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Abstract

In this thesis, I describe our effort to build an extended and specialized Named Entity
Recognizer (NER) to detect instances of Protected Health Information (PHI) in electronic
medical records (A de-identifier). The de-identifier was built by creating a comprehensive set
of features formed by combining features from the most successful named entity recognizers
and de-identifiers and using them in a SVM classifier. We show that the benefit from
having an inclusive set of features outweighs the harm from the very large dimensionality
of the resulting classification problem. We also show that our classifier does not over-fit
the training data. We test whether this approach is more effective than using the NERs
separately and combining the results using a committee voting procedure. Finally, we show
that our system achieves a precision of up to 1.00, a recall of up to 0.97, and an f-measure
of up to 0.98 on a variety of corpora.
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Chapter 1

Introduction

1.1 Overview

Electronic Medical Records (EMRs) can be a very rich source of information for many types
of interesting research[10]. However, the presence of Protected Health Information (PHI)
prohibits the free and unlimited distribution of these records. PHI are private and sensitive
information about a patient or healthcare provider.

Under the Health Insurance Portability and Accountability Act (HIPAA), before releas-

ing patient records, one of the two following conditions must be met[13]:

e A qualified statistician must certify that the data do not contain information that

could potentially compromise individuals’ privacy

e All instances of the following types of PHI must be removed from the records and the
releasing institution “may not have actual knowledge that the remaining information
could be used alone or in combination with any other information to identify any

individual who is subject to the information:”

17



(i) Names of patients and family members

(ii) Addresses and their components

(iii) Dates (month and day parts, unless the inclusion of the year part identifies an individ-
ual to be older than 90 years old)

(iv) Explicit mention of ages over 89 years old
(v) Telephone and fax numbers

(vi) Social Security numbers

(vii) Medical record numbers

(viii) Health plan beneficiary numbers

(ix) Account numbers

(x) Certificate or license numbers

(xi) Vehicle identifiers and serial numbers
(xii) Device identifiers and serial numbers
(xiii) Electronic mail addresses

(xiv) Web universal resource locators (URLs)
(xv) Internet protocol (IP) addresses

(xvi) Biometric identifiers

(xvii) Full face photographic images

(xviil) Employers

(xix) Any other unique identifying number, characteristic or code

In addition to the requirements set by HIPAA, for extra safety we include the following
categories in our list of PHI categories that have to be removed before release:

(i) Names of doctors and other care providers

18



(ii) Names and addresses of institutions where care is given
(iii) Any other telephone numbers
(iv) Any other type of identifiers such as of individuals other than those in the protected

categories as mentioned above.

Consequently, an automatic de-identifier capable of de-identifying EMRs, can remove a
great barrier to a vast amount of useful data.

Although a few de-identification technologies already exist, they are not robust enough
to be able to de-identify EMRs with arbitrary formatting or type and tend to specialize on
a specific domain. We propose to ameliorate this problem by creating a de-identifier that
combines all the features used by a group of successful de-identifiers through a Support
Vector Machine (SVM).

Uzuner, et al[20] were successful with creating a de-identifier based on SVMs. Their
implementation managed to obtain f~-measures of around 98% on a variety of medical doc-

uments. As such, we decided to build our system based on their system.

1.2 Goals And Hypotheses

Firstly, in order to accomplish our goal to deliver a robust, usable de-identification system,
we chose to re-engineer and re-implement Stat-deid to create a portable, scalable and easy-
to-use tool. This task will be discussed in length in Chapter 4.

Secondly, to increase the robustness of Stat-deid, we decided to test the following hy-

potheses:

e Hypothesis 1 (the SVM and high-dimensionality hypothesis): By creating

19



an inclusive feature-set by combining features from widely successful de-identifiers,

one could create an SVM classifier that outperforms any one of the base classifiers.

We test this hypothesis by implementing, and adding to our implementation of Stat-
deid, features that are used in the Stanford Named Entity Recognizer[5], the MIST De-
Identifier[1], the Illinois Named Entity Tagger[14, 17] and the MIMIC De-Identifier[12].
We call this system the Mega-deidentifier (See Figure 1-1). We compare the perfor-
mance of the resulting classifier with the performance of individual classifiers on a set

of corpora. These systems are explained in detail in the following sections.

In theory, training an SVM model with extra features (dimensions) would not harm
its performance[8]. In practice, however, increasing the number of dimensions of the
problem might harm the performance of the SVM model[7]. We test whether this

“curse of dimensionality” applies to our problem or not.

Hypothesis 2 (the universality hypothesis): This classifier performs similarly

well on different test corpora.

We test this hypothesis by comparing the performance of the Mega-deidentifier as

created in the last section on a variety of corpora.

Hypothesis 3 (the over-fitting hypothesis): This classifier does not over-fit the

training data.

We test this hypothesis by testing whether the performance of the Mega-deidentifier

on each test corpus is similar to cross-validation performance on the training data.

Hypothesis 4 (the mega vs. multi hypothesis): This classifier outperforms a
meta-classifier created by combining the base classifiers used to test hypothesis 1, by

combining them through a SVM.

20



We test this hypothesis by comparing the performance of the Mega-deidentifier with
that of the Multi-deidentifier on a variety of corpora. The Multi-deidentifier trains
an SVM model on the decisions of the following five successful de-identifiers: Our
re-implementation of Stat-deid, Stanford Named Entity Recognizer, the MIST De-
Identifier, the Illinois Named Entity Tagger and the MIMIC De-Identifier. The system
learns to trust a group of subsystems to correctly recognize instances of each class of

PHI (See Figure 1-2).

The Multi-deidentifier was developed by Ken Burford at SUNY at Albany.

] Tem
[ svm
I D--iceoifier

Figure 1-1: Mega De-Identifier

In the following pages, we will start by specifying the problem of de-identification, our
approach to solving the problem, and finally, the previous systems built to work in this area

and how we incorporated their useful features to make our de-identifier more robust.
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Figure 1-2: Multi De-Identifier

1.3 Problem Specification

An automated de-identifier can be formalized as follows. Given a medical document D =

w1, Wws, ..., Wy, where w;’s are the document’s words, and a classifier f(w;) st. f(w;) €
{1,..., M} if w; is a PHI and f(w;) = —1 otherwise, a de-identifier outputs Dy, jq =
wh,wh ... w), where:

, w; if f(wj) =—1

NULL; otherwise

NULL; is a special symbol meaning that a word has been removed and it belonged to the
PHI of type ¢ € {1,..., M}(e.g. patient name, phone number, etc.). In other words, a

de-identifier removes all PHI instances from the document on a per-word basis!.

