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1 Introduction

In this paper we consider a very simple class of string vacuum solutions associated with

supersymmetric 6-dimensional low-energy physics. Models of the type we consider here

are characterized by an intersection matrix associated with an even, self-dual lattice. We

use theorems on lattice embeddings to give a characterization of the space of allowed

models. This gives a concrete realization of a piece of the landscape in which models can

be conveniently characterized and identified based on simple features of their low-energy

physics. A brief summary and introduction to the main technical results of the paper is

given in Section 1.1.

While quite far from the physically observed world in which supersymmetry is broken

and space-time is 4-dimensional, the simple mathematical structure described here may

help provide insight into some aspects of the larger space of string vacuum solutions, and

in particular into the question of whether low-energy physics is constrained by string theory.

To put this work in context, a brief discussion of the string vacuum problem and some of the

motivation for this work is given in Section 1.2. Those uninterested in landscape philosophy

may skip Section 1.2.

1.1 Introduction and outline of results

The models we consider in this paper are type I/heterotic string theory compactifications

on a K3 surface. Such compactifications are characterized by an SO(32) bundle‡ over K3.

In type I language, the background contains an orientifold 9-plane and 16 D9-branes whose

charges combine to cancel the ten-form RR tadpole. In a curved background, such as a

K3 surface, there is also a six-form tadpole (D5-brane charge) [1] that can be cancelled

by introducing world-volume fluxes for the gauge fields on the D9-branes. These fluxes on

the D9-branes thread 2-cycles in the K3 surface and produce D5-brane charge equal to the

instanton number of the flux configuration [2, 3].

Models of the type considered here, with fluxes on D9-branes in type I string theory

encoding lower-dimensional D-branes wrapped on various cycles, are known as “magnetized

brane models”. Choosing different fluxes on different D9-branes in these models leads to

chiral fermions in the dimensionally reduced theory [4, 5]. These models were developed

in the type I context in [6] and have been widely studied in the literature. Reviews of this

work and further references appear in [7].

In general, the flux in the gauge fields on the D9-branes can be nonabelian, but we

restrict attention here to the simplified class of configurations where only U(1) fluxes,

corresponding to fluxes on individual D9-branes, are turned on. Mathematically, this means

that the gauge bundle has a curvature that can be described in terms of a direct sum of

abelian connections on the individual D9-branes. In the more general case of nonabelian

vector bundles a similar story holds, but the technical details are more complicated. Recent

related work on heterotic line bundle models appears in [8–10].

‡The case of the E8×E8 heterotic string can be treated in a completely analogous manner. The general

story remains unchanged, but the specific low-energy theories obtained are different.
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On a torus, magnetized brane models are T-dual to intersecting brane models [11]; the

D9-brane world-volume fluxes are T-dual to the tilts of the diagonal intersecting branes

on the dual torus. (Intersecting brane models are also reviewed in [7].) This duality with

intersecting brane models provides useful intuition for the physics of magnetized brane

models, although on a smooth K3, T-duality is replaced with mirror symmetry, which

is harder to describe explicitly. Part of the motivation for this work was to extend the

systematic analysis of intersecting brane model solutions on toroidal orbifolds to more

general smooth Calabi-Yau spaces where intersecting brane models are not particularly

well defined, as discussed in Section 5 of [12].

For the magnetized brane models we consider here, each D9-brane carries a separate

U(1) gauge field strength F i. This field strength takes quantized values when integrated

over any 2-cycle of K3 and thus, when suitably normalized by the unit of charge λ, lives

in the integral 2-cohomology of the K3 surface, i.e., f̂i = λF i/(2π) ∈ H2(K3,Z). The

cohomology group H2(K3,Z) has the structure of a lattice, with a natural inner product

given by the wedge product in cohomology, which is Poincaré dual to the intersection

number of 2-cycles in homology. By a lattice in this paper we will always refer to a

vector space over Z carrying an integral, symmetric inner product. For a K3 surface, the

lattice defined by the cohomology group is the unique even, self-dual unimodular lattice

of signature (3,19), denoted Γ3,19. A review of the structure of this lattice and some basic

definitions relevant for lattices are given in A.

Any vacuum solution of this type is therefore associated with a set of vectors f̂i (not

necessarily distinct) in the lattice Γ3,19. Since we have turned on U(1) fluxes, the gauge

group in the 6D theory is broken from SO(32) to the commutant of the U(1) fluxes. If

we were to turn on 16 distinct f̂i’s the gauge group would be broken to U(1)16. The tad-

pole constraint in fact restricts the number of nonzero f̂i’s to be at most 12 for smooth

K3 geometries. Note that the vectors f̂1, · · · , f̂16 need not be distinct, and some of them

could be equal. When some of the f̂ ′is are equal, the gauge group on the branes is ex-

panded to a nonabelian group. Let fa denote the distinct, non-zero vectors among the

set {f̂1, f̂2, · · · , f̂16}. We use the f̂i (with hats) to denote the fluxes on each D9 brane,

where the index i runs over individual branes, and the notation fa (no hats) to denote the

distinct fluxes among these. In the most general situation, we have K magnetized stacks of

Na equal fluxes fa, a = 1, · · · ,K where fa 6= 0 and all the fa are distinct. By a magnetized

stack we mean a set of Na D9-branes each with the same value of (non-zero) flux fa turned

on. The stack of branes with f̂i = 0 will be called the unmagnetized stack.

The gauge group and matter content of the dimensionally reduced 6D theory is com-

pletely determined by the sizes Na of the flux stacks and the topological invariants fa ·fb of
the fluxes, where · denotes the inner product on the lattice. The gauge group and matter

content can be enhanced when the K3 surface becomes singular. We focus in this paper on

smooth K3 compactifications, where the gauge group is given by a product of unitary groups
∏

a U(Na) × SO(32 − 2
∑

aNa); the unitary groups arise from the magnetized stacks and

the orthogonal group arises from the unmagnetized stack. (Note that generally the U(1)

factors in U(Na) are anomalous and get masses through the Green-Schwarz/Stueckelberg

mechanism). The number of matter fields in the various allowed representations of the
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gauge group can be written in terms of the intersection matrix mab := fa · fb and the

stack sizes {Na}. Thus, the stack sizes and intersection matrix parameterize the possible

low-energy theories realizable in this construction.

To understand the range of models possible, we therefore need to know what inter-

section matrices mab and multiplicities Na can be realized in string theory. This question

can be conveniently reformulated in the language of lattice embeddings. We can think of

the vectors {fa=1,··· ,K ,
1
2

∑

aNafa} as generating a lattice M of rank ≤ K with inner

product determined by the matrix m.§ The main result of this paper is the conclusion

that existing theorems on lattice embeddings, due to Nikulin and earlier authors, provide

a fairly complete characterization of the space of abelian magnetized brane models on K3

through the classification of allowed intersection matrices m. The vanishing of the six-form

R-R tadpole gives a constraint
∑

i f̂i · f̂i = Tr m̂ = −48 on the trace of the full intersection

matrix m̂ij = f̂i · f̂j. This becomes
∑

aNafa · fa = −48 when we rewrite the sum over

branes into one over stacks. Low-energy supersymmetry further requires the lattice M
to be negative-definite. Up to these constraints, Nikulin’s results on lattice embeddings

essentially state that any desired intersection matrix can be realized in a K3 compactifi-

cation, except possibly in cases where the rank of the matrix is 11 or 12. Furthermore,

the realization of a specific intersection matrix is almost unique up to automorphism (rela-

beling) of the K3 cohomology lattice, with the “almost” caveat arising from some discrete

redundancies¶ associated with a finite number of possible refinements (overlattices) of the

lattice M.

The upshot of this analysis is that for this family of models the intersection matrix m

provides a complete means of classifying the range of possible models according to simple

features of their low-energy physics. The methods described here can be used to enumerate

the models in the class in a straightforward way, either to search for models with specific

features or to perform a statistical analysis on the class of models. Furthermore, the

intersection matrix m provides a straightforward way to directly construct all models with

a particular desired feature. For example, one might wish to construct all models with a

particular group, like G = SU(3) × SU(2) as a subgroup of the full group and at least

3 chiral fermions in the bifundamental (3,2). This can be formulated as a constraint on

the intersection matrix m, so that all models with the desired feature can immediately be

constructed or enumerated. Again, this could be useful either for model-building purposes

or for statistical analysis of the space of models.

The analysis of this paper thus gives a particularly simple example of a region of the

landscape where models can be easily classified and explicitly constructed. It is interesting

to contrast this with other types of models where classifying all allowed vacuum solutions

is difficult or impossible with current methods. In some cases, identifying the complete

set of models with a particular set of physical features may be computationally difficult or

intractable. For example, consider the closely related family of intersecting brane models

on a toroidal orientifold. The simple and popular toroidal model T 6/Z2×Z2 [14] has been

§The lattice M is required to contain the integral vector 1
2

∑

a
Nafa to avoid global anomalies. For a

smooth K3 compactification, we also require M to not have any vectors with norm-squared −2.
¶Equivalent discrete redundancies were recently encountered in analysis of dyon models [13].
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studied in many papers over the last decade and gives rise to semi-realistic 4D theories with

a gauge group containing the standard model gauge group and 3 generations of chiral matter

fields [7, 15–19]. Due, however, to the presence of supersymmetric branes with tadpole

contributions of mixed signs in this class of models, a complete understanding of the space

of allowed models poses a significant challenge. In [20], a systematic search using a year of

computer time sampled a large number of vacua in this class. In [12], it was proven that

the set of inequivalent models in this class is finite. The classification of these models has

now been completed and will appear in [21]. In this toroidal orbifold construction, finding

the set of models with a particular physical feature can be quite a nontrivial problem.

(For example, finding all models with gauge group containing the subgroup SU(3)×SU(2)

poses a significant computational challenge, whose solution appears in [21]). In the class

of K3 models considered in the present paper, on the other hand, such a construction is

relatively straightforward. The constraint on the gauge group can be imposed on the stack

sizes Na and intersection matrix mab = fa · fb, and all Na,mab satisfying this constraint

can immediately be constructed and tabulated (as discussed in Section 7).

In the following subsection we summarize some outstanding issues related to the large

landscape of string vacua and the problem of predictability in this context. In brief, the

message of this paper is that in this special corner of the string landscape the space of string

theory compactifications has a very simple organizing principle. Given the parameterization

of the allowed space of models in terms of the intersection matrix m, in this region of the

landscape there is both freedom and constraint, in that any negative-semidefinite matrix m

that determines an even lattice M of rank ≤ 10 can be realized in string theory, provided

that M has no −2 vectors and satisfies the linear tadpole constraint. Furthermore, up to

some limited discrete redundancy, any allowed low-energy physics structure is realized in

a unique way up to dualities. While such a simple framework is unlikely to extend to the

whole string landscape in any foreseeable fashion, this gives an example of a part of the

landscape where underlying mathematical structure gives great simplicity to the discrete

variety of allowed string theory solutions.

The structure of the rest of this paper is as follows: In Section 2 we review the basic

geometry of K3. In Section 3 we describe the class of type I magnetized brane models of

interest. The 6D dimensionally reduced physics of these models is described in Section 4.

The existence of models for any negative-semidefinite even matrix of rank≤ 10 that satisfies

the tadpole constraint is demonstrated using Nikulin’s theorems in Section 5. A systematic

approach to enumeration of models including the determination of discrete redundancies

is presented in Section 6, along with some explicit examples. In Section 7 we show how

all models with particular desirable features such as a specific low-energy gauge group or

matter content can be efficiently enumerated. Concluding remarks appear in Section 8.

Appendices contain additional technical material on the structure of the lattice Γ3,19 and

Nikulin’s lattice embedding theorems.

Note for version v4: We have made the following significant changes to this version: a

factor of two error in the tadpole condition has been corrected, we have restricted ourselves

to smooth K3 compactifications by eliminating vacua that involve −2 vectors in the Picard
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lattice of the K3 surface, and the mod 2 constraint from the Freed-Witten global anomaly

has been included. These modifications do not affect the central conclusion of this paper

that string vacua in this part of the landscape can be characterized through the existence of

lattice embeddings. However, some specific quantitative statements regarding enumeration

of models have been revised. We are grateful to Edward Witten, Ilarion Melnikov and the

authors of [22] for helpful communications regarding these issues.

1.2 Predictions and the vacuum problem

It has been known since the early days of string theory that the space of supersymmet-

ric string vacua is vast. For example, for any Calabi-Yau complex 3-manifold there is a

continuous moduli space of supersymmetric string vacuum solutions. More recently, the

experimental observation of a positive nonzero cosmological constant has led to a new effort

to understand the “landscape” of metastable string vacua with positive cosmological con-

stant. Incorporation of fluxes and other mechanisms can stabilize the continuous moduli

of a space of vacuum solutions, and in principle with the breaking of supersymmetry the

cosmological constant can be lifted to a positive value. The exponentially large number of

ways in which fluxes can be introduced gives an exponentially large number of candidate

string vacua, whose enormous multiplicity has been invoked as an explanation for the ex-

istence of solutions having a positive cosmological constant with the observed small value.

Reviews of developments on the landscape of flux compactifications appear in [23].

In considering the apparent enormous multiplicity of stable and metastable string

theory vacuum solutions, the problem of extracting predictions for the low-energy theory

becomes increasingly acute. It has been suggested that statistical analysis of the space of

allowed models may provide fruitful insights [24]. In the absence of a true understanding

of background-independent dynamics of string theory, however, it is as yet very difficult to

extract physically meaningful predictions from the statistics of vacua or to make progress

on other proposed vacuum selection mechanisms.

Thus, without some dramatic new insight into the global and temporal dynamics of

string theory, at the present the clearest course of action is to consider the full space of

possible string solutions. It is possible that string theory imposes absolute constraints on

low-energy physics. If present, such constraints should be observed in any sufficiently broad

family of string vacua. Here we use a very simple framework to illustrate the question (more

statistical approaches to this kind of question have recently been taken in [25, 26]; for a more

bottom-up perspective see [27]). Given some set of string vacua V (for example, intersecting

brane models on a particular toroidal orbifold), and a set of low-energy observables O (for

example, the gauge group, matter content, Yukawa couplings etc.), there are roughly two

extremes according to which the observables can be distributed in the set of vacua.

A) “Anything goes”. In this extreme, essentially all possible values of the observables O in

question can be realized within the set of vacua V. For continuous observables like masses

and couplings, this might mean that any possible combination of masses and couplings

could be realized to a particular level of precision dependent on the number of vacua in

the set V. (In some cases there may be a fixed range within which this freedom is realized,

so that distributions of type A may really be best described as B “bounded”)
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C) “Constraints”. In this extreme, there are absolute constraints on the set of observables.

For example, one could imagine that for a given set of vacua, any model that contains

SU(3)×SU(2) has precisely 3 generations of bifundamental “quark-like” matter fields. Or

one might find that a constraint on a combination of several masses and couplings gives

one of these parameters as a function of the others.

