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Continuous Time Channels with Interference

Ioana Ivan∗ Michael Mitzenmacher† Justin Thaler‡ Henry Yuen§

Abstract

Khanna and Sudan [4] studied a natural model of continuous time channels where signals are corrupted by the
effects of both noise and delay, and showed that, surprisingly, in some cases both are not enough to prevent such
channels from achieving unbounded capacity. Inspired by their work, we consider channels that model continuous
time communication with adversarial delay errors. The sender is allowed to subdivide time into an arbitrarily large
numberM of micro-units in which binary symbols may be sent, but the symbols are subject to unpredictable delays
and may interfere with each other. We model interference by having symbols that land in the same micro-unit of time
be summed, and we studyk-interference channels, which allow receivers to distinguish sums up to the valuek. We
consider both a channel adversary that has a limit on the maximum number of steps it can delay each symbol, and a
more powerful adversary that only has a bound on the average delay.

We give precise characterizations of the threshold betweenfinite and infinite capacity depending on the in-
terference behavior and on the type of channel adversary: for max-bounded delay, the threshold is atDmax =

Θ(M log (min{k,M})), and for average bounded delay the threshold is atDavg = Θ
(

√

M min{k,M}
)

.

1 Introduction

We study continuous time channels with adversarial delay errors in the presence of interference. Our models are
inspired by recent work of Khanna and Sudan [4], who studied continuous-time channels in the presence of both delay
errors and (signal) noise errors. In this model, the communicating parties can subdivide time as finely as they wish. In
each subdivided unit of time a 0 or 1 can be sent, but the sent signals are subject to unpredictabledelays. Khanna and
Sudan found (suprisingly) that the channel capacity in their model is finitely bounded only if at least one of the two
sources of error (delay or signal noise) is adversarial. However, they assumed that at any instant in time, the receiver
observes thesumof the signals delivered.

In this paper, we observe that the behavior of the channel changes dramatically if one accounts for the possibility
of interference, and that this holds even in the absence of signal noise. Our model of interference is very simple; the
symbols received at each time unit are summed, and the receiver sees the exact sum if it is less thank, but values
greater thank cannot be distinguished from each other.

At a high level, our results are two-fold. First, we show thatdelay errors in the presence of interference are
surprisingly powerful. Second, in the context of delay errors with interference, we find that seemingly innocuous
modeling decisions can have large effects on channel behavior.

Related Work. Typically a communication channel is modeled as follows. The channel takes as input a signalf ,
modeled as a function from some domainT to some rangeR, and the channel outputs a received signalf̃ : T → R,
which is a noisy version off . For discrete time channels,T is a finite domain{0, . . . , T − 1} whereT is the time
duration, and for continuous-time channels,T is a continuous domain such as the interval[0, T ]. For discrete signal
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channels,R is a finite set such as{0, 1}, and for continuous signal channels,R is an infinite set such as the interval
[0, 1].

Shannon showed in the discrete time setting, the capacity ofthe channel is finite even if the signal is continuous,
as long as there is signal noise [6]. Nyquist [5] and Hartley [3] showed that even in the continuous time setting, the
capacity is finite if one places certain restrictions on the Fourier spectrum of the signal.

Most relevant to us is recent work by Khanna and Sudan [4], which introduced continuous-time channels with
signal noise and delay errors. They modeled their channel asthe limit of a discrete process, and found that the
capacity of their channel is infinite unless at least one of the error sources is adversarial.

Our work differs from previous work in several ways. We consider channels which introduce delays adversarially,
but we additionally consider a very simple model of interference. We also consider two limitations on the adversary:
one where maximum delay for any symbol is bounded, and one where the average delay over all symbols is bounded.
In both cases, we find that our channels display a clean threshold behavior.

We believe that the adversarial setting presented here offers a clean initial analysis of the interference model,
already with surprising results. A next natural step would be to analyze the effect ofrandomdelays in the presence of
interference, and we leave this question as an interesting direction for future work.