!The real implementation of the program only marks instances of PHI, and leaves the replacement to
another program called a “re-identifier.” The re-identifier can replace the PHI with proper substitutions in
a way that maintains the integrity of the text without revealing any identifiable information.

22



A simpler version of this problem would be to identify all types of PHI and replace them
with the same symbol NULL. The latter is called the 2-way classification, as opposed to

the (M + 1)-way classification as described above?.

1.4 Approach

We define a feature extractor, denoted ¢(wj, ¢;), which maps all words and the relevant con-
text in a medical document onto a high dimensional vector representation € {0,1}%. Each
dimension in the resulting vector space corresponds to a specific feature of the word or its
context, such as the word itself, part of speech, length, membership in medical dictionaries
or syntactic role, among others. In this implementation, we only use binary features. For
example, one feature could be “the length of this word is 3,” or “this word is preceded by
the lexical bigram {name is}” and could be true or false. The exact number of features d

depends on training data and the feature types selected, but is usually on the order of 10°.

We use a nine-class Support Vector Machine to classify words into the PHI (1,...,8)
and non-PHI (—1) categories. The PHI categories are: Patient Name, Doctor Name, Date,

ID, Location, Hospital, Age and Phone Number.
Given the feature vector representation ¢(wj, ¢j), the SVM uses the following classifica-
tion rule[9]:

f(wj, ¢j) = argmax (Wg . ¢(wj,cj)) (1.2)
m=1,....M

where W, is a weight vector corresponding to class m. W, are obtained by solving the

following problem:

2The 2-way classification can be viewed as a special case of the general problem in which M = 1.
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LM L M
- 2
argillln2n;]\wm|| +ZZ€§”0¢T (1.3)

j=1m=1
such that
M
Y ap=0vi=1,..,L (1.4)
m=1
042”SC;’}Vj:l,...,L,m:l,...,M (1.5)
where
L
Wi =) af" - d(wj,cj),¥m (1.6)
j=1
.
C ify;j=m
Cg} = (1.7)
0 ify; #m
0 ify;=m
e]’ = (1.8)
1 ify; #m

and L is the size of the training set.

In the case of 2-way classification, the problem is reduced to the following:

L
f(wj, c;) = sign (Z o;yi(d(wj, ¢5) - ¢(vz‘,cz‘))> (1.9)
=1

where v1,vg,...,vr is the training set, y; is the +1,...,8/—1 label of v;, and o for i =

1,..., L are the parameters of the model?.

3The data corresponding to o # 0 are the support vectors of the model.

24



We find the model parameters o by solving the following maximization problem:

L L
1

argmax » a; — 5 > aiagyiy(o(wy, ;) - (i, i)

al,...,ay, i=1 ’i,jil

subject to 0 < o; < C,i=1,...,T

where C' is a parameter that trades off margin size and the number of training misclassifi-
cations.

We chose SVMs as our classifier mainly because they have been shown to be able to
handle very large data sets and have achieved better performance than other classifiers in

similar NLP tasks][8].

1.5 Thesis Structure

We begin Chapter 2 by describing five relatively successful systems used for the task of de-
Identification. We finish the chapter by describing the software libraries and methods that
form the basis of our program and analysis of its performance. In Chapter 4, we describe the
underlying architecture of the software system that we developed specifically to accomplish
the task of de-identification. We describe the corpora used to measure the performance of
our system in Chapter 5 and the performance of our system on those corpora in Chapter

6. We conclude this thesis in Chapter 7.
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Chapter 2

Related Work

We extracted and combined all distinct features used in five successful De-Identifiers[19]
and Named Entity Recognizers to create a “Mega-deidentifier.” In this section, I describe
the five different systems, the methods they use for classification, and the features each of

them use to accomplish the task of finding instances of PHI.

2.1 Stat-Deid

Stat-Deid was developed in 2006 by Tawanda Sibanda at MIT[15, 20]. He used an SVM
with more than a dozen syntactic and other feature classes to identify PHIs. We used a
replication of this system as our baseline system.

Stat-Deid uses the following features:

e The target word
e Lexical bigrams: words within a distance of two of the target

e Syntactic bigrams: These bigrams are the syntactic dependencies as identified by the

Link Grammar Parser. These bigrams are the words within two connections of the

27



target word and the links connecting them to the target word.

e Part Of Speech (POS) tag of the target word

e Whether the target word is capitalized or not

e The length of the target word

e The Medical Subject Heading (MeSH) ID of the noun phrase containing the target

word

e Whether the target word is present in a set of name, location, hospital name, and

date dictionaries

e The heading of the section in which the target word resides

e Presence of a dash (“-”) or a slash (“/”) in the target word

The authors have reported an F-measure of roughly 98% on a variety of test corpora.
Our replication of this system achieves an F-measure of roughly 96%. We attribute this
discrepancy to the fact that we were forced to use different versions of the main compo-
nents, such as the Link Grammar Parser, due to development and design considerations.
In addition, the source code for Stat-Deid was written mostly in Perl with virtually no
documentation, which made it impossible to verify that the replication matches the original

system down to every detail.

2.2 Stanford NER

Stanford Named Entity Recognizer[5] is a tool developed at Stanford by Christopher Man-

ning. Given proper training data, the NER can be used as a de-identifier. The system uses
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Conditional Random Fields (CRF) and Gibbs Sampling as the main classifier. The features

used in the classifier are as follows:

e The target word

e The previous word and the next word

e Target word character n-gram: This feature corresponds to the set of all substrings
of the target word. For example, the word ”The” would have the following character
n-gram features: _t, th, the, the_ the_ he_ e_ the,th, he,t, h,e. Note that by adding
an extra character to the beginning and end of each token, we can create features

corresponding to suffixes and prefixes.

e Part Of Speech (POS) tag of the target word and the surrounding words

e Word Shape of the target word and the surrounding words: The Word Shape feature
refers to a mapping of each word to a simplified representation, from which attributes
such as the length of the word, whether it contains punctuation or numbers, etc can be
derived. There are numerous implementations of these Word Shape features, but using
one specific implementation, the two words ” Varicella-zoster” and ” Tafvizi-zavareh”
would both become ” Xz — zxx.” These two words might be mapped to different

representations if other implementations of Word Shape were used.

e Presence of a word within a window size of 4 to the left and right of the target word

2.3 MIST De-Identifier

The MIST De-Identifier is created and maintained by the MITRE corporation[1]. Similar

to the Stanford NER, it uses a CRF classifier as its main classification engine. The features
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used in this system are either simple regular expression features (whether or not a word

matches a given regular expression), or dictionary features (whether or not the word is in

a set of dictionaries). A complete list of regular expression features is shown in Table 2.1.

