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ABSTRACT
21 cm tomography is expected to be difficult in part because of serious foreground
contamination. Previous studies have found that line-of-sight approaches are capable
of cleaning foregrounds to an acceptable level on large spatial scales, but not on small
spatial scales. In this paper, we introduce a Fourier-space formalism for describing
the line-of-sight methods, and use it to introduce an improved new method for 21 cm
foreground cleaning. Heuristically, this method involves fitting foregrounds in Fourier
space using weighted polynomial fits, with each pixel weighted according to its in-
formation content. We show that the new method reproduces the old one on large
angular scales, and gives marked improvements on small scales at essentially no extra
computational cost.

Key words: Cosmology: Early Universe – Radio Lines: General – Techniques: Inter-
ferometric – Methods: Data Analysis

1 INTRODUCTION

Neutral hydrogen tomography is emerging as a promising
new probe of the epoch of reionization and cosmology. By
taking advantage of the 21 cm hyperfine transition, neutral
hydrogen tomography in principle allows one to map the dis-
tribution of hydrogen over a large range of redshifts, some of
which are accessible through no other observational probes.
For example, neutral hydrogen tomography can potentially
provide the only measure of the universe’s expansion his-
tory, thermal history, as well as its clustering growth dur-
ing the so-called dark ages. Furthermore, the dramatic in-
crease in the volume that can be mapped by the technique
could enable precision tests of inflation, including stronger
constraints on the spectral index of inflationary seed fluc-
tuations, the running of the index, and small-scale non-
Gaussianity (McQuinn et al. 2006; Santos & Cooray 2006;
Wyithe et al. 2007; Bowman et al. 2007; Mao et al. 2008).
Neutral hydrogen tomography has also been predicted to
be a sensitive probe of other parameters such as neutrino
masses and the dark energy equation of state, either through
power spectrum measurements (Mao et al. 2008) or other
probes such as 21 cm lensing tomography (Zahn & Zaldar-
riaga 2006; Metcalf & White 2009; Benton Metcalf 2009).

Despite its promise, a number of challenges must be
overcome before neutral hydrogen tomography becomes a
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Figure 1. 2D power spectra of foregrounds and foreground resid-

uals using the “old method” (Bowman et al. 2009; Liu et al. 2009)
and the “new method” (this paper). At low-k the two methods
give identical results, while at high-k the new method does much
better. Sudden spikes in the foreground residuals occur only with
the old method.

reality. One serious problem is the issue of foreground con-
tamination. A variety of astrophysical sources, including un-
resolved extragalactic points sources, resolved point sources,
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and galactic synchrotron radiation, will contribute contami-
nants with brightness temperature on the order of hundreds
of Kelvins. This will dominate the cosmological signal (which
is expected to be on the order of mK), and so robust fore-
ground subtraction techniques will be essential.

Previous studies have examined the feasibility of fore-
ground subtraction in neutral hydrogen tomography, and
have generally found that variations of the line-of-sight ap-
proach pioneered by Zaldarriaga et al. (2004), Wang et al.
(2006), and McQuinn et al. (2006) may be able to clean
out foreground contamination to an acceptable degree, al-
though instrumental effects such as noise may compromise
the quality of the cleaned maps. Wang et al. (2006); Bowman
et al. (2009); Jelić et al. (2008); Gleser et al. (2008); Harker
et al. (2009); Liu et al. (2009) performed simulations that
included fiducial models of these effects, and found reason-
ably encouraging results. It should also be noted that many
of these instrumental effects, though serious, represent prob-
lems that are decoupled from the foreground subtraction
challenge. As discussed in Liu et al. (2009), any linear sub-
traction algorithm leaves the noise contribution to the power
spectra unaffected, and so noise bias removal can be dealt
with separately. For instance, instrumental noise bias can be
removed from power spectra by cross-correlating maps made
from data taken at different times. Whether the results are
ultimately acceptable for Epoch of Reionization science will
be difficult to answer until experimental data is obtained.

In any case, it is important to consider a wide vari-
ety of possible foreground subtraction algorithms, and in
this paper we propose a new variation on the traditional
line-of-sight methods. Specifically, we describe a cleaning
algorithm that (unlike most1 proposals) is implemented in
Fourier space. As we discuss in Section 3, this allows one to
completely sidestep any problems that may arise from the
frequency dependence of an instrument’s beam, which was
previously the limiting factor in the quality of foreground
cleaning at high-wavenumber spatial Fourier modes (Bow-
man et al. 2009; Liu et al. 2009). The increase in perfor-
mance at such wavenumbers can be easily seen in figure
1, where we have taken simulated data from a single fre-
quency slice (ν = 158.73 MHz, corresponding to a 21-cm
signal coming from z = 8) and plotted [k2P2D(k)]1/2, where
P2D(k) refers to the two-dimensional spatial power spec-
trum. The quantity [k2P2D(k)]1/2 can be thought of as the
fluctuation level as a function of scale, and is exactly anal-
ogous to δT /T ∝ [`2C`]

1/2 in cosmic microwave background
experiments.

