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Abstract 
Accurate and comprehensive data form the lifeblood of health care. Unfortunately, there 
is much evidence that current data collection methods sometimes fail. Our hypothesis is 
that it should be possible to improve the thoroughness and quality of information 
gathered through clinical encounters by developing a computer system that (a) listens to 
a conversation between a patient and a provider, (b) uses automatic speech recognition 
technology to transcribe that conversation to text, (c) applies natural language 
processing methods to extract the important clinical facts from the conversation, (d) 
presents this information in real time to the participants, permitting correction of errors 
in understanding, and (e) organizes those facts into an encounter note that could serve 
as a first draft of the note produces by the clinician. In this thesis, we present our 
attempts to measure the performances of two state-of-the-art automatic speech 
recognizers (ASRs) for the task of transcribing clinical conversations, and explore the 
potential ways of optimizing these software packages for the specific task. In the course 
of this thesis, we have (1) introduced a new method for quantitatively measuring the 
difference between two language models and showed that conversational and dictational 
speech have different underlying language models, (2) measured the perplexity of clinical 
conversations and dictations and shown that spontaneous speech has a higher perplexity 
than dictational speech, (3) improved speech recognition accuracy by language 
adaptation using a conversational corpus, and (4) introduced a fast and simple algorithm 
for cross talk elimination in two speaker settings. 
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Chapter 1 
 

Introduction 
 
1.1 Vision 

Accurate and comprehensive data form the lifeblood of health care.  Such 

data are needed to allow clinicians to understand the patient and to deliver the 

best care.  They also provide an opportunity for administrators to assess the 

quality of care being delivered and researchers to learn the natural course of 

diseases, the accuracy of tests, and the effectiveness of therapies. Collection of 

data during clinical encounters should also be efficient so that it does not slow 

down the care process. Unfortunately, there is much evidence that current data 

collection methods sometimes fail; information elicited during an encounter may 

fail to be recorded or may be recorded incorrectly. Such omissions or errors 

undermine not only clinical care but also secondary uses of such data in quality 

improvement, public health and research. 

One way to tackle this problem is to computerize health records in order 

to “avoid dangerous medical mistakes, reduce costs, and improve care”, as former 
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President George W. Bush mentioned and set the goal to do so by 2014. Among 

the goals of the proposed healthcare reform of 2010 was the transition to 

electronic health records to enable better, more consistent care, analysis of 

spending, improvement of process and enhanced research.  

 

1.2 How Much Data is Lost? 

Clinical data are collected in many ways in the care process, and with the 

popularization of electronic medical records, we anticipate a day in which all 

these data become accessible any time they are needed.  Data such as laboratory 

measurements are now routinely collected automatically by instruments, as are 

some data from bedside monitors and imaging machinery.  Nevertheless, much of 

the data in clinical care is still collected through the direct observation of 

clinicians and recorded in textual reports by nurses and doctors.  Other 

significant data about a patient, such as his or her family history, the history of 

the present illness (what brought the patient to the doctor), a description of what 

medicines the patient is taking, recent medical visits, tests and treatments at 

other institutions, and notable environmental exposures, subjective symptoms 

and self-observations are ordinarily transmitted to the nurse or doctor through 

conversation during an office or clinic visit. 
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Data acquired from these conversations may, however, be lost or 

incorrectly recorded.  For example, most doctors are accustomed to writing or 

dictating notes on a patient visit after the patient has left. Thus, the note-taking 

is prone to misunderstanding or mishearing the patient, forgetting chunks of the 

information the patient presents, skipping over a detail that might be crucial 

later on and so on. Furthermore, if such records are not kept in a database so 

that the care provider could reference later on, healthcare system would suffer 

from more inefficiency. Research suggests that the theory is in fact correct. The 

Computer-Based Patient Record: An Essential Technology for Health Care, a 

1991 report by The Institute of Medicine [6] shows how medical records fail to 

reflect patients’ histories accurately. Among the studies cited in the report are a 

1975 study that compared tape-recorded conversations with patient records and 

found significant omissions in crucial categories such as reason of visit and degree 

of disability, and a 1981 study where an independent observer took notes as well 

as the doctor, and comparison of those later revealed a match of 71%-73% for 

diagnosis, tests and information related to the current illness, and even less 

success for medical history. 
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Chapter 2 
 

Proposed Solution 
 
2.1 The Fairwitness Project 

Our hypothesis is that it should be possible to improve the thoroughness 

and quality of information gathered through clinical encounters by developing a 

computer system that (a) listens to a conversation between a patient and a 

provider, (b) uses automatic speech recognition technology to transcribe that 

conversation to text, (c) applies natural language processing methods to extract 

the important clinical facts from the conversation, (d) presents this information 

in real time to the participants, permitting correction of errors in understanding, 

and (e) organizes those facts into an encounter note that could serve as a first 

draft of the note produces by the clinician.  We named our planned system 

Fairwitness, after the profession invented by Robert Heinlein in his novel 

Stranger in a Strange Land; the term defines an individual trained to observe 

events and report exactly what he or she sees and hears, making no 

extrapolations or assumptions. That broadly defines the goal of the project, a 
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computerized witness to accurately capture the primary clinical data real time, 

and provide feedback on the fly for corrections via a dynamic user interface. 

Figure 1 outlines the structure of Fairwitness.  

 

Figure 1: The structure of the Fairwitness Project 
 

There are two components of such a system, namely speech to text and 

information extraction. The details of the workings of the latter are beyond the 

scope of this thesis. However, to briefly explain, the doctoral thesis by Christina 

Sauper from MIT’s Natural Language Processing group uses text summarization 

algorithms [23] to form the backbone of the semantic analysis component of the 

Fairwitness project. The task of the speech to text component, which is the main 

focus of this thesis, is to listen to the conversation and transcribe it most 

accurately. There currently are several computer programs to achieve this task 

for a single-speaker setting, yet such technology does not exist for a multiple-
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speaker setting. The approach is to modify the current single-speaker programs so 

that they can conserve their rate of accuracy in such settings and to tackle any 

other challenges that exist. 

 

2.2 Technical Challenges 

There are currently many challenges to implementing such a fully 

computerized environment even at the speech recognition stage due to the limited 

capabilities of current software technology. Such challenges can be summarized as 

follows: 

Single vs. multiple speakers: As mentioned above, the automatic speech 

recognition software (ASR) can only listen to and analyze single speaker at a 

time yet the task at hand is to record and transcribe a conversation. 

Trained vs. untrained speakers: Some ASRs utilize training where the 

individual reads chunks of text into the system so that it allows the ASR system 

to adapt its speech model to the speaking patterns and accent of the particular 

speaker. This is usually a long and elaborate process that would be difficult to 

implement in a hospital setting, thus the ASR at hand should be capable of 

providing results without any training. 

Quiet vs. non-quiet backgrounds: The ASRs work better in a quiet 

environment because background noise could confuse the software. It is natural 
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to expect a certain level of background noise for two reasons: The conversation 

takes place in a hospital, which tends to be noisy, and in a conversational setting, 

while one speaker is speaking the other might not remain completely quiet. 

Spoken language vs. dictated language: The ASRs are built to understand 

a speaker who is speaking directly into the system, yet in a conversational 

setting, the speakers are not going to dictate into the microphone and the phrases 

are not going to be plain and concise. Such lack of speaker collaboration could 

negatively affect the accuracy of the software. 

In order to achieve our main goal, that is to engineer current systems so 

that they can handle this type of data, we focused on several technical questions:  

1. We have developed formal methods to characterize the differences between 

the conversational language and the dictated language. A language 

modeling perspective revealed information about the differences of these 

two styles of languages.  