Table 2.1: List of regular expression features used in the MIST De-identifier

Pattern Description

Regular Expression

First character of the word is capitalized

All characters of the word are capitalized

A mix of lower case and capital letters

Contains a digit

Contains a single digit

Contains a double digit

Contains four consecutive digits

Contains a natural number

Contains a real number

An alpha-numeric sequence

Contains a dash

Contains punctuation

Phone pattern #1 (zxx — zzzr)

Phone pattern #2 (zzx — zxx — xxar)

A sequence of 5 digits

Contains no vowels

Contains dash separated alpha-numeric sequences
Contains a date separator (i.e. a dash or a slash)

TA-Z] 7S
“[A-Z]+$
“[A-Za-z]+$
> #[0-9].%$

[AZa—zO 9]+$
*[0-9][0-9][0-9]-[0-9][0-9][0-9][0-9]$
*[0-9][0-9][0-9]-[0-9][0-9][0-9]-[0-9][0-9][0-9][0-9]$
*10-9][0-9][0-9][0-9][0-9]

I AaEehOoUu]—l—

A[-/]$

$ |*.[0-9].*-.*[0-9].*$

2.4 Illinois Named Entity Tagger

The Illinois Named Entity Tagger or LBJINET[14, 17] is a Named Entity Recognizer written

in Learning Based Java at the University of Illinois at Urbana-Champaign. It uses a CRF

and employs a two-stage model. In the two-stage learning system, the task of classification

is done once using a set of features. In the second stage, the decisions from the first stage are

also included in the feature-set, hence augmenting the information available to the classifier.

The first classification stage uses the following set of feature types:
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The target word

Word-type information of the target word (i.e. all capitalized, all digites, etc.)

Prefixes and suffixes of the target word

Words in a window of size 2 around the target word

Capitalization pattern in a window of size 2 around the target word

2.5 MIMIC De-Identifier

The MIMIC De-identifier is a rule-based system developed primarily to de-identify medical
records in the MIMIC database[12, 11]. It uses a set of rules and dictionaries to identify

instances of each category of PHI.

2.5.1 Names

In order to find instances of patient or physician’s names in a document, the de-identifier
checks whether a word is in a list of names from the US Census Report. If a word is in the
aforementioned list and is preceded by words such as “Mr.”, “Mrs.”, “Dr.”, etc., then the

word is marked as a name.

2.5.2 Dates

The de-identifier searches for the following patterns in a document. If a word or token
matches any of these patterns, then it is marked as a date.

Here, mm is a number between 1 and 12, dd is a number between 1 and 31, and (yy)yy
is any 2 or 4 digit number. Month is an instance of the names of months (e.g. January or

Jan.).
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Table 2.2: List of patterns used in the MIMIC de-identifier to recognize dates.
Pattern

mm/dd/(yy)yy
dd/mm/(yy)yy
(vy)yy/dd/mm
(vy)yy/mm/dd
dd month, yy(yy)
month dd

(vy)yy (only if preceding or following text includes the name of a medical event)

2.5.3 Locations

The MIMIC de-identifier uses two different lists to decide whether a word is an instance of

the location class.

e A list of unambiguous locations such as the names of major cities. If a word is in this

list, it is marked as an instance of the location class without further context check.

e A list of ambiguous locations. A word is marked as an instance of the location class if

bR ANNAS

it is in this list, and is preceded by any of the words “cape,” “fort,” “lake,” “mount,”

bYAN43

or “los,” or is followed by any of the words “street,” “parkway,” “town,” “ville,” or

“harbor.”

2.5.4 Hospitals

Since the MIMIC database contains records from only one hospital, this de-identifier uses
a list of local hospitals and all the wards in the hospital to identify the hospital names. In
addition, if a word is followed by words such as “hospital,” “rehab center,” etc., it will be

marked as a hospital name.
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2.5.5 Phone Numbers

If a word or phrase matches any of the patterns showed in Table 2.3, they are marked as

phone numbers.

Table 2.3: List of patterns used in the MIMIC de-identifier to recognize phone numbers.
Pattern

(nnn) nnn-nnnn

nnn-nnn-nnnn
nnn nnn nnnn
nnn-nnnn
nnn nnnn

2.5.6 Social Security Numbers

Similar to phone numbers, the patterns shown in Table 2.4 are used to discover social

security numbers.

Table 2.4: List of patterns used in the MIMIC de-identifier to recognize social security
numbers.

Pattern
nnn-nn-nnnn

nnn-nnnnnin
nnnnn-nnnn

nnnnnninnn

2.5.7 Age

To identify the instances of Ages above 89 years old, if a number between 90 and 125 is
preceded by any of the phrases from Table 2.5, or followed by any of the phrases from Table

2.6, it will be marked as age.

33



Table 2.5: List of preceding phrases used in the MIMIC de-identifier to recognize ages.
Preceding Phrases
age
he is
she is
patient is

Table 2.6: List of following phrases used in the MIMIC de-identifier to recognize ages.
Preceding Phrases
years old

year-old

-year-old

years old
years-old
-years-old

years of age

yrs of age

y.0.

yo
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Chapter 3

Resources

3.1 LibSVM and LibLinear

Both LibSVM and LibLinear are libraries that provide tools for classification[4, 3]. They

were developed by Chih-Jen Lin, et al. at the National Taiwan University.

As the name suggests, LibSVM is dedicated to Support Vector Machine classification

and can handle different types of kernels as well as multi-class classification.

LibLinear, on the other hand, provides tools for linear classification, including an im-
plementation of SVMs with linear kernel and Logistic Regression. In addition, LibLinear is
optimized to handle very large data sets and feature spaces. When the Logistic Regression
model is used, it can also provide likelihood scores for each prediction, which could be used
to explore the ROC curve.

Training a new model was done everytime the settings of the program were changed or
new features were added and they needed to be tested. The baseline program, Stat-Deid,
uses LibSVM as its classifier. For this reason, we initially used LibSVM for this task, and

it would take between three and four hours to be completed. Upon experimentation, we
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realized that LibLinear can accomplish the same task in about 30 seconds, which is an
improvement of 2.5 orders of magnitude.

Furthermore, it is essential to report that under the same settings, the linear SVM
classifier from LibSVM and LibLinear produced near identical performance in terms of

recall and precision. For these reasons, we chose to use LibLinear.

3.2 Apache OpenNLP

Apache OpenNLP[6] is a library of open source software created for Natural Language
Processing applications. We used the Part Of Speech Tagger from this library to obtain
POS tags for words in the corpora, the Tokenizer tool to divide the sentences into tokens,
and the Sentence Detector tool to obtain sentence boundaries. These tools all incorporate

the OpenNLP MaxEnt machine learning package.

