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Barcoding bias in high-throughput multiplex
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Shahar Alon,1,6 Francois Vigneault,2,3,4,6 Seda Eminaga,2 Danos C. Christodoulou,2

Jonathan G. Seidman,2 George M. Church,2,3 and Eli Eisenberg5,7

1Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 69978, Israel; 2Department

of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA; 3Wyss Institute for Biologically Inspired Engineering,

Boston, Massachusetts 02115, USA; 4Ragon Institute of MGH, MIT, and Harvard, Boston, Massachusetts 02129, USA; 5Raymond
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Second-generation sequencing is gradually becoming the method of choice for miRNA detection and expression
profiling. Given the relatively small number of miRNAs and improvements in DNA sequencing technology, studying
miRNA expression profiles of multiple samples in a single flow cell lane becomes feasible. Multiplexing strategies
require marking each miRNA library with a DNA barcode. Here we report that barcodes introduced through adapter
ligation confer significant bias on miRNA expression profiles. This bias is much higher than the expected Poisson noise
and masks significant expression differences between miRNA libraries. This bias can be eliminated by adding barcodes
during PCR amplification of libraries. The accuracy of miRNA expression measurement in multiplexed experiments
becomes a function of sample number.

[Supplemental material is available for this article.]

The discovery of microRNAs (miRNAs) has revealed the existence

of a previously unrecognized layer of complexity in gene regula-

tion (Bartel 2004). MiRNAs regulate protein expression and are

involved in many cellular and physiological processes, including

numerous pathological conditions (Lu et al. 2005). Therefore,

detecting new miRNAs and measuring the expression profiles of

known miRNAs are important tasks required for a complete un-

derstanding of various biological conditions. The relatively low

number of miRNAs (about 1000 human miRNAs in miRBase ver-

sion 15) (Griffiths-Jones et al. 2008) and the small size of mature

miRNAs (19–25 nucleotides [nt]) allow current second-generation

sequencing platforms to achieve both mentioned tasks (Creighton

et al. 2009). For example, one lane of Illumina’s flow cell with

a sequencing depth of ;200 M bases was adequate for the identi-

fication of novel miRNAs and for the quantification of known

miRNAs using library of miRNAs derived from human tissues

(Morin et al. 2008). However, the cost of next-generation se-

quencing is still considerable, limiting the number of biological

conditions to be tested. A popular solution for this hurdle is mul-

tiplexing, where many samples are being marked by some specific

tag sequence (barcode) and sequenced in a single lane.

One approach to constructing multiplex libraries for miRNA

expression analyses consists in introducing a DNA barcode in the

59 oligonucleotide adapter required for miRNA ligation (Uziel

et al. 2009; Tarasov et al. 2007; Zhu et al. 2008, 2009). Another

possible option is to introduce barcodes during the PCR amplifi-

cation of the libraries. Here, we compared miRNA expression

profiles obtained from DNA libraries constructed by these two

methods.

Results
First, biases in miRNA expression levels introduced by 59 ligation

barcodes were assessed. ‘‘Control’’ miRNA samples were collected

from normal and diseased mouse cardiac left ventricle (Teekakirikul

et al. 2010). The two samples were prepared in parallel; each mouse

miRNA sample was split into 10 equal aliquots and marked by the

same set of 10 different 59 ligation barcodes during the library prep-

aration. The two sets of 10 libraries were sequenced by Illumina’s

GAIIx instrument in a single flow cell, each set in a single lane (see

Methods).