2. We compared the performance of two well-known ASR systems, Dragon 

Naturally Speaking by Nuance (DNS ‘11) and SRI DynaSpeak. These 

programs also were optimized via customization for the specific context, 

i.e. doctor-patient medical conversations.  
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2.3 Related Work 

The problems associated with manual data collection in clinical settings 

are under serious consideration. There have been several attempts in transcribing 

clinical conversations to minimize the amount of information loss. One of these 

attempts is the 1992 study by Fagan et al. “Q-MED: A Spoken-Language System 

to Conduct Medical Interviews” [18]. Much like Fairwitness, Q-MED is a system 

that facilitates medical interviews by making use of early ASRs. Even though the 

major problem they had was the inaccessibility of real data, we should also 

consider the fact that the ASRs have evolved exceptionally since then. A newer 

study conducted by Zafar et al. in 1999, “Continuous Speech Recognition for 

Clinicians” [19] focuses on getting doctors to use dictational speech by making use 

of speaker-trained ASRs. Although they obtained accurate transcription results, 

they interfere with the natural interaction between the doctor and the patient, by 

requiring the doctor to use a dictational tone. Overall, the research is particularly 

impeded by the problems that (1) the data are private and sensitive, so it has 

been difficult to get the broad research community involved and (2) the ASRs are 

trained to handle dictational data, which interferes with the natural flow of a 

clinical visit. 
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Chapter 3 
 

Data Collection 
 
3.1 Source of Speech Data 

The pilot study for the project has been conducted at Children’s Hospital 

Boston (CHB) Pediatric Environmental Health Clinic with Dr. Alan Woolf’s 

collaboration. Dr. Woolf’s expertise focuses on environmental health, and the vast 

majority of the cases seen in his clinic involve childhood lead poisonings. The 

main goal of the pilot study was to record 200 conversations and thus to collect 

data for system performance measurement and future processing and 

optimization tasks. So far, we have been able to collect 130 conversations. The 

patients have all consented to have their conversations used in research and our 

use of the data is approved by both CHB and MIT Institutional Review Boards 

(IRBs).  
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3.2 Recording Technology 

For the recordings of the conversations, the two microphones we initially 

used were Andrea NC-91s, which were packaged with DNS ’10 (though we 

subsequently used DNS ’11 in our experiments). These were connected to two 

Sony MX20 recorders. With these, we initially encountered the problem that the 

other side of each conversation was faintly recorded in both recordings.  On the 

recommendation of audio professionals, the microphones and the recorders were 

later replaced by Sennheiser ME3s, and Philips Pocket Memo 9600 Series, which 

were thought to improve on this problem. ASRs are optimized for single speakers. 

By recording the conversations through two different recorders, the speech 

recognition software should be able to interpret the utterances of each speaker in 

a conversation independently. Using two microphones has brought us an 

advantage for feeding each speaker to the ASR system individually, but that also 

introduced the crosstalk artifact. For example, when the doctor is speaking, the 

microphone attached to the mother picks up the doctor’s voice and vice versa. 

Another problem is that the two separate recordings coming from the same 

conversation are not perfectly aligned, because the parties press the record 

buttons at different times. The lack of such alignment causes problems during (1) 

potential speaker segmentation efforts and (2) hand transcriptions of these 

conversations, which account for the gold standard data. 
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3.3 On-site Equipment 

Our on-site equipment to store and analyze data is a Linux machine with 

an Intel Xeon 8-core 2.53 GHz processor and 12 GB RAM, and a Windows XP 

machine with an Intel Pentium 4 3.4 GHz processor and 3 GB RAM to run the 

ASRs. These machines are behind the CHB firewall to protect patient data, but 

accessible to us via VPN.  

Protecting the privacy of patient data imposed a number of requirements 

on our project that slowed its progress significantly.  Our protocol requires that 

patient data must be kept on hospital computers.  The need to access data 

remotely impeded our process and made the availability of the data and 

performance of the project dependent on outside factors such as network 

interruptions and accidental powering down of our machines. This also required 

many visits to the hospital, to transfer data from the recorders to our computers 

and to correct the unanticipated practical impediments.  Additionally, the 

Institutional Review Board (IRB) approval that was necessary to begin collecting 

data and to start working on its interpretation took an unexpectedly long time. 

Early in the project, we also needed multiple training sessions with the clinicians 

to acquaint them with the recording equipment and computer tools that were 

novel to them. Finally the need to maintain patient privacy has made it 

impossible for us to share data with outside researchers. 
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3.4 Gold Standard 

As part of our research protocol, we hired the company Breitner 

Tanscription Services, Inc., to perform manual transcription of the first 66 our 

(currently 130) recordings of conversation. Breitner is used by Children’s Hospital 

to transcribe doctors’ dictations, so they are familiar with clinical language and 

have agreements in place to protect patient confidentiality.  These transcriptions 

form the Gold Standard for our measurement of the accuracy of automatic speech 

transcription. The conversations were transcribed by multiple people, in different 

styles in terms of punctuations, paragraphs and data formats and thus had to be 

standardized. In order to achieve that standardization of the data, we performed 

post-processing such as, breaking the transcripts into its speakers, tokenization, 

removal of punctuation, and elimination of unnecessary explanations. 

3.5 Dictational Corpus 

In order to compare the difference between conversational speech and 

dictated speech, another set of data was necessary. Thus, dictated clinical notes 

by the doctors were also included in the dataset. These are the notes dictated by 

the doctor, and later hand-transcribed, after the patient is dismissed from the 

visit.  We obtained permission to use dictated notes from the PEHC for up to 

300 patients. Some, but not most, of these manually transcribed notes overlapped 

with the recorded conversations.  
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Chapter 4 
 

Experiments 
 

In this chapter, we present our attempts to measure the performances of 

two state-of-the-art ASRs for the task of transcribing clinical conversations, and 

explore the potential ways of optimizing these software packages for the specific 

task. We conducted five experiments:  

1. We measured the baseline performance of Dragon Naturally Speaking ’11 

(DNS’11) by Nuance and DynaSpeak by the Stanford Research Institute 

(SRI) using their initial default settings. We have selected DNS ’11 and 

SRI DynaSpeak, because of the high accuracy reported both commercially 

and in the literature.  

2. We quantified the difference between two language models for 

conversations and dictations, by proposing a novel method.  

3. We optimized the language models of DNS ’11 and SRI DynaSpeak. 

4. We calculated the perplexity of two language models derived from 

conversations and dictations. 
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5. We processed the input audio streams to eliminate unwanted background 

interferences caused by noise and the second speaker. 

 
4.1 Choosing the Best ASR Default Model 

In this experiment, we aim to see how the out-of-the-box models of DNS 

’11 and SRI DynaSpeak perform in transcribing clinical conversations. By seeing 

the performances of the default models, we can decide the type of errors that 

these ASRs make, and conduct necessary improvements. 

Currently, the standard metric for measuring ASR performance is Word 

Error Rate (WER). Word Error Rate is a metric based on the Levenshtein 

distance, which is normally defined as the letter level “edit distance”, but for our 

application applied on word level. Given a reference text as the gold standard, 

WER calculates the error percentage of a hypothesized text. It is given by this 

formula 

!"# =
! + ! + !