3.3 Link Grammar Parser

The Link Grammar Parser[16, 2] is used to extract syntactic dependencies between words
in the text.

The Link Grammar Parser models words in a sentence as blocks with one or more types
of right and left links. These links are determined by the type of the word (e.g. verb, noun,
etc.). The Link Grammar Parser uses an internal dictionary to determine the type of the
word. Each of the right links can connect to a left link and vice versa if they are of the
same type.

For each sentence, the Link Grammar Parser finds a set of links connecting the words

in the sentence that satisfy the rules of the Link Grammar. These rules are as follows:
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1. Planarity: The links between words cannot cross.

2. Connectivity: All the words in the sentence must be directly or indirectly connected

to each other.

We use this information to create “syntactic bigrams” to use as inputs to the SVM
classifier. A left syntactic bigram for a word is a left link from that word, the word that is
linked by the left link, a left link from the second word, and the word linked by the second

link. We construct the right syntactic bigrams via the same method.

e . e . SE +
R Xo--mmmmm- +
+=ME*r+ +mmmm(gm——t |

|  +Xd+S%*w+ +==Dg-+ | +== =Py f=mt=eMVpn--+
John , who had.v a hernia.n ,

Figure 3-1: This figure shows the parse returned by the Link Grammar Parser for the
sentence: ”John, who had hernia, was admitted yesterday.” The word John would have
a right syntactic bigram of [{Ss, was.v}, {Pvf, admitted.v}]. This syntactic information
would be absent in other lexical and local features derived for this word.

3.4 Medical Subject Heading

Medical Subject Heading (MeSH) Metathesaurus knowledge source is a tool provided as a
part of the Unified Medical Language System (UMLS). It maps each medical term to an
ID. These IDs are designed such that they provide information as to where in the hierarchy

of medical terms a given term is located.
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3.5 FEvaluation Metrics

In this thesis, we report the effectiveness of our system in performing classification tasks in
terms of precision, recall and f-measure. We also use z-test to compare the performance of

different systems.

3.5.1 Precision

For a class C, Precision is defined as follows:

number of correctly classified instances of C'

Precision = total number of instances classified as in C (3.1)
3.5.2 Recall
Recall is defined as follows:
Recall — number of correctly classified instances of C (3.2)

total number of instances of C

3.5.3 F-measure

F-measure, is a measure of overall performance of the system both in terms of specificity

and sensitivity, and is the harmonic mean of precision and recall:

2 x Precision x Recall
F- = 3.3
measure Precision + Recall (3.3)
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3.5.4 Z-test

The Z-test is used to determine whether differences in two results are significant[21]. Given

two quantities p; and po from sample sizes nq, and nq, the z-statistic is defined as follows:

7 — b1 — p2

VP =p(E + )

where

_ upr + nap2
n1 + no

(3.4)

(3.5)

For |Z| > 1.96, we can conclude that the two quantities are significantly different with

probability 0.95.
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Chapter 4

System Architecture

We explained in Chapter 1 that we based our system on Stat-deid by Uzuner, et al[20)].
The original implementation of Stat-deid was in multiple programming languages and with
virtually no documentation. These characteristics made it difficult for us to easily expand
Stat-deid and add additional features, as well as make it a user friendly system. Additionally,

we wanted to make a de-identifier that is easily compatible with UIMA.

As such, we chose to re-design and re-implement the system in Java and incorporate
state-of-the-art technology in the new system. Our re-implementation includes more than
5,000 lines of code in Java which interoperate with several software packages. We explain

the design and capabilities of our system in this chapter.

4.1 Preprocessing

Before we can use the feature extractor, we perform a series of operations on the data to

transform free-text documents into lists of words. We call this stage tokenization.
We describe the different stages of tokenization in the rest of this section.
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Figure 4-1: System Diagram

4.1.1 Parsing Raw Data

The raw data to the system is given in a special XML format. Specifically, each data file is

includes the following XML tags:

<ROOT> and </ROOT>

Indicate where the file begins and ends.

<DOCUMENT ID=¢...”> and </DOCUMENT>

Indicate where a document begins and ends.

<TEXT> and </TEXT>

Indicate where the text of a document begins and ends.
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<PHI TYPE=“.."> and </PHI>

Indicate the location of the instances of PHI and the type of PHI.

4.1.2 Finding Token Boundaries

We use OpenNLP[6] Tokenizer to find token boundaries. For the most part, the tokens are
regions of continuous text separated by white space or end of line. However, the program
uses a statistical model to successfully find token boundaries in more complicated situations.
After finding the token boundaries, we compare these boundaries with the PHI boundaries
from the XML file. If a set of token boundaries and a set of PHI boundaries match!, then

that token is marked as a PHI.

4.1.3 Finding Sentence Boundaries

The Challenge corpora (See Chapter 5) have been manually sentence broken, meaning each
period, comma or colon at the end of a sentence or phrase is surrounded by white spaces.
We consider the text between each occurrence of these set of characters, plus to the end of
line character, to be a sentence.

For corpora where these information are not available, we use the Sentence Detector
tool from OpenNLP[6] to find sentence boundaries. OpenNLP uses a Maximum Entropy
model trained on a large non-medical English corpus for this task. As such, its use might

introduce some errors in the process.

4.1.4 Part Of Speech Tagging

We obtain Part Of Speech (POS) tags for all sentences in a document using the OpenNLP

POS Tagger. The OpenNLP POS Tagger includes an internal dictionary and Maximum

1For this purpose, a complete overlap of one set of boundaries and the other constitutes a match.
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Entropy model trained on a large non-medical English corpus. After a sentence has been

tagged, we match the words in the sentence to the tokens in the document.

4.1.5 Link Grammar Parsing

The Link Grammar Parser (LGP) returns a set of Linkages for each sentence. For consis-
tency, we always use the first Linkage returned by the LGP. Each Linkage includes a list
of Links. Each Link is identified by its type and the left and right ends of the Link. We
match each word in the sentence to its right and left Links.

Furthermore, for each word, we create a syntactic bigram as described in 3.3. After
all syntactic bigrams are formed, we match the words in the sentence to the tokens in the
document.

The LGP uses an algorithm with O(n?) time complexity, where n is the number of
words in the sentence. As such, the required time varies substantially based on the number
of words in the sentence. For this reason, we do not attempt to parse sentences with more
than 50 words.

Overall, the LGP takes about one second to successfully parse a sentence and therefore

is the most time-consuming stage in preprocessing.

4.2 Feature Extraction

When preprocessing of the text is completed, we use the feature extractor? to create a
binary representation for each token and it’s relevant context. In this section, we introduce

the representations we use to accomplish this task.

