 - xi is the grid spacing - see figure 2-2. However, in the situation

depicted in figure 2-2, x < xr < xi+1. Thus, at xi+ 1 only u;+1 is defined, not u+1

The idea is to estimate a correction Di+I = - + A1, such that (2.5) becomes

1 - 2+ (u+1 + Di+) (26)uX~ , ~ h2(26

Note that, if the correction Di+1 is independent on the solution u, then it can be

moved to the RHS of the equation, and absorbed into f. That is

ut_ - 2nit + u+1 Di+1ut1i -2u +z~ 1 -fDZ+ (2.7)
h2 h2.(27

With this procedure, the problem with discontinuities can be solved with the same

discretization used to solve the continuous problem. Hence, the resulting linear system

can be inverted using the same well established and efficient techniques available for

30

D.-

the continuous Poisson equation [43].

Remark 2.1. The final accuracy of the discretization depends on the quality of D.

Liu, Fedkiw, and Kang [59] estimate D using a dimension-by-dimension linear ex-

trapolation of the interface jump conditions - i.e. the functions a and b in (2.1). The

result is a first order approximation for D. The CFM is based on generalizing the idea

of the correction term to that of a correction function, which can be characterized as

the solution to a partial differential equation. Then, high accuracy representations of

D follow from solving this equation to high order accuracy, without the complications

introduced by dimension-by-dimension Taylor expansions. 4

Remark 2.2. An additional advantage of the correction function approach is that

D can be evaluated at any point near the interface F. Hence, the CFM can be used

with any finite differences discretization of the Poisson equation, without regard to

the particulars of the stencil (as would be the case with any approach based on Taylor

expansions).

2.3 The correction function and the equation defin-

ing it

As mentioned above, the idea of the CFM is to generalize the concept of correction

terms defined at certain grid nodes to that of a correction function, and then to find

a partial differential equation (PDE) - with appropriate boundary conditions - that

uniquely characterizes the correction function. Then, at least in principle, one can

design algorithms to solve this PDE to obtain the correction function to any desired

order of accuracy.

Consider a small region Qr that encloses the interface r, defined as the set of

all the points within some distance R of r. The value R is of the order of the grid

size h. As explained below, R must be as small as possible. On the other hand, Qr

has to include all the points where the CFM requires corrections to be computed,

31

which means that R depends on the discretization stencil being used'. In addition,

algorithmic considerations (to be seen later) may force R to be slightly larger than

what is needed to include the discretization stencil.

Next, assume that both u+ and u- can be extrapolated, so that they are valid

everywhere within Qr and satisfy the following Poisson equations.

Au+(V) = f+(+) for X E Gr, (2.8a)

Au-(V) = f-(V) for Y E Qr, (2.8b)

where f+ and f- are smooth enough extensions of the source term f to Qr (see

remark 2.3 below). In particular, notice that (2.8) allows for the possibility of a

source term that is discontinuous across 1.

The correction function is then defined by D(Y) = u+ (i) - u- (). The PDE that

characterize D is obtained by (i) taking the difference between the (2.8a) and (2.8b),

and (ii) using the jump conditions (2.1b) and (2.1c). Thus,

AD(Y) = f+(Y) - f-(Y) = fD(Y) for Y E Qr, (2.9a)

D(Y) = a(Y) for Y E I, (2.9b)

Dn(Y) = b(Y) for Y E F. (2.9c)

This PDE defines the correction function as the solution to a set of equations, with

some provisos - see remark 2.4 below. Note that:

1. If the source term is continuous across Q, then fD = 0.

2. Equation (2.9c) imposes the true jump condition in the normal direction, whereas

some versions of the GFM rely on a dimension-by-dimension approximation of

this condition [59].

Remark 2.3. The smoothness requirement on f+ and f is tied up to the desired

accuracy for D. For example, in general one can only estimate D to 4h order accuracy

'In particular, the 9-point stencil is used in this thesis, so 1R cannot be smaller than Vrh.

32

if D is at least C4 . Hence, in this case, fD = + f- must be 02. 46

Remark 2.4. Equation (2.9) is an elliptic Cauchy problem. In general, such prob-

lems are ill-posed. However, (2.9) is well posed in the special context of a numerical

approximation where

(a) There is a frequency cut-off in (i) the data a = a(Y) and b = b(z!), and (ii) the

description of the curve IF.

(b) The solution is needed only a small distance away from the interface IF, where

this distance vanishes simultaneously with the inverse of the cut-off frequency

mentioned in point(a).

Because of these conditions, the arbitrarily large growth rate for arbitrarily small

perturbations, which is responsible for the ill-posedness of the Cauchy problem, does

not occur.

The reason the arbitrarily large growth does not occur is as follows. Consider a

perturbation to the solution to Poisson equation along some straight line. Assume a

sinusoidal perturbation with wave number 0 < k < o. Then the perturbation grows as

e2,skd, where d is the distance from the line. However, by construction, in the present

case conditions (a) and (b) guarantee that kd is bounded. 4

Remark 2.5. A number characterizing how well posed the discretized version of (2.9)

is can be defined as:

a = largest growth rate possible,

where growth is defined relative to the size of a perturbation to the solution on the

interface. This number is determined by R (the "radius" of Gr), as the following

calculation shows. First, there is no loss of generality in assuming that the interface

is flat, provided that the numerical grid is fine enough to resolve F. In this case,

consider an orthogonal coordinate system y on F, and let d be the signed distance

to F (say, d < 0 in Q-). Expanding the perturbations in Fourier modes along the

33

interface, the typical mode has the form

= e2ik-±2,rkd

where k is the Fourier wave vector, and k = Iki. As noted in item (a) of remark 2.4,

there is a limit to the shortest wave-length that can be represented on a grid with mesh

size 0 < h < 1, corresponding to k = km,, = 1/(2h). Hence, an estimate for the

maximum growth rate is

a ~e7rR/h.

Moreover, as noted in item (b) of remark 2.4, the size of 1? is proportional to h.

Hence, the maximum growth rate is always bounded. 4

Remark 2.6. Clearly, a is intimately related to the condition number for the dis-

cretized problem - see §2.4. In fact, at leading order, the two numbers should be

(roughly) proportional to each other - with a proportionality constant that depends

on the details of the discretization. For the discretization used described in §2.4,

-Vh < 1? < 2x/2h, which leads to the rough estimate 85 < a < 7,200. On the other

hand, the observed condition numbers vary between 5,000 and 10,000. Hence, the

actual condition numbers are only slightly higher than a for the ranges of grid sizes

used here (the asymptotic limit h -+ 0 was not explored). 4

Remark 2.7. Equation (2.9) depends only on the known inputs of the problem: f+,
f-, a, and b. Consequently, D does not depend on the solution u. Hence, after

solving (2.9) for D, one can use any standard finite difference discretization of the

Poisson equation. Whenever the stencil straddles the interface, D is evaluated where

the correction is needed, and these values are transferred to the RHS. 4

Remark 2.8. When developing an algorithm for a linear Cauchy problem, such as

(2.9), the two key requirements are consistency and stability. In particular, when

the solution depends on the "initial conditions" globally, stability (typically) imposes

stringent constraints on the "time" step for any local (explicit) scheme. This would

seem to suggest that, in order to solve (2.9), a "global" (involving the whole domain

34

Qr) method will be needed. This, however, is not true: because the solution of (2.9)

is needed for one "time" step only - i.e. within an 0(h) distance from 1, stability is

not relevant. Hence, consistency is enough, and a fully local scheme is possible. In

the algorithm described in §2.4 it was observed that, for (local) quadrangular patches,

the Cauchy problem leads to a well behaved algorithm when the length of the interface

contained in each patch is of the same order as the diagonal length of the patch. This

result is in line with the calculation in remark 2.5: we want to keep the "wavelength"

(along r) of the perturbations introduced by the discretization as long as possible. In

particular, this should then minimize the condition number for the local problems -

see remark 2.6. 4

2.4 A 4 th order accurate scheme in 2D

2.4.1 Overview

In this section the general ideas presented in §2.3 are used to develop a specific

example of a 4 th order accurate scheme in 2D. The key points of this scheme are

(a) The Poisson equation is discretized using a compact 9-point stencil - see appendix

A. Compactness is important since it is directly related to the size of R, which

has an impact on the problem's conditioning - see remarks 2.4 to 2.6.

(b) The interface F is represented using the gradient-augmented level set method -

see [42]. This method guarantees a local 4th order representation of the interface,

as required to keep the overall accuracy of the scheme.

(c) The domain Qr is sub-divided into small rectangular regions dubbed O-'i. Each

of these regions is associated with a point in the grid at which the standard

discretization of the Poisson equation involves a stencil that straddles the interface

17. Furthermore, '(ij) encloses a portion of F, and all the nodes where D is needed

to complete the discretization of the Poisson equation at the (i, j)-th stencil.

(d) Within each O('j, the correction function D is approximated using a bicubic

35

interpolation. This approximation guarantees local 4 th order accuracy with only

12 interpolation parameters 2

(e) In each O('j, the PDE (2.9) is solved in a least squares sense. Namely: First we

define an appropriate positive quadratic integral quantity J, equation (2.14), for

which the solution is a minimum (actually, zero). Next, we substitute the bicubic

approximation for the solution into J, and the integrals are discretized using

Gaussian quadrature. Finally, we find the bicubic parameters by minimizing the

discretized J.

Remark 2.9. Solving the PDE in a least squares sense is crucial, since an algo-

rithm is needed that can deal with the myriad ways in which the interface F can be

placed relative to the fixed rectangular grid used to discretize the Poisson equation.

This approach provides a scheme that (i) is robust with respect to the details of the

interface geometry, (ii) has a formulation that is (essentially) dimension independent

- there are no fundamental changes from 2D to 3D, and (iii) has a clear theoretical

underpinning that allows extensions to higher orders, or to other discretizations of

the Poisson equation. 4

2.4.2 Standard Stencil

In this thesis we use the standard 4 th order accurate 9-point discretization of the

Poisson equation (see appendix A):

LoUi,3 + ±(h + hy)&22byy&uu = fij + - (f), + h (y),), (2.10)

where L5 is the 2 nd order 5-point discretization of Laplace's operator - see equation

(A.1).

In the absence of discontinuities, expression (2.10) provides a compact 4 th order

accurate representation of the Poisson equation. On the other hand, in the vicinity

2The standard bicubic interpolation requires 16 interpolation parameters. However, in the the-
sis we use the version introduced in [42], which needs only 12 parameters. For more details, see
appendix B.

36

of the interface F we need to compute correction terms to complete the discretiza-

tion, as described in detail next. To understand how the correction terms affect the

discretization, consider the situation depicted in figure 2-3(a). In this case, the node

(i, j) lies in Q+ while the nodes (i+1, j), (i+1, j +1), and (i, j+1) are in Q~. Hence,

to be able to use the discretization (2.10), we need to compute Di+1,,, Di+1, +1 , and

Di,j+1-

(a)

Figure 2-3: (a) The 9-point compact stencil next to
for this stencil.

After having solved for D where necessary (see

terms modify the RHS on (2.10) as follows.

(b)

the interface 1. (b) The set Q("'I

§2.4.3 and §2.4.4), the correction

L u,j + 1 2(h2 + h -)b nij = fij + 12(h2 (fx)i,j + h2 (fyy),j) + Ci,, (2.11)

Here the Cjj are the CFM correction terms needed to complete the stencil across the

discontinuity at F. In the particular case illustrated in figure 2-3(a),

(2.12)

(h 2 + h 2)- (h 2 + h 2) 1-
Csy=6 (hxhy)2 ~2 D+,+_6 (hx hy)2 h2 D~+

1 (h2 + h,)
12 (hxhy) 2 Di+1,j+1-

37

ymaxr 'lj+1 U+

I-1+1 11J1 1+1 I

Or ""V~
Xminrl XMD MX

Ynr yminD

1 -1 J-1 IJ.1 i1.

+1j

Similar formulas apply for the other possible arrangements of the Poisson equation

stencil relative to the interface F.

2.4.3 Definition of Q(ij)F

There is some freedom on how to define Q(ij'. The basic requirements are

(i) £4&') should be small, since the problem's condition number increases exponen-

tially with the distance from F - see remarks 2.5 and 2.6.

(ii) Q>"' should contain all the nodes where D is needed. For the example, in

figure 2-3(a) the correction terms Di+1 ,j+1, Di+1,j, and Dij+1 are needed. Hence,

in this case, Q(j) should include the nodes (i+ 1, j + 1), (i+ 1, j), and (i, j + 1).

(iii) Q("j) should contain a segment of F, with a length that is as large as possible

i.e. comparable to the length of the diagonal of Q(i). This follows from the

calculation in remark 2.5, which indicates that the wavelength of the perturba-

tions (along F) introduced by the discretization should be as long as possible.

This should then minimize the condition number for the local problem - see

remark 2.6.

In addition, since (2.9) is solved in a least squares sense, integrations over O(,j) are

required. Thus, it is useful to keep Q(' as simple as possible. For this reason, we

add the extra requirements listed below.

(iv) Q(') should be a rectangle.

(v) The edges of G 'j should be parallel to the grid lines.

In principle, items (iv) and (v) could be traded for improvements in other areas -

for example, for better condition numbers for the local problems, or for additional

flexibility in dealing with complex geometries. However, for simplicity we enforce (iv)

and (v). A discussion of various aspects regarding the definition of Q(ij) can be foundF

in appendix C. For instance, requirement (v) is convenient only when an implicit

representation of the interface is used.

38

With the points above in mind, Q('j) is defined as the smallest rectangle that

satisfies th requirements in (ii)-(v); (i) follows automatically. Hence Q 'j can be

constructed using the following three easy steps.

1. Find the coordinates (Xminr, xmaxr) and (Yminr, Ymaxr) of the smallest rectangle

that completely encloses the section of the interface F contained by the region

covered by the 9-point stencil.

2. Find the coordinates (XminD, XmaxD) and (YminD7 YmaxD) of the smallest rectangle

that completely encloses all the nodes at which D needs to be known.

3. Then QO') is the smallest rectangle that encloses the two previous rectangles. Its

edges are given by

Xmin = min(Xminr, XminD), (2.13a)

Xmax = max(Xmaxr, XmaxD), (2.13b)

Ymin = min(yminr, YminD), (2.13c)

Ymax = max(ymaxr, ymaxD). (2.13d)

Figure 2-3(b) shows an example of £ '" defined using these specifications.

Remark 2.10. Notice that a distinct domain Q('j is defined for each stencil that

straddles the interface. When doing so, domains overlap. For example, the domain

Q') shown in figure 2-3(b) is used to determine Cj. It should be clear that Q(G1,j+)

(used to determine Ci-1,j+1), and Q(+1,i-) (used to determine Ci+1,j-1), each will

overlap with Q(i')

The consequence of these overlaps is that there are multiple values for D at the

same node - one for each domain used to solve the local Cauchy problem. However,

because we solve for D - within each Q(>') - to 4 th order accuracy, any differences that

arise from this multiple definition of D lie within the order of accuracy of the scheme.

Since it is convenient to keep the computations local, the values of D resulting from

the domain Q('j are used to evaluate the correction term C, 3 . 4

39

Remark 2.11. While rare, cases where a single interface crosses the same stencil

multiple times can occur. An example is presented in §2.5.2. A simple approach to

deal with situations like this involves two steps: (i) associate each node where the

correction function is needed to a particular piece of interface crossing the stencil

(say, the closest one), and (ii) define one Q4>') for each of the individual pieces of

interface crossing the stencil.

For example, figure 2-4(a) depicts a situation where the stencil is crossed by two

pieces of the same interface (F1 and r2), with D needed at the nodes (i + 1, j + 1),

(i + 1, j), (i, j + 1), and (i - 1, j - 1). Then, first associate:

a (i + 1,j + 1), (i + 1,j), and (i,j + 1) to J1.

e (i - 1, j - 1) to F2.

Second, define

1. Q('j is the smallest rectangle, parallel to the grid lines, that includes 1 and the

nodes (i + 1,j + 1), (i + 1,j), and (ij + 1).

2. Q(i) is the smallest rectangle, parallel to the grid lines, that includes ['2 and the

node (i - 1, j - 1).

After the multiple Q("') are defined within a given stencil, the local Cauchy prob-

lem is solved within each G 'j separately. For example, in the case shown in fig-

ure 2-4(a), the solution for D inside QG j is completely independent of the solution

for D inside Q f). The decoupling between multiple crossings renders the CFM flex-

ible and robust enough to handle complex geometries without any special algorithmic

considerations. 4

Remark 2.12. When multiple distinct interfaces are involved, a single stencil can be

crossed by different interfaces - e.g. see §2.5.3 and § 2.5.4. This situation is similar

to the one described in remark 2.11, but with an additional complication: there may

occur distinct domain regions that are not separated by an interface, but rather by a

third (or more) regions between them. An example is shown in figure 2-4(b), where

40

I-1a a 1 ~ 11 ji -I1 +1J

-IJ-1 I[IJ-1 i.1_.1 _-1_.1 -j-1-1.1

(a) (b)

Figure 2-4: Configuration where multiple Q are needed in the same stencil. (a)
Same interface crossing the stencil multiple times. (b) Distinct interfaces crossing the
same stencil.

11-2 and 12-3 are not part of the same interface. Here FI-2 is the interface between

Q1 and Q 2 , while F2-3 is the interface between Q 2 and Q 3 . There is no interface F1-3

separating Q1 from Q3 , hence no jump conditions between these regions are provided.

Nonetheless, D 1- 3 = (a3 - U1) is needed at (i + 1, j + 1).

Situations such as these can be easily handled by noticing that we can distinguish

between primary (e.g. D 1 -2 and D 2- 3) and secondary correction functions, which can

be written in terms of the primary functions (e.g. D 1 = D1-2 + D 2- 3) and need not

be computed directly. Hence, we can proceed exactly as in remark 2.11, except that we

have to make sure that the intersections of the regions where the primary correction

functions are computed include the nodes where the secondary correction functions

are needed. For example, in the particular case in figure 2-4(b), we define

1. 2j is the smallest rectangle, parallel to the grid lines, that includes F1-2 and

the nodes (i + 1, j + 1), (i + 1, j), and (i, j + 1).

2. Qj is the smallest rectangle, parallel to the grid lines, that includes F2- 3 and

the node (i + 1, j + 1). 4

41

2.4.4 Solution of the local PDE

As mentioned in §2.4.1, it is important to solve the PDE that defines the correc-

tion function in a least squares sense. By doing so, we are able to build a scheme

that (i) does not excite undesirable high frequencies that affect the conditioning of

the problem, and (ii) that is flexible enough to deal with the myriad of geometrical

configurations that result from the crossing of an arbitrary interface with the regular

grid. Specifically, the local PDE are solved by minimizing the functional

J= (") {AD() - fD) 2

2V(O 'E) rg

+ Ce {fD(Y) - a(Y)}2 dS (2.14)2LR (F) rnage

+ -c x D~) - b(Y)}2 dS,
C2L(r) rnagF

where V(Qr'Ej) is the "volume" of Q(j), and L(F) is the "area" of F. Furthermore,

cp > 0 is the penalization coefficient used to enforce the interface conditions, and

("') > 0 is a characteristic length associated with Q(j) - e.g. the shortest side length.

Clearly J is a quadratic functional whose minimum (zero) occurs at the solution to

(2.9).

Hence, computing D in the domain (,j) involves the steps described below.

1. Choose a set of basis functions to represent D within QO'hj: D(Y) =3 der(Y).
f=1

2. Replace this representation of D into the functional J.

3. Approximate the integrals in (2.14) using numerical quadrature.

4. Solve for the weights de that minimize J (n x n self-adjoint linear system).

Since we use a 4 th order accurate discretization of the Poisson equation, we need to

obtain D with 4 th order errors (or better) to keep the overall accuracy of the scheme

- see § 2.4.7. Hence, here D is represented using cubic Hermite splines (bicubic in-

42

terpolants in 2D), which guarantees 4 th order accuracy - see [42}3. Note also that,

even though the scheme developed here is restricted to 2D, this representation can

be easily extended to any number of dimensions. Moreover, the integrals are approx-

imated using Gaussian quadratures - the results presented here were computed with

six quadrature points for the ID line integrals, and 36 points for the 2D area integrals.

The resulting discrete problem is then minimized. Because the bicubic representa-

tion of D involves 12 basis polynomials, the minimization problem produces a 12 x 12

self-adjoint linear system.

Remark 2.13. The option of enforcing the interface conditions using Lagrange mul-

tipliers was also explored. While this second approach yields good results, experience

showed that the penalization method is more robust. 4

Remark 2.14. The scaling using 4" in (2.14) is so that all the three terms in the

definition of J behave in the same fashion as the size of Q-' changes with (i, j), or

when the computational grid is refined 4. This follows because we expect that

AD - f = O y2),

D - a = (j),

Dn - b = O(j3).

Hence each of the three terms in (2.14) should be O(f'). 4

Remark 2.15. Once all the terms in (2.14) are guaranteed to scale the same way

with the size of Q4', the penalization coefficient cp should be selected so that the three

terms have (roughly) the same size for the numerical solution (they will, of course,

not vanish).

In principle, cp could be determined from knowledge of the fourth order derivatives

of the solution, which control the error in the numerical solution. This approach does

not appear to be practical. A simpler method is based on the observation that cp should

3 The basis functions corresponding to the bicubic interpolation can be found in appendix B.
4The scaling also follows from dimensional consistency.

43

not depend on the grid size (at least to leading order, and we do not need better than

this). Hence it can be determined empirically from a low resolution calculation. In

the examples shown in §2.5 cp ~ 50 produced good results. 4

Remark 2.16. A more general version of J would involve different penalization coef-

ficients for the two line integrals, as well as the possibility of these coefficients having

a dependence on the position of Q4'. These modifications could be useful in cases

where the solution to Poisson equation has large variations - e.g. a very irregular

interface F, or a complicated forcing f. Nonetheless, (2.14) worked for all problem

considered here. 4

2.4.5 Computational Cost

We can now infer something about the cost of scheme proposed here. To start with,

denote the number of nodes in the x and y directions by

1 1
Nx = + 1, Ny = + 1, (2.15)

assuming a 1 by 1 computational square. Hence, the total number of degrees of

freedom is M = N2Ny. Furthermore, the number of nodes adjacent to the interface

is O(My1 2), since the interface is a ID entity.

The standard discretization of the Poisson equation results in a M x M linear

system. Furthermore, the present method produces changes only on the RHS of the

equations. Thus, the basic cost of inverting the linear system is unchanged, and it

varies from O(M) to O(M 2) operations, depending on the solution method.

Let us now consider the computational cost added by the modifications to the

RHS. As presented above, for each node adjacent to the interface, we must

" construct G .

" compute the integrals that define the local 12 x 12 linear system.

" invert this 12 x 12 self-adjoint linear system.

44

Note that the cost associated with these tasks is constant: it does not vary from

node to node, and it does not change with the size of the mesh. Consequently,

the resulting additional cost is a constant times the number of nodes adjacent to

the interface. Hence it scales as M1'/. Because of the (relatively large) coefficient

of proportionality, for small M this additional cost can be comparable to the cost of

inverting the M x M linear system associated with the Poisson equation. Nevertheless,

this extra cost becomes less significant as M increases.

