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Abstract

Systems of differential-algebraic equations (DAEs) are used to model an incredible
variety of dynamic phenomena. In the chemical process industry in particular, the
numerical simulation of detailed DAE models has become a cornerstone of many
core activities including, process development, economic optimization, control sys-
tem design and safety analysis. In such applications, one is primarily interested in
the behavior of the model solution with respect variations in the model inputs or
uncertainties in the model itself. This thesis addresses two computational problems
of general interest in this regard.

In the first, we are interested in computing a guaranteed enclosure of all solutions
of a given DAE model subject to a specified set of inputs. This analysis has natural
applications in uncertainty quantification and process safety verification, and is used
for many important tasks in process control. However, for nonlinear dynamic sys-
tems, this task is very difficult. Existing methods apply only to ordinary differential
equation (ODE) models, and either provide very conservative enclosures or require
excessive computational effort. Here, we present new methods for computing interval
bounds on the solutions of ODEs and DAEs. For ODEs, the focus is on efficient meth-
ods for using physical information that is often available in applications to greatly
reduce the conservatism of existing methods. These methods are then extended for
the first time to the class of semi-explicit index-one DAEs.

The latter portion of the thesis concerns the global solution of optimization prob-
lems constrained by DAEs. Such problems arise in optimal control of batch processes,
determination of optimal start-up and shut-down procedures, and parameter estima-
tion for dynamic models. In nearly all conceivable applications, there is significant
economic and/or intellectual impetus to locate a globally optimal solution. Yet again,
this problem has proven to be extremely difficult for nonlinear dynamic models. A
small number of practical algorithms have been proposed, all of which are limited to
ODE models and require significant computational effort. Here, we present improved
lower-bounding procedures for ODE constrained problems and develop a complete
deterministic algorithm for problems constrained by semi-explicit index-one DAEs
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Chapter 1

Introduction

1.1 Overview

Systems of differential-algebraic equations (DAEs) are used throughout the engineer-

ing disciplines and hard sciences to model an incredible variety of dynamic phenomena

[96, 12]. DAEs include both systems of algebraic equations and systems of ordinary

differential equations (ODEs) as special cases, and are commonly used to approxi-

mate partial differential equations (PDEs) through a number of numerical schemes.

Consequently, DAEs provide an extremely flexible modeling framework, underlying

the continuum theories of classical physics as well as complex engineering models of

mechanical, electrical, aeronautical and chemical systems [27, 86, 134, 155].

Of particular interest here is that DAEs have undoubtedly become the modeling

framework of choice in the chemical process industries, where they provide detailed

dynamic descriptions of everything from chemical reactors and separation units to

entire chemical plants [134, 18]. In large part, this is due to the advent of powerful

numerical solution techniques [96, 12, 82, 175]. However, numerical simulation alone

is rarely enough to solve engineering problems of practical interest. In addition to

model solutions, modern dynamic simulators typically provide parametric sensitivi-

ties, which describe the behavior of the solution in response to perturbations in the

model inputs [59, 114]. This technology allows one to analyze the behavior of model

systems with respect to various operating conditions, control actions, disturbances
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and uncertainties in the model itself. Combined with numerical optimization tech-

niques, this further enables one to search efficiently among a range of permissible

process inputs for those that optimize a desired objective. Based on these capabil-

ities, numerical simulation and optimization of detailed DAE models has become a

cornerstone of many core engineering practices, including model development, process

development, economic optimization, control system design, and safety analysis [94].

In this thesis, a number of advanced techniques are developed for analyzing and

optimizing processes described by systems of differential-algebraic equations. The

core contributions address two related problems:

1. Computing a guaranteed enclosure of all possible solutions that can result from

a given range of inputs under a given DAE model,

2. Solving optimization problems constrained by DAEs to guaranteed global opti-

mality.

Similar to parametric sensitivity analysis, the first problem above concerns the behav-

ior of DAE models with respect to variations in the model inputs. However, sensitivity

analysis provides information that is only locally valid. That is, the parametric sen-

sitivities describe the variation of the model solution with respect to infinitesimal

perturbations in the inputs. In contrast, by enclosing all possible solutions corre-

sponding to a given range of inputs, the methods developed here provide global infor-

mation. This analysis has a wealth of applications, including quite direct applications

in uncertainty analysis and safety verification.

However, like sensitivity analysis, these techniques are much more useful when

combined with optimization procedures to search among the permissible inputs for

those that are optimal with respect to some desired objective. Given the local na-

ture of the available information, standard optimization methods based on sensitivity

analysis provide solutions to such problems that are at best optimal with respect to

infinitesimal perturbations. However, with the ability to compute guaranteed enclo-

sures of all model solutions, it is possible to solve optimization problems constrained

by differential-algebraic models with a guarantee that the resulting solution is opti-
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mal among all permissible alternatives; i.e. it is globally optimal. Thus, we present

a deterministic algorithm for Problem 2 above as an application of the techniques

developed for Problem 1.

In the following two sections, Problems 1 and 2 above are described in more de-

tail. Given the flexibility of DAEs as a modeling framework, the range of motivating

application areas is truly vast. We review only those that are most closely related

to chemical engineering, typically arising in parameter estimation and chemical pro-

cess design and control. We also give some fairly informal mathematical problem

statements and summarize the contributions of this thesis in the context of existing

approaches.

1.2 Enclosing the Reachable Set

Consider the generic system of differential-algebraic equations

f(t,u(t),x(t), ẋ(t)) = 0, ∀t ∈ [t, tf ], (x(t0), ẋ(t0)) = σ0. (1.1)

The independent variable is t, which will be referred to as time for convenience.

The initial time is denoted by t0 and the initial condition, which is assumed to be

consistent, is denoted by σ0. The solution is denoted by x, and its time-derivative

by ẋ. Finally, u is a potentially time-varying input to the system. Given a set of

permissible (consistent) initial conditions Σ0 and a set of permissible input functions

U , the reachable set of (1.1) at time t is the set

R(t) ≡ {x(t) : x satisfies (1.1) on [t0, t] with some (u,σ0) ∈ U × Σ0}. (1.2)

In words, R(t) is the set of points that can be reached at time t by a solution of

(1.1) corresponding to some permissible choice of the initial condition and input. Of

course, Problem 1 in §1.1 is exactly the problem of computing an enclosure of R(t),

for every t in some time-horizon of interest.

Consider for example that x is a vector of concentrations of the chemical species
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present in a reactor, and that the DAE model (1.1) describes the time evolution of

these concentrations as the reaction proceeds. Depending on the problem at hand,

we may consider a variety of quantities as inputs u, including control inputs, distur-

bances, or uncertain model parameters. The reachable set R(t) contains all possible

compositions in the reactor that can be achieved at time t by operating the reactor

from an initial state σ0 ∈ Σ0 and with a permissible input u ∈ U . This set is inter-

esting because, for any number of reasons, some compositions will be less desirable

than others. It may happen that, in some region of composition space, the reacting

mixture becomes hazardous, or catalyst fouling is accelerated. In such cases, it is

extremely useful to have some means of ensuring that such regions cannot be reached

by the system dynamics provided that, for example, control actions are limited to

a certain safe set, or that the true model parameters do not deviate by more than

a certain amount from their estimates. Of course, these are questions concerning

the reachable set, and can be answered, at least in the affirmative, by computing a

guaranteed enclosure of it. In particular, if an enclosure of R(t) does not intersect

the undesirable region of composition space, then it is guaranteed that no point of

R(t) is in the undesirable region either.