To make a specific quantitative prediction from string theory one would need to show

that for all possible sets of vacua, a common constraint of type C arises in the low-energy

theory. Of course, the set of vacua within our current range of understanding is probably

only a tiny fraction of the full range of string solutions, so we cannot reasonably show this for

all sets of vacua. If, however, we can demonstrate that in a number of ostensibly unrelated

corners of the landscape there are common constraints on the low-energy physics, this

would represent a hypothetical universal constraint, which could be tested by examining

other classes of string solutions.

On the other hand, to show that a given set of observables, taken in isolation, is not

constrained by string theory, it suffices to find a single class of string models in which

situation A holds. For example, in [12, 20, 21] the space of supersymmetric intersecting

brane models on the T 6/Z2×Z2 toroidal orientifold was studied systematically. Considering

only the low-energy gauge group and numbers of matter fields in different representations,

this class of models seems to give a distribution best described by A), “anything goes”.

Although there is a maximum to the size of the gauge group and number of matter fields

that bounds the range of the distribution and produces a sparse “tail”, small groups like

U(N) × U(M), N,M ≤ 5 can all be realized in many ways as part of the full gauge

group in this construction with arbitrary (but not too large) numbers of chiral matter

fields in the (N, M̄ ) representation. This confirms, as has long been known, that string

theory cannot uniquely determine the gauge group and number of generations of matter

without additional constraints (like perhaps SUSY breaking). Of course, for this particular

orientifold construction, the total number of possible models is somewhat limited. As

shown in [21], the number of distinct ways the gauge group SU(3)×SU(2) can be realized

as a subgroup of the gauge group with 3 generations of “quarks” in this class of models is

limited to several thousand. Thus, the “anything goes” nature of the general distribution

is limited by the finite sample size. Indeed, while a number of semi-realistic models have

been found in this framework [15–19], these generally have extra massless chiral exotic

fields, and differ from the standard model in observable ways. A larger sample is needed to

reproduce more detailed features of the standard model, even in the absence of definitive

stringy constraints. Such larger samples can be found, for example, by generalizing to

arbitrary Calabi-Yau geometries or Gepner model constructions [28].

To date there are no conclusively demonstrated broad constraints on the space of low-

energy theories that can be realized in string models (though some interesting suggestions

leading towards such constraints have been made in [29]). Thus, in order to see whether

string theory produces constraints on low-energy theory anywhere in the landscape it may

be fruitful to begin with the simplest classes of string compactifications. The string vacuum

solutions we consider here, associated with type I magnetized branes on K3, live in such a

simple, and hopefully easier to analyze, corner of theory space. The resulting vacua, which
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are 6-dimensional and supersymmetric, are far from the physically observed world. These

models obey some specific constraints, but can vary freely subject to these constraints

Specifically, we find that the gauge group and matter content of the low-energy theory

have a particular dependence on the stack sizes and intersection matrix parameters Na,mab.

Any intersection matrix mab subject to the constraint that the lattice M it determines

is even, negative-definite, has no norm-squared −2 vectors, and satisfies a simple tadpole

constraint, can be realized in an almost unique way as a string compactification, at least

in cases when rank m 6= 11, 12.

The simple mathematical structure found for this class of models, and its consequences

for the part of the landscape where this analysis is relevant, suggests that a search for

a similar decomposition of the landscape distribution into constraints and freedom may

be helpful in a broader class of string vacua. Such analysis might help to address the

question of whether, even in a simple supersymmetric and higher-dimensional context,

string theory has the potential to constrain any part of the low-energy field theory arising

from compactification.

2 Some basic facts about K3 surfaces

In this section we review the basic properties of K3 surfaces that are relevant to our dis-

cussion. A more detailed exposition complete with references can be found in Aspinwall’s

lectures on K3 surfaces [30]. A K3 surface S can be defined as a compact, two com-

plex dimensional, simply-connected Calabi-Yau manifold. In other words, S is a compact,

simply-connected complex surface with trivial canonical bundle. Like all Calabi-Yau man-

ifolds, any K3 surface admits a Ricci-flat Kähler metric. The reason Calabi-Yau manifolds

are of interest is that they are an exact solution of the superstring equations of motion and

they preserve some of the supersymmetry of the ten-dimensional theory. There are many

thousands of topologically distinct Calabi-Yau three-folds known [31] and it is not yet clear

whether the total number of such manifolds is finite or infinite. Two-dimensional compact

Calabi-Yau manifolds are severely constrained in this regard and in fact there is only one

simply-connected Calabi-Yau surface (the K3 surface) up to diffeomorphism. Thus, all K3

surfaces have the same topology which can be determined by studying any specific one. In

particular, the Betti numbers bn(S) = dim Hn(S,Z) are completely determined and they

are b1 = b3 = 0, b2 = 22. For a K3 surface H2(S,Z) is torsion-free and therefore has the

structure of a lattice, by which we mean a free Z-module, i.e H2(S,Z) ∼= Z22 (as a free

abelian group).

The lattice H2(S,Z) has a natural integral, symmetric, bilinear form Φ(x, y) defined

as the intersection number of the two 2-cycles x, y ∈ H2(S,Z). The intersection number

is a well-defined quantity on homology classes [32] and satisfies Φ(x, y) ∈ Z (integral),

Φ(x, y) = Φ(y, x) (symmetric) and Φ(x,my + nz) = Φ(my + nz, x) = mΦ(x, y) + nΦ(x, z)

(bilinear) for all x, y, z ∈ H2(S,Z) and m,n ∈ Z. A lattice L with an integral, symmetric,

bilinear form is said to be even if for all x, y ∈ L, Φ(x, y) is an even integer. L is self-dual

if L ∼= L∗ := Hom(L,Z). Given a basis {eα} for the lattice L, the bilinear form defines a
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matrix Cαβ := Φ(eα, eβ). The signature of L is defined as (l+, l−), where l+ and l− are the

number of positive and negative eigenvalues of C respectively.

It can be shown that the lattice H2(S,Z) (with the bilinear form Φ) associated with

any K3 surface S is an even, self-dual lattice of signature (3, 19) [30]. In fact, there is

precisely one such lattice with these properties up to isometry‡; this lattice is denoted by

Γ3,19 (See Appendix A). Poincaré duality implies that the lattices H2(S,Z) and H2(S,Z)

are isometric¶ and that H2(S,Z) ∼= Γ3,19. For the rest of the paper, we will use the notation

x · y to denote the bilinear form on a lattice, which in this case would be the intersection

number in homology, or the wedge product of forms in cohomology.

Given a complex structure on S, there exists a globally defined, nowhere vanishing,

holomorphic two form Ω. A complex structure defines a Hodge decomposition of the

lattice H2(S,Z) ⊂ H2(S,C) as H2(S,C) = H2,0(S)⊕H1,1(S)⊕H0,2(S). Ω ∈ H2,0(S) and

is defined only up to scaling by a non-zero complex number. The Hodge decomposition

determined by Ω uniquely specifies the complex structure. We can write Ω = x+ iy, where

x, y ∈ H2(S,R). The elements x and y are constrained because Ω satisfies

∫

Ω ∧ Ω = 0,

∫

Ω ∧ Ω̄ ∝ Vol(S) > 0 (2.1)

Therefore, x and y satisfy x · x = y · y > 0 and x · y = 0. These conditions imply that the

real plane spanned by x and y in H2(S,R) ∼= R3,19 is positive definite. Thus, the complex

structure on S is determined by a positive-definite two-plane in the space R3,19 ⊃ H2(S,Z).

The Kähler form J is a real, closed (1, 1) form and satisfies

∫

J ∧ Ω = 0 ⇒ J · x = J · y = 0
∫

J ∧ J ∝ Vol(S) > 0 ⇒ J · J > 0 (2.2)

The above equations imply that the holomorphic two-form and the Kähler form determine

a positive-definite three-plane in R3,19.

3 Type I/Heterotic on K3

We wish to construct d = 6 vacua with chiral (1, 0) supersymmetry (8 real supercharges)

starting with the type I or heterotic string theory on a K3 surface S. The type I and SO(32)

heterotic string‡ theories are equivalent under a strong-weak duality [35]. The low-energy

effective action of both string theories is type I supergravity. Since our analysis is carried

‡Two lattices L and L′ are isomorphic if there exists a bijective map f : L → L′. If f preserves the

bilinear form Φ then f is said to be an isometry.
¶The Poincaré dual of a 2-cycle A ∈ H2(S,Z) is a closed two-form Ã ∈ H2(S,Z) such that for every

2-cycle C,
∫

C
Ã = Φ(A,C). Poincaré duality maps the intersection product Φ in homology to the wedge

product of forms in cohomology [32]. Given closed 2-cycles A,B and their Poincaré duals Ã, B̃, we have
∫

S
Ã ∧ B̃ = Φ(A,B).
‡The gauge group is really Spin(32)/Z2 and not SO(32) for both the type I and the heterotic string.

See [33, 34] for further discussions of this point.
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out using the effective action alone, it applies to both the type I and the heterotic string.

Some calculations are more transparent in the heterotic string, while the type I string gives

an intuitive picture of the SO(32) gauge group in terms of D9-branes. In this section we

discuss the constraints imposed by tadpole cancellation and low-energy supersymmetry.

Readers familiar with these constraints can skip to the summary at the end of this section.

3.1 Tadpole cancellation

In the context of the heterotic string, the tadpole constraint arises from integrating the

Bianchi identity for the NS-NS B field over the K3 surface. In the type I theory the same

constraint arises from the equation of motion for the six-form RR potential, including the

Wess-Zumino couplings of the O9-plane and the D9-brane in the presence of world-volume

fluxes. Since these are dual descriptions of the same system, both approaches must yield the

same answer. We summarize the calculation of the constraint here in heterotic language,

which is perhaps more transparent, following [36]. We then summarize the physical content

of this constraint as interpreted in the type I theory.

The Bianchi identity in the heterotic string is [38]

dH = trR ∧R− trF ∧ F , (3.1)

where R and F denote the curvatures of the tangent bundle and gauge bundle respectively,

and the trace is to be taken in the vector representation. Integrating this equation over S

we obtain

− 1

8π2

∫

S

trF ∧ F = − 1

8π2

∫

S

trR ∧R . (3.2)

This is an equality of the Pontyagin classes of the gauge bundle and tangent bundle inte-

grated over S. For a K3 surface the right hand side evaluates to -48 [37], and this leaves

us with the tadpole constraint

1

8π2

∫

S

trF ∧ F = 48 . (3.3)

In the type I language, the orientifold action fixing all space-time points gives an O9-

plane with ten-form R-R charge −32. The SO(32) gauge group lives on the 16 D9-branes

which, along with their orientifold images, must be added to cancel the R-R charge from the

O9-plane. Due to the non-zero Riemann curvature of S, the gravitational couplings of the

D9-branes and O9-plane [1, 39] induce a net nonvanishing six-form R-R tadpole. We cancel

the tadpole by turning on background world-volume fluxes with the appropriate instanton

number on the D9-branes. These world-volume fluxes on the D9-branes thread 2-cycles in

S and have D5-brane charge equal to the instanton number of the flux configuration [2, 3].

3.2 U(1) bundles and Dirac quantization

We restrict our attention to gauge bundles that are sums of U(1) bundles for the sake

of simplicity. SO(32) is a rank 16 group and has sixteen U(1) factors. Let T i, i =

1, 2, · · · , 16 denote the sixteen anti-Hermitian Cartan generators in so(32) normalized so

that tr (T iT j) = −2λ2δij . The curvature form can be expanded in this basis as F = F i T i
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where F i ∈ H2(S,R) are closed 2-forms, some of which could be zero. We know that U(1)

fluxes threading compact 2-cycles inside S are subject to Dirac quantization. With our

normalization conventions this implies the integrality of the class

f̂i :=
λ

2π
F i ∈ H2(S,Z) . (3.4)

In terms of the f̂i, the tadpole condition (3.3) reads

16
∑

i=1

f̂i · f̂i = −48 . (3.5)

Here the · denotes the intersection product on the lattice H2(S,Z) as explained in Section

2.

It is useful to keep in mind the interpretation in terms of the type I theory. A single D9-

brane with a U(1) world-volume flux F i has an orientifold image with flux −F i. The brane

and its image together form a single, dynamical type I D9-brane with SO(2) Chan-Paton

indices. The type I theory contains sixteen D9-branes with SO(32) Chan Paton indices and

we therefore can turn on a maximum of sixteen independent U(1) fluxes F i, i = 1, 2, · · · , 16.
In addition, to avoid global anomalies we must impose that the first Chern class of the

gauge bundle be an even integral class on S [40, 41]. Therefore,

1

2

∑

i

f̂i ∈ H2(S,Z) . (3.6)

3.3 Supersymmetry constraint

Since we demand that the six-dimensional vacua have supersymmetry, the SO(32) gauge

bundle is constrained. It is well known [38, 42] that to preserve supersymmetry the cur-

vature form F must satisy Fαβ = Fᾱβ̄ = 0, Fαβ̄ g
αβ̄ = 0. Here α and β are holomorphic

coordinates on S and gαβ̄ is the Kähler metric. In terms of the U(1) fluxes, this implies

F i
αβ = F i

ᾱβ̄
= 0, F i

αβ̄
gαβ̄ = 0 for each i. The first two conditions are equivalent to the

global conditions
∫

F i ∧ Ω =

∫

F i ∧ Ω̄ = 0. (3.7)

This is because on a K3 surface, any (2,0) form is proportional to Ω up to a complex

constant; the integral conditions (3.7) imply that this constant of proportionality is zero,

and therefore that the local conditions are satisfied. This implies that F i is a (1, 1)-form,

and therefore that the corresponding U(1) bundle is holomorphic. Given a holomorphic

U(1) bundle with curvature form F i, the third (local) condition Fab̄ g
ab̄ = 0 is satisfied iff

the global constraint
∫

F i ∧ J = 0 is true [43]. Thus, supersymmetry places three (global)

conditions on the curvature two-form F i

∫

F i ∧Ω = 0

∫

F i ∧ Ω̄ = 0

∫

F i ∧ J = 0 (3.8)

We now ask the question — “Given a set of line bundles on K3 specified by the

lattice vectors {f̂i} in Γ3,19, does there exist a choice of Ω and J so that supersymmetry
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is preserved?”. We know from our discussion in Section 2 that Ω and J span a positive-

definite three-plane in the space R3,19 = H2(S,R). Since the lattice has signature (3,19), if

we restrict the {f̂i} to a negative-definite plane Σ ⊂ R3,19 (dimension ≤ 16), there always

exists a real, positive definite, 3-plane orthogonal to it. We can always choose Ω and J to lie

in the positive definite 3-plane. Therefore, the only constraint from supersymmetry is that

the lattice vectors {f̂i}, i = 1, 2, · · · , 16 generate a negative-definite sublattice in H2(S,Z).