2.4.6 Interface Representation

As far as the CFM is concerned, the framework needed to solve the local Cauchy

problems is entirely described above. However, there is an important issue that de-

serves attention: the representation of the interface. This question is independent of

the CFM. Many approaches are possible, and the optimal choice is geometry depen-

dent. The discussion below is meant to shed some light on this issue, and motivate

the solution adopted here.

In the present work, it is assumed that the interface is not known exactly - since

this is what frequently happens. The only exceptions are examples §2.5.3 and §2.5.4,

which involve two distinct (circular) interfaces touching at a point. In the generic

setting, in addition to a proper representation of the interfaces, one needs to be able

to identify the distinct interfaces, regions in between, contact points, as well as distin-

guish between a single interface crossing the same stencil multiple times and multiple

distinct interfaces crossing one stencil. While the CFM algorithm is capable of dealing

with these situations once they have been identified (e.g. see remarks 2.11 and 2.12),

the development of an algorithm with the capability to detect such generic geometries

is beyond the scope of this thesis, and a (hard) problem in interface representation.

For these reasons, in the examples in §2.5.3 and §2.5.4 we use an exact representation

of the interface.

To guarantee the accuracy of the solution for D, the interface conditions must

be applied with the appropriate accuracy - see §2.4.7. Since these conditions are

imposed on the interface F, the location of F must be known with the same order of

45

accuracy desired for D. In the particular case of the 4 th order implementation of the

CFM algorithm, we need to represent the interface to 4 th order accuracy. For this

reason, the gradient-augmented level set (GA-LS) method [42] was adopted here. This

method allows a simple and completely local 4 th order accurate representation of the

interface, using Hermite cubics defined everywhere in the domain. The approach also

allows the computation of normal vectors in a straightforward and accurate fashion.

Note that the GA-LS method is not the only option for an implicit 4 th order

representation of the interface. For example, a regular level set method [35], combined

with a high-order interpolation scheme, could be used as well. However the GA-

LS approach was adopted because of the algorithmic coherence that results from

representing both the level set and the correction functions using the same bicubic

polynomial base.

2.4.7 Error analysis

A naive reading of the discretized system (2.11) suggests that, in order to obtain a

4 th order accurate solution u, one needs to compute the CFM correction terms Ci,

to 4 th order of accuracy. Thus, from (2.12), it would follow that we need to know

the correction function D to 6 th order accuracy! This is, however, not correct, as

explained below.

Since we need to compute the correction function D only at grid points an O(h)

of distance away from IF, it should be clear that errors in the Di, are equivalent to

errors in the jump conditions a and b. But errors in a and b produce errors of the

same order in u - see equations (2.1) and (2.2). Hence, if we desire a 4 th accurate

solution u, we need to compute the correction terms Di, to 4 th order of accuracy

only. This argument is confirmed by the convergence plots shown in §2.5.

2.4.8 Computation of gradients

Some applications require not only the solution to Poisson equation, but also its

gradient. Hence, in §2.5 plots of the convergence of the errors in the gradients of the

46

solutions are also shown. A key question is then: how are these gradients computed?

To compute the gradients near the interface, the correction function can be used

to extend the solution across the interface, so that a standard stencil can be used.

However, this approach only works if the gradient operator is discretized using the

same nodes that are part of the 9-point stencil. If so, we can use the same correction

functions computed while solving the Poisson equation. Hence, the gradient operator

is discretized with a procedure similar to the one used to obtain the 9-point stencil

(see appendix A). Specifically, the following 4 th order accurate discretization is used.

h
= 2 xui,j ±, + [$x25yui, - (f2)i,] , (2.16)

h2
&Ouj'j =1~i ± , P9yb~ui'j - (fy)i,j] (2.17)

where

O2'i, = Ui+1,j - 'U-1,, (2.18)
2h(

$,hij = Usj+2 -1 (2.19)

and $2 and $., are defined by (A.2) and (A.3), respectively. The terms (f2)ij and

(fY)i,j may be given analytically (if known), or computed using appropriate second

order accurate discretizations.

This discretization is 4 th order accurate. However, since the error in the correction

function is (generally) not smooth, the resulting gradient will be less than 4 th order

accurate (worse case scenario is 3 rd order accurate) next to the interface.

2.5 Results

This section shows four examples of computations in 2D using the scheme introduced

in §2.4. In the first two examples the discontinuities occur along one single interface,

whereas the last two examples involve two distinct interfaces touching at one single

point. As discussed in §2.4.6, these last two examples involve the difficult problem of

47

identifying the pieces of interface cutting each stencil by each particular curve. For

this reason, in examples 3 and 4 an exact representation of the interfaces is used. On

the other hand, in examples 1 and 2 the interface is represented implicitly using the

GA-LS method.

2.5.1 Example 1

This example involves the Poisson problem associated with the exact solution

U+(x, y) = sin(rx) sin (7ry),

u-(x, y) = sin(-rx){sin(7ry) - exp(ry)}.

The solution domain is the square [0, 1] x [0,1], and the interface is defined by the

zero contour of the level set function

#(x, y) = r2 (x, y) - ro,

where

r(x, y)= (x-xz) 2 ±(y-y) 2 . (2.20)

Here, xo = 0.5, yo = 0.5, and ro = 0.1. Figure 2-5(a) shows the interface immersed

in a Cartesian grid. The subdomain Q~ is the region contained inside the circular

interface, whereas Q+ is the region exterior to this interface.

Figure 2-5(b) shows the numerical solution obtained with a fine grid (193 x 193

nodes). As we can observe, the discontinuity is captured very sharply, and it causes

no oscillations in the solution. In addition, the convergence of the error in the solution

and its gradient are plotted in figure 2-6. Both the L 2 and L. norms are shown. As

expected, the error in the solution converges to 4 th order in both norms as the grid

is refined. Moreover, the error in the gradient converges to 3 rd order in the L.. norm

and to 4 th order in the L 2 norm, which is a reflection of the fact that the error in the

solution is not smooth only in a narrow region close to the interface.

48

0.9 *20

0.8

0.7

0.6
-2-2

-. 0.5

0.4T

0
0 -5

0 0.2 0.4 0.6 0.8 1 0 0

(a) (b)

Figure 2-5: Example 1. (a) Solution domain embedded in a 33 x 33 Cartesian grid.
(b) Solution obtained with a 193 x 193 grid.

102 102

10-4 10~4

10 10
22

- - L2 - U.
10 - L 10- - L2 - u

10--e L- -01 - - -a

10
2

10 3

103 10 10 103 104 10
h h

(a) Solution. (b) Gradient.

Figure 2-6: Example 1. Convergence of the error in the solution and its gradient in
the L 2 and Loc norms.

Once the solution and its gradient are known on the computational grid, we can

evaluate the solution anywhere in the domain to 4 th order accuracy using the bicubic

interpolation. For points close to the interface, the correction function can be used to

"correct" the interpolation parameters on the grid nodes lying on the opposite side. In

many applications, the solution evaluated on the interface is particularly important.

Hence, to demonstrate the quality of the solution over the interface, figure 2-7 shows

the convergence of the error along the interface. Namely, for each patch Oj, the

solution and its gradient are computed on the quadrature nodes used to approximate

49

the integral over the interface in (2.14) (either u+ or u-, since the jump conditions

are known). The errors in the solution and the gradient are then measured, and the

maximum errors over all quadrature nodes and all patches are plotted in figure 2-7 (a

rough estimate of the continuous L,, norm). As expected, the error in the solution

converges to 4 th order, while the error in the gradient converges to 3rd order.

100

10-2

10,

10'

10

10 0
100 10-2 10

Figure 2-7: Example 1. Convergence of the error in the solution and its gradient
evaluated along the interface.

2.5.2 Example 2

This example involves the Poisson problem associated with the exact solution

u+(x,y) = 0,

u-(x, y) = exp(x) cos(y).

The solution domain is the [0, 1] x [0, 1] square, and the interface is defined by zero

contour of the following level set function.

O5(XI Y) =r2 (X, Y) _ r 2 (O(X, Y)),

r(O) = ro + c sin(50),

O(x, y) = arctan(Y -/O,
(z - xo

50

where r(x, y) is defined by (2.20). Moreover, xo = 0.5, yo = 0.5, r = 0.25, and

e = 0.05. Figure 2-8(a) shows the interface immersed in a Cartesian grid. The

subdomain Q- is the region contained inside the interface, whereas Q+ is the region

exterior to this interface.

Figure 2-8(b) shows the numerical solution obtained with a fine grid (193 x 193

nodes). Once again, the overall quality of the solution is very satisfactory. Figure 2-9

shows the convergence of the error of the solution and its gradient in the L 2 and

L, norms. As we can observe, the solution converges to 4 th order, while the gradient

converges to 3rd order in the L, norm and close to 4th order in the L 2 norm. However,

unlike what happens in example 1, small wiggles are observed in the error convergence

plots. This behavior can be explained by the construction of the sets 0 - see @2.4.

The approach used to construct Q" is highly dependent on the way in which the

grid points are placed relative to the interface. Thus, as the grid is refined, the

arrangement of the Q can vary quite a lot - specially for a "complicated" interface

such as the one in this used example. What these variations mean is that, while one

can guarantee that the correction function D is obtained with 4 th order precision,

the proportionality coefficient is not constant - it may vary a little from grid to grid.

This variation is responsible for the small oscillations observed in the convergence

plot. Nevertheless, despite these oscillations, the overall convergence is clearly 4th

order.

The convergence of the error along the interface is shown in figure 2-10. As

expected, the error in the solution converges to 4 th order, while the error in its gradient

converges to 3 rd order.

2.5.3 Example 3

In this example two interfaces are so close together as to touch at one single point.

Consequently, this example involves the issue discussed in remark 2.12: the possibility

of more than one interface crossing the stencil at the same time.

51

10-2

(a) Solution.

104

10'

0

0

10

10-

10

10
10_,

(b) Gradient.

Figure 2-12: Example 3. Convergence of the error in the solution and its gradient in

the L 2 and Loc norms.

100

10-2

2

10
4

106

108

10 10
10, 10-'10 2

h

Figure 2-13: Example 3. Convergence of the error in the solution and its gradient
evaluated along the interface.

2.5.4 Example 4

This example complements example 3, the sole difference being that here the small

circle is placed inside the big circle. The Poisson problem to be solved is this case is

55

10-2

10-4

10
0

10-8

10

10 120 10

6

* Region 3: inside of the small circle.

Figure 2-11(b) shows the numerical solution with a fine grid (193 x 193 nodes).

In this example the big circle is centered within the square integration domain and

the small circle is external to it, with a common point of tangency. This setting

guarantees that, as the grid is refined, a wide variety of configurations involving two

distinct interfaces crossing the same stencil occurs in a neighborhood of the contact

point. Figure 2-12 shows the convergence of the error in the L 2 and L' norms. Once

again we observe 4 th order convergence (with small superimposed oscillations) for the

solution. In addition, the gradient converges to 3 rd order in the Lo, norm and close

to 4 th order in the L 2 norm. This example shows that the CFM is robust even in

situations where distinct interfaces can get arbitrarily close (tangent at a point).
In this example the solution and its gradient are also evaluate along the interface.

Figure 2-13 shows the convergence of the errors. As expected, the error in the solution

converges to 4 th order, while the error in its gradient converges to 3 d order.

1

0.9 10- 5

0.6

0.7
5

0.(0-

0.41-
5

0.3 -- 100

0 050.5
0 .2 0.4 0.6 0.8 1 0

x Y

(a) (b)

Figure 2-11: Example 3. Convergence of the error in the solution and its gradient in
the L 2 and L, norms.

54

10 2

10

10--

-u-u,

1010

10 10 10*2 10

h

Figure 2-10: Example 2. Convergence of the error in the solution and its gradient

evaluated along the interface.

this example the exact location of the interface is used. These interfaces are circles

defined with the following parameters.

" Interface 1-2 (Big circle):

rB= 0.3, XOB 0.5, YOB = 0.5.

* Interface 2-3 (Small circle):

rs =0.3,

Xos= XOB + rB COS(7/e 2) - rs cos(7(1/ 2 + 1)),

yos YOB + rB Sin(7/ e 2) - rs sin(7r(1/ 2 + 1)).

The point of contact is placed along the boundary of the big circle at the polar angle

0 = 7re 2 - use the center of the big circle as the polar coordinates' origin. This

value of 6 guarantees that no special alignments of the grid with the local geometry

near the contact point can happen. Figure 2-11(a) shows the interface immersed in

a Cartesian grid. Finally, these interfaces sub-divide the solution domain into

" Region 1: inside of the big circle.

" Region 2: outer region.

53

0.91

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
0 0.2 0.4 0.

-1

JV
2-

1.5

0.5

6 0.8 y

(a)

X

18

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

0

(b)

Figure 2-8: Example 2. Convergence of the error in the solution and its gradient in
the L 2 and L, norms.

10-8

10-

__

10-

(a) Solution. (b) Gradient.

Figure 2-9: Example 2. Convergence of the error in the solution and its gradient in
the L 2 and L, norms.

The Poisson problem to be solved is the one associated with the exact solution

ui(x, y) = sin(ix) sin(ry) + 5,

u2 (x, y) = exp(x){X 2 sin(y) + y2

u3 (x, y) = sin(7rx){sin(wy) - exp(7ry)}.

Because of the presence of two interfaces, the solution domain is split into three

distinct regions. The solution in each region is denoted by ui, i = 1, 2, 3. The

solution domain is the unit square [0, 1] x [0, 1]. Furthermore, as mentioned above, in

52

1

104

the one associated with the exact solution

ui(x, y) = sin(wrx) sin(7ry) + 5,

u2(x, y) = sin(7rx){sin(7ry) - exp(7ry)}

u3 (x, y) = exp(x){x 2 sin(y) + y2}.

The interfaces are circles defined with the following parameters.

9 Interface 2-3 (Big circle):

rB = 0.3, LOB =0.5, YOB = 0.5.

* Interface 1-2 (Small circle):

rS = 0.3,

xOs = zOB + (TB - rS) Cos(7/e 2),

YoS = YOB + (rB - TS) sin(7/e 2).

Figure 2-14(a) shows the interface immersed in a Cartesian grid. Finally, the regions

defined by these interfaces are as follows.

" Region 1: inside small circle.

* Region 2: region between circles.

" Region 3: outer region.

The results are similar to example 3. Figure 2-14(b) shows the numerical solution

obtained with a fine grid (193 x 193 nodes), while figure 2-15 shows the convergence

of the error in the L 2 and Lo norms. The convergence of the error evaluated on the

interface is shown in 2-16.

56

-X

(a) (b)

Figure 2-14: Example 4. Convergence of the error in the solution and its gradient in
the L 2 and L, norms.

10 2

10

10~6
0

- 10~8

10 0

10 0

10~

10~6

-
L2

10-2 10'
h

10 12[
10-a 10-2

h
10-

(a) Solution.

Figure 2-15: Example 4. Convergence of
the L 2 and L, norms.

(b) Gradient.

the error in the solution and its gradient in

57

4

100

101

10

10

10

10

Figure 2-16: Example 4.

10-3 10-2
h

10

Convergence of the error in the solution and its gradient

evaluated along the interface.

58

Chapter 3

Extensions of the Correction

Function Method

This chapter presents extensions of the correction function method to solve the Pois-

son equation in general settings. Specifically, this chapter is focused on (a) problems

with arbitrarily shaped boundaries, and (b) the discontinuous coefficients Poisson

equation. The basic concept behind the solution of these problems is the same intro-

duced in §2: we define a correction function that is used to complete a standard finite

differences discretization at nodes across the interface or the boundary. Moreover,

this correction function is also the solution to a PDE defined locally in a neighbor-

hood of the interface/boundary. The major challenge in these situations is that this

PDE is no longer independent on the underlying solution to the Poisson equation.

The approach to handle this coupling between the Poisson equation and the PDE

that defines the correction function is discussed here.

This chapter is divided into two sections. In §3.1, the extension of the CFM to

problems involving complex geometries is discussed, including results with Dirichlet

and Neumann boundary conditions. Then, §3.2 is dedicated to the extension of the

CFM to the discontinuous coefficients Poisson equation.

59

3.1 Boundary conditions on complex geometries

3.1.1 Overview

The objective here is to solve the following Poisson problem.

AU(Y) = fV() for i E QI, (3.1)

with

u(Y) = gD(Y)

or Um(W) = 9N ()

for Y E 8,

for Y E 0.

Here, um denotes the derivative of u in the direction of 7h, the unit vector normal

to the boundary 80 pointing outwards (see figure 3-1). Furthermore, two types of

boundary conditions are considered: Dirichlet (3.2a), or Neumann (3.2b).

Figure 3-1: Example of a solution domain with arbitrary shape.

The goal is to be able to completely immerse the arbitrarily shaped solution

domain in a regular Cartesian grid, while still imposing the appropriate boundary

60

(3.2a)

(3.2b)

conditions to high order accuracy. In §2 high order accuracy is achieved by defining

a correction function as the solution to a partial differential equation. This section is

dedicated to extending these ideas to solve the problem mentioned above. In §3.1.2

the extended concept of the correction function is presented, as well as the coupling

that occurs between the correction function and the solution to the underlying Pois-

son equation. Next, §3.1.3 discusses how this coupling affects the definition of the

rectangular regions where we solve for the correction function. Then, in §3.1.4 the

solution procedure for problems with Dirichlet boundary condition is described. The

solution to Neumann problems is similar, and is discussed in §3.1.5. Finally, §3.1.6

shows some results involving Dirichlet and Neumann boundary conditions.

3.1.2 The correction function and the equation defining it

The solution procedure adopted here is similar to that presented in §2.3 and §2.4.

For simplicity, first consider the problem with Dirichlet boundary conditions. Then,

define a narrow band Qr', which is the set of all nodes within a distance R from

,9. This distance R depends on the details of the discretization, but is of the order

of the grid spacing. Next, assume that u can be extended smoothly into Qr. Since

there is no solution on the other side of O0, the definition of a correction function

must be adapted. In this context, the correction function, denoted by D, is defined

to be the same as the extended solution within Qr2 . Thus, the correction function is

characterized as the solution to the following PDE.

AD(i) = f (Y) for Y E Qr, (3.3a)

D(i) = gD (Y) for z E 80, (3.3b)

Dm(9) = um(9) for Y E i2. (3.3c)

'There is no interface F in this problem, but the notation Qr is kept because the concept is the

same as in §2.
2This distinction between the solution to the Poisson equation, u, and the correction function,

D, is important for clarity in the discussion that follows.

61

Remark 3.1. In (3.3), it becomes evident that, in general, the correction function

depends on the underlying solution to Poisson's equation. In this case, the dependence

occurs through (3.3c). 4

In principle, it is possible to approximate umrn on 8 based on a linear combination

of the unknown solution u at a set of grid points close to the boundary (e.g. using

Taylor expansion). If we do so, the solution to (3.3) becomes a (linear) function

of these unknowns. However, coming up with a systematic approximation that can

handle the myriad of ways the boundary can be placed with respect to a Cartesian

grid is not easy. Instead, the approach adopted here is to replace (3.3c) by another

condition that maintains the effect of coupling the correction function to the values

of the unknown solution. Namely, this condition is such that D must match u at a

given set of grid nodes, i.e.

D(sk)=Uk for k E N, (3.4)

where N is a pre-determined set of grid nodes.

Remark 3.2. The net effect of making D a function of the unknowns at a set of

grid nodes is a modification to the discretization of the Poisson equation next to the

boundary. This modification is the result of using this correction function that depends

on the unknown solution to complete the discretization stencil close to the boundary.

Because the discretization is modified, the linear system that we must invert to

solve Poisson's equation also changes. In fact, the linear system is different for each

configuration of the computational grid and the solution domain. In addition, there

are no guarantees that the modified linear system is self-adjoint (in general it is not).

Chapter §4 presents an alternative approach that maintains the linear system un-

touched, at the price of solving an additional boundary integral equation. 4

Remark 3.3. Similar to the approach described in §2.4, Qr is sub-divided in a series

of rectangular regions, C , one for each stencil that straddles the boundary. ByF

doing so, we can constrain the correction function to a local set of grid points, N(,
and thus keep a compact discretization of Poisson's equation.

62

The number of grid nodes to be included in N(G'4) depends on how accurately we

want to represent the correction function within Q 'j. For the particular implemen-

tation discussed here, which is based on the bicubic interpolation to represent the

correction function, experience shows that (j) can be the set of nodes that are both

part of (a) the 9-point discretization stencil at node (i, j), and (b) the solution do-

main. By defining N('i,) in this fashion, the final discretization stencil remains the

same; only the weights are modified. As a consequence, the sparsity pattern of the

linear system that must be inverted to solve the Poisson equation remains the same,

which makes it easier to devise suitable pre-conditioners. A

3.1.3 Definition of Q(j)r

Here '(ij) is defined in a similar fashion to that used in §2.4.3. There are, however,

two important differences that must be taken into account:

(a) 'j must include the nodes contained in Ng(,).

(b) In some cases, Q'j must extend beyond the area involved in the discretization

stencil - see remark 3.4.

Remark 3.4. Item (a) limits the minimum size of Q '. In addition, G 'j must

include a piece of &9Q of length comparable to the diagonal of G 'j, as explained in

§2.4.3. Therefore, if the minimum size dictated by item (a) does not contain enough

of the boundary 80, we must extend Q(4'j) in such a way as to include more of the

boundary. Note that the extended Q 'j may involve additional grid nodes that are not

part of NG'j. However, the condition (3.4) is not enforced on these extra nodes.

There is no unique way to extend Q4 '). The solution adopted here is a mix between

the approaches presented in §C.2 and §C.4, as discussed below.

From remarks 3.3 and 3.4, we conclude that the particular form of Q 'j depends

on the choice of (',), which in turn may depend on the stencil used to discretize

3 In the implementation presented here - based on the 9-point stencil and bicubic interpolation -
the minimum size is a 2h_ x 2h, area.

63

the Poisson equation. For the the particular case of (a) using the 9-point stencil

discretization of the Poisson equation (see appendix A), and (b) defining fif',) as

discussed in remark 3.3, ("j is constructed using the procedure below.

1. Find P, the point along the boundary that is closest to node (i, j). We do not

need to determine P very accurately. Small errors in P result only in small shifts

in O('j, which do not affect the quality of the solution.

2. Determine the piece of boundary of length 2/h + h. centered on P.

3. Find the coordinates (Xminb, Xmaxb) and (Yrinb, Ymaxb) of the smallest rectangle that

completely encloses the section of boundary mentioned in item 2 - see figure 3-2(a).

4. Find the coordinates (Xmin., Xmax,) and (ymin., ymax.) of the smallest rectangle that

completely encloses all the nodes in the discretization stencil - see figure 3-2(b).