!  

where S is the number of substitutions, D is the number of deletions, I is the 

number of insertions, C is the correctly identified words in the hypothesis text, 

and N is the number of words in the reference. Using dynamic programming, the 

words in both texts are aligned and types of errors are marked as below: 
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REF:     I       know if anyone HAS done anything ** 
HYP:   DON'T know if anyone  ***  done anything HE 

Eval:     S        C   C    C       D     C        C       I     
 

For the word alignment and WER calculation, we used the SCLITE 

package by the National Institute of Standards and Technology (NIST). 

 

4.1.1    DNS ’11 Default Model 

First, we measure the WERs resulting from the transcriptions of the 

conversations by the generic DNS ’11 user model involving no training of the 

speakers. Although we might have achieved better results by having each patient 

and doctor train DNS ’11 to specialize the phonetic model to his or her voice, this 

proved impractical because it would have required patients to spend 30 minutes 

training the system before seeing their doctor. Table 1 shows an excerpt of the 

three highest, medium and lowest WERs for illustrative conversations from 

among our set of recordings. 
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Document Correct (%) Substitution (%) Deletion (%) Insertion (%) WER 
100329.p 18.7 80.4 0.9 171.3 252.6 
090624.p 29.6 63.9 6.5 115.9 186.3 
090624.d 17.9 80.7 1.5 92.3 174.4 
090518.d 49.2 36.7 14.1 23.7 74.5 
090902.p 54.3 36.2 9.5 28.7 74.4 
090406.d 33.9 41.9 24.2 7.2 73.2 
100407.d 66.1 20.4 13.5 8.3 42.2 
090921.d 63.3 23.3 13.4 5.2 41.9 
100303.d 67 20.4 12.6 4.9 37.9 

Table 1: Word error rate statistics by non-trained DNS ’11 default model. 
Documents ending with a “.p” and “.d” represent transcriptions coming from 
patient and doctor recordings respectively. 

 

4.1.2    SRI DynaSpeak Default Model 

Next, we measure the WERs introduced by SRI DynaSpeak. Due to 

frequent releases of updated models, we are only provided by the 2.10.2012 

generic model as an evaluation version. SRI DynaSpeak is designed to work with 

short utterances of speech, such as single words, word groups or sentences. 

Therefore, we need to slice an input audio file into chunks without losing words.  

 For this task, we use the Sound eXchange (SoX) command line utility that 

provides various audio-processing tools, including a silence detector. Using the 

“silence” command we can slice an audio file where the average amplitude drops 

below an arbitrary percentage of the loudest point in the file. In this case, we 

have found 2% as a good cutoff point. There are two more parameters, attack 

and decay. Attack is the duration that the average has to be higher than 2% of 
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the highest amplitude in order to start the slicing. 0.1 seconds is found to be a 

good attack time. Decay is the duration that the average has to be lower than 2% 

of the highest amplitude in order to end the slicing. 0.2 seconds is found to be a 

good decay time. Figure 2 explains the attack and decay phenomena.  

Figure 2: Attack/Decay phenomena. The recording will be sliced starting from 
the first marked region until the second marked region. 

 

Using SoX’s “newfile” command, a given audio file is split into smaller chunks to 

be fed into SRI DynaSpeak. Table 2 shows the WER statistics achieved by SRI 

DynaSpeak. 
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Document Correct (%) Substitution (%) Deletion (%) Insertion (%) WER 
100329.p 14.5 85.1 0.4 137 222.5 
090624.p 22.4 72.7 4.9 46.7 124.3 
090624.d 16.4 82.5 1.1 96.6 180.2 
090518.d 39.6 41.9 18.5 8.5 68.9 
090902.p 27.3 56.8 15.9 8.4 81.1 
090406.d 40.9 40.1 19 8 67.1 
100407.d 32.5 37.2 30.3 5.2 72.7 
090921.d 45.4 32 22.6 4 58.6 
100303.d 41 35.4 23.6 4.3 63.3 

Table 2: Word error rate statistics by SRI DynaSpeak default model 
  

 These results are much higher than the advertised WERs of DNS ’11 and 

SRI DynaSpeak, in fact, some WERs are higher than 100%. WER is measured by 

dividing the number of errors by the total number of words in the reference text, 

and the number of total errors can be greater than the total number of words in 

the reference text due to the fact that we count insertions as errors, which have 

no corresponding words in the reference text. Moreover, a manual investigation 

shows that the gold standard documents do not fully reflect the actual 

conversations, i.e. there are a lot of missing utterances. This is another reason 

why the WERs are very high as this leads to an inflated number of insertions.  
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4.2 Language Model Difference between Dictation and 

Conversation 

In our second experiment, we aim to show that the language models for 

conversational (spontaneous) and dictational speech are different in their nature. 

Therefore, one of the explanations why the ASRs are performing so poorly might 

be the difference of these two types of speech, because we know that the DNS ’11 

and SRI DynaSpeak language models are both trained on dictational speech. We 

compare the conversational language model that we derived from the gold 

standard transcriptions with the language model derived from the hand 

transcribed dictations that the doctor records after the patient is dismissed. We 

do this comparison by using two different techniques: (1) by comparing the 

frequency distribution of word N-grams in the two types of text, and (2) by 

comparing the linguistic perplexity of the two. Since both ASRs do poorly on 

transcribing conversations, we expect that both analyses will come to similar 

conclusions showing that the language models for dictation differ significantly 

from those for conversation.  

 

4.2.1    Finding a Metric 

How do we measure the difference between two language models? Various 

studies focus on using average length, vocabulary coverage, term frequency and 
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inverted document frequency, and entropy analysis [2]. Since we know that the 

majority of ASRs are built on Hidden Markov Models (HMM) to represent the 

sequence of words and sounds in speech, we can devise a more relevant measure. 

ASR systems that perform speech-to-text transcription employ two major models: 

an acoustic model and a language model. The acoustic model uses a collection of 

audio features, typically in an HMM to represent the sequence of such features 

that are likely to be heard when a particular word is articulated. This model is 

useful for finding out what a given waveform could potentially correspond to in 

terms of phonemes. The language model contains information about the 

likelihood of which words will appear in what context. Therefore, the 

combination of an acoustic model and a language model returns the most likely 

phrase that the software thinks is being said by the speaker. Given an acoustical 

cue, the probability of a word sequence is P(W|A). By the Bayes rule: 

P(W|A) = P(A|W) * P(W) / P(A). 

Because P(A) is constant across a given acoustical utterance, we can compare the 

term P(A|W) * P(W) for different possible word sequences and pick the one 

maximizing this probability. In this case, P(A|W) is obtained from the acoustic 

model and P(W) is obtained from the language model. P(W) is equal to P(w1, 
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w2,…,wn), where the wi are the words in the sequence. Applying the chain rule 

yields:  

P(w1, w2,…,wn) = P(w1) . P(w2|w1) . P(w3|w1, w2) …. P(wn| w1, w2,…,wn-1)  

If we try to compute P(w1, w2,…,wn) using this expression, we need to look at the 

whole history of words. The N-gram model suggests that we can approximate this 

probability using the Markov assumption by looking at only N-1 past words. For 

this study we have picked N to be 3, which is common in the literature. Under 

the Markov assumption, 

P(wn| w1, w2,…,wn-1) ≈ P(wn| wn-2, wn-1) 

for a trigram model (N=3). These probabilities are then calculated by the counts 

of occurrences of word sequences, using the maximum likelihood estimation [20]. 