1.2.1 Motivation

The study of reachable sets is intimately related to the theory of optimal control and

has been of general mathematical interest in this context for decades [22]. In modern

control, the computation of approximations or enclosures of reachable sets is an active

area of research and finds quite extensive application. Such computations have been

used, for example, for state estimation from online measurements in chemical and

biological processes [138, 88, 71, 141], feedback controller synthesis [110, 132, 13],

robust model predictive control [102, 139], and fault detection for chemical processes

[106]. Reachable sets are also used for the formal verification of control systems

[99, 40, 20, 41, 10, 176] and the related problem of formal safety verification [85]. In

[120], the connection between reachable sets and the solutions of dynamic pursuit-

evasion games is explored with application to aircraft collision avoidance. Finally,
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reachable sets are also closely related to so-called invariance and viability domains for

dynamic systems, both of which find similarly broad applications in control [28, 13].

In many applications, one is simply concerned with understanding how uncertain-

ties in a process or a model will effect its output. Real world models nearly always

have significant uncertainty, at least in the model parameters if not in the structure

of the model itself. A particular example of interest comes from models of chemical

reaction kinetics, where the rate parameters are often only known to within an order

of magnitude or worse [163]. This is particularly true of models of biological systems

[152, 124]. Even if the model itself is known very accurately, there may be significant

uncertainties in the process inputs in the from of disturbances, measurement errors

in closed-loop systems [31, 154], or highly variable resource availability and consumer

demand [179]. If the model in question is nonlinear, the effects of such uncertainty on

the model solution can be extremely difficult to infer. However, reachable set enclo-

sures provide a natural means to propagate uncertainty through dynamic models, and

have been applied in this context for uncertain chemical kinetics models [163, 156],

compartment models [76], ecology models [105, 75], and biological systems [71, 141].

Moreover, such a description of model uncertainty is naturally useful in parameter

estimation and model discrimination problems [163, 93, 103].

1.2.2 Existing Approaches

Given the broad importance of reachable sets, it is not surprising that a huge vari-

ety of methods have been developed for computing approximations or enclosures of

them. However, we are not aware of any methods capable of computing a guaranteed

enclosure of the reachable set of the general DAEs (1.1). The vast majority of work

in this area applies instead to the system of explicit ODEs

ẋ(t) = f(t,u(t),x(t)), ∀t ∈ [t0, tf ], x(t0) = x0, (1.3)
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with permissible initial conditions X0 and reachable set

R(t) ≡ {x(t) : x satisfies (1.3) on [t0, t] with some (u,x0) ∈ U ×X0}. (1.4)

For such systems, the reachable set can be characterized exactly through two classes

of methods. In the first, the reachable set is characterized as the subzero level set

of a so-called value function, which is the solution of a partial differential equation

known as the Hamilton-Jacobi-Bellman equation [98, 120]. An extension of such

methods to semi-explicit index-one DAEs with no input u has been proposed in

[45]. In general, the Hamilton-Jacobi-Bellman equations are very difficult to solve,

making the numerical methods resulting from this approach computationally intensive

[176, 120]. The second class of methods describes the reachable set as the solution of

a differential inclusion or a related integral-funnel equation [98, 133, 13]. Again, for

nonlinear systems these characterizations do not generally result in computationally

tractable methods. Moreover, both of these approaches are designed to provide an

accurate approximation of the reachable set, rather than a guaranteed enclosure of

it, which makes them inappropriate for some important applications, such as formal

safety verification.

Very general enclosures of the reachable set of (1.3) can be characterized by the

solutions of differential inclusions using viability theory [13]. However, practical com-

putational techniques arising from such characterizations typically involve computing

interval bounds on the reachable set. In this case, viability conditions reduce to

componentwise differential inequalities, which are discussed further below and used

extensively in the methods developed in this thesis. Some further general methods

using Lyapunov theory and a variant of Pontryagin’s minimum principle are described

in [68], though no general computational methods are provided.

Considerably more methods are available for the case where the time-varying

inputs u in (1.3) are replaced by time-invariant parameters p to give the parametric
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ODEs

ẋ(t) = f(t,p,x(t)), ∀t ∈ [t0, tf ], x(t0) = x0, (1.5)

with the permissible set of parameter values P ⊂ Rnp and reachable set

R(t) ≡ {x(t) : x satisfies (1.5) on [t0, t] with some (p,x0) ∈ P ×X0}. (1.6)

Even in this case, enclosing the reachable set is a very difficult problem when f is

nonlinear. In [39, 41], a convex polyhedral enclosure is constructed by computing

supporting hyperplanes to R(t). For each hyperplane, one specifies the desired nor-

mal and then computes an appropriate intercept by solving an optimization problem

constrained by (1.5). However, for nonlinear systems, nonconvexity of the reachable

set leads to nonconvex optimization problems which must be solved to guaranteed

global optimality. This makes the method prohibitively expensive compared to other

approaches. In Chapter 9, we provide a variant of this method in which the required

optimization problems are guaranteed to be convex.

A large body of work in the control literature considers the reachable set of (1.5)

under further simplifications, typically addressing linear ODEs or discrete time mod-

els. The earliest contributions in this area apply to hybrid discrete-continuous models

with very simple continuous dynamics (i.e. simple integrators), and are essentially ex-

tensions of methods for purely discrete systems originating in computer science [6, 10].

Subsequently, methods were developed for continuous dynamics described by linear

ODEs. In this case, tractable methods are available using geometric programming

[184], ellipsoidal bounding techniques [97, 99], and polyhedral bounding techniques

[10, 72] (some of these apply to the linear version of (1.3)). Many of these methods

have been extended to treat nonlinear ODEs by constructing local approximations

of the ODEs by simpler (e.g. linear) dynamics on a partition of the state space

and rigorously bounding the approximation error [79, 10, 72, 5]. In such methods,

the computed bounds can be quite conservative and are improved only by refining

this partition. In [80], it is reported that this technique is not only very costly, but
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presents serious numerical problems as well. The same work is also an early example

of the application of interval bounding techniques based on interval analysis [125],

and advocates such techniques based on their ability to handle nonlinearity much

more flexibly.

Interval bounding techniques compute a time-varying interval enclosure of the

reachable set, and typically apply to systems of the form (1.5). These methods are

nearly as old as interval arithmetic itself, with the earliest method appearing in [125].

Subsequently, a large body of literature has emerged on this topic. One class of

interval methods, the Taylor methods [130, 129], use Taylor series expansions and

various interval techniques to approximate the ODE solutions and rigorously bound

the approximation error. These methods are unique among bounding methods in

that they produce validated enclosures, meaning that the enclosures are guaranteed

even when computed on a finite precision machine. Indeed, the original application of

these methods was for computing validated bounds on the error introduced through

numerical integration of ODEs without parametric uncertainty. For certain applica-

tions involving unstable or oscillatory systems, the consideration of numerical error

can be very important. However, when applying these methods to bound the reach-

able sets of parametric ODEs, it is often a minor consideration. This is in part because

the models of interest are typically dissipative, tending towards a stable steady-state

over relatively short integration times. Moreover, when the parametric uncertainty

in the model is large, its effect on the resulting bounds is much more significant than

the effect of numerical error.