5. Then Qji') is the smallest rectangle that encloses the two previous rectangles - see

figure 3-2(c). Its edges are given by

Xmin = min(xminb, Xmin,), (3.5a)

Xmax = max(xmax, Xmax,), (3.5b)

Ymin = min(yminb, ymin.), (3.5c)

Ymax = max(ymaxb, Ymax.). (3.5d)

Note that step 2 requires an explicit representation of the boundary in a neighbor-

hood of node (ij). When an an implicit representation of the boundary is used

(e.g. level set method), this information is not readily available. Hence, one must use

information from neighboring grid cells to pre-compute an explicit representation of

the boundary. For more details, see apendix C.

3.1.4 Solution of the Local PDE

Just as in the original version of the CFM (§2.4.4), (3.3) is solved within each Q('jr

in a least squares sense. Namely, the solution procedure involves searching for a local

64

Ymax

Ymaxs

UBxb

Ymin. Ymin

Imins max, Xmin Xmax

(a) Steps 1-3 (b) Step 4 (c) Step 5

Figure 3-2: Steps involved in forming Q(')

solution that minimizes the functional

JA =f" {AD(Y) - f(y)}2 dV
2V(Q0i'j))oa

" P 1 f D(X_)-D(y12 d 36+ cp 2L(F)] {DQz) - 9D) 2S(36

+c1 {D(i.) - Uk }2

where cp > 0 is the penalization coefficient used to enforce the Dirichlet bound-

ary condition, and CN > 0 is the penalization coefficient responsible to couple the

correction function, D, to the underlying solution of the Poisson equation, u - see

remark 3.6. Minimizing Jb, and therefore solving for D within each domain Q(')

involves the steps described below.

1. Choose a set of basis functions to represent D within Q F'0j: D(Y) = djof (Y).
f=1

2. Replace this representation of D into the functional Jb.

3. Approximate the integrals in (3.6) using numerical quadrature.

4. Solve for the weights de that minimize J.

In the particular scheme implemented for this thesis, the Poisson equation is dis-

cretized using the 4 th order accurate 9-point stencil (see apendix A). Hence, the

solution to the local PDE must be 4th order accurate (or better) to keep the overall

65

accuracy of the scheme. For this reason, D is approximated using cubic Hermite

splines (bicubic interpolants in 2D), which guarantee 4th order accuracy see [42].

Remark 3.5. Note that, although (3.6) is a quadratic expression, the minimization

of Jb results in a linear correspondence between the coefficients de and the unknowns

Uk. Hence, df = d(0) + E3 d k)Uk, where nk is the number of elements of N j) Then,
k=1

one can solve for these coefficients as follows.

* Solving for c "): set Uk 0, k 1,..., nk.

* Solving for c (k): Set f 0, gD 0, Uk = 1, and uq = 0, q = k.

Consequently, if n basis functions are used to represent the solution, the minimization

of (3.6) involves solving the same n x n self-adjoint linear system a total of nk + 1

times. In practice, it is useful to compute the LU decomposition of this linear system

and solve for each coefficient performing a forward and backward substitution [43J. 4

Remark 3.6. As noted in remark 2.15, in principle the values of cp and cN can

be determined from knowledge of derivatives of the solution. However, the different

terms in Jb are scaled such that these coefficients should be 0(1) quantities. Hence, in

practice it is easy to manually adjust these values by observing the condition number

of the minimization problem in a low resolution experiment. In the examples shown

in §3.1.6 cp ~ 50 and cN 1 produced good results. 4

3.1.5 Neumann boundary condition

The scheme described in @3.1.2 to 53.1.4 is an extension of the original CFM to enforce

Dirichlet-type conditions on arbitrarily shaped boundaries immersed in a Cartesian

grid. The procedure for Neumann-type boundary conditions is completely analogous.

Note that the accuracy of the solution scheme depends on how well (3.2b) is

satisfied. For instance, when a bicubic interpolation is used as the basis to represent

the correction function, condition (3.2b) is only imposed to 3rd order accuracy. Hence,

when using bicubic interpolation to impose Neumann conditions, the accuracy of the

CFM is 3 rd order.

66

3.1.6 Results

This section shows two examples of computations in 2D using the scheme introduced

in @3.1. The exact solution is the same in both examples, but they involve two

different types of boundary conditions: Dirichlet for the first example, and Neumann

for the second.

Both examples involve the Poisson problem associated with the exact solution

u(x, y) = exp(x) cos(y).

The boundary of the solution domain is represented as the zero contour of the of the

level set function

#(x, y) = r2 (x, y) - r2(O(x, y)),

r(x, y) = I/(x Xo)2 + (y - yo)2,

r(O) = ro + E sin(50),

O(x, y) = arctan Y -),
(X - zo)

where, xo = yo = 0.02V5, ro = 0.5, and E = 0.2. Figure 3-3(a) shows the boundary

immersed in a Cartesian grid. The solution domain Q is the region contained inside

this curve.

Figure 3-3(b) shows the numerical solution to the Dirichlet problem obtained with

a fine grid (193 x 193 nodes). The solution outside Q is simply set to zero. The solution

to the Neumann problem is not shown because it is visually indistinguishable from the

solution presented in figure 3-3(b). In addition, the convergence of the error for both

cases are plotted in figure 3-4. Both the L 2 and Lc norms are shown. As expected,

the error in the Dirichlet case converges to 4 th order in both norms, whereas the error

converges to 3 rd order in the Neumann case.

In this version of the CFM, the correction function offers an approximate value

of the solution in a neighborhood of the boundary. Hence, we can easily evaluate the

solution and its gradient along the boundary. Figure 3-5 shows the convergence of

67

the error evaluated along the boundary.

0.6-

0.4

q I.

0.24

-0.2

-0.4 11i ~ -M

-0.6

0.6 0.4 -0.2 0 0.2 0.4 0.6

0.5

(a)

0

1.8

1.6

1.4

1.2

0.8

0.6

0 A

0.2

0

(b)

Figure 3-3: (a) Solution domain embedded in a 65 x 65 Cartesian grid. (b) Solution
obtained with a 193 x 193 grid.

10

(a) Dirichlet.

10,

10

10

10

10

10'

10' 10'

- -L

10-2 10
h

(b) Neumann.

Figure 3-4: Convergence of the error in the L 2 and Loo norms.

68

106

10'

108

10

10

10 1

101
10

1

-e- L2

-e- L---ha

10~ 10,

10 -

10

10-

8 10

=10,

10-8

10

10 -

10

(a) Dirichlet.

10-2
h

(b) Neumann.

Figure 3-5: Convergence of the error evaluated along the interface.

3.2 Poisson's equation with discontinuous coeffi-

cient

3.2.1 Overview

Chapter §2 presents the correction function method to solve to solve the constant

coefficients Poisson equation with a prescribed discontinuity across an internal inter-

face. This section discusses an extension of this method to solve the problem when,

in addition, there is a discontinuity in the coefficients across the internal interface.

For simplicity, assume Dirichlet-type condition on the boundary &Q that delimits the

solution domain Q. Then, the problem to be solved is

(#+()ViU+(7))

[u]

u(7)

=f+ (-4)

=f --z)

=a(y)

= b(i)

=g(7)

for 7 E Q+,

for E Q,

for 7 E F,

for E F,

for E 8Q.

69

10-2

10

106

10-

101

12 -
10

-r-

-s-

3

10~

V.-

V.-

(3.7a)

(3.7b)

(3.7c)

(3.7d)

(3.7e)

2
AL

The interface F is a co-dimension 1 manifold that subdivides the solution domain into

Q+ and Q- (see figure 2-1). In addition, # > 0 is the coefficient of Poisson's equation.

As mentioned above, in this section we are interested in the situation where #+ and

#~ are discontinuous along the interface F. Thus, in (3.7) the meaning of the brackets

is

[Pun] = Un+ - ~-~. (3.8)

Figure 2-1: Example of solution domain with arbitrary shape.

We solve (3.7) following the basic CFM idea: evaluate smooth extensions of the

solution across the interface such that we can apply the discretization stencil to the

extended solution. Furthermore, the extensions are characterized as solutions to PDE

satisfying appropriate conditions at the interface. However, in the present case it is

not possible to define a PDE in terms of a single correction function, as in §2 and

§3.1. In §3.2.2 the PDE that define the extensions of the solution are presented. Then

§3.2.3 describes the procedure adopted to solve these PDE. Finally, §3.2.4 shows some

results.

70

3.2.2 Smooth extensions of the solution

Once again, we define a narrow band Qr that is the set of all nodes within a distance

R from F. Similarly to other problems, R depends on the details of the discretization,

but is of the order of the grid spacing. Then, assume that u can be extended smoothly

into Qr. For clarity, the extensions of the solution are denoted by v. Thus, v must

solve the following PDE.

- (#+(z)v+()) = f+()for Y Qr, (3.9a)

- (#-(z)Vv-(z)) = f (z)for x E Qr, (3.9b)

[v] = a(s) for Y E F, (3.9c)

[#vn] = b(Y) for Y E F. (3.9d)

Note that (3.9) is not written in terms of D = + _-. In this case, the condition

on the normal derivative of D becomes

b()- () for F E? , (3.10)

where
(.) (3.11)

2

is the mean value across a discontinuity. Equation (3.10) shows that, as long as the

coefficient # is discontinuous, D depends on the solution to the underlying Poisson

equation. Furthermore, the coupling occurs through the mean value of un.

Because of this coupling between D and the underlying solution to the Poisson

equation, it is not convenient to characterize solve a PDE for D. Instead, here we

solve (3.9) in terms of the solution extensions vi.

Remark 3.7. Note that (3.9) involves two unknown functions v±, and that it alone

does not determine them. To complete the PDE, we can use the same approach

adopted in §3.1. Namely, extra conditions arise from the requirement that v+ and

v- must match the solution to the Poisson problem on each side of the interface, as

71

follows

v+ -() for k E JV, (3.12a)

v(') = u- for k E N~f, (3.12b)

where Ni+ and J- are pre-determined set of grid nodes lying on Q+ and Q-, respec-

tively. 4

Remark 3.8. The solution method described in §3.1 can be viewed as a particular case

of solving (3.9) with (3.12). The difference is that in the present case the extensions

of the solution define two correction functions, whereas in §3.1 we must solve a single

correction function.

Remark 3.9. Similarly to what occurs in §3.1, the constraints (3.12) result in mod-

ifications to the discretization of the Poisson problem next to the interface, which is

reflected in changes to the linear system that must be inverted to solve the Poisson

equation (see remark 3.2). Chapter §4 presents an alternative approach that maintains

the linear system untouched, at the price of solving an additional boundary integral

equation. 4

Remark 3.10. Just as in §2.4, Qr is sub-divided in a series of quadrangular regions.

However, since (3.9) involves two unknowns, which interact only through the interface

F, we can define two rectangular regions for each stencil: (i) E ' , where v+ is

defined, and (ii) Q('), where v~ is defined. The only requisite is that both regions

involve the same piece of the interface F.

This "splitting" of G 'j into two pieces is not strictly necessary. However, it

allows us to define v+ and v- in regions that are as small as possible. This feature

contributes to reduce the condition number of the discretized version of (3.9) (see

remarks 2.4 to 2.6). 4

Remark 3.11. By splitting Q4 'j as described in remark 3.10, we can also apply the

constraints (3.12) to local sets of grid points: NV'i,)± and (',)*. As a consequence,

we are able to keep a compact discretization of the Poisson equation.

72

The number of grid nodes to be included in the sets N(',j)+ and NA',ji- depends

on how accurately we want to represent the solution extensions. In particular, when

representing the solution extensions using local bicubic interpolants, experience shows

that NG'j can be defined as the set of nodes that are both part of (i) the 9-point

discretization stencil at node (i, j) and (ii) Q*. By doing so, the final discretization

stencil remains the same; only the weights are modified. As a consequence, the spar-

sity pattern of the linear system that must be inverted to solve the Poisson equation

remains the same, which makes it easier to devise suitable pre-conditioners. 4

The definition of Q(ij)± implemented here is analogous to the case described inr

§3.1.3. The only difference is that only one of these regions must enclose all the nodes

that are part of the discretization stencil (item 4 in §3.1.3). For instance, assume that

node (i, j) lies in Q+. Then Q(' must enclose all the nodes that are part of the

discretization stencil. On the other hand, Q(j)' must only enclose the nodes that

are part of NAJ',j) . Figure 3-6 shows an example of how these regions are defined.

Ymax Ymax

Ymin

Ymin

Xmin XmaX

(a) Q ') (b) Q("j)-

Figure 3-6: Regions where the extended solutions are defined. This example assumes
that node (i, j) lies in Q+.

3.2.3 Solution of the Local PDE

As pointed out in §3.2.2, the partial differential equation that characterizes the solu-

tion extensions v+ and v- - equation (3.9) - is similar to the PDE that characterizes

the correction function in §3.1. Thus, we can solve for the solution extensions using

73

a procedure analogous to the one presented in §3.1.4. Namely, we search for a local

solution that minimizes the potential

Jdc - Cii±

2f3+2V(Q~ilJ)+) f~,j)+{
(f(i~j) -) 4

+ f~2
+ CP2 L(F)

{v (0_3 V()) _ fi)} dV

{v+(z) - v-(x) - a(i)}2 dS (3.13)

1
+ CPL

2L(F)
('* j{ +v3(z) - #-v;() - b()} 2 dS

{ -k)-U+
2 + { k 2

where cp > 0 is the penalization coefficient used to enforce the jump conditions, and

CN > 0 is the penalization coefficient used to enforce (3.12) see remark 3.12. Fur-

thermore, E 'j)± and E('j)- are characteristic lengths of Dj' and Q(i' , respectively

- e.g. the smallest side length. In addition,

E, = min(EJ)±,'J) (3.14)

is a characteristic length of the intersection between the two rectangular regions.

Finally, we solve for the minimum of Jdc following the steps described below.

1. Choose a set of basis functions to represent the solution extensions, each within

its own rectangular domain of definition:

2. Replace these representations of v+ and v

n

v-n) th qu-q'>n-z).

into the functional Jdc.

3. Approximate the integrals in (3.13) using numerical quadrature.

4. Solve for the weights q± that minimize Jdc.

74

E
keA(i)M+

2

f + (--#X) I dV

20-2V(Q(i1A-)

+cN (

Remark 3.12. In principle, the penalization coefficients cp and cN depend on the

knowledge of the solution. However, as pointed out in remarks 2.14 and 3.6, because

of the scaling of the terms in Jdc, these coefficients are 0(1) quantities that we can

adjust manually using low resolution experiments. In the examples shown in §3.2.4

cp ~ 10 and cN ~1 produced good results.

Remark 3.13. The minimization of J, is carried out as described in §3.1.4. Specifi-

cally, the dependence on the unknowns Uk can be handled by considering the influence

from each grid node individually - see remark 3.5. Each of the two unknown functions

is represented by a linear combination of n basis function. Therefore, the minimiza-

tion procedure involves solving the same 2n x 2n self-adjoint linear system nk + 1

times, where nk is the total number of grid nodes that are part of N(ii)+ UN . In

practice, it is useful to compute the LU decomposition of this linear system and solve

it performing a forward and backward substitution [43]. 4

Remark 3.14. After solving for the solution extensions, one must compute D =

v+-v- to complete the discretization. However, (3.10) shows that D depends on (un).

Just as in the case of the Neumann boundary condition in §3.1.5, the dependence on

(un) produces one order of accuracy loss. In particular, if v+ and v- are represented

using bicubic interpolants, (un) can be calculated with 3"d order accuracy only, so that

the overall scheme will be 3r order. 4

Remark 3.15. Here the Poisson equation is discretized using the 9-point stencil (see

appendix A). However, this compact discretization of the Poisson equation is only

4thorder accurate if the coefficient 0 is piece-wise constant (i.e. 0+ and 0- are two

distinct constants). This is the case in the examples shown in §3.2.4. In more general

applications one must resort to wider discretizations of the Poisson equation to obtain

high order of accuracy. 4

Remark 3.16. This version of the CFM can be seen as a generalization of the im-

mersed interface method (IMM) [50]. The IIM uses Taylor expansions around one

particular point on the interface, together with the appropriate jump conditions, to de-

vise a 2"d order local discretization of the Poisson equation. In contrast, in the CFM

75

the Taylor expansion is replaced by the PDE (3.9). As a result, whereas manipulating

Taylor expansions to obtain high order discretizations is very complicated, the CFM

can be used to produce high order discretizations a straightforward fashion.

Remark 3.17. Many applications of multiphase flows involve the solution of the

discontinuous coefficient Poisson equation with a large ratio between coefficients (e.g.

in air-water interface the ratio is 1:1,000). The solution procedure discussed above is

general enough to deal with arbitrary ratios between coefficients.

Note that the case ~/3+ >> 1 is special. In the limit /-//+ -+ oo equation

(3.7d) tends to un -+ 0. As a consequence, u- becomes the solution to the Poisson

equation with Neumann boundary condition on l', which is only defined up to an

arbitrary constant. If the solution is defined only up to a constant in the entire

domain (such as when we impose Neumann or periodic boundary conditions on 80),

then this situation poses no difficulty. We can set this arbitrary constant by imposing

additional constraints to the solution. This is the most common situation that occurs

in physical problems.

On the other hand, when Dirichlet-type conditions are imposed on 8i the solution

is not arbitrary. Nonetheless, as j-|p+ grows, the solution to (3.7) becomes increas-

ingly ill conditioned. This issue is intrinsic to the equation being solved and is not

related to the numerical method used to solve it. The same problem is observed in

Ref. [77]. In this paper, high condition numbers are listed for the discontinuous coeffi-

cient Poisson equation, even though the authors do not make further comments about

it. An example where we can observe this issue is presented in 3.2.4. In addition,

the boundary integral formulation discussed in 4 allows us to "fix" this situation by

enforcing redundant integral conditions - see apendix D. 4

3.2.4 Results

This section presents four examples of computations in 2D using the scheme intro-

duced in §3.2. All the examples use the same solution, but with different choices for

P (and corresponding changes in the jump conditions).

76

The examples involve the Poisson problem associated with the exact solution4

u(x, y)+ = 0.1(x2 + y2)2 - 0.01 log(2 Vx2+ y2),

u(x, y)- = x 2 + y 2.

The boundary of the solution domain is represented as the zero contour of the of the

level set function

#(x, y) = r2 (x, Y) - r2(O(X, y)),

r(X, y) = V(X - Xo)2 + (y -yo)2,

r(0) =ro + E sin(50),

O(x, y) = arctan YYO),
(x - xo)

where, xo = 0.03V', yo = 0.02v'5, ro = 0.5, and E = 0.2. Figure 3-7(a) shows the

boundary immersed in a Cartesian grid. The sub-domain Q- is the region contained

inside this curve, while Q+ is the region that lies outside this curve. Finally, the

examples considered here are associated to the coefficients

(i) 0+ = 10, -= 1.

(ii) #+ =1, 0- =10.

(iii) + = I1 x 106, 0- - 1.

(iv) 0+ =1, - = 1 x 106.

Figure 3-7(b) shows the numerical solution to problem (i) obtained with a fine

grid (193 x 193 nodes). The solution to problems (ii) to (iv) are similar and visually

indistinguishable. Convergence plots of the error are shown in figure 3-8. Both the

L 2 and Le norms are shown. As expected, as the grid is refined the error decays to

3rdorder in both norms for all examples.

4 One can obtain an accurate and smooth extension of u+ because the interface is always more
than a grid space away from the singularity at (X, y) = (0, 0).

77

These plots show that the solution procedure discussed in §3.2 produces good

results even for large ratios of coefficients. However, note that the error for case (iv)

is significantly larger than in other cases. The reason for the larger errors is that

#-/0+ >> 1, so case (iv) represents the ill-posed situation described in remark 3.17.

In fact, in example (iv) the condition number of the linear system we must invert to

solve the Poisson equation is O(#-//+). Similar results are observed in the solution

evaluated along the interface, as shown in figure 3-9.

1 -0.5 0 0.5

(a)

0.6

0.4

02,

0.5

0 0.5
0.5 0.5

Y -1 -

(b)

Figure 3-7: (a) Solution domain embedded in a 65 x 65 Cartesian grid. (b) Solution
obtained with a 193 x 193 grid.

78

0.5

0.4

0.3

02

0.1

10

10

= 1.

10-

(iii) #+ = 1 x 106, #--

10

10

10

10

10 0-
10

10-

10-

10

10

10' 3
1010'

L2

h h
3

10- 10

(ii # = 1, - 10.

-.e- L210-

1010,

(iv) 3+ = 1, /3 = 1 x 106.

Figure 3-8: Convergence of the error in the L2 and Lo norms.

79

(i) #+ = 10, #

I0 I'U1 -

10 a 102 -10 10 10
h h

10-? 10

I0T, 101

10-3 100

10 10

104- 10

-e- U -0- U

10- y 10 10-

10 10 10 100 10
h h

(iii)#+=1x106 , -6 =1. (iv) 0+ 1 -= 1 x 106.

Figure 3-9: Convergence of the error along the interface.

80

Chapter 4

Alternative Method to Solve the

Poisson equation - using boundary

integral equations

This chapter presents an alternative to §3 to solve the Poisson equation involving

complex geometries using regular Cartesian grids. This algorithm can be applied to

a wide variety of Poisson problems, including those where the coefficients and the

solution are discontinuous across some arbitrary interface.

The solution procedure described here is based on the combination of the original

version of the correction function method and boundary integral equations. As dis-

cussed in §2, the CFM can be used to solve, to high order of accuracy, the constant

coefficients Poisson equation with discontinuities across an arbitrary interface. In

more general situations, one can use the ideas introduced by Mayo [31] to rewrite the

original problem as a series of constant coefficients Poisson equations with discontin-

uous solutions. In short, the problem is split into (i) a simple constant coefficients

Poisson equation to handle the source term, and (ii) a Laplace equation where the ap-

propriate interface and boundary conditions are satisfied. Next, the Laplace equation

is solved using the corresponding boundary integral formulation. There is a number

of well established, fast, and accurate numerical methods - boundary integral meth-

ods (BIMs) [31,88,89] - that can be used to solve this problem. Then, the solution

81

obtained with the BIM offers all the information needed to rewrite this problem as a

constant coefficients Laplace equation with known discontinuities across an interface,

which can be accurately solved using a finite differences discretization and the CFM.

The solution procedure is discussed in detail in §4.1.

The accuracy of the solution procedure proposed here results from the fact that, in

principle, BIMs and the CFM can be implemented to any desired order of accuracy.

Moreover, with the exception of solving the BIM, all other steps involve problems

defined in rectangular domains, which can be solved rapidly using the fast Fourier

transform (FFT). Hence, the solution procedure is also fast, since the costliest steps

involve fast solutions of boundary integral equations [90-92], and a fast Poisson solver

based on FFT.

The remainder of this chapter is organized as follows. In §4.1 the solution pro-

cedure is explained using a series of problems, increasing gradually in complexity.

Then, §4.2 shows some examples where this procedure is applied to problems involving

complex geometries and the Poisson equation with piece-wise constant coefficients.

Finally, in appendix D a possible fix for a particular configuration that makes the

Poisson equation with piece-wise constant coefficients ill-conditioned is discussed.

