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Division of Health Sciences and Technology (HST), Harvard Medical School, Boston, Massachusetts 02115, USA

Transcriptional regulation is largely enacted by transcription factors (TFs) binding DNA. Large numbers of TF binding
motifs have been revealed by ChIP-chip experiments followed by computational DNA motif discovery. However, the
success of motif discovery algorithms has been limited when applied to sequences bound in vivo (such as those identified
by ChIP-chip) because the observed TF–DNA interactions are not necessarily direct: Some TFs predominantly associate
with DNA indirectly through protein partners, while others exhibit both direct and indirect binding. Here, we present the
first method for distinguishing between direct and indirect TF–DNA interactions, integrating in vivo TF binding data, in
vivo nucleosome occupancy data, and motifs from in vitro protein binding microarray experiments. When applied to
yeast ChIP-chip data, our method reveals that only 48% of the data sets can be readily explained by direct binding of the
profiled TF, while 16% can be explained by indirect DNA binding. In the remaining 36%, none of the motifs used in our
analysis was able to explain the ChIP-chip data, either because the data were too noisy or because the set of motifs was
incomplete. As more in vitro TF DNA binding motifs become available, our method could be used to build a complete
catalog of direct and indirect TF–DNA interactions. Our method is not restricted to yeast or to ChIP-chip data, but can be
applied in any system for which both in vivo binding data and in vitro DNA binding motifs are available.

[Supplemental material is available online at http://www.genome.org.]

An essential problem in molecular biology is the identification of

DNA binding sites of transcription factors (TFs) in genomes. Small-

scale experiments, such as DNase footprinting or EMSA, for iden-

tifying TF binding sites are laborious and not cost-effective for

high-throughput studies. In recent years, the DNA binding speci-

ficities of TFs (for brevity, we use the term ‘‘motif’’ henceforth to

mean a model of a TF’s DNA binding specificity) have been char-

acterized via high-throughput experimental technologies such as

chromatin immunoprecipitation with microarray hybridization

(ChIP-chip) (Ren et al. 2000; Iyer et al. 2001; Lieb et al. 2001) fol-

lowed by computational motif discovery. Dozens of motif dis-

covery algorithms have been developed thus far (Tompa et al.

2005), but their success in identifying motifs accurately has been

limited. TF motifs are typically short and degenerate, which makes

them difficult to distinguish from genomic background. An addi-

tional complication when considering in vivo TF binding data is

that many factors do not act alone, but rather form complexes with

other TFs and thus may bind DNA directly or indirectly, depending

on the precise factors and environmental conditions.

Depending on the architecture of the TF complex, sequences

bound by a complex may appear enriched in ChIP-chip experi-

ments for all the participating TFs, although only one of them

binds DNA directly. For example, the yeast TFs Mbp1 and Swi6 are

known to form the MBF complex, which plays a crucial role in the

regulation of the cell cycle (Koch et al. 1993). Swi6 binds Mbp1,

and Mbp1 contacts DNA directly at ACGCGT sequences (Taylor

et al. 2000). Another example is the yeast TF Dig1. Dig1 does not

have an identifiable DNA binding domain, and a literature search

does not reveal any evidence of Dig1 binding DNA directly. It is

known, however, that Dig1 binds DNA indirectly as part of TF

complexes together with Ste12 and Tec1 (Chou et al. 2006). In

such cases where a TF does not bind DNA directly, the motifs one

would expect to find enriched in a ChIP-chip experiment will

correspond to interacting factors (Mbp1; Ste12 or Tec1) rather than

the factor that was profiled (Swi6; Dig1).

Considering the situations above, it is not surprising that

motif discovery algorithms often exhibit low accuracy on in vivo

data. Especially when a TF is part of several complexes with dif-

ferent factors interacting directly with DNA, the sequences en-

riched in a ChIP-chip experiment may be a complex mixture of

sequences that contain binding sites for the profiled factor and/or

various interacting proteins.

Here, we analyzed 237 ChIP-chip data sets from Harbison

et al. (2004) to determine the extent of direct versus indirect

binding by TFs in the yeast Saccharomyces cerevisiae. For each ChIP-

chip experiment, our method determines which motifs best ex-

plain the in vivo binding data (i.e., which motifs are significantly

enriched in the ChIP-chip data set). To accurately infer direct in-

teractions between TFs and DNA, DNA binding motifs that reflect

the direct sequence preferences of TFs are needed. For this purpose,

we utilized motifs for 139 yeast TFs generated from independent,

in vitro protein binding microarray (PBM) experiments (Bulyk

et al. 2001; Mukherjee et al. 2004; Berger et al. 2006) reported

recently by Badis et al. (2008) and Zhu et al. (2009). All our ana-

lyses were performed using these 139 published, PBM-derived

motifs; henceforth, we use the term ‘‘motif’’ to refer to PBM-

derived motifs, unless otherwise indicated. Within living cells, TFs

often compete with nucleosomes for DNA occupancy, so our
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approach also takes into account experimentally determined high-

resolution, in vivo nucleosome positioning data (Lee et al. 2007).

We recovered many known cases of direct and indirect DNA

binding by yeast TFs. In 61 of the 128 cases in which both ChIP-

chip and PBM data are available (48%), the PBM-derived motif of

the factor profiled in the ChIP-chip experiment is significantly

enriched in the ChIP-chip data set. In the remaining data sets, the

profiled factor is not significantly enriched, suggesting that either

the ChIP-chip data are too noisy or the profiled TF might associate

with DNA indirectly through interaction with other proteins.

Some cases in which our analysis indicates indirect TF–DNA

binding are supported by experimental evidence in the literature

(e.g., Dig1 binds DNA indirectly through Ste12 or Tec1), while

others are novel hypotheses. Our approach is not restricted to yeast

data, but could be applied to metazoan ChIP data to improve

identification of direct versus indirect TF targets.

Results
Our methodology is illustrated in Figure 1. Briefly, for each of

237 ChIP-chip data sets (Harbison et al. 2004), we compute the

nucleosome-aware enrichment of each of the 139 TFs for which an

in vitro, PBM-derived motif was available (Badis et al. 2008; Zhu

et al. 2009). We report this enrichment as the area under a receiver

operating characteristic (ROC) curve (AUC), which ranges from

0 to 1, with 1 corresponding to perfect enrichment. For each of the

237 ChIP-chip data sets, we sort the 139 TFs in decreasing order of

their AUC values (Fig. 1C). To assess the significance of an AUC

value for a particular motif, we calculate an empirical P-value by

generating 1000 random motifs (see Methods) and then computing

their AUC values for that ChIP-chip experiment. We consider

a motif’s AUC value to be significant in a ChIP-chip data set if it is at

least 0.65 and has an associated P-value # 0.001.