*We introduced the feature extractor as ¢(w;,c;) in chapter 1.

44



4.2.1 Feature Representation

We represent each feature with two attributes: type and value. Each feature type can be
thought of as a function which takes in a token and its relevant context and returns a value.
Feature types are as introduced in Chapter 2. For cases where the feature type is a regular
expression or presence in a dictionary, the value can be “true” or “false.” In other cases,
such as when the feature type is “POS tag” or “syntactic bigram,” the value can be any
valid string. For example, one feature can have type “length” and value “8.” Another

feature can have type “left lexical bigram” and value “she is.”

Two features are equal if and only if they have the same type and value. For example,
features {type=*“length”; value=“8”} and {type=*“length”; value=“5"} are two distinct

features. For this, all features are binary.

4.2.2 Feature Map

In order to map a token onto a d-dimensional representation € {0, 1}d, each feature has to
be mapped to a number between 1 and d, where d is the total number of features constructed
during training. Given that the value of d is generally on the order of 10%, having an efficient
means to store and search for the features is crucial. To meet these requirements, we use a

hashmap to store our mapping of features to sequential integers.

This form of storage allows us to search for a feature, add a feature to our map, or find
the corresponding integer to a feature in constant time. We store the feature map as a

serialized hashtable.
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4.2.3 Binary Representation

Given a token and a feature map, one can represent the token in binary form as shown
in Listing 4.1. Due to the fact that most indexes will be zero®, this representation is not
efficient. Instead, we use a similar representation that is more suitable for sparse vectors.
In this case, we only indicate the indexes at which 1’s are present. For example, “001001”

would be represented as “3:1 6:1.”

Listing 4.1: Pseudocode of the Feature Extractor ¢(wj,cj). The Feature Extractor uses a
feature map to create a sparse binary representation of a token.

BINARY (token ):
bin = empty String
for feature_type in feature_types:
(type, val) = feature_type (token)
index = feature_map ((type, val))
if index != null
bin = bin + index + ’:1 °

return bin

4.3 Model Construction

Using the feature extractor, we can represent our training data in binary form. We use
Liblinear[4] to create a SVM model based on this data and the training label. Liblinear
creates a list of the support vectors of the model and stores them in binary format. Given
this model and the corresponding feature map, one can classify any given new token with

its relevant context as belonging to a class of PHI.

3In our case, there are generally only about 200 1’s in the binary representation of each token.
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4.4 De-Identification

The de-identifier combines the feature extractor, the SVM classifier and the tokenizer into
a single functional entity which can be used to remove PHI instances from free-text medical
documents (Listing 4.2). The de-identifier loops through words in the document, and uses
the classifier f(wj,c;) to decide whether a given word is a PHI. If it is, it removes the word
from the document and inserts a generic PHI marker (NULL;) in its place. Such markers

are then used to evaluate the accuracy of de-identification.

Listing 4.2: Pseudocode of the De-identifier. The de-identifier uses a word classifier f(w;,c;)
to replace PHI instances with the NULL; symbol

DEIDENTIFY ( document ) :
af,...,a; = TRAIN(vq,...,v1)
wi, ..., w, = TOKENIZE(document )
deid = []
for w; in wi,...,wy:

if f(’lUj,Cj)|a* == —1:

deid . append (w,)
else:
deid .append (NULLj(w, c;).- )

return deid
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Chapter 5

Data

In order to measure the performance of our system, we used two medical corpora defined
next. In addition, we tested our system on re-identified versions of these corpora that have
been used in i2b2 medical NLP challenge workshops, also described below. These corpora
include discharge summaries from the Partners Healthcare System. IRB approval has been

obtained for use of all these data.

5.1 Surrogate and Authentic Challenge Data

The Challenge corpus was initially prepared for the De-Identification Challenge[19]. It
includes medical discharge summaries from Partners Healthcare. Instances of only eight
PHI categories are present in the data: Patients, Doctors, Hospitals, IDs, Dates, Locations,
Phone numbers and Ages. The corpus is divided in two sub-corpora: 669 records are
grouped as the training corpus, and 220 are grouped as the testing corpus. Table 5.1 lists
the number of tokens in each PHI category.

In the original preparation of these data, all instances of PHI from the above categories

were marked using the following method. First, an automatic system was used to mark the
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PHI. Second, the results of the automatic system were verified or corrected in three serial
passes by three individuals, including two students and a professor. In cases of disagreement,

the three individuals discussed the different annotations and agreed on a correct annotation.

Table 5.1: Token statistics for the Challenge Data Set

Category Complete Corpus | Training Sub-Corpus | Testing Sub-Corpus
Non-PHI 444127 310504 133623

Patients 1737 1335 402

Doctors 7697 5600 2097

Locations 518 302 216

Hospitals 5204 3602 1602

Dates 7651 5490 2161

IDs 5110 3912 1198

Phone Numbers | 271 201 70

Ages 16 13 3

5.1.1 Surrogate PHI

The instances of PHI in the original documents were replaced with surrogates to create
the Surrogate Challenge date set. This data set was released to the participants in the
De-Identification Challenge.

For IDs, dates, phone numbers and ages, each digit was replaced by another random
digit, and each letter was replaced by a random letter. Moreover, the authors ensured that
the resulting dates can be valid dates.

For patients, doctors, hospitals and locations, surrogates were created by replacing the
instances with replacements from relevant dictionaries, and shuffling the syllables in the re-
placement. The authors ensured that the orthography of the surrogates (e.g. capitalization
pattern) matched that of the original PHI instances.

Additionally, the authors maintained the narrative and temporal integrity of the records
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by using the same replacement for the same entities in the documents, and maintaining the

offset between instances of dates in each record.

5.2 Surrogate and Authentic Obesity Data

The Obesity corpus is made up of discharge summaries of overweight and diabetic patients
from Partners Healthcare Research Patient Data Repository. It was initially prepared for
the Obesity Challenge[18], and includes 1237 records, from which we use 730 for training
and 507 for testing. Table 5.2 lists the number of tokens in each PHI category.

Similar to the Challenge corpus, the data only includes eight categories of PHI: Patients,

Doctors, Hospitals, IDs, Dates, Locations, Phone numbers and Ages.