Significant differences were observed between the miRNA

expression profiles for the same RNA sample that differed only in

the barcode used to construct the library, suggesting a barcode bias

(Fig. 1A; Methods). The barcode-dependent bias was easily ob-

served using hierarchical clustering of all the miRNA expression

profiles. The clustering process paired identical barcodes rather

than clustering the profiles belonging to identical biological con-

ditions (Fig. 1C). Moreover, reliable identification of differentially

expressed miRNAs was not feasible (see Methods). For example,

when comparing the exact same tissue with two different bar-

codes, one observes erroneously that 27% of the miRNAs are dif-

ferentially expressed. Looking for differentially expressed miRNAs

between normal and diseased mouse hearts using different bar-

codes for the two tissues and a stringent cutoff of twofold change

results in dramatically different sets of miRNAs depending on the

barcodes used. One finds <5% overlap between the lists of pre-

sumed differentially expressed miRNAs for eight different barcode

pairs. Apparent variation in miRNA expression was well modeled,

assuming different barcode-dependent capturing efficiency for each

miRNA. Variance analysis revealed that barcode-specific capture bias

could be as much as twofold, which often exceeded the biological

variation in miRNA levels (Fig. 1B; Methods).

While using different ligation-based barcodes does introduce

a large amount of variability, measuring the fold-change across dif-

ferent biological conditions with the same ligation-based barcode
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does provide meaningful, barcode-independent results. We con-

firmed this by comparing the results obtained from the different

barcodes for the two biological conditions (Supplemental Fig. S1).

Although two different biological conditions are compared, 79%

of the miRNAs expression differences are within the Poisson noise

region. As two different biological conditions are compared, some

miRNAs are expected to be differentially expressed. Nevertheless,

the agreement between the different miRNA profiles when com-

paring the same barcodes in different conditions is higher than

the agreement between different barcodes in the same tissue (Fig. 1A

vs. Supplemental Fig. S1). Furthermore,

when comparing different barcodes in the

same tissue (Fig. 1A), one finds that 26%

(17%) of the points represent counts that

changed by at least twofold (threefold). In

comparison, comparing different biolog-

ical conditions using the same barcode

(Supplemental Fig. S1) results in only 10%

(5%) of the points representing counts

that changed by at least twofold (three-

fold). Lastly, looking at the eight lists of

the differentially expressed miRNAs de-

rived by comparing each barcode between

the two biological conditions, one finds

almost a 50% overlap between the lists.

We therefore conclude that one may use

ligation-based barcoding, as long as the

reads-count numbers are always compared

between different measurements with the

same barcode only. That is, one may use

two (or more) flow cell lanes with the same

set of barcodes and compare the expres-

sion profile, for each barcode separately,

between lanes.

Since all other steps in the process

are identical and the library construction

protocol used universal (i.e., barcode-

independent) primers for the PCR step,

we hypothesized that barcode bias was

introduced during the ligation stage and

not during the PCR amplification. At the

time that this work was conducted, the

Illumina PCR-based multiplexing ap-

proach was not compatible with miRNA

(Methods and Fig. S2); we therefore de-

veloped a protocol where the barcodes

are introduced during the PCR steps (see

Methods). A sample of total RNA from

human brain tissue was subdivided into

12 equal independent aliquots before

the ligation of the adapters, marked by

12 different barcodes during the PCR

amplification step and sequenced on one

lane of Illumina GAIIx instrument using

a 75-bp single pass sequencing read (our

design also allows independent sequencing

of indexing read if desired). The same vari-

ance analysis revealed that the PCR-based

barcodes almost completely suppressed

the barcode bias (Fig. 1D,E), bringing the

typical barcode-dependent error down

to 63%. We then used the PCR-based

barcodes to sequence samples of miRNAs from normal and dis-

eased mouse heart tissues on one lane of Illumina GAIIx instru-

ment. Again, the barcode-dependent error was estimated to be 63%.

The low level of error allowed a reliable detection of differentially

expressed miRNAs (Supplemental Table S5), an important task

that is not feasible with barcodes that introduce large bias (Fig. 1F;

Supplemental Fig. S3; Methods).