Some Taylor methods can be implemented very efficiently. However, when ap-

plied to ODEs with significant parametric uncertainties, such methods tend to pro-

duce extremely conservative enclosures of the reachable set. This conservatism can

be greatly mitigated by using high-order Taylor expansions, or by using more so-

phisticated inclusion algebras, such as Taylor model arithmetic [24, 113], in place of

interval arithmetic [24, 105]. Unfortunately, these measures dramatically increase the

computational cost, which in the latter case scales exponentially in the dimensions

of p and x0 and the order of the Taylor model. A Taylor method that applies to the
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control system (1.3) has recently been proposed in [89], and Taylor methods that ap-

ply to implicit systems of parametric ODEs [83] and systems of parametric index-one

DAEs [142] have been proposed, though with some defficiencies discussed in Chapter

5.

A second class of interval bounding methods are based on differential inequalities

[182] and use interval arithmetic to derive an auxiliary system of ODEs describing

bounding trajectories [75, 162, 156, 140, 141]. The primary advantage of differential

inequalities approaches is that they can be implemented using interval arithmetic

and state-of-the-art numerical integration codes, yielding bounds at a cost compara-

ble to a single simulation of the original model (order 10−3–10−2s for systems with

few states). The resulting enclosures are mathematically valid, but do not account

for numerical error in their computation. Given the accuracy of modern numerical

integration codes, this is not problematic for stable systems. Moreover, this issue can

be overcome using a slightly more involved hybrid formulation as in [140]. Like Tay-

lor methods, differential inequalities approaches are typically applied to parametric

ODEs. However, the same methods apply directly to the control system (1.3). This

observation has been made by several authors [75, 93] and is proven here in Chapter

3.

As with Taylor methods, it is known that differential inequalities methods gener-

ally yield extremely conservative enclosures of the reachable set. For these methods,

the problem is related to certain monotonicity properties of the ODE right-hand sides;

the problematic systems are those that are not quasi-monotone [182] (or cooperative

[165]). In [162], it was shown that this condition is frequently violated in applica-

tions. On the other hand, it was also shown that it is often possible, through physical

arguments, to obtain a crude set G which is independently known to contain the

reachable set, and that greatly improved bounds can be computed by leveraging this

information. A practical implementation was developed for the case where G is an

interval.
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1.2.3 Contributions

In this thesis, Chapters 3, 4, 5, 6 and 9 are devoted to computing enclosures of

the reachable sets of ODEs and DAEs. Chapter 3 considers the computation of

interval bounds on the reachable set of the nonlinear control system (1.3) using a

differential inequalities approach. As mentioned above, such techniques are very

flexible and very efficient, but often suffer from large conservatism in the resulting

bounds. Chapter 3 presents a number of results that characterize interval bounds

through much weaker conditions than those required by the standard differential

inequalities approach. These conditions are useful for applications in which one has

some physical information concerning the possible solutions of (1.3), which is very

common in practice. In particular, these conditions are used to derive improved

interval bounding methods that make very effective use of general physical insights

in order to compute much sharper enclosures without sacrificing the efficiency of the

standard differential inequalities method. In Chapter 4, these methods are specialized

to ODE models of a particular form that arise in chemical reaction kinetics. It is

shown that a wealth of useful physical information can be obtained automatically for

such systems, resulting in an efficient method for computing very sharp enclosures of

the reachable sets.

In Chapters 5 and 6, two interval bounding methods are developed that apply to

systems of semi-explicit index-one DAEs of the form

ẋ(t) = f(t,u(t),x(t),y(t)), (1.7)

0 = g(t,u(t),x(t),y(t)).

Chapter 5 contains a number of theoretical contributions, including a computational

test for existence and uniqueness of a DAE solution, and several extensions of differen-

tial inequalities results for (1.3) to the case of semi-explicit index-one DAEs. Chapter

6 presents two efficient numerical methods for computing an interval enclosure of the

reachable set of (1.7) based on these developments. To the authors knowledge, these

methods are the first differential inequalities based bounding techniques applicable
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to DAE models.

Finally, in Chapter 9, a method is presented for computing convex polyhedral

enclosures of the reachable sets of both (1.5) and (1.7). This is done by a modification

of the method in [39, 41]. Though a convex polyhedral set can potentially provide a

much sharper enclosure of the reachable set than can an interval, the method proposed

in [39, 41] requires solving several nonconvex dynamic optimization problems to global

optimality, which is extremely computationally expensive. Using methods for global

dynamic optimization problems (see §1.3) developed in Chapters 7 and 8, the method

of Chapter 9 produces convex polyhedral enclosures of the reachable set by solving

only convex dynamic optimization problems.

1.3 Global Dynamic Optimization

Consider the general optimization problem constrained by DAEs:

Problem 1.3.1.

inf
x,u,σ0

φ(u(tf),x(tf )) +

∫ tf

t0

ψ(s,u(s),x(s))ds (1.8)

s.t. h(u(tf ),x(tf)) +

∫ tf

t0

ℓ(s,u(s),x(s))ds ≤ 0 (1.9)

f(t,u(t),x(t), ẋ(t)) = 0, ∀t ∈ [t0, tf ], (x(t0), ẋ(t0)) = σ0 (1.10)

u ∈ U , x ∈ X , σ0 ∈ Σ0. (1.11)

As in §1.2, the set U is the set of permissible input functions, referred to as controls

in this context, and Σ0 is the set of permissible initial conditions. The independent

variable t takes values in the interval [t0, tf ], and the set X is a subset of a suitable

space of functions x : [t0, tf ] → Rnx containing putative solutions of the DAEs (1.10).

A crucial feature of Problem 1.3 is that the decision variables x and u are functions.

In other words, this is an optimization problem on a function space, and is therefore

an infinite-dimensional problem. In general, optimization problems constrained by

systems of differential equations such as ODEs, DAEs, or PDEs are referred to as
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dynamic optimization problems or optimal control problems [22, 173].

As an example of a problem of this type, consider finding the time-varying tem-

perature profile for a batch reactor that maximizes the yield of a desired product. In

this case, the scalar-valued control function u represents the temperature, the DAEs

(1.10) represent a dynamic model of the state of the reactor, x(t), including the tem-

poral profiles of the concentrations of the various reacting species, and the objective

function (1.8) is specified as the negative of the yield at the final time tf , so that it

is minimized when the yield is maximized. The set U may restrict the permissible

temperature profiles based on a number of considerations, such as the requirement

that the temperature never exceeds a threshold value, or the requirement that the

temperature is not varied too abruptly, so that it can be practically implemented by

a controller. Similarly, the constraints (1.9) may represent any number of considera-

tions, such as purity specifications or safety requirements. Then, in words, Problem

1.3.1 is to find the initial condition, the temperature profile, and the time-varying

state of the reactor that maximizes the yield at tf among all alternatives which obey

the reactor model and satisfy the given constraints.

The work in this thesis concerns algorithms for solving optimal control problems

to guaranteed global optimality. In particular, we present such an algorithm for

Problem 1.3.1 in the case where (1.10) is a system of semi-explicit index-one DAEs

and the controls u are approximated by a finite number of real parameters. This

approximation is termed control parameterization [173] and is a very common in

modern numerical methods (see §1.3.2). Moreover, we show that some of the crucial

steps in the proposed algorithm are valid even without this approximation, at least

in the case where (1.10) is replaced by the explicit system of ODEs (1.3).

