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Continuous Time Channels with Interference

loana Ivari Michael Mitzenmachér  Justin Thaler Henry Yuen

Abstract

Khanna and Sudanl[4] studied a natural model of continusns thannels where signals are corrupted by the
effects of both noise and delay, and showed that, surphisingsome cases both are not enough to prevent such
channels from achieving unbounded capacity. Inspired bir thiork, we consider channels that model continuous
time communication with adversarial delay errors. The senslallowed to subdivide time into an arbitrarily large
numberM of micro-units in which binary symbols may be sent, but thealsgls are subject to unpredictable delays
and may interfere with each other. We model interferenceawnly symbols that land in the same micro-unit of time
be summed, and we studyinterference channels, which allow receivers to distisiysums up to the value We
consider both a channel adversary that has a limit on thermaxinumber of steps it can delay each symbol, and a
more powerful adversary that only has a bound on the averslgg.d

We give precise characterizations of the threshold betwiggte and infinite capacity depending on the in-
terference behavior and on the type of channel adversanyméx-bounded delay, the threshold is@tax =

© (M log (min{k, M})), and for average bounded delay the threshold 824 = © (\/M min{k, M}).

1 Introduction

We study continuous time channels with adversarial delagreiin the presence of interference. Our models are
inspired by recent work of Khanna and Sudan [4], who studéedinuous-time channels in the presence of both delay
errors and (signal) noise errors. In this model, the comwatinig parties can subdivide time as finely as they wish. In
each subdivided unit of time a 0 or 1 can be sent, but the sgmalsi are subject to unpredictablelays Khanna and
Sudan found (suprisingly) that the channel capacity inrthmidel is finitely bounded only if at least one of the two
sources of error (delay or signal noise) is adversarial. él@y they assumed that at any instant in time, the receiver
observes theumof the signals delivered.

In this paper, we observe that the behavior of the channelggsdramatically if one accounts for the possibility
of interference, and that this holds even in the absencegyoiknoise. Our model of interference is very simple; the
symbols received at each time unit are summed, and the szcges the exact sum if it is less thanbut values
greater thark cannot be distinguished from each other.

At a high level, our results are two-fold. First, we show thatay errors in the presence of interference are
surprisingly powerful. Second, in the context of delay esrwith interference, we find that seemingly innocuous
modeling decisions can have large effects on channel bahavi

Related Work. Typically a communication channel is modeled as follows.e Thannel takes as input a sigrfal
modeled as a function from some domdirto some rang®, and the channel outputs a received sighall” — R,
which is a noisy version of. For discrete time channel§; is a finite domain{0,...,7 — 1} whereT is the time
duration, and for continuous-time channéfsis a continuous domain such as the intef@all’]. For discrete signal
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channelsR is a finite set such af0, 1}, and for continuous signal channeR,is an infinite set such as the interval
[0, 1].

Shannon showed in the discrete time setting, the capacttyeoéhannel is finite even if the signal is continuous,
as long as there is signal noise [6]. Nyquist [5] and HartRlyshowed that even in the continuous time setting, the
capacity is finite if one places certain restrictions on tbarier spectrum of the signal.

Most relevant to us is recent work by Khanna and Sudan [4]clviitroduced continuous-time channels with
signal noise and delay errors. They modeled their chann#éieaéimit of a discrete process, and found that the
capacity of their channel is infinite unless at least one efahior sources is adversarial.

Our work differs from previous work in several ways. We calesichannels which introduce delays adversarially,
but we additionally consider a very simple model of integfeze. We also consider two limitations on the adversary:
one where maximum delay for any symbol is bounded, and oneaxhe average delay over all symbols is bounded.
In both cases, we find that our channels display a clean thigtblehavior.

We believe that the adversarial setting presented heresadfeslean initial analysis of the interference model,
already with surprising results. A next natural step wowdddanalyze the effect ehndomdelays in the presence of
interference, and we leave this question as an interestiagtibn for future work.