 To study whether a common, single N-gram model can faithfully represent 

two samples of language use, we can compare the frequency distribution of N-

grams from the two samples. If the distributions are similar, we may conclude 

that a single language model can reasonably model these two samples.  If not, 

however, then we have evidence that the model of one sample is a poor 

representation of the other.  We use the Kullback-Liebler divergence (KL-

Divergence) between the two probability distributions as a measure of their 

similarity.  Given two probability distributions P(W) and Q(W) over the same 
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set of N-grams, we can calculate the difference between these two distributions.  

KL-Divergence between two probability distributions P and Q, is given by: 

 

 

Because this measure is not symmetric, meaning , we can 

use the symmetric version   in order to make this 

measure into a distance metric (distance metrics must be symmetric). KL-

Divergence is also closely related to entropy, H(P) which appears commonly in 

the form of perplexity 2H(P), a common metric in Natural Language Processing 

(refer to Section 4.4 for more details). 

 By calculating the KL-Divergence between the two N-gram models 

provided by the dictated doctor’s notes (refer to Chapter 3 for details of the 

data) and the conversation gold standard, we will be able to show the difference 

between these two styles of speech. 

 

4.2.2    Naïve Attempt in Calculating KL-Divergence 

 Our first attempt in calculating the KL-Divergence between the dictation 

and conversation corpora starts with building a Python program to extract the 

N-gram model given a corpus. 
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 Given two distinct N-gram language models, the sets of events of the N-

grams are different. For example, a word triple “paint the house” might exist in 

one distribution, but not the other. This introduces a zero division or log(0) error 

in our calculations of KL-Divergence if a particular word sequence is missing from 

the other language model. Therefore, we must adjust both of the language models 

in order to accommodate all possible word sequences that both language models 

cover. 

 Adjusting an N-gram language model to accommodate non-occurring word 

sequences is called smoothing. For the naïve implementation, we used the 

simplest smoothing algorithm, named “add-one smoothing”, which adds a count of 

1 to non-occurring word sequences while calculating the N-gram probabilities.  

 Add-one smoothing is highly discouraged, because it gives a very 

uninformed decision about a novel event, and weighs all novel events equally. 

Therefore, we need a more complicated method for smoothing. SRI Language 

Modeling Toolkit (SRILM) offers a variety of smoothing algorithms along with 

tools for building N-gram models, and is used as a standard tool for many other 

applications in the field of NLP [7] [8] [9]. 

  

 



 34 

4.2.3    Using SRILM 

 In order to cover all possible word groups existing in both of the language 

models, these two models have to have a common vocabulary. Using the “ngram-

count” executable provided by the SRILM toolkit with the “-write-vocab” option 

allows us to create a closed set of vocabulary for a corpus. For the other corpus, 

we execute the same command and combine the two vocabularies so that there is 

a closed set of words. 

 For smoothing, we use the original Kneser-Ney algorithm, which yields low 

perplexity values, as suggested by multiple studies [10] [11]. The Kneser-Ney 

smoothing algorithm uses the back-off principle in which given a novel event, the 

algorithm backs off to probabilities of lower order N-grams. For example, if we 

want to estimate the probability of seeing a word pair XY in a corpus in which it 

does not actually occur, we can use the individual word probabilities and assume 

that P(XY) = P(X)P(Y). Although this is a crude approximation to the actual 

probability that we might expect to see in a much larger corpus, it does avoid the 

problem of zeros in simple N-gram counts and plausibly approximates the right 

probability assuming that each word choice is independent of the others. For an 

open vocabulary language model, i.e. a language model that will accept out-of-

vocabulary words, the algorithm assigns a low probability to the token, <unk> 

and converts all unknown words into this token to avoid zero probabilities. 
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Using Kneser-Ney smoothing, we have generated trigram models of the 

dictation and the conversation corpora. Kneser-Ney smoothing can be applied by 

using the “ngram-count” executable with the “-ukndiscount” option. 

 Using the set of all possible trigrams coming from both probability 

distributions, we can measure the probability of a given trigram on each of the 

language models using the “-ppl” option of the “ngram” executable provided by 

the SRILM toolkit. Finally, we end up with two probability distributions over all 

possible trigrams from both of the language models. Figure 3 explains the 

complete process of building probability distributions,  graphically.  
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Figure 3: Calculating the KL-Divergence value of two probability distributions 
derived from two corpora in plain text format. 

After obtaining these two probability distributions we can measure how 

different they are by normalizing the probabilities so that they sum up to 1 and 

then using the equation for KL-Divergence. Our measurements show that the 

symmetric KL-Divergence between the dictation and the conversation corpus 

over the set of all possible trigrams is 7. However, a single scalar value does not 

tell us how much of a difference that is. Is this a small or a large difference? 
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4.2.4    Moving from a Single Value to Meaning 

 Now that we have a single scalar value for the difference between the two 

language models, we need to see how this value is placed in the spectrum of 

different KL-Divergence scores. Our claim is that if two documents are being 

generated from the same language model, they should have a low KL-Divergence.  

We have no good a priori model of the magnitude of KL-Divergence values for 

different corpora that are in fact drawn from a larger corpus that we believe 

should be generated by a common language model; i.e. if we take a large set of 

dictation transcriptions of PEHC notes, we do not know ahead of time how much 

their word N-gram probabilities differ.   

Let D be the dictation and C be the conversation corpus, and the 

individual documents, corresponding to each visit in those collections be Di and 

Ci.  There are several possibilities of comparing the two language models derived 

from these corpora: 

1. Comparing each document pairwise from D and C, and also pairwise 

within the documents in D and in C. i.e., if KL is the KL-divergence 

between two documents, we would get  

a) the set of scores KL(Di,Dj) (of which there should be n*(n-1)/2 if n is 

the number of documents in D 
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b) the set of scores KL(Ci,Cj), of which there are m*(m-1)/2 if m is the 

number of documents in C 

c) the set of scores KL(Di,Cj) of which there are m*n.  

We could then study the three distributions and their relationships.  If (a) differs 

significantly from (c), then we have good evidence that they are drawn from 

different models. This can also be computed between (b) and (c), and should give 

similar results. If (a) differs significantly from (b), that tells us that the one with 

the wider distribution is more heterogeneous than the other. We expect that C 

will be more varied than D, and we will explain this phenomenon further in 

Section 4.4, using the perplexity analysis. 

 

2. For the comparisons (a), we can replace one of the documents by an 

aggregate of documents, excluding the particular document we are 

calculating the KL divergence against the rest, by the leave-one-out 

jackknifing method i.e., rather than computing KL(Di,Di), we compute 

KL(Di,D-Di), where D-Di is the language model consisting of all the 

documents in D except for Di. Then, we can calculate KL(Ci,D) to see how 

these two distributions overlap. If Ci’s are being generated by the same 

underlying distribution as Di’s (which we assume to be generated by D), 
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we will see an overlap between KL(Di,D-Di) and KL(Ci,D). We expect 

similar results from the symmetric operation. 

 

3. We predicted that option 1 and 2 will both take a lot of effort, because we 

will have to rearrange the corpora so that each document have a counter-

part in the other corpus. Generating language models from D-Di’s are also 

computationally expensive. Instead of calculating KL(Di,D-Di) using the 

jackknifing method, we can generate multiple random corpora, called Gi, 

based on the language model derived from D, using the “-gen” option for 

the “ngram” executable in the SRILM toolkit. This procedure is called 

bootstrapping and it is an approximation to the leave-one-out jackknifing 

method [22]. Using these randomly generated corpora, Gi we can create the 

distribution KL(Gi,D), which is an approximation of KL(Di,D-Di), and see 

how much it overlaps with KL(Ci,D). 