1.3.1 Motivation

Given the flexibility of DAEs as a modeling framework, it is evident that a great va-

riety of problems can be posed as optimal control problems subject to DAEs. In the

chemical process industry, dynamic optimization techniques are routinely used to lo-

cate optimal process designs, operating conditions and control actions. For example,
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open-loop control of batch processes can be formulated as a dynamic optimization

problem and has been widely studied in this context, particularly with application to

high-value added industries such as specialty chemicals, pharmaceuticals and biopro-

cessing [111, 144, 34, 25, 167, 31]. Dynamic optimization problems also arise when

considering processes with periodic dynamic behavior, such as pressure swing adsorp-

tion and simulated moving bed chromatography [95, 51]. Even for processes that

are nominally operated at steady-state, several important problems require dynamic

optimization, including the determination of optimal start-up and shut-down pro-

cedures [17], optimal policies for changeover from one product to another [61], and

optimal catalyst blending in tubular reactors [108]. Another area in which dynamic

optimization is essential is in process safety verification [1, 48, 85, 106].

A more fundamental application is the problem of estimating unknown parameters

in a dynamic model from a given set of data [29, 103, 54, 163, 124]. Here, the model

parameters are the decision variables, and the optimization algorithm finds those

parameters which minimize the deviation of the model prediction from the measured

data. This problem is extremely important, for example, for the determination of

chemical reaction mechanisms from kinetic data [163, 124]. As a final illustration of

the broad applicability of dynamic optimization problems, we note applications in

the diverse areas of biological network design [2, 166] and optimal drug scheduling

for chemotherapy [116, 35].

As discussed in the following section, most available algorithms for solving dy-

namic optimization problems search only for locally optimal solutions. Such algo-

rithms can only guarantee global optimality under restrictive convexity assumptions

which are often violated in practical applications. For example, it has been shown

that optimization problems resulting from control parameterization of Problem 1.3.1

are nearly always nonconvex, especially for problems arising in chemical engineering

[108, 109, 16, 124]. Nonetheless, there is strong impetus to compute global solutions

stemming from numerous applications. One need only consider the problem of max-

imizing the profitability of a process. Clearly, a significant economic penalty may be

incurred by designing and operating such a process according to a locally optimal
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solution [160]. However, other applications pose more serious problems. In param-

eter estimation problems, one is often interested in determining whether a model,

equipped with its best fit parameter estimates, is consistent with measured data ac-

cording to a statistical significance test. However, if only locally optimal parameter

estimates are available, any conclusions drawn from such an analysis are dubious

[163, 121]. For process safety verification, it is desirable to identify the worst-case

behavior of a dynamic system over a range of inputs in order to determine whether

the system will remain within some safe operating region. This too can be formu-

lated as a dynamic optimization problem, but again a locally optimal solution will

not suffice because it may not necessarily describe the worst-case scenario, potentially

leading to a false conclusion of safe operation with dire consequences [85]. Finally,

optimization problems are often used to solve energy minimization problems in order

to describe the fundamental properties of a system, such as its equilibrium state. In

these applications, the value of a locally optimal solution simply does not provide the

desired information [100, 121].

1.3.2 Existing Approaches for Local Dynamic Optimization

The primary challenge in dynamic optimization is the fact that the optimization is

performed over an infinite-dimensional space, i.e., the space of the control functions

u and state functions x. At the broadest level, solution methods for optimal control

problems can be classified in terms of how the problem of infinite-dimensionality is

addressed. Most modern numerical methods are based on some form of discretization,

with the primary aim of reducing the problem to a finite-dimensional one and apply-

ing methods developed for optimization problems on Euclidean spaces. Methods of

this type are referred to as direct methods. However, effectively using discretization

techniques requires modern computers, and direct methods have therefore only be-

come popular in recent decades. Historically, methods for optimal control problems

have addressed the problem directly in the infinite-dimensional space. Such meth-

ods are based on satisfying necessary conditions of optimality for optimal control
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problems [22, 81, 87] and are commonly referred to as indirect methods1. This ap-

proach has its origins in the classical calculus of variations [47, 81], which deals more

generally with optimization problems on function spaces and dates back to the late

sixteen hundreds. By analogy to the standard gradient-based necessary conditions

of optimality for optimization problems on Euclidean spaces, the calculus of varia-

tions provides necessary conditions of optimality for many classes of optimal control

problems. The resulting conditions are the Euler-Lagrange equations, which take the

form of a two-point boundary value problem [47, 81, 177]. In modern optimal con-

trol theory, the Euler-Lagrange equations are generalized by Pontryagin’s maximum

principle [177, 77]. Methods based on either of these formulations require repeated

solution of boundary value problems with estimates of the optimal control that are

iteratively refined by a number of methods [33, 38].

There are several serious drawbacks to these approaches. First, it is difficult to

derive appropriate necessary conditions in the presence of certain types of constraints

that arise in applications. Furthermore, even when such conditions are available, gen-

erating the corresponding boundary value problem computationally requires deriva-

tive or adjoint information, which can be costly to obtain for large systems. Second,

in all but the simplest cases the resulting boundary value problems do not permit

analytical solutions and are known to be extremely difficult to solve numerically. The

reasons for these numerical problems are quite serious and include instability of the

boundary value problem and issues related to the differential index of the system,

especially in the presence of so-called singular arcs in the optimal control. Third, the

vast majority of work on these methods does not directly apply to systems of DAEs,

but rather to explicit systems of ODEs of the form (1.3). Finally, these methods

are based on necessary conditions characterizing locally optimal solutions, and only

become sufficient for global optimality under restrictive convexity assumptions that

are violated or very difficult to verify in applications [177, 159].

1The seemingly backward designations direct and indirect do not refer to the space in which
the optimization is carried out. In general, a direct optimization method is one which produces a
feasible sequence of decisions with monotonically decreasing objective value, while an indirect method
is one which is based on satisfying necessary conditions of optimality. In this regard, labelling all
discretization-based methods as direct is somewhat misleading but nonetheless very common.
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A related approach which also considers the optimal control problem in the original

infinite-dimensional space is the dynamic programming approach, based on Bellman’s

principle of optimality [19]. This principle leads to necessary and sufficient conditions

of optimality through the solution of a boundary value problem in PDEs known as

the Hamilton-Jacobi-Bellman (HJB) equations. In the formulation of this PDE, the

state variables x are treated as independent variables, making the HJB equations

impractically difficult to solve for large systems. On the whole, this approach does

not result in practical numerical methods outside of some very particular applications

[173].

As mentioned above, direct methods for optimal control use discretization tech-

niques in order to approximate the optimal control problem by a nonlinear program

(NLP) on a finite-dimensional Euclidean space. These methods can be further clas-

sified in terms of the level of discretization used in this approximation. In the si-

multaneous approach, both the state and control functions are discretized, either by

finite differencing, collocation, or more general basis set expansions, with colloca-

tion being the most common [178, 54, 46, 42]. This provides a representation of the

state and control functions in terms of finitely many real parameters, so that the

resulting optimization problem is a standard NLP on a Euclidean space with a large

system of equality constraints approximating the original DAEs. The benefit of this

approximation procedure is that it enables one to apply standard methods in non-

linear programming. On the other hand, the simultaneous approach produces very

large-scale NLPs, so that in practice specialized algorithms are required [26].