2 Model and Summary of Results

Modeling Time.Following [4], we model continuous time as the limit of a discrete process. More specifically, the
sender and receiver may send messages that last a duration ofT units of time, but also can divide every unit of time
into M subintervals calledmicro-intervals, and the sender may send one bit per micro-interval. We referto M as the
granularity of time, and refer to a sequence ofM micro-intervals as amacro-interval. We callT themessage duration
of the channel. A codewordc sent over the channel is therefore represented asc ∈ {0, 1}MT .

Modeling Delays.The effect of the channel on a sent codewordc ∈ {0, 1}MT is to delay symbols ofc by some
amount, e.g. theith symbol ofc may be moved to thejth timestep of the received codeword, wherej ≥ i. The delay
process is adversarial, where we assume that the adversary knows the encoding/decoding scheme of the sender and
receiver, and both the symbols that get delayed and the amount they are delayed can depend on the codeword that is
sent. We formalize the notions ofmax-bounded delayandaverage-bounded delaybelow.

Modeling Interference.If multiple symbols are delivered at the same time step, there are several natural ways the
channel could behave. In [4], the receiver observes the sum of all bits delivered at that instant of time; we call this the
sum channel. Another obvious choice is for the receiver to see theOR of all bits delivered at that instant in time; we
call this theOR channel.

We generalize these two models to what we call thek-interferencechannel. If there are fewer thank 1s delivered
at an instant in time, the receiver will see the exact number of 1s delivered; otherwise the receiver will only see that
at leastk 1s have arrived. Thus, the sum channel can be viewed as the∞-interference channel, and the OR channel
as the1-interference channel. We considerk-interference channels ask varies between the extremes of1 and∞, and
may depend on the granularity of timeM . We call the parameterk thecollision resolutionof the channel.

Valid Codebooks.For any fixed channel and codewordc, we letB(c) denote the set of possible received strings
corresponding toc. For any timeT , we say a codebookC ⊆ {0, 1}MT is valid for a channel if for anyc 6= c′ in C,
B(c) ∩ B(c′) = ∅. Informally, this means that the adversary cannot cause thedecoder to confusec with c′ for any
other codewordc′.

Rate and Capacity.For any fixed granularity of timeM and timeT , let sM,T := log |C(M,T )|, where|C(M,T )|
denotes the size of largest valid codebookC(M,T ) ⊆ {0, 1}MT for the channel. Thecapacity of the channel at granu-
larity M is defined asR(M) = lim supT→∞{sM,T/T }.Thecapacityof the channel is defined aslim supM→∞ R(M) =
lim supM→∞ [lim supT→∞{sM,T/T }]. We stress that the order of the limits in the definition of thechannel capacity
is crucial, as we show in Section 5.

Encoding: For everyT andM , the sender encodessT,M bits asMT bits by applying an encoding functionET :
{0, 1}sT,M → {0, 1}MT . The encoded sequence is denotedX1, . . . , XMT .
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Delay: The delay is modeled by a delay function∆ : [MT ] → Z
≥0, whereZ≥0 denotes the non-negative integers.

The delay function has to satisfy a constraint depending on the type of delay channel we have:

• Max-bounded delay: For all i ∈ [MT ], ∆(i) ≤ Dmax, whereDmax is the bound on the maximum delay.

• Average-bounded delay:
∑

i ∆(i) ≤ MT ·Davg, whereDavg is the bound on the average delay.

Received Sequence. The final sequence seen by the receiver given delay∆, is Y1, . . . , YMT ∈ Z
≥0, whereYi :=

min{k,∑j≤i s.t.j+∆(j)=i Xj} andk is the collision resolution parameter of the channel. We will ignore the symbols
that get delayed past timestepMT .

For brevity, we use the shorthand AVG-k channel and MAX-k channel, where the meaning is clear.

2.1 Summary of Results

We prove that in the case of max-bounded delay, the capacity is finite if Dmax = Ω(M log (min{k,M})), and
infinite otherwise. In contrast, we prove that in the case of average-bounded delay, the capacity is finite ifDavg =

Ω
(

√

M ·min{k,M}
)

, and infinite otherwise.

We also consider a number of variant channels and observe that seemingly innocuous modeling choices cause the
behavior to change drastically. In particular, we considersettings where the granularity of time is allowed to grow with
the message duration, and where adversarial signal noise can also be added. For brevity, we provide a few specific
interesting results.