Given the feasibility of practically bias-free multiplexing pro-

tocol, a question of major practical importance arises regarding the

cost–benefit balance in barcoding. More barcodes allow for more

Figure 1. Barcoding bias analysis. (A,D) Total number of miRNA counts in each barcode compared
with all the other barcodes (all the possible comparisons are plotted). The blue boxes represent points
within the 99% region of Poisson noise, and the red boxes represent points outside this region. (A) When
using ligation barcoding and normal mouse heart data, only 73% of all points fall inside this region,
attesting for a barcode bias. (D) When using PCR barcoding and human brain data, 97% of all points fall
inside the Poisson noise region. (B,E ) The variance in counts number for a specific miRNA among the
different barcodes as a function of the mean, plotted for all miRNAs. The black dotted line is the
expected Poisson distribution with no barcode bias. The black full line is a fit to the general form
expected for biased barcodes (see Methods). (B ) When using ligation barcoding and normal mouse
heart data, the variance due to barcodes diversity is much larger than the Poisson noise. (E ) When using
PCR barcoding and human brain data, only Poisson noise is evident for most of the experimentally
relevant regime. (C,F ) Hierarchical clustering of the miRNA expression profiles across different barcodes
and biological conditions. (C ) When using ligation-based barcodes, miRNA expression profiles cluster
according to their barcodes, although they were derived from two different experimental conditions
(normal and diseased mouse hearts, marked with WT and SH, respectively). (F ) When using PCR-based
barcodes, miRNA expression profiles cluster according to the experimental condition.
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tissues or biological conditions to be

tested in a given lane of a flow cell but

allow less reads per miRNA (and thus

lower detection rate and higher Poisson

noise level). We note that the distribution

of expression levels among the various

miRNAs follows a Zipf’s law with an ex-

ponential cutoff (Fig. 2A). We use this to

estimate the decrease in the number of de-

tections of differentially expressed miRNAs

as a function of the total number of reads

per barcode (see Methods), and we find

a sublinear decrease due to the Zipf’s law

behavior (Fig. 2B,C). For example, using 5

million reads per barcode causes a less than

20% decrease in the number of detections

of differentially expressed miRNAs com-

pared with using 10 million reads per bar-

code. Therefore, within current sequencing

read-output, the usage of many barcodes

could lead to an overall larger number of

detections, at the expense of not being

sensitive to the low-level miRNAs. A similar

behavior (but with higher detection values)

is observed when one is interested in the

detection of expressed miRNAs rather than

in differential expression between two bi-

ological conditions (Fig. 2B).

Discussion
Second-generation sequencing have rev-

olutionized modern genomics in general

and have increased our understanding

about miRNAs in particular (Creighton

et al. 2009). However, this still-growing

field inevitably creates some biases in the

vast amount of data generated. Indeed,

recent reports show biases at multiple

levels, from the effect of the library prep-

aration in miRNA sequencing (Linsen

et al. 2009) to preferences to specific se-

quence mutations (Dohm et al. 2008)

up to problems caused by the wrong

alignment of miRNA sequences (de Hoon

et al. 2010). We have demonstrated that

multiplexing of miRNA by ligation-based

barcodes can create additional bias. By

mapping and quantifying these biases,

it will be possible to take advantage of

the possibilities that second-generation

sequencing has to offer without com-

promising the quality of the data.