In contrast, the sequential approach (also called control parameterization [173, 32])

considers only discretization of the control functions. The controls are approximated

by an expansion in terms of a finite set of basis functions, resulting in, for example,

piece-wise constant, piece-wise affine, or polynomial controls. With this approxima-

tion, the controls can be represented in terms of a finite number of real parameters,

p ∈ Rnp, so that u is now regarded as a known function of t and p. If, for every

admissible parameter vector p, the differential-algebraic system has a unique solu-

tion, then this approximation reduces the search space to a finite-dimensional space.
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Applying control parameterization to the Problem 1.3.1 gives the following program,

where P ⊂ Rnp is the set of admissible values for p.

Problem 1.3.2.

inf
p,σ0

φ(u(tf ,p),x(tf ,p,σ0)) +

∫ tf

t0

ψ(s,u(s,p),x(s,p,σ0))ds (1.12)

s.t. h(u(tf ,p),x(tf ,p,σ0)) +

∫ tf

t0

ℓ(s,u(s,p),x(s,p,σ0))ds ≤ 0 (1.13)

p ∈ P, σ0 ∈ Σ0, (1.14)

where, for every (p,σ0) ∈ P × Σ0, x(·,p,σ0) is the unique solution of

f(t,u(t,p),x(t,p,σ0), ẋ(t,p,σ0)) = 0, ∀t ∈ [t0, tf ], (1.15)

(x(t0,p,σ0), ẋ(t0,p,σ0)) = σ0.

Note that the objective and constraint functions above are not known explicitly

as functions of the decision variables. However, they are well-defined as such and can

be evaluated numerically via numerical solution of the embedded DAEs (1.15). Due

to the availability of robust dynamic simulation software [96, 12, 82, 175], one can

find local optima for large-scale dynamic optimization problems quite effectively with

the sequential approach.

There has been much discussion in the literature concerning the advantages and

disadvantages of the simultaneous and sequential approaches. As compared to the

simultaneous approach, the sequential approach has the drawback that every evalua-

tion of the objective and constraints, along with their derivatives, requires numerical

integration and sensitivity analysis of the embedded DAE system. Another drawback

is that the sequential approach may fail if the embedded DAEs have unstable modes

for some feasible choice of p and σ0. On the other hand, the simultaneous approach

requires the solution of very large-scale NLPs, while the sequential approach does

not. Moreover, accurate discretization of the states is often problematic in the si-

multaneous approach, as is the need to provide the NLP solver with accurate initial
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guesses for the discretized state variables. In the sequential approach, discretization

of the state trajectories is handled internally by a dynamic simulation code using

very mature adaptive procedures that have proven to be accurate, efficient and reli-

able. Moreover, there is no need to provide an initial guess for the state trajectory.

For most problems, there is no unified consensus on which of these methods should

be used. However, the discussion has led to an interesting compromise known as

multiple-shooting, which is particularly advantageous for unstable systems and em-

bedded boundary value problems [101].

1.3.3 Global Optimization of Standard NLPs

As with many local optimization techniques, the existing methods for solving dy-

namic optimization problems to global optimality can be viewed as an application of

established methods for optimization on Euclidean spaces to the NLPs resulting from

either the simultaneous or sequential approach. Before discussing these methods, it is

helpful to review some basic concepts from global optimization on Euclidean spaces,

in particular, the spatial-branch-and-bound algorithm. Both here and in the discus-

sion of dynamic optimization problems in the next section, we restrict our attention

to so-called deterministic global optimization algorithms. This excludes the class

of stochastic search algorithms, including simulated annealing, genetic algorithms,

tabu search, particle swarm optimization, harmony search, ant-colony algorithms,

etc. [65, 52, 124]. While these algorithms are designed to find global minima for

problems with multiple suboptimal local minima, these approaches are ad hoc. They

not only fail to provide a guarantee that a global solution will be found, they are

incapable of verifying optimality in case such a point has been found. In contrast,

our interest here is in algorithms that are guaranteed to furnish a globally optimal

solution after finitely many iterations.
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Consider the standard NLP

min
p∈P

J(p) (1.16)

s.t. G(p) ≤ 0.

where P ⊂ Rnp is an np-dimensional compact interval and J and G are continuous

on P . To solve this problem to global optimality, the spatial branch-and-bound

(B&B) method considers a sequence of subproblems in which (1.16) is restricted to a

subinterval P l ⊂ P :

min
p∈P l

J(p) (1.17)

s.t. G(p) ≤ 0,

The basic requirement for applying spatial B&B is that, for any subinterval P l ⊂ P

(which may be P itself), procedures are available that compute guaranteed upper and

lower bounds on the optimal objective value of (1.17). These bounds are denoted

by UBDl and LBDl, respectively. Since the value of the objective function at any

feasible point provides an upper bound on the optimal objective value of (1.17), UBDl

can be computed by solving (1.16) to local optimality. Computing a lower bound is

substantially more difficult and is the key step in the spatial B&B algorithm. Methods

for accomplishing this are discussed below.

Supposing that upper and lower bounding procedures are available, the spatial

B&B algorithm procedes as follows. First, upper and lower bounds are computed for

the optimal objective value of (1.16). Since these bounds apply to the original problem

of interest, rather than to the subproblem (1.17), they are denoted by UBD and

LBD, respectively. If it happens that UBD−LBD is less than a specified tolerance

ε, then the B&B algorithm terminates, having bracketed the optimal objective value

of (1.16) within the given tolerance. An estimate of the solution value p∗ is then given

by the value which attained the upper bound UBD. If this termination test fails,

then P is partitioned into two subintervals, termed branching, typically by bisection
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in its dimension of largest width. These subintervals inherit the bounds UBD and

LBD, which are obviously valid for the corresponding subproblems (1.17) on account

of being valid for (1.16). These two subintervals are then added to a stack Σ of

subintervals, or nodes, to be processed that is maintained throughout the algorithm.

At the beginning of a generic iteration of the algorithm, UBD and LBD are

the best known upper and lower bounds on the optimal objective value of (1.16),

respectively, and the stack Σ contains a number of nodes P l, each of which is equipped

with upper and lower bounds UBDl and LBDl that have been inherited from the

parent node from which it was generated through bisection. Collectively, the nodes

P l may not form a partition of P , but the complement of ∪lP l in P will have been

proven not to contain the optimal solution of (1.16) through the procedures below.

The iteration proceeds by selecting from the stack a node P l for which LBDl = LBD.

The upper and lower bounds UBDl and LBDl are then refined by computing bounds

on the optimal objective value of (1.17) using the procedures that we have assumed

to be available. If it is found that (1.17) is infeasible, then P l is eliminated from

further consideration and a new element is selected from the stack. In this case, we

say that P l is fathomed by infeasibility. Otherwise, upper and lower bounds on the

optimal objective value of the original problem (1.16) are updated according to

UBD := min
k
UBDk and LBD := min

k
LBDk, (1.18)

where the min is taken over all elements of Σ. These assignments are valid because the

complement of ∪kP k in P has been shown not to contain a global optimum of (1.16).

Moreover, if P l was the only element of Σ for which LBDl = LBD at the beginning

of the iteration, and if LBDl was improved by the application of the lower bounding

procedure to (1.17), then LBD is improved by this assignment. If UBD is improved

by this assignment, then there is an opportunity to fathom some nodes in the stack.

This is done by checking the inequality LBDk > UBD for every P k ∈ Σ. If this is

true for some P k, then the optimal solution cannot lie in P k and P k is eliminated from

further consideration. In this case, P k is said to be fathomed by value dominance.

38



If P l has not been fathomed either by infeasibility or by value dominance, then it is

bisected and the two resulting nodes are added to the stack.