2 Model and Summary of Results

Modeling Time.Following [4], we model continuous time as the limit of a diste process. More specifically, the
sender and receiver may send messages that last a durafibarofs of time, but also can divide every unit of time
into M subintervals calledhicro-intervals and the sender may send one bit per micro-interval. We tef&f as the
granularity of time and refer to a sequence &f micro-intervals as anacro-interval We call'T themessage duration
of the channel. A codeworesent over the channel is therefore representedago, 1} M7,

Modeling Delays.The effect of the channel on a sent codewerd {0,1}*7 is to delay symbols of by some
amount, e.g. thé&h symbol ofc may be moved to thgth timestep of the received codeword, whgre i. The delay
process is adversarial, where we assume that the adversamskhe encoding/decoding scheme of the sender and
receiver, and both the symbols that get delayed and the artoeynare delayed can depend on the codeword that is
sent. We formalize the notions ofax-bounded delagndaverage-bounded deldgelow.

Modeling Interferencelf multiple symbols are delivered at the same time step,ettage several natural ways the
channel could behave. Ini[4], the receiver observes the $uathluits delivered at that instant of time; we call this the
sum channelAnother obvious choice is for the receiver to see@ie of all bits delivered at that instant in time; we
call this theOR channel.

We generalize these two models to what we callkkieterferencechannel. If there are fewer thanls delivered
at an instant in time, the receiver will see the exact numbésalelivered; otherwise the receiver will only see that
at leastk 1s have arrived. Thus, the sum channel can be viewed astherference channel, and the OR channel
as thel-interference channel. We considemterference channels asvaries between the extremesloandoo, and
may depend on the granularity of tindé¢. We call the parametérthe collision resolutionof the channel.

Valid Codebooks.For any fixed channel and codewordwe let B(c) denote the set of possible received strings
corresponding te. For any timeT’, we say a codebook C {0, 1}*7 is valid for a channel if for any: # ¢’ in C,
B(e) N B(¢') = 0. Informally, this means that the adversary cannot causeé¢beder to confuse with ¢’ for any
other codeword’.

Rate and CapacityFor any fixed granularity of tim@/ and timeT, let sy; v := log|C(M,T)|, where|C(M,T)|
denotes the size of largest valid codeb6tid/, T') C {0, 1}M7 for the channel. Theapacity of the channel at granu-
larity M is defined af(M) = limsup,_, . {sm,7/T}. Thecapacityof the channelis defined s sup,,_, .. R(M) =
lim sup ;s o0 limsupp_, o {sam,7/T}]. We stress that the order of the limits in the definition of¢channel capacity
is crucial, as we show in Sectiph 5.

Encoding: For everyT and M, the sender encodeg- 5, bits asM T bits by applying an encoding functiafi; :
{0,1}s7m — {0,1}MT. The encoded sequence is denakéd. . ., X /7.



Delay: The delay is modeled by a delay functidn: [MT] — Z=°, whereZ=° denotes the non-negative integers.
The delay function has to satisfy a constraint dependindperytpe of delay channel we have:

e Max-bounded delayFor alli € [MT], A(i) < Dmax, WhereDpax is the bound on the maximum delay.

e Average-bounded delay;, A(i) < MT - Dayg WhereDayq is the bound on the average delay.

Received Sequencd&he final sequence seen by the receiver given ddlais Y1, ..., Yy € Z2°, whereY; :=
min{k, > ;s j+a()=i X5} andk is the collision resolution parameter of the channel. W igiiore the symbols
that get delayed past timestépT'.

For brevity, we use the shorthand AvVksehannel and MAXk channel, where the meaning is clear.

2.1 Summary of Results

We prove that in the case of max-bounded delay, the capaitiyite if Dmax = Q (M log (min{k, M})), and
infinite otherwise. In contrast, we prove that in the casevefrage-bounded delay, the capacity is finitd,y =

Q (\/M - min{k, M}), and infinite otherwise.

We also consider a number of variant channels and observegbimingly innocuous modeling choices cause the
behavior to change drastically. In particular, we conssa¢tings where the granularity of time is allowed to growhwit
the message duration, and where adversarial signal naisalsa be added. For brevity, we provide a few specific
interesting results.