In Section 4.2.3, we calculated that the single value KL(C,D) is approximately 

7. Due to time restrictions, we were only able to use option 3, with the 

adjustment of using the single value KL(C,D) as an approximation, instead of the 

distribution KL(Ci,D). It would be worthwhile to see what kind of results we 
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gather from option 1 and 2, as they better reflect the nature of the differences of 

the two language models.     

 We propose this novel method as a way of measuring the difference 

between two language models quantitatively. Figure 4 explains the process we 

have done for this study, graphically. 

 

Figure 4: The novel approach for comparing two language models by KL-
Divergence values. 
 
 
 Our calculations showed that the KL-divergence scores between the 

dictation corpus and the generated corpora from that corpus, KL(Gi,D) varied 

between 0.6 and 0.8 for four generated documents, whereas the single value we 
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obtained from dictation versus conversation, KL(C,D), was 7, lying outside this 

range by far. 

 This experiment suggests that the language models of dictational and 

conversational speech are different. Therefore, an ASR system designed to handle 

dictational speech yields low accuracy trying to transcribe conversational speech, 

due to this difference between two types of speech. This is obviously not the only 

reason for low performance of ASR systems, but it is a major one that should be 

considered. 

 

4.3 ASR Language Model Optimization 

Many ASR systems allow the user to adapt the default language model to 

the specific domain and style of speech that is to be expected.  For example, 

Nuance actually sells a version of DNS that is specifically adapted to the needs of 

doctors doing dictation. That version is based on a large library of previously 

transcribed dictations, and produces a model that more accurately reflects what 

DNS expects to hear from a doctor as opposed to, say, a businessman. Both 

systems also allow the user to provide examples of text in their domain, from 

which they further adapt their language models.  However, in general the amount 

of domain-specific text available to the user (including us) is much smaller than 
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the amount of data on which the models were initially trained, so the adaptation 

effects of doing this additional language training may be minimal. 

Nevertheless, we explored this capability to investigate whether we could 

improve the accuracy of both systems on our conversation corpus. 

 

4.3.1    SRI DynaSpeak Language Model Optimization 

SRI DynaSpeak allows the modification of its language model to adapt to 

the needs of a specific task. Therefore, we can use this opportunity to train 

DynaSpeak with the gold standard conversation corpus that we have and thereby 

to make improvements on the baseline values that the default model yielded, 

presented in Section 4.1.2. In this experiment, we try to use a combination of 

tools that DynaSpeak and SRILM provides, and adapt the language model to 

handle a conversational speech model. 

The version of SRI DynaSpeak for this experiment is the 04.02.2010 

release, and is older compared to the default general model. The reason we are 

using an older model is that this release is the newest model that we can modify. 

Due to licensing restrictions, we are only able to adjust the language model, 

leaving the acoustic model unchanged. The details of how the language model 

and the acoustic model are used by an ASR are explained in detail in Section 

4.2.1. 



 43 

SRI DynaSpeak takes in two types of grammars: Java Speech Grammar 

Format (JSGF) or Probabilistic Finite-State Grammars (PFSG). A JSGF 

grammar is good for smaller tasks that require a small set of vocabulary and 

grammar rules, such as a car navigation system where the input speech could be 

predicted beforehand. A PFSG can be used for much larger tasks for which the 

valid inputs are not easily predicted with a set of rules. PFSGs are created using 

language models that are created by SRILM in the standard ARPA format 

(Advanced Research Project Agency), developed by Doug Paul at the MIT 

Lincoln Labs. PFSGs are an equivalent data structure to the ARPA format, in 

the sense that they are the finite state machine representation of a probability 

distribution. 

Using the PFSG, we have transcribed 6 conversation files and obtained 

WERs that are significantly higher than the baseline model by far, therefore we 

are not displaying the results here. Our conversations with SRI suggested that 

the gold standard corpus is too small and has very high perplexity to be used as 

a functional language model. Previous studies show that perplexity and WER are 

highly correlated [14]. In their research, Klakow and Peters show that 450 

distinct documents with different perplexities, which are about a single topic, 

exhibit the behavior in Figure 5.  
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Figure 5: WER versus perplexity graph of 450 language models. As perplexity 
increases, WER increases. From of Klakow and Peters, 2001. 

 

We analyze the perplexities of the dictational and the conversational 

corpora in detail, in Section 4.4. 

 

4.3.2    DNS ’11 Language Model Optimization 

 In this experiment, we have used two of the tools that DNS ’11 offers in 

order to improve the accuracy of speech recognition.  

The first one of those tools, voctool, takes a collection of written 

documents and updates its current language model to account for these 

documents. Since we have a collection of gold standard transcriptions, we can 

feed these into voctool so that DNS ’11 can use this conversational language 

model to transcribe spontaneous speech. Let T be the collection of gold standard 
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transcriptions, and A be the corresponding audio file for a given conversation. To 

transcribe a given Ai, we take out that Ti from T, and feed the T-Ti gold 

standard transcriptions into voctool. This way we do not reveal the correct 

transcription to DNS ’11 but we use ideally similar conversations to transcribe a 

new conversation. Due to time restrictions, we were able to calculate the WERs 

for 4 conversation files, using a leave-two-out approach. Figure 6 shows the 

WERs by DNS ’11 default model, and after the language model optimization by 

voctool. 

 

Figure 6: The WERs of 4 conversation files (two data points for each side of the 
conversation) after language model adaptation using voctool. 
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 The second optimization tool, Eyes Free Enrollment (efenroll) allows us to 

optimize the acoustic model by doing a multi-pass transcription of a 

conversation. After the first run using the default language model, the output 

transcription and the audio file can be fed into efenroll as a pair, so that efenroll 

reinforces the acoustic model by adjusting some parameters under the hood. 

Next, efenroll creates a modified user for which DNS ’11 has a better acoustic 

model. This is analogous to training DNS ’11 beforehand with a predetermined 

text. The only difference is that efenroll enables the usage of a custom “training 

text” (which is the first automatic transcription given by the unmodified default 

model) and later uses this updated model to transcribe the conversation for the 

second time. The initial transcription might not be so accurate, in which case this 

technique would not work well. 

Our attempts to transcribe four random conversations using efenroll 

showed us that there is in fact an increase in WERs, so we did not continue to 

transcribe more conversations. Some explanations of why this method performs 

poorly are presented in Section 5.3.2. 

 

4.4 Perplexity of the Corpora 

In this experiment, we analyze the perplexities of the dictational and the 

conversational corpora. We have shown previously that WER increases in 
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correlated with high perplexity [14] [15]. Therefore, if conversational speech has a 

higher perplexity than dictational speech, it would be reasonable to say that one 

of the reasons that the ASRs are performing poorly on conversational speech is 

because it is trained to handle dictational speech, which has a lower perplexity.    

The mathematical definition of perplexity is 

 
 
 

where p(x) is the probability distribution that is the same as the N-gram 

language model, P(w1, w2,…,wn) and x is the set of all trigrams in the language 

model, in our case.  

Conceptually, perplexity tells us how confused a language model is. 

Perplexity per word, 2H(p)/N is the average number of different words that the 

model has to choose from, given a test sequence. For example if the perplexity 

per word is 8, there are 8 possibilities that could qualify as w3 in order to become 

the next word in the sequence, w1, w2, ... [20]. 

Instead of coming up with a single perplexity value, which is calculated by 

measuring how perplexed a language model is in itself, we calculated a 

distribution of perplexities with a jackknifing method, where we (1) take out 50 

sentences out of the corpus, (2) build a language model with the remaining 

corpus and (3) calculate the perplexity of 50 sentences given as the test set, over 
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all trigrams forming the test set. This approach is very similar to the method 

proposed in option 1 in Section 4.2.4, comparing (a) and (b) with KL-divergence. 