The iteration outlined above is repeated until either the stack becomes empty,

indicating that (1.16) is infeasible, or it is found in some iteration that UBD−LBD <

ε, indicating that a point p∗ has been found which achieves an objective value within

ε of the globally optimal objective value. Roughly, if the lower bounding procedure

has the property that it provides sharper bounds on smaller intervals P l and becomes

exact in the limit as P l tends toward a singleton, then it can be shown that one of

these outcomes will occur after finitely many iterations [84]. Due to the repeated

partitioning of P , the spatial B&B algorithm exhibits worst-case exponential run-

time with respect to the dimension of p and the magnitude of 1/ε. In practice, the

primary determinants of the run-time are the computational cost and the accuracy

of the lower bounding procedure. In addition, a number of more advanced techniques

have been developed which can greatly accelerate convergence through the use of

constraint propagation techniques [147, 148, 149]. Thus, while it is true that the

basic procedure outlined above can be prohibitively expensive, impressive results

have been achieved for many challenging problems using advanced implementations

of the method [146, 147, 171, 160].

Several methods are available for computing lower bounds on the optimal objective

value of the subproblem (1.17). A simple approach is to compute interval bounds

on the image of P l under J using interval arithmetic [125]. Though many early

implementations are based on this approach [90], the lower bounds computed in this

way are relatively weak. Moreover, these bounds obey a first-order convergence rate

property [125], while it has been demonstrated that at least second-order convergence

is required to avoid serious convergence problems in spatial B&B algorithms [50].

In most modern implementations, lower bounds are computed by constructing and

solving convex underestimating programs [118, 7, 57, 171]. Though there are many

ways to accomplish this, a popular and illustrative approach is to construct a convex

function Jcv : P l → R which underestimates J on P l, and a (componentwise) convex

function Gcv : P l → Rnc which underestimates G on P l. Such functions are termed
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convex relaxations of J and G on P l, respectively. A convex underestimating program

is then given by

min
p∈P l

Jcv(p) (1.19)

s.t. Gcv(p) ≤ 0.

In particular, this program is convex, and hence solvable to global optimality using

standard local optimization techniques, and its optimal objective value is easily seen

to underestimate that of (1.17).

There are several methods for constructing a convex relaxation of a function.

Floudas et al. have constructed convex relaxations for twice differentiable functions

by adding a sufficiently large quadratic term to the original function. This is accom-

plished by shifting the diagonal elements of the Hessian matrix by a parameter α

[7]. Values of α which guarantee convexity of the resulting function can be found via

interval arithmetic [4, 3]. It has recently been shown that αBB relaxations have a

second-order convergence rate [30].

Another approach due to McCormick [118] provides a method for computing con-

vex relaxations of so-called factorable functions (this technique is presented in detail

in Chapter 2). Roughly, a function is said to be factorable if it can be defined by the

recursive application of basic operations including binary addition, binary multiplica-

tion, and composition with a library of simple univariate functions. In particular, any

function that can be written explicitly in computer code is factorable. Given such a

function, McCormick’s technique constructs relaxations by the recursive application

of relaxation rules for each of the basic operations defining the function. McCormick’s

technique is easily implemented using the operator overloading capabilities of object-

oriented programming languages, and tends to produce much tighter relaxations than

those produced by the αBB method, particularly on wide intervals P l. Moreover, it

is shown in [30] that McCormick’s relaxations also have second-order convergence

subject to some implementation details. On the other hand, they are generally nons-

mooth, which makes solving (1.17) more difficult. This difficulty has been addressed
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in [122], which provides rules for efficiently computing subgradients for McCormick’s

relaxations which can then be used by nonsmooth solvers such as bundle methods.

A related technique that generates a convex underestimating program for (1.16)

in the case where J and G are factorable is described in [171] and used in the popular

code BARON. This technique uses a recursive procedure similar to that of McCormick,

which in this case substitutes the result of each basic operation defining the objec-

tive and constraint functions with a dummy variable subject to one or more linear

constraints. This procedure does not result in program of the form (1.19), but rather

produces a linear program in a higher-dimensional space whose optimal objective

value is guaranteed to underestimate that of (1.17). This method has the advantage

that the underestimating program is linear and can therefore be solved more efficiently

and reliably than the nonlinear convex underestimating programs derived from αBB

or McCormick’s relaxation technique. On the other hand, these underestimating pro-

grams have many more variables than the original problem. The convergence rate of

this method is unknown, but its successful implementation in BARON suggests that it

is likely second-order.

A key feature of all of these methods, which has significant consequences for

global dynamic optimization, is that the objective function and constraints in (1.16)

must be factorable. That is, these functions must be given by explicit algebraic

expressions. Of course, this is notably not the case for the NLP (1.3.2) derived by

control parameterization of (1.3.1).

1.3.4 Existing Approaches for Global Dynamic Optimization

All of the available methods for deterministic global optimization of nonconvex dy-

namic optimization problems are extensions of the direct methods discussed in §1.3.2,

using variants of the spatial branch-and-bound algorithm of the previous section. Ob-

taining a guarantee of global optimality from an indirect method is problematic for

several reasons. First, these methods are intimately related to necessary conditions of

optimality, which do not distinguish between locally and globally optimal solutions.

However, this fact alone is not insurmountable. In Chapter 11, we shown that some
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of the key ideas used for solving dynamic optimization problems to global optimality

using the sequential approach can actually be applied directly to dynamic optimiza-

tion problems in the original infinite-dimensional space. Specifically, we show that it

is possible to construct convex underestimating programs in this space. However, a

much more serious problem is that there is no known method for exhaustively par-

titioning an infinite-dimensional space, which precludes the use of the spatial B&B

framework.

In the case of the simultaneous approach, the extension to global optimization is

apparent. Since total discretization of the infinite-dimensional problem results in a

standard NLP on a finite-dimensional Euclidean space, the spatial branch-and-bound

algorithm can be applied directly using standard methods for the lower bounding

procedure. However, given the size of the NLPs generated through the simultaneous

approach and the worst-case exponential run-time of the spatial B&B algorithm, this

cannot be considered a practical approach to global dynamic optimization. Nonethe-

less, it has been attempted in the articles [55, 42]. In [55], comparisons show that the

simultaneous global optimization approach is badly outperformed by an early method

based on the sequential approach. In both articles, it is clear that an adequate dis-

cretization of the state variables creates problems which are too large to be solved in

reasonable time by a global optimization routine, and coarser discretizations can not

represent the original dynamics well enough to produce reliable results (the optimal

objective value was found to depend strongly on the discretization).

As discussed in §1.3.2, the sequential approach avoids the dramatic increase in

problem size characteristic of the simultaneous approach. Moreover, it reduces the

dynamic optimization problem to a standard NLP on a Euclidean space, so that

in principle the spatial B&B method can be applied. However, the objective and

constraint functions in the resulting program (Problem 1.3.2) are not known explic-

itly, but rather are defined implicitly through the solution of the embedded dynamic
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system. That is, in order to write Problem (1.3.2) as the standard NLP

min
p∈P, σ0∈Σ0

J(p,σ0) (1.20)

s.t. G(p,σ0) ≤ 0,

we must make the definitions

J(p,σ0) ≡ φ(u(tf ,p),x(tf ,p,σ0)) +

∫ tf

t0

ψ(s,u(s,p),x(s,p,σ0))ds, (1.21)

G(p,σ0) ≡ h(u(tf ,p),x(tf ,p,σ0)) +

∫ tf

t0

ℓ(s,u(s,p),x(s,p,σ0))ds, (1.22)

where x is the solutions of the embedded DAEs (1.15). As discussed in the previous

section, this precludes the use of standard lower bounding procedures.