3 Max-Bounded Delay Channel

We give a precise characterization of the infinite/finiteawdty threshold of the MAXk channel. Here and throughout,
k refers to the collision resolution paramater, drddo the granularity of time.

Theorem 3.1. If Dhaxis the max-delay bound for the MAXehannel, then then the capacity of the channel is infinite
whenDmax = o (M log (min{k, M})), and the capacity is finite wheDnax = Q (M log (min{k, M })).

Proof. Infinite capacity regime. Suppos&max = ¢M log (min{k, M }) for ¢ = o(1) (here,c denotes a function of
M that is subconstant if/).
1

Assume for simplicity that /c is an integer. Also assume that> Toek andk < M, as smaller values af

and larger values of only make communication easier. We give a valid codebookizef s = 27/2¢, showing
R(M) = w(1), and thus the capacity is infinite. Given a message {0, 1}7/2¢, the sender breaks the message
into blocksof lengthlog k. The sender then encodes each block independently, Rsiidog & bits for each block as
described below. The resulting codeword has Ie@g@g—k -2¢M log k = T M as desired.

Ablock is encoded as follows. Since each blockijsk bits long, we interpret the block as an integet < y < k.
The sender encodes the block as a string«dif log k bits, where the firsfy < k bits in the string are 1s, and all
remaining bits are 0s. To decode tfi'th block of the sent message, the receiver simply looks atjitin set of
2¢M log k bits in the received string, and decodes the block to therpiegresentation af, wherey is the total count
of 1s received in thosee M log k bits.

Since the maximum delay is boundedd&\f log k, and 1s only occur as the firkt< M < ¢M log k locations of
each sent block, any 1-bit must be delivered within its bldakrthermore, the count of 1 bits is preserved, because at
mostk 1 bits collide within a block. Correctness of the decodirgpaithm follows.

Finite Capacity Regime.Suppose the delays have bounded maxinida, = cM log (min{k, M }), with ¢ = Q(1).
We give an adversary who ensures that there at fifsk; k) bits of information are transmitted everjog k£ macro-
timesteps. Thus, far = (1), the rate is bounded above by1) = O(1) for all values ofM, and hence the capacity
is finite.

Assume first thak < M. The adversary breaks the sent string into blocks of lefgth,, and delays every sent
symbol to the end of its block. The adversary clearly nevaoduces a delay longer thadn,x micro-timesteps.



Each received block can only take+ 1 values: all bits of the received block will be 0, except foe tast symbol
which can take any integer value betweeandk. Thus, onlyO(log k) bits of information are transmitted every
Dmax = cM log k micro-timesteps, of log k macro-timesteps, demonstrating finite capacity.

If & > M, then the adversary is the same as above, where the bloclsdizg,x = ¢M log M. Each received
block can only take one @fM log M + 1 values, since all bits of the block are 0, except for the kastlol which may
vary betweerd andcM log M. Thus, onlylog(cM log M) = O(clog M) bits of information are transmitted every
clog M macro-timesteps, completing the proof. O

4 Average-Bounded Delay Channel

We now study the behavior of the AV&ehannel.

Theorem 4.1. If Daygis the average-delay bound for the AVGehannel, then then the capacity of the channel is

infinite whenDayg = o(y/M min{k, M }), and the capacity is finite wheBayg = Q(y/M min{k, M}).

Proof. Infinite capacity regime. SupposeDayg = cv/MEk, wherec = o(1) (that is, againg is a function ofM that
is subconstant i/). LetT be the message duration. Assume without loss of generhéity:t> ﬁ andk < M
(smaller values of and larger values df only make communication easier).

Suppose the sender wants to send a messagd0, 1}*7-™ with sy = T'/c. Asin [4, Lemma 4.1], we use a
concatenated codeve assume that has already been encoded under a classical error-cogectiteC that corrects
al/5-fraction of adversarial errors (or any other constanttkas1/4), as this will only affect the rate achieved by
our scheme by a constant fact6r.is then concatenated with the following inner code, whictai®red for resilience
against delay errors: each biteets encoded into a block of length = 2¢M: 0’s map to2¢ 0's (called ad-block),
and 1's map td 1's followed by¢ O’s (called al-block). The resulting codeword is thg7T symbols long as required.