With this method, we propose that we can see the different spreads of these 

language models and decide which one is more heterogeneous. What we have 

done differently for this experiment is that, instead of KL-divergence, we used 

perplexity, which is a more common measure while deciding the variability within 

a language model. Figure 7 outlines this procedure as a diagram:  

 

Figure 7: Calculating the perplexity distributions of the two corpora using the 
jackknifing method 
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While taking out the 50-sentence chunks, we have implemented a Python 

program that does that in memory, utilizing the Python built-in mmap module 

and saving us a great deal of time. Normally, Python opens the whole document 

and after taking out the 50-sentence chunk, writes the whole document back to 

the hard drive. This operation takes a long time. With mmap (short for memory 

map), we map the file to the memory and make changes on it, and we can use 

this temporary document as a corpus for the language model without having to 

write it back constantly. Finally, we came up with two distributions of 

perplexities for each of the dictation and the conversation corpora. Figure 8 

shows these two distributions. 

 

Figure 8: Perplexity distributions of 50-sentence chunks against the two 
language models. The much greater perplexity of the conversation corpus is 
evident in its far larger perplexity scale. 
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 The mean perplexity of the dictation corpus is 8.8, whereas it is 73.1 for 

the conversation corpus and the distributions are significantly different. These 

results match our expectations because we predicted that conversational speech is 

less structured due to its spontaneous production, compared to dictational doctor 

notes, which have to follow a certain format. Knowing the structure of a few 

dictations can tell a lot about a new dictation, but this does not hold for 

conversations. A statistical significance test reveals that there is no overlap 

between the two distributions of perplexities (p-value ≈ 0). 

 

4.5 Optimizing Audio Input 

 Due to the nature of the recording setup in the clinic, there is a lot of 

crosstalk between the microphones. This is a major contribution for the 

“insertion” type of errors introduced by the WER results in Table 1 and 2. By 

definition, “insertion” errors occur when the hypothesized text inserts words that 

are not in the reference text. These types of errors happen when ASRs try to 

transcribe breathing and other background noise as possible words. In our case, 

the ASR also picks up the second party’s voice and tries to transcribe it as the 

main voice. In this section, we propose a simple approach that could be used in 

real time after some adjustments in order to eliminate some of the crosstalk.  
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For each of the speakers, the microphone is attached as a headset, which 

means that the main speaker for that microphone is very loud compared to the 

rest of the audio signal. With a noise gate that opens when the amplitude is 

higher than a certain threshold level, we can eliminate some of the crosstalk. 

Although this is not a high accuracy speaker identification and segmentation 

technique, it is a very efficient and fast way to get rid of the background noise on 

the go. 

Next, we need to make sure that we pick a value for the threshold 

amplitude so that we eliminate most of the crosstalk and do not delete the main 

speaker accidentally. Picking a constant value for the threshold amplitude is not 

good, because, for example, for a new visit, we could have a louder second party 

or the doctor might be quieter than during the previous visit. 

Therefore, we need to design a program that adapts to these changes. For 

the simplest approach for classifying an audio segment as low or high in 

amplitude, the single feature is the amplitude. More complicated ways of 

identifying a speaker are possible by extracting many features provided by the 

frequency content. However, these techniques take a lot of computational time, 

and considering that Fairwitness is designed to work in real time, we take the 

faster approach.  
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We assume that the loudness of each speaker can be modeled with a 

Gaussian distribution. When we analyze the amplitude distribution for the raw 

recording, the loudest Gaussian most likely corresponds to the main speaker 

because he or she is the closest to the headset. Then, we keep the loudest 

Gaussian, and silence the rest. This method is a crude approximation to a 

Gaussian Mixture Model in one dimension. Figure 9 shows an example of an 

amplitude distribution calculated by an averaging window of 160 milliseconds. 

 

 

Figure 9: Averaging window of 160 ms for calculating the amplitude 
distribution for a single audio file. The histogram is smoothed so that the 
Gaussian distributions are visible. In the graph, x-axis is the amplitude and the 
y-axis is how often that particular amplitude occurs. From loudest to softest, the 
three peaks roughly correspond to the main speaker, the second speaker and the 
silence parts in a conversation. 
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 After we obtain the histogram for the distribution of the amplitude values, 

we smooth the histogram and find the loudest local minimum. This local 

minimum is the intersection of the loudest Gaussian with the second loudest one. 

We then silence the signals below this threshold value and keep the ones above, 

ideally letting the main speaker be the only signal. With the given cutoff value, 

we can run SoX with the “compand” command to let the audio signal pass if the 

amplitude is greater than that particular threshold. “compand” is a noise-gate 

with an averaging window as described by attack and decay, similar to the 

“silence” functionality described in Section 4.1.2. Notice that this algorithm can 

be modified slightly to function “online”, meaning that it will noise-gate an audio 

signal on the fly. The online version of the algorithm builds up the amplitude 

distribution as the conversation progresses, and dynamically finds the best cutoff 

point. 

 After we obtain the modified audio signals, we feed these into the default 

models of DNS ’11 and SRI DynaSpeak. Table 3 displays the WERs obtained 

from nine modified audio files and transcribed by DNS ’11 default model: 



 54 

 

Document Correct (%) Substitution (%) Deletion (%) Insertion (%) WER 
100329.p 19.2 80 0.8 171.1 251.9 
090624.p 26.7 69.2 4.1 53.1 126.3 
090624.d 16.3 82 1.7 75.1 158.8 
090518.d 48.2 33.2 18.6 6.1 57.9 
090902.p 49.3 37.6 13.1 20.3 71 
090406.d 43.5 33.9 22.6 2.8 59.3 
100407.d 65.9 20.3 13.8 8.4 42.5 
090921.d 64.3 22.5 13.2 5.7 41.5 
100303.d 66.1 21.1 12.9 5.1 39 

Table 3: The WER statistics of the modified audio input by DNS ’11  
 

Table 4 displays the WER statistics of the same input using SRI DynaSpeak.  

Document Correct (%) Substitution (%) Deletion (%) Insertion (%) WER 
100329.p 14.7 84.9 0.4 137.7 223 
090624.p 21.8 62.9 15.3 21.6 99.8 
090624.d 16.2 82.5 1.3 90 173.8 
090518.d 6.2 13.2 80.6 0 93.8 
090902.p 15.3 25.9 58.8 1 85.7 
090406.d 12.2 33.8 54 0.6 88.4 
100407.d 32.7 37 30.3 5.2 72.5 
090921.d 45.2 32 22.8 3.8 58.5 
100303.d 41 35.4 23.6 4.4 63.3 

Table 4: The WER statistics of the modified audio input by SRI DynaSpeak 
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Figure 10 helps to visualize the potential improvement on the WERs, after 

the audio optimization treatment. On the left, we see the DNS original versus 

DNS with the cutoff algorithm, and SRI DynaSpeak on the right.  

 

Figure	  10:	  The	  scatter	  plots	  of	  WERs	  for	  each	  ASR	  before	  and	  after	  the	  cross	  talk	  
elimination	  algorithm.	  The	  data	  points	  correspond	  to	  66	  transcribed	  conversations	  
(two	  data	  points	  for	  each	  side	  of	  the	  conversation).
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Chapter 5 
 

Discussion 
 

In this chapter, the results of the improvement and optimization tasks of 

this study will be discussed in light of the data collected and statistical tests. The 

discussions focus on the results we obtained from the experiments: ASR default 

model performances, language model differences, SRI DynaSpeak optimization, 

DNS ’11 optimization, corpora perplexities and audio optimization. Depending on 

the type of data or the process, either paired (treatment on a sample) or two-

sample unequal variance (different samples) t-tests were carried out.   