Table 5.2: Token statistics for the Obesity Data Set

Category Complete Corpus | Training Sub-Corpus | Testing Sub-Corpus
Non-PHI 1384717 814643 570174

Patients 2269 1365 904

Doctors 18810 11318 7492

Locations 3168 1779 1389

Hospitals 7153 4303 2850

Dates 17167 10151 7016

IDs 8513 5022 3491

Phone Numbers | 748 474 274

Ages 7 7 0

5.2.1 Surrogate PHI

The instances of PHI in the Obesity corpus were replaced by surrogate PHI. The procedure
was the same as the one used to re-identify the Challenge corpus, with the one exception
that the co-reference requirement was removed. That is, names referring to the same person

in the authentic corpus were replaced by different surrogates.
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Chapter 6

Results And Discussion

In this chapter, we describe the experiments we performed to test the performance of our
system on the test corpora. We also test the validity of each of the hypotheses described
in Chapter 1. Unless otherwise noted, in all the experiments below, we use a classification

model trained on the corresponding training sub-corpus in the same corpus.

Overall, our de-identifier achieves precision of up to 100%, recall of up to 97% and

f-measure of up to 98% on our test corpora.

6.1 Hypotheses

6.1.1 High-Dimensionality Hypothesis

The high-dimensionality hypothesis states that the addition of a large number of features
to a SVM classifier does not diminish its performance. In particular, we add features from
five de-identifiers to create a comprehensive feature-set. We check whether this classifier

outperforms the individual classifiers.
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6.1.1.1 Experiments

To test this hypothesis, we measured the performance of our system on the Authentic
Challenge and Surrogate Challenge corpora with (i) full feature-set (ii) features from Stat-
deid (iii) features from Stanford NER (iv) features from the MIMIC de-identifier (v) features
from the MITRE de-identifier.

In Table A.1 through A.10, we provide complete results from the experiments above.
In Table B.1 and Table B.2, we show that, although in general the complete feature set
outperforms the best subset, the difference corresponds to z-scores of less than one and is
not statistically significant. The results show that the addition of extra features does not

diminish performance.

6.1.2 Universality Hypothesis

The universality hypothesis states that the de-identifier is equally capable of identifying

PHI in different test corpora.

6.1.2.1 Experiments

We check the validity of this hypothesis by comparing the performance of our de-identifier
on the Authentic Challenge, Surrogate Challenge, Authentic Obesity and Surrogate Obesity
corpora. We also test the performance of our de-identifier on the Surrogate Obesity corpus
using a model trained on the Surrogate Challenge corpus to gain insight into the similarity
of these two corpora.

In Table A.1, Table A.6, Table A.11 and Table A.12, we show the complete performance
results of our de-identifier on the four corpora. In Table B.3 through Table B.6, we show

the comparison of the performance of these models. Our de-identifier performs significantly
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better on the Obesity corpora.

In Table A.13 we show the performance of a model trained on the Surrogate Challenge
training sub-corpus and tested on the Surrogate Obesity test sub-corpus. The performance
of the model diminishes significantly when tested on the Obesity corpus.

Therefore, our de-identifier performs equally well when trained and tested on the same

corpus, but not as well when trained and tested on different corpora.

6.1.3 Over-Fitting Hypothesis

The over-fitting hypothesis states that this classifier does not over-fit the training data.

6.1.3.1 Experiments

In order to validate this hypothesis, we measure the 10-fold cross-validation performance
of our de-identifier on the Surrogate Challenge corpus. We randomly split the training
documents into a training and testing set. We then train a model on the training set and
test the performance of that model on the test set.

Table A.14 shows the 10-fold cross-validation performance of our system on the Surro-
gate Challenge corpus. Table B.7 shows the comparison between cross-validation and the
complete data performance. We see from the z-scores that the difference is not statistically

significant.

6.1.4 Mega Vs. Multi Hypothesis

The mega vs. multi hypothesis states that this de-identifier outperforms the Multi-deidentifier

as described in Chapter 1.
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6.1.4.1 Experiments

We compare the performance of our system on the Authentic Challenge corpus with that of
the Multi-deidentifier. The Multi-deidentifier performs significantly better than the Mega-

deidentifier.

6.2 Discussion

Overall, our system performs well on all corpora and on most PHI categories. However,
it is noteworthy that the system does not perform as well on the Hospitals and Locations
categories. We attribute this to the fact that most instances of Locations and Hospitals
categories regularly span multiple tokens.

Since our system classifies each token individually, in some cases there are not enough
contextual clues to indicate that a token is an instance of the Hospitals or Locations cate-

gories. For example, consider this actual excerpt from the Surrogate Obesity corpus:

“...was transferred to the Walklos Ey Trham Aupids Lubfranna ICU

in a critical condition.”

Here, the phrase in bold type is an instance of the Hospitals category. In this case, our
de-identifier marks “Walklos” as an instance of the Locations category since it is right next
to the “was transferred to the” phrase. It marks “Ey Trham Aupids” as instances of the
Hospitals category because they include both “was transferred to” and “ICU” in their lexical
context. Finally, it does not mark “Lubfranna” as in the Locations or Hospitals categories
because it does not include any part of “was transferred to” in its lexical context.

We have shown that the addition of new features does not restrict the performance of

our system. As such, perhaps one could improve the performance of this system by adding
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new features such as one for larger lexical context window sizes.

Additionally, we attribute the superior performance of Multi-deidentifier at least in part
to the more sophisticated capabilities of the base classifiers, such as the two stage model
in LBJNET and the more sophisticated text processing techniques that are absent in our
implementation.

We have shown that our de-identifier does not perform well when trained and tested
on different corpora. This indicates that our de-identifier, similar to all other available
de-identifiers and NERs, has to be trained on hand-annotated samples of a corpus before it
could be used to effectively de-identify documents from that corpus. This is an expensive

and inefficient, although currently necessary, process.
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Chapter 7

Conclusion

7.1 Summary

In this thesis, we discussed a new de-identification system based on combining features from
Stanford NER, LBJNET, the MIMIC de-identifier, the MIST de-identifier and Stat-deid.
We described the design of our system and provided the performance results of our de-
identifier on four corpora. We showed that our system can achieve performance levels of up

to 1.00 for precision, 0.97 for recall and 0.98 for f-measure on our test corpora.

7.2 Future Work

Over the course of reviewing other de-identification systems, we encountered many elegant
methods to potentially improve de-identification performance. We present a few of these

methods below.
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7.2.1 Recall And Precision

In almost all cases, our de-identifier achieves near perfect precision and slightly lower recall.
Given the purpose of de-identification and legal requirements[13], achieving very high recall
is more important than achieving very high precision. As such, we believe that further work
in profiling the ROC curve of our system on different corpora by tuning SVM misclassifi-

cation costs, and trying to trade some precision for higher recall would be beneficial.

7.2.2 More Sophisticated Text Pre-Processing

In our system, we perform only minimal text processing. We believe that utilizing techniques
such as text normalization and a more sophisticated tokenization method could potentially

improve the performance of our system.