For decoding, let’ = Y1,..., Yy be the received word. The receiver dividésnto blocks of length?. Let
V(@) = D jepimr,... (i+1)mr—1) Y5 denote the number dfs encountered in thith block. The receiver decodéSas

a messagg € {0,1}°7-™ wherey; is declared to bé if v(i) > v/¢k, 0 otherwise. Notice//k > 1. Finally, the
receiver will decode using the outer decoder to obtain the original message. 8gittor-correcting properties of the
outer code”, it suffices to show that at leaét 5ths of the inner-code blocks get decoded correctly.

We use a potential argument to demonstrate that the adye@aafford to corrupt a vanishingly small fraction of
the blocks. We maintain a potential functi®r;) that measures the total amount of delay the adversary céyaigr
performing theith action (where an action is delaying a single symbol sorsidce). Initially®(0) = MT Dayg.

Turning a O-block into a 1-block requires the adversary faylat least/¢k 1 symbols from some previous block
at least a distanc&/2, so this requires reducing by Q(#3/2v/k). To turn a 1-block into a 0-block, the adversary can
either 1) movel symbols out of the 1-blockeyicting1s), or 2)collide 1s within the 1-block, or 3) a combination of
both. We show that any combination requires redudirtay Q(¢3/2\/k) as well.

Suppose the adversary chooses to corrupt a 1-block bymyicti symbols, and colliding the remainingymbols
so that at most/¢k 1s remain. The adversary minimizes the amount of delaygitdpto do this by evicting the last
1sfrom ablock, and choosirgequally spaced “collision points” (CPs) within the remaipl s, where each remaining
1 symbol is delayed to the nearest CP ahead of it. Evictihgout of the block requires the adversary to spend at least
0¢ delays. Each CP receivés— 0)/« 1 symbols, and the amount of delays spentper QRH& + - - - + ({ — §) /o =

€] ((5’5)2 ) Thus, the total amount of delay spent by the adversary twmpbthe 1-block i<? (@ + 65). Thisis

minimized whers = 0, i.e. when no symbols are evicted. Sinde < \//k (because each CP will have valkén the
received string if at least 1s are delivered at that index), the adversary needs tQ(#8é>\/k) units of potential in
order to corrupt a 1-block.

In our analysis, the minimum potential reductitxi¢>/2v/k) accounts for corrupting at most a block and its
adjacent neighbor. Thus, the maximum number of blocks ptahie is2®(0)/Q(¢3/2Vk) = O(c(M/€)%/?T) =
O(T/+/c). Since the original codeword had a total Bf ¢ blocks, the maximum fraction of blocks corruptable is
O(+/c). Howeverc = o(1), so a vanishingly small fraction of blocks are corrupted] #re original message can be
recovered. Thus, we have constructed a valid codebook®£8iZ/¢), and this implies that the capacity is infinite.



Finite capacity regime. Suppose the delays have bounded avefagg = ¢/M min{k, M}, for some constant
We will assume for simplicity that = 1 andk < M, and explain how to handle smaller values: @nd larger values
of k later. We show the capacity is finite by specifying an adwgradno ensures that there are a constant number of
possible received strings for almost every macro-timestep

To accomplish this, the adversary will break the sent siritmblocks of length/. It scans the blocks sequentially,
and adds and removes 1s so that each block will have 1s onigiaes that are multiples dayg, or at the very last
index of the block. The adversary ensures that it can alwdgsla when it needs to by maintaining a “bank” of
delayed 1s from previous blocks that will have size betwBag and2Dayg 1s whenever possible. The bank will
always be small enough so that it does not contribute too ralays to the average. Once the bank reachedkigg
its size never falls below this level again. We show that theant of information transmitted before the bank reaches
this size is negligible for largé'.