3 Max-Bounded Delay Channel

We give a precise characterization of the infinite/finite capacity threshold of the MAX-k channel. Here and throughout,
k refers to the collision resolution paramater, andM to the granularity of time.

Theorem 3.1. If Dmax is the max-delay bound for the MAX-k channel, then then the capacity of the channel is infinite
whenDmax= o (M log (min{k,M})), and the capacity is finite whenDmax= Ω(M log (min{k,M})).

Proof. Infinite capacity regime. SupposeDmax = cM log (min{k,M}) for c = o(1) (here,c denotes a function of
M that is subconstant inM ).

Assume for simplicity that1/c is an integer. Also assume thatc ≥ 1
log k andk ≤ M , as smaller values ofc

and larger values ofk only make communication easier. We give a valid codebook of size s = 2T/2c, showing
R(M) = ω(1), and thus the capacity is infinite. Given a messagex ∈ {0, 1}T/2c, the sender breaks the messagex
into blocksof lengthlog k. The sender then encodes each block independently, using2cM log k bits for each block as
described below. The resulting codeword has lengthT2c log k · 2cM log k = TM as desired.

A block is encoded as follows. Since each block islog k bits long, we interpret the block as an integery, 1 ≤ y ≤ k.
The sender encodes the block as a string of2cM log k bits, where the firsty ≤ k bits in the string are 1s, and all
remaining bits are 0s. To decode thej’th block of the sent message, the receiver simply looks at the j’th set of
2cM log k bits in the received string, and decodes the block to the binary representation ofy, wherey is the total count
of 1s received in those2cM log k bits.

Since the maximum delay is bounded bycM log k, and 1s only occur as the firstk ≤ M ≤ cM log k locations of
each sent block, any 1-bit must be delivered within its block. Furthermore, the count of 1 bits is preserved, because at
mostk 1 bits collide within a block. Correctness of the decoding algorithm follows.

Finite Capacity Regime.Suppose the delays have bounded maximumDmax = cM log (min{k,M}), with c = Ω(1).
We give an adversary who ensures that there at mostO(log k) bits of information are transmitted everyc log k macro-
timesteps. Thus, forc = Ω(1), the rate is bounded above byO(1c ) = O(1) for all values ofM , and hence the capacity
is finite.

Assume first thatk ≤ M . The adversary breaks the sent string into blocks of lengthDmax, and delays every sent
symbol to the end of its block. The adversary clearly never introduces a delay longer thanDmax micro-timesteps.

3



Each received block can only takek + 1 values: all bits of the received block will be 0, except for the last symbol
which can take any integer value between0 andk. Thus, onlyO(log k) bits of information are transmitted every
Dmax = cM log k micro-timesteps, orc log k macro-timesteps, demonstrating finite capacity.

If k > M , then the adversary is the same as above, where the block sizeis Dmax = cM logM . Each received
block can only take one ofcM logM +1 values, since all bits of the block are 0, except for the last symbol which may
vary between0 andcM logM . Thus, onlylog(cM logM) = O(c logM) bits of information are transmitted every
c logM macro-timesteps, completing the proof.

4 Average-Bounded Delay Channel

We now study the behavior of the AVG-k channel.

Theorem 4.1. If Davg is the average-delay bound for the AVG-k channel, then then the capacity of the channel is
infinite whenDavg = o(

√

M min{k,M}), and the capacity is finite whenDavg = Ω(
√

M min{k,M}).

Proof. Infinite capacity regime. SupposeDavg = c
√
Mk, wherec = o(1) (that is, again,c is a function ofM that

is subconstant inM ). Let T be the message duration. Assume without loss of generality that c ≥ 1
Mk andk ≤ M

(smaller values ofc and larger values ofk only make communication easier).
Suppose the sender wants to send a messagex ∈ {0, 1}sT,M with sT,M = T/c. As in [4, Lemma 4.1], we use a

concatenated code: we assume thatx has already been encoded under a classical error-correcting codeC that corrects
a 1/5-fraction of adversarial errors (or any other constant lessthan1/4), as this will only affect the rate achieved by
our scheme by a constant factor.C is then concatenated with the following inner code, which istailored for resilience
against delay errors: each bit ofx gets encoded into a block of length2ℓ = 2cM : 0’s map to2ℓ 0’s (called a0-block),
and 1’s map toℓ 1’s followed byℓ 0’s (called a1-block). The resulting codeword is thusMT symbols long as required.