Although it was possible to narrow

the cause for the bias in ligation-based

barcoding to the ligation stage, we did not

succeed in pinpointing the exact problem

caused by ligation. It is reasonable to look

for some kind of sequence preference be-

tween the ligated sequence (containing the barcode) and the

miRNA sequences. This sequence preference can be explained, for

example, by the secondary structure formed between the miRNA

and the barcode sequence. We therefore looked for any short (two to

five bases) sequence in the beginning or the end of the miRNA that

is over- or underrepresented in only some of the barcode libraries

Figure 2. Modeling the detection efficiency as a function of the number of multiplexed samples. (A)
Rank-size plot. Mouse normal heart, mouse diseased heart, and human brain data are plotted in blue, black,
and red, respectively. The dashed lines are fits to power law with exponential cutoff. The fit has the form
N^(�1.4) 3 exp(�N/47), N^(�1.4) 3 exp(�N/43), and N^(�0.8) 3 exp(�N/68) for mouse normal hearts,
mouse diseased hearts, and human brain, respectively. (B) Expected portion of expressed miRNA (dashed
lines) and differentially expressed miRNA (full lines) detected as a function of the number of reads per bar-
code. Human brain data are plotted in red and mouse normal heart data in blue. (C ) Portion of differentially
expressed miRNA detected as a function of the number of reads per barcode (see Methods). The blue boxes
represent real data, and the blue line is the same as in B. Only reads uniquely aligned to miRNAs were used.
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from the same biological sample. This search did not result in any

statistically significant sequence preference. Therefore, future stud-

ies are needed to identify the particular cause of the ligation bias.

The question of which kind of multiplexing approach to take,

that is, ligation-based or PCR-based barcoding, is relevant to other

applications of second-generation sequencing. As the sequencing

depth will increase further, the possibility to multiplex mRNA will

also be reasonable. It was not in the scope of this current work to

determine if the ligation-bias will be also apparent in mRNA

multiplexing. However, we believe that the framework presented

here will be relevant for such future efforts.

In summary, we show here that the current ligation-based

barcodes technique (Uziel et al. 2009; Tarasov et al. 2007; Zhu et al.

2008, 2009) introduces a large bias to the miRNA expression profiles.

To overcome this problem, we have established a protocol for bar-

coding by PCR overlap that does not create bias. Recently, Illumina has

introduced the TruSeq line of products that allows PCR multiplexing

of miRNA. As it avoids the problematic ligation step, we believe it is

likely that the TruSeq PCR-based multiplexing solution will behave

like our PCR solution. One should remember that the increase in the

throughput of the experiments by the use of barcodes inevitably

causes a decrease in detection due to the lower number of reads per

barcode. We show that this decrease can be modeled, allowing for

a rational design of miRNA expression profiling with barcodes.

Methods

Multiplexing of miRNAs using PCR- and ligation-based
barcoding
For a detailed description and a list of oligonucleotides, see the
Supplemental Protocol.

PCR-based barcoding

Ligation of the 39 adapter was conducted by incubating 1 mg of
total RNA from the desired samples with 10 pmol of 39 adenylated
oligonucleotide, 10% DMSO, 20 U of RNaseInhibitor (Enzymatics
Y924L), and 300 U of T4 RNA ligase 2 truncated (Enzymatics), for
1 h at 22°C. Following incubation, 10 pmol of 59 adapter was added
alongside 8 mM ATP (Enzymatics N207-10-L) and 20 U of T4 RNA
Ligase 1 (Enzymatics L605L) and was incubated for 1 h at 20°C. A
third of the reaction product was used for reverse transcription (RT)
of the adapter-miRNA-adapter fragments using 25 pmol of 39adapter
compatible reverse transcription primer and 200 U of Superscript
III (Invitrogen 18080-044) as previously described (Vigneault et al.
2008) followed by incubating for 30 min at 48°C. Following reverse
transcription, PCR components were added directly to the RT re-
action mixture by adding 13 HF Phusion buffer, 25 pmol of each
PCR primers pairs (PCR1 and PCR2 barcoding primers), 250 mM
dNTPs, and 1 U of Phusion hotstart DNA polymerase (NEB F-540L).
The reaction was thermal cycled as follows: 30 sec at 98°C; 12 cy-
cles of 10 sec at 98°C, 20 sec at 60°C, and 20 sec at 72°C; a final
incubation of 5 min at 72°C; and pause at 4°C. The PCR products
were purified on denaturing PAGE twice, as detailed in the Sup-
plemental Protocol using crush and soak extraction (Vigneault
et al. 2008). Each individually barcoded miRNA library was quality
controlled on an Agilent Bioanalyzer and on a Nanodrop spec-
trophotometer and was combined at an equimolar concentration
in one unique library containing all the barcoded samples prior to
sequencing on a single Illumina lane.