The adversary considers each block in turn, and its actalissifto four cases. Letdenote the number of 1s in
the block, and let denote the size of the bank at the start of the block.

1. If £ < Dqayg (we call the blocKight):

(@) If s > Dayg+ k — ¢, the adversary will delay all 1s in the block until the finadiéx within the block. If
¢ < k, the adversary will also delivér — ¢ 1s from the bank at the final index to ensure that the value of
the final index isk. When this step completes, the size of the bank will be bati&gy ands .

(b) If s < Dayg+ k — ¢, the adversary adds all 1s in the block to the bank, ensuniaigthe received block
consists entirely of 0s. When this step completes, the baalsize least and at mosDayg+ k < 2Dayg.

2. If £ > Dayg (we call the blockheavy:

(@) If s < Dayg, the adversary addBag — s < £ of the new 1s to the bank, and it delays the rest of the 1s to
the nearest integer multiple @ayg.

(b) Otherwise,s will be at leastDa,. The adversary will placé 1s at every location which is an integer
multiple of Dayg Using bits from its bank (this requires at més$t/ / Dayg = kM/\/W = Dayg bits), and
delays the first — Dayg 1s within the current block to the nearest integer multiglég,g. The lastDayg
1s get added to the bank to replace the 1s lost from the bankedmank stays at size

We argue that at most Mk log k + O(T) bits of information are transmitted ov&rblocks by the above scheme.
Once the bank reaches sizh,g, there are only three possible values for each receivedkbtbe all-zeros vector; the
vector that is all Os except for the final index which has valuand the vector that is all Os except for indices which
are integer multiples oD4,g, Which have value exactly. Before the bank reaches sizg,g any light block is still
received as either the first or second possibility just deedr Finally, at most one heavy block is encountered before
the bank reaches sizB,,q, and this block can take on at mast!/Pag < kVME possible values. Thus, over 4ll
blocks, at most/Mk log k + O(T) bits of information are transmitted, and hence the capigfipite.

Finally, we bound the average delay incurred by the adverdaor each block, we separately bound the total
delays incurred by the symbols banked at the beginning oblbek and symbols within the block. The symbols
within any light block are responsible for total delay at nd5Da,yg, since at mosDa,g Symbols are delayed at most
M. The symbols within in any heavy block are responsible féaltdelay at mosRA D,y Since all but at most
Dqyg 1s are delayed only until the nearest integer multipl®gfy, and the rest are delayed at magt As the bank
contains at mos2Dayq 1s, banked symbols contribute at m@3t D,q total delays per block. The adversary therfore
spends at mostM D,yg total delays per block, for an average delayldf,yg. To reduce this tdayg, we modify the
above construction to use a block lengthdf 16 micro-timesteps, decreasing the average delay apprelyriahile
increasing the rate by only a constant factor.

It remains to explain how to handle cases< 1 andk > M. If ¢ < 1, we simply decrease the block size
further, fromM /16 to Mc?/16. This decreases the average delay by a facterafd increases the rate by only a
constant factor. Fot > M, we note the adversary described above never delivers manéf 1s at any particular
micro-timestep. Thus, evenif > M, the the received string is the same as it would bef M. O



5 Extensions and Alternative Models
5.1 The Order of the Limits Matters

Under the definition of capacity used in the sections aboveiarf4], limsup,_,. limsup;_, o {kr,7/T}, the
sender and receiver are not allowed to let the granularitynoé grow withT'. If we instead define the capacity to
belimsupy_, . limsup,,_, .. {kn,7/T}, then the channel would behave very differently. Concdjytuhe reason
is that if M is allowed to grow withl’", the sender and receiver can chod$do be so much larger thadf that a vast
amount of information (relative t@) can be encoded in just the first macro-timestep, avoiditegfierence issues.

To demonstrate one place where this interchange of lintiéssathe channel capacity, we show the AY@hannel
behaves differently under this definition.

Theorem 5.1. If one interchanges the order of limits in the definition ofichel capacity, then the capacity of the
AVG-1 channel wittDayg = o(M) is infinite.