As an example, Figure 1D shows a plot of the AUC values of all

PBM-derived motifs in the ChIP-chip data set Gcn4_SM. The motif

of Gcn4 (the factor profiled in that ChIP-chip experiment) is the

most highly enriched, with the second ranked motif having a sig-

nificantly lower AUC value. Furthermore, the only significantly

enriched motif (P-value # 0.001) is that of Gcn4. Thus, in this case

we conclude that the data set Gcn4_SM can be explained by direct

DNA binding of the profiled factor. Surprisingly, many ChIP-chip

data sets do not exhibit this behavior; i.e., the TF profiled in the

ChIP-chip experiment is not significantly enriched (see Table 2,

below). A number of these cases are described in more detail below.

A complete list of AUC values and associated P-values for all 139

PBM-derived motifs in the 237 ChIP-chip experiments is available

in Supplemental Table 1. A summary of direct and indirect TF–

DNA interactions, inferred from our analysis of the 237 ChIP-chip

data sets, is available in Supplemental Figure 1.

The rest of this section is organized into four main parts. The

first three parts discuss three categories of ChIP-chip data sets:

those for which the PBM-derived motif of the profiled factor is

significantly enriched, as was true for Gcn4_SM (Table 1); those for

which a PBM-derived motif of the profiled factor is available, but is

not significantly enriched (Table 2); and those for which a PBM-

derived motif for the profiled factor is not available (Table 3). For

each of these three categories, we detail a few interesting cases

where independent experimental data reported in the literature

support our hypothesis of indirect TF–DNA interaction. In the fourth

part, we discuss the utility of incorporating in vivo nucleosome

Figure 1. Identification of highly enriched motifs in a ChIP-chip data set. We proceed in four steps: (A) For each TF with a PBM-derived motif (here,
Gcn4) and each intergenic probe (here, iYER052c), we compute the probability that the TF binds that probe, as described in the Methods section. (B) For
each TF (here, Gcn4) we rank all intergenic probes in decreasing order of the binding probability and then compute the enrichment of the motif in a ChIP-
chip data set (here, Gcn4_SM) according to AUC. To calculate the AUC statistic, we defined the positive and negative sets to be the sets of intergenic
regions with ChIP-chip P-values < 0.001 and >0.5, respectively, as calculated by Harbison et al. (2004). (C ) For each ChIP-chip data set (here, Gcn4_SM),
we ranked all TFs in decreasing order of their motif’s AUC value. (D) We determine the significantly enriched motif(s) (here, Gcn4).

Genome Research 2091
www.genome.org

Inferring direct and indirect TF–DNA interactions

 Cold Spring Harbor Laboratory Press on February 6, 2013 - Published by genome.cshlp.orgDownloaded from 

http://genome.cshlp.org/
http://www.cshlpress.com


occupancy data into our analysis, as compared with the use of ei-

ther in vitro nucleosome data or no nucleosome data at all.

Fewer than half of the ChIP-chip data sets are readily explained
by direct DNA binding of the profiled transcription factor

We first analyzed 128 ChIP-chip data sets for which a PBM-derived

motif (Badis et al. 2008; Zhu et al. 2009) is available for the profiled

factor. In fewer than half of these data sets the TF profiled in the

ChIP-chip experiment is significantly enriched: in 25 cases the

profiled TF is the only significantly enriched factor (Table 1, left

column), in 27 cases the profiled factor and factors with similar

DNA binding motifs are significantly enriched (Table 1, middle

column), and in nine cases the profiled factor and factors with

substantially different DNA binding motifs are significantly

enriched (Table 1, right column).

When the profiled TF is significantly enriched in the ChIP-

chip data, we can be confident that the TF interacts directly with

DNA in that condition. This is the case for ChIP-chip experiments

of Abf1, Ace2, Aft2, Bas1, and 35 other TFs (Table 1). In most cases

where more than one factor is significantly enriched, the enriched

motifs are similar and their AUC values are almost identical. For

example, in the Cbf1_YPD data set, three TFs have significant AUC

values (Fig. 2A): Tye7 (AUC = 0.997), Cbf1 (AUC = 0.996), and Rtg3

(AUC = 0.991). In such cases, the enrichment of motifs for TFs

other than the profiled factor may be due either to motif similarity

or to an interaction between the factors. To determine whether

a TF–TF interaction (here, Cbf1–Tye7, or Cbf1–Rtg3) is likely to

occur, we computed the overlap between the sets of sequences

bound in the ChIP-chip experiments for the TFs under consider-

ation. If the sets of bound sequences have little or no overlap (as

shown in Fig. 2C for the ChIP-chip data sets Tye7_YPD, Cbf1_YPD,

and Rtg3_YPD), we conclude that the high AUC values for TFs

other than the one profiled are due simply to motif similarity. This

is the case for data set Cbf1_YPD: The high AUC values of Tye7 and

Rtg3 are likely due to the similarity between the motifs of these two

factors and the Cbf1 motif, and not to an indirect Cbf1–DNA in-

teraction. Similar analyses for the other data sets in Table 1, middle

column, showed that direct DNA binding of the profiled factor is

the most likely explanation in all 27 cases.

In nine ChIP-chip experiments, the motifs of the significantly

enriched TFs are not similar, although their AUC values are very

close (Table 1, right column), suggesting that the enriched factors

may be interacting, cooperating, or competing in the profiled

conditions. Indeed, in seven of the nine cases, independent

experimental evidence reported in the literature supports our

Table 1. Motifs significantly enriched in ChIP-chip data sets for which the profiled TF has a PBM-derived motif available, and this motif is
significantly enriched

The profiled factor’s motif is significantly enriched and

No other motif is significantly
enriched (25 data sets)

Similar motifs are also significantly
enriched (27 data sets)

Different motifs are also significantly
enriched (nine data sets)

Abf1_YPD: Abf1 Ace2_YPD: Swi5, Ace2 Fkh2_H2O2Hi: Hcm1, Fkh1, Mcm1, Fkh2
Aft2_H2O2Hi: Aft2 Aft2_H2O2Lo: Aft2, Aft1, Rap1 Fkh2_H2OLo: Fkh1, Mcm1, Hcm1, Fkh2