4.1 Solution procedure

The algorithm presented here builds on the ideas introduced by Mayo [31,63] and on

the original version of the CFM - see §2. For simplicity, the solution procedure is pre-

sented through a series of problems, increasing gradually in complexity. First, §4.1.1

discusses the solution of the simple problem of solving the Laplace equation with

Dirichlet boundary conditions. Second, in §4.1.2 a non-homogeneous source term is

added and the solution to the Poisson equation is discussed. Third, §4.1.3 shows the

solution of the Poisson equation with piece-wise constant coefficients Poisson equa-

tion. Finally, in §4.1.4 the solution procedure for general situations is summarized.

82

4.1.1 Laplace equation

Consider the following Laplace equation with Dirichlet boundary conditions. (In this

problem the solution is smooth throughout Q.)

Au(Y) = 0 for Y E Q, (4.la)

u(s) = gD(') for Y E 8Q. (4.lb)

It is well known [88,93] that the solution of this equation can be expressed as

u(Y) = p f i-(,S)Gm(Y, z,)dS for i E , (4.2)

where Y, denotes the position vector along the integration surface, G is the Green's

function for the Laplace equation1 , and y is a function defined along the boundary

&0, known as dipole or double layer potential.

Equation (4.2) is the boundary integral representation of the solution to (4.1).

Following this representation, the solution is completely described in terms of the

potential p, which becomes the unknown of the problem. To solve for this potential,

we must enforce the boundary condition (4.1b), resulting in the following boundary

integral equation.

- py(sS)Gm(,YS)dS = gD(Y) for Y E 80. (4.3)
27r a

Equation (4.3) is a Fredholm integral equation of the second kind. This class of

integral equations has been extensively studied and there is a number of well estab-

lished numerical methods - boundary integral methods (BIMs) - that can be used

to solve (4.3) [88,89]. In 2D, when the boundary 80 and the data gD are smooth,

Nystrom's method with trapezoidal quadrature is known to be very efficient and ac-

curate (see [89,93]). For this reason, this is the method adopted to obtain the results

shown in §4.2. In 3D there are better suited methods, such as Galerkin's method

In 2D, G(i, ,) =1log(|z- z,1); in 3D G(, ,) = .

83

with Gaussian quadrature.

Nevertheless, although p can be computed efficiently and accurately, the integral

(4.2) still needs to be evaluated to obtain the solution inside Q. This computation can

be relatively expensive when the solution is needed in a large number of points inside

Q. In addition, the integrand of (4.2) becomes singular as z -+ Y. for z (O0, which

makes evaluating this integral even more expensive for points close to the boundary.

In order to circumvent these difficulties, Mayo [31] introduced an alternative approach

to evaluate the solution within Q. In short, Mayo shows that the integral expression

(4.2) is also the solution to the following Laplace equation.

Au(Y) = 0 for Y E B, (4.4a)

[u] = -pJi(Y) for Y E 80, (4.4b)

[Um] = 0 for Y E 8Q, (4.4c)

U(Y) = L p (.,)Gm(5, 5)dS for f E WB, (4.4d)

where B is a rectangular domain that completely involves the original solution domain

Q (see figure 4-1). Hence, in (4.4) 80 becomes an interface internal to B, across which

the solution is discontinuous. In addition, the discontinuity in the solution depends

only on the potential p. Thus, the solution proposed by Mayo [31] involves two steps:

1. solving (4.3) using a BIM.

2. solving (4.4) using finite differences.

For the second step, the original version of the CFM, introduced in §2, offers a

framework to solve (4.4) using finite differences with the solution domain immersed

in a regular Cartesian grid. In summary, with the CFM we can compute a correction

function in a narrow band surrounding the "interface" Of. Whenever the discretiza-

tion stencil straddles this interface, the correction function is used to complete the

discretization. This procedure results in modifications only to the right-hand-side

(RHS) of the discretized equation, without modifications to the linear system that

must be inverted. In addition, in theory this correction function can be evaluated

84

aD

Figure 4-1: Rectangular domain B that involves Q.

to arbitrary order of accuracy. Chapter §2 shows a 4 th order implementation of the

CFM, which is the same one used to obtain the results shown in §4.2.

Remark 4.1. Mayo [31, 63] also presents a method to solve (4.4) using finite differ-

ences in an immersed setting. Furthermore, this method is also based on corrections

to the RHS of the discretized equation, and Mayo [31, 63] derived these corrections up

to 4^ order of accuracy. The major difference is that Mayo's method requires accurate

computation of derivatives of p to evaluate the correction terms. 4

Remark 4.2. The rectangular domain B is arbitrary. In principle, should B enclose

Q as tightly as possible to reduce the number of grid points outside the region of

interest. However, evaluating (4.4d) too close to aQ can be difficult. Hence, it is

practical to maintain &B within some distance of d£2. The present implementation

uses the distance suggested by Mayo [31] of three grid spacings. 4

Remark 4.3. Since (4.4) is defined in a rectangular domain, we can use the fast

Fourier transform (FFT) to solve the linear system that comes from the finite differ-

ences discretization of the Laplace equation. This fact makes this approach very cost

effective2

2 This is not a spectral method. The FFT can be used to invert the linear system because the
finite differences discretization of Laplace's equation results in a circular periodic linear system.

85

Remark 4.4. The BIM requires a discretization of 0. However, this discretization

of &Q is completely independent of the computational grid used to solve (4.4) with

finite differences. In fact, usually the BIM converges faster than finite differences, so

that the discretization of &Q can be much coarser than the grid used to solve (4.4). 4

4.1.2 Including a non-homogeneous source

We can take advantage of the CFM and the linearity of the Laplace operator to include

a non-homogeneous source term in (4.la) in a straightforward fashion. Suppose that

(4.la) is replaced by Au(Y) = f(9), X E Q. Then, we first solve the auxiliary problem

Av(Y) = 0 for Y E B - Q, (4.5a)

AV(Y) = f(9) for ' E Q, (4.5b)

[v] = 0 for ' E 80, (4.5c)

[vn] = 0 for z E 80, (4.5d)

v(Y) = 0 for ' E &B, (4.5e)

where B is the same rectangular domain defined in (4.4). Moreover, since (4.5) is

defined on a rectangular domain, it can also be solved very efficiently using finite

differences combined with the CFM and FFT.

Remark 4.5. Standard finite difference discretizations depend on smooth solutions to

guarantee accuracy (e.g. C 3 for 2nd order and C' for 4' order). In (4.5) the solution

is continuous up to the first derivative, but the Laplacian is discontinuous. Hence,

we need an algorithm such as the CFM to handle discontinuities in the source term

without losing accuracy. A

After we solve (4.5), we are left to solve a Laplace equation for w = u - v:

Aw(y) = 0 for z E Q, (4.6a)

w(Y) = gD(Y) - v(z) for Y E 80. (4.6b)

86

This equation can be solved by combining a BIM with finite differences and the

CFM, as described in §4.1.1. Therefore, the Poisson equation with Dirichlet boundary

conditions is solved following the steps described below.

1. Compute v by solving (4.5) using finite differences with the CFM and FFT.

2. Compute w by solving (4.6) using the BIM and finite differences with the CFM

and FFT.

3. Set u=v+w.

4.1.3 Poisson equation with Piece-wise constant coefficients

Consider now the Poisson equation with piece-wise constant coefficients defined in

(3.7), where #+ > 0 and #- > 0 are two distinct constants. Furthermore, for simplic-

ity, assume Dirichlet boundary conditions - equation (3.7e). The procedure to solve

this problem is similar to the one described in §4.1.1 and §4.1.2. We first address the

source term by solving

Av(p) = 0 for E B - Q, (4.7a)

Av(Y) = f+(Y)//0+ for Y E Q+, (4.7b)

Av(Y) = f()/# for Y E Q~, (4.7c)

[v] = 0 for Y E aQ, (4.7d)

[vn] = 0 for z E i0, (4.7e)

[v] = a(s) for - E r, (4.7f)

[Vn] = 0 for Y E r, (4.7g)

v(Y) = 0 for Y E &B. (4.7h)

Here B is once again the same rectangular domain defined in (4.4). Note that the

problem defined in (4.7) has two "internal interfaces:" (a) F, across which the so-

lution and the Laplacian are discontinuous, and (b) aQ, across which the Laplacian

87

is discontinuous. This problem can be solved accurately and efficiently

differences with the CFM and FFT.

The jump in the normal fluxes - equation (3.7d) - is imposed by

following Laplace equation.

using finite

solving the

Aw(Y) = 0

[w]= 0

[wn] + A(wn) =b()/(#) - Avn(s)

W(Y) = gD(Y) - V(Y)

for E , 7

for Y E F,

for X-E F,

for Y E Q,

where

2()+ + ()
(.) = ~ 2 ~

(3.11)

denotes the mean value, and A = [#]/(#). The solution to this Laplace equation can

be written as

w (Y) = p(Y.)G(z, z-)dSJ)

+ p y(-8) G,,~, (1 -) dS
for E B. (4.9)

In (4.9), p denotes a function defined over F, known as the monopole or single layer

potential. Similar to the dipole potential, the monopole potential is also commonly

used in the solution of the Laplace equation with a boundary integral formulation [88,

89]. Expression (4.9) automatically satisfies conditions (4.8a) and (4.8b). Then, p and

y are defined by imposing (4.8c) and (4.8d), which results in the following coupled

system of boundary integral equations.

88

(4.8a)

(4.8b)

(4.8c)

(4.8d)

p(z) + - j p (z)G.(Y, z 8)d S

rbIa- i p(zs)Gnm(z, ,)d S = - Xov27r anf (#)SA~

p) ± - p(z 8)G(, z-)dS
r

+ - p(z,) G. (z, 'S) dS = 2(gD (Y) ~~V (y))
7rJn

for E ,

for Y E aQ.

After one solves (4.10) for the potentials Y and p, w is evaluated by noting that

the integral expression (4.9) is also the solution to the following Laplace equation

defined in B:

AW(9) =0

[w] =

[W]= 0

[w] = 0

[wn] = p(s)

w (z) = jpGzs)Gz, s)d S
17r

± ~- J p 8()G .(z, z5)dS27r an(

Equation (4.11) is solved using finite differences with

Therefore, the Poisson equation with piece-wise

following the steps described below.

for

for

for

for

for

FE B,

XE Q,

XE ,

X E F,

X E ,

(4.lla)

(4.llb)

(4.11c)

(4.lld)

(4.lle)

(4.llf)for E aB.

the CFM

constant

and FFT.

coefficients is solved

1. Compute v by solving (4.7) using finite differences with the CFM and FFT.

2. Compute w by solving (4.8) using the BIM and finite differences with the CFM

and FFT.

3. Set u=v+w.

89

(4.10a)

(4.10b)

Remark 4.6. Note that (4.10a) involves evaluating v, along 1F. In general, vn is one

order less accurate than the nominal accuracy of the CFM. Furthermore, since the

solution to (4.10) determines the jump conditions for (4.11), the overall solution will

be one order less accurate than the nominal accuracy of the CFM. For instance, if a

4'4 order accurate CFM is used, v., along F is 3 d order accurate. Then it follows that

p and y are restricted to Y'd order accuracy, and so are w and u. A

Remark 4.7. As noted in remark 3.17, the case where 0-/0+ > 1 leads to an ill-

conditioned Poisson equation. This issue is intrinsic to the equation being solved and

is not related to the boundary integral formulation nor the numerical method used

to solve it. Appendix D discusses a possible fix for this problem, based on enforcing

redundant integral conditions.

4.1.4 Summary

The solution procedure in §4.1.1 through §4.1.3 is as follows: we first solve a simpli-

fied Poisson equation to handle the source term, and then solve the resulting Laplace

equation using a combination of boundary integral formulation and finite differences,

with the CFM and FFT. In principle, the Poisson equation with general interface and

boundary conditions - including Neumann boundary condition and external problems

with finite support - can be solved following these same basic steps. The only dif-

ference lies in the boundary integral formulation that solves the Laplace equation

with the corresponding interface and boundary conditions. Hence, in summary the

solution process involves the steps listed below.

1. Handling of the source term: we solve a Poisson equation in the rectangular

domain B. The source term is known in Q and is set to zero in B-a. In addition,

all interface and boundary conditions are also set to zero. This problem can

then be solved using finite differences with the CFM and FFT.

2. Imposing interface and boundary conditions: we solve the remaining

Laplace equation with the appropriate interface and boundary conditions. This

step can be split into four sub-steps:

90

(a) Write the boundary integral formulation corresponding to the Laplace

equation.

(b) Solve for the potential distributions using a BIM.

(c) Write the equivalent Laplace equation defined in B. The solution to this

equation may be discontinuous across interfaces and boundaries, and the

discontinuities depend exclusively on the potential distributions obtained

with the BIM.

(d) Solve this equivalent Laplace equation using finite differences with the

CFM and FFT.

3. Final solution: the final solution is the sum of each component described

above.

In terms of accuracy, there are four factors must be considered:

1. Representation of interfaces and boundaries. The solution is at most as

accurate as the interface and boundary conditions. In turn, these conditions

are only known as accurately as the position of the interfaces and boundaries.

Here interfaces and boundaries are represented using the gradient-augmented

level-set (GA-LS) method [42]. This method results in a 4 th order accurate

representation of these geometries using local grid information.

2. The accuracy of the BIM. The accuracy of these methods depends on the

smoothness of interfaces and boundaries, and the smoothness of the data pro-

vided on these surfaces. For smooth and well resolved surfaces, Nystrom's

method is guaranteed to converge as fast as the quadrature rule used to ap-

proximate the integrals [89].

3. Interpolation of the potential distributions. Some BIM result in the po-

tential distribution defined all along the interfaces (e.g. Galerkin's method).

However, most BIM result in the potential values over a finite number of nodes

along the interface. In these cases, these values must be interpolated to com-

pute the jump conditions where it is required by the CFM. Here only 2D and

91

smooth geometries are considered, so trigonometric interpolation [94] is used.

This interpolation can be computed efficiently with the FFT and has optimal

accuracy.

4. The accuracy of the CFM. In principle, the CFM can achieve arbitrary

order of accuracy, depending only on the smoothness of the data that defines

the problem, such as the source term and the jump conditions. The results

presented here were obtained with the 4 th order implementation of the method

discussed in §2.

The accuracy of the solution procedure will be limited by the least accurate of the

factors listed above. However, in principle each of these factors can be made as

accurate as one needs to; there is no inherent limit to the order of accuracy one can

achieve.

When it comes to computational cost, the solution procedure proposed here is

also effective. The analysis below is restricted to 2D applications, but it can be

extended to any number of dimensions. Consider that the interfaces and boundaries

are discretized with a total of k nodes. Furthermore, the computational grid we use

in the finite differences steps contains a total of M = N, x N. nodes3 (N2 nodes

in the x direction and N. nodes in the y direction). Then, the cost of the solution

procedure can be broken down as follows.

1. Cost of the BIM. The cost of the BIM depends on the specific choice of

method. In principle, a general BIM requires 0(k3) operations. However, there

is a number of techniques that can be used to reduce this cost to 0(k2) or even

to O(k) [90-92].

2. Cost of computing boundary conditions. In equations (4.4d) and (4.8d)

the boundary conditions involve integrals. The integration cost for each node

on the boundary is O(k), such that the total cost of evaluating the boundary

conditions is O(kM' 2).
3Once again, note that the discretization of interfaces and boundaries used in the BIM is com-

pletely independent of the computational grid used in the finite differences steps.

92

3. Cost of interpolation. Depending on the selected technique, the cost of

computing interpolants for the potential distributions over the interfaces and

boundaries varies between O(k) and 0(k 2). After the interpolants are know,

the cost of evaluating the potentials at the locations needed by the CFM is

O(Mi/2).

4. Cost of the CFM. Computing the correction function requires the solution a

small linear system (12 x 12 for 4 th order of accuracy in 2D) for each grid node

close to the interface or boundary. Hence, this cost is O(M 1 / 2). Furthermore,

these linear systems depend only on the geometry of the problem. Hence, even

though the CFM is used more than once for each solution, the added cost is

basically the same as computing the correction function only once.

5. Cost of finite differences. Since all problems that involve finite differences are

defined in a rectangular domain, the resulting linear systems can be inverted

using FFT. This is one of the fastest methods available to solve the Poisson

equation, with a cost of O(M log M) operations.

Since the BIM is converges rapidly for smooth geometries and data, in many applica-

tions we can take k = O(M 1 / 2). In these cases, the cost of the method is somewhere

between O(M) and O(M 3 / 2). In more general situations, k = O(M) normally suffices

to obtain good accuracy. In these situations, the cost of the method varies between

O(M 3/2) and O(M 2).

4.2 Results

This section shows two examples of computations in 2D using the procedure described

in §4.1. In the first example the Poisson equation is solved in an arbitrarily shaped

domain with both Dirichlet and Neumann boundary conditions. The second example

involves the Poisson equation with piece-wise constant coefficients. Results are shown

for large coefficient ratios (1:1,000,000), including the poorly conditioned problem

discussed in §4.1.3 and appendix D.

93

For completeness, the interfaces and boundaries immersed into regular Carte-

sian grids are represented using the gradient-augmented level-set method [42]. This

method results in 4th order accurate representations of these curves using local grid

information. Furthermore, the boundary integral equations are solved with Nystrom's

method and the trapezoidal quadrature rule [31,89,90]. For smooth interfaces and

data, this method results in optimal convergence and accuracy. The resulting poten-

tials are then interpolated using trigonometric interpolations [94] computed via FFT.

In addition, the Poisson equations defined in the rectangular domains are discretized

to 4 th order accuracy using the standard 9-point stencil - see appendix A. To main-

tain the overall accuracy of the method, the correction function is computed to 4th

order accuracy using the implementation of the CFM detailed in §2.

4.2.1 Example 1. Imposing boundary conditions over arbi-

trarily shaped surfaces

Consider the Poisson equation associated with the exact solution u(x, y) = cos(x) sin(y).

The solution domain Q is the region contained within the surface defined by the zero

level of #:

#(x, y) = r2 (x, y) - r2(6(x,y)), (4.12a)

r(x, y) = /x 2 ± y2 , (4.12b)

ro(x, y) = 1 + 0.3 sin(50(x, y)), (4.12c)

O(x, y) = tan- . (4.12d)

Figure 4-2(a) shows the solution domain Q immersed in a regular Cartesian domain.

The black line in figure 4-2(a) represents the zero contour of #, which is the boundary

of Q.

The same problem is solved by imposing (i) Dirichlet and (ii) Neumann boundary

conditions. Given a suitable arbitrary constant for the Neumann problem, both

solutions are very similar and visually indistinguishable. Figure 4-2(b) shows a plot

94

of the solution obtained with Dirichlet boundary conditions in a refined grid. The

solution outside Q is simply set to zero.

Nystrom's method converges rapidly in this problem, but a reasonable number of

points is needed to guarantee accuracy when the results are interpolated. In principle,

the discretization of OQ can be refined as the Cartesian grid is refined to guarantee

adequate accuracy. However, for simplicity, in this example &Q was discretized only

once with 500 equally spaced nodes, which results in an accuracy compatible with

even the most refined Cartesian grid considered here.

Figure 4-3 shows the convergence of the error in the L, and L2 norms. The L"

norm behaves quite similarly for both problems, and converges to 4th order. The L 2

norm is smaller in the Dirichlet problem, but the convergence is still 4th order for

both cases.

0.6

0.5 I0.5 0.4

0, 0.2

I0 1 -0.6

1 -0. 0~ 1. Y 2 -2 1

(a) (b)

Figure 4-2: (a) Solution domain embedded in a 33 x 33 Cartesian Grid. (b) Solution
obtained with a 193 x 193 grid.

95

L
2

104

10a h

(a) Dirichlet

10'

(b) Neumann

Figure 4-3: Error convergence in L 2 and L,, norms.

4.2.2 Example 2. Poisson equation with piece-wise constant

coefficients

Consider the Poisson equation with piece-wise constant coefficients associated with

the exact solution

u+(x, y) =x 2 + y 2

u-(x, y) = cos(x) sin(y) + 2.

The solution domain is the area enclosed by the unit circle, which is represented by

the zero level of 4Q:
#aOx, y) =r 2 (x, y) - 1, (4.13)

where r(x, y) and O(x, y) are defined by (4.12b) and (4.12d), respectively. In addition,

the interface that divides Q+ and Q is defined by the zero level of #r:

#r (2, y) = r2 (x, y) - r2(x, y),

ro(x, y) = 0.5 + 0.1 sin(56(x, y)).

Figure 4-4(a) shows the solution domain Q immersed in a regular Cartesian domain.

The black lines in figure 4-4(a) represent the zero contours of Oan and #r.

96

100

10-2

10~

10'

10~

10~1

10

(4.14a)

(4.14b)

Finally,

10-

Dirichlet boundary conditions are imposed on &Q.

In this example, two situations were considered:

(i) + =1 x 106, = 1.

(ii) 0+ =1, 0- = 1 x 106.

As noted in @4.1.3 and appendix D, case (ii) results in a poorly conditioned problem.

Appendix D presents a remedy to this situation. For this purpose, an integral quantity

of the solution, which depends only on the problem's data, must be given as an

additional input. In this example, the additional data given to the code was the

mean value of p, which is4

p = 0.837801918284980.

In addition, in this example 8Q was discretized with 200 nodes, while F was discretized

with 400 nodes.

The solution of (i) and the corrected solution of (ii) are similar and visually in-

distinguishable. Figure 4-4(b) shows a plot of the solution of (i) in a refined grid.

Furthermore, figure 4-5 shows the convergence of the error in the Leo and L2 norms

for both situations. Figure 4-5 includes results with and without the correction sug-

gested in appendix D (corrected results are designated by "c"). As expected, the

errors converge to 3 rd order in both cases. Moreover, the solution of (i) and the cor-

rected solution of (ii) present similarly small errors. On the other hand, the error in

the uncorrected solution of (ii) is approximately 1 x 106 bigger than in the corrected

version. This number is directly related to the condition number of the boundary

integral equation we must solve, which in turn is related to the ratio between coeffi-

cients.

4The derivation of an expression for p in terms of the problem's data is shown in appendix D.

97

3.

2.5

2-
1.5

1-

0.5

2

002

(a)

2.5

2

1.5

05

0

(b)

Figure 4-4: (a) Solution domain embedded in a 33 x 33 Cartesian Grid. (b) Solution
obtained with a 193 x 193 grid.

10

(i) 0+ y 0-- (ii) 0- > 3+

Figure 4-5: Error convergence in L 2 and Loo norms.

98

0
x

Chapter 5

Dynamic Problems

In this chapter the issue of imposing boundary conditions on complex geometries

in dynamic problems is addressed. Specifically, two equations that are relevant in

applications are considered: the heat equation, discussed in §5.1, and the convection-

diffusion equation, discussed in §5.2.

The method presented in this chapter is based on the same ideas as the version of

the correction function method for the Poisson equation introduced in §3. Namely,

the correction function is defined by a smooth extension of the solution valid in a

narrow band surrounding the boundary. This correction function is the solution to a

partial differential equation that is coupled to the underlying solution to the dynamic

equation. The major difference in this extension of the CFM to dynamic problems is

the fact that the correction function is now time dependent.