Proof. The idea is that the sender encodés) bits of information via the location of tHgst 1in the entire codeword.
More formally, supposé@ayg = cM — 1 with ¢ = o(1), and let¢’ = /c/2. Assume for simplicity thaf\/¢’ is an
integer. We will construct a valid codebo6kC {0, 1}MT with |C| = Q(1/¢) = w(1) such that for each message
x € C, the lastl’ — 1 macro-timesteps consist only of 0s. Thus, we only speciyfitst macro-timestep in each
codewordz. In the first codeword, the first macro-timestep will simpl/ ¢’ Os followed byM — Mc' 1s. In the
second codeword, the first macro-timestep wilkdéc’ Os followed byM —2M ¢’ 1s. In general, in théth codeword,
the first macro-timestep will b&\/¢’ Os followed byM — iMc' 1s.

The decoder will look at the positioh of the left-most 1 in the received string and output the largsuch that
iMc < L.

In order for the adversary to force the decoder to decodetiactly, the decoder has to make the first 1 appear
at leastc’ - M positions later than it does in the sent string. For this toplem, the adversary has to spend at least
1+2+---+Mc > M?c?/2 delays in total. So the average delay has to be at %@gt: e For fixedT, this is
Q(M). O

5.2 Adding noise

In this section we note that tltewmbinatiorof interference with noise yields a max-bounded adverdatis surpris-
ingly potent.

Theorem 5.2. Suppose the adversary is allowed to flipits per macro-timestep, and delay each bit a maximum of
Dmax micro-timesteps. Then the capacity of the 1-interferem@mnpel is finite ifDyax- t = Q(M), and is infinite if
Diax- t = o(M). In particular, the capacity is finite if = Dmax= Q(vV M).

Proof. Finite capacity regime. Suppose for simplicity thabnax - t = M. The key observation is that the adversary
can turnany macro-timestep into the unique string consisting of albgeexcept for 1s at indices which are integer
multiples of Dmax, While staying within its budget. The adversary breaks eaahbro-timestep into blocks of length
Dmax and delays each bit to the end of its block. If no 1s are seathiock, the adversary flips a single bit in the
block to create a 1. This totals at madiit-flips per macro-timestep, giving the result.

Infinite capacity regime. Suppos&max-t = o(M ). We again use a concatenated code to construct a valid cokiebo

of size2(Prw) . The sender starts with a stringe {0, 1}% encoded under a classical error-correcting code with
constant rate which can tolerate up to/& fraction of adversarial errors.

The sender then replaces each bitcofvith a block of lengthDpax + 1: if z; = 0, thei'th block is set to the
all-zeros string, and if; = 1, thei'th block is set to the string consisting of a 1 followed By, zeros. The decoder
decodes a block to 1 if the block contains at least one 1, acoldds a block to 0 otherwise. It suffices to show that at
least a4/5 fraction of the blocks get decoded correctly.

Call a blockdirty if even a single bit within it is flipped, and call the blocleanotherwise. Since the adversary
can afford to flip onlyT" - ¢ = o MT) bits of the course of the entire message, only@l) fraction of blocks are
dirty. For any clean block, the adversary cannot afford tayléhe first bit in the block beyond the final bit in the



block. Thus, any clean block will get decoded correctly.oltdws that decoding will always be successful, yielding
the result. O

6 Discussion

We studied a variety of natural models for continuous-tifm@mels with delay errors in the presence of interference.
Our results show that these channels exhibit a clean thiceblebavior. We note our finite capacity results hold even
for computationally simpladversaries in the sense of Guruswami and Smith [2]; thauisadversaries process the
sent string sequentially in linear time, using jo§tM ) space. Our results can be viewed as a counterweight to tfiose o
Khanna and Sudahl[4], by showing that other natural additimstrictions can lead to finite capacity in their model.

Many questions remain for future work. Our results only &ddradversarial delays; random delays under our
interference model remains open. One might also consiffereiit models of interference, or different limitations o
the delays introduced by the adversary.
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