Bas1_YPD: Bas1 Bas1_SM: Bas1, Gcn4 Nrg1_H2O2Hi: Nrg1, Ecm22
Dal82_SM: Dal82 Cbf1_SM: Cbf1, Tye7, Rtg3 Sok2_BUT14: Tbs1, Phd1, Sok2
Gcn4_SM: Gcn4 Cbf1_YPD: Tye7, Cbf1, Rtg3 Ste12_BUT90: Ste12, Tec1
Hac1_YPD: Hac1 Cin5_H2O2Hi: Cin5, Yap6, Yap1 Ste12_YPD: Ste12, Mcm1

Hsf1_H2O2Hi: Hsf1 Cin5_H2O2Lo: Cin5, Yap6, Yap1 Sum1_YPD: Cup9, Ndt80, Sum1
Hsf1_H2O2Lo: Hsf1 Cin5_YPD: Cin5, Yap6, Yap1 Swi4_YPD: Swi4, Mbp1

Mbp1_H2O2Hi: Mbp1 Fkh1_YPD: Fkh2, Fkh1, Hcm1 Xbp1_H2O2Lo: Xbp1, Rds1
Mbp1_H2O2Lo: Mbp1 Fkh2_YPD: Fkh1, Fkh2, Hcm1

Mbp1_YPD: Mbp1 Gcn4_RAPA: Gcn4, Bas1, Cup9
Mcm1_Alpha: Mcm1 Gcn4_YPD: Gcn4, Cup9

Mcm1_YPD: Mcm1 Gln3_RAPA: Gzf3, Dal80, Gat1, Gln3
Pho2_SM: Pho2 Hap1_YPD: Cha4, Stb5, Oaf1, Hap1

Reb1_H2O2Hi: Reb1 Mig1_YPD: Zms1, Mig1, Mig2, Mig3,
Reb1_H2O2Lo: Reb1 Yml081w, Ygr067c

Reb1_YPD: Reb1 Msn2_H2O2Hi: Ypl230w, Gis1, Rgm1, Zms1,
Rpn4_H2O2Lo: Rpn4 Msn4, Rei1, Msn2
Skn7_H2O2Lo: Skn7 Phd1_BUT90: Phd1, Sok2

Stb4_YPD: Stb4 Phd1_YPD: Phd1, Sok2
Stp4_YPD: Stp4 Pho4_Pi-: Pho4, Rtg3, Cbf1

Ste12_Alpha: Ste12 Rap1_YPD: Rap1, Aft2
Tec1_BUT14: Tec1 Rcs1_H2O2Hi: Aft1 (Rsc1), Aft2

Tec1_YPD: Tec1 Rcs1_H2O2Lo: Aft1 (Rsc1), Aft2, Rap1
Ume6_H2O2Hi: Ume6 Stb5_YPD: Hap1, Ydr520c, Stb5,

Ylr278c, Oaf1, Sut2
Swi5_YPD: Ace2, Swi5
Tye7_YPD: Tye7, Cbf1, Rtg3

Ume6_YPD: Ume6, Uga3
Yap6_H2O2Lo: Cin5, Yap1, Yap6

Direct DNA binding Direct DNA binding Direct DNA binding/coregulationa

In each of the three columns, the left part (e.g., Abf1_YPD) refers to a ChIP-chip data set and the right part (e.g., Abf1) refers to the TF(s) with PBM-derived
motif(s) significantly enriched in that data set (i.e., with an AUC $ 0.65 and an associated P-value # 0.001). Possible explanations of the ChIP-chip data
are provided.
aWe use the term ‘‘coregulation’’ to refer to any situation in which several TFs regulate, either positively or negatively, a set of genes.
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conclusions of interaction, cooperation, or competition between

significantly enriched factors and the factors profiled in the ChIP-

chip experiments. The significant enrichment of Mcm1 in the

ChIP-chip experiments of Fkh2 profiled in hyperoxic conditions

can be explained by partial cooperation between the two factors, as

described below in more detail. In the case of Sum1_YPD, Sum1

and Ndt80 have overlapping, yet distinct, sequence requirements

for binding DNA, and they compete for binding to promoters

containing the middle sporulation element (Pierce et al. 2003).

Discussion of the other four cases supported by experimental evi-

dence is available in the Supplemental material.

Mcm1 and Fkh2 partially cooperate in hyperoxic conditions

In the Fkh2_H2O2Hi and Fkh2_H2O2Lo data sets, we found four

TFs with very high AUC values: Hcm1 (AUC = 0.894 and 0.851),

Fkh1 (AUC = 0.885 and 0.874), Mcm1 (AUC = 0.880 and 0.852),

and Fkh2 (AUC = 0.867 and 0.842). The motifs of Hcm1, Fhk1, and

Fkh2 are very similar to each other, but different from that of

Mcm1 (Fig. 3C). This suggests that the profiled factor Fkh2 and the

apparently enriched Mcm1 interact or cooperate in highly and

moderately hyperoxic media. Since the overlap between the

probes bound by Fhk2 and Mcm1 is only partial (Fig. 3D,E), this

case is probably best characterized as partial cooperation. Indeed,

a literature search revealed extensive evidence for the cooperative

DNA binding of Fkh2 and Mcm1 at promoters of cell-cycle genes

(Hollenhorst et al. 2001).

Indirect TF–DNA interaction is suggested when
the motif of the profiled TF is not significantly
enriched in the ChIP-chip data

In 67 of the 128 ChIP-chip experiments for which a PBM-derived

motif of the profiled factor is available, the motif is not signifi-

cantly enriched in the corresponding

ChIP-chip data set (Table 2). In 45 of the

67 cases, we found no motifs that explain

the ChIP-chip data (Table 2, left column).

At least two possible reasons could ex-

plain such cases: (1) the profiled factor

binds DNA directly, but the ChIP-chip

data are too noisy for this TF to appear

significantly enriched, or (2) the profiled

factor associates with DNA indirectly via

a TF for which we did not have a PBM-

derived motif available. The former might

be true for data sets such as Azf1_YPD,

Rds1_H2O2Hi, Sfp1_H2O2Lo, Skn7_YPD,

Yap1_YPD, or Yap6_H2O2Hi, in which

the profiled factor is one of the most en-

riched, although not enough to not pass

our stringent significance criteria (AUC $

0.65; P # 0.001).