It is possible that one can devise methods to solve dynamic problems that are

based on boundary integral equations, such as the method presented in §4 for Poisson's

equation. However, this line of research was not pursued for this thesis. Furthermore,

the fluid flow applications discussed in this thesis do not involve interface problems.

Hence, this chapter is focused on the implementation of the CFM to impose boundary

conditions on complex geometries. Extensions of the CFM to interface problems are

also possible and are analogous to the method discussed here.

99

5.1 Heat equation

5.1.1 Overview

This section discusses the solution of the heat equation in an arbitrarily shaped so-

lution domain Q - see figure 3-1. In general, the shape of Q may be a function of

time, but in this thesis only problems with stationary boundaries were considered.

Furthermore, the discussion below is focued on Dirichlet boundary conditions, but

the same basic method can be used to other types of boundary conditions, such as

Neumann. Then, the problem to be solved is

ut(, t) - vAu(s, t) = f(Y, t)

u(,7 0) = Uo(Y)

u(', t) = 9D(F, t)

for

for

for

, t>

80, t > 0,

(5.1a)

(5.1b)

(5.1c)

where v > 0 is a diffusivity coefficient.

Figure 3-1: Example of solution domain with arbitrary shape.

100

Equation (5.1) is discretized with a combination of a Crank-Nicholson scheme in

time and a compact 9-point discretization in space, as described in §5.1.2. Whenever

the resulting discretization stencil straddles the boundary, the correction function is

used to complete the discretization, as described in §5.1.3. The result is an implicit

scheme that is 4th order accurate in space and 2nd order accurate in time. This scheme

is verified in numerical experiments shown in §5.1.4.

Remark 5.1. To take full advantage of the 4 h order accuracy of the discretization in

space, and of the CFM to impose boundary conditions, we need to use time steps that

are O(h2), where h represents the grid spacing. In principle, an implicit discretiza-

tion in time is not needed if we are to use such small time steps. However, the focus

of this thesis is on the implementation of the boundary condition with the correction

function method, which is well illustrated by the scheme discussed here. The applica-

tion of this method to other more accurate discretizations in time does not affect the

implementation of the CFM.

Furthermore, in fluid flow applications, devising time-splitting schemes that are

both implicit and high order accurate is not straightforward. This subject still is an

active field of research that goes beyond the scope of this thesis. Hence, a simple 2 "d

order accurate Crank-Nicholson is used scheme in all dynamic applications discussed

in this thesis as representative of implicit time-discretization schemes. 4

5.1.2 A compact discretization

Equation (5.1) is discretized in space using a compact and 4th order accurate 9-point

stencil. The motivation behind this discretization stencil is similar to the 9-point

stencil used for the Poisson equation, discussed in appendix A. The basic idea is to

(i) start with the standard, 2nd order accurate, 5-point stencil discretization of the

Laplace operator, and (ii) use derivatives of the heat equation to knock down the

leading order errors. Namely, the 2" order errors of the 5-point stencil discretization

are proportional to the fourth derivatives of u: u2222 and u,,,,. The second derivatives

101

of the heat equation are

1
UXX U= - fXX) - UXYY (5.2a)

1
YYYY= (nYyt - fyy) - UzXyy. (5.2b)

These expressions can be approximated to 2nd order accuracy using standard centered

differences. Then, replacing these approximations into the 5-point stencil results in

the following discretization in space

f(ut)ij - vSui,j = fij + _(h X2),j + h 2(f2)i,j), (5.3)

T = 1 I+ (h 22 + h S6YY), (5.4)

5 = $22 + I (h2 + h)$225Y, (5.5)

where $22and $YY are the centered difference operators (A.2) and (A.3), respectively.

The derivatives of the source term, fxx and fyy, can be given analytically if know, or

computed using standard 2nd order accurate finite differences.

Furthermore, (5.1) is discretized in time with the Crank-Nicholson scheme, which

is implicit and 2 "d order accurate. Hence, the fully discretized version of the heat

equation becomes

V) U , .(h)1 /2 t / 2
t- $ -"? = I+ 5)u ± + 1 (h(f)"i/2 ±) (5.6)

where k is the time step, and (.)n denotes a quantity evaluated at time t = nk.

Away from the boundary, (5.6) provides a compact discretization of the heat

equation that is 2nd order accurate in time and 4th order accurate in space. In the

vicinity of the boundary, we must compute the corresponding correction function, as

described in §5.1.3, and use this information to complete (5.6).

102

5.1.3 The Correction Function Method

First we define the narrow band Qr where the correction function exists. Qr is the

set of all points within a distance R from &f in the time interval nk < t < (n + 1)k,

where R is a value of the order of the grid size. Next, assume that the solution u

can be extended smoothly into Qr. Then, the correction function, D, is defined as

being equal to this smooth extension of the solution within Qr. Thus, the correction

function is characterized as the solution to the following PDE.

Dt(, t) - vAD(Y, t) = f (z, t) for i E Qr, nk <t < (n + 1)k, (5.7a)

D(A ,t) = gD(!, t) for E 80, nk<t<(n±1)k, (5.7b)

D(4 nk) = un for k E K, (5.7c)

D(', (n + 1)k) = Un for k E A, (5.7d)

where K is a pre-determined set of grid nodes. In principle, this set of grid nodes

can vary with time, especially to accommodate changes in the shape of aQ. However,

since here only stationary boundaries are considered, K is kept fixed at all time.

Remark 5.2. The lack of an initial condition in (5.7) restricts the minimum width of

Qr in time. This restriction occurs because information about the solution propagates

away from the boundary with effective speed 0(v/h). Hence, to determine the solution

at a distance R at time t = k the time step must be at least 0(Rh/v). In the particular

scheme implemented here, R ~' Vfh, so k > vFzh 21v. In principle, one can alleviate

this restriction by making Qr span more than one time step. Nevertheless, if one wants

to use small time steps, there is probably no need to use an implicit discretization in

time. 4

Remark 5.3. Similar to the approach used to determine the correction function in

other applications, Qr is sub-divided into a series of rectangular regions Q 'j, one

for each stencil that straddles the boundary. The definition of Q('), and the local sets

of grid nodes N nj is the same presented in §3.1.3, except for the fact that in the

present case these regions extend over the time dimension with width k. 4

103

Finally, we solve for D within each O(&') in a least squares sense. Namely, the

solution corresponds to the minimum of the functional

,(ij)
4 (n+1)k

Jh = dt] {D - vAD(z, t) - f (, t)} 2 dV
A 2vV(Q(rj) nk tjOi) t-vA (77

1 p(n+1)k

cP dt {D ,t) - gD(, t) 2 dS
2L (r) nk rnn.(.8

+ CN I {D(-, nk) - U} 2

k2 E k)

+ CN {D(4,(n+1)k)-u+1}2

k EN k)
kEAf(',i)

In (5.8), cp is the penalization coefficient used to impose the boundary condition,

and CN is the penalization used to enforce the constraints (5.7c) and (5.7d). The

minimization of Jh, and therefore solving for D within each domain O('j, involves

the steps described below.

1. Choose a set of basis functions to represent D within O4'j): D(X, t) = deq5(, t).
e=1

2. Replace this representation of D into the functional Jh.

3. Approximate the integrals in (5.8) using numerical quadrature.

4. Solve for the weights de that minimize Jh.

In the particular scheme implemented in this thesis, the correction function is rep-

resented by a bicubic interpolation in space and linear interpolation in time, with a

total of nb = 24 basis functions. This representation is coherent with the discretiza-

tion described in §5.1.2, which is 4 th order accurate in space and 2 nd order accurate

in time. Moreover, the time integrals in (5.8) are discretized using two Gaussian

quadrature nodes. The remainder of the solution procedure is completely analogous

to what is described in §3.1.4.

Remark 5.4. The definition of the correction function for the heat equation with

Neumann boundary condition is analogous to the Dirichlet problem described here.

104

However, as noted in 3.1.5, the use of bicubic interpolation for the representation of

D in space allows us to impose the Neumann boundary condition with only 3 d order

accuracy. Hence, this implementation of the correction function method is restricted

to 3 d order of accuracy for problems involving Neumann boundary condition. 46

5.1.4 Results

In this section, the numerical scheme introduced in §5.1 is used to solve the heat

equation in 2D with Dirichlet boundary conditions. This example corresponds to the

heat equation associated with the exact solution

u(x, y, t) = exp(-(X2 + y 2)) cos(27t),

with v = 1. The boundary of the solution domain is represented as the zero contour

of the of the level set function

#(x, y) = r 2 _ (0(X, y)),

r(x, y) = /(X - Xo)2 + (y - yo) 2 ,

r(O) = ro+ e sin(50),

O(x, y) = arctan y -),
(z - zo)

where, zO = yo = 0, ro = 0.5, and e = 0.2. Figure 5-1(a) shows the boundary

immersed in a Cartesian grid. The solution domain Q is the region contained inside

this curve.

The time step used in this example is k = 16h 2 . Figure 5-2 shows the numerical

solution obtained with a fine grid (193 x 193 nodes) at different times. The solution

outside Q is simply set to zero. In addition, the error was measured at t = 0.5.

Figure 5-1(b) shows a plot of the convergence of the error in the L 2 and Lee norms.

As expected, the error converges to 4th order in both norms. The error in the solution

and its gradient was also measured along the boundary. Figure 5-3 shows that the

error along the boundary converges to the expected 4 th order, while the gradient

105

converges to 3rd order.

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

(a)

Figure 5-1: (a) Solution
gence of the error in the

domain embedded in a 65 x 65 Cartesian grid. (b) Conver-
L 2 and Loc norms.

0

4

.2

00

(a) t -0

01

1 2.5

(b) t = 0.25

.2

-04

-0.6

-08
0 0 [-1

(c) t 0.5

Figure 5-2: Solution at different times.

5.2 Convection-Diffusion equation

5.2.1 Overview

This section is dedicated to the solution of the convection-diffusion equation in an

arbitrarily shaped solution domain Q - see figure 3-1. In principle, the method de-

scribed here can be applied to any number of dimensions, but in this thesis only the

2D convection-diffusion equation is considered. Furthermore, in the situation studied

106

10

10 -

10

10

108

10
010

-0,

-Lh

1010 2

h

(b)

01

10-2

10

10

10

-10-7
o7

-a-u
a -.- U

10 3

10-
h4

10
3

10-2 10

Figure 5-3: Convergence of the error along the boundary.

here the convective velocity is a function of the quantity being transported with the

flow, resulting in the nonlinear convection-diffusion equation. In particular, in the

equation of conservation of linear momentum the transported quantity is the velocity

itself.

In addition, the boundary 8Q is considered to be stationary, and Dirichlet bound-

ary conditions are applied on &Q. Then, we seek the solution to

Vt (7, t) + (-V) - vAWi(7, t) = f (, t) for Y E Q, t > 0, (5.9a)

(, 0) = o) for Y E 80, (5.9b)

z t = -# g -#1D) for Y E 80 , t > 0, (5.9c)

where v > 0 is a diffusivity coefficient, and ' is the convective velocity. The correction

function method that solves this problem is similar to the one implemented for the

heat equation in @5. 1. However, there are two very important differences worth noting:

(a) Expression (5.9) is a vector equation. In 2D it involves two scalar variables:

W =- {u, v}.

(b) Equation (5.9) is nonlinear because of the convection term (' -)i)Y.

In theory, the nonlinear convection term couples both scalar components u and v.

Hence, a fully implicit numerical scheme has to solve both components simultaneously

107

in a large and nonlinear system of equations, which can be a very costly process. For

this reason, the most common approach to solve (5.9) is to treat the convection term

explicitly, whereas still solving for the diffusive terms in an implicit fashion. The time

step constraint added by treating the convection term explicitly is k < 0(h), which

is not an important restriction in most practical applications.

The convective term models the propagation of information along the characteris-

tic directions. Hence, an explicit discretization must respect this flow of information

(must be upwind), else instabilities arise. There exist methods that can achieve high

order of accuracy and are widely used in this context, such as the ENO and WENO

schemes [95-97]. However, to obtain high order of accuracy, these schemes involve

relatively wide discretization stencils, which is not very attractive from the point of

view of the CFM. For this reason, a different approach was adopted here.

Instead of treating the complete convective term in an explicit fashion, only the

convective velocity is treated explicitly, while the remainder of the convective term is

kept in an implicit form. In other words, the convective term is approximated by

(W -1) (W* -V) , (5.10)

where * is the explicit convective velocity obtained by extrapolation of the solution

from previous time steps. Naturally, the quality of this approximation depends on

the accuracy of the extrapolation used to estimate 0W*. The objective of this approach

is to be able to use a compact centered differences discretization and still obtain an

accurate and stable numerical scheme. For all practical purposes, no restriction to the

maximum time step allowed was observed with the discretization scheme described

in §5.2.2.

Therefore, (5.9) is solved with a combination of a Crank-Nicholson discretization in

time and a compact 9-point discretization in space, as described in §5.2.2. Whenever

this discretization stencil straddles the boundary, the correction function is used to

complete the discretization. The result is a semi-implicit' scheme that is 4th order

'The discretization is implicit with the exception of (5.10).

108

accurate in space and 2 nd order accurate in time. Finally, §5.2.3 shows some results.

Remark 5.5. Once the convective term is replaced by the semi-implicit version

(5.10), the 2D convection-diffusion equation becomes a system of two linearized equa-

tions that can be solved independently for the components u and v. The same procedure

is applied to the PDE that defines the correction function, so there is one correction

function for each component, independently of the other. In this context, the defini-

tion of the correction function is completely analogous to the procedure applied to the

heat equation in §5.1.3. For this reason, it will not be discussed in further detail. s

5.2.2 A compact discretization

As discussed above, the convective velocity is replaced by an explicit approximation -

see equation (5.10). In particular, here the convective velocity is approximated with

a linear extrapolation of the solution in the previous two time steps:

3-1" -ni-1
* 3w - (5.11)

2

By doing so, the equations for the scalar components u and v decouple from each

other. Hence, we can solve for each component individually. Furthermore, both

components are subject to the same differential operators. Therefore, we can apply

the same discretization for both equations.

Equation (5.9) is discretized in space using a compact and 4 th order accurate

9-point stencil. To derive this stencil we start with standard, 2nd order accurate,

centered differences applied to both the convective and diffusive terms. The error

resulting from this discretization is

h V(2
-u U222 + -v "uyyy -- (hin22 + hXn,, + 0(ha) (5.12)

6 6 12

where * = {u*, v*}. The idea is to use derivatives of the equation to estimate this

error to 2 "d order, leaving only 4 th order errors behind. The second derivatives of the

109

convection-diffusion equation results in

UX - = - VUXrX = - uxxt + vuxxyy - u*xux - 2*uxx -v*U (5.13a)

v*UYYY - uYYYY= fyy uYYt + vuxxyy - - 2vuy - (u*ux)y,, (5.13b)

All terms in the right-hand-side of (5.13) can be discretized to 2nd order of accuracy

using standard centered differences. However, replacing (5.13) into (5.12) does not

eliminate all of leading order error. The remaining error is given by

- V(h2UXXXX + h YYYY) + O(h4). (5.14)
6

In principle, we could use different manipulations of the equation and its derivatives

to eliminate these errors as well. However, this procedure leads to errors that are

O(h 4/v), which is not satisfactory for small v (or large Reynolds number in the

Navier-Sotkes equations). Hence, instead the error (5.14) is eliminated by using the

same expression as in (5.13), but replacing the convective term with a fully explicit

version:

vuxxx = ((y* - V)u*). - f + Uxxt - (5.15a)

vuyyyy= ((* - V)u*)Y - fY, + UYYt - vuxx~Y. (5.15b)

Note that this last expression is only used to eliminate the errors left in (5.14). Hence,

it is reasonable to expect it does not influence the stability of the scheme. Finally,

the complete discretization in space becomes

'Z(ut)i,j ci5-vai5=f~ + -(hi~x), + hy (XX)i,j)
+u)1 ± - vSdu~, = f ± x (5.16)

+ A(hVxx(z* - h)u*+hyy(z* -)u*)

110

where

T = 1± (h±2 + h) (5.17)

$c =u*6.2+v*Y + 1(h2e- +h Scy) (5.18)

Sex = v*$225, + ($22u*)$ + ($22v*)6y (5.19)

+ 2($2u*)$2x + 2(5$v*)$x$y,

$cy = U*62$yy + (5yyu*)$2 + ($YYv*)$Y (5.20)

+ 2($yu*)$x$y, +2(6yv*)$yy

Sd = 622 +,y + (h2 + h 2)$225,, (5.21)

The derivatives of the source term, fxx and fyy, can be given analytically if know, or

computed using standard 2"d order accurate finite differences.

The Crank-Nicholson scheme, which is implicit and 2nd order accurate, is used

for the discretization in time. Hence, the final discretized version of the convection-

diffusion equation becomes

1 -) 1t -)U

T + f$- v a u 1/= T -2 (- v) n + 1 , 2 (

± f / 2 (hi(fx2) 1 /2 + h2(f22) 1 / 2) (5.22)

± y~j(h!2xx(d1* - + hg ±

where k denotes the time step.

Away from the boundary, (5.22) provides a compact discretization of (5.2) that

is 2 nd order accurate in time and 4 th order accurate in space. In the vicinity of

the boundary, we must compute the corresponding correction function and use this

information to complete (5.22).

111

5.2.3 Results

In this section the numerical scheme introduced in §5.2 was used to solve the 2D

convection-diffusion equation with Dirichlet boundary conditions. Unlike other ex-

amples in this thesis, here the irregular geometry where the Dirichlet boundary con-

ditions are applied is a boundary internal to the solution domain Q. On the external

boundary periodic boundary conditions are imposed. The internal boundary is rep-

resented as the zero contour of the of the level set function

#(x, y) = r2 (x, y) - r2(0(x, y)),

r(x, y) = /(x - X0)2 + (y - yo) 2 ,

r(9) = ro + esin(50),

9(x, y) = arctan YYO),(x - XO

where, xo = yo = 7r + 0.1N/5, ro = 1, and e = 0.4. The solution domain is the

area comprised in the (0, 27r) x (0, 27r) square, with the area within the zero level

set excluded. Figure 5-4 shows the solution domain discretized with a Cartesian

grid and the internal boundary immersed into it. This example corresponds to the

convection-diffusion equation associated with the exact solution

u(x, y, t) = - sin(x) 2 cos(y) sin(y) sin(t) + 1,

v(x, y, t) = cos(x) sin(x) sin(y) 2 sin(t) + 1,

with v = 1. The time step used is k = h2

Figures 5-5 and 5-6 show the numerical solutions obtained with a fine grid (193 x

193 nodes) at different times. The solution outside Q is simply set to zero. Error

convergence plots are shown in figure 5-7. Both the L 2 and Loo norms are shown.

As expected, errors converge to 4 th order in both norms for the two components u

and v. Figure 5-8 shows the convergence of the error in the solution and its gradient

evaluated along the boundary. Once again, both components u and v converge to 4 th

order, while the respective gradients convergence to 3 rd order.

112

3
x

Figure 5-4: Solution domain discretized with a 65 x 65 Cartesian grid. The internal
boundary is immersed in the grid.

6
34

2

Y 0

(a) t = 0.5

1.2

1 1.5

0.8 1

0.6 0.5j

0.4 0L

0.2

0

4
-w

3
2 ~ 4

22
Y 0 0

(b) t = 1

Figure 5-5: Plot of the u component of the solution at different times.

3 \
2 4

1 2

0 0 x

(a) t = 0.5

6

1.2

1

0.8

0.6

0.4

0.2

0

1.5

0.5-

01

6

3
2 4

1 2

(b) t = 1

Figure 5-6: Plot of the v component of the solution at different different in time.

113

1.5,

<14
0.51

06

1.4

1.2

0.8

0.6

0.4

0.2

0

6

1.5

0.51

0.
6

1.4

1.2

0.8

0.6

0D4

'O

6

I

1

1

10

10

10

10

10 0-2 10

(a) u (b) v

Figure 5-7: Convergence of the error in the L.. and L 2 norms.

h

(a) u

10'
h

(b) v

Figure 5-8: Convergence of the error along the boundary.

114

10

10 2

10-2
102 10

10 f

Chapter 6

Incompressible Navier-Stokes

Equations

In this chapter, the techniques described in previous chapters are combined to solve

the incompressible Navier-Stokes equations to high order of accuracy using immersed

grids. Most common formulations of the incompressible Navier-Stokes equations

(INSE) involve the solution of a convection-diffusion equation for the velocity field,

and a Poisson equation for the distribution of pressure. Hence, the versions of the

correction function method discussed in §2 to §5 serve as the foundation needed to

solve the INSE.

Before developing a CFM to solve the INSE, we need to know what boundary

conditions to use. The incompressibility condition included in the INSE can be satis-

fied in different forms, giving rise to different formulations of the INSE. In turn, each

formulation results in a different set of boundary conditions. In §6.1 the particular

formulation adopted in this thesis is presented. Next, §6.2 discusses the numerical

method used to solve this formulation of the equations. Finally, §6.3 shows some

results, including the flows over cylinders in the low Reynolds number regime.

115

6.1 Formulation

The incompressible Navier-Stokes equations (INSE) are a set of equations that de-

scribe the governing dynamics of incompressible viscous flows. By incompressible

flow, it should be understood that the density of the fluids involved in the flow re-

main constant in each phase. These equations describe the conservation of massi and

linear momentum. In nondimensional form, the INSE read

Conservation of mass: V = 0, (6.1a)

1
Conservation of linear momentum: it + (zb . = -Vp ± -Aw ± f (6.1b)

Re

where W-4 = {u, v} is the velocity vector, p is the pressure, and f represents external

body forces that act upon the fluid. In addition,

U L
Re = U(6.2)

V

is the Reynolds number. In (6.2), U is a characteristic speed, L is a characteristic

length, and v is the dynamic viscosity of the fluid.

For completeness, (6.1) must be accompanied by suitable initial and boundary

conditions. For the flow in a given domain Q, it is common to impose

V7 0) = GoV) for z E42, (6.3)

for i EQ, t>0. (6.4)

The conditions (6.3) and (6.4) describe the situations studied in this thesis, including

the flow over rigid bodies.

Equation (6.1a) is not an evolution equation, but a constraint on the solutions.

This creates difficulties in the design of numerical schemes to solve the equations.

A very common approach to solve (6.1) is to use one of the many variations of

'Equation (6.1a) is also commonly referred to as the incompressibility or the divergence-free
condition.

116

the projection method [19, 20, 98-100]. A feature common to all these variations

is to split the solution for velocity from the solution for pressure. Pressure (or, in

some variations, a variable related to pressure) is characterized as the solution to

a Poisson equation. A long standing problem of the projection method is how to

properly define boundary conditions for this Poisson equation. As a consequence, the

projection method normally produces "numerical boundary layers:" regions close to

the boundary where the error decays slower than in the rest of the domain as the

computational grid is refined.

There are recent re-formulations of the INSE which re-write them as equivalent

systems of evolution equations at the continuum level, and can be used to produce

schemes that avoid the numerical boundary layers in projection methods [21-24,

26]. In particular, the formulations developed by Johnston and Liu [23,24], and by

Shirokoff and Rosales [261 have the following properties in common.