The rest of the paper is organized as follows. In Sec-
tion 2 we review the old method used in Bowman et al.
(2009); Liu et al. (2009), and in Section 2.1 we recast it as
an algorithm in Fourier-space. The Fourier-space description
is then used to introduce our new method in Section 3. We
conclude in Section 4.

2 REVIEW OF OLD METHOD

In general, the data collected from a typical 21-cm tomog-
raphy experiment can be thought of as populating a “data

1 Zaldarriaga et al. (2004) and Gleser et al. (2008) are exceptions

and consider algorithms for Fourier space subtraction.

cube”: stacks of 2D images separated by redshift or fre-
quency. Along the transverse directions, the axes are usually
labeled in one of three ways:

(i) Real-space coordinates θx and θy. In this case the data
cube is a literal map of 21-cm emission and foreground con-
taminants.

(ii) Interferometer coordinates u and v. Under the correct
convention, these are simply the Fourier-conjugate coordi-
nates to θx and θy. The data cube is a stack of 2D maps in
Fourier space.

(iii) Fourier-space coordinates kx and ky. These are the
Fourier-conjugate coordinates to the physical lengths x and
y. Up to factors of 2π (depending on one’s Fourier conven-
tion), (kx, ky) ∼ (u, v)/DM , where DM is the transverse
comoving distance.

In a typical experiment the data (in the form of visibilities)
are collected in uv-coordinates, while the results are pre-
sented in either real-space coordinates (in the case of sky
maps) or in Fourier-space coordinates (in the case of power
spectra). Foreground removal is often done in either real-
space coordinates (as demonstrated in Wang et al. (2006);
Bowman et al. (2009); Jelić et al. (2008); Liu et al. (2009))
or in uv-space (as done in Zaldarriaga et al. (2004); Gleser
et al. (2008), and as we propose in this paper).

We first review the real-space removal algorithms. The
fundamental idea behind all such algorithms is the fact that
the 21-cm signal is expected to oscillate rapidly with fre-
quency while the relevant foreground contaminants are spec-
trally smooth. The contaminants along a given line-of-sight
can therefore be separated from the signal by plotting the
flux as a frequency and subtracting off a smooth component
(such as a low-order polynomial) from the total signal. What
remains is the cosmological signal and a (hopefully small)
residual contamination.

Previous studies have simulated the aforementioned
real-space algorithms and have estimated the level of resid-
ual contamination that can be expected for current experi-
ments (Jelić et al. 2008; Bowman et al. 2009) as well as how
the residuals depend on the properties of a generic interfer-
ometer (Liu et al. 2009). Although these papers have high-
lighted the fact that the quality of foreground subtraction
is highly dependent on a large number of parameters (both
instrumental and those pertaining to data analysis), they
also suggest that the qualitative behavior is rather generic.
In what follows we examine the qualitative behavior that
emerges, emphasizing the various features and their mathe-
matical origin.

Consider the spectra shown in figure 2. The sum of the
two black curves show the frequency dependence of a sin-
gle pixel in real-space coordinates (i.e. the frequency depen-
dence of a particular line-of-sight), as seen by a typical 21 cm
tomography interferometer2. This total spectrum (formed
from the sum of the two black curves) contains foregrounds

2 We use the Murchison Widefield Array as our fiducial model for
the simulations in this paper (see Liu et al. (2009) for details), but

it should be noted that the algorithm we propose in Section 3 can

be applied to data collected by any interferometric configurations.
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Figure 2. The spectrum of a typical real-space pixel as seen by an

interferometer. The instrument introduces a jerky dependence on
frequency even though the foregrounds are intrinsically smooth.

The total signal is the sum of a smooth component (black curve

with “x” markers) coming from the central parts of the uv-plane
and a jagged component (black curve with “+” markers) from the

outer parts of the plane. The blue/dot-dashed line gives the fore-

ground fit using the old method, while the red/dashed line gives
the analogous real space “fit” using the new method (see Sec-

tion 3 for details). The means of each curve have been artificially

removed for clarity.

only, with no noise3 or cosmological signal. Since the fore-
grounds are known (and are simulated4) to be spectrally
smooth, this suggests that the rapid oscillations seen in the
figure are caused by the instrument. This is bad news for the
subtraction algorithm, as it means that simply fitting out
the smooth component of a spectrum will leave residuals
that can be confused with the cosmological signal. Indeed,
it can be seen from the figure that the fit seems rather poor.

One way of understanding the rapid oscillations is to
consider the interferometer’s beam in real-space. The left-
hand panel of figure 3, shows that the beam of a typical
interferometer contains “frizz” outside the central peak that
oscillates rapidly with angle. Since beam widths scale as
λ/D, this angular oscillation translates into an oscillation in
frequency, which is what is seen in figure 2. Alternatively,
the behavior of figure 2 can be understood by considering
the effect of an interferometer’s beam in uv-space. An inter-
ferometer samples pixels in the uv-plane, and with enough
of these uv-pixels one can produce a real space image by
Fourier transforming. Thus, the spectrum of a single pixel
in real space can be thought of as a linear combination of the
spectra of different uv pixels sampled by the interferometer.

3 In our simulations, we neglect instrumental noise. This repre-
sents no loss of generality because our subtraction algorithms are
linear (please see Section 1 or Liu et al. (2009) for details).
4 The simulation methodology used in this paper was the same

as that used in Liu et al. (2009), where point sources were inde-
pendently generated in each pixel from source count distributions

given in Di Matteo et al. (2002). Please see Liu et al. (2009) for

details.
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Figure 3. The left hand column shows sample beam profiles (a
real-space description of the beam) while the right hand column

shows the corresponding uv-distribution of baselines (a Fourier-

space description of the beam). The top row illustrates an array
with no rotation synthesis, while the bottom row shows an ar-

ray with 6 hours of rotation synthesis. The real-space beams are

normalized so that their peaks are at 1.

Exactly which pixels are sampled depends on the layout of
the interferometer in question, but in a typical 21-cm to-
mography experiment the uv coverage is complete near the
origin and drops off as one moves farther out.

In general, the foreground spectrum seen by an instru-
ment can be considered the sum of two components: a com-
ponent that is formed from a linear combination of uv-pixels
where the interferometer’s coverage is complete (i.e. the in-
ner parts of the uv-plane), and a component that is formed
from uv-pixels residing in parts of the uv-plane where cov-
erage is sparse (i.e. the outer regions). These components
are shown using solid black lines in figure 2. The line with
“x” markers (showing the part of the signal originating from
the inner parts of the plane) is seen to be smooth, whereas
the line with “+” markers (showing the contribution from
the outer parts) is what contributes the rapid oscillations.
(Note that this curve appears to have zero temperature only
because we have artificially removed the mean of each curve
for graphical clarity). This decomposition explains why real-
space pixel-by-pixel foreground subtraction algorithms have
been shown to be adequate even though the fits themselves
seem terrible at first sight. Even though the smooth fits can-
not subtract off the jerky component of the spectrum, they
are capable of fitting out the smooth component that comes
from the central parts of the Fourier plane. Indeed, this is
exactly what is seen in figure 1, where the low-k parts of the
power spectrum are cleaned effectively whereas the high-k
parts remain contaminated. It is simply the case that by ex-
amining pixels in real space, one is viewing a “bad” linear
combination of pixels that mixes together the well-fit, cen-
tral located uv-pixels with the outer uv-pixels where sparse
baseline coverage results in jerky spectra that are badly fit.

c© 2008 RAS, MNRAS 000, ??–??
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2.1 Fourier space description of decontamination

In the previous section, we examined how foreground fits of
real-space pixels could be understood by considering the flux
in each pixel as being a linear combination of different uv-
pixels. We now show that one can go further and perform the
fits themselves in uv-space and get exactly the same results.
With slight modifications, this will lead to the discussion in
Section 3 of an improved method for subtracting foregrounds
at high k.

Consider the steps that must be taken to perform the
foreground subtraction outlined above. The data is collected
by the interferometer in Fourier space i.e. in a (u, v, ν) data
cube. This data must then be Fourier transformed in the two
transverse directions, giving an x-y-ν data cube. Fitting is
subsequently performed in the frequency direction. Mathe-
matically, we can express this as follows. Let ỹijα represent
the initial data cube, with the first two (Latin) indices be-
ing the two spatial indices and the last (Greek) index being
the frequency index. With no loss of generality, we can fold
the first two indices into one and write ỹjα instead. In this
notation, the Fourier transform can be written as

ykα =
X
i

Fkiỹiα, (1)

where F is the Fourier matrix and y is the real-space analog
of ỹ. The fit in the frequency direction can be represented
by yet another linear operator5 G, and so we have

ykβ =
X
α

Gβαykα =
X
i,α

GβαFkiỹiα (2)

where y represents the fit. In the last expression, note that
G possesses only Greek indices whereas F only has Latin
indices. This means that the two operations performed in
our algorithm – the 2D spatial Fourier transform (F) and
the fitting in the frequency direction (G) – in fact commute,
i.e., FG = GF.

The fact that the Fourier transform commutes with the
fitting means that we can perform the two operations in ei-
ther order. In other words, we can think of the foreground
fitting and subtraction as taking place in Fourier space with-
out changing any of the results (which is something that we
have also verified numerically). Viewing the process as a
pixel-by-pixel fitting in uv-space reveals exactly why there
exists such a vast difference between the quality of the clean-
ing at low-k and at high-k, and why the transition between
the two regimes appears as such an abrupt jump in the power
spectra. In figure 4 we show typical spectra from different
parts of the uv-plane. The top panel shows a typical pixel
from the inner part of the plane. The spectrum is plotted
using so-called uniform weighting, so that in every Fourier
pixel the interferometer acts as an on/off switch: the inter-
ferometer imposes a weighting of 0 to a pixel if no baselines
fall in that pixel, and a weighting of 1 otherwise (regard-
less of how many baselines are binned into that pixel). It is
evident that a simple polynomial fit does extremely well.

5 Explicitly, for the case where one fits a polynomial of degree
m, one has G = X[XtN−1X]−1XtN−1, where N is the noise
covariance matrix and X is an n× (m+ 1) matrix such that Xij

equals the frequency of the ith frequency channel taken to the
jth power (Wang et al. 2006).
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Figure 4. Spectra of various uv pixels from different parts of the

plane. From the top panel to the bottom panel, one is moving
away from the origin. It is clear that the data can be easily fit by

low-order polynomials in the top panel, but that the old method

of fitting (dashed red curves) becomes inadequate when baseline
coverage begins to drop out. The solid black curves show the fits

done using the new method describe in Section 3.

On the other hand, when one moves out to regions of
the uv-plane where baseline coverage becomes sparse, the fit
becomes poor. A glance at the bottom two panels of figure
4 makes the problem clear – when coverage is sparse, at cer-
tain frequencies there is no baseline coverage, and a simple
polynomial fit is unable to deal with this. We emphasize that
the trouble is not with incomplete Fourier coverage per se.
It is the fact that the incomplete coverage is changing with
frequency. In other words, foreground subtraction becomes
poor in this regime because the frequency dependence of the
beam (or “mode-mixing”, as emphasized in Bowman et al.
(2009); Liu et al. (2009)) becomes important on these small
(high-k) scales. Note that even though this problem exists
when the spectra are being fit in real space, it is not appar-
ent unless one fits in uv-space, where the pixels are “good”
linear combinations of the data.

3 NEW METHOD

We now propose a slight modification to the foreground sub-
traction algorithm that evades the aforementioned problem.
From figure 4, one can see that an alternate way of phrasing
the problem is to say that the old fitting algorithm, being
mathematically equivalent to a fitting in real space, is unable
to distinguish between pixels with no data and pixels with
values that happen to be zero. In uv-space, however, one
can easily identify pixels with no baselines, and so one can
simply skip frequencies where data is unavailable. In fact,
one can find the optimal fit (in the sense of having minimal
r.m.s. errors) by employing an inverse-variance weighted fit.
In this scheme, the weight of each point in the least-squares
sum is proportional to N , the number of baselines that are
binned into a particular uv-pixel at a particular frequency.
This way, points with lower signal-to-noise are given less

c© 2008 RAS, MNRAS 000, ??–??
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Figure 5. Post-subtraction residuals shown in the uv-plane at ν = 157 MHz (left column) and as a function of frequency, taking a cut
through the center of each uv-plane (right column). This is done for the old method (top row) as well as for the new method (bottom

row). The new method does not offer any increase in performance at low-k, but avoids the large increase in residuals at high-k.

weight, and points with no data at all are given zero weight
6

In figure 4 it can be seen that since missing frequencies
are now given zero weight in the fit, one obtains excellent
fits even for uv-pixels where baseline coverage is sparse. This
improves the subtraction of foregrounds at frequencies where
there is data, whereas at the skipped frequencies nothing
has been compromised since no foregrounds were detected
by the instrument in the first place.