For one additional data set—Aro80_

YPD—the only significantly enriched TF

is Oaf1, a factor with a DNA binding

motif similar to that of the profiled factor,

Aro80 (Table 2, middle column). Given

the similarity between the Aro80 and

Oaf1 motifs, and the fact that the sets of

sequences bound in the ChIP-chip ex-

periments of these two factors do not

overlap at all, we do not consider this to be a case of indirect DNA

binding by Aro80.

In the remaining 21 cases, the profiled TF does not pass the

significance criteria, but factors with different DNA binding motifs

do (Table 2, right column). In these cases, the ChIP-chip data

might be explained by indirect association between DNA and the

profiled TF, mediated by one of the factors whose motifs are sig-

nificantly enriched. Supplemental Table 2 shows all the cases

where our analysis indicates that a TF may bind DNA indirectly

through another TF. Some interactions (Table 4, see below) are

supported by independent experimental results reported in the

literature, while the majority of the interactions represent novel

predictions that remain to be verified in future laboratory experi-

ments. We describe in more detail below examples for which in-

dependent experimental evidence in the literature supports the

hypothesis of indirect DNA binding.

Sfp1 and Fhl1 are two factors that may bind DNA indirectly,
in each case through Rap1

The PBM-derived motif of Sfp1 exhibits low enrichment in the

Sfp1_SM data set, which suggests that it may not bind DNA di-

rectly, but rather as part of a TF complex. Our analysis suggests that

Sfp1 binds DNA indirectly by interaction with Rap1. The Rap1

motif is the most highly enriched in the Sfp1_SM data set, with an

AUC value of 0.870. The Sfp1 motif is ranked 44th, with much

lower enrichment (AUC = 0.740) and an insignificant P-value (P =

0.597). Sfp1 is required for nutrient-dependent regulation of ri-

bosome biogenesis (Fingerman et al. 2003) and cell size (Cipollina

et al. 2008). Additionally, Sfp1 has been shown to regulate ri-

bosomal protein (RP) gene transcription (Fingerman et al. 2003). It

is not currently known whether binding of Sfp1 to RP gene

promoters occurs through direct interaction with DNA or in-

directly through other proteins such as Rap1 (Marion et al. 2004),

Figure 2. High-scoring motifs in the Cbf1_YPD ChIP-chip data set. (A) AUC values for the 139 PBM-
derived motifs in the Cbf1_YPD data set. The x-axis shows the TF ranks, computed as in Figure 1C. (B)
The three motifs that exhibit high AUC values in this data set: Tye7, Cbf1, and Rtg3. (C ) Venn diagram
showing the overlap among the sets of probes bound by Tye7, Cbf1, and Rtg3 in rich medium (YPD).
Given the high similarity among the three motifs and the small overlap among the probes bound by the
three factors, we do not consider this a case of indirect DNA binding by Cbf1.

Inferring direct and indirect TF–DNA interactions
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an activator involved in many processes in S. cerevisiae, including

transcriptional activation of RP genes (Mager and Planta 1990).

Our data suggest the latter hypothesis is very likely, with Sfp1

binding RP promoters indirectly through Rap1.

Fhl1 is another factor that may bind DNA indirectly in vivo, as

part of a complex with Rap1 (and also possibly Ifh1 [Schawalder

et al. 2004; Wade et al. 2004]). Fhl1 was profiled by ChIP-chip after

treatment with rapamycin (RAPA), in starvation medium (SM),

and in rich medium (YPD) (Fig. 4). In all three data sets, the only

significantly enriched motif corresponds to Rap1 (AUC = 0.819,

0.821, and 0.801; P # 0.001 in all three cases), while the Fhl1 motif

ranks 10th, 12th, and 16th, with AUC values much lower than

those of the Rap1 motif (AUC = 0.751, 0.758, and 0.718) and

P-values that do not pass our significance threshold (P = 0.077,

0.082, and 0.114). Both Fhl1 and Rap1 associate with promoters of

RP genes (Zhao et al. 2006), but Fhl1 does not appear to bind DNA

directly. Rudra et al. (2005, 2007) showed that Fhl1 does not bind

RP promoters directly in vitro, despite the fact that ChIP experi-

ments clearly demonstrated that Fhl1 associates with these pro-

moters in vivo. These investigators also found that deletion of the

putative DNA binding domain of Fhl1 does not cause a significant

growth defect, while mutation of a different domain (the forkhead-

associated domain, which interacts with Ifh1) leads to severe de-

fects in ribosome synthesis and growth. Additional evidence for

the indirect DNA binding of Fhl1 through Rap1 comes from the

work of Wade et al. (2004), who showed that although Fhl1 in-

teracts almost exclusively with RP promoters, it does not associate

with eight of the nine RP promoters that did not bind Rap1 in vivo.

Furthermore, Wade et al. showed that at two of the three RP pro-

moters tested by ChIP, the peaks of Fhl1 and Rap1 ChIP enrichment

coincided. These independent experimental results support our

conclusion that Fhl1 likely binds DNA indirectly in the examined

culture conditions, most likely through interaction with Rap1.

Direct and indirect TF–DNA interactions can be revealed in the
absence of a DNA binding motif for the profiled factor

Of the 237 ChIP-chip experiments we examined, 109 correspond

to TFs for which a PBM-derived motif was not available. Although

some of these factors have consensus DNA binding motifs reported

in the literature, we chose not to include them in our analysis

because such motifs are usually built from a small number of high-

affinity DNA binding sites and may not correctly characterize

medium- or low-affinity sites, which have been suggested to be

abundant in vivo (Tanay 2006). Though a PBM-derived motif is not

available for these factors, we can still analyze the AUC values of

the 139 PBM-derived motifs to detect whether any of these motifs

are significantly enriched.

In 25 of the 109 ChIP-chip data sets, we found at least one

PBM-derived motif significantly enriched (Table 3). For four data

sets (Table 3, left column), the significantly enriched PBM-derived

motifs are similar to the DNA binding motifs of the profiled factors,

as obtained from small-scale experimental studies and reported in

the Saccharomyces Genome Database (Cherry et al. 1998); in these

cases, the most likely explanation for the ChIP-chip data is direct

DNA binding of the profiled factor. In the remaining 21 cases

(Table 3, middle and right columns), indirect association between

DNA and the profiled factor is a more likely explanation of the

Figure 3. High-scoring motifs in the Fkh2_H2O2Hi and Fkh2_H2O2Lo ChIP-chip data sets. (A,B) AUC values for the 139 PBM-derived motifs in the two
data sets. The x-axes show the TF ranks, computed as in Figure 1C. (C ) Motifs significantly enriched in the two data sets. The DNA binding motif of Fkh2
was correctly identified as one of the significantly enriched motifs. In addition to Fkh2, the Hcm1, Fkh1, and Mcm1 motifs are also highly enriched. The
Hcm1 and Fkh1 motifs are similar to the Fkh2 motif. Mcm1 is known to bind cooperatively with Fkh2 (Hollenhorst et al. 2001). (D,E ) Venn diagrams
showing the overlaps between the sets of probes bound by Fhk2 and Mcm1 in different environmental conditions.