(i) The split between velocity and pressure occurs at the continuum level - the

dependence between these variables occurs at the source terms and boundary

conditions.

(ii) The boundary condition for pressure is derived such that (6.1a) is satisfied.

Hence, in principle, we can discretize these new formulations to any desired order of

accuracy.

Nevertheless, the formulation proposed by Shirokoff and Rosales [26] results in

"unconventional" boundary conditions for the velocity field. As shown in [26], the

implementation of these boundary conditions is not straightforward. For this rea-

son, here the formulation introduced by Johnston and Liu [23,24] was implemented.

Namely, the system of equations to be solved is

1
t + (W -) 9) - -A = -p + f,(6.5a)

Re

Ap = V .(-(-) + f.- A19), (6.5b)

with (6.3), (6.4), and the additional boundary condition

117

pn = i - (-(gD)t - (- ')1 - (W X V XW) +f ,(6.6)

where ft is the unit vector normal to the boundary OQ, pointing outwards. Hence,

this formulation involves the solution to a convection-diffusion equation with Dirichlet

boundary condition for the velocity field, and a Poisson equation with Neumann

boundary condition for pressure. The solution to these equations is discussed in §2

to §5. The next section explains how we can use these techniques in the context of

(6.5).

Remark 6.1. The (-AVW') term in (6.5b) is not part of the formulation presented by

Johnston and Liu [23, 24]. This additional term serves only to stabilize the numerical

discretization in the high Reynolds number regime, as explained below.

Assume that the initial condition (6.3) automatically satisfies the divergence-free

condition (6.1a). Then, following the discussion in [24], by solving (6.5) with (6.3),

(6.4), and (6.6), the variable W = (V - 'i) indirectly satisfies the following PDE.

1
Wt = Re p -A for Y E Q, (6.7a)Re

(, 0) = 0 for Y E Q, (6.7b)

W(PM , t) = 0 for YEffl, t>O. (6.7c)

Naturally, the solution to this PDE is W = 0 for t > 0. However, the discretization

of (6.5) introduces numerical errors that also affect (6.7). For small Re, the effect of

these numerical errors is such that the divergence-free condition is only satisfied up to

the order of accuracy of the numerical scheme, which is satisfactory for all practical

purposes. However, for large Re the diffusion in (6.7a) is not enough to control the

discretization error and keep p small, which then de-stabilizes the computation. In

this case, the additional term with A > 0 serves to control the discretization errors

and stabilize the solution. This term is inspired by the solution adopted in [26] for a

similar problem.

118

6.2 Numerical Scheme

As discussed in §6.1, the formulation of the INSE adopted in this thesis requires

the solution of a convection-diffusion equation with Dirichlet boundary conditions

for the velocity field, and a Poisson equation with Neumann boundary conditions for

the pressure. Solving these problems to high order accuracy using immersed grids

is discussed in §3 to §5. This section explains how we can combine these techniques

to develop a version of the correction function method to solve the incompressible

Navier-Stokes equations.

Note that the formulation discussed in §6.1 is only stable because it satisfies the

divergence-free condition (6.1a) by indirectly enforcing (6.7). Hence, the discretiza-

tion scheme must also indirectly enforce (6.7) - at least up to the desired order

of accuracy. In the context of the correction function method, this condition means

that the pressure correction function must depend on the velocity correction function.

Specifically, when we solve the PDE that defines the pressure correction function, we

must evaluate the source term in (6.5b), and the boundary condition (6.6), using the

velocity correction function:

AD, = - (-(D. -V)D + f- ADb) for Y E Qr,

(6.8a)

(Dp-m=Di -V ~x for Y EOQ,(D,, rn - (D)t - (DW).--VxVxD) + f fo E ,\RDRe

(6.8b)

where D, denotes the pressure correction function, and Dw represents the velocity

correction function2 . In fact, this requirement makes the implementation relatively

easy, since we can obtain derivatives of the correction function at any point close the

boundary in a straightforward fashion. On the other hand, we must be careful to

maintain the high order accuracy.

2As explained in §5.2, the correction function for each component of the velocity field is compyted
independently from the other. Then Dw = {Ds, D,}.

119

If each component of the velocity correction function is represented using a bicubic

interpolation in space and a linear interpolation in time, as discussed in §5.2, the

solution is 4 th order accurate - assuming k = 0(h 2) - but the derivatives are less

accurate. In particular, (6.8) involves second derivatives of the velocity. Hence, in

the case mentioned above, these conditions can only be enforced to 2 nd order of

accuracy. As a result, the overall accuracy of the solution scheme is reduced to

2 nd order. Therefore, to obtain high order accuracy in the context of the INSE, we

must use a richer representation for the correction functions. To obtain 4 th order

of accuracy, the correction functions are represented with biquintic interpolation in

space, and quadratic interpolation in time.

On the other hand, this richer representation of the correction functions requires

more information about the solution. In other words, the local sets N('i,) used to

impose the compatibility conditions (5.7c) and (5.7d) need to include more grid nodes.

In this particular case, N('i,) is the set of nodes that both (i) lie within the solution

domain, and (ii) are part of the 5 x 5 set of nodes that surround node (i, j). In

addition, this choice of N('i,) results in larger rectangular domains O('j). For this

reason, O4jR) must also include a bigger piece of the boundary. Namely, O"j is such

that it includes the piece of boundary of length 4 h2 + h2 centered at the point on

the interface closest to node (i, j) - see §5.1.3 for further detail. In addition, the

richer representation in time also demands more information from past time steps.

In this case, O('j) extends with width 2k in time.

Remark 6.2. A consequence of including more grid nodes in N('t,) is a wider dis-

cretization stencil in the vicinity of the boundary. This happens because when we use

the correction function to complete the discretization stencil, the stencil is modified

to include the grid nodes that are part of g('i).

Remark 6.3. Although this richer representation of the correction functions results

in 4 th order accuracy for both velocity and pressure, with the GA-LS representation of

the immersed boundary the vectors normal to the boundary are computed to 3' order

accuracy. As a consequence, the the Neumann boundary conditions for the pressure

120

are only imposed to Yd order, which reduces the accuracy of this variable.

Remark 6.4. I use information from the past two time steps only to compute the

velocity correction function. The discretization of the equations on the grid nodes

is the same one described in §5.2.2: a combination of Crank-Nicholson in time and

centered differences in space.

Second, although the pressure correction function must depend on the velocity

correction function to maintain stability, the opposite is not true. When we compute

the source term for the PDE that defines the velocity correction function using (6.5a),

we cannot use the pressure correction function to compute the gradient of pressure.

The reason for this asymmetric coupling between velocity and pressure correction

functions comes from the relationship between velocity and pressure in the INSE. In

the INSE, velocity is the only independent variable. In contrast, pressure is a function

of velocity only - given any velocity distribution, we can obtain a corresponding

pressure distribution that "drives" it to a divergence-free field. On the other hand, the

opposite is not true. Given any pressure distribution, we cannot necessarily compute a

corresponding velocity field that is divergence-free. For this reason, using information

from the pressure correction function when solving for the velocity correction function

is similar to using the velocity correction function from a previous time step to set

an initial condition. As discussed in §5.1.3, this procedure is unstable. The solution

adopted here is to (i) compute the gradient of pressure away from the boundary

using standard 4 th order accurate finite differences, and (ii) use bicubic extrapolation

to evaluate the gradient of pressure whenever necessary for the CFM.

Third, the first and second derivatives of the velocity field are needed to evaluate

the source term for the pressure on the grid nodes (the actual pressure, not the

correction function). These derivatives can be computed with standard 4 th order

accurate finite differences. For nodes that are close to the boundary, we can use the

correction function to complete these finite differences stencils.

Except for the points discussed above, the remainder of the solution procedure

follows the schemes introduced in §3.1 and §5.2. Below a summarized description of

121

the steps involved in this solution procedure is presented. For this purpose, assume

that we seek the solution of the INSE at t = nk. Moreover, let xqt denote the

quadrature nodes used for integration in time (normalized such that 0 < xqt < 1).

Then, the solution procedure involves the steps listed below.

1. Compute the convective velocity in QO' at t = (n - 2+ 2xqt)k by linear extrap-

olation.

2. Compute the pressure gradient on the grid nodes at t = (n - 2)k and

t = (n - 1)k using 4 th order finite differences. For nodes close to the boundary,

use the correction function to complete the discretization.

3. Extrapolate the pressure gradient to Q('j at t = (n - 2 ± 2xqt)k using bicubic

extrapolation in space and linear extrapolation in time.

4. Solve for the velocity correction function using the scheme described in §5.2.

5. Compute the convective velocity on the grid nodes at t = (n + 1/2)k by linear

extrapolation.

6. Solve the convection-diffusion equation to obtain the velocity on the grid nodes at

t = nk. In this step we use the Crank-Nicholson scheme described in §5.2.

7. Compute the source term for the pressure correction function using the velocity

correction function - see (6.8a).

8. Compute the boundary condition for the pressure correction function using the

velocity correction function - see (6.8b).

9. Solve for the pressure correction function using the scheme described in §3.1.

10. Compute the source term for the Poisson's equation - see (6.5b).

11. Solve the Poisson's equation to obtain the pressure on the grid nodes at t = nk.

In this step we use the scheme described in §3.1.

122

Remark 6.5. In the vicinity of boundaries, the viscous term in the INSE becomes

significant, even in the high Reynolds number regime. For this reason, as explained

in remark 5.2, information from the boundary takes some time to propagate towards

the edges of Qr. As a consequence, there is a limitation to the minimum time step we

can use with the CFM. In the context of the INSE, this limit becomes k > V12h 2 Re.

This limit may seem too restrictive in the high Reynolds number regime. However,

a reasonable computational grid used to solve the INSE in this regime will be very

refined close to the boundaries, while coarser in most of the solution domain. Ideally,

the grid spacing close to the boundary will be 1|Vip the size of the grid spacing away

from the boundary. Hence, in this situation this limit becomes k > vs/hc, where he is

the "coarse" grid spacing, which is a reasonable time step for most practical purposes.

Remark 6.6. The solution procedure described here requires knowledge of the solution

at the two previous time steps. Hence, in principle we must use a special scheme to

handle the first time step. However, this issue is not particularly relevant to the

correction function method. Therefore, for simplicity, here an additional "initial"

condition is imposed at t = -k. For situations where the exact solution is know, this

information is used to define this additional condition. Otherwise, the same initial

condition is set for t = 0.

6.3 Results

This section presents six examples of solutions of the 2D incompressible Navier-Stokes

equations using the scheme described in §6. In the first two examples, the domain

is periodic in both directions, with no immersed boundaries in the solution domain.

These examples serve as validation of the formulation of the INSE adopted here, and

of the numerical scheme used to discretize the equations in the interior of the solution

domain.

The third example shows the solution of a similar problem, but with the addition

of an internal boundary, which is immersed in the regular Cartesian grid. In this

example, the correction function method used to solve the INSE is validated.

123

Finally, the last three examples involve flows over cylinders in the low Reynolds

number regime. Unfortunately, moderate to high Reynolds number results could

not be computed because the code developed for this thesis supports only uniform

Cartesian grids. In the high Reynolds number regime, one must be able to adequately

resolve the boundary layer with grids that are relatively fine close to the boundary.

Hence, because a uniform grid is used here, the computational requirements increase

rapidly as the Reynolds number becomes higher. To surpass this difficulty, one needs

to implement the CFM with a numerical scheme that supports grids with variable cell

sizes, without loss of accuracy. Developing such a numerical scheme in the context of

finite differences is not an easy task, and lies outside the scope the this thesis.

6.3.1 Purely periodic boundaries

Before moving to problems involving immersed boundaries, it is important to validate

the formulation of the INSE and the numerical scheme adopted here. For this reason,

the first two experiments involve purely periodic boundary conditions: there are no

boundaries immersed in the solution domain. The first experiment involves a low

Reynolds number situation (Re = 1), whereas the second experiment is set in the

high Reynolds number regime (Re = 1 x 106). This second experiment serves to

evaluate the stabilizing term added to Johnston and Liu's formulation of the INSE

equations, as discussed in remark 6.1. Namely, in the the first example A = 0, and in

the second experiment A = min(1/4k, 10)3.

In both examples, the solution domain is the (0, 2r) x (0, 27r) square. Moreover,

the problem considered here is related to the exact solution

u(x, y, t) = - sin2 (x) cos(y) sin(y) sin(t) + 1, (6.9a)

v(x, y, t) = cos(x) sin(x) sin2 (x) sin(t) + 1, (6.9b)

p(x, y, t) = cos(x) sin(y) sin(t). (6.9c)

3The A term is an artificial correction added to control errors in the high Re regime. So, it is

interesting to limit A to a relatively small value, e.g. A = 10. However, the theoretical rate of decay
imposed by the stabilizing term is r = 1/A. Hence, for stability reasons, A must not be larger than
1/k. Here, A = 1/4k in coarse grids, where the time step is relatively large.

124

The solution is evaluate up to t = 10 with time step k = 2.5h 2. Finally note that,

since there is no boundary in the interior of the solution domain, it is not necessary

to resolve a boundary layer. Hence, we can solve the high Reynolds number regime

without using a very refined grid. Furthermore, there is no restriction to the minimum

time step allowable, as occurs in problems with boundaries - see remark 6.5.I121
15 1 5

0.9 I0 9
0.5 0 5

y 0 0 X Y 00 X Y 0 0 X

(a) u (b) v (c) p

Figure 6-1: Solution at t = 10 for Re - 1.

Figure 6-1 shows the solution to example 1 at t = 10 in a 128 x 128 grid. The

solution to example 2 is similar, and visually indistinguishable. Moreover, figure 6-

2 presents the behavior of o = (V - 1') over time in example 2 (128 x 128 grid).

Figure 6-2(a) shows the solution computed with A = 0, while figure 6-2(b) shows

the solution computed with A = 10. As we can observe, without the stabilization

term, p tends to grow over time. The stabilization term controls this growth, making

a oscillate periodically with small amplitude. Therefore, we conclude that, in the

absence of boundaries, the stabilization term added to the pressure equation is capable

of controlling the growth of p even for Reynolds number as high as 1 x 106.

Finally, figure 6-3 shows the convergence of the Lo norm of the errors at t = 10.

As expected, in both examples the error converges to 4th order for all variables -

including p.

6.3.2 Immersed Boundary

After validating the formulation and the basic numerical scheme used to solve the

INSE, the next step is to combine it with the CFM to impose the appropriate con-

ditions on immersed boundaries. To verify the validity of the scheme proposed here,

125

i

0 4 6 8 10 0 2 4 6 8 10
t t

(a) A = 0 (b) A = 10

Figure 6-2: L, norm of the divergence of velocity for Re = 1 x 106.

10-2

10-

10,

S10

10,

10

10 I
-h

10
h

(a) Re = 1

10

102

103

10

10'

10,
10

(b) Re = 1 x 106

Figure 6-3: Convergence of the error in the L, norm.

a circular boundary is immersed into the solution domain of example 1 and Dirichlet

boundary conditions are imposed on it. The circular boundary is represented by the

zero level of the the level set function

#(x, t) = r 2 (x, y) - r',

r(x, y) = v(X - zo)2 +(y - yo)2

where xo = yo = 7r, and ro = 1. Figure 6-4 shows the solution domain with the

boundary immersed in a Cartesian grid. The solution domain is the region exterior

to this circle.

As discussed in remark 6.5, in this case the Reynolds number imposes a limitation

126

div(w)
-h4

Figure 6-4: Solution domain with the boundary immersed in a 96 x 96 Cartesian grid.

to the minimum time step allowed. Hence, in this example the INSE associated with

the exact solution (6.9) and Re = 1 is solved with time step k 4h2.

Figure 6-5 shows the solution at t = 1 in a 192 x 192 grid. The solution outside

the domain is simply set to zero. Similar to the results presented in previous chap-

ters, the boundary condition is properly enforced, without creating oscillations or

spurious effects in the remainder of the solution. Moreover, figure 6-6(a) presents the

variation of - (V - t-) over time. Once again sp oscillates with bounded amplitude.

However, experience shows that a stable solution is only possible after increasing the

penalization coefficients used to impose the boundary conditions. Namely, for the

velocity correction function, the coefficients were set to cp - 1 x 104, CN = 10, while

for the pressure correction function, Cp = 100, and cN 10. This difficulty may be a

reflection of the fact the Johnston and Liu formulation imposes conservation of mass

in a "marginally stable" fashion, as discussed in [26].

2. A2b 22151

(a)u (b)v (c) p

Figure 6-5: Solution at t = 1 for Re =1.

127

Figure 6-6(b) shows the convergence of the error in the L, norm. As expected, the

errors converge to 4th order for the velocity components, and 3rd order for pressure

and <p - see remark 6.3. Finally, figure 6-7 shows the convergence of the error in

the solution and the gradient evaluated along the boundary. As we can observe, the

components of velocity computed on the boundary converge to the same order as the

solution in the interior of the domain, while the gradient is one order less accurate.

On the other hand, the pressure and pressure gradient evaluated along the boundary

both converge to 3 rd order.

1.6 - 03

1.4
10

1.2

1 -10"

0.81

0.6

0.4 -
10-

0.2 -
-i~w

o 10'
0 t 6 8 10 100 10'

(a) (b)

Figure 6-6: (a) Variation of the Lc, norm of the divergence of the velocity over time.

(b) Convergence of the error in the L. norm.

h

(a) u

10'

(b) v (c) p

Figure 6-7: Convergence of the error along the boundary.

128

2

6.3.3 Flow over a cylinder

The INSE solver discussed in 56 was applied to solve three to fluid flow problems

in the low Reynolds number regime. These applications involve the flow around a

circular cylinder with Re = 1, Re - 10, and Re = 20. In simulations of flows

around a cylinder, it is usual to use inflow/outflow boundary conditions that mimic

an open space situation. To avoid the errors introduced by these boundary conditions

- especially in a relatively small computational domain such as the one used here -

the domain is assumed periodic and the flow is driven by a uniform body force.

As a consequence, the definition of Reynolds number that used in these simulations

is not the same used in the other examples, and the results presented here do not

necessarily match the ones presented in the literature. Nevertheless, the solutions

discussed below capture some of the key features of flows around a cylinder in the

low Reynolds number regime, such as a well defined "separation bubble" and vortex

shedding, which indicate that the numerical scheme is capable of producing quality

solutions.

In reality, the periodic boundary conditions correspond to an infinite array of

cylinders that extends in both directions. The computational box of size (0, 6) x (0, 3)

represents one period of this infinite array. Figure 6-8 shows the computational

box with the cylinder immersed in a regular Cartesian grid. The flow around these

cylinders is driven by adding a uniform body force f in the positive x direction.

For nondimentionalization purposes, the characteristic length is the diameter of the

cylinder, and the characteristic speed is given by 4

Lf
6p

As mentioned above, this definition of characteristic speed results in Reynolds num-

bers that are not compatible with the nondimensionalizations defined with the inflow

speed. Hence, we must be careful when comparing the solutions presented here with

4 The factor of 6 in this expression corresponds to the length of one period. Hence, in the absence
of the cylinder, the uniform flow at Re = 1 has a unitary pressure drop.

129

other experiments listed in the literature.

2.8

-1.5

1

0.5

0 2 3 4 5 6

Figure 6-8: One period of the infinite array of cylinders. The boundary is immersed
in a 268 x 128 Cartesian grid.

Moreover, since only the low Reynolds number regime is considered, A = 0 in all

three examples.

In the first example, the flow around a cylinder with Re = 1 is computed for

0 < t ; 6. The computational grid has 256 x 128 nodes and the time step is

k = 6/2731. Figure 6-9 shows the solution fields at t = 6. Note that these contour

plots use linear interpolation. Hence, close to the boundary the plot of the pressure

distribution shows some oscillations because the pressure is arbitrarily set to zero

inside the cylinder. However, these oscillations do not exist in the actual solution. In

addition, figure 6-10 shows some streamlines of the flow around the cylinder at t = 6.

From figures figures 6-9 and 6-10 we see that, at these low Reynolds numbers, the

flow flow remains attached all around the cylinder and the solution is very smooth.

Figure 6-11(a) presents the variation of the divergence of the velocity over time.

In this plot we can see that the initialization step introduces a spike in the divergence

of velocity, which is quickly dissipated. Thus, the divergence-free condition is satisfied

up to a small error. Finally, figure 6-11(b) presents the nondimensional forces acting

on the cylinder over time. As expected, the lift force remains zero for all time, whereas

the drag coefficient approaches the assymptotic value of fD = 6. Moreover, after t = 4

the solution seems to reach a steady state, which is reflected in an almost constant

130

(a) u (b) v

(c) speed

0.2

0.15

(d) p

Figure 6-9: Solution at t = 6 for Re = 1. Speed denotes s = /U 2 + v 2 .

value of the drag coefficient.

Figure 6-10: Streamlines of the flow around the cylinder at t = 6, with Re = 1.

In the second example, the flow around a cylinder with Re = 10 is computed

for 0 < t < 30. The computational grid has 512 x 256 nodes and the time step is

k = 30/5461. Figure 6-12 shows contours of the solution at t = 30. In the contours

of the velocity components we can note a small recirculation region just behind the

cylinder, indicating the presence of a bubble caused by flow separation. This bubble

is even more noticeable in the plots of the streamlines shown in figure 6-13. As we

can observe in this figure, flow separation starts to occur after t = 15. By t = 30 the

flow has practically reached a steady state.

131

0.04

0 .02

0.01

404

-020

*-OM

-08

-1A8

2

. 1.5

0.25

0.25

O.1

0.06

0",

1.1

1

0.5

3

0.014

0.012

0.01

-0.008

0.006

0.004

0.002

0
0 1 2 3 4 5 6

()

2

0 3

(a) (b)

Figure 6-11: (a) Variation of the Leo norm of the divergence of velocity over time.

(b) Nondimensional forces acting over the cylinder: drag and lift.

1.84

0.4

06

(a) u

*02

I
0A

*02

14A
(b) v

14
14

0.4

(c) speed

.42

12'IAA
(d) p

Figure 6-12: Solution at t = 6 for Re = 30. Speed denotes s = fu 2 + v2 .

In addition, figure 6-14(a) shows the variation of the divergence of velocity over

time. Once again, after a spike in the first few time steps, the divergence decays and

is maintained at a small amplitude. Finally, figure 6-14(b) shows the nondimenisonal

forces acting on the cylinder over time. As expected, the lift force remains zero for

all time, and the drag coefficient approaches the asymptotic steady state value of

fD 6.

132

. IJ1d.

. 1.

2.51

(a) t = 15 (b) t = 30

Figure 6-13: Streamlines of the flow around the cylinder with Re = 10.

In the last example, the flow around a cylinder with Re = 20 is computed for

0 < t < 60. The computational grid has 512 x 256 nodes and the time step is

k = 60/10923. Figure 6-15 shows contours of the solution at t = 30, while figure 6-16

shows contours of the solution at t = 60. As we can observe, the solution changes a

lot in this time interval.

0.046-

0.044-

0.042

0.04-

0.038-

0.036 0
0 5 10 15 20 25

0)
0
0

30

(a)

15

(b)

30

Figure 6-14: (a) Variation of the L, norm of the divergence of velocity over time.
(b) Nondimensional forces acting over the cylinder: drag and lift.