This implies in particular that f̂2i < 0. Since the lattice is even, we have f̂2i ≤ −2. When

f̂2i = −2 the Poincaré dual homology class [Ci] ∈ H2(S,Z), or its negative −[Ci], contain

an irreducible rational curve [30]. The supersymmetry conditions (3.8) require that this

holomorphic curve have zero volume, thereby rendering the K3 surface S singular. In order

that S be smooth we must require that the lattice H2(S,Z)∩H1,1(S), known as the Picard

lattice, not contain any norm-squared −2 vectors. This can be ensured by demanding that

the real vector space spanned by the f̂i (a sub-space of R3,19) not contain any integral

vectors with norm-squared −2. In particular, this implies that f̂2i ≤ −4. Note that the

vectors f̂i need not be linearly independent, or even distinct, and so are not necessarily

a basis of minimal dimension for the lattice they generate. The tadpole constraint (3.5),
∑

i f̂
2
i = −48, can only be satisfied if at least four f̂i’s are zero. Therefore, even though the

gauge group SO(32) has sixteen U(1) factors, at most twelve of them can be turned on.

3.4 Summary of constraints

The tadpole condition (3.3) can be satisfied by turning on background world-volume fluxes

threading various 2-cycles in the K3. We focus on U(1) world-volume fluxes for simplicity.

Dirac quantization implies that the U(1) fluxes, appropriately normalized, are vectors

in the integral cohomology lattice H2(S,Z) ∼= Γ3,19. For each U(1) factor, we have a

lattice vector f̂i; in terms of these vectors f̂i, the tadpole condition is simply
∑

i f̂i · f̂i =
−48. Supersymmetry requires that the non-zero vectors f̂i (not required to be linearly

independent, or distinct) generate a negative-definite sublattice of Γ3,19. The K3 surface is

smooth only if the lattice H2(S,Z)∩H1,1(S) contains no norm-squared −2 vectors, which

implies that f̂2i ≤ −4. This in turn implies that we can have at most twelve non-zero f̂i.

Let M denote the lattice generated (over Z) by the vectors f̂i and (1/2)
∑

i f̂i. Then,

1) M is a rank ≤ 12 negative-definite sublattice of Γ3,19 ,

2) The vector space R⊗M contains no integral norm-squared −2 vectors in Γ3,19, (3.9)

3)
∑

i

f̂i · f̂i = −48 .

When these constraints are satisfied, we have a consistent string compactification on a

smooth K3 surface that satisfies the equations of motion in the supergravity approximation.

That is, for any set of fluxes f̂i ∈ Γ3,19 satisfying (3.9), there exist choices of complex

structure Ω and Kähler form J on K3 satisfying (3.8). The moduli space of these solutions

is restricted by the choice of fluxes, since the complex structure and Kähler form of the K3

surface are constrained to be orthogonal to the lattice generated by the fluxes f̂i. While we

have restricted our attention to smooth K3 compactifications, it is possible that some of

the singular compactifications are consistent; we comment on this in the following section.
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Multiplet Matter Content

SUGRA (gµν , B
+
µν , ψ

−
µ )

Tensor (B−
µν , φ, χ

+)

Vector (Aµ, λ
−)

Hyper (4φ,ψ+)

Table 1. SUSY representations in d=6 with 8 supercharges. The + and - indicate the chirality for

fermions and self-duality or anti-self-duality for the two index tensor.

4 Six-Dimensional Physics

In this section we describe how the parameters of the compactification discussed in the

previous section affect the low-energy physics. These six-dimensional, supersymmetric

compactifications of the SO(32) string on K3 have been studied earlier in [4, 9, 10]. In six-

dimensional theories with (1, 0) supersymmetry, there are four kinds of massless multiplets

(see Appendix B of [44]), listed in Table 1. The SUGRA and the tensor multiplets are

uncharged under the gauge group, and the vector multiplet transforms in the adjoint. In

six dimensions, the CPT conjugate spinor has the same chirality as the spinor. This implies

that chiral fermions must always be charged under a real representation of the gauge group.

The (chiral) hypermultiplet therefore transforms under a real representation.

4.1 Gauge group and matter content

Turning on U(1) fluxes breaks the SO(32) down to the commutant of the T i for which F i 6=
0. As discussed in Section 3.3, supersymmetry allows us to turn on at most twelve F i. Since

at least four of the F i are zero, the gauge group always has an unbroken SO(8) subgroup.

If we choose twelve distinct nonzero F i’s, the gauge group is broken to U(1)12 × SO(8).

When some of the F i’s are equal to each other one obtains unitary groups. In the type I

picture, this would mean that a stack of several D9-branes have the same background U(1)

flux turned on. For example, with F1 = F2 = · · · = F7 6= 0 and F8 = F9 = · · · = F16 = 0,

the commutant is U(7) × SO(18). In general, the gauge group in these compactifications

is
∏K

a=1 U(Na) × SO(2M) with N1 +N2 + · · · +NK +M = 16. This pattern of breaking

is accomplished by having K stacks, each with Na D9-branes where a is an index for

the stacks a = 1, · · · ,K. The U(1) factors in the gauge group are generally anomalous

due to the couplings with the two-form potential Bµν . However, in some cases, there are

linear combinations of the U(1) factors that remain anomaly-free. In what follows we do

not address the question of precisely which U(1) are lifted, and we simply retain the U(1)

factors in the gauge group as it does not affect the classification and enumeration of vacuum

solutions. We reserve the indices i, j to denote individual D9-branes and the indices a, b to

denote stacks of branes.

We have restricted ourselves to smooth K3 surfaces since we are working in the su-

pergravity limit. When the lattice spanned by the flux vectors contains the root lattice

of an A-D-E gauge group, the K3 surface develops the corresponding A-D-E singularity

[30]. The root lattice of an A-D-E group is generated by norm-squared −2 vectors; as
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1 2 3 3’ 2’ 1’

Figure 1. Three stacks of D9-branes and their orientifold images. The 1 and 2 stacks with N1 and

N2 branes respectively have U(1) fluxes f1, f2 on the world-volume of each brane in the two stacks.

These stacks carry unbroken components U(N1), U(N2) of the gauge group. The 3 and 3′ stacks

with 2M branes have no background flux and their gauge group is SO(2M). All three stacks and

their images are on top of each other and have been separated for clarity.

discussed earlier, the supersymmetry conditions (3.8) require the corresponding rational

curves to zero volume, resulting in a singular K3 surface. When one of the flux vectors

fa satisfies fa · fa = −2 the zero-volume rational curve also supports Na U(1) instanton

fluxes. In the absence of instanton flux, the classical A-D-E singularity is smoothed out

by a strongly coupled worldsheet theory [45]. In the absence of a singularity, k coincident

small instantons enhance the gauge group by a factor Sp(k), as shown in [2]. When small

instantons coincide with an A-D-E singularity, it was shown in [46–50] that the coalescence

of sufficiently many instantons can lead to a further enhancement of the gauge group,

with additional hyper and tensor multiplets. In our case, Na small U(1) instantons with

f2 = −2 carry the same six-form charge as 2Na D5 branes, and therefore there may be

a gauge enhancement of at least Sp(2Na), with further enhancement possible from the

A-D-E singularity. It is not clear whether these singular compactifications are consistent

string vacua, and we leave the further study of these singular models to future work.

The matter content is easily visualized in the type I picture, as shown in Figure 1

where we have depicted a two-stack model. The gauge group is U(N1)×U(N2)×SO(2M)

with N1+N2+M = 16 and M ≥ 4. We have two stacks containing N1 and N2 D9-branes,

with distinct U(1) fluxes characterizing the two stacks. The remaining M branes do not

have any flux on their world-volume. We denote the stacks and their orientifold images as

1, 2, 1’, 2’ and 3,3’ respectively in Figure 1. The strings that stretch between 1 ↔ 1 and

2 ↔ 2 correspond to the vector multiplet and transform in the adjoint of U(N1) and U(N2)

respectively. The 1 → 2 strings (and their CPT conjugate 2 → 1 strings) are charged in the

(N1, N 2)+ (N 1, N2) representation of U(N1)×U(N2) . There are also strings that stretch

from a brane to the orientifold image of another brane. The 1 ↔ 2′ strings transform in the

bifundamental (N1, N2) + (N 1, N 2). The strings in the 1 ↔ 1′ transform in the two-index

antisymmetric representation of U(N1). The 1 ↔ 2M and 2 ↔ 2M strings transform in

the (N1, 2M) + (N 1, 2M) and the (N2, 2M) + (N 2, 2M) representations respectively.

The massless matter content in these models can be computed using the Atiyah-Singer

index theorem [4], [9], [10]. For example in the 1 ↔ 2 sector, the ends of the string carry
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Representation Number of hypermultiplets

(Na, N b) + (Na, Nb) (−2− 1
2 (fa − fb)

2)

(Na, Nb) + (Na, N b) (−2− 1
2 (fa + fb)

2)

Antisym. U(Na) + c.c (−2− 2f2a )

(Na, 2M) + (Na, 2M) (−2− 1
2f

2
a )

Neutral 20

Table 2. Massless multiplets in the
∏k

a=1
U(Na)×SO(2M) solution. The indices a and b run over

stacks with a 6= b.

charge (+λ,−λ) under the U(1)⊗U(1) bundle V associated with the two branes to which

the string is attached (λ determines the normalization of the Lie algebra generators and

is defined in section 3.2). The index theorem [37] gives the net number of normalizable,

fermion zero modes in the presence of this background gauge field.

n+ − n− = − 1

24
p1(R)− c2(V) = 2 +

1

16π2

∫

trF ∧ F

= 2 +
1

2
(f1 − f2)

2 (4.1)

⇒ |n+ − n−| = −2− 1

2
(f1 − f2)

2 (4.2)

Therefore, there are (−2− (f1−f2)2/2) 6D hypermultiplets in the (N1, N̄2) representation.

This number is positive only when (f1−f2)2 ≤ −4, which is consistent with the smoothness

condition on S, i.e. there are no integral norm-squared −2 vectors. The number of massless

multiplets in the other representations can be computed in an analogous manner. For a

more general
∏k

a=1 U(Na) × SO(2M) model, one can compute the above index for every

pair of stacks a, b; the results of this computation are shown in Table 2. In addition,

the closed string sector gives the six-dimensional SUGRA multiplet, 1 tensor multiplet

and 20 neutral hypermultiplets [44]. The important thing to note is that all the massless

matter content is determined by inner products of the lattice vectors {fa}. Defining the

intersection matrix mab := fa · fb, the low-energy spectrum is thus completely determined

by m, with the gauge group determined by the stack sizes {Na}. It is interesting to note

that requiring the number of multiplets as determined by the matrix m to be non-negative

imposes a weak form of the smoothness criterion on S: the vectors fa, fa ± fb must have

norm-squared ≤ −4.

4.2 Anomaly cancellation

The anomalies in supersymmetric 6-dimensional theories can be cancelled by a general-

ization of the Green-Schwarz mechanism, as long as the TrR4 and TrF 4 terms in the

anomaly 8-form vanish. This computation was first carried out in [4], and more recently

in [9, 10, 48]. The coefficient of the TrR4 term, which corresponds to the purely gravi-

tational anomaly∗, is proportional to nH − nV + 29nT − 273, where nH ,nV , nT are the

∗ In 6D theories, the CPT conjugate of a spinor has the same chirality as the spinor. As a result when

a 6D field theory is coupled to gravity, in general there are purely gravitational anomalies [38].
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number of hypermultiplets, vector multiplets and tensor multiplets respectively [44]. For

the compactifications we consider, the closed string sector fixes nT = 1 and contributes 20

gauge-neutral hypermultiplets (from the K3 moduli). The gravitational anomalies vanish

when nH − nV = 224, if we only count the multiplets from the field theory. It is easily

checked that all our models satisfy this anomaly constraint.

Consider K stacks, each of multiplicity Na and flux vectors fa satisfying the tadpole

condition
∑

Naf
2
a = T = −48. The gauge group is

∏K
a=1 U(Na)×SO(2M) with

∑K
a=1Na+

M = 16. The matter content is summarized in Table 2. The number of vector multiplets

is N2
a for each U(Na) factor and M(2M − 1) for the SO(2M).

nV =

K
∑

a=1

N2
a +M(2M − 1) (4.3)

To obtain the number of hypermultiplets, we simply multiply the numbers in Table 2 with

the dimension of the representation. This gives

nH = −
∑

a6=b

NaNb(2 +
1

2
f2a +

1

2
f2b )−

∑

a

Na(Na − 1)(1 + f2a )− 2M
∑

a

Na(2 +
1

2
f2a )

= −
∑

a,b

NaNb(2 +
1

2
f2a +

1

2
f2b ) +

∑

a

N2
a +

∑

a

Na(1 + f2a )− 2M
∑

a

Na(2 +
1

2
f2a )

= −2(16 −M)2 − (16−M)T +
∑

a

N2
a + 16−M + T − 4M(16 −M)−MT

= −496− 15T +
∑

a

N2
a + 2M2 −M

= nV + 224

Thus, all the models we construct satisfy the condition nH − nV = 224 and are anomaly

free.

5 Existence of solutions from lattice embeddings

We have now given a simple mathematical characterization of abelian magnetized brane

models on K3. These models are specified by a set of lattice vectors {fa}, not necessarily
linearly independent, which along with 1

2

∑

aNafa generate a negative-definite sublattice

M in H2(S,Z) ∼= Γ3,19. Each lattice vector fa is associated with Na identical abelian fluxes

on a stack of Na D9-branes. These lattice vectors and multiplicities satisfy the tadpole

condition

Tr m̂ =
∑

a

Naf
2
a = −48 . (5.1)

As shown in section 4.1, the gauge group and matter content of the resulting 6-dimensional

supersymmetric theory depend only on the multiplicities Na and the intersection matrix

mab := fa · fb.
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We are now interested in finding a simple way of classifying all models of this type. In

particular, in order to study the physics of this class of string compactification, we would

like to know the answers to the following two questions:

(I) What combinations of multiplicities Na and intersection matrices mab can be real-

ized in string theory?

(II) For those Na and mab which can be realized, in how many inequivalent ways can

models with this data be constructed?

The equivalences referred to here are changes of basis of the lattice H2(S,Z), which

correspond to (large) diffeomorphisms of the K3 surface¶. The questions above essentially

amount to whether the lattice defined by the intersection matrix mab
‡‡ can be embedded

in the 2-cohomology lattice of K3, and whether such an embedding is unique. We begin

with the simple case where there is only a single nonvanishing flux vector fa, then proceed

to the more complex case of many nonvanishing flux vectors. In this section we focus

on addressing question (I), the existence of models with given Na,mab. In the following

section we discuss question (II) and the explicit enumeration of models.

5.1 Single Stack Models

To illustrate the character of the existence and uniqueness results for lattice embeddings

which we will make use of, it is helpful to begin with the simplest case, that of a single

nonvanishing flux vector f 6= 0. Since f is in integral cohomology of K3, we have

f · f = −τ ∈ 2Z . (5.2)

We can think of f as defining a one-dimensional lattice. This lattice is negative-definite

since f · f = −τ < 0. Ignoring for the moment any physical constraints, the mathematical

question we wish to address is whether, for a given τ , there exists a vector in H2(K3,Z) =

Γ3,19 which squares to −τ , and whether such a vector is unique under automorphisms of

the lattice (i.e. linear transformations on the lattice leaving the inner product unchanged).