Gordân et al.

2094 Genome Research
www.genome.org

 Cold Spring Harbor Laboratory Press on February 6, 2013 - Published by genome.cshlp.orgDownloaded from 

http://genome.cshlp.org/
http://www.cshlpress.com


ChIP-chip data. Indeed, in several cases we found independent

experimental evidence in the literature that confirms our hy-

pothesis of indirect DNA association of the profiled TFs in certain

environmental conditions (Table 4). We discuss in detail some of

these cases below. A complete list of predicted TF–TF interactions is

available in Supplemental Table 2.

Ste12 and Tec1 bind DNA either directly or indirectly,
depending on the environmental condition

Our approach can recapitulate situations where a TF binds DNA

either directly or indirectly, depending on the in vivo conditions.

This is the case for Ste12 and Tec1, TFs involved in two distinct

developmental programs: mating and filamentation (Chou et al.

2006). Chou and colleagues have shown that during mating—a

process induced by treatment with alpha pheromone—promoters

of mating genes are bound mostly by Ste12–Dig1–Dig2, but also by

the Ste12–Tec1–Dig1 complex, with Ste12 binding DNA directly.

During filamentation—a program induced by butanol treatment—

promoters of most filamentation genes are bound by the Tec1–

Ste12–Dig1 complex, with Tec1 binding DNA directly (Chou et al.

2006).

We analyzed the ChIP-chip data sets of Ste12, Tec1, and Dig1

in three environmental conditions: BUT14 (treatment with buta-

nol for 14 h), YPD (rich medium), and Alpha (treatment with alpha

pheromone). As shown in Figure 5, our results are consistent with

Table 2. Motifs significantly enriched in ChIP-chip data sets for which the profiled TF has a PBM-derived motif available, but this motif is not
significantly enriched

The profiled factor’s motif is not significantly enriched and

No other motif is significantly
enriched (45 data sets)

Similar motifs are significantly
enriched (one data set)

Different motifs are significantly
enriched (21 data sets)

Aro80_SM Mga1_YPD Rph1_YPD Aro80_YPD: Oaf1 Cup9_YPD: Sok2
Cha4_SM Mig2_YPD Rpn4_YPD Fhl1_RAPA: Rap1
Gal4_GAL Ndt80_YPD Rtg3_RAPA Fhl1_SM: Rap1
Gal4_RAFF Nrg1_H2O2Lo Sfp1_H2O2Lo Fhl1_YPD: Rap1
Gal4_YPD Oaf1_YPD Sip4_SM Gln3_SM: Rap1, Tbs1
Gat1_RAPA Pdr1_H2O2Lo Sip4_YPD Msn4_H2O2Lo: Ecm23
Gat1_SM Pdr1_YPD Skn7_YPD Msn4_Acid: Nph6a, Yox1, Smp1
Gat3_YPD Pho2_YPD Stp2_YPD Nrg1_YPD: Aft2, Ypr196w, Yrm1
Gzf3_H2O2Hi Pho4_YPD Yap1_H2O2Lo Pho2_H2O2Hi: Hal9, Stp4
Gzf3_RAPA Put3_SM Yap1_YPD Rcs1_SM: Ypr015c, Ypr013c
Hal9_YPD Put3_YPD Yap6_H2O2Hi Rtg3_H2O2Hi: Rsc30, Rds1
Leu3_SM Rcs1_YPD Yer130c_YPD Rtg3_SM: Cup9
Leu3_YPD Rds1_H2O2Hi Yml081w_YPD Rtg3_YPD: Gcn4, Cin5
Met32_SM Rph1_H2O2Hi Yox1_YPD Sfp1_SM: Rap1
Met32_YPD Rph1_SM Yrr1_YPD Skn7_H2O2Hi: Yll054c

Smp1_YPD: Aft2
Srd1_YPD: Fkh2

Ste12_BUT14: Tec1
Tec1_Alpha: Ste12

Yap6_YPD: Phd1
Uga3_SM: Cin5, Smp1

Indirect DNA binding via a TF for which a PBM-derived
motif was not available/noisy direct DNA binding Direct DNA binding Indirect DNA binding

The entries in the middle and left columns are as in Table 1. Possible explanations of the ChIP-chip data are provided.

Figure 4. An example of indirect DNA association by a TF. The Rap1 motif is the only significantly enriched motif in all three Fhl1 ChIP-chip data sets:
Fhl1_RAPA, Fhl1_SM, and Fhl1_YPD. The Fhl1 motif has only moderate AUC values and associated P-values that do not pass our significance criteria. We
infer that in such cases many sequences identified as ‘‘bound’’ in the ChIP-chip experiments are actually indirectly bound by the profiled factor (here, Fhl1)
through an interacting factor (here, Rap1).
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current knowledge about complexes involved in regulation of

mating and filamentation: Ste12 is the only significantly enriched

factor in all three experiments performed in the Alpha condition,

and Tec1 is the only significantly enriched factor in all three ex-

periments performed in the BUT14 condition. In YPD, the Ste12

and Tec1 motifs are each enriched in their respective data sets. Dig1

is not currently known to bind DNA directly, but only through

Ste12 or Tec1 during mating or filamentation, respectively; thus, it

is not surprising that no motif was significantly enriched in the

Dig1_YPD data set.

Our method performs best when using in vivo nucleosome
occupancy data

The results described thus far were obtained by integrating in vivo

nucleosome occupancy data with in vivo and in vitro TF binding

data. When nucleosome occupancy data are not available, one

might simply consider all DNA sites to be accessible for TF binding.

We performed such an analysis on the yeast ChIP-chip data sets

and found that using nucleosome occupancy information signif-

icantly improves the results of our analysis. More precisely, in 60%

of the ChIP-chip data sets in which a significantly enriched motif

was found (Supplemental Table 4), the maximum AUC value is

higher when nucleosome occupancy information is used than

when it is not used. For example, the AUC value for the Rap1 motif

in the Rap1_YPD data set is 0.929 when using nucleosome data,

and 0.895 when nucleosome occupancy data are not used. In

contrast, in 71% of the data sets in which no motif was found to be

significantly enriched (Supplemental Table 5), the maximum AUC

value decreased when nucleosome occupancy data were used,

which suggests that any observed motif enrichment may have

been due to motif matches that are nonfunctional.