We can understand these changes better by looking at some streamlines presented

in figure 6-17. Similar to the solution with Re = 10, a separation bubble forms behind

the cylinder. Up to t ~ 40, this bubble grows slowly in length, but remains symmetric.

After this time, the symmetric solution becomes unstable and the upper and lower

circulation regions start to oscillate. At t ~ 50 we can observe the phenomenon of

vortex shedding, in which the recirculation regions detach from the cylinder and are

133

3r

2.5

I:
01

0

(a) u

(c) speed

2I

(b) v

OA

0.2

a

42

4A

-CA

03

0

-as

-1

Az

-2

(d) p

Figure 6-15: Solution at t = 30 for Re = 20. Speed denotes s = Vu 2 + v2 .

(a) u

2

1.5

0.5

0

(c) speed

(b) v

0

-2

(d) p

Figure 6-16: Solution at t = 60 for Re = 20. Speed denotes s = Vu 2 + v 2 .

carried with the flow. This process occurs in an asymmetric fashion: vortices are shed

from the upper and lower parts of the cylinder in an alternate order. We can see this

process in more detail in figure 6-18. In addition, because of the high viscosity of the

134

.1

CA

1.1

.t

surrounding flow, the vortices shed by the cylinder are quickly dissipated. However,

probably due to the small separation between the periodic cylinders, the asymmetric

character of the flow is felt downstream by the adjacent cylinders. In fact, it is

difficult to determine whether there is a steady solution to this situation, since the

disturbances created around one cylinder do not have time to die out before reaching

the next cylinder in the infinite array. The solution obtained up to t = 60 indicates

that the perturbations grow in an unsteady fashion in this time interval.

2.() = 3().4

2, 2

(a) t - 30 (b) t =40

20 1 2 4 5 4 _0 5 2 3 4 4

(c) t -50 (d) t -60

Figure 6-17: Streamlines of the flow around the cylinder with Re = 20.

In addition, figure 6-19(a) shows the variation of the divergence of velocity over

time. In this example the divergence is also maintained at a small amplitude. How-

ever, we can note that the growing perturbations start to affect the divergence of

velocity towards the end of the simulation. Finally, figure 6-19(b) shows the nondi-

menisonal forces acting on the cylinder over time. Up to t ~ 40, the flow is symmetric

and the behavior is similar to previous examples: the lift force remains zero while

the drag force approaches fD = 6. However, as the asymmetry starts to develop, the

lift force starts to oscillate with growing amplitude, and the drag experiences a slight

increase.

135

OR5

2.S-

2-

.1.5-

001(*

2.51

2

(a) t = 51

O CO
(c) t = 53

25-

es-

(c) t = 55

(b) t = 52

(d) t =54
3

2g?

o0s- 3

(d) t = 56

Figure 6-18: Streamlines showing vortex shedding behind cylinder for t > 50.

a)

2

(a)

30
t

(b)

Figure 6-19: (a) Variation of the Lc norm of the divergence of velocity over time.
(b) Nondimensional forces acting over the cylinder: drag and lift.

136

2A

i

3:

25

2A

.IA

Oj

0 7

Chapter 7

Conclusion

7.1 Final Remarks

This thesis presents the correction function method (CFM), a new family family of

immersed methods designed to solve the incompressible Navier-Stokes equations, and

other related problems, to high order of accuracy. Hence, this method allows us to

solve incompressible viscous flows to high order of accuracy, up to the boundary. As a

consequence, the solution and its derivatives can be accurately evaluated on surfaces

immersed in such flows. This is an important contribution to the area of immersed

methods, which, in general, were restricted to 2 nd order methods.

In summary, the CFM is based on the construction of correction functions, which

are used to complete a standard discretization of the equations whenever the stencil

straddles a boundary or interface immersed into the computational grid. The key

features of the method are

" Accuracy: The correction function is characterized as the solution to partial

differential equations defined locally in a neighborhood of the boundary and/or

interface. Because this PDE van be solved to any desired order of accuracy, the

correction function has, in principle, no accuracy limitations. In this thesis 3rd

and 4 th order implementations of the method are presented.

" Robustness: The PDE that defines the correction function is solved in a least

137

squares sense. Namely, the solution procedure is based on the minimization of

a quadratic functional. This feature guarantees smooth solutions and a scheme

that is robust in face of the myriad of configurations in which the immersed

curves may cross the computational grid.

e Efficiency: The narrow band where the correction function is defined is di-

vided into a series of small rectangular domains, usually one for each stencil'

that straddles the interface. The PDE that defines the correction function is

then solved locally within each of these rectangular domains. This feature al-

lows us to split the solution of the correction function into a series of small

problems. As consequence, computing the correction function is relatively in-

expensive. Furthermore, because these problems are small, involving only a

few grid nodes in the vicinity of the discretization stencil, we are able to use

compact discretization stencils1 .

In addition, in this thesis a 2D version of the CFM is used to solve

" the constant coefficients Poisson equation with discontinuities across an internal

interface.

" the piece-wise constant coefficients Poisson equation with discontinuities across

an internal interface.

" the Poisson equation with immersed boundaries.

" the heat equation with immersed boundaries.

" the nonlinear convection-diffusion equation with immersed boundaries.

" the incompressible Navier-Stokes equations in the formulation by Johnston and

Liu [23,24].

Note that only low Reynolds number solutions of the incompressible Navier-Stokes

equations are presented. Unfortunately, the code created for this thesis only supports

'The stencil used to discretize the underlying equations. The PDE that defines the correction
function is solved in function space: no additional stencils are used.

138

uniform computational grids. Hence, it was not possible to run numerical experiments

with grids that are refined enough to capture the boundary layer in the high Reynolds

number regime. This is one of the issues that remain for future research.

7.2 Future work

The list below include research issues that were encountered during the development

of the work discussed here, but went beyond the scope of this thesis. Other extensions

of the CFM for a wider range of applications are also mentioned.

" High Reynolds number regime: As discussed in §6, solving the INSE in the

high Reynolds number regime requires very refined grids close to the boundaries.

Hence, to solve flows in this regime, one needs a numerical scheme that supports

grids with variable cell sizes (such as octree grids), including adaptations to use

the CFM.

" CFM for other formulations of the INSE: In this thesis, only the INSE for-

mulation proposed by Johnston and Liu [23,24] was implemented. However, it is

not clear whether this formulation is stable in the high Reynolds number regime,

even with the fix proposed in §6. On the other hand, the formulation proposed

by Shirokoff and Rosales [26] enforces a better control over the gradient-free con-

dition, which should lead to better stability properties. However, the boundary

conditions involved in this formulation cannot be implemented with the CFM

in the current form of the method. Hence, an adaptation of the CFM to this

particular formulation is an interesting line of research for the future.

" Moving boundaries: Immersed methods, such as the CFM, are particularly

interesting in unsteady simulations, where the boundaries and/or interfaces are

moving and deforming over time. In such situations the domain of definition

of the correction function must vary with time, and the consequences of these

variations deserve careful consideration.

139

* Extension to 3D: Many complex engineering applications can only be properly

addressed with fully three-dimensional models. For this reason, the extension

of the CFM to 3D is an important line of future research. The conceptual basis

of the CFM does not restrict it to 2D in any way. Hence, an extension to 3D

should involve only geometrical considerations in the definition of the narrow

band where the correction function exists.

* Extension to higher-accuracy: As mentioned before, in principle the CFM

can be implemented to any desired order of accuracy. Hence, it would be in-

teresting to explore the practical implications of higher order (higher than 4 th)

implementations.

140

Appendix A

The 9-point stencil for the Poisson

equation

Unlike standard finite-differences discretizations, the 9-point stencil discretization of

the Poisson equation is a discretization of the differential equation itself, and not

of the differential operator. In essence, the 9-point stencil uses derivatives of the

Poisson equation to eliminate the leading 2nd order errors of the standard 5-point

stencil discretization of the Laplace operator. The result is a compact and 4 th order

accurate discretization of the Poisson equation.

The standard 5-point stencil discretization of the Laplace operator is given by

L , = $22ni, + byyui,j, (A.1)

where $22 and $., denote the centered difference discretization of the second deriva-

tives:

ui+ ,j - 2uij + u ,,j
u s+1 -2i, + h- (A.2)

ayi = uijl- .u~ j~ (A-3)
h2

141

The error resulting from this discretization is

hx2~~~Uy~yz ±UXXij+YYY)i 0 (h 4).
12 12 (A.4)

Now consider the Poisson equation Au = f. The second derivatives of this equa-

tion result in

UXXXx = fxx - Uxxyy,

uyyyY = fyY - uxxyy.

(A.5a)

(A.5b)

The mixed derivative ()XXYY can be computed to 2"d order using the compact 9-

point stencil 22yy(.). Hence, we can eliminate the 2 "d order term in (A.4) using

this approximation to (A.5). Then, the 9-point discretization the Poisson equation is

given by'

1 1L(uh,' + (h ±)xxyy, = fij + -(hi (fxx), ± h23 12 x 12 x Yyij (A.6)

The higher derivatives of the source term - (fxx)i,j and (fyy)i,j - may be given ana-

lytically (if known), or computed using appropriate 2 "d order discretizations.

'Notice that here the possibility of different grid spacings in each direction is considered.

142

Appendix B

Bicubic interpolation

Bicubic interpolation is similar to bilinear interpolation, and can also be used to rep-

resent a function in a rectangular domain. However, whereas bilinear interpolation

requires one piece of information per vertex of the rectangular domain, bicubic in-

terpolation requires 4 pieces of information: function value, function gradient, and

first mixed derivative (i.e. fa,). For completeness, the relevant formulas for bicubic

interpolation are presented below.

We use the classical multi-index notation, as in Ref. [42]. Thus, we represent the

4 vertices of the domain using the vector index E {O, 1}2. Namely, the 4 vertices are

ze = (Xz + v1 Ax 1 , x2 +v 2 Ax 2), where (x, xz) are the coordinates of the left-bottom

vertex and Axi is the length of the domain in the xi direction. Furthermore, given a

scalar function #, the 4 pieces of information needed per vertex are given by

#5i = a(ZY), (B.1)

where both ', E {O, 1}2 and

S= als a co2 n t = (A)asi or (B.2)

Then the 16 polynomials that constitute the standard basis for the bicubic interpo-

143

lation can be written in the compact form

2

W6 = W i), (B.3)
i=1

where ij = , and w" is the cubic polynomialAXj

f(x) forv=O anda=O,

a 5 f (1 - x) for v = 1 and a = 0,(B4
f(x) forv=0 anda= 1,

-g(1 - x) forv=1 anda=1,

where f(x) = 1 - 3x 2 +2x 3 and g(x) = x (1 - x) 2 .

Finally, the bicubic interpolation of a scalar function 4 is given by the following

linear combination of the basis functions:

' W5 $"5 (B.5)
6,6E {0,1}2

As defined above (standard bicubic interpolation), 16 parameters are needed to de-

termine the bicubic. However, in Ref. [42] a method ("cell-based approach") is intro-

duced, that reduces the number of degrees of freedom to 12, without compromising

accuracy. This method uses information from the first derivatives to obtain approxi-

mate formulae for the mixed derivatives. In the present work, we adopt this cell-based

approach.

144

Appendix C

Issues affecting the construction of

'

As discussed in §2.4, the CFM is based on local solutions to the PDE (2.9) in sub-

regions of Qr - which we call Q". However, there is a certain degree of arbitrariness

in how Q0j is defined. This appendix discusses several factors that influence the

definition of QG . In addition, four distinct approaches are presented, with increasing

level of robustness (and, unfortunately, complexity).

The discussion on §2.3 results in only two constraints on QSj:

Q "-' should be small, since the local problems' condition numbers increase ex-

ponentially with distance from I' - see remarks 2.4 and 2.5.

Q should contain all the nodes where the correction function D is needed.

However, when Qb' is defined, practical algorithmic constraints must also be consid-

ered, as explained below.

First, D is computed by solving a PDE in a weak fashion, and this procedure

involves integrations over O. Thus, it is useful to restrict Q" to an elementary

geometrical shape, so that simple quadrature rules can be applied to evaluate the

integrals. Second, if (ji is a rectangle, Hermite splines can be used to represent D in

145

Q', to high order accuracy. For these reasons, here Q' is restricted to be a rectangle'.

Third, the interface representation must also be considered. In principle, the

solution to the PDE (2.9) depends on information given along the interface only, and

it is completely independent on the underlying grid. Nevertheless, when the interface

is represented implicitly, the location of the interface depends on values defined at grid

points. Hence, to construct Q", we need to define a set of grid nodes that are used

to reconstruct a local piece of interface. In this thesis the interface is reconstructed

using information from the 3 x 3 set of nodes that defines the 9-point stencil. The

approaches discussed in §C.1 through §C.3 are based on this premise.

Although the strategy mentioned above can be easily implemented, it also ties

Q to the underlying grid, whereas it should depend only on the interface geometry.

Hence it results in definitions for Q4j that cannot track the interface optimally. The

approach presented in §C.4, allows Q4- to adapt to the local interface geometry, re-

gardless of the underlying grid. The idea is to first identify a piece of the interface

based on a pre-determined set of grid cells, and then use this information to con-

struct an optimal Q j. This approach leads to a somewhat intricate, but very robust

definition for Q .

Finally, note that explicit representations of the interface are not constrained

by the underlying grid. Moreover, information on the interface geometry is readily

available anywhere along the interface. Hence, in this case, we can use the approach

discussed in §C.4 in a straightforward fashion. By contrast, the less robust approaches

in §C.1 through §C.3 become more involved in this context, because they require the

additional work of constraining the explicit representation to the underlying grid.

Obviously, the algorithms presented here (§C.1 through §C.4) represent only a

few of the possible ways in which Q can be defined. Nevertheless, these approaches

serve as practical examples of how different factors must be balanced to design robust

schemes.

'Clearly, other simple geometrical shapes, with other types of approximations for D, should be
possible.

146

C.1 Naive Grid-Aligned Stencil-Centered Approach.

In this approach, Q"' is fitted to the underlying grid by defining it as the 2h, x 2hy

box that covers the 9-point stencil. Figure 3-1 shows two examples.

'ij

(a) Well-posed. (b) Ill-posed.

Figure 3-1: Q"7 as defined by the naive grid-aligned stencil-centered approach.

This approach is very appealing because of its simplicity, but it has serious flaws

and it is not recommended. The reason is that the piece of the interface contained

within Q"3 can become arbitrarily small - see figure 3-1(b). Then the arguments

that make the local Cauchy problem well posed no longer apply - see remarks 2.4

through 2.6. In essence, the biggest frequency encoded in the interface, kmax

1 /length(F/Q"'), can become arbitrarily large - while the characteristic length of Q"V

remains O(h). As a consequence, the condition number for the local Cauchy problem

can become arbitrarily large. This approach is described here merely as an example

of the problems that can arise from a very simplistic definition of Q b.

147

I-IJO 1j -

I-i I ..1j

C.2 Compact Grid-Aligned Stencil-Centered Ap-

proach.

This is the approach described in detail in §2.4.3. In summary, Q" is defined as the

smallest rectangle that

(i) is aligned with the grid.

(ii) includes the piece of the interface contained within the stencil.

(iii) includes all the nodes where D is needed.

Figure 3-2 shows three examples of this definition. As it should be clear from this

figure, a key consequence of (i-iii) is that the piece of interface contained within Q'I

is always close to its diagonal - hence it is never too small relative to the size of Mb.

Consequently, this approach is considerably more robust than the one in §C.1. In

fact, this approach is successfully applied to all examples shown in §2.5.

D. D , D+ DI-li

1-1 Iki +1 1 1-1>1 . I-1 :41 1 -1 -1j>

(a) Well balanced. (b) Well balanced. (c) Elongated.

Figure 3-2: QOj as defined by the compact grid-aligned stencil-centered approach.

Unfortunately, the requirements (i-ii) in this approach tie QV3 to the grid and

the stencil. As mentioned earlier, these constraints may lead to an Q 2 which is not

the best fit to the geometry of the interface. Figure 3-2(c) depicts a situation where

this strategy may lead to trouble. This situation happens when there is an almost

perfect alignment of the interface with the grid, which can result in an excessively

elongated Q"" - in the worse case scenario, this set could reduce to a line. Although

148

the local Cauchy problem remains well conditioned, the elongated sets can interfere

with the process used to solve (2.9). However, experience shows that this approach

works well with the bicubic representation for a 4 th order scheme. This approach only

led to trouble in a 2nd order version of the scheme (based on bilinear interpolation)

presented in [87].

C.3 Free Stencil-Centered Approach

Here a compromise solution is presented to avoid an elongated QO. In this approach,

the constraint (i) in @C.2 is abandoned, but not constraint (ii) - since (ii) is convenient

when the interface is represented implicitly. In this approach OV is defined as the

smallest rectangle that

(i*) Is aligned with the grid rotated by an angle Or, where O, = Or - 7r/4 and Or

characterizes the interface alignment with respect to the grid (e.g. the polar

angle of the vector tangent to the piece of interface inside the stencil at its

mid-point).

(ii*) Includes the piece of the interface contained within the stencil.

(iii*) Includes all the nodes where D is needed.

Figure 3-3 shows two examples of this approach.

The implementation of the present approach is very similar to that of the one in

@C.2. The only additional work is to compute 0, and to write the interface and points

where D is needed in the rotated frame of reference. In both these approaches the

diagonal of Q"" is very close to the piece of interface contained within the stencil,

which guarantees a well conditioned local problem. However, here the addition of a

rotation keeps QOJ' nearly square, and avoids elongated geometries. The price paid for

this regularity is that the sets QO created using this approach can be a little larger

than the ones from @C.2 - with both sets including the exact same piece of interface. In

such situations, the present approach results in a somewhat larger condition number.

149

(a) (b)

Figure 3-3: DV as defined by the free stencil-centered approach.

C.4 Node-Centered Approach

This approach defines Q in a fashion that is completely independent from the un-

derlying grid and the discretization stencil. In fact, instead of associating each Q"V to

a particular stencil, this approach is based on a different QIJ for each node where the

correction is needed - hence the name node-centered, rather than stencil-centered.

As a consequence, whereas the prior strategies lead to multiple values of D at the

same node (one value per stencil, see remark 2.10), here there is a unique value of D

at each node.

In this approach, Q"3 is defined by the following steps.

1. Identify the interface in the 4 grid cells that surround a given node. This step is

not needed if the interface is represented explicitly.

2. Find the point along the interface that is closest to node (ij) - Po. This point

becomes the center of Q3. There is no need to obtain P very accurately. Small

errors in PO result only in small shifts in Q., which do not affect the quality of

the solution.

3. Compute io, the vector tangent to the interface at P. This vector defines one of

the diagonals of Q3. The normal vector no defines the other diagonal. Again,

high accuracy is not needed.

150

4. Then Q* is the square with side length 2 h!+ hg, centered at P, arid diagonals

parallel to io and no - O need not be aligned with the grid.

Figure 3-4 shows two examples of this approach.

-1 1 + 11 +1+1

IFI
A

r

(a) (b)

Figure 3-4: Q" as defined by the node-centered approach.

Note that the piece of interface contained within QV, as defined by steps 1-4 above,

is not necessarily the same found in step 1. Hence, after defining Q , one still needs

to identify the piece of interface that lies within it. For an explicit representation of

the interface, this additional step is not particularly costly, but the same is not true

for an implicit representation.

This approach is very robust because it always creates a square Qj, with the

interface within it close to one of the diagonals - as guaranteed by steps 2 and 3.

Hence, the local Cauchy problem is always well conditioned. Furthermore, making

Q square (to avoid elongation) does not result in larger condition numbers as in

§C.3 because the larger QG- contains an equally larger piece of the interface.

Finally, the small oscillations observed in the convergence plots shown in 92.5 oc-

cur because these calculations are carried out with the approach discussed in §C.2 -

which produces sets Q"-7 that are not uniform in size, nor shape, along the interface.

However, tests show that these oscillations do not occur with the node-centered ap-

proach, for which all the Q' are squares of the same size. Unfortunately, as pointed

151

out earlier, the node-centered approach is not well suited for calculations using an

interface represented implicitly.

152

Appendix D

Ill-posed problem

As discussed in §3.2, the discontinuous coefficient Poisson equation can result in an

ill-conditioned problem when a = #-/#+ > 1. To understand this issue, let us look

at the jump condition for the normal fluxes - equation (3.7d):

#3+u+() -- #-u-(Y) = b(Y)

) - au-(Y) = b(Y) for Y E F. (D.1)

Hence, assuming that u+ and b/#+ are 0(1) quantities, as a grows u- must tend to

zero. In the limit a -4 00, U- -+ 0, which means that (D.1) becomes a Neumann

boundary condition for u-. In other words, the solution for u- decouples from u+

In turn, u+ becomes the solution to the problem with Dirichlet boundary condition

u+(Y) = a() - u-(9), ' E F.

However, the solution to a Neumann problem is defined only up to an arbitrary

constant. In situations where the solution is defined only up to a constant over the

entire domain, such as when Neumann or periodic boundary conditions are imposed

over aQ, this is not an issue. Some additional constraint is needed to define a unique

solution throughout the domain. This is a necessary condition whether a is large or

not. On the other hand, if Dirichlet boundary condition is imposed on &9, the solu-

tion is not arbitrary. Nonetheless, as a grows, the discontinuous coefficient Poisson

equation becomes ill-conditioned.

153

Remark D.1. Note that the numerical solution used o solve (3.7) is not relevant.

This conditioning issue is inherent of the problem being considered and is not a result

of poor numerical discretization. 4

One possible fix for this conditioning issue is to impose an additional constraint on

the solution. However, since the solution is not arbitrary, this additional constraint

must be redundant, and only play a role as a -+ oo. It must only reiterate information

that is weakly enforced due to the unbalance between the different terms in (D.1).

For instance, in the context of the boundary integral formulation introduced in §4,

we can integrate (4.8c) to obtain

I[Wn]dS = I bdS - Aj vndS - A (wn)dS, (D.2)

where A = [#]/(#). Now note that

jVndS = jundS = n f-dV, (D.3)

and p = [Wn]. Thus

jpdS =A2 bdS+ I f-dV). (D.4)

This expression reinforces the argument mentioned above. As a grows, A approaches

the value A = -2. Hence, the mean value of p becomes very sensitive to any errors

in the data inputed to (4.8), especially those coming from the computation of vn.

One way to force the numerical scheme to "see" the proper mean is to enforce

(D.4) as the extra condition and input the correct value to the code. In principle one

can compute the correct value using (D.4) since it only involves known parameters of

the problem: b and f/#/-. However, because of the (A+ 2) term in the denominator,

the integrals in (D.4) must be computed very accurately, which may not always

be easy to do. In the example shown in §4.2, this expression is evaluated using the

trapezoidal rule, which resulted in very accurate estimates. One may hope that in real

applications, physical reasoning might help to deduce the correct value for the mean

154

of p. (A physical problem that leads to this particular situation was not encountered

in this research). Finally, there may be other ways to enforce a redundant condition

that is more suitable to the particular problem being solved. Using (D.4) is just one

alternative that works when the integrals can be computed accurately.