The first method for overcoming this problem was proposed by Esposito and

Floudas in [54], where convex relaxations of the functions J and G are computed

by a dynamic extension of the αBB method known as βBB. Recall that the αBB

method computes a convex relaxation of a given function by adding a sufficiently

large quadratic term, where the required magnitude α of this term is inferred by

analysis of the Hessian matrix. The key idea here is that the Hessian matrix of J ,

for example, can be evaluated by solving the second-order sensitivity system for the

embedded DAEs. However, without an explicit functional form for the Hessian, α

cannot be computed through the standard approach and is instead approximated via

a finite sampling procedure. This not only makes constructing these relaxations very

inefficient, but also precludes any guarantee that the relaxation is indeed convex.

A method for computing a valid α was later proposed by Papamichail and Ad-

jiman [135], resulting in the first practical global dynamic optimization algorithm.

Notably, this method applies only in the case where the embedded dynamic system

is an explicit system of ODEs. In fact, this is true of every existing global dynamic

optimization algorithm, excluding those based on the simultaneous approach. The

method described in [135] uses results from differential inequalities (see §1.2.2) in

order to bound the solutions of the embedded system of differential equations, as well
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as the second-order sensitivities. This yields an interval Hessian matrix which can

be used to compute a value for α that ensures convexity. Though this approach is

rigorous, the convex relaxations generated in this way tend to be extremely weak,

likely due to a very conservative bound on the required α value.

A different approach, which is also applicable to dynamic optimization problems

with explicit ODEs embedded, was proposed by Singer and Barton in [161, 164].

Using the recursive nature of certain relaxation techniques (McCormick’s technique

and the methods in [171]), it was shown that a convex underestimating program for

(1.20) can be constructed given only a method for computing (componentwise) convex

and concave relaxations of x(t, ·, ·) on P × Σ, for all t ∈ [t0, tf ] (a concave relaxation

is a concave function that overestimates the function of interest). This idea was first

used in order to solve dynamic optimization problems involving a class of linear time-

varying ODEs whose solutions are known to be affine, and hence both convex and

concave, with respect to the decision variables [161]. The approach was then extended

to problems with nonlinear ODEs embedded in [164]. In this case, a combination of

McCormick’s relaxation technique and differential inequalities was used to derive an

auxiliary system of ODEs whose solutions are both affine in the decision variables and

describe upper and lower bounds on the solution of the original ODEs [162], hence

providing the required relaxations of x(t, ·, ·) for all t ∈ [t0, tf ]. Computational results

for this method demonstrate that the resulting lower bounding procedure requires less

computational effort and provides much more accurate bounds as compared to the

αBB based method in [135].

Lin and Stadtherr have proposed a method for globally solving dynamic optimiza-

tion problems with ODEs embedded which does not use convex relaxations [103, 104].

Rather, a sophisticated Taylor method (see §1.2.2) is used to compute very tight in-

terval bounds on the solution of the embedded ODEs [105], which are then used

to compute a lower bound for the optimal objective value of (1.20). Unlike lower

bounding procedures based on standard interval arithmetic, this method does not

suffer from slow convergence. This is because the required interval computations are

done using Taylor model arithmetic, which is a much more accurate method based
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on high-order Taylor series expansions [113, 24]. For many test problems, solution

times for this approach are substantially faster than those reported for any other

deterministic algorithm. However, using Taylor Models for bounding the solution of

the embedded ODEs is extremely costly. The number of Taylor coefficients that must

be stored increases exponentially with the number of decision variables and the order

of the Taylor expansion [74]. Hence, there is reasonable concern that methods of this

type will prove to be inefficient or unusable for problems with many decisions, and/or

problems for which a high-order Taylor expansion is required to capture the state

dependence on the decision variables accurately.

Though no optimization results have yet been presented, two related methods for

computing convex and concave relaxations of the solutions of parametric ODEs have

recently been proposed by Sahlodin and Chachuat [151, 150]. These methods extend

the technique in [105] for computing interval bounds on the solutions of paramet-

ric ODEs by applying McCormick’s relaxation technique in place of weaker interval

computations throughout the algorithm. These methods appear capable of provid-

ing very tight relaxations when a sufficiently high-order Taylor expansion is used.

On the other hand, the use of high-order Taylor expansions again makes these ap-

proaches potentially very expensive for high dimensional problems, and the existence

of an appropriate compromise in the context of global optimization remains an open

question.

1.3.5 Contributions

Aside from intractable methods based on a total discretization approach, all of the

available methods for global dynamic optimization apply only to problems with ex-

plicit ODEs embedded. In this thesis, we present the first method capable of solving

problems with DAEs embedded. In particular, we consider the class of semi-explicit

index-one DAEs of the form (1.7). Like methods for ODEs, this method is based on

a spatial B&B algorithm, and the primary challenge in developing it was to derive a

valid lower bounding procedure.

Following the work of Singer and Barton [164], the key ingredient in the lower

45



bounding procedure is a method that computes convex and concave relaxations of

the solutions of a parametric system of DAEs. In Chapter 7, the problem of relaxing

the solutions of a dynamic system is analyzed in a general setting, resulting in two

novel relaxation theories. Though these methods are ultimately applied to systems

of DAEs, they can also be applied directly to explicit ODEs. In both cases, effi-

cient numerical methods are developed using an extension of McCormick’s relaxation

technique developed in Chapter 2.

For systems of ODEs, the resulting relaxation methods are most closely related to

the existing method of Singer and Barton [162]. The choice to pursue methods of this

type was based on several considerations including their ease of use, favorable scaling

and computational efficiency as compared to other competitive methods. Of the two

methods developed in this thesis, the first is shown to have distinct drawbacks and is

illustrative of some problems unique to relaxation methods for dynamic problems. On

the other hand, the second method has very satisfactory performance and is shown to

significantly outperform the method of [162] in numerical experiments. For systems

of semi-explicit index-one DAEs, the relaxation methods developed here are the first

available in the literature.

In Chapter 10, we present a basic spatial B&B algorithm for the deterministic

global solution of dynamic optimization problems with semi-explicit index-one DAEs

embedded. During the course of this thesis, the vast majority of work on global dy-

namic optimization has been directed at deriving relaxations for the solutions of ODEs

and DAEs. Comparatively little effort has been dedicated to developing optimization

algorithms to make use of them. Accordingly, the presented algorithm is basic in

several respects, and analogy with global optimization techniques for standard NLPs

suggests that the method should be quite computationally intensive. Though we do

find the efficiency of this basic algorithm to be problematic, it is no more so here than

for existing techniques for problems with explicit ODEs embedded. Hence, the algo-

rithm successfully provides an extension of the current state-of-the-art to problems

with DAEs embedded. We analyze the performace of the algorithm in the context of

several case studies and take the opportunity to suggest some promising directions for
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future improvement, noting in particular the advanced techniques that have proven

to be indispensable for practical global solution of standard NLPs.