We also tested our method using in vitro nucleosome se-

quence preference data (Kaplan et al. 2009). As expected, the

overall results were slightly better than when not using any nu-

cleosome data at all, but worse than when using in vivo data.

Furthermore, for a number of TFs the results were worse when

using in vitro nucleosome data than no nucleosome data at all. For

example, in the cases of Abf1, Rap1, and Reb1, factors that have

been shown to remodel chromatin around their binding sites

(Angermayr et al. 2003; Yarragudi et al. 2004; Kaplan et al. 2009),

the AUC values are lower when using in vitro data (Abf1 AUC:

0.935; Rap1 AUC: 0.865; Reb1 AUCs: 0.840, 0.957, 0.916) than

when not using nucleosome data (Abf1 AUC: 0.967; Rap1 AUC:

0.894; Reb1 AUCs: 0.852, 0.982, 0.952, respectively). Since nu-

cleosome depletion around the binding sites of these TFs in vivo

can be attributable to their own action, and not to the general

properties of the DNA sequence, it is not surprising that for these

TFs we get worse results using in vitro nucleosome data.

Discussion
In this study, we present a systematic method to distinguish be-

tween direct and indirect TF–DNA interactions by integrating three

different types of genomic data sets: ChIP-chip data on in vivo TF

occupancy; PBM data on direct, in vitro DNA binding motifs of

TFs; and in vivo, genomic nucleosome occupancy data. Some TFs

appear to be associated with genomic sites in vivo primarily by

direct DNA binding, while other TFs seem capable of binding ge-

nomic regions in vivo either directly or indirectly. Notably, of the

128 ChIP-chip data sets for which a PBM-derived motif was

available for the profiled factor, fewer than half could be explained

as being primarily due to direct DNA binding by the profiled factor.

Moreover, the in vivo binding of a number of TFs appears to be

attributable to indirect association with the genome via at least one

potential interacting TF.

A caveat of our approach is that it assumes the DNA binding

specificity of a TF in vivo will be the same as the specificity ob-

served in a PBM experiment. We analyzed 21 TFs for which the

PBM-derived motifs were not significantly enriched in the ChIP

experiments but for which in vivo experimentally determined

motifs were reported in the Saccharomyces Genome Database

(Cherry et al. 1998), to determine whether the low enrichment

may be due to the TFs having different specificities in vivo. As

Table 3. Motifs significantly enriched in ChIP-chip data sets for which the TF profiled by ChIP does not have an available PBM-derived motif

The significantly enriched motifs are
similar to the literature motifa of the
profiled factor (four data sets)

The significantly enriched motifs are
different from the literature motif of the

profiled factor (eight data sets)
A literature motif is not available for

the profiled factor (13 data sets)

Ino4_YPD: Cbf1, Rtg3 Ash1_BUT14: Rds2 Dig1_Alpha: Ste12
Ino2_YPD: Cbf1, Rtg3 Dal81_RAPA: Gzf3, Gat1, Dal80, Gln3 Dig1_BUT14: Tec1
Rlm1_YPD: Smp1 Hap3_YPD: Yox1 Dig1_BUT90: Tec1
Sko1_YPD: Cst6 Hap5_SM: Gal4 Gcr2_SM: Tye7, Yap6, Cin5,

Hap5_YPD: Nhp6a Yap1, Rtg3, Cbf1
Mac1_H2O2Hi: Aft1, Dal82 Ixr1_YPD: Tbf1

Mot3_SM: Aft2 Rlr1_YPD: Yap1
Sut1_YPD: Yjl103c, Ecm22, Ylr278c, Ndd1_YPD: Mcm1

Sut2 Snt2_YPD: Stp3
Stb1_YPD: Mbp1, Swi4
Swi6_YPD: Mbp1, Swi4

Ume1_H2O2Hi: Ypr013c
Ydr026c_YPD: Reb1

Yjl206c_H2O2Hi: Pbf1, Pbf2

Direct DNA binding Indirect DNA binding/coregulationb
Indirect binding/coregulation/discovery

of DNA binding motif

The entries in all three columns are as in Table 1. Possible explanations of the ChIP-chip data are provided.
aWe use the term ‘‘literature motif’’ to refer to a TF’s DNA binding motif as obtained from small-scale experiments and reported in the Saccharomyces
Genome Database (Cherry et al. 1998).
bWe use the term ‘‘coregulation’’ to refer to any situation in which several TFs regulate, either positively or negatively, a set of genes.
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shown in Supplemental Table 3, the in vivo motifs match the PBM-

derived motifs, which suggests that the specificity of these TFs is

similar in vivo and in vitro.

Previous to our study, Zhu et al. (2009) analyzed a number of

ChIP-chip data sets to determine whether the profiled TFs bind

DNA directly or indirectly. However, their methodology is very

different from ours: For a given TF and a given intergenic sequence,

Zhu and colleagues scored the sequence by summing PBM median

signal intensities for each 8-mer, considering all the 8-mers with

a PBM enrichment score above some threshold. In contrast, we

score DNA sequences using a physically principled approach de-

rived from GOMER (Granek and Clarke 2005), which takes into

account the entire range of DNA binding affinities of the TF and

thus avoids imposing thresholds on putative binding sites. Fur-

thermore, our method can incorporate nucleosome occupancy

data in a principled manner, for a more accurate distinction be-

tween direct and indirect in vivo TF–DNA interactions. Finally, we

infer, and report in Table 4 and Supplemental Table 2, TF–TF in-

teractions likely responsible for indirect DNA binding.

Liu et al. (2006) developed a method that uses nucleosome

occupancy in addition to DNA binding motifs to improve de-

tection of in vivo TF–DNA interactions. Nonetheless, Liu and

colleagues incorporated nucleosome data by assuming an in-

hibitory effect of nucleosome occupancy and using a user-defined

weight for this inhibitory effect (see Supplemental material).

Moreover, Liu and colleauges applied their method to just one TF,

Leu3, chosen specifically because it is known to bind DNA directly

and does not have any known cofactors. Our method is much

moregeneral, and so it can be used for any TF, regardless of whether it

binds DNA directly; furthermore, we were able to identify numerous

cases of indirect DNA binding and associated TF–TF interactions.