 
5.1 ASR Default Models 

This section includes evaluations on basic pre-optimization aspects of this 

study, such as microphone quality, ASR quality and differences between doctor 

and patient speech and language use patterns.  
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5.1.1    DNS ‘11 vs. SRI Default Model Comparison 

One prominent aspect of this study is to ascertain whether there are any 

significant differences between DNS ‘11 or SRI Dynaspeak, and if so, which ASR 

is better at speech recognition in our application with their default model. Based 

on 66 doctor and 65 patient conversation documents (one file was excluded, 

because it was an outlier), mean WER for DNS ’11 is lower than it is for SRI. 

This difference is mainly due to SRI performing quite poorly in the deletion 

category. Table 5 shows that even though DynaSpeak is doing much better in 

substitution and insertion, deletion makes SRI DynaSpeak perform significantly 

worse. 

ASR Substitution (mean) Deletion (mean) Insertion (mean) WER (mean) 
DNS ‘11 40.2 18.6 18.8 77.6 

SRI 36.0 40.3 8.7 85.0 
Table 5: Mean WER for default DNS ’11 and SRI DynaSpeak 

Since the transcriptions by both ASRs can be considered as treatments on 

the same sample, a two-tailed paired t-test was used to measure if these 

differences were statistically significant. The results were affirmative (p<0.01 for 

substitution, deletion, insertion and WER). 

These results might indicate that DNS ’11 has performed better overall 

compared to SRI DynaSpeak at first glance, yet further analysis might reveal 

that to be not the case. The higher overall WER for SRI DynaSpeak stems from 
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deletion. As previously explained, SRI DynaSpeak requires small chunks of 

speech to be loaded for analysis, so the process included slicing the conversations 

into chunks. It is quite likely that the slicing has resulted in some words being 

reduced to incomprehensible parts and that SRI DynaSpeak has omitted those. 

The significantly better performance of SRI DynaSpeak in the substitution and 

insertion categories should be taken into consideration in further analysis. 

 

5.1.2    Microphone Performance 

In order to improve recording quality, the microphones were switched from 

Andrea NC-91 to Sennheiser ME3s  on the recommendation of audio engineers 

who believed that the increased directional sensitivity of these newer microphones 

would improve rejection of the other side of each conversation and therefore help 

with correct interpretation of our conversations. To analyze whether this has led 

to significant improvements, the WERs of 51 samples recorded with Andrea NC-

91 were compared to that of the 80 samples recorded with Sennheiser ME3s. A 

one-tailed two-sample unequal variance t-test has indicated that for neither DNS 

‘11 (p=0.08) nor SRI DynaSpeak (p=0.49), can we reject the null hypothesis that 

the two microphones perform equally well at a=0.05. However, for DNS there is 

only a 8% chance that these results were obtained at random, which still provides 

some confidence that the new microphones helped. 
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5.1.3    Doctor vs. Patient Speech 

In order to optimize the results for speech recognition, it is also necessary 

to find out whether there are significant differences between WER for doctor and 

patient speech. As Table 6 shows, the mean error rate for patients is much higher 

than it is for doctors for both ASRs. This would have been an expected difference 

if trained voice models were used for the doctors. However, neither the doctors 

nor the patients had trained the system beforehand. A two-tailed unequal 

variance t-test shows that the difference is significant, meaning that both ASRs 

perform better with doctor’s speech. 

ASR Doctor (WER) Patient (WER) 
DNS ‘11 64.5 91.0 

SRI 79.2 91.0 
Table 6: The WERs of doctor and patient speech for each ASR 

There might be a number of reasons for such results. The doctors might 

speak closer to the microphone, because they are more experienced in such 

settings. The doctors might prefer a more concise and dictational tone. One piece 

of information that might be useful is that the rate of insertion for patients under 

DNS ‘11 (mean 26.287) is significantly higher than it is for doctors (mean 11.447, 

with a p-value < 0.01). Since the doctors speak more than patients do (1997 

words vs. 1243 words on average, also statistically significant), it is quite possible 
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that the patient’s microphone captures words spoken by the doctor, which leads 

to a much higher insertion rate for the patients.  

 

 5.2 Language Model Difference 

In this study, we introduce a novel approach to comparing two language 

models and hypothesize that conversational and dictational models have 

significant differences. Using the method previously described in Section 4.2.4, the 

KL-divergence values between the language models of the generated documents 

and the dictation corpus are 0.7, 0.7, 0.8 and 0.8, whereas the KL-divergence 

between the conversational language model versus the dictational language model 

is 7. Therefore, there is a significant difference between the two language models. 

This approach can be considered as an alternative to currently used 

statistics such as term frequency-inverse document frequency (tf-idf), cosine 

document similarity or vocabulary overlap, yet the validity of the model should 

be further evaluated, such as by testing on a variety of documents that are 

believed to originate from similar language models. 
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5.3 ASR Language Model Optimization 

 
5.3.1    SRI DynaSpeak Language Model Optimization 

As seen in the results before, the SRI Language Model requires 

optimization to perform better for the task at hand. We have consulted SRI on 

their opinions for this issue, for which they have proposed working with a larger 

dataset as a possible future step. 

 

5.3.2    DNS Language Model Optimization 

We have seen that updating the default language model using voctool 

provided an average of 8% decrease in WER in four 4 conversation files. This 

improvement is statistically significant (p<0.01). It would be worthwhile to see if 

the average improvement changes if we are to transcribe all the additional 

conversations we have at hand. 

Efenroll did not provide any improvements in the accuracy of DNS ’11. 

One of the reasons for this might be the fact that we are trying to use an already 

not-so-good initial transcription to be the basis of acoustical model optimization. 

We predict that efenroll would perform better in scenarios where the initial 

WERs were already low.   
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5.4 Corpora Perplexity 

One of the goals of this study was to quantify the differences between 

conversational and dictational models as discussed in our KL-divergence based 

approach. Another step that stems from this approach is to work on the 

perplexity of the corpora. As suggested by [14] [15], there is a positive correlation 

between WER and perplexity, and that theory fits in our corpora as well. As can 

be seen in the perplexity histograms in Figure 8 in Section 4.4, there is a 

significant difference between conversational and dictational corpora: the former 

has a mean of 73.1 compared to a mean of 8.8 in the latter. That is one possible 

explanation as to why our rate of accuracy is lower in conversations. A language 

model derived from a dictation corpus is capable of guessing new similar input, 

whereas that which is derived from a conversation corpus is not very successful in 

doing so. To elaborate, when we try to predict a chunk of conversational speech 

given the conversational language model, a high rate of entropy prevents a 

successful attempt. This is not so much the case for the dictational corpus. 

On the other hand, the results above could be biased due to the length of 

the corpora. The dictation corpus has 750,000 sentences whereas the conversation 

corpus has 30,000. A smaller corpus might naturally have a higher perplexity, but 

we have not considered that for this experiment. One study by Ney et al. shows 

that the perplexity of a language model, which was derived from the Wall Street 
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Journal corpus, decreases as the number of words in the corpus increases from 1 

to 38 million [24]. Therefore, it would be worthwhile to compare two corpora that 

are equal sizes to control for the length, while measuring perplexity. 