7.2.3 The Two-Stage Model

The LBIJNET[14] employs a two-stage model in which the classification results from the
first stage augment the information available to the second stage of classification. With
this, in the second stage, certain information will be available to the classifier that would
not be available otherwise. For example, the second stage classifier would have access to
information such as whether the surrounding context of a token includes a PHI, or whether
the same word in another part of the document was classified as a PHI. We believe that

employing this strategy would significantly improve recall.

7.2.4 Feature Selection

By performing feature selection, we can serve multiple purposes:

e Reduce the dimensionality of the classification problem: this will most likely help
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with the classification performance of the system as it will increase the relative ratio

of data points to dimensions.

e Gain important insight about which features or feature types play the most important
role in classifying PHI. One could use this information to possibly find ways to engineer

more successful features.

e Improve the running time of our system.
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Appendix A

Performance Tables

Table A.1: Performance on Surrogate Challenge corpus with all features

Category Precision Recall F-measure
Non-PHI 0.99696 0.99983  0.99840
Patients 0.99592  0.95321 0.97410
Doctors 0.98941 0.97058  0.97991
Locations 0.96031  0.50416 0.66120
Hospitals 0.97733 0.83458  0.90033
Dates 0.99766  0.98843  0.99302
1Ds 0.99666  0.99500  0.99582
Phone Numbers  1.00000  0.80000  0.88889
Ages 0.66667  0.66667  0.66667

Table A.2: Performance on Surrogate Challenge corpus with Stat-Deid features

Category Precision Recall F-measure
Non-PHI 0.99594  0.99941 0.99767
Patients 0.99595 0.95906  0.97716
Doctors 0.97103  0.95717  0.96406
Locations 0.97560 0.33333  0.49689
Hospitals 0.98191 0.81335  0.88972
Dates 0.97519 0.96436  0.96975
IDs 0.99498  0.99166  0.99332
Phone Numbers  0.98076  0.60000 0.74452
Ages 0 0 0
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Table A.3: Performance on Surrogate Challenge corpus with Stanford features

Category Precision Recall F-measure
Non-PHI 0.99683  0.99980  0.99831
Patients 0.99592  0.95321  0.97410
Doctors 0.99158 0.96842  0.97987
Locations 0.96153  0.52083  0.67567
Hospitals 0.97799  0.83208  0.89915
Dates 0.99392  0.98426  0.98907
1Ds 0.99666  0.99500  0.99583
Phone Numbers  1.00000 0.76470  0.86667
Ages 1.00000  0.66667  0.80000

Table A.4: Performance on Surrogate Challenge corpus with MITRE features

Category Precision Recall F-measure
Non-PHI 0.96482  0.98805  0.97629
Patients 0 0 0
Doctors 0 0 0
Locations 0 0 0
Hospitals 0 0 0
Dates 0.50143 0.56502  0.53133
1Ds 0.51391  0.78500  0.62116
Phone Numbers  1.00000 0.63529  0.77697
Ages 0 0 0

Table A.5: Performance on Surrogate Challenge corpus with MIMIC features

Category Precision  Recall  F-measure
Non-PHI 0.96188  0.99997 0.98056
Patients 0 0 0
Doctors 0.76000  0.008217  0.01626
Locations 0 0 0
Hospitals 0 0 0
Dates 1.00000  0.72882 0.84315
IDs 1.00000  0.18416 0.31105
Phone Numbers  1.00000  0.63529 0.77698
Ages 1.00000  0.33333 0.50000

64



Table A.6: Performance on Authentic Challenge corpus with all features

Category Precision Recall F-measure
Non-PHI 0.99487  0.99966  0.99726
Patients 0.98594  0.96463  0.97517
Doctors 0.99041 0.94023  0.96467
Locations 0.92381  0.38340 0.54190
Hospitals 0.98316  0.67735  0.80210
Dates 0.98546  0.98454  0.98500
1Ds 0.99582  0.99251  0.99417
Phone Numbers  0.98462 0.76190  0.85906
Ages 0 0 0

Table A.7: Performance on Authentic Challenge corpus with Stat-Deid features

Category Precision Recall F-measure
Non-PHI 0.99106  0.99944  0.99523
Patients 0.98755  0.93517  0.96065
Doctors 0.97990  0.82330 0.89480
Locations 0.90385 0.37154 0.52661
Hospitals 0.98697 0.67190  0.79951
Dates 0.93246  0.976568  0.95402
1Ds 0.99502 0.66556  0.79761
Phone Numbers  0.79688  0.60714  0.68918
Ages 0 0 0

Table A.8: Performance on Authentic Challenge corpus with Stanford features

Category Precision Recall F-measure
Non-PHI 0.99479  0.99973  0.99725
Patients 0.98577  0.95285  0.96903
Doctors 0.98694 0.91684  0.95061
Locations 0.81250  0.35968  0.49863
Hospitals 0.98346  0.68963  0.81075
Dates 0.98457 0.98595  0.98526
1Ds 0.99415 0.99002  0.99208
Phone Numbers 0.98462 0.76190  0.85906
Ages 0 0 0
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Table A.9: Performance on Authentic Challenge corpus with MITRE features

Category Precision Recall F-measure
Non-PHI 0.96576  0.98805  0.97677
Patients 0 0 0
Doctors 0 0 0
Locations 0 0 0
Hospitals 0 0 0
Dates 0.49924 0.61218  0.54997
1Ds 0.52695 0.72379  0.60988
Phone Numbers  1.00000 0.64286  0.78261
Ages 0 0 0

Table A.10: Performance on Authentic Challenge corpus with MIMIC features

Category Precision Recall F-measure
Non-PHI 0.96398  0.99997  0.98164
Patients 0 0 0
Doctors 0.91470  0.08359 0.15317
Locations 0 0 0
Hospitals 0 0 0
Dates 0.99937  0.74286  0.85223
1Ds 1.00000 0.18386  0.31061
Phone Numbers  1.00000 0.66667  0.80000
Ages 1.00000  0.33333  0.50000

Table A.11: Performance on Surrogate Obesity corpus with all features

Category Precision Recall F-measure
Non-PHI 0.99845 0.99981  0.99913
Patients 0.99650 0.95418  0.97488
Doctors 0.99243 0.99029  0.99136
Locations 0.96693 0.88326  0.92321
Hospitals 0.98110 0.92558  0.95253
Dates 0.99407 0.95321  0.97322
IDs 0.99850 0.96275  0.98030
Phone Numbers  0.96875 0.80970  0.88211
Ages 0 0 0
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Table A.12: Performance on Authentic Obesity corpus with all features