Finally, in Chapter 11, we present the surprising result that the relaxation the-

ory developed here can largely be applied to dynamic optimization problems in the

original infinite-dimensional space. In particular, this allows one to construct con-

vex underestimating programs for nonconvex optimal control problems, without the

need to discretized either the state or the controls. Though this seems to provide a

key step towards a global optimization method for nonconvex optimal control prob-

lems, a complete algorithm remains elusive because their seems no reasonable way to

exhaustively partition an infinite-dimensional space.
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Chapter 2

Factorable Functions, Interval

Arithmetic and McCormick

Relaxations

2.1 Introduction

In order to solve global optimization problems, one must have some means of inferring

global information about the functions involved. In general, local characterizations

of a function, such as its value or its derivative at a point, are not enough. Rather,

one requires information about the behavior of the function on the entire domain of

interest. An essential tool in this regard is the so-called factorable representation of a

function, which will be heavily used throughout this thesis. Essentially, a function is

factorable if it can be written as a finite sequence of simple operations, including basic

arithmetic operations as well as intrinsic functions available on a computer, such as
√
x, xn, ex, sin x, etc. For example, the function

f(x1, x2) = 10x1 + x2
1e
x2 (2.1)
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is factorable because it can be evaluated for any (x1, x2) ∈ R2 by executing the

following sequence of simple computations:

v1(x1, x2) = x1,

v2(x1, x2) = x2,

v3(x1, x2) = 10v1(x1, x2),

v4(x1, x2) = (v1(x1, x2))
2,

v5(x1, x2) = exp(v2(x1, x2)),

v6(x1, x2) = v4(x1, x2) × v5(x1, x2),

v7(x1, x2) = v3(x1, x2) + v6(x1, x2),

f(x1, x2) = v7(x1, x2).

Roughly, each of the intermediates vi is called a factor, and the factorable representa-

tion is the sequence v1, . . . , v7. In essence, any function written explicitly in computer

code will be factorable, so it is not at all restrictive to develop methods for this class

of functions.

In this chapter, the class of factorable functions is defined formally, and two stan-

dard methods are introduced for obtaining useful global information about them.

These methods are interval arithmetic [125] and McCormick’s relaxation technique

[118], which are used to compute interval enclosures and convex relaxations of fac-

torable functions, respectively. The presentation of interval arithmetic is mostly stan-

dard, though some definitions are made more general and some new regularity results

are developed. On the other hand, the analysis of McCormick’s relaxation technique

includes many generalizations and new results, leading to the the generalized Mc-

Cormick relaxations of §2.7. As will be seen in later chapters, the application of these

techniques to dynamic problems will require more out of both of these methods than

do typical global optimization algorithms.
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2.2 Factorable Functions

To formalize the notion of a factorable function, we must first define the set of opera-

tions that will be permissible in the sequence of computations defining such functions.

Each element of this set will be a real-valued function on a Euclidean space. To avoid

notational conflicts in later sections, it is prudent here to use the formal notation for

a function as a triple (o, B,R), where B is the domain, R is the range, and o is a

mapping from B into R, o : B → R. Throughout this thesis, the set of permissi-

ble operations will contain the binary addition operation (+,R2,R), and the binary

multiplication operation (×,R2,R). In addition, it will include a library of univariate

functions, which is a set L whose elements are univariate functions; (u,B,R) ∈ L
has B ⊂ R. The elements of L will be used to represent functions such as

√
x, xn,

ex, sin x, etc. Furthermore, L should include the negative and reciprocal functions

−x and 1/x, so that subtraction and division can be achieved by combination with

(+,R2,R) and (×,R2,R). In order for the class of factorable functions to be useful,

it is necessary to require that certain information about each element of L is either

known or easily computable, and that certain basic properties are satisfied. For now,

it is only required that, for each (u,B,R) ∈ L, u(x) can be evaluated computationally

for any x ∈ B. Further requirements will be added throughout this chapter. For refer-

ence, they are Assumptions 2.3.8, 2.4.25, 2.5.29 2.5.39, and 2.5.33. In practice, these

assumptions are not at all restrictive. The required information is readily available

for a large variety of univariate functions, and all required properties can be shown

to hold with only minor exceptions.

Definition 2.2.1. Let ni, no ∈ N. A L-computational sequence with ni inputs and

no outputs is a pair (S, πo):

1. S is a finite sequence {((ok, Bk,R), (πk,R
k−1,Rdk))}nf

k=ni+1 with every element

defined by one of the following options:

(a) (ok, Bk,R) is either (+,R2,R) or (×,R2,R) and πk : Rk−1 → R2 is defined

by πk(v) = (vi, vj) for some integers i, j ∈ {1, . . . , k − 1}.
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(b) (ok, Bk,R) ∈ L and πk : Rk−1 → R is defined by πk(v) = vi for some

integer i ∈ {1, . . . , k − 1}.

2. πo : Rnf → Rno is defined by πo(v) = (vi(1), . . . , vi(no)) for some integers

i(1), . . . , i(no) ∈ {1, . . . , nf}.

A computational sequence defines a function fS : DS ⊂ Rni → Rno by the following

construction.

Definition 2.2.2. Let (S, πo) be a L-computational sequence with ni inputs and no

outputs. Define the sequence of factors {(vk, Dk,R)}nf

k=1, with Dk ⊂ Rni, where

1. For k = 1, . . . , ni, Dk = Rni and vk(x) = xk, ∀x ∈ Dk,

2. For k = ni + 1, . . . , nf , Dk = {x ∈ Dk−1 : πk(v1(x), . . . , vk−1(x)) ∈ Bk} and

vk(x) = ok ◦ πk ◦ (v1(x), . . . , vk−1(x)), ∀x ∈ Dk.

The set DS ≡ Dnf
is called the natural domain of (S, πo), and the natural function

(fS , DS ,Rno) is defined by fS(x) = πo ◦ (v1(x), . . . , vnf
(x)), ∀x ∈ DS .

Example 2.2.1. Equation (2.1) defines a computational sequence with ni = 2 in-

puts, x = (x1, x2), and n0 = 1 output. In fact there are several computational

sequences that describe this function, depending on the order in which the operations

are applied. The computational sequence leading to the sequence of factors shown

previously is:

− − v1 = x1,

− − v2 = x2,

o3 = 10× π3(v) = v1 v3 = 10v1,

o4 = (·)2 π4(v) = v1 v4 = v2
1,

o5 = exp π5(v) = v2 v5 = exp(v2),

o6 = × π6(v) = (v4, v5) v6 = v4v5,

o7 = + π7(v) = (v3, v6) v7 = v3 + v6,

− πo(v) = v7 fS = v7.
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Since every univariate function appearing in the computational sequence above is

defined on the entire real line, the natural domain is DS = R2.

Definition 2.2.3 (Factorable function). A function f : D ⊂ Rn → Rm is L-factorable

if there exists a L-computational sequence (S, πo) with n inputs and m outputs such

that the natural function (fS , DS ,Rno) satisfies D ⊂ DS and f = fS |D.

Remark 2.2.4. Again, note that the use of the term factorable in later chapters will

imply Assumptions 2.3.8, 2.4.25, 2.5.29, 2.5.39, and 2.5.33.

2.3 Interval Analysis

For a, b ∈ R, a ≤ b, define the interval [a, b] as the compact, connected set {x ∈ R :

a ≤ x ≤ b}. Interval analysis is the study of intervals as basic arithmetic objects

on par with integers and real numbers. This concept will be extensively used to

compute global information about factorable functions in the form of interval bounds

on their range. In this section, the basics of interval analysis are presented, leading

in particular to the concept of a natural interval extension of a factorable function.

Definitive resources in this field are [125] and [131].

The set of all nonempty intervals is denoