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Radial basis function neural networks (RBFNNs), which is a relatively new class of neural networks, have been investigated for their
applicability for prediction of performance and emission characteristics of a diesel engine fuelled with waste cooking oil (WCO).
The RBF networks were trained using the experimental data, where in load percentage, compression ratio, blend percentage,
injection timing, and injection pressure were taken as the input parameters, and brake thermal efficiency (BTE), brake specific
energy consumption (BSEC), exhaust gas temperature (Texh), and engine emissions were used as the output parameters. The
number of RBF centers was selected randomly. The network was initially trained using variable width values for the RBF units
using a heuristic and then was trained by using fixed width values. Studies showed that RBFNN predicted results matched well
with the experimental results over a wide range of operating conditions. Prediction accuracy for all the output parameters was
above 90% in case of performance parameters and above 70% in case of emission parameters.

1. Introduction

The world is presently confronted with a twin crisis of
fossil fuel depletion and environmental degradation. Indis-
criminate extraction and lavish consumption of fossil fuels
have led to a reduction in underground-based carbon
resources. The search for an alternative fuel which promises
a harmonious correlation with the sustainable development,
energy conservation, and management has become highly
pronounced in the present context. The fuels of bio-origin
like vegetable oils can provide a feasible solution to this
crisis. The energy density, cetane number, and heat of
vaporization of vegetable oils are comparable to diesel values.
It is renewable, available everywhere, and has proved to
be a cleaner fuel and more environment friendly than the
fossil fuels [1–3]. Also from the literature, it is revealed that
the emissions from the biodiesel engines are comparatively
lesser from the engines with the petroleum-based fuels [4–
6]. But the higher viscosity of vegetable oils affects the flow

properties of fuel such as spray, atomization, and consequent
vaporization and air fuel mixing.

Heating and blending of vegetable oils may reduce the
viscosity and improve the volatility of the vegetable oils, but
its molecular structure remains unchanged. Literature survey
revealed that converting vegetable oils into methyl esters will
overcome all problems related with vegetable oils [7, 8].

However, high cost of biodiesel is the major obstacle
for its commercialization. The biodiesel produced from
vegetable oil or animal fat is usually more expensive than
petroleum-based diesel fuel from 10 to 50%. Moreover
during 2010, the prices of virgin vegetable oils have nearly
doubled in relation to the early 2000. This is of great concern
to biodiesel producers, since the cost of feedstock comprises
approximately 70–95% of total operating costs at a biodiesel
plant. Compared to neat vegetable oils, the cost of waste
cooking oils (WCO) is anywhere from 60% less to free,
depending on the source and availability. WCOs constitute
a major waste generated in hotels and other public eateries.
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Figure 1: Photograph of the experimental setup.
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Figure 2: General architecture of RBF network.
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Figure 3: Variation of error during RBF training with 275 hidden
neurons for the WCO methyl ester model.
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Figure 4: Comparison of experimental and network predicted
values for BTE.
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Figure 5: Comparison of experimental and network predicted
values for BSEC.
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Figure 6: Comparison of experimental and network predicted
values for Texh.

This will be more often recycled for human consumption.
The chemicals present in the recycled oil may cause health
problems to human beings.

An alternative way for disposal of WCO is by recycling it.
The main use of recycled WCO is in the production of animal
feeds and in a much smaller proportion in the manufacture
of soaps and biodegradable lubricants. Some health risks can
be traced from the use of recycled cooking oils in animal
feeding. Alternatively, WCO can be used as a fuel in CI
engines after suitably modifying the fuel properties [9–12].

Manufacturers and engine application engineers usually
want to know the performance of a C.I engine for various
proportions of blends, for various compression ratios, and
at different injection timings and injection pressures. This
requirement can be met either by conducting comprehensive
tests or by modeling the engine operation. Testing the engine
under all possible operating conditions and fuel cases are
both time consuming and expensive. On the other hand,
developing an accurate model for the operation of a C.I
engine fuelled with blends of biodiesel is too difficult due
to the complex nature of the processes involved. As an
alternative, engine performance and exhaust emissions can
be modeled using Artificial Neural Networks (ANNs). This
technique can be applied to predict the desired output
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Figure 7: Comparison of experimental and RBF predicted values
for test data for UBHC.

0

5

10

15

20

25

30

0 20 6040

Test pattern

Sm
ok

e 
(H

SU
)

Exp
RBF

Figure 8: Comparison of experimental and network predicted
values for smoke.

Table 1: Specifications of the engine.

Engine
Four stroke, single cylinder, water
cooled, and constant speed diesel
engine.

Rated power 3.2 KW

Speed 1500 rpm

Bore 87.5 mm

Stroke 110 mm

Compression ratio 12 to 18 : 1

Crank angle sensor Resolution 1◦

Engine indicator
For data scanning and interfacing
with Pentium III processor

Swept volume 661cc

Temperature indicator Digital PT-100

parameters when enough experimental data is made avail-
able.

ANNs are used to solve a variety of problems in science
and engineering particularly in some areas where conven-
tional modeling fail. The predictive capability of ANN results
from training on experimental data and then validation
by independent data. Various authors have investigated the
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Figure 9: Comparison of experimental and network predicted
values for CO.
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Figure 10: Comparison of experimental and network predicted
values for NOx.

Table 2: Experimental conditions using WCO methyl ester blends.

S. No Operating parameters Variations

1 Engine load (%) 0 25 50 75 100

2 WCO blend (%) 10 15 20 25

3 Compression ratio 16 17.5 18

4 Injection timing (◦BTDC) 24 27 30

5 Injection pressure (bar) 160 190 220

Table 3: Variation of MSE with the number of centers.

Number of
centers

100 150 200 250 275 280

MSE 0.001985 0.00163 0.00149 0.0011 0.00100 0.0011

application of ANN to different thermal systems including
internal combustion engines [13–17]. In a study carried out
by Alonso et al. [18], ANN were employed as predicting
tools for prediction of brake specific fuel consumption
(BSFC), NOx, and CO emissions. They developed individual
models for emissions using the experimental data. Best
prediction was obtained for BSFC and NOx emissions.
Ghobadian et al. [19] developed an ANN model to predict
the engine emissions from a diesel engine using WCO as
a fuel. They found fairly good results for the prediction of
torque, specific fuel consumption, carbon monoxide (CO),
and unburnt hydrocarbon (UBHC) emission. Yusaf et al.
[20] used ANN to predict the engine torque, power, BSFC,
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Table 4: Performance of RBF network with fixed centers selected at
random for variable width.

S No Variable Training accuracy (%) Test accuracy (%)

1 BTE 100 96

2 BSEC 99 94

3 Texh 98 90

4 NOx 88 82

5 Smoke 85 77

6 CO 72 69

7 UBHC 73 69

Table 5: Variation of MSE with the RBF width.

Width value 0.02 0.05 0.08 0.09 0.12 0.15

MSE 0.0015 0.0012 0.0010 0.0010 0.008 0.2977

Table 6: Performance of the network for optimized number of
centers and width.

S No Variable Training accuracy Test accuracy

1 BTE 100 96

2 BSEC 99 94

3 Texh 98 90

4 NOx 91 81

5 Smoke 85 78

6 CO 72 69

7 UBHC 72 70

and emissions from a diesel engine fuelled with CNG and
diesel. ANN modeling was done with multilayer perceptron
(MLP). They observed that the model was able to predict the
performance and emission characteristics with a correlation
coefficient of more than 0.9. Sayin et al. [21] developed ANN
models to predict engine emissions from a SI engine. They
observed that developed ANN models were able to predict
accurately the emission parameters. Arcaklioǧlu and Çelikten
[22] demonstrated that ANN models accurately predict the
performance parameters and emissions from a diesel engine
when the engine was run on neat diesel. They took engine
operating parameters as the inputs and the corresponding
performance parameters and emissions as outputs for the
network. The literature review reveals that use of MLP for
modeling engine performance and emission characteristics is
common [18–22]. But the application of radial basis function
(RBF) networks for modeling of thermal systems is very
limited [23–26]. In this context RBF technique has been
used for modeling performance and emission characteristics
of a biodiesel engine. RBFNN was developed based on the
random selection of centers of the RBF units. The widths
of RBF units were calculated using two approaches and
a comparison has been carried out with regard to their
prediction accuracy.

Table 7: Test pattern numbers corresponding to the specific engine
loading condition.

Loading condition Test patterns

25% 3, 7, 11, 15, 19, 23, 27, 31, 35

50% 1, 5, 9, 13, 17, 21, 25, 29, 33, 37

75% 2, 6, 10, 14, 16, 18, 22, 24, 26, 30, 32, 34

100% 4, 8, 12, 20, 28, 36

2. Experimental Setup

Since the direct use of vegetable oil poses problems during
the running of the engines because of its higher viscosity, it
is subjected to a process called as transesterification which
reduces the viscosity and improves its volatility. Biodiesel is
prepared from waste cooking oil using the transesterification
process. Prepared biodiesel is mixed with neat diesel in
various concentrations (10%, 15%, 20%, and 25%) by
volume which has been termed as B10, B15, B20, and B25,
respectively, and used as fuel to run the engine.

The performance and emission tests were conducted on
a computerized 5.2 kW single cylinder, four stroke, naturally
aspirated, direct injection, variable compression ratio, and
water cooled diesel engine test rig. Figure 1 shows the
photograph of the experimental setup. It is a single cylinder,
four stroke compression ignition engine connected to an
eddy current dynamometer. It is provided with temperature
sensors for the measurement of temperatures of jacket water,
calorimeter water, calorimeter exhaust gas inlet, and outlet
temperature. It is also provided with pressure sensors for the
measurement of combustion gas pressure and fuel injection
pressure. An encoder is fixed for crank angle record. The
signals from these sensors were interfaced with a computer
to display P-θ, P-V, and fuel injection pressure versus crank
angle plots. There is also a provision for the measurement
of volumetric fuel flow. The built in software in the system
calculated indicated power, brake power, thermal efficiency,
volumetric efficiency, and heat balance. An AVL Digas 444
exhaust gas analyzer was used to measure the CO, HC, and
NOx emissions in the engine exhaust. An AVL 437C smoke
meter was used to measure the smoke intensity in the engine
exhaust. Specifications of the engine are given in Table 1.
Experiments were conducted initially by using neat diesel
at various loads and then with WCO methyl ester blends.
Experiments were repeated by changing the compression
ratios, injection timings, and injection pressures as shown in
Table 2.

3. Neural Network Modeling

A neural network is a massively parallel distributed processor
made up of simple processing units, which has a natural
propensity for strong experimental knowledge and making
it available for use. They can learn from examples and
are fault tolerant in the sense that they are able to handle
noisy and incomplete data. They are able to deal with
nonlinear problems and once trained can perform prediction
and generalization at high speeds [27]. They differ from
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conventional modeling approaches in their ability to learn
about the system without the prior knowledge of the process
relationships. The prediction by a well-trained ANN is much
faster than the conventional simulation programs or mathe-
matical models as no lengthy iterative calculations are needed
to solve differential equations using numerical methods. One
of the advantages is their ability to model complex nonlinear
relationships between multiple input variables and required
outputs. In the case of diesel engine modeling using blends of
biodiesel, where complex interactions between the different
variables are not yet completely understood, ANN approach
for modeling is well suited. It consists of large number of
neurons and interconnections between them. According to
the structure of the connections, they have been identified as
feed forward and recurrent networks. Feed forward networks
have one-way connections, from the input to the output
layer. They are most commonly used for prediction and
nonlinear function fitting. Here the neurons are arranged
in the form of layers. Neurons in one layer get inputs from
previous layer and feed their outputs to the next layer. The
last layer is called the output layer. Layers between the input
and output layers are called hidden layers and are termed as
multilayered networks. In the present study, modeling has
been done by using radial basis function neural networks
(RBFNNs), which is a feed forward network.

4. Radial Basis Function Neural
Networks (RBFNNs)

RBF networks, a class of feed forward networks have univer-
sal approximation capabilities. The design of this network is
viewed as a curve fitting approximation problem in a high
dimensional space. According to this view point, learning is
equivalent to finding a surface in a multidimensional space
that provides the best fit to the training data. In its most basic
form it involves 3 layers with entirely different roles. Input
layer is made of source nodes that connect the network to
its environment. Second is the hidden layer which applies a
nonlinear transformation from the input space to the hidden
space, which is of high dimensionality. Output layer is linear,
supplying the response of the network to the activation
patterns applied to the input layer. Figure 2 shows the general
architecture of the RBF network. An RBF is symmetrical
about a given mean or center in a multidimensional space.
Each RBF unit has two parameters, a center xj , and a width
σj . This center is used to compare the network input vector to
produce a radially symmetrical response. The width controls
the smoothness properties of the interpolating function.
Response of the hidden layer are scaled by the connection
weights of the output layer and then combined to produce
the network output. In the classical approach to RBF network
implementation, the basic functions are usually chosen as
Gaussian and the number of hidden units is fixed based on
some properties of the input data. The weights connecting
the hidden and output units are estimated by linear least
squares method (LMS) [27].

There are different learning strategies available for the
design of an RBF network, depending on how centers of the

radial basis functions of the network are specified [28, 29].
In the present study, Random initialization method has been
used for RBF modeling.

The simplest approach is to design RBFNN. In this,
the number of radial-basis functions defining the activation
functions of the hidden units are fixed. Specifically, the
locations of the centers may be chosen randomly from the
training data set. The RBFs use Gaussian activation function
which is defined as φj(x) = exp(−‖xj − ξi‖2/2σ2

j ), where
xj is the center and σj is the width (standard deviation),
j = 1, 2, . . . , c, where c is the number of centers. The only
parameter that would need to be learned in this approach
is the linear weights in the output layer of the network.
The weights are learned using a simple LMS algorithm.
The algorithm to train the network by using random
initialization method is the following.

(1) Select the number of RBF centers arbitrarily.

(2) Initialize their centers from input data randomly.

(3) Set Etot = 0.

(4) Choose the input output pair (ξ
μ
i , ζ

μ
k ), where μ =

1, 2, 3, . . . n are the number of patterns and i =
1, 2, 3, . . . p are the number of input features, k is the
output feature.

(5) Compute the hidden layer output vj = e‖xj−ξi‖
2

/2σ2
j ,

where xj is the center and σj is width of the RBF unit.

(6) Compute the output using Ok = 1/(1 + e−
∑
wk jVj ).

(7) Compute the square error E = (Ok − ζk)× (Ok − ζk)
and Etot = Etot + E.

(8) The change in the output layer weights are calculated
as

∂k = (Ok − ζk)×Ok × (Ok − ζk)

Δwk j = ∂k × vj × α× η,
(1)

where η and α are learning rate and momentum
parameters, and

wnew
k j = wold

k j + Δwk j . (2)

(9) If Etot > Emin then go to step 4.

(10) Save weights, centers, widths, and exit [29].

For training the networks, load percentage, compression
ratio, blend percentage, injection timing, and injection pres-
sure were taken as the input parameters and brake thermal
efficiency, brake specific energy consumption, exhaust gas
temperature and engine emissions NOx, smoke, and CO and
UBHC were used as the output parameters. The training of
the network has been done with different number of RBF
units. The widths of the RBF units were determined using a
P-nearest neighbor heuristic (each RBF unit has a different
width value) [28] and studies have been carried out. The
simulation parameters η and α were fixed as 0.85 and 0.05,
respectively, and were maintained constant for all the studies.
The data set was divided into two groups—training data set,
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used for training the network with about 85% of the data
selected randomly, and test data set with the remaining data
used for testing the network performance. For the different
number of selected centers MSE have been tabulated in
Table 3. It is clear from the table that the error decreases as the
number of centers increased and reached a minimum for 275
beyond which the error increased. Hence, 275 was selected as
the optimum number of centers. The variation of error with
the number of epochs during training with 275 RBF units is
shown in Figure 3.

Mean square error (MSE) has been used for evaluating
the network performance. Error limit of 5% was considered
for performance parameters and 10% for emission parame-
ters [20–22]. Based on these values the prediction accuracy
of the network for both training and test data is as shown in
Table 4.

In another study, widths have been kept (fixed) constant
for all the RBF units and the network was trained for different
values of widths. Table 5 shows the MSE of RBF network with
different values of widths, for 275 RBF units. It is clear from
the table that the error decreased with the increase in the
value of the width. The optimum value of width has been
chosen as 0.08, since the MSE was least corresponding to this
width. Beyond this value of the width the error started to
increase. Using the above width, the network was trained and
network results so obtained have been tabulated in Table 6.

On comparing the prediction accuracy of the network
results, fixed widths for RBF units gave better performance
prediction than variable width. The prediction accuracy for
the emission parameters are relatively lower than that for
the performance parameters. This could be attributed to
the error made during the emission measurements and the
complexity involved in the combustion process. Figures 4, 5,
6, 7, 8, 9, and 10 shows the plot of experimental and RBF
network predicted results for the test data selected randomly
from the entire experimental data. The results indicate that
ANN predicted values are very close to the experimental
values for the test data under different loading conditions
(25%, 50%, 75%, and 100%). Table 7 shows the test pattern
number and the corresponding loading condition with
respect to BSEC. Hence RBFNN can be used for effectively
predicting the performance and emission parameters of a
biodiesel engine fuelled with WCO methyl ester.

5. Conclusions

In this paper an attempt has been made to model engine
performance parameters and emissions using RBF neural
network. Experiments were conducted on a four stroke CI
engine using different biodiesel blends. Load percentage,
compression ratio, blend percentage, injection timing, and
injection pressure were taken as the input parameters.
Brake thermal efficiency, brake specific energy consumption,
exhaust gas temperature and engine emissions NOx, smoke,
UBHC, and CO were used as the output parameters. RBF
neural networks which are a new class of networks not very
widely used for these applications have been used in this
work. Centers of the RBF units were selected randomly.

Fixing the widths of RBF units rather than using variable
widths calculated using P-nearest neighbor heuristic gave
better results. RBF network results matched closely with the
experimental results for the test data with the prediction
accuracy of more than 90% for performance parameters
and around 70% for emission parameters. Hence, it can be
concluded that RBFNN can be effectively used for modeling
a biodiesel engine.
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