155

156

Bibliography

[1] S. 0. Unverdi, G. Tryggvason, A front-tracking method for viscous, incom-

pressible, multi-fluid flows, Journal of Computational Physics 100 (1) (1992)

25-37. doi:10.1016/0021-9991(92)90307-K.

[2] J. Li, Y. Renardy, Numerical study of flows of two immiscible liquids at

low reynolds number, SIAM Review 42 (3) (2000) 417-439. doi:10.1137/
S0036144599354604.

[3] E. M. Purcell, Life at low reynolds number, American Journal of Physics 45 (1)

(1977) 3-11. doi:10.1119/1.10903.

[4] Z. J. Wang, Dissecting insect flight, Annual Review of Fluid Mechanics 37 (1)
(2005) 183-210. doi:10. 1146/annurev. f luid.36.050802.121940.

[5] K.-B. Lee, J.-H. Kim, C. Kim, Aerodynamic effects of structural flexibility in

two-dimensional insect flapping flight, Journal of Aircraft 48 (3) (2011) 894-909.
doi : 10.2514/1.C031115.

[6] C. S. Peskin, Numerical analysis of blood flow in the heart, Journal of Compu-

tational Physics 25 (3) (1977) 220-252. doi: 10. 1016/0021-9991 (77)90100-0.

[7] U.s. air force fact sheet: Mq-lb predator (Jun. 2011).

URL http://www.af.mil/information/factsheets/factsheet .asp?id=

122

[8] G. Chesshire, W. D. Henshaw, Composite overlapping meshes for the solution

of partial differential equations, Journal of Computational Physics 90 (1) (1990)

1-64. doi:10.1016/0021-9991(90)90196-8.

[9] S. E. Sherer, J. N. Scott, High-order compact finite-difference methods on

general overset grids, Journal of Computational Physics 210 (2) (2005) 459-

496. doi:10.1016/j.jcp.2005.04.017.

[10] M. A. Yerry, M. S. Shephard, Automatic three-dimensional mesh generation by

the modified-octree technique, International Journal for Numerical Methods in

Engineering 20 (11) (1984) 1965-1990. doi:10.1002/nme.1620201103.

[11] P.-O. Persson, G. Strang, A simple mesh generator in matlab, SIAM Review

46 (2) (2004) 329-345. doi:10. 1137/S0036144503429121.

157

[12] W. J. Schroeder, M. S. Shephard, A combined octree/delaunay method for fully
automatic 3-d mesh generation, International Journal for Numerical Methods
in Engineering 29 (1) (1990) 37-55. doi:10.1002/nme.1620290105.

[13] S. Crippa, Improvement of unstructured computational fluid dynamics simula-
tions through novel mesh generation methodologies, Journal of Aircraft 48 (3)
(2011) 1036-1044. doi:10.2514/1.C031219.

[14] T. J. Baker, Three decades of meshing; a retrospective view, in: Proceeding 16th
AIAA Computational Fluid Dynamics Conference, Orlando, Florida, 2003.

[15] A. N. Marques, J. L. F. Azevedo, Numerical calculation of impulsive and indicial
aerodynamic responses using computational aerodynamics techniques, Journal
of Aircraft 45 (4) (2008) 1112-1135. doi:10.2514/1.32151.

[16] P.-O. Persson, J. Bonet, J. Peraire, Discontinuous Galerkin solution of the
Navier-Stokes equations on deformable domains, Computer Methods in Ap-
plied Mechanics and Engineering 198 (17-20) (2009) 1585-1595. doi: 10. 1016/
j .cma.2009.01.012.

[17] S. Keye, Fluid-structure coupled analysis of a transport aircraft and flight-test
validation, Journal of Aircraft 48 (2) (2011) 381-390. doi: 10.2514/1. C000235.

[18] A. J. Chorin, A numerical method for solving incompressible viscous flow prob-
lems, Journal of Computational Physics 2 (1) (1967) 12-26. doi: 10. 1016/
0021-9991(67)90037-X.

[19] J. Kim, P. Moin, Application of a fractional-step method to incompressible
Navier-Stokes equations, Journal of Computational Physics 59 (2) (1985) 308-
323. doi:10.1016/0021-9991(85)90148-2.

[20] J. B. Bell, P. Colella, H. M. Glaz, A second-order projection method for the in-
compressible Navier-Stokes equations, Journal of Computational Physics 85 (2)
(1989) 257-283. doi: 10. 1016/0021-9991(89)90151-4.

[21] W. D. Henshaw, A fourth-order accurate method for the incompressible Navier-
Stokes equations on overlapping grids, Journal of Computational Physics 113 (1)
(1994) 13-25. doi: 10. 1006/j cph.1994.1114.

[22] W. D. Henshaw, H.-O. Kreiss, L. G. Reyna, A fourth-order-accurate difference
approximation for the incompressible Navier-Stokes equations, Computers and
Fluids 23 (4) (1994) 575-593. doi:10.1016/0045-7930(94)90053-1.

[23] H. Johnston, J.-G. Liu, Finite difference schemes for incompressible flow based
on local pressure boundary conditions, Journal of Computational Physics
180 (1) (2002) 120-154. doi:10.1006/jcph.2002.7079.

158

[24] H. Johnston, J.-G. Liu, Accurate, stable and efficient Navier-Stokes solvers
based on explicit treatment of the pressure term, Journal of Computational
Physics 199 (1) (2004) 221-259. doi:10.1016/j.jcp.2004.02.009.

[25] R. D. Guy, A. L. Fogelson, Stability of approximate projection methods on
cell-centered grids, Journal of Computational Physics 203 (2) (2005) 517-538.
doi:10.1016/j.jcp.2004.09.005.

[26] D. Shirokoff, R. Rosales, An efficient method for the incompressible Navier-
Stokes equations on irregular domains with no-slip boundary conditions, high
order up to the boundary, Journal of Computational Physics 230 (23) (2011)
8619-8646. doi:10.1016/j.jcp.2011.08.011.

[27] F. H. Harlow, J. E. Welch, Numerical calculation of time-dependent viscous
incompressible flow of fluid with free surface, Physics of Fluids 8 (12) (1965)
2182-2189. doi:10.1063/1.1761178.

[28] F. H. Harlow, J. E. Welch, Numerical study of large-amplitude free-surface
motions, Physics of Fluids 9 (5) (1966) 842-851. doi: 10. 1063/1.1761784.

[29] R. K.-C. Chan, R. L. Street, A computer study of finite-amplitude water
waves, Journal of Computational Physics 6 (1) (1970) 68-94. doi:10.1016/
0021-9991(70)90005-7.

[30] C. S. Peskin, Flow patterns around heart valves: A numerical method, Journal
of Computational Physics 10 (2) (1972) 252-271. doi: 10. 1016/0021-9991(72)
90065-4.

[31] A. Mayo, The fast solution of Poisson's and the biharmonic equations on ir-
regular regions, SIAM Journal on Numerical Analysis 21 (2) (1984) 285-299.
doi :10. 1137/0721021.

[32] H. S. Udaykumar, R. Mittal, W. Shyy, Computation of solid-liquid phase fronts
in the sharp interface limit on fixed grids, Journal of Computational Physics
153 (2) (1999) 535-574. doi:10.1006/jcph.1999.6294.

[33] A. J. Chorin, Flame advection and propagation algorithms, Journal of Compu-
tational Physics 35 (1) (1980) 1-11. doi:10.1016/0021-9991(80)90030-3.

[34] C. W. Hirt, B. D. Nichols, Volume of fluid (vof) method for the dynamics
of free boundaries, Journal of Computational Physics 39 (1) (1981) 201-225.
doi:10.1016/0021-9991(81)90145-5.

[35] S. Osher, J. A. Sethian, Fronts propagating with curvature-dependent speed:
Algorithms based on hamilton-jacobi formulations, Journal of Computational
Physics 79 (1) (1988) 12-49. doi:10.1016/0021-9991(88)90002-2.

159

[36] D. Enright, R. Fedkiw, J. Ferziger, I. Mitchell, A hybrid particle level set method
for improved interface capturing, Journal of Computational Physics 183 (1)
(2002) 83-116. doi:10.1006/jcph.2002.7166.

[37] S. Chen, B. Merriman, S. Osher, P. Smereka, A simple level set method for
solving Stefan problems, Journal of Computational Physics 135 (1) (1997) 8-
29. doi:10.1006/jcph.1997.5721.

[38] C. Min, F. Gibou, A second order accurate level set method on non-graded
adaptive Cartesian grids, Journal of Computational Physics 225 (1) (2007) 300-
321. doi:10.1016/j.jcp.2006.11.034.

[39] C. Min, F. Gibou, Geometric integration over irregular domains with appli-
cation to level-set methods, Journal of Computational Physics 226 (2) (2007)
1432-1443. doi:10.1016/j.jcp.2007.05.032.

[40] J. A. Sethian, Level set methods and fast marching methods: evolving interfaces
in computational geometry, fluid mechanics, computer vision, and materials
science, Cambridge monographs on applied and computational mathematics,
Cambridge University Press, 1999.

[41] S. Osher, R. P. Fedkiw, Level set methods and dynamic implicit surfaces, Ap-
plied mathematical sciences, Springer, 2003.

[42] J.-C. Nave, R. R. Rosales, B. Seibold, A gradient-augmented level set method
with an optimally local, coherent advection scheme, Journal of Computational
Physics 229 (10) (2010) 3802-3827. doi:10.1016/j.jcp.2010.01.029.

[43] L. N. Trefethen, D. Bau, Numerical Linear Algebra, SIAM: Society for Indus-
trial and Applied Mathematics, 1997.

[44] C. Tu, C. S. Peskin, Stability and instability in the computation of flows with
moving immersed boundaries: A comparison of three methods, SIAM Journal
on Scientific and Statistical Computing 13 (6) (1992) 1361-1376. doi:10. 1137/
0913077.

[45] C. S. Peskin, B. F. Printz, Improved volume conservation in the computation
of flows with immersed elastic boundaries, Journal of Computational Physics
105 (1) (1993) 33-46. doi: 10.1006/jcph.1993.1051.

[46] M.-C. Lai, C. S. Peskin, An immersed boundary method with formal second-
order accuracy and reduced numerical viscosity, Journal of Computational
Physics 160 (2) (2000) 705-719. doi:10.1006/jcph.2000.6483.

[47] C. S. Peskin, The immersed boundary method, Acta Numerica 11 (2002) 479-
517. doi:10. 1017/S0962492902000077.

160

[48] D. Goldstein, R. Handler, L. Sirovich, Modeling a no-slip flow boundary with an
external force field, Journal of Computational Physics 105 (2) (1993) 354-366.
doi:10.1006/jcph.1993.1081.

[49] E. A. Fadlun, R. Verzicco, P. Orlandi, J. Mohd-Yusof, Combined immersed-
boundary finite-difference methods for three-dimensional complex flow simula-
tions, Journal of Computational Physics 161 (1) (2000) 35-60. doi: 10. 1006/
jcph.2000.6484.

[50] R. J. LeVeque, Z. Li, The immersed interface method for elliptic equations with
discontinuous coefficients and singular sources, SIAM Journal on Numerical
Analysis 31 (4) (1994) 1019-1044. doi: 10.1137/0731054.

[51] R. J. LeVeque, Z. Li, Immersed interface methods for Stokes flow with elastic
boundaries or surface tension, SIAM Journal on Scientific Computing 18 (3)
(1997) 709-735. doi:10. 1137/S 1064827595282532.

[52] Z. Li, M.-C. Lai, The immersed interface method for the Navier-Stokes equa-
tions with singular forces, Journal of Computational Physics 171 (2) (2001)
822-842. doi:10.1006/jcph.2001.6813.

[53] L. Lee, R. J. LeVeque, An immersed interface method for incompressible Navier-
Stokes equations, SIAM Journal on Scientific Computing 25 (3) (2003) 832-856.
doi:10.1137/S1064827502414060.

[54] Z. Li, K. Ito, The immersed interface method: numerical solutions of PDEs
involving interfaces and irregular domains, Frontiers in applied mathematics,
SIAM, Society for Industrial and Applied Mathematics, 2006.

[551 D. V. Le, B. C. Khoo, J. Peraire, An immersed interface method for viscous
incompressible flows involving rigid and flexible boundaries, Journal of Compu-
tational Physics 220 (1) (2006) 109-138. doi:10. 1016/j. jcp. 2006.05.004.

[56] X. Zhong, A new high-order immersed interface method for solving elliptic
equations with imbedded interface of discontinuity, Journal of Computational
Physics 225 (1) (2007) 1066-1099. doi:10.1016/j. jcp.2007.01.017.

[57] R. P. Fedkiw, T. Aslam, S. Xu, The ghost fluid method for deflagration and
detonation discontinuities, Journal of Computational Physics 154 (2) (1999)
393-427. doi:10.1006/jcph.1999.6320.

[58] R. P. Fedkiw, T. Aslam, B. Merriman, S. Osher, A non-oscillatory Eulerian
approach to interfaces in multimaterial flows (the ghost fluid method), Journal
of Computational Physics 152 (2) (1999) 457-492. doi: 10. 1006/j cph. 1999.
6236.

[59] X.-D. Liu, R. P. Fedkiw, M. Kang, A boundary condition capturing method
for Poisson's equation on irregular domains, Journal of Computational Physics
160 (1) (2000) 151-178. doi:10.1006/jcph.2000.6444.

161

[601 M. Kang, R. P. Fedkiw, X.-D. Liu, A boundary condition capturing method
for multiphase incompressible flow, Journal of Scientific Computing 15 (2000)
323-360. doi:10.1023/A:1011178417620.

[61] D. Q. Nguyen, R. P. Fedkiw, M. Kang, A boundary condition capturing method
for incompressible flame discontinuities, Journal of Computational Physics
172 (1) (2001) 71-98. doi:10.1006/jcph.2001.6812.

[62] F. Gibou, L. Chen, D. Nguyen, S. Banerjee, A level set based sharp interface
method for the multiphase incompressible Navier-Stokes equations with phase
change, Journal of Computational Physics 222 (2) (2007) 536-555. doi: 10.
1016/j.jcp.2006.07.035.

[63] A. Mayo, The rapid evaluation of volume integrals of potential theory on general
regions, Journal of Computational Physics 100 (2) (1992) 236-245. doi:10.
1016/0021-9991(92)90231-M.

[64] A. McKenney, L. Greengard, A. Mayo, A fast Poisson solver for complex ge-
ometries, Journal of Computational Physics 118 (2) (1995) 348-355. doi:
10.1006/jcph.1995.1104.

[65] H. Johansen, P. Colella, A Cartesian grid embedded boundary method for Pois-
son's equation on irregular domains, Journal of Computational Physics 147 (1)
(1998) 60-85. doi: 10. 1006/j cph. 1998.5965.

[66] Z. Jomaa, C. Macaskill, The embedded finite difference method for the Pois-
son equation in a domain with an irregular boundary and Dirichlet bound-
ary conditions, Journal of Computational Physics 202 (2) (2005) 488-506.
doi:10.1016/j.jcp.2004.07.011.

[67] M. N. Linnick, H. F. Fasel, A high-order immersed interface method for simu-
lating unsteady incompressible flows on irregular domains, Journal of Compu-
tational Physics 204 (1) (2005) 157-192. doi:10.1016/j. jcp.2004.09.017.

[68] J. A. Sethian, J. Strain, Crystal growth and dendritic solidification, Journal of
Computational Physics 98 (2) (1992) 231-253. doi: 10. 1016/0021-9991(92)
90140-T.

[69] F. Gibou, R. P. Fedkiw, L.-T. Cheng, M. Kang, A second-order-accurate sym-
metric discretization of the Poisson equation on irregular domains, Journal
of Computational Physics 176 (1) (2002) 205-227. doi: 10. 1006/j cph.2001.
6977.

[70] F. Gibou, R. Fedkiw, A fourth order accurate discretization for the Laplace and
heat equations on arbitrary domains, with applications to the Stefan problem,
Journal of Computational Physics 202 (2) (2005) 577-601. doi: 10. 1016/j.
jcp.2004.07.018.

162

[71] H. Chen, C. Min, F. Gibou, A supra-convergent finite difference scheme for
the Poisson and heat equations on irregular domains and non-graded adaptive
Cartesian grids, Journal of Scientific Computing 31 (1) (2007) 19-60. doi:
10.1007/s10915-006-9122-8.

[72] I. Babuska, The finite element method for elliptic equations with discontinuous
coefficients, Computing 5 (1970) 207-213. doi: 10. 1007/BF02248021.

[73] J. W. Barret, C. M. Elliott, Fitted and unfitted finite-element methods for
elliptic equations with smooth interfaces, IMA Journal of Numerical Analysis
7 (3) (1987) 283-300. doi:10.1093/imanum/7.3.283.

[74] A. Hansbo, P. Hansbo, An unfitted finite element method, based on Nitsche's
method, for elliptic interface problems, Computer Methods in Applied Me-
chanics and Engineering 191 (47-48) (2002) 5537-5552. doi:10.1016/
S0045-7825(02)00524-8.

[75] N. Mos, J. Dolbow, T. Belytschko, A finite element method for crack growth
without remeshing, International Journal for Numerical Methods in Engineer-
ing 46 (1) (1999) 131-150. doi:10.1002/(SICI)1097-0207(19990910)46:
1<131: :AID-NME726>3.0.CO;2-J.

[76] J. Dolbow, I. Harari, An efficient finite element method for embedded interface
problems, International Journal for Numerical Methods in Engineering 78 (2)
(2009) 229-252. doi:10. 1002/nme .2486.

[77] J. Bedrossian, J. H. von Brecht, S. Zhu, E. Sifakis, J. M. Teran, A second
order virtual node method for elliptic problems with interfaces and irregular
domains, Journal of Computational Physics 229 (18) (2010) 6405-6426. doi:
10.1016/j.jcp.2010.05.002.

[78] Z. Li, T. Lin, X. Wu, New cartesian grid methods for interface problems using
the finite element formulation, Numerische Mathematik 96 (2003) 61-98. doi:
10.1007/s00211-003-0473-x.

[79] S. Hou, X.-D. Liu, A numerical method for solving variable coefficient elliptic
equation with interfaces, Journal of Computational Physics 202 (2) (2005) 411-
445. doi:10.1016/j.jcp.2004.07.016.

[80] Y. Gong, B. Li, Z. Li, Immersed-interface finite-element methods for elliptic
interface problems with nonhomogeneous jump conditions, SIAM Journal on
Numerical Analysis 46 (1) (2008) 472-495. doi: 10. 1137/060666482.

[81] J.-S. Huh, J. A. Sethian, Exact subgrid interface correction schemes for elliptic
interface problems, Proceedings of the National Academy of Sciences 105 (29)
(2008) 9874-9879. doi:10. 1073/pnas .0707997105.

[82] D. Clarke, H. Hassan, Euler calculations for multielement airfoils using cartesian
grids, AIAA Journal 24 (3) (1986) 353-358. doi: 10.2514/3.9273.

163

[83] M. J. Berger, R. J. LeVeque, An adaptive cartesian mesh algorithm for the Euler
equations in arbitrary geometries, in: Proceeding 9th AIAA Computational
Fluid Dynamics Conference, Buffalo, NY, 1989.

[84] H. Ji, F.-S. Lien, E. Yee, An efficient second-order accurate cut-cell method
for solving the variable coefficient poisson equation with jump conditions on

irregular domains, International Journal for Numerical Methods in Fluids 52 (7)
(2006) 723-748. doi: 10. 1002/f id. 1199.

[85] D. P. Young, R. G. Melvin, M. B. Bieterman, F. T. Johnson, S. S. Samant, J. E.
Bussoletti, A locally refined rectangular grid finite element method: Application

to computational fluid dynamics and computational physics, Journal of Com-

putational Physics 92 (1) (1991) 1-66. doi:10.1016/0021-9991(91)90291-R.

[86] K. J. Fidkowski, D. L. Darmofal, A triangular cut-cell adaptive method for high-
order discretizations of the compressible Navier?-Stokes equations, Journal of
Computational Physics 225 (2) (2007) 1653 - 1672. doi: 10. 1016/j . j cp. 2007.
02.007.

[87] A. N. Marques, J.-C. Nave, R. R. Rosales, A correction function method for
Poisson problems with interface jump conditions, Journal of Computational
Physics 230 (20) (2011) 7567-7597. doi:10.1016/j.jcp.2011.06.014.

[88] A. Mikhlin, A. Armstrong, Integral Equations and their Applications to Cer-
tain Problems Mechanics, Mathematical Physics and Technology, International

Series of Monographs in the Science of the Solid State, Elsevier Science & Tech-
nology, 1957.

[89] K. Atkinson, The numerical solution of integral equations of the second kind,
Cambridge monographs on applied and computational mathematics, Cambridge
University Press, 1997.

[90] V. Rokhlin, Rapid solution of integral equations of classical potential the-

ory, Journal of Computational Physics 60 (2) (1985) 187-207. doi: 10. 1016/
0021-9991(85)90002-6.

[91] F. X. Canning, Sparse approximation for solving integral equations with os-

cillatory kernels, SIAM Journal on Scientific and Statistical Computing 13 (1)
(1992) 71-87. doi: 10. 1137/0913004.

[92] K. Nabors, F. T. Korsmeyer, F. T. Leighton, J. White, Preconditioned, adap-

tive, multipole-accelerated iterative methods for three-dimensional first-kind
integral equations of potential theory, SIAM Journal on Scientific Computing

15 (3) (1994) 713-735. doi:10.1137/0915046.

[93] G. Evans, J. Blackledge, P. Yardley, Analytic methods for partial differential

equations, Springer undergraduate mathematics series, Springer, 2000.

164

[94] J. Stoer, R. Bulirsch, Introduction to numerical analysis, Texts in applied math-
ematics, Springer, 2002.

[95] C.-W. Shu, S. Osher, Efficient implementation of essentially non-oscillatory
shock-capturing schemes, Journal of Computational Physics 77 (2) (1988) 439-
471. doi:10.1016/0021-9991(88)90177-5.

[96] X.-D. Liu, S. Osher, T. Chan, Weighted essentially non-oscillatory schemes,
Journal of Computational Physics 115 (1) (1994) 200-212. doi:10. 1006/j cph.
1994.1187.

[97] G.-S. Jiang, C.-W. Shu, Efficient implementation of weighted eno schemes, Jour-
nal of Computational Physics 126 (1) (1996) 202-228. doi:10.1006/jcph.
1996.0130.

[98] A. J. Chorin, Numerical solution of the navier-stokes equations, Mathematics
of Computation 22 (104) (1968) 745-762.

[99] J. Zhu, J. Sethian, Projection methods coupled to level set interface tech-
niques, Journal of Computational Physics 102 (1) (1992) 128-138. doi:
10.1016/S0021-9991(05)80011-7.

[100] D. L. Brown, R. Cortez, M. L. Minion, Accurate projection methods for
the incompressible Navier-Stokes equations, Journal of Computational Physics
168 (2) (2001) 464-499. doi:10. 1006/j cph.2001.6715.

165