The yeast ChIP-chip experiments of Harbison et al. (2004)

were performed in rich medium (YPD) and 13 other culture con-

ditions (see Methods). However, the nucleosome occupancy data

used in our analysis were available only for yeast grown in YPD

conditions. To analyze the importance of using nucleosome data

in the same environmental condition as the ChIP-chip data, we

considered a recent study by Shivaswamy et al. (2008), who

reported nucleosome occupancy data for yeast grown in YPD be-

fore and after heat shock treatment (which corresponds to the YPD

and HEATconditions in the ChIP-chip data sets). Shivaswamy et al.

(2008) showed that for some TFs, matches to their DNA binding

motifs (MacIsaac et al. 2006) are more accessible in HEAT than

in YPD. However, we found that in both of these conditions,

Table 4. Predicted TF–TF interactions supported by independent experimental evidence in the literature

ChIP-chip
experiment

No. of
bound probes

Pair
TF2 motif
available?a

AUC value of TF1
motif in ChIP-chip

data set of TF2
Literature support for TF1–TF2

interaction Similar motifsbTF1 TF2

Dal81_RAPA 72 Gzf3 Dal81 SGD 0.801 PMID: 10906145 (Gzf3, Gat1, Dal80, Gln3)
Gat1 0.795
Dal80 0.785
Gln3 0.768

Dig1_Alpha 92 Ste12 Dig1 — 0.739 PMID: 9094309

Dig1_BUT14 57 Tec1 Dig1 — 0.813 PMID: 16782869
Dig1_BUT90 39 0.752

Fhl1_RAPA 136 Rap1 Fhl1 PBM 0.819 PMID: 17452446
Fhl1_SM 148 0.821
Fhl1_YPD 130 0.801

Gcr2_SM 56 Tye7 Gcr2 — 0.741 PMID: 173149803c (Tye7, Rtg3, Cbf1)
Rtg3 0.719
Cbf1 0.718

Hap5_SM 39 Gal4 Hap5 SGD 0.786 PMID: 11418596

Ndd1_YPD 92 Mcm1 Ndd1 — 0.777 PMID: 14521842

Sfp1_SM 36 Rap1 Sfp1 PBM 0.870 PMID: 15353587

Stb1_YPD 22 Mbp1 Stb1 — 0.763 PMID: 12832490
Swi4 0.749

Ste12_BUT14 122 Tec1 Ste12 PBM 0.811 PMID: 16782869

Swi6_YPD 120 Mbp1 Swi6 — 0.840 PMID: 8649372
Swi4 0.839 PMID: 10747782

Tec1_Alpha 51 Ste12 Tec1 PBM 0.679 PMID: 9234690

aSpecifies whether a DNA binding motif is available for TF2, either from SGD (Saccharomyces Genome Database), or from PBM experiments (Badis et al.
2008; Zhu et al. 2009).
bGroups of TFs with similar DNA binding motifs.
cGcr2–Rtg3 genetic interaction.
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functional DNA binding sites are in general more accessible than

neighboring DNA sites (Supplemental Fig. 2), supporting our in-

corporation of nucleosome occupancy data in our analysis. Nev-

ertheless, it would be preferable to use nucleosome occupancy data

for yeast grown in the same environmental (and genetic) condi-

tions as the yeast profiled by ChIP-chip. In the future, as additional

high-resolution nucleosome occupancy data are generated for

yeast grown in otherculture conditions, such occupancy data could

be easily incorporated into our analysis to provide more precise

predictions of direct versus indirect binding events in the genome.

The approach described in this study is not restricted to yeast

or to ChIP-chip data, but could be applied to the analysis of ChIP-

seq (Johnson et al. 2007) or ChIP-PET (Wei et al. 2006) data sets for

TFs in other organisms, including metazoans. With the generation

of diverse PBM data sets for hundreds of metazoan TFs (Berger et al.

2008; Badis et al. 2009; Grove et al. 2009), this approach may not

only distinguish direct versus indirect genomic TF binding events

in vivo, but also suggest the identities of the interacting TFs.

Methods

ChIP-chip data
We used the yeast ChIP-chip data from Harbison et al. (2004), who
performed 352 ChIP experiments for 207 TFs under different en-
vironmental conditions: YPD (rich medium), Acid (acidic me-
dium), Alpha (alpha factor pheromone treatment), BUT14 (buta-
nol treatment for 14h), BUT90 (butanol treatment for 90 min),
GAL (galactose medium), H2O2Hi (highly hyperoxic), H2O2Lo
(mildly hyperoxic), HEAT (elevated temperature), Pi- (phosphate
deprived medium), RAFF (raffinose medium), RAPA (nutrient de-
prived), SM (amino acid starvation), and THI- (vitamin deprived).
We use the notation TF_cond to refer to the ChIP-chip experiment
for transcription factor ‘‘TF’’ under environmental condition
‘‘cond.’’ For each ChIP-chip data set, we defined the ‘‘bound’’
intergenic probes to be those with a P-value < 0.001. We restricted
our analysis to the 237 (out of 352) data sets that contained at least
10 probes bound at P < 0.001.

PBM-derived DNA binding motifs

Badis et al. (2008) and Zhu et al. (2009) used universal PBMs (Berger
et al. 2006) to determine high-resolution in vitro DNA binding
specificity data for 139 TFs. They reported PBM-derived motifs for
these TFs as position weight matrices (PWMs). We used all 89 PWMs
of Zhu et al. (2009) and 50 additional PWMs from Badis et al. (2008).

Nucleosome positioning data

We used in vivo nucleosome positioning information from Lee
et al. (2007) to compute, for each DNA site S, the probability that
the site is occupied by a nucleosome. Lee et al. used micrococcal
nuclease digestion followed by microarray analysis to derive
a high-resolution map of nucleosome occupancy across the whole
yeast S. cerevisiae genome. From this map we extracted, for every
fourth position in the genome, the logarithm of the ratio between
the signal intensity of nucleosomal DNA versus genomic DNA
at that position, and then interpolated the data to obtain 1-bp
resolution data. Next, we applied a logistic transformation to
the log-ratio values to obtain, for each position in the genome, the
probability of that position being occupied by a nucleosome (see
Supplemental material for details).