For decoding, letY = Y1, . . . , YMT be the received word. The receiver dividesY into blocks of lengthℓ. Let
γ(i) =

∑

j∈[iMT,...,(i+1)MT−1] Yj denote the number of1s encountered in theith block. The receiver decodesY as

a messagey ∈ {0, 1}sT,M whereyi is declared to be1 if γ(i) ≥
√
ℓk, 0 otherwise. Notice

√
ℓk ≥ 1. Finally, the

receiver will decodey using the outer decoder to obtain the original message. By the error-correcting properties of the
outer codeC, it suffices to show that at least4/5ths of the inner-code blocks get decoded correctly.

We use a potential argument to demonstrate that the adversary can afford to corrupt a vanishingly small fraction of
the blocks. We maintain a potential functionΦ(i) that measures the total amount of delay the adversary can apply after
performing theith action (where an action is delaying a single symbol some distance). Initially,Φ(0) = MTDavg.

Turning a 0-block into a 1-block requires the adversary to delay at least
√
ℓk 1 symbols from some previous block

at least a distanceℓ/2, so this requires reducingΦ by Ω(ℓ3/2
√
k). To turn a 1-block into a 0-block, the adversary can

either 1) move1 symbols out of the 1-block (evicting1s), or 2)collide 1s within the 1-block, or 3) a combination of
both. We show that any combination requires reducingΦ byΩ(ℓ3/2

√
k) as well.

Suppose the adversary chooses to corrupt a 1-block by evictingδ 1 symbols, and colliding the remaining1 symbols
so that at most

√
ℓk 1s remain. The adversary minimizes the amount of delays it spends to do this by evicting the lastδ

1s from a block, and choosingα equally spaced “collision points” (CPs) within the remaining1s, where each remaining
1 symbol is delayed to the nearest CP ahead of it. Evictingδ 1s out of the block requires the adversary to spend at least
δℓ delays. Each CP receives(ℓ− δ)/α 1 symbols, and the amount of delays spent per CP is1+2+ · · ·+(ℓ− δ)/α =

Θ
(

(ℓ−δ)2

α2

)

. Thus, the total amount of delay spent by the adversary to corrupt the 1-block isΩ
(

(ℓ−δ)2

α + δℓ
)

. This is

minimized whenδ = 0, i.e. when no symbols are evicted. Sinceαk ≤
√
ℓk (because each CP will have valuek in the

received string if at leastk 1s are delivered at that index), the adversary needs to useΩ(ℓ3/2
√
k) units of potential in

order to corrupt a 1-block.
In our analysis, the minimum potential reductionΩ(ℓ3/2

√
k) accounts for corrupting at most a block and its

adjacent neighbor. Thus, the maximum number of blocks corruptable is2Φ(0)/Ω(ℓ3/2
√
k) = O(c(M/ℓ)3/2T ) =

O(T/
√
c). Since the original codeword had a total ofT/c blocks, the maximum fraction of blocks corruptable is

O(
√
c). However,c = o(1), so a vanishingly small fraction of blocks are corrupted, and the original message can be

recovered. Thus, we have constructed a valid codebook of size2Ω(T/c), and this implies that the capacity is infinite.
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Finite capacity regime. Suppose the delays have bounded averageDavg = c
√

M min{k,M}, for some constantc.
We will assume for simplicity thatc = 1 andk ≤ M , and explain how to handle smaller values ofc and larger values
of k later. We show the capacity is finite by specifying an adversary who ensures that there are a constant number of
possible received strings for almost every macro-timestep.

To accomplish this, the adversary will break the sent stringinto blocks of lengthM . It scans the blocks sequentially,
and adds and removes 1s so that each block will have 1s only at indices that are multiples ofDavg, or at the very last
index of the block. The adversary ensures that it can always add 1s when it needs to by maintaining a “bank” of
delayed 1s from previous blocks that will have size betweenDavg and2Davg 1s whenever possible. The bank will
always be small enough so that it does not contribute too manydelays to the average. Once the bank reaches sizeDavg,
its size never falls below this level again. We show that the amount of information transmitted before the bank reaches
this size is negligible for largeT .