Ligation-based barcoding

All steps of the protocol for ligation-based miRNA capture were
conducted as described for the PCR-based barcoding protocol

above with the only difference that the barcodes were introduced
in the 59 oligonucleotides during the ligation step to the miRNA.

Sequencing data filtering

The following RNA samples were used: (1) wild type mouse heart
tissue RNA and (2) cardiac disease mouse tissue RNA (Teekakirikul
et al. 2010), both extracted using the AMbion mirVana miRNA
Isolation Kit (Ambion AM1561), and (3) FirstChoice Human Brain
Reference RNA (Ambion AM6050). These three experimental
conditions were sequenced on three lanes using two different flow-
cells (one for the human data and one for the two mouse tissues) of
Illumina GAIIx instrument following the manufacturer’s protocol.
The total number of reads was ;18 M, ;20 M, and ;10 M reads for
mouse normal hearts, mouse diseased hearts, and human brain,
respectively. All the reads were filtered, demanding that (1) each
read will have full barcode and (2) the quality of each read will
not be below some threshold value (chosen to be 20) in more than
three positions. In addition, sequences identified as 59 or 39

adaptors were removed. After adaptors trimming, reads with a
length longer (more than 28 bases) or shorter (less than 15 bases)
than the typical length of a mature miRNA were also removed:
;8 M, ;8 M, and ;5 M reads passed this filtering process for the
mouse normal hearts, mouse diseased hearts, and human brain,
respectively. The total number of reads per barcode after the fil-
tering step is given in Supplemental Tables S1 through S3. Even
after the removal of libraries with relatively a low number of
counts, large differences (up to 18-fold) between the barcodes are
observed in the mouse heart data. The differences were consistent
between mouse normal hearts and mouse diseased hearts. Such
large differences were not observed in the human brain barcode
data that was constructed using the new, PCR-based, barcode
protocol.

Constructing miRNAs profiles

The filtered reads were aligned using Bowtie (Langmead et al. 2009)
against the mouse or human known pre-miRNAs taken from
miRBase, allowing a total number of two mismatches. We de-
manded unique best hits (i.e., reads that cannot be aligned to other
miRNAs with the same number of mismatches); ;5 M, ;5 M, and
;1.2 M reads were successfully aligned for the mouse normal
hearts, mouse diseased hearts, and human brain, respectively.
Only reads that were aligned against regions in the pre-miRNA that
were annotated as mature miRNA by miRBase were further used to
construct miRNA counts profile per barcode.

The miRNA profiles were normalized to allow comparison
between them. We tested three types of normalizations: (1) scaling
each miRNA profile by the total number of counts (Supplemental
Tables S2, S3), (2) scaling each miRNA profile by the number of
counts after trimming the higher and lower quartiles of changed
miRNAs (as defined by their log-folds), and (3) scaling each miRNA
profile such that the log-folds are distributed around zero after
trimming the higher and lower quartiles of changed miRNAs
(again, as defined by their log-folds). The third method is a varia-
tion of the one recently published (Robinson and Oshlach 2010);
here we have weighted the log-folds using the standard deviation
of log-folds from Poisson distribution of counts. All three methods
of normalization gave almost the same results. Method number
three is used in the following.

Measuring barcode bias

miRNA profiles from the same tissue but with different barcodes
should be identical up to the statistical Poisson noise due to the
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finite count numbers. Deviations between the profiles that are
larger than expected for Poisson noise indicate a barcode bias. A
direct way to measure the potential bias is to study the variance in
the number of reads obtained in the different profiles. This vari-
ance is expected to be the sum of the Poisson noise variance, which
is equal to the mean number of counts, and the variance of the
barcode-specific efficiency, which is proportional to the square of
the mean number of counts (Cameron and Trivedi 1998). Hence,
the variance should follow the general form: Variance = mean + A
3 mean-squared, where A is related to the distribution P(l) of the
barcode-specific efficiencies:

A = ð < l2 > � < l > 2Þ=< l > 2:

That is, A is the square of the relative standard deviation of l. The
smaller it is, the smaller is the relative spread of efficiencies among
the different barcodes. By calculating the variance for all the
miRNAs among the different barcodes as a function of the mean
number of counts and by fitting the result to the above general
form, one is able to estimate the constant A. This constant is equal
to 0.63 and 0.66 using mouse normal hearts and mouse diseased
hearts data, respectively, attesting for a barcode bias (Fig. 1B).
Assuming a log-normal distribution for P(l), A is given by A =

exp(s2) � 1. Thus A ; 0.65 corresponds to s ; 0.7, or a typical
multiplicative factor-2 bias.

In contrast, for the new PCR-based barcodes, the constant A
equals 0.0010 (human brain data), corresponding to s ; 0.03, or
a typical multiplicative bias factor of 1.03. This bias is masked by
the Poisson noise for all but the most highly expressed miRNAs, as
seen in Figure 1E.

Comparing counts among the different miRNA profiles

In Figure 1, A and D, and Supplemental Figures S1 and S3, the
miRNA counts are compared between the different miRNA pro-
files. We ask whether the discrepancies from the naı̈ve y = x line in
these figures originate from the expected Poisson noise. That is, for
each point, which represents the counts of miRNA in two different
conditions (biological or technical), can we reject the null hy-
pothesis that these two numbers come from a Poisson distribution
with means that differ only by a global normalization factor. The
calculation steps were as follows: (1) the means were estimated
using the actual counts (before normalization) and the global
normalization factors; (2) the sum of squares of differences be-
tween the actual counts and the estimated means was computed;
(3) the estimated means were used to generate 1000 realizations of
counts from Poisson distribution; for each realization, the sum of
squares of differences between the pseudo-counts and the esti-
mated means was computed; and (4) points for which the sum of
squares is in the top 1% of all the randomized 1000 realizations are
marked as being outside the 99% region of the Poisson noise.

On average, only 73% of all points fall inside the Poisson
noise region when we compare different barcodes in the same bi-
ological condition (Fig. 1A, all possible comparisons are plotted),
again pointing toward barcode bias. When we compare a single
barcode to a different barcode in the same biological condition,
10%–40% of the miRNAs are falsely detected as differentially
expressed (i.e., they fall outside the Poisson noise region). More-
over, detecting differentially expressed miRNAs between normal
and diseased mouse hearts using twofold change criteria gives
dramatically different sets of genes depending on the barcodes
used; choosing eight different couples of barcodes revealed <5%
overlap between the sets of detected genes.

Finally, comparing different barcodes in the human brain
tissue (PCR-based protocol) revealed that almost all points (97%)

fall inside the Poisson noise region, as expected for no-bias bar-
codes (Fig. 1D). If we take into account the low residual barcode bias,
modeled by a log-normal distribution with s ; 0.03 (see above),
exactly 99% of the points fall inside the Poisson 99% noise region.

Analyzing mouse heart samples sequenced
with PCR-based barcodes

One lane of Illumina’s flow-cell (GAIIx instrument) was used to
sequence eight libraries derived from normal and diseased mouse
hearts (Teekakirikul et al. 2010); each library was marked by a dif-
ferent barcode using the PCR-based protocol. Three libraries were of
three different normal samples; another three libraries were of three
different diseased samples; one library was a pool of the three nor-
mal samples; and the last library was a pool of the three diseased
samples. The sequencing data were filtered; expression profiles were
constructed; and the data was normalized as described in the sec-
tions above (see Supplemental Tables S1, S4). If there is no barcode
bias, one would expect that (1) the average of the three different
samples for each miRNA will be the same as the pool, up to Poisson
noise, and (2) the list of differentially expressed miRNAs will be al-
most the same if the data compared is either the three normal
samples against the three diseased samples or the normal pool
against the diseased pool. Indeed, by comparing the average of the
three different samples for each miRNA to the pool, we see that
exactly 99% of the points fall inside the Poisson noise region after
we take into account the added noise with s ; 0.03 (see above) to
the realizations of counts (Supplemental Fig. S3). These data dem-
onstrate that the quality of the PCR-based barcodes is reproducible.
Two lists of differentially expressed miRNAs were created as de-
scribed above, that is, one using the three individual samples added
together and the other for the pooled samples, demanding a strin-
gent cutoff of twofold change and minimum number of 50 reads in
each condition in order to avoid Poisson noise. Comparing these
two lists of differentially expressed miRNAs resulted with a high
overlap of 80% (for the list of overlapping differentially expressed
miRNAs, see Supplemental Table S5). Thus, one can use libraries
marked with these barcodes for detecting differentially expressed
genes. Detecting differentially expressed miRNAs was almost im-
possible using the ligation-based barcodes due to the large bias that
they introduced (s ; 0.7, i.e., twofold change).

Estimating detection efficiency as a function of the number
of barcodes

The use of barcodes in multiplexing strategy results in expected
decrease in the number of counts per library. This decrease can
cause (1) a reduced number of miRNAs to be detected as expressed
in a given library and (2) a reduced number of miRNAs to be
detected as differentially expressed when one compares two li-
braries. These two effects can be modeled if the distribution of
expression levels among the various miRNAs is known. We ob-
served that this distribution follows Zipf’s with an exponential
cutoff for the two different tissues: the human brain and the mouse
heart (Fig. 2A). Given the distribution of counts, estimating the
decrease in detection of expressed miRNAs is straightforward: On
average, a miRNA with number of counts equal or higher than
the number of barcodes used will be detected. It turns out that the
decrease in detection of expressed miRNAs as a function of the
barcodes used depends only weakly on the investigated tissue;
both human brain and mouse heart gave similar results (Fig. 2B).
We estimated the decrease in the detection of differentially ex-
pressed miRNAs by identifying miRNAs with changes in expres-
sion that are significantly higher than the standard deviation of
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the miRNA counts before and after the reduction in counts caused by
the use of barcodes (Fig. 2B). The standard deviation in the miRNA
counts is known given that the variation in the miRNAs counts
follows a Poisson distribution. As the human brain tissue displays
a wider distribution of miRNAs compared with mouse heart tissue
(Fig. 2A), it is expected that the decrease in the number of differen-
tially expressed miRNAs by using barcodes will be stiffer compared
with mouse heart tissue. Indeed, this trend is observed in Figure 2B,
but the behavior of the two tissues is similar and the difference be-
tween the two curves is within 10%. We confirmed the estimated
decrease in the number of differentially expressed miRNAs by com-
paring with experimental data. The experimental data were derived
by comparing the expression of all the miRNAs in one experimental
condition (mouse normal heart) to the second experimental condi-
tion (mouse diseased heart) using libraries generated with the same
barcodes. All the miRNAs that had changes in expression that cannot
be explained by Poisson noise were recorded. The detection pro-
cedure is as described in the section Comparing Counts Among the
Different miRNA Profiles above but with Bonferroni correction. We
performed all the possible comparisons between libraries with the
same barcode along the different tissues (Fig. 2C).

Data access
The sequence data from this study have been submitted to the
NCBI Sequence Read Archive under accession no. SRA029326.

Acknowledgments
This work was supported by the Center for Excellence in Genome
Sciences grant from the National Human Genome Research In-
stitute. F.V. is supported by a Canadian Institutes of Health Re-
search and Ragon Institute Fellowship. J.G.S is supported by grants
from the NIH, NHLBI, the SysCODE Consortium (NIH) and the
Fondation Leducq. This work was partially supported by a grant
from the United States-Israel Binational Science Foundation (grant
no. 2009290), Jerusalem, Israel.

Note added in proof

Ligation biases in miRNA sequencing were also independently

described in a recent publication (Hafner et al. 2011), supporting

the findings reported herein.
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