Category Precision Recall F-measure
Non-PHI 0.99743 0.99972  0.99858
Patients 0.99760 0.94124  0.96860
Doctors 0.99366 0.97067  0.98203
Locations 0.95075 0.79661  0.86688
Hospitals 0.97214  0.87626 0.92171
Dates 0.98879  0.92946  0.95821
1Ds 0.99602 0.96132  0.97837
Phone Numbers  0.96341 0.87454  0.91683
Ages 0 0 0

Table A.13: Performance on Surrogate Obesity corpus using a model trained on Surrogate
Challenge corpus with all features

Category Precision Recall F-measure
Non-PHI 0.99154  0.99964  0.99558
Patients 0.99627  0.59071  0.74167
Doctors 0.98346  0.69886  0.81709
Locations 0.92793  0.16748  0.28375
Hospitals 0.90321 0.83220  0.86625
Dates 0.98615 0.89776  0.93988
1Ds 0.98615 0.93788  0.96141
Phone Numbers  0.97531 0.57664  0.72477
Ages 0 0 0

Table A.14: 10-Fold cross-validation performance on Surrogate Challenge corpus with all
features

Category Precision = Recall  F-measure
Non-PHI 0.99831  0.99965 0.99898
Patients 1.00000  0.98131 0.99057
Doctors 0.99657 00.98142  0.98894
Locations 0 0 0
Hospitals 0.97908  0.93227 0.95510
Dates 0.99754 1.0000 0.99877
IDs 0.99511  0.99027 0.99268
Phone Numbers  1.00000  0.97368 0.98667
Ages 1.00000  0.33333 0.50000
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Table A.15: Multi-Deidentifier performance on Authentic Challenge corpus

Category Precision Recall F-measure
Non-PHI 0.99834  0.99933  0.99883
Patients 0 0 0
Doctors 0.98332  0.98332 0.98332
Locations 0.88068  0.61264 0.72261
Hospitals 0.94751  0.91132  0.92906
Dates 0.99243  0.99204  0.99224
1Ds 0.99087  0.99417  0.99252
Phone Numbers  1.00000 0.72619  0.84137
Ages 1.00000  0.33333  0.50000
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Appendix B

Comparison Tables

Table B.1: Comparison of F-measures from all features and only Stanford features on
Authentic Challenge corpus

Category All Stanford |Z]
Non-PHI 0.99726  0.99725  0.04940
Patients 0.97517 0.96903 0.52857
Doctors 0.96467 0.95061 2.26042
Locations 0.54190 0.49863 0.90008
Hospitals 0.80210 0.81075 0.61962
Dates 0.98500 0.98526  0.07061
1Ds 0.99417 0.99208 0.61904
Phone Numbers 0.85906 0.85906 0
Ages 0 0 0
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Table B.2: Comparison of F-measures from all features and only Stanford features on
Surrogate Challenge corpus

Category All Stanford |Z]

Non-PHI 0.99840 0.99831 0.57404
Patients 0.97410  0.97410 0

Doctors 0.97991  0.97987  0.00922
Locations 0.66120 0.67567 0.31942
Hospitals 0.90033 0.89915 0.11119
Dates 0.99302 0.98907 1.37825
IDs 0.99582  0.99583  0.00379
Phone Numbers 0.88889 0.86667 0.40134
Ages 0.66667  0.80000 0.36926

Table B.3: Comparison of F-measures on Authentic Challenge and Surrogate Challenge
corpora with all features

Category Authentic  Surrogate |Z|

Non-PHI 0.99726 0.99840  6.33245
Patients 0.97517 0.97410  0.09648
Doctors 0.96467 0.97991  3.00644
Locations 0.54190 0.66120  2.53238
Hospitals 0.80210 0.90033  7.81198
Dates 0.98500 0.99302  2.52864
IDs 0.99417 0.99582  0.57224
Phone Numbers  0.85906 0.88889  0.53175
Ages 0 0.66667  1.73205

Table B.4: Comparison of F-measures on Authentic Challenge and Authentic Obesity cor-
pora with all features

Category Challenge Obesity |Z]
Non-PHI 0.99726  0.99858 10.63455
Patients 0.97517  0.96860 0.64901
Doctors 0.96467  0.98203 4.81555
Locations 0.54190  0.86688 11.64522
Hospitals 0.80210  0.92171 11.73130
Dates 0.98500  0.95821 5.88624
IDs 0.99417  0.97837 3.58923
Phone Numbers  0.85906  0.91683  1.47168
Ages 0 0 0
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Table B.5: Comparison of F-measures on Authentic Obesity and Surrogate Obesity corpora
with all features

Category Authentic Surrogate |Z]

Non-PHI 0.99858 0.99913  8.68355
Patients 0.96860 0.97488  0.80568
Doctors 0.98203 0.99136  4.98386
Locations 0.86688 0.92321  4.84341
Hospitals 0.92171 0.95253  4.79276
Dates 0.95821 0.97322  4.88578
IDs 0.97837 0.98030  0.56680
Phone Numbers  0.91683 0.88211  1.35144
Ages 0 0 0

Table B.6: Comparison of F-measures on Surrogate Challenge and Surrogate Obesity cor-
pora with all features

Category Challenge  Obesity |Z]

Non-PHI 0.99840  0.99913 7.56664
Patients 0.97410  0.97488  0.08276
Doctors 0.97991  0.99136 4.41499
Locations 0.66120  0.92321 11.35680
Hospitals 0.90033  0.95253  6.72090
Dates 0.99302  0.97322  5.47237
IDs 0.99582  0.98030  3.72450
Phone Numbers  0.88889  0.88211  0.15779
Ages 0.66667 0 0

Table B.7: Comparison of F-measures from 10-fold cross-validation and all data on Surro-
gate Challenge corpus with all features

Category 10-fold  All Data |Z]
Non-PHI 0.99898  0.99840 2.06790
Patients 0.99057 0.97410 1.26863
Doctors 0.98894 0.97991 1.41607
Locations 0 0.66120  1.95803
Hospitals 0.95510 0.90033 2.76441
Dates 0.99877 0.99302 1.36176
IDs 0.99268 0.99582  0.71322
Phone Numbers 0.98667 0.88889  1.74311
Ages 0.5 0.66667 0
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Table B.8: Comparison of F-measures on Authentic Challenge from Mega-deidentifier and

Multi-deidentifier

Category Mega  Multi |Z|
Non-PHI 0.99726 0.99883  9.18706
Patients 0.97517 0 27.65936
Doctors 0.96467 0.98332 3.79451
Locations 0.5419 0.72261 3.89474
Hospitals 0.8021 0.92906 10.53410
Dates 0.985  0.99224 2.24370
IDs 0.99417 0.99252  0.49667
Phone Numbers 0.85906 0.84137  0.29326
Ages 0 0.5 1.41421
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