The adversary considers each block in turn, and its actions falls into four cases. Letℓ denote the number of 1s in
the block, and lets denote the size of the bank at the start of the block.

1. If ℓ ≤ Davg (we call the blocklight):

(a) If s ≥ Davg+ k − ℓ, the adversary will delay all 1s in the block until the final index within the block. If
ℓ < k, the adversary will also deliverk − ℓ 1s from the bank at the final index to ensure that the value of
the final index isk. When this step completes, the size of the bank will be betweenDavg ands .

(b) If s < Davg + k − ℓ, the adversary adds all 1s in the block to the bank, ensuring that the received block
consists entirely of 0s. When this step completes, the bank has size leasts and at mostDavg+ k ≤ 2Davg.

2. If ℓ > Davg (we call the blockheavy):

(a) If s ≤ Davg, the adversary addsDavg− s < ℓ of the new 1s to the bank, and it delays the rest of the 1s to
the nearest integer multiple ofDavg.

(b) Otherwise,s will be at leastDavg. The adversary will placek 1s at every location which is an integer
multiple ofDavg using bits from its bank (this requires at mostkM/Davg = kM/

√
kM = Davg bits), and

delays the firstℓ −Davg 1s within the current block to the nearest integer multiple of Davg. The lastDavg

1s get added to the bank to replace the 1s lost from the bank, sothe bank stays at sizes.

We argue that at most
√
Mk log k+O(T ) bits of information are transmitted overT blocks by the above scheme.

Once the bank reaches sizeDavg, there are only three possible values for each received block: the all-zeros vector; the
vector that is all 0s except for the final index which has valuek; and the vector that is all 0s except for indices which
are integer multiples ofDavg, which have value exactlyk. Before the bank reaches sizeDavg, any light block is still
received as either the first or second possibility just described. Finally, at most one heavy block is encountered before
the bank reaches sizeDavg, and this block can take on at mostkM/Davg ≤ k

√
Mk possible values. Thus, over allT

blocks, at most
√
Mk log k +O(T ) bits of information are transmitted, and hence the capacityis finite.

Finally, we bound the average delay incurred by the adversary. For each block, we separately bound the total
delays incurred by the symbols banked at the beginning of theblock and symbols within the block. The symbols
within any light block are responsible for total delay at most MDavg, since at mostDavg symbols are delayed at most
M . The symbols within in any heavy block are responsible for total delay at most2MDavg, since all but at most
Davg 1s are delayed only until the nearest integer multiple ofDavg, and the rest are delayed at mostM . As the bank
contains at most2Davg 1s, banked symbols contribute at most2MDavg total delays per block. The adversary therfore
spends at most4MDavg total delays per block, for an average delay of4Davg. To reduce this toDavg, we modify the
above construction to use a block length ofM/16 micro-timesteps, decreasing the average delay appropriately while
increasing the rate by only a constant factor.

It remains to explain how to handle casesc < 1 andk > M . If c < 1, we simply decrease the block size
further, fromM/16 to Mc2/16. This decreases the average delay by a factor ofc and increases the rate by only a
constant factor. Fork > M , we note the adversary described above never delivers more thanM 1s at any particular
micro-timestep. Thus, even ifk > M , the the received string is the same as it would be ifk = M .

5



5 Extensions and Alternative Models

5.1 The Order of the Limits Matters

Under the definition of capacity used in the sections above and in [4], lim supM→∞ lim supT→∞{kM,T /T }, the
sender and receiver are not allowed to let the granularity oftime grow withT . If we instead define the capacity to
be lim supT→∞ lim supM→∞{kM,T/T }, then the channel would behave very differently. Conceptually, the reason
is that ifM is allowed to grow withT , the sender and receiver can chooseM to be so much larger thanT that a vast
amount of information (relative toT ) can be encoded in just the first macro-timestep, avoiding interference issues.

To demonstrate one place where this interchange of limits alters the channel capacity, we show the AVG-1 channel
behaves differently under this definition.

Theorem 5.1. If one interchanges the order of limits in the definition of channel capacity, then the capacity of the
AVG-1 channel withDavg = o(M) is infinite.

Proof. The idea is that the sender encodesω(1) bits of information via the location of thefirst 1 in the entire codeword.
More formally, supposeDavg = cM − 1 with c = o(1), and letc′ =

√

c/2. Assume for simplicity thatMc′ is an
integer. We will construct a valid codebookC ⊆ {0, 1}MT with |C| = Ω(1/c′) = ω(1) such that for each message
x ∈ C, the lastT − 1 macro-timesteps consist only of 0s. Thus, we only specify the first macro-timestep in each
codewordx. In the first codeword, the first macro-timestep will simply beMc′ 0s followed byM −Mc′ 1s. In the
second codeword, the first macro-timestep will be2Mc′ 0s followed byM−2Mc′ 1s. In general, in theith codeword,
the first macro-timestep will beiMc′ 0s followed byM − iMc′ 1s.

The decoder will look at the positionL of the left-most 1 in the received string and output the largest i such that
iMc′ ≤ L.

In order for the adversary to force the decoder to decode incorrectly, the decoder has to make the first 1 appear
at leastc′ · M positions later than it does in the sent string. For this to happen, the adversary has to spend at least
1 + 2+ · · ·+Mc′ ≥ M2c′2/2 delays in total. So the average delay has to be at leastMc′2

2T = Mc
4T . For fixedT , this is

Ω(M).

5.2 Adding noise

In this section we note that thecombinationof interference with noise yields a max-bounded adversary that is surpris-
ingly potent.

Theorem 5.2. Suppose the adversary is allowed to flipt bits per macro-timestep, and delay each bit a maximum of
Dmax micro-timesteps. Then the capacity of the 1-interference channel is finite ifDmax · t = Ω(M), and is infinite if
Dmax · t = o(M). In particular, the capacity is finite ift = Dmax= Ω(

√
M).

Proof. Finite capacity regime. Suppose for simplicity thatDmax · t = M . The key observation is that the adversary
can turnanymacro-timestep into the unique string consisting of all zeros, except for 1s at indices which are integer
multiples ofDmax, while staying within its budget. The adversary breaks eachmacro-timestep intot blocks of length
Dmax, and delays each bit to the end of its block. If no 1s are sent ina block, the adversary flips a single bit in the
block to create a 1. This totals at mostt bit-flips per macro-timestep, giving the result.

Infinite capacity regime. SupposeDmax · t = o(M). We again use a concatenated code to construct a valid codebook

of size2Ω(
MT
Dmax). The sender starts with a stringx ∈ {0, 1} MT

Dmax+1 encoded under a classical error-correcting code with
constant rate which can tolerate up to a1/5 fraction of adversarial errors.

The sender then replaces each bit ofx with a block of lengthDmax + 1: if xi = 0, the i’th block is set to the
all-zeros string, and ifxi = 1, thei’th block is set to the string consisting of a 1 followed byDmax zeros. The decoder
decodes a block to 1 if the block contains at least one 1, and decodes a block to 0 otherwise. It suffices to show that at
least a4/5 fraction of the blocks get decoded correctly.

Call a blockdirty if even a single bit within it is flipped, and call the blockcleanotherwise. Since the adversary
can afford to flip onlyT · t = o(MT

Dmax
) bits of the course of the entire message, only ano(1) fraction of blocks are

dirty. For any clean block, the adversary cannot afford to delay the first bit in the block beyond the final bit in the
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block. Thus, any clean block will get decoded correctly. It follows that decoding will always be successful, yielding
the result.

6 Discussion

We studied a variety of natural models for continuous-time channels with delay errors in the presence of interference.
Our results show that these channels exhibit a clean threshold behavior. We note our finite capacity results hold even
for computationally simpleadversaries in the sense of Guruswami and Smith [2]; that is,our adversaries process the
sent string sequentially in linear time, using justO(M) space. Our results can be viewed as a counterweight to those of
Khanna and Sudan [4], by showing that other natural additional restrictions can lead to finite capacity in their model.

Many questions remain for future work. Our results only address adversarial delays; random delays under our
interference model remains open. One might also consider different models of interference, or different limitations on
the delays introduced by the adversary.
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