 

5.5 Audio Optimization 

One proposed solution to decrease the high error rates observed in both 

DNS and SRI data was to eliminate the background noise and crosstalk observed 

in the audio. A comparison of the mean WERs before and after the application of 

the crosstalk cutoff technique can be seen in Table 7: 

ASR Substitution (mean) Deletion (mean) Insertion (mean) WER (mean) 
DNS Default 40.2 18.6 18.8 77.6 
DNS Cutoff 37.2 24.6 13.5 75.3 
SRI Default 36.0 40.3 8.7 85.0 
SRI Cutoff 34.0 43.7 6.8 84.5 

Table 7: WER statistics for DNS and SRI with audio cutoff algorithm 

The cutoff technique has overall led to a decrease in the mean error rate 

for both ASRs, yet a one-tailed paired t-test suggests that even though it is 

possible to reject the hypothesis that the cutoff technique has not worked for 

DNS, it is not statistically significant to reject the hypothesis for SRI. In any 

case, the net effect on WER for both systems was modest. 

In order to understand why that is the case, a comparison of each 

evaluation category within the ASRs could be useful. The t-tests revealed that 
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there were significant changes in all categories for both systems; that is, the 

cutoff technique has resulted in an improvement for substitution and insertion, 

yet it also resulted in a higher rate of deletion. For DNS, higher accuracy in 

substitutions and insertions could offset the lower accuracy rate in deletions, but 

that was not the case for SRI. This shows that even though the audio 

optimization algorithm reduced the insertions, it also introduced more deletions 

of the actual speech while trying to minimize the cross talk. 

Two possible solutions to this issue could be improvements in the slicing 

technique for SRI as discussed before, or improvements in the algorithm for the 

cutoff technique. These will be discussed further in the future work section. 
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Chapter 6 
 

Future Work 
  

In this chapter, we propose future improvements to the current workflow 

in light of the findings we presented in Chapter 5. These improvements are 

worthwhile to investigate because they will help us achieve more accurate results 

in our efforts to transcribe clinical conversations into text.   

6.1 Improving Audio Input Further 

In this study, we have implemented a simple and fast algorithm to 

eliminate cross talk in two microphone recordings. We used the amplitude as the 

only feature while separating out the main speaker, because we wanted to 

implement this algorithm in real time. It would be worthwhile to see other 

existing methods to segment multi-speaker recordings. Speaker diarization is the 

name given to the task dealing with the segmentation of multiple-speaker 

recordings. The state-of-the-art speaker diarization systems use multi-dimensional 

features to identify speakers. These features are based on the frequency domain of 

the audio signal, and can reveal more information about the characteristics of a 

particular speaker, which makes it easier to distinguish one speaker from another. 
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Adding more features to a classification makes the task computationally more 

expensive. Metze et al. report that their speaker diarization system decreases the 

WER for non-segmented speech from 66% to around 45% [25]. It should be 

worthwhile to investigate speaker diarization methods and use one that is fast 

enough to be used in real time in our use case. 

6.2 Decreasing the WER for SRI DynaSpeak 

We have seen in Chapter 5 that SRI DynaSpeak default model is 

performing significantly lower than DNS ’11. We showed that the dominant part 

of this error is introduced by the deletions. The slicing algorithm presented in 

Section 4.1.2 is a candidate for contributing to deletion errors. SRI DynaSpeak 

requires short audio files as inputs, which required the slicing. During the slicing 

procedure, SoX deletes most of the silence between two utterances, where silence 

is defined as 2% of the loudest signal. This increases the likelihood of deletion of 

important utterances by accident. Therefore, we could devise a smarter algorithm 

for slicing audio files to minimize the number of deleted utterances, and then 

repeat the SRI DynaSpeak results for more accurate results. There have been 

many attempts in identifying human voice in audio streams. This procedure is 

called Voice Activity Detection (VAD), and has been successful in various 
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applications [12] [13]. We could incorporate this algorithm to slice the 

conversation files before feeding them into SRI DynaSpeak. 

 Our conversations with SRI led us to the conclusion that the reason for 

the low performance of the modified language model is the inadequate size of our 

conversation corpus that was used to train their language model. Therefore, we 

could record and hand transcribe more conversations in order to build a more 

robust language model that SRI DynaSpeak could rely on while transcribing 

clinical conversation. 

6.3 Using other ASRs 
Recently, several leading technology companies such as Google and AT&T 

made available their APIs for speech-to-text, publicly. These systems are based 

on cloud computing, where the audio data is processed in remote servers, and 

have been very successful. The fact that these companies might store any input 

speech files for improving their own systems prevents us from using those services 

for processing our confidential medical data. It would be worthwhile to 

investigate the possibility of de-identifying audio files to permit use of these 

online ASRs. One way of doing this would be aligning the gold standard text 

with the audio file, and then using a text de-identifier tool, such as Arya Tafvizi’s 

[21], developed here in the Medical Decision Group, to first de-identify the 

aligned text and then cut out the part of the speech signal that corresponds to 
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the identifying text. To be able to do this successfully, we would need to make 

sure that the gold standard text is in fact transcribed very accurately.  

6.4 Impact of Transcription on Semantics 

WER is a metric that relies heavily on the exact matching of words in a 

best-aligned sequence. That means that small word errors reflect negatively on 

the performance of the system, even though the semantics might stay intact. In 

order to measure how the transcription affects the semantics, we need a 

quantitative measure of the semantic content. For the next steps of this project, 

we could use Latent Dirichlet Allocation (LDA) as a way of measuring semantic 

content. LDA is widely accepted as a topic-modeling tool in the research 

community [5] [16] [17]. LDA interprets documents as an arbitrary number of 

topics with associated keywords and weights. In order to see the semantic 

coverage of an ASR, we can compare the LDA analysis of the gold standard with 

that of the ASR transcription. The simplest way of comparing two topic models 

would be by representing the topics as vectors, and calculating the dot product of 

these two vectors. This will tell us how much of the semantics we lost with the 

ASR transcription. There are plenty of problems associated with this method, 

such as dealing with zeros, because they do not contribute to the dot product 

even though they are clearly mismatches. There might also be other problems 

arising, but it is an interesting idea that could be investigated. 
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Chapter 7 
 

Contributions 
 

In this thesis, we have: 

1. Proposed the Fairwitness Project, which (a) listens to a conversation 

between a patient and a doctor, (b) uses the ASR technology to transcribe 

that conversation into text, (c) applies natural language processing 

methods to extract the important clinical facts from the conversation and 

(d) organizes and presents this information in real time to the 

participants. 

2. Conducted 5 different experiments to investigate the drawbacks of the 

current ASR systems, such as the fact that those ASRs are trained only on 

dictational language models and they are optimized for single speaker 

settings. 

3. Introduced a new method for quantitatively measuring the difference 

between two language models using KL-divergence. 
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4. Measured the difference of dictational and conversational language models 

using a bootstrap version of this method, and showed that these two types 

of speech are indeed different in the clinical domain. 

5. Improved DNS ’11 accuracy by adapting conversational speech to its 

language model, using the provided optimization utility, voctool.  

6. Measured the perplexity of clinical conversations and dictations and 

showed that the conversational language model has a significantly higher 

perplexity than dictational one. 

7. Predicted that the high WERs are due to the highly perplexed nature of 

spontaneous speech, based on the fact that there is a strong correlation 

between WER and perplexity. 

8. Introduced a fast and simple algorithm for cross talk elimination in two 

speaker settings, showing significant improvement in WERs of DNS ’11. 
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