To understand the nature of this question it is perhaps helpful to consider briefly a

simpler version of this question, namely the analogous question of existence and uniqueness

of a vector of fixed length but on a lattice of definite signature. For example, consider the

2D Cartesian lattice with generators a1, a2 having inner product ai · aj = δij . There only

exist vectors v = xa1 + ya2 of norm-squared v · v = ν when ν can be written as a sum

of squares ν = x2 + y2 for integral x, y. Thus, for example ν = 5 = 1 + 4 is associated

with vectors such as a1 + 2a2, while for values such as ν = 6 which cannot be written as a

¶This is the Torelli Theorem for K3 surfaces [51]. There is a simple analogy with the case of the 2-torus.

H1(T 2,Z) is a lattice with an anti-symmetric bilinear form

(

0 1

−1 0

)

. Automorphisms of this lattice form

the group SL(2,Z), which is the group of large diffeomorphisms of T 2. See also related discussions in

[30, 52].
‡‡The vectors fa need not be linearly independent, therefore, the matrix mab does define a lattice, but is

not the inner product matrix associated with the lattice M. This turns out to be a minor subtlety and we

address this issue in more detail in Section 6.
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sum of squares there are no vectors in this lattice with norm ν. On this lattice, there are

sometimes multiple vectors of the same length which are not related by automorphisms

(for example 65 = 1 + 64 = 16 + 49). The number of distinct automorphism classes of

vectors of length squared ν is the number of ways ν can be expressed as a sum of squares

(for which a formula was found by Gauss). Thus, on this lattice, we are not guaranteed

the existence of a vector with some arbitrary value ν for the norm. And, even if a vector

of norm-squared ν exists in the lattice, we are not guaranteed that it is unique.

For an even unimodular lattice such as E8, the existence question has a simpler answer

— there are vectors in E8 with any desired even norm-squared (See Appendix A). As on

the Cartesian 2D lattice, however, there can be multiple vectors of fixed length in different

orbits of the automorphism group (for example there are two disjoint orbits containing

vectors of norm-squared 8, and two orbits with vectors of norm-squared 14). The number

of such orbits for fixed ν can be found by looking at vectors in a fundamental domain for

the action of the automorphism group; for E8, for example, these numbers are given in

[53].

For lattices with indefinite signature, the uniqueness problem also simplifies dramati-

cally. The simplest example of this is the lattice U ⊕ U defined by two copies of the basic

indefinite signature matrix

U =

(

0 1

1 0

)

. (5.3)

On this lattice, as generally occurs for lattices of indefinite signature, automorphism classes

of vectors are essentially uniquely defined by the vector norm. To make this statement

more precise, it is useful to define a primitive vector v in a lattice L to be a vector with

the property that v cannot be written as an integral multiple v = dw of another vector

w ∈ L. If v = dw where w is primitive and d > 1 is integral, then v is not primitive,

and d is the divisor of v. The divisor is invariant under lattice automorphisms; the orbit

of a primitive vector under the automorphism group does not contain any non-primitive

vectors. For example, of the two automorphism classes of vectors of norm-squared 8 in E8,

one contains a primitive vector of norm-squared 8 and the other contains 2v2 where v2 is

a primitive vector of norm-squared 2. Given this definition of primitive vectors, it can be

proven by elementary arguments that any two primitive vectors in the lattice U ⊕ U with

the same norm-squared are related by a lattice automorphism. This result is shown by

Wall in [54], and generalized by induction to any lattice whose net signature (number of

positive eigenvalues minus number of negative eigenvalues) differs from the rank by at least

4. Moreover, indefinite, even, unimodular lattices like Γ3,19 contain primitive vectors of any

even norm, since they always contain factors of U¶. Therefore, given any even integer ν,

there exists precisely one primitive vector of norm-squared ν up to automorphism in Γ3,19.

This can be easily generalized to the case of non-primitive vectors. If f is a non-primitive

¶If v and w are vectors spanning the lattice U with v2 = w2, v · w = 1, then for a given even integer 2k,

the primitive vector v + kw has norm-squared 2k. Since any indefinite, even, unimodular lattice contains

factors of U by Milnor’s classification (See Appendix A), such a lattice contains vectors of arbitrary even

norm.
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vector of norm ν, then f = dg, where g is a primitive vector of norm-squared ν/d2 ∈ 2Z.

Wall’s theorem states, then, that there is a unique g of norm-squared ν/d2 as long as ν/d2

is even. To summarize, we have the result that

Equivalence classes of vectors under automorphisms in Γ3,19 are uniquely identified by

norm-squared and divisor; there is exactly one equivalence class for any even

norm-squared ν and divisor d satisfying (2d2) | ν.

Bringing this result back to the context of line bundles on K3, this states that a line

bundle with flux f can be constructed with f2 = −τ for any even integer τ . Equivalence

classes of such line bundles are determined by τ and a divisor d such that d2|τ/2. This

gives a simple and complete classification of possible supersymmetric line bundles on K3.

Including the tadpole constraint restricts Nf2 = −Nτ = −48, so there are in practice only

a small number of allowed configurations. We discuss explicit enumeration of solutions in

Section 6.

5.2 Multiple stack models

Now let us consider the more general situation of K stacks of fluxes, where the ath stack

contains Na D9-branes with flux fa. The intersection matrix mab = fa · fb defines a

negative-definite lattice of dimension ≤ K. When the fa are linearly independent, the

matrix m is negative-definite, and the dimension of the lattice is K. The matrix m can

be degenerate; this occurs when the fluxes fa are not linearly independent. In this case m

still defines a lattice, but of dimensionality < K. We discuss the situation where the fa are

not linearly independent in more detail in the following section. We are now interested in

answering questions (I) and (II) above for negative-semidefinite matricesmab corresponding

to negative-definite lattices of dimension ≤ 12.

In principle, classifying allowed matrices mab seems like a very difficult question as the

dimensionality of the matrix increases. One might be tempted to begin by classifying the

lattices associated with allowable intersection matrices (up to automorphism), which cor-

respond to integral quadratic forms, and then ask if the resulting lattices can be embedded

into Γ3,19. The classification of integral quadratic forms is a classical problem in mathe-

matics, with a long history. Gauss classified all binary (two-dimensional) integral quadratic

forms in Disquisitiones Arithmeticae [55]. Later work by Minkowski, Hasse, Witt, Eichler

and others has extended this work to higher-dimensional and indefinite-signature forms.

Even using powerful p-adic methods, however, the classification of integral quadratic forms

becomes intractable beyond a certain point. A clear review of this work is given in [56].

While the integral quadratic forms of dimension up to 12, which would be of interest to us

here, can in principle be classified, this is a cumbersome way to analyze the problem with

which we are faced.

Since the data associated with a given line bundle model provides not only the abstract

lattice (integral quadratic form) defined bymab, but also a choice of vectors fa in this lattice,

we can take a clearer path to the classification of allowed models. In doing so we use a

generalization by Nikulin of Wall’s theorem (see previous section) to higher dimensions
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[57] and proceed in analogy with the one-stack case. In this section we show how these

theorems apply, and discuss the limiting cases of their application. In Section 6 we show

more explicitly how to classify and enumerate explicit models with desired features based

on the results of the more theoretical analysis contained in this section.

To understand the statement of Nikulin’s generalization of Wall’s result, we need to

generalize the notion of primitivity to a lattice embedding of higher dimensionality. Given

a lattice M and another lattice L, an embedding φ : M → L is primitive if for all primitive

vectors x ∈ M, φ(x) is primitive in L. Basically, an embedding is primitive if the image

of M in L contains all vectors in L in the R-linear space spanned by φ(M). A slightly

weakened version of the theorem of Nikulin is almost completely adequate for our purposes.

Theorem 5.1 (Nikulin, simplified). Let M be an even lattice of signature (t+, t−) and let

L be an even, unimodular lattice of signature (l+, l−). There exists a primitive embedding

of M into L which is unique up to automorphisms of L, provided the following conditions

hold:

1. l+ − t+ > 0 and l− − t− > 0.

2. l+ + l− − 2t+ − 2t− ≥ 2

This is a simplified version of Theorem 1.14.4 in [57]. The full theorem is slightly

stronger and has conditions depending on prime components of the abelian group M∗/M,

where M∗ := Hom(M,Z) denotes the dual lattice of M. In Appendix C we give a more

precise statement of Nikulin’s stronger theorem, proven by Nikulin using p-adic methods,

and show how Theorem 5.1 follows from Nikulin’s theorem. For a further discussion of

embedding theorems, see [58, 59]. These embedding theorems are also encountered in a

physics context in [60].

From Theorem 5.1, it follows immediately that any even, negative-definite lattice M
of dimension up to 10 has a primitive embedding in the lattice L = Γ3,19. Thus, Nikulin’s

theorem guarantees that any intersection matrix describing up to 10 linearly independent

abelian fluxes can be realized on a sublattice of the cohomology lattice of K3. In addition,

the theorem states that there is a unique primitive embedding of any such sublattice into

Γ3,19 up to automorphism. This is completely analogous to the one-dimensional case where

Wall’s theorem states that there is a unique primitive vector for a given norm.

From the tadpole constraint
∑

aNaf
2
a = −48 and the fact that f2a ≤ −4, we can have

at most 12 non-zero fluxes, corresponding to a maximum lattice rank of 12. So Nikulin’s

theorem almost completely covers the cases of interest. We cannot draw general conclusions

when the rank of the lattice is 11 or 12, and these have to be analyzed on a case-by-case

basis. For this purpose, we state Nikulin’s theorem in greater generality in Appendix C.

The upshot of this analysis is that any negative-semidefinite even intersection matrix

mab of rank ≤ 10 gives a negative-definite lattice which admits a primitive embedding

into Γ3,19, and this embedding is unique up to automorphisms of Γ3,19. Physically, this

means that the only constraint on allowed intersection matrices is the tadpole constraint,

so that up to this constraint any desired model can be realized by dialing the intersection

matrix. Furthermore, for primitive embeddings the resulting realization is unique up to
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automorphisms of the K3 cohomology lattice. This result could break down when the rank

of the intersection matrix m equals 11 or 12.

In the analysis of this section we have concentrated on primitive embeddings. In the

general classification of models we must include non-primitive embeddings, which leads

in some cases to a discrete degeneracy of models with the same gauge group and matter

content. This leads to the following result –

Every negative-semidefinite intersection matrix m of rank ≤ 10 that is even and satisfies

the tadpole constraint gives a lattice M which has an embedding (primitive or otherwise)

into Γ3,19.

In the next section, we use the general existence and uniqueness result described above

to provide explicit methods for classifying and enumerating models, including discrete

degeneracies arising from non-primitive embeddings. We also describe in more detail the

case when the intersection matrix m is negative-semidefinite but not negative-definite,

corresponding to the case when the vectors fa are linearly dependent.

6 Classification and enumeration of vacuum solutions

Given the mathematical results on lattice embeddings described in the last section, we

are now equipped to give a simple description of the full set of possible vacuum solutions.

Each vacuum solution is associated with an even, negative-semidefinite intersection matrix

mab, associated with a negative-definite lattice M, as well as multiplicities Na. The low-

energy gauge group and matter content of the dimensionally reduced 6D theory depend

only on mab, Na. To enumerate all solutions we consider all possible negative-semidefinite

intersection matrices and multiplicities, satisfying the tadpole constraint. Each such model

admits a unique primitive embedding into Γ3,19 (except possibly for some cases when the

rank of m is 11 or 12). In some cases, non-primitive embeddings can also be constructed.

In this section we show how non-primitive embeddings can be constructed, associated with

refinements (overlattices) of the lattice defined by m. This gives a direct approach to

construction of all models associated with given data mab, Na.

6.1 Single stack models

The simplest case of the magnetized brane construction on K3 we are considering here is

a single stack of N D9-branes carrying a flux f (rank m = 1). The fluxes of the U(1)16

subgroup of SO(32) are then f1 = f2 = · · · = fN = f, fN+1 = · · · = f16 = 0. The 6D gauge

group of this model is U(N)× SO(32− 2N), and the matter content depends only on the

quantities N and f . In this single stack model, N and f satisfy the tadpole constraint

Nf2 = −48. In addition, we require the vector Nf/2 to be integral. When N is even, the

one-dimensional lattice M is generated by f , and when N is odd, M is generated by f/2.

The data describing this model are just the integer N and the (even) integer τ =

−f2 ≥ 4. To classify models of this type we need to find all pairs τ,N satisfying the above

constraints. We must then find all embeddings of the one-dimensional lattice M into Γ3,19.
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Antisym.

τ = −f2 Gauge group U(N)+cc (N, 2M) + cc # vacua

48 U(1) × SO(30) 0 22 1

24 U(2) × SO(28) 46 10 2

16 U(3) × SO(26) 30 6 1

12 U(4) × SO(24) 22 4 1

8 U(6) × SO(20) 14 2 1

6 U(8) × SO(20) 10 1 1

4 U(12) × SO(8) 6 0 1

Table 3. Solutions with a single U(1) flux. The third and fourth columns give the number of

hypermultiplets in the representation indicated. The last column gives the number of (topologically

distinct) choices of flux that yield the corresponding low-energy theory.

The solutions are

(N, τ) = (1, 48), (2, 24), (3, 16), (4, 12), (6, 8), (8, 6), (12, 4) . (6.1)

Let v denote the generator of the lattice M, which is f for even N and f/2 for odd

N . We see that −v2 is an even integer ≥ 4. From Wall’s theorem quoted in 5.1, there

exists a primitive vector of norm-squared v2 in Γ3,19, and this vector is unique up to

automorphisms. In other words, the one-dimensional lattice M admits a unique primitive

embedding into Γ3,19. Thus, there is at least one model associated with the data (N, τ) for

each choice satisfying the tadpole constraint.

The only remaining question is for which values of τ the one-dimensional lattice defined

by v admits a non-primitive embedding. In the one-dimensional case this is a rather trivial

problem. For a non-primitive embedding, we must have v = d v′, where the divisor d is an

integer and v′ is embedded primitively. So we simply need to identify all integers d whose

square divides v2/2. Also, the lattice spanned by v′ must not contain any −2 vectors.

For each such integer there is a unique primitive embedding of the associated vector v′ of

norm-squared v2/d2. The only solution in (6.1) where this is possible is (N, τ) = (2, 24),

where v = 2v′.

This analysis has thus allowed us to classify the topologically distinct magnetized

brane models on a K3 surface with a single stack of identical abelian fluxes, where the

tadpole cancellation condition is satisfied. For all these models, since f2 < 0 there exists

a parameter space of values for Ω and J that preserve supersymmetry. We summarize the

possible vacua in Table 3, indicating the gauge group and matter content of the 6D theory

in each case, along with the number of topologically distinct ways of realizing each model.

Note that the low-energy theories associated with the topologically distinct models

where f admits a non-primitive embedding are identical at the level of the gauge group

and matter content with those models where f is embedded primitively, although there

is a discrete topological quantum number associated with the form of the embedding in

Γ3,19 that distinguishes these models. This general pattern is reproduced for models with

more linearly independent fluxes f (more stacks). It would be interesting to consider
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precisely how these discrete sets of models with identical gauge group and matter content

are distinguished by more detailed aspects of the six-dimensional physics.

6.2 Multi-stack models

Now let us consider the general situation where there are multiple distinct stacks of branes

(K > 1) with different fluxes fa, a = 1, . . . ,K and multiplicities Na. The intersection

matrix mab = fa · fb defines a lattice M ⊂ Γ3,19. We are interested in classifying all

such configurations. We can do this using the lattice embedding theorems discussed in 5.

To apply these theorems, however, there are two technical issues that must be addressed.

First, we need to deal with the situation where the lattice M is not embedded in a primitive

fashion into Γ3,19, generalizing the discussion of divisors in the previous subsection. Second,

we need to deal with the fact that the fa need not be linearly independent, leading to cases

where the matrix m is negative-semidefinite, not negative-definite.

6.2.1 Primitive embeddings and overlattices

Let us first consider the question of primitivity. We deal with the case of linear dependen-

cies between the f ’s in the following subsection 6.2.2. We assume in the analysis of this

subsection that the vectors fa are linearly independent, so that the matrix m is negative-

definite. As we will demonstrate in the next subsection, essentially the same analysis will

work in the degenerate case, by working with a linearly independent subset of the f ’s.

We know that the lattice M defined by m admits a unique (up to automorphism)

embedding into Γ3,19 (with the usual caveat that rank m 6= 11, 12). Thus, for every

negative-definite m satisfying the tadpole condition there is at least one string model

realizing this intersection matrix. In some cases, however, there are other models that

realize the same intersection matrix m through a non-primitive embedding of M into

Γ3,19. Thus, to provide a complete classification of models we must understand the range

of possible non-primitive embeddings of any lattice.

An embedding M ⊂ Γ3,19 fails to be primitive when there are lattice points in Γ3,19

that lie in the R-linear subspace spanned by M but not in M itself. In other words, the real

plane in Γ3,19 that contains the lattice M, also contains other lattice points that are not

in M. A lattice N is said to be an overlattice of a lattice M, if M is a proper sub-lattice

of N and if both M and N have the same dimension. When the embedding M →֒ Γ3,19 is

non-primitive, the set of lattice points in Γ3,19 ∩ span(M) forms an overlattice of M, i.e.

a more dense lattice containing M as a sublattice of equal dimension. The lattice spanned

by f ′ = f/d in the case of a non-primitive single stack model discussed above is a simple

example of an overlattice.

For any lattice M, which is generated by K linearly independent vectors fa, we can

enumerate all possible embeddings M → Γ3,19 by enumerating all (even) overlattices M′ ⊃
M. By the lattice embedding theorems, there is then a unique (up to automorphism) non-

primitive embedding of M for each allowed M′, associated with a primitive embedding of

M′.

Classifying overlattices of a given lattice M with basis f can be done in a straightfor-

ward fashion by induction. Assume M is generated by linearly independent lattice vectors

– 23 –



Figure 2. A lattice M is shown on the left, and its overlattice N on the right.

f1, . . . , fK . Given any overlattice M′ ⊃ M, we can choose a basis e1, . . . , eK for M′ induc-

tively so that e1, . . . , ea form a basis for the sublattice of M′ spanning the space containing

f1, . . . , fa. We then have

f1 = α11e1

f2 = α21e1 + α22e2 (6.2)

...
...

fK = αK1e1 + · · ·+ αKKeK .

Geometrically, at each step of the construction ea is a vector chosen to have minimal

extent in the direction defined by the component of fa perpendicular to the space spanned

by {f1, · · · , fa−1}. Defining the inner product matrix on the ea’s by ǫab = ea · eb, we thus

have for each a ≤ K

detam =

a
∏

b=1

α2
bb detaǫ . (6.3)

where by detam we mean the determinant of the a × a principal minor of m. Note that

when a is not divisible by 8, |detaǫ| > 1, as there are no negative-definite, even, unimodular

lattices in dimensions not divisible by 8. At each stage of the inductive definition of the

ea’s, the basis vector ea can be shifted by a linear combination of eb with b < a so that the

coefficients αab satisfy

0 ≤ αab < αaa, for b < a . (6.4)

These inequalities fix the SL(K,Z) freedom associated with the choice of basis for the

lattice M′.

It is now straightforward to construct all overlattices of M. We first enumerate all

combinations of (even) diagonal elements αaa satisfying (6.3). We then consider all αab <

αaa. The resulting matrix α then defines an overlattice of M through (6.2) if all resulting

inner products ǫab = ea · eb are integral.
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This gives a systematic way of enumerating all overlattices of M for any even integral

lattice. For any given intersection matrix m, there can be multiple distinct realizations of

the corresponding physics, labeled by matrices α satisfying (6.4) and (6.3). The matrix

entries α then form a set of discrete quantum numbers labeling the vacua. This same

structure arises in enumerating dyon states; a similar analysis was performed by Banerjee

and Sen in the context of dyons in [13], corresponding to the case of a two-dimensional

matrix αab, 1 ≤ a, b ≤ K = 2. The discrete quantum numbers αab characterizing distinct

vacua with the same gauge group and matter content associated with coefficients in (6.2)

can be thought of as a generalization to higher dimension of the discrete invariants identified

in [13].

6.2.2 Fluxes with linear dependencies

Now let us return to the degenerate case where m has vanishing determinant, associated

with linear dependencies between the fa’s. We have already dealt with a simple class of

such examples, namely those where multiple fi are identical. In this case we have simplified

the story by associating each set of branes with identical fluxes with a single stack of Na

branes with flux fa. To deal with the more general case of linear dependencies, we can

proceed by working with a maximal subset of linearly independent fa’s. Enumerating such

a subset as f̃n, n = 1, . . . , K̃, we have a basis for a K̃-dimensional real vector space. Each

of the fa’s not in the linearly independent subset {f̃n, n = 1, . . . , K̃} can be expressed as a

linear combination of f̃n’s through relations of the form

fa =
∑

n

γanf̃n (6.5)

where the coefficients γan are rational.

The complete set of vectors fa live in a lattice M that has dimensionality K̃. While

the f̃n’s may not form a generating basis for M, we can identify M as the set of points

given by the set of all integral linear combinations of fa’s subject to the identifications

(6.5). The lattice M is thus clearly an overlattice of the lattice generated by the f̃n’s. We

can therefore identify all overlattices of M by constructing all even integral overlattices

M′ of ⊕Zf̃n. For each such M′ there is a basis eb of M′ related to the f̃n’s by (6.2). M′ is

an overlattice of M when all fa’s are expressed in terms of integral linear combinations of

the eb’s through the composition of (6.5) and (6.2). In other words, we have an overlattice

of M (or M itself) when

fa =
∑

n,b

γanαnbeb ∈ M′, ∀a, (6.6)

which occurs iff
∑

n γanαnb ∈ Z for all a, b. Since the volume of the unit cell (discriminant)

of M′, given by det ǫ, divides that of M, we can identify M as the lattice M′ of maximum

discriminant satisfying the conditions (6.6).
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6.2.3 Systematic analysis of multi-stack models

Combining the considerations in the preceding two subsections, we have a systematic pro-

cedure for enumerating all multiple-stack magnetized brane models on K3. The steps in

this procedure are

1. Consider all integer solutions to
∑

aNamaa = −48, where Na are integer stack sizes,

and maa are even integers corresponding to f2a .

2. Scan over all integer matrix entries mab so that the matrix m is negative-semidefinite.

A simple test for a matrix to be negative-semidefinite is the Sylvester criterion: a

matrix m is negative-semidefinite iff all principal minors (square matrices of any size

in the upper left corner) of −m have non-negative determinants. An efficient test for

a matrix to be negative-semidefinite is to perform the Cholesky decomposition of the

matrix m = −llT where l is lower-triangular with non-negative entries. This test can

be carried out in order K3 operations§ [61].

3. Choose a minimal linearly independent set of fluxes f̃n. This can be done easily in

combination with the Sylvester criterion in the previous step; choose fluxes one by

one, throwing out those fluxes that when added to the previous set give a vanishing

determinant.

4. Retain solutions in which v = 1
2

∑

aNafa can be an integral lattice vector. This is

true if v2 ∈ 2Z, and v · f̃n ∈ Z for all n.

5. Construct all overlattices of ⊕Zf̃n ⊕ Zv by scanning over solutions to (6.3) and then

(6.4), testing for integral values for ǫab and (6.6). This determines the discrete mul-

tiplicity with which the model associated with intersection matrix m arises.

This procedure will generate all allowed configurations including those in which the

lattice contains a vector of norm-squared −2, corresponding to a singular K3 surface. While

some models with such vectors may have consistent string realizations we do not consider

them here, leaving further exploration of models corresponding to singular geometries for

further work. The consistent models associated with smooth K3 geometries will form a

subset of those models identified through the above procedure. In general, identifying those

lattices that do not contain norm-squared −2 vectors is tricky; it is well known that finding

the shortest vector in a lattice is a NP-hard problem. For small rank of m, however, this

problem is tractable.

6.3 Example: Two-stack models

As a simple example of the above analysis, let us consider two-stack models. With two

stacks corresponding to the lattice vectors f1 and f2, the gauge group is U(N1)×U(N2)×
§Although a given K×K matrix can be tested for negative-semidefiniteness efficiently, we do not have a

particularly efficient algorithm to enumerate all negative-semidefinite matrices with fixed diagonal elements

up to permutation symmetries.
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SO(32 − 2N1 − 2N2). To construct all models of this type, we first find solutions to the

tadpole condition

N1f
2
1 +N2f

2
2 = −48 . (6.7)

For even f2a , solutions can only exist when gcd(N1, N2)|24. Each solution of (6.7) gives

diagonal elements in the matrix mab which for convenience we denote

m =

(

m11 m12

m12 m22

)

=

(

A B

B C

)

(6.8)

We first consider the case when the matrix m is non-degenerate. In other words, the

vectors f1 and f2 are linearly independent. Since m is negative-definite, and we are only

interested here in lattices without vectors of self-intersection −2, we have A ≤ −4, C ≤
−4, AC − B2 > 0. For each solution of (6.7), we thus need only consider varying B in

the range −
√
AC < B <

√
AC. This generates all possible matrices m. To consider only

models from smooth K3’s we must further check that there are no −2 vectors in the lattice

generated by f1, f2. While for matrices m of arbitrary rank this is a hard problem, for

rank 2 there is a simple algorithm (originally due to Gauss) for finding the shortest vector

in a lattice. If |m11| > |m22| and 2|m12| ≤ |m22| then f2 is the shortest vector. If the

second condition is not satisfied then we replace f1 with f̃ = f1 +mf2 such that |f̃ |2 is

minimized, and then repeat the procedure, exchanging f1, f2 as necessary, until we have

the shortest vector, of which we check the norm-squared to see if it is −2. As a final step,

we only keep solutions where the vector v = 1
2

∑

aNafa is an integral lattice vector. The

range of possible N ’s and m’s produced in this fashion gives all possible gauge groups and

matter content for two-stack models. To count the topologically distinct ways in which one

of these low-energy theories can be realized in a string compactification, we have to count

possible overlattices of the lattice M associated with m.

For a given matrix of the form (6.8), we can check for overlattices as described above.

First, we consider all α11 so that α2
11|(A/2) (the extra factor of 2 arises from (6.3) because

ǫ11 is even). Then we consider all α22 such that α2
22|(AB − C2)/α2

11, and finally all α21 in

the range 0 ≤ α21 < α22. We can now find expressions for each element ǫab from (6.2), by

computing the matrix elements mab = fa · fb in terms of ǫab and then solving for ǫab. In

particular we have

ǫ11 =
m11

α2
11

ǫ12 =
m12 − α11α21ǫ11

α11α22
(6.9)

ǫ22 =
m22 − α2

21ǫ11 − 2α21α22ǫ12
α2
22

Of those values for α21 in the allowed range, only those giving integer values for ǫ12 corre-

spond to integral overlattices. Again, to find models associated with smooth K3 compact-

ifications we must check each overlattice for a −2 vector as above.

Example 1: Let us consider the example of solutions with N1 = N2 = 6, i.e. gauge

group U(6)×U(6)× SO(8). The only solution to (6.7) is A = −4, B = −4. So the matrix

– 27 –



m is given by

m =

(

−4 B

B −4

)

(6.10)

where the allowed values for B are B = 0,±1,±2,±3. For B = ±3 there is a vector

(f1 ± f2) of norm-squared −2. These are not good 6D gravity theories since the spectrum

of one type of bifundamental fields becomes negative. Thus, for models with the gauge

group U(6) × U(6) × SO(8), there are 5 distinct allowed negative semi-definite matrices

providing theories with distinct matter content in 6D. It is easy to see that all these lattices

are negative-definite, and none admit overlattices.

Example 2: For an example where an overlattice is possible, consider the solution of

(6.7) given by N1 = N2 = 2 with matrix

m =

(

−12 0

0 −12

)

(6.11)

By the general theorem of Nikulin, the corresponding lattice M (shown in Figure 2) admits

a primitive embedding into Γ3,19. This lattice also, however, admits an overlattice with

a primitive embedding, defining a distinct model with the same gauge group and matter

content. To identify the overlattice we follow the above procedure. Again, α11 = 1 since

A = −12 and therefore f1 must be primitive. The determinant is det m = 144, which

is divisible by α2
22 for α22 = 2, 3, 4, 6, 12. Choosing α22 = 2, we then have from (6.9)

ǫ12 = 6α21 and ǫ22 = −3− 3α2
21. The only solution is α21 = 1, and the resulting overlattice

N is defined by the matrix
(

−12 6

6 −6

)

. (6.12)

Now we consider the case of linearly dependent f1 and f2. In this case, we have f1 = xf

and f2 = yf for some vector f ∈ Γ3,19 and x, y ∈ Z. The tadpole constraint then gives

(N1x
2+N2y

2)f2 = −48. This is exactly like the one-stack problem, and solutions for fixed

N1, N2 are easily found.

It is straightforward to implement a computer algorithm that enumerates all 2-stack

solutions, including overlattices. In Table 4, we list the gauge groups that are allowed and

the number of vacua with that gauge group, counting all possible amounts of matter. We

also compute the number of vacua that have distinct low-energy properties. There are a

total of 574 distinct gauge group and matter content combinations for low-energy theories.

Table 5 shows the matter hypermultiplets obtained for the distinct U(2)×U(4)× SO(20)

models computed using the formulae listed in Table 2.

7 “Dial-a-model”

In the preceding section we described how the complete set of vacuum solutions for magne-

tized branes on K3 can be systematically enumerated. Such a systematic categorization of

models in a particular class can be useful for performing statistical analysis of a large family
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1 2 3 4 5 6

1 93 (146) − − − − −
2 54 (67) 99 (134) − − − −
3 25 (25) 0 (0) 3 (3) − − −
4 27 (27) 56 (69) 0 (0) 18 (18) − −
5 9 (9) 0 (0) 0 (0) 0 (0) 0 (0) −
6 7 (7) 22 (23) 0 (0) 7 (7) 0 (0) 5 (5)

7 3 (3) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

8 5 (5) 9 (9) 0 (0) 5 (5) 0 (0) 0 (0)

9 1 (1) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

10 0 (0) 5 (5) 0 (0) 0 (0) 0 (0) 0 (0)

Table 4. The results of the enumeration of all two-stack models. The entry x in row P and column

Q (with P ≥ Q) implies that there are x vacua with gauge group U(P )×U(Q)×SO(32−2P −2Q)

and distinct matter content. The number in parentheses includes the total number of realizations

including overlattices.

(m11,m12,m22) (2,4)(1,1) (2,4)(−1,1) (1,1)(2,0) (1,6)(0,2) (2,20)(1,0) (4,20)(0,1)

(−4, k,−10), |k| ≤ 5 5− k 5 + k 6 18 0 3

(−8, k,−8), |k| ≤ 6 6− k 6 + k 14 14 2 2

(−12, k,−6), |k| ≤ 7 7− k 7 + k 22 10 4 1

(−16, k,−4), |k| ≤ 8 8− k 8 + k 30 6 6 0

Table 5. Matter hypermultiplets for the 56 U(2)×U(4)×SO(20) models. The subscript indicates

the charges under the two U(1)’s. 2 and 4 denote the fundamental representation of SU(2) and

SU(4) respectively. 20 denotes the vector representation of SO(20). The fourth and fifth columns

are the antisymmetric representations of U(2) and U(4) respectively. The hypermultiplet also

contains the conjugate representation in each case. There are other ways to realize U(2)× U(3) as

a subgroup of the gauge group by saturating the tadpole with other brane combinations.

of models and looking for constraints and correlations in the structure of the corresponding

low-energy theories. Often, however, study of string compactifications is motivated by the

search for models with specific physical properties. For example, one may be interested in

restricting attention to models with specific gauge group and matter content. For some

parts of the landscape, as discussed in Section 1.2, identifying models with particular fea-

tures can be a challenging computational problem, even if the mathematical structure of

the vacua of interest is well understood [62]. The simple theoretical structure afforded

by the lattice embedding theorems for the K3 magnetized brane models we consider here,

however, greatly simplifies the search for models with specific physical properties. In fact,

for the models we consider here, we can immediately identify all models with a particu-

lar gauge group, with or without fixing the matter content. This can be done by simply

imposing certain conditions on the stack sizes Na and intersection matrix mab and proceed-

ing with the enumeration as described in the previous subsection, subject to the imposed

constraints. For example, in the previous subsection we identified all 5 models with gauge
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group U(6) × U(6)× SO(8).

In searching for models with particular structure, however, we may have only partial

information about the model of interest. For example, in searching for a standard model-like

construction we know that we want a gauge group that contains the nonabelian subgroup

SU(3)×SU(2), but we do not know if there are additional hidden nonabelian gauge groups,

which may be broken at experimentally inaccessible energy scales and associated with as-

yet-undiscovered massive particles. This suggests that, rather than identifying all models

with a specific complete gauge group, we may wish to identify all models that contain a

certain group G as an subgroup of the gauge group. In most string constructions, many

physical features (such as the number of matter fields in certain representations of G)

will depend only on how the subgroup G is physically realized, and not on what other

gauge symmetries may be present in the model. Posing the question in this way also

dramatically reduces the computational complexity of the problem. For a given realization

of G (such as in terms of a specific brane geometry), there may be an exponentially large

number of ways in which other branes complete the gauge group and matter content. Thus,

searching over all models that contain G may be an exponentially hard problem, while

searching for distinct realizations of the subgroup G may be a problem of only polynomial

complexity. This is true, for example, in the intersecting brane model story mentioned

previously. Searching over all possible models, such as done in [20], leads to a combinatorial

explosion of models with each possible realization of a specific gauge subgroup such as

SU(3) × SU(2). On the other hand, identifying all possible ways that SU(3) × SU(2)

can be distinctly realized as part of an intersecting brane model, independent of what

other gauge components and matter fields arise, decreases the difficulty of the problem

significantly, despite the added complexity of branes with negative tadpoles and more

complicated SUSY conditions. A complete analysis of this problem is given in [21], based

on the more general treatment of [12]. (An earlier search over a smaller range of models

based on similar constraints was carried out in [63]).

Thus, we may wish to ask, for example, in how many different ways the gauge group

G = SU(3)×SU(2) can be realized as a subgroup of the total gauge group in the smooth K3

models considered here. Basically, each nonabelian component of the group is associated

with a stack with some particular flux fa. These stacks, however, may not completely

saturate the tadpole condition (5.1), as other branes may also contribute to the tadpole.

So we are looking in this case for all configurations with f3, f2 ∈ Γ3,19, satisfying

3f23 + 2f22 ≥ −48 , (7.1)

where the lattice generated by f1, f2 contains no vectors of norm squared −2. This is very

similar to the general enumeration problem analyzed above, except that we now have an

inequality instead of equality in the tadpole constraint. Also, the constraints placed on

f1, f2 by the Freed-Witten anomaly condition are weaker since other vectors can add to

the sum 1
2

∑

aNafa that must be an integral lattice vector. Otherwise, we can proceed in a

similar fashion to the above analysis. For the problem posed here, we should allow fa = 0

for either of the components of the gauge group, since this would embed the corresponding

component in the residual SO(32 −∑Na) part of the gauge group. Although with such
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an embedding SU(3) × SU(2) is a subgroup of the overall gauge group, we cannot always

break the gauge group to SU(3)×SU(2) by the Higgs mechanism since that would require

matter in a a particular representation. In particular, SO(32 −∑Na) cannot be broken

down to SU(3) × SU(2) without changing other parts of the gauge group since the only

matter transforming non-trivially under SO(32−∑Na) is in the vector representation and

is also charged under one of the U(Na)’s.

With these constraints, it is possible to analyze all the ways in which the gauge group

of interest, G = SU(3)×SU(2) can be realized in abelian magnetized brane models on K3.

When the K3 is nonsingular, or G appears as a subgroup of the gauge group, each such

realization is described by an intersection matrix

m =

(

m11 m12

m12 m22

)

=

(

A B

B C

)

(7.2)

where A,B ≤ 0, 3A + 2B ≥ −48, and AC − B2 > 0. The discrete redundancy of these

models associated with overlattices is computed just as above. If we consider adding D5

branes, there are more possibilities since k D5 branes have an Sp(k) worldvolume gauge

group. In a similar way, we can identify all ways in which any other group G can be realized

as a subgroup of the full gauge group.

To further “dial-a-model” it may be desirable to fix the number of matter fields in a

particular representation of the gauge group. To continue with the preceding example, we

may wish to constrain the number of hypermultiplets in the bifundamental representation

of SU(3)×SU(2) (“quarks”). Since the fundamental and antifundamental representations

of SU(2) are identical, we must include hypermultiplets in both the (N3, N̄2) and (N3, N2)

representations, which from Table 2 is given by −4−f23 −f22 . This number is thus divisible

by 2. If, for example, we request that this number of multiplets is 4, then there are only

three possibilities: we have (f23 , f
2
2 ) = (−8, 0), (−4,−4), or (0,−8). This narrows the range

of possibilities in an enumeration.

A similar analysis can be carried out for any other desired gauge group and matter

content. Furthermore, models with any combination of matter multiplets compatible with

Table 2 for some particular intersection matrix m can be efficiently enumerated.

8 Conclusions

In this paper we have analyzed a simple class of string theory compactifications. We have

shown that lattice embedding theorems can be used to give a classification of magnetized

brane models on K3 giving effective 6-dimensional supersymmetric theories of gravity and

gauge theories with a rank 16 gauge group. The gauge group and matter content of these

models are encoded in a set of stack sizes Na and an intersection matrix mab. This gives

a clean characterization of the constraints on 6-dimensional physics from these models,

coming from the dependence of the gauge group and matter content on N,m, and the

freedom in these models, arising from the arbitrary choice of N,m subject to conditions

on the associated lattice M: the tadpole constraint, the condition that M is an even

negative-semidefinite lattice, and the condition that there be no norm-squared −2 vectors.
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For any N,m that give rise to an M satisfying these conditions there is a magnetized

brane model on a smooth K3 surface realizing those parameters. Such a model is generally

unique, though in some cases there is a discrete redundancy arising from overlattices of the

lattice associated with the intersection matrix m. Understanding the physical significance

of the discrete redundancies possible in this class of models is an interesting problem that

we leave to future work.

In this paper we have focused on theories associated with smooth K3 compactifications.

This condition imposes the constraint that the lattice defined bym does not contain vectors

of norm-squared −2. While most lattices with such vectors do not seem to correspond

to models with physical spectra, it is possible that in some cases there are singular K3

compactifications that give sensible 6D physical theories. We leave further investigation of

these models to further work.

A further constraint on possible low-energy theories arises from the Freed-Witten

anomaly condition in ten dimensions. In the analysis of this paper this condition is built

into the construction of the lattice M, which must contain the vector 1
2

∑

aNafa, where the

fa’s characterize the gauge group factors U(Na). Unlike the absence of vectors of norm-

squared −2, this condition is not transparent from the point of view of the low-energy

spectrum and data Na,mab.

The analysis presented here gives a simple example of a region of the landscape where

the range of possible models can be neatly classified. We have shown how models with

particular physical features, such as a desired gauge group (or subgroup of the full gauge

group) can be simply enumerated. For example, it is possible to find all ways in which a

certain gauge subgroup SU(N) × SU(M) can be realized with a fixed number of matter

fields in the bifundamental representation of these groups.

The lattice structure of the second cohomology group of K3 plays a central role in

the classification of models we have developed here. While it is not clear that such a

simple story will hold for a much broader class of models, it would be interesting to look

for analogous structure in more complex string compactifications. Compactification of the

models we have considered here on a further 2-torus gives a class of N = 2 supersymmetric

theories in 4D that may have interesting properties. The structure we have found here

in the space of solutions may be helpful in understanding other related models, such as

compactifications on Calabi-Yau manifolds that can be described as elliptic fibrations over

K3, or K3 ×T 2 compactifications with partially or fully broken supersymmetry.

It may be interesting to incorporate half-integral discrete B flux into the analysis

we have done here. This may, for example, provide models with odd numbers of matter

fields in appropriate representations of the gauge group, just as in the “T-dual” story of

intersecting branes [7]. This is related to considering bundles without vector structure,

which has been discussed in a related context in [34].

In this paper we have restricted attention to abelian fluxes. Looking at nonabelian

fluxes giving more general vector bundles would lead to a useful generalization of the

models considered here. Indeed, the abelian magnetized brane models studied here lie

at specific points in continuous bundle moduli space. While these points may have some

special features, we have only made this simplification to make the story simpler; turning
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on massless moduli will mix the abelian brane fluxes, leading to a more general nonabelian

point in bundle moduli space. In each component of moduli space, the norm-squared of

the total cohomology class (
∑

aNafa)
2 is invariant, but one can smoothly move between

configurations with different combinations of abelian fluxes. At general points in the moduli

space, the nonabelian instanton configuration will break some of the symmetry, giving a

lower rank gauge group in the effective field theory. In the 6-dimensional theory, these

transitions can be described by a Higgsing of part of the gauge group.

The gauge group left invariant in the presence of abelian fluxes takes the form
∏K

a=1 U(Na)×
SO(2M). The U(1) factors of the U(N) gauge group factors are anomalous in general and

the corresponding gauge bosons obtain masses by the Stueckelberg mechanism, though in

some cases U(1) factors remain massless. We have not analyzed here which U(1) factors re-

main massless in the low-energy theory, and have simply written the gauge factors as U(N),

leaving a more detailed analysis of which U(1) factors are lifted for further investigation.

One of the best understood classes of K3 compactifications like those we have con-

sidered here, are those where the K3 is at an orbifold point in its moduli space [64]. As

explicated in [33], the models considered in [64] involve bundles without vector structure.

These models also involve nonabelian gauge bundles; each D9-brane carries a fraction of a

Dirac quantum of flux (though Dirac quantization is still obeyed for fields in the adjoint

and spinor representations). Thus, these models are not included in the enumeration dis-

cussed in this work, but would be included in a generalization to incorporate general gauge

bundles without vector structure.

One of the principal limitations of magnetized brane models and the T-dual intersect-

ing brane models is that not all moduli are stabilized. It would be interesting to apply the

methods developed in this paper to scenarios in which moduli are stabilized using fluxes

on compactification manifolds involving K3, as in [52, 65, 66]. It may be that a systematic

understanding of the embedding of fluxes (with or without D-branes) into the K3 coho-

mology could be realized using lattice embeddings in a way that would shed light on the

physics of these compactifications.

Finally, one goal of this work was to understand the extent to which string theory

constrains the space of realizable low-energy 6-dimensional field theories in a simple corner

of the landscape. We have found that in this class of models constraints come from the

tadpole cancellation condition and the dependence of the 6-dimensional gauge group and

matter content on the parameters Na,mab (shown in Table 2) that give a topological

characterization of the models. A broader class of low-energy theories can be realized when

nonabelian bundle structure is allowed, particularly when small instantons and singularities

of the K3 are allowed to converge, giving rise to large and fairly arbitrary gauge group

structure. It was shown in [46] that in the non-perturbative regime, any simple gauge group

below a certain rank can be obtained by coalescing E8 instantons at a singularity. It would

be nice to know whether essentially any consistent 6D theory can be realized somewhere in

the landscape, perhaps up to some upper bound on the size of the gauge group and number

of matter fields, or if all 6D supersymmetric theories arising from string theory must have

some structure (other than anomaly cancellation) related to the constraints arising from

the dependence of the 6D theories considered here on N,m
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A Lattice basics and the Even, Unimodular Lattice Γ
3,19

In this Appendix we review the basic concepts involved in the study of lattices [56, 57, 59,

67] and describe the lattice Γ3,19. A lattice is defined as a free Z-module, in other words

it is a vector space defined over the ring of integers Z. Given a basis {e1, e2, · · · , en} we

can construct a lattice by taking finite, Z-linear combinations of the basis elements. We

are interested in lattices with an even, integral, symmetric, bilinear form (inner product)

denoted by · . For any two elements x, y in such a lattice L, the inner product satisfies

x · y ∈ Z, x · x ∈ 2Z, x · y = y · x and is linear in both its arguments. We can specify the

bilinear form completely by specifying its action on the basis elements. Thus, the bilinear

form, along with a choice of basis, defines the inner product matrix Iαβ := eα · eβ . For

an even lattice, the diagonal elements of the matrix are all even. As a simple example of

an even lattice, the lattice defined by the basis elements {e1, e2} with the inner product

matrix

I△ =

(

2 1

1 2

)

(A.1)

is the triangular lattice as shown in Figure 3.

A lattice L is unimodular if the inner product matrix has determinant ±1. The trian-

gular lattice considered above is not unimodular as it has det (I△) = 3. L is self-dual if L is

isomorphic to L∗ := Hom(L,Z). A lattice L is unimodular ⇔ L is self-dual. The signature

of L is denoted by (l+, l−), where l+(l−) is the number of positive(negative) eigenvalues of

I. A result due to Milnor shows that even, self-dual lattices are very special and exist only

when l+ − l− ≡ 0(mod 8) [67].

The simplest even, self-dual lattice is the signature (1,1) lattice U given by the inner

product matrix
(

0 1

1 0

)

.
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This lattice makes an appearance in the case of the 4-torus. The second cohomology

group of T 4 has the structure of a lattice with inner product given by the wedge product.

H2(T 4,Z) is six-dimensional with a basis of two forms given by σij := dxi ∧ dxj, where xi
are coordinates on the T 4. With this inner product, H2(T 4,Z) ∼= U ⊕ U ⊕ U .

The simplest positive definite, even, self-dual lattice is the root lattice of E8. In fact, it

is the only even, self-dual lattice up to isomorphism in 8 dimensions. The E8 lattice, which

we denote simply by E8, is defined as the integer span of vectors {e1, e2, · · · , e8} with the

inner product

[ei · ej ] =





























2 0 −1 0 0 0 0 0

0 2 0 −1 0 0 0 0

−1 0 2 −1 0 0 0 0

0 −1 −1 2 −1 0 0 0

0 0 0 −1 2 −1 0 0

0 0 0 0 −1 2 −1 0

0 0 0 0 0 −1 2 −1

0 0 0 0 0 0 −1 2





























(A.2)

This lattice, E8, can be defined in a more physical way as a discrete subset of R8. It is

defined as the set of points (x1, · · · , x8) ∈ R8 with
∑

i xi ∈ 2Z such that either xi ∈ Z ∀ i
or xi ∈ Z+ 1

2 ∀ i. This presentation of the E8 lattice is useful in understanding properties

of the lattice that would seem mysterious in the more abstract definition. For example,

given any positive, even integer n, there is a vector (usually many) of norm-squared n in

the E8 lattice. It is easy to prove this using Lagrange’s four square theorem, which states

that any positive integer can be written as a sum of four integer squares. We can write

n = x21+x
2
2+x

2
3+x

2
4, for xi ∈ Z. Since n = (x1+x2+x3+x4)

2−2(x1x2+. . .) ∈ 2Z, we have

x1+x2+x3+x4 ∈ 2Z. Therefore, the point (x1, x2, x3, x4, 0, 0, 0, 0) belongs to the E8 lattice

and has norm n. The total number of vectors of any given norm-squared can be computed

using the theta series corresponding to E8 [56]. There are numerous vectors of any given

norm, for example there are 240 vectors of norm-squared 2, 17520 vectors of norm-squared

8 and 140400 vectors of norm-squared 16. Vectors of the same norm-squared can, however,

map into one another under symmetries or relabellings of the lattice. We are interested

Figure 3. Triangular lattice corresponding to the inner product matrix I△.
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in the number of vectors of fixed norm-squared modulo automorphisms(relabellings) of

the lattice. The number of vectors up to automorphism of norm-squared 2n in E8 is the

sequence A008350 in [53] with elements {1, 1, 1, 1, 2, 1, 1, 2, 2, 2, 2, 2, · · · }. These numbers

can be enumerated using a computer program. The question of existence and uniqueness

of vectors of given norm-squared has a simple answer in the case of indefinite signature,

even, self-dual lattices and is explored in Section 5.1 and Appendix C.

The number of euclidean, even, self-dual lattices grows with dimension. In 16 dimen-

sions there are two lattices up to isomorphism, and above 24 dimensions the number of

lattices grows rapidly [56]. In the case of indefinite, even, unimodular lattices, the story

is simpler, and there is a complete classification due to Milnor. The two lattices U , E8

constitute a “basis” for such lattices [67]. Every even, unimodular lattice of signature

(l+, l−) with l+, l− strictly positive is isomorphic to Up ⊕E8(±1)q for p, q ∈ Z. The lattice

E8(±1) is the E8 lattice with the inner product matrix multiplied by ±1. For a K3 sur-

face S, H2(S,Z) is an even, self-dual lattice of signature (3,19) [30]. Milnor’s classification

implies that H2(S,Z) ∼= Γ3,19 := U ⊕ U ⊕ U ⊕ E8(−1) ⊕ E8(−1). In the case of the E8

lattice, as discussed above, there is an alternate representation of the lattice as points in

R8, which can be more useful in answering certain questions than the abstract definition

in equation (A.2). Similarly, there is a more physical presentation of Γ3,19, which can be

useful in answering some questions about K3 surfaces. This presentation of Γ3,19 is moti-

vated in the context of K3 surfaces and discussed in further detail in Appendix B. Here, we

simply state the results of the construction in the form of a basis for Γ3,19. Consider the

vectors {π12, π34, π31, π24, π14, π23} which form a basis for the signature (3,3) even lattice

U(2) ⊕ U(2)⊕ U(2) with inner product matrix



















0 2 0 0 0 0

2 0 0 0 0 0

0 0 0 2 0 0

0 0 2 0 0 0

0 0 0 0 0 2

0 0 0 0 2 0



















. (A.3)

Here πij ·πkl = 2ǫijkl. Let the vectors {E0, E1, · · · , E15} form a basis of a Cartesian lattice

with inner product Ei · Ej = −2δij . A basis for Γ3,19 can be written down in terms of

linear combinations of the vectors {π12, π34, π31, π24, π14, π23, E0, E1, · · · , E15} ∈ R3,19 and

is shown in equation (B.6). The choice of vectors πij , Ei may seem arbitrary, but in fact

these have a geometric interpretation in the construction of a K3 surface by a blow-up of

T 4/Z2.

We conclude this Appendix by defining a general primitive lattice embedding, discussed

more concisely in 5.2. A vector x in a lattice M is a primitive vector if x 6= dx′ ∀ x′ ∈
M, 1 < d ∈ Z. In other words, x is primitive as long as it is not a (non-trivial) multiple of

another vector in the lattice. For example, in a lattice generated by {e1, e2}, the vectors

e1, e2, e1 + 2e2 are primitive, while the vectors 2e1, 12e1 + 18e2 are not primitive. An

embedding of M into L is specified by an injective, linear map φ : M → L that preserves

the bilinear form. Such an embedding is said to be primitive if for all primitive x ∈ M,
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Figure 4. T 4 represented as a product of two complex tori. Each 2-torus has four fixed points

under inversion of its complex coordinate. Therefore, the product T 4 has sixteen fixed points under

the involution.

φ(x) is primitive in L. Alternatively, the embedding is primitive if the quotient L/φ(M)

is a free Z-module. These two definitions of primitive embeddings are equivalent. For

example, consider the one-dimensional lattice M spanned by {f} which is embedded into

the lattice L spanned by {e1, e2} through the map φ(f) = 2e1. This embedding is not

primitive because the vector f ∈ M is primitive, but it maps to a non-primitive vector 2e1
in L. The quotient L/φ(M) is not free and contains the element e1, which satisfies 2e1 = 0.

B Construction of a basis for Γ
3,19

In this Appendix we construct an explicit basis for Γ3,19, described briefly in Appendix A.

This construction of Γ3,19 is closely tied to the geometry of the Kummer surface, which is a

smooth resolution of the toroidal orbifold T 4/Z2 commonly used in the physics literature.

This basis for Γ3,19 is very useful for understanding some computations with K3, such as

explicit lattice embeddings. While this basis is referred to frequently in the literature, we

have found that the description in many papers is too implicit to be immediately useful

for computations. Thus we go into some detail here in deriving the explicit form of this

basis. The results described in this appendix are primarily based on the presentations in

[59, 68–70].

We begin by reviewing the construction of the Kummer surface X as the blow-up of

T 4/Z2. We then describe how one can obtain a basis for the even, unimodular lattice

H2(X,Z) starting from the six 2-cycles inherited from the T 4 and the sixteen exceptional

2-cycles from the blow-up of the orbifold. This gives an alternate presentation of the (3,19)

lattice from the usual U3 ⊕ E8(−1)2 form. We also define the Kummer lattice, which has

a nice structure that is easily understood in terms of the geometry of a hypercube and

has a unique, primitive embedding in Γ3,19. Its simple structure allows one to produce

explicit primitive embeddings of even lattices into the Kummer lattice, and therefore ex-

plicit embeddings into the (3,19) lattice. We consider some examples of such embeddings

in Appendix C.

B.1 Motivation for the construction from the geometry of Kummer surfaces

The Kummer surface is an example of a K3 surface and is constructed as follows. Consider

a complex two-dimensional torus T with a Z2 involution i defined as the inversion of the

two complex coordinates z1,2 → −z1,2. The quotient manifold T̃ := T/{1, i} is called the
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Figure 5. The elements of I represented as the vector space F4

2
over the field F2. The point

(x1, x2, x3, x4) ∈ F4
2 corresponds to the element x1 +2x2 +22x3 +23x4 ∈ I. F4

2 is drawn as the two

hyperplanes x4 = 0 and x4 = 1.

singular Kummer surface of the torus T and is shown in Figure 4. Each of the sixteen

singular points is locally of the form C2/Z2 and can be blown up by gluing in a P1. Details

of this procedure can be found in [30]. The blow-up of all sixteen singularities produces

a smooth K3 surface X which is called a Kummer surface. The blow-up procedure gives

sixteen “exceptional” 2-cycles (rational curves ∼= P1) which we denote by E0, E1, · · · , E15.

In homology, these sixteen 2-cycles have intersection numbers given by Ei · Ej = −2δij .

In addition, X inherits six 2-cycles from the T 4, which are invariant under the Z2 orbifold

action. These 2-cycles, denoted by πij are the Poincaré duals of the 2-forms dxi ∧ dxj ,

where xi, i = 1, 2, 3, 4 are the coordinates on the T 4. In the quotient space T 4/Z2 the

2-cycles πij, which we sometimes refer to as “toroidal cycles”, have an intersection number

given by

πij · πkl = 2 ǫijkl (B.1)

The extra factor of 2 relative to the intersection number of 2-cycles on T 4 is due to the

Z2 quotient which reduces the volume of space by half thereby increasing the number of

intersections by a factor of 2. Thus, we have a total of 22 2-cycles (6 toroidal cycles and 16

exceptional cycles) which are in H2(X,Z). We know that the lattice H2(X,Z) is an even,

unimodular lattice, but the lattice spanned by the 22 cycles we have is not unimodular

and in fact has determinant −222. We know that H2(X,Z) ∼= U3 ⊕ E8(−1)2, but this

presentation of the lattice does not make it clear which 2-cycles come from the torus and

which 2-cycles are exceptional. In this section, we construct a basis for Γ3,19 starting from

the toroidal cycles πij and the exceptional cycles Ei.

B.2 The Kummer lattice

The starting point of our construction is the Kummer lattice which plays an important

role in the study of Kummer surfaces. This connection was made clear in [68], and most

of this section is based on that work. The Kummer lattice is constructed starting with a

set of sixteen orthogonal vectors Ei, i ∈ I = {0, 1, · · · , 15} satisfying Ei · Ej = −2δij . The

index set I = {0, 1, 2, · · · , 15} has the structure of a vector space F4
2 over the finite field

– 38 –



0 1

32

6 7

4 5

8

10 11

9

14

12

15

13

0 1

32

6 7

4 5

8

10 11

9

14

12

15

13

0 1

32

6 7

4 5

8

10 11

9

14

12

15

13

0 1

32

6 7

4 5

8

10 11

9

14

12

15

13

A

C

B

D

Figure 6. Shown above are some hyperplanes in F4
2 − A(x1 = 1), B(x1+x3+x4 = 1), C(x3+x4 =

1), D(x1 + x2 + x3 + x4 = 1).

F2 = {0, 1}‡‡. This vector space can be visualized as the vertices of a four-dimensional

hypercube and is drawn in Figure 5. A hyperplane in F4
2 is defined as a subset of I that

satisfies a linear equation of the form a1x1 + a2x2 + a3x3 + a4x4 = a5, where ai ∈ F2 and

(x1, x2, x3, x4) ∈ F4
2 are points on the hypercube. When (a1, a2, a3, a4) = (0, 0, 0, 0), we

have two limiting cases - when a5 = 0, we have the hyperplane I, and when a5 = 1, we

have the null set. Except for these two cases, every hyperplane has 8 points. Figure 6

shows some examples of hyperplanes in F4
2. Let Q denote the full set of 32 hyperplanes,

including the null set and the set I. The Kummer lattice, denoted by K, is defined as the

set of integer linear combinations of the elements

{Ei, i = 0, 1, · · · , 15} ∪ {1
2

∑

i∈M

Ei, M ∈ Q} (B.2)

To discuss the relevance of the Kummer lattice to Kummer surfaces, we first define

the Picard lattice of a K3 surface. It is the group of holomorphic line bundles on a K3

surface, where the group operation is the tensor product. A line bundle is specified by

its first Chern class which is an element of H2(X,Z). A complex structure on X induces

a Hodge decomposition H2(X,C) := H2(X,Z) ⊗ C = H2,0(X) ⊕ H1,1(X) ⊕ H0,2(X) as

discussed in Section 2. Thus, a holomorphic line bundle is specified by an element of

Pic(X) := H2(X,Z) ∩ H1,1(X). At a general point in the complex structure moduli

space, a K3 surface has no holomorphic line bundles. This is because the space H1,1(X) is

‡‡The set F2 = {0, 1} has the structure of a field with addition defined modulo 2 and multiplication

defined in the usual way. The vector space F4
2 is the set of 4-bit sequences, where addition and scalar

multiplication are carried out bitwise.
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orthogonal to the real 2-plane defined by Ω (holomorphic 2-form) in R3,19 and in general

does not pass through the points of the 22-dimensional integral lattice H2(X,Z). The

Kummer surface obtained by the blow-up of T 4/Z2 is very special since it contains sixteen

orthogonal holomorphic curves (equivalent to holomorphic line bundles). Thus, the Picard

lattice of a Kummer surface contains the lattice spanned by {Ei, i ∈ I} as a sub-lattice.

It was shown in [68] that in fact, the Picard lattice of a Kummer surface contains the

Kummer lattice as a primitive sub-lattice††

B.3 Construction of a basis for Γ3,19

We now use the notion of primitive embeddings, defined in Section 5.2 and Appendix A, to

construct a basis for Γ3,19 starting from the Kummer lattice, which is a primitive sub-lattice

of Γ3,19. This is an example of “gluing theory”, which is described in some detail in [56].

This approach was used to enumerate all the even, unimodular lattices in 24 dimensions.

Before discussing the Γ3,19 case, we consider a simpler example which will serve to

illustrate the method. Consider the lattice L := {Ze + Zf} with e2 = f2 = 1, e · f = 0

as shown in Figure 7. This is an odd, unimodular lattice. The lattice M = Zv with

v2 = 2 has a primitive embedding φ : M → L with φ(v) = e+ f . Now, the lattice M has

discriminant det(M) = 2. The orthogonal complement M⊥ ⊂ L is the lattice N = M⊥ =

{Zw}, w = e − f with disciminant det(N) = 2. Thus, we have det(M) = det(N). The

lattice M⊕N = {Zv+Zw} = {xe+yf |x, y ∈ Z, x ≡ y (mod 2)}. The quotient L/(M⊕N )

is the finite abelian group Z2 = {0, e}. The lattice L is therefore an overlattice‡ of M⊕N
with index 2 (See Figure 7). So if we were to construct the unimodular lattice L starting

from M⊕N , we would have to include additional fractional linear combinations of v and

w since det(M ⊕ N) = 4. To determine which precise linear combination we must add,

notice that (M⊕N ) ⊂ L ⊂ (M⊕N )∗. The lattice (M⊕N )∗ = M∗ ⊕N ∗ is an index 2

overlattice of L. This leads us to look at the finite abelian group A = (M∗⊕N ∗)/(M⊕N ) =

(M∗/M)⊕(N ∗/N ) = {0, 12v, 12w, 12(v+w)} ∼= Z2⊕Z2. The lattice M⊕N is generated by

{v,w}, and to generate a unimodular overlattice we must add one or more elements from

A to the generating set. Since we want the overlattice L to be integral, there is a unique

choice — 1
2(v +w). Recall that v = e+ f,w = e− f ⇒ 1

2(v +w) = e. Adding the vector e

to the generating set {v,w} = {e+ f, e− f} gives the unimodular lattice L.
Now, we use a similar approach to construct the unimodular lattice Γ3,19 starting

from K and its orthogonal complement K⊥, which we denote Π. This construction has

been discussed in [59, 68, 69]. Since Γ3,19 is a unimodular lattice and K is a primitive

sublattice with det(K) = 26, the orthogonal complement Π = K⊥ is an even, signature

(3,3) lattice with det(Π) = −26 [59]. The lattice Π consists of 2-cycles in the Kummer

surface X that are orthogonal to all the exceptional cycles Ei, i = 0, 1, · · · , 15. From

the construction of the Kummer surface X, it is clear that these 2-cycles are precisely the

cycles that descend from the T 4. As discussed in Appendix A, H2(T
4,Z) ∼= H2(T 4,Z) is

††If X is a K3 surface, then X is Kummer ⇔ The Kummer lattice has a unique, primitive embedding in

Pic(X).
‡As discussed in Section 6.2.1 a lattice L is an overlattice of a lattice M if the lattice M has an embedding

into L, and the quotient L/M is a finite, non-trivial abelian group.
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e
f

Figure 7. The lattice L is shown on the extreme left. The diagram in the middle is the lattice M
embedded in L, shown with filled circles. The third diagram shows the lattice L as an overlattice

of M⊕M⊥ of index 2.

an even, signature (3,3) lattice isomorphic to U ⊕ U ⊕ U . If we denote the four 1-cycles

of T 4 by σi, i = 1, 2, 3, 4, the six 2-cycles are given by σij , i, j ∈ {1, 2, 3, 4}, i < j. These

2-cycles satisfy σ12 · σ34 = 1, σ12 · σ13 = 0, σ13 · σ42 = 1, etc. X is constructed as the

quotient of T 4 by the Z2 involution. Each 2-cycle σij in H2(T 4,Z) is invariant under this

Z2 action and under the image of quotient projection, σij → πij. The lattice H2(X,Z)

spanned by the 2-cycles πij in the quotient space is isomorphic to Π := U(2)⊕U(2)⊕U(2).

Therefore, Π = K⊥ ∼= U(2)⊕U(2)⊕U(2) and as expected det(Π) = −26. The lattice Γ3,19

is therefore an overlattice of the orthogonal sum of the lattice Π (toroidal cycles) and the

Kummer lattice K (exceptional cycles) denoted Π⊕K.

As discussed in the previous example, to generate the even, unimodular overlattice of

Π⊕K, we must add to the generators of Π⊕K elements from the quotient A(Π)⊕A(K).

Here A(M) denotes the group M∗/M associated with a lattice M. Both abelian groups

A(Π) and A(K) have 26 elements since |det(Π)| = |det(K)| = 26. Since Π = U(2)3,

A(Π) = A(U(2)) ⊕ A(U(2)) ⊕ A(U(2)). It is easy to see that A(U(2)) ∼= Z2 ⊕ Z2 and

hence A(Π) ∼= Z6
2. A(Π) is generated by the set {1

2π12,
1
2π13,

1
2π14,

1
2π23,

1
2π24,

1
2π34}. The

elements of the quotient A(K) = K∗/K can be written in terms of two-dimensional planes

in the F4
2 geometry [69] as follows -

K∗/K = Span{1
2

∑

i∈P

Ei | P ⊂ I is a two-plane.} (B.3)

The set of two-planes in F4
2 is obtained by taking all possible intersections of two hyper-

planes. Some examples of two-planes are shown in Figure 8. To understand why this is

the case, recall that the elements of A(K) = K∗/K are maps from K to Z by the action

of the inner product. Since E2
i = −2, each (non-trivial) element x ∈ A(K) is of the form

x = 1
2

∑

i∈P Ei or else it would map Ei ∈ K to a non-integer. Also, the point set P must

not be a hyperplane or x ∈ K which goes to zero in the quotient K∗/K. Next, we should

make sure that the elements of K of the form 1
2

∑

i∈M Ei are mapped to integral values by

x ∈ A(K). For this to happen, the point set P must intersect every hyperplane in an even

number of points. If P is a 2-plane in F4
2, it is easy to see that this is true. In addition, we

must include linear combinations (modulo 1 of course) of these elements giving (B.3). It

can be verified that the group A(K) ∼= Z6
2.
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Figure 8. 2-planes in F4

2
constructed by taking intersections of hyperplanes.

Recall from the toy example that we cannot add arbitrary elements of A(K)⊕A(Π) to
the generating set of Π⊕K since that would make the lattice non-integral. For example,

adding all the generators of A(K) ⊕ A(Π) would result in the lattice Π∗ ⊕K∗ which has

determinant 1/26. In [68] (stated in this form in [69]) it was shown that given a group

isomorphism γ : A(Π) → A(K), the lattice Γ3,19 can be constructed as the sub-lattice of

Π∗ ⊕K∗ as

Γ3,19 ∼= {(x, y) ∈ K∗ ⊕Π∗ | γ(x̄) = γ(ȳ)} (B.4)

where x̄, ȳ are the projections of x, y onto the quotient spaces K∗/K and Π∗/Π respectively.

In a sense the isomorphism γ ensures that only “half” the elements of A(K) ⊕ A(Π) are

added to the generating set thereby making the determinant 1. There is a natural choice

for the isomorphism γ : K∗/K → Π∗/Π, which is specified by its action on the generators
1
2πij of A(K) as

γ(
1

2
πij) =

1

2

∑

i∈Pij

Ei (B.5)

Here Pij is the 2-plane in F4
2 along the directions i, j. For example,

γ(
1

2
π23) =

1

2
(E0 + E2 +E4 + E6)

γ(
1

2
π14) =

1

2
(E0 + E1 +E8 + E9)

This construction makes it easy to find an explicit basis for Γ3,19 in terms of the toroidal

cycles πij and the exceptional cycles Ei. First, we find a basis for the lattices Π and K. For

the Kummer lattice a basis can be found by starting with the basis {Ei, i = 1, 2, · · · , 16}
for a sublattice K1 ⊂ K and then looking for lattice points inside the primitive unit cell.
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There are 31 such points, given by the “hyperplane vectors,” which are not integer linear

combinations of the basis Ei. Choose one such vector and add it to the basis and drop one

of the Ei such that the new basis spans a lattice K2 with K1 ⊂ K2 ⊂ K. This process is

repeated until we have a basis for K.

To find a basis for Γ3,19, start with a generating set comprising (a) The basis vectors

πij of Π, (b) the basis vectors of the Kummer lattice K obtained by the above procedure,

and (c) extra “gluing vectors” of the form 1
2πij +

1
2

∑

i∈Pij
Ei, where Pij is the 2-plane

spanned by the directions i, j in F4
2. It is clear that these vectors generate the unimodular

lattice from the construction of Γ3,19 in (B.4). These vectors however are not linearly

independent and form an overcomplete basis of Γ3,19. We drop vectors from the basis that

lie in the span of other vectors in the basis thereby obtaining a basis for Γ3,19 consisting of

22 vectors. We implemented this procedure and obtained the following basis (which is not

unique in any sense)

1
2π12 +

1
2 (E0 + E1 +E2 + E3)

1
2π13 +

1
2 (E0 + E1 +E4 + E5)

1
2π23 +

1
2 (E0 + E2 +E4 + E6)

1
2π34 +

1
2 (E0 + E4 + E8 +E12)

1
2π24 +

1
2 (E0 + E2 + E8 +E10)

1
2π14 +

1
2 (E0 + E1 +E8 + E9)

1
2 (E0 + E1 +E2 + E3 + E8 + E9 + E10 + E11)
1
2 (E0 + E2 + E4 + E6 + E8 + E10 + E12 + E14)
1
2 (E0 + E1 +E4 + E5 + E8 + E9 + E12 + E13)
1
2 (E0 + E1 + E2 +E3 + E4 + E5 + E6 + E7)

1
2 (E8 + E9 + E10 + E11 + E12 + E13 + E14 + E15)

E0, E1, E2, E4, E5, E6, E8, E9, E10, E11, E12

(B.6)

It can be verified that this construction produces an even, unimodular lattice by computing

the matrix of inner products. The signature and determinant can be verified to be (3,19)

and -1 respectively.

C Embeddings into Even, Unimodular Lattices

For the construction of magnetized brane models on K3 in this paper, we are interested in

embeddings of even lattices in Γ3,19. In the case of embeddings into an even, unimodular

lattice, the paper by Nikulin [57] contains two theorems which will be extremely useful.

The first theorem, which we quote below, was originally derived by James [71]. The second

theorem, derived by Nikulin, strengthens the result by weakening the conditions on the

lattice M.

Theorem C.1 (James). Let M be an even lattice of signature (t+, t−) and let L be an

even, unimodular lattice of signature (l+, l−). If t++t− ≤ min{l+, l−}−1, then a primitive

embedding of M into L exists. Moreover, this embedding is unique up to an automorphism

of L.
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This theorem is a generalization of the theorem by Wall [54] discussed in Section 5.1.

Theorem C.1 can be applied to embeddings of (0, 2) lattices in Γ3,19 in a similar manner to

the embeddings of vectors discussed in Section 5.1, but breaks down when the rank of M
is equal to 3 or higher. Nikulin proved a further extension of this theorem which applies for

higher rank M. We quote Nikulin’s theorem 1.14.4 from [57], using his remark 1.14.5 to

simplify the last condition, and with an inequality in the last condition which follows from

the other results in the paper and which is presumably implicit in Nikulin’s statement of

the theorem.

Theorem C.2. Let M be an even lattice of signature (t+, t−) and let L be an even,

unimodular lattice of signature (l+, l−). There exists a unique primitive embedding of M
into L, provided the following conditions hold:

1. l+ − t+ > 0 and l− − t− > 0.

2. l+ + l− − t+ − t− ≥ 2 + l(A(M)p) ∀ primes p 6= 2.

3. l+ + l− − t+ − t− ≥ l(A(M)2) and if equality holds then A(M) ∼= Z3
2 ⊕A′.

To understand the statement of this theorem, we must define l(A(M)p). Given any

even lattice M, there is an associated finite abelian group A(M) called the dual quotient

group defined as the quotient M∗/M. Here M∗ := Hom(M,Z) denotes the dual lattice

of M. For every prime p the p-component of A(M) denoted A(M)p is defined as the

subgroup of all elements whose order is a power of p. Then, A(M) =
⊕

pA(M)p. l(A(M)p)

denotes the number of generators of the p-component of A(M). For example, consider the

lattice M = U(2) defined as the lattice generated by e and f with the inner products

e · e = f · f = 0, e · f = 2. The basis for the dual lattice M∗ is composed of the elements

e∗ and f∗ defined as

e∗(e) = 1, e∗(f) = 0 and f∗(e) = 0, f∗(f) = 1 (C.1)

An element v∗ ∈ M∗ is naturally associated with an element in Qe1 +Qe2 using the inner

product. For example, e∗, f∗ can be regarded as the elements 1
2f and 1

2e respectively. Thus

the dual lattice can be expressed as the space U(2)∗ ∼= Span{xe+yf}, with x, y ∈ 1
2Z. The

quotient space A(U(2)) = U(2)∗/U(2) therefore is the finite abelian group {0, 12e, 12f, 12e+
1
2f} where addition is mod 1. This is the abelian group Z2 ⊕ Z2 and is generated by two

elements 1
2e and 1

2f . In this case, l(A(U(2))2) = 2 and l(A(U(2))p) = 0 for p 6= 2. Using

Theorem C.2, this means that the lattice U(2) has a unique, primitive embedding in Γ3,19.

The lattice Π := U(2) ⊕ U(2) ⊕ U(2) has l(A(Π)2) = 6 and l(A(Π)p) = 0 for p 6= 2, and

therefore also has a unique, primitive embedding in Γ3,19.

We can derive a simple, but useful upper bound on the number of generators of

A(M)p. Every finite, abelian group can be decomposed into its p-components as A(M) =
⊕

pA(M)p; there is a natural projection πp : A(M) → A(M)p which is onto. Therefore,

l(A(M)p) is certainly less than the total number of generators of the group A(M). If the

rank of the lattice M is d, the number of generators of M∗/M is at most d ⇒ l(A(M)p) ≤
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d. Since M is a signature (0, d) lattice, Theorem C.2 can be used as long as d ≤ 10. This

provides a proof of Theorem 5.1 in Section 5.2.

One can derive a different upper bound on l(A(M)p). Since A(M) =
⊕

pA(M)p,

|A(M)| = ∏p |A(M)p| where |A(M)| denotes the cardinality of the group. Therefore the

prime factorization of |A(M)| determines the cardinality of each p-component, but does not

determine the group structure. For example, an abelian group of order 4 is isomorphic to

either Z2⊕Z2 or Z4 and therefore has 2 or 1 generators respectively. For an abelian group

of order 36, we have four possibilities - Z2⊕Z2⊕Z3⊕Z3, Z4⊕Z3⊕Z3, Z2⊕Z2⊕Z9, Z4⊕Z9

with 4, 3, 3 and 2 generators respectively. The general statement is that if pk is the highest

power of p that divides |A(M)|, then the candidate abelian groups for A(M)p are in one-one

correspondence with the set of partitions of k. For a fixed cardinality of |A(M)p| = pk, the

number of generators is maximized when A(M)p ∼= Zp⊕. . .⊕Zp, with max{l(A(M)p)} = k.

Therefore, given a lattice M with inner product matrix m, l(A(M)p) ≤ k where pk is the

highest power of p that divides |A(M)|. This implies l(A(M)p) ≤ ⌊logp |A(M)|⌋, where ⌊x⌋
denotes the greatest integer less than or equal to x. Using the relation |A(M)| = |det(m)|
[56], we can derive the upper bound

l(A(M)p) ≤ ⌊logp |det(m)|⌋ . (C.2)
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