The effect that the frequency-skipping has on the 2D
power spectrum is shown in figure 1. To be conservative,
we have also tested our new algorithm using a completely
independent pipeline with a different foreground model (for

6 It is important to emphasize that in this section, we use the

term “weight” to refer to the statistical weight that we give to a
data point in the fit. We are not pre-multiplying the data with a
weighting function. In other words, while our fits assign different
statistical weights to each data point, the data points themselves

are not tampered with ahead of time and are simply “uniformly
pre-weighted” as described in Section 2.1.

details, please see Bowman et al. (2009)). The results from
the second pipeline are shown in figure 5, and the fact
that the results agree demonstrate the fact that uv-plane
cleaning is generally applicable and not dependent on the
foreground model. Qualitatively, one can see that at low-
k there is no improvement from the old method because
in that regime one is limited by the fact that simple low-
order polynomials will not in general be perfect fits to the
foregrounds, even though the foregrounds are smooth func-
tions. At high-k, however, one avoids the dramatic increase
in post-subtraction foreground residuals, because previously
the limitation at high-k was the mode-mixing problem. With
our new method, the limiting factor is the ability of the fit-
ting function to match the form of the foregrounds. For ex-
ample, the fact that the foreground residuals in figure 1 are
a constant factor (∼ 106) off from the original foregrounds
regardless of scale (or equivalently, regardless of location on
the uv-plane) means that the residuals are due entirely to
the quality of the fit. In other words, the residuals of one part
in ∼ 106 come from the fact that the second-order polyno-
mials used in the fits to produce figure 1 are good fits to

c© 2008 RAS, MNRAS 000, ??–??
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the foregrounds only to one part in ∼ 106. With the chief
limitation now being the fitting itself, one can in principle
subtract foregrounds up to Fourier modes that correspond
to the longest baselines, although as one is forced to skip
many frequencies at high k, the signal-to-noise of the data
is reduced.

As a weighting scheme that weights data points accord-
ing to their information content, inverse-variance weight-
ing not only gives higher signal-to-noise data points greater
weight, but also automatically incorporates frequency-
skipping, since the skipped frequencies are simply those with
N = 0 and therefore no information. While both effects con-
tribute to better foreground subtraction, we find frequency-
skipping to be the dominant cause of this increase in perfor-
mance.

It is important to note that whereas without the skip-
ping of empty frequencies the transverse Fourier transform
commuted with the fitting of the foregrounds, under the
new scheme proposed here the two operations no longer
commute. This is because the frequencies of the pixels that
need to be skipped require knowing the baseline distribu-
tion (which lives in uv-space) and therefore depends on the
location of the uv-pixel being cleaned. Mathematically, this
means that in equation 2, the fitting operator G acquires an
extra i (spatial) index and the two sums no longer commute.
The significance of this is that the fit can no longer be done
in real-space. To apply this new algorithm for foreground
subtraction, one must work in Fourier space.

However, while the skipping of frequencies in our fit dic-
tates that we must work in Fourier space, the improvements
brought about by the new algorithm can still be seen in
real space. Consider the dashed (red) fit in figure 2. This fit
was obtained by taking the uv-space fits generated by the
new algorithm and Fourier transforming real space to give
a real space “fit”. It is clear from the figure that the new
method does a much better job of tracking the behavior of
the smooth foreground component. On the other hand, the
slope of the fit from the old method is biased by the jagged
foreground contribution (which, remember, is an instrumen-
tal artifact that arises from incomplete baseline coverage),
and does a worse job tracking the smooth foregrounds.

The fact that our new method traces the smooth fore-
ground component better means that it can be used to get
better estimates of the foregrounds themselves. One sim-
ply Fourier transforms the fits produced by the new algo-
rithm to get real-space, multi-frequency maps of the fore-
grounds. Such maps will be of a higher quality than those
that are simply imaged by the instruments. This is because
our new fitting algorithm can be interpreted as one where
the missing frequencies are not so much skipped as inter-
polated over. By fitting low-order polynomials over the fre-
quencies where data is available, one is essentially deriving
a foreground model that can be extrapolated to other fre-
quencies. Without missing frequencies in the spectra, the
real space foreground maps will not have artificially jagged
foreground components, and will therefore be a more accu-
rate representation of the true foregrounds.

4 CONCLUSIONS

In this paper, we have shown that there is an easy expla-
nation for the increased foreground residuals at high-k: a
frequency-dependent incompleteness of baseline coverage in
the outer parts of the uv-plane makes the foregrounds in cer-
tain uv-pixels difficult to fit out using a simple unweighted
polynomial fit. The solution to this problem is to weight the
fit so that frequencies with no information are given zero
weight, while other frequencies are given an inverse-variance
weighting. As seen in figure 1, this allows foreground clean-
ing to be performed at much higher k, paving the way for
higher quality power spectrum measurements in neutral hy-
drogen tomography.
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