Given a site S = S1. . .SW of width W and the probability of
nucleosome occupancy at each position i in the site, we can
compute the probability of site S being occupied by a nucleosome,
or, alternatively, the probability of site S being free of nucleosomes:

PðS1 . . . SW freeÞ = PðS1 freeÞ 3 PðS2 free j S1 freeÞ
3 . . . 3 PðSW free j SW�1 freeÞ ð1Þ

Each term P(Si+1 free | Si free) can be written as:

PðSi+1 free j Si freeÞ= 1� PðSi+1 occupied j Si freeÞ

= 1� 1

N
3 ðSi+1 occupiedÞ ð2Þ

where N is set to 147, the average nucleosome width.

Scoring a DNA sequence according to a PWM

We scored DNA sequences using a model similar to GOMER
(Granek and Clarke 2005). Other models such as MatrixREDUCE
(Foat et al. 2006) or TRAP (Roider et al. 2007) could also be used to
compute the probability that a TF with a particular PWM binds
a DNA sequence. However, both MatrixREDUCE and TRAP use
parameters that need to be trained on the ChIP-chip data. Since we
want to use the model to test how well certain motifs explain the
ChIP-chip data, training those motifs on the data themselves
would not be appropriate.

Let T denote a TF, and f denote the PWM describing the DNA
binding motif of T: f(b,j) = the probability of finding base b at
location j within the binding site (b 2 {A, C, G, T} and 1 # j # W,
where W is the width of the motif). Let f0 denote the background
model, a 0th-order Markov model trained on all intergenic se-
quences in yeast.

Given a DNA site S = S1S2. . .SW, we score it according to
the PWM and background models, and use the ratio of the
two scores as an approximation for the dissociation constant
KdðT , SÞ = *W

j=1
f0ðSjÞ
fðSj ; jÞ. Next, using the fact that Kd(T,S) = [T] � [S] /

[T � S], we can write the probability that TF T binds DNA site S as:

PðT binds SÞ = ½T � S�
½T � S� + ½S� =

½T �
½T � + KdðT , SÞ

= 1= 1 +
1

½T � 3
YW

j=1

f0ðSjÞ
fðSj, jÞ

� �
ð3Þ

Figure 5. Direct and indirect DNA binding by Ste12 and Tec1. Ste12
and Tec1 are both involved in two developmental processes: fila-
mentation (induced by treatment with butanol, as in the BUT14 condi-
tion) and mating (induced by treatment with the alpha pheromone, as in
the Alpha condition). (A) During filamentation, the Tec1-Ste12–Dig1
complex binds DNA through Tec1. Our method correctly identifies Tec1
as the only significantly enriched TF in the ChIP-chip experiments where
filamentation occurs. (B) During mating, the Ste12–Dig1–Dig2 and
Ste12–Tec1–Dig 1 complexes bind DNA through Ste12. Our method
correctly identifies Ste12 as the only significantly enriched TF in the ChIP-
chip experiments where mating occurs.
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where the concentration of free TF, [T], is set to the dissociation
constant for the site with the optimal PWM score, as in the
GOMER model (Granek and Clarke 2005).

For a DNA sequence X longer than the motif width W, the
probability that TF T binds X is:

PðT binds XÞ= PðT binds any Xi . . . Xi + W�1Þ

= 1�
Yn�W+1

i

 
1� 1=

 
1 +

1

½T � 3
Yi + W�1

j = i

f0ðXjÞ
fðXj, j� i + 1Þ

!!

ð4Þ

Incorporating nucleosome positioning information

So far we assumed that the probability that a TF binds a DNA site
depends only on the specificity of the factor for that particular site,
which is a good assumption in the case of in vitro experiments. In
vivo, however, many DNA regions are occupied by nucleosomes
and thus are not accessible for binding by a TF. To take this into
account, we first need to rewrite Equation 3 to include information
about the accessibility of site S:

PðT binds SÞ = PðT binds S jS freeÞ 3 PðS freeÞ
+ PðT binds S jS occupiedÞ 3 PðS occupiedÞ

= PðT binds S jS freeÞ 3 PðS freeÞ ð5Þ

The second equality follows from the assumption that sites occu-
pied by nucleosomes have zero probability of being accessed by
TFs. Although a few TFs have been observed to bind nucleosomal
DNA, our assumption is true for the vast majority of factors.

Taking into account nucleosome occupancy information,
Equation 4 can be rewritten as Equation 6, where P(Xi. . .Xi+W-1

free) is derived from the in vivo nucleosome occupancy data.

PðT binds XÞ= 1�
Yn�W+1

i

 
1� 1=

 
1 +

1

½T� 3
Yi + W�1

j = i

f0ðXjÞ
fðXj; j� i + 1Þ

!

3 PðXi . . . Xi + W�1 free

!!
ð6Þ

Given a DNA sequence, a PBM-derived motif, and the nucleosome
occupancy information over that sequence, we use Equation 6 to
compute the probability that the TF binds that sequence, as shown
in Figure 1A for TF Gcn4 and intergenic region iYER052C.

Analyzing data from a ChIP-chip experiment

We use the probability that a TF T binds a DNA sequence X to score
every intergenic probe present on the microarrays used in the
ChIP-chip experiments (Harbison et al. 2004). For example, Figure
1B shows the probability of TF Gcn4 binding each yeast intergenic
region. Next, for any particular ChIP-chip experiment we define
two sets of intergenic probes: the positive set (i.e., the set of
‘‘bound’’ probes), which contains all the probes with a P-value <

0.001, and the negative set (i.e., the set of ‘‘unbound’’ probes),
which contains all the probes with a P-value > 0.5, as calculated
by Harbison et al. (2004); we did not consider probes with in-
termediate P-values. Using the positive and negative sets from each
ChIP-chip experiment, and the probabilities that TF T binds each
of the probes, we compute the enrichment of the PBM-derived
motif for TF T in the ChIP-chip data by an AUC value. For each
ChIP-chip experiment TF_cond we computed the AUC values of
the 139 DNA binding motifs derived from PBM data.

Computing the statistical significance of AUC values

To assess whether the AUC value computed for a PBM-derived
motif in a particular ChIP-chip data set is significant, we proceeded
in three steps: (1) We randomly generated 1000 motifs by per-
muting the nucleotides in each column of the initial motif; (2) for
each random motif, we computed its AUC value in the given ChIP-
chip data set; and (3) we used the 1000 AUC values to compute an
empirical P-value for the AUC of the real motif. We consider an
AUC value significant if it is at least 0.65 (i.e., it explains the ChIP-
chip data to some extent) and has an associated P-value # 0.001
(i.e., at most one of the 1000 random motifs has an AUC value
equal to or greater than the AUC value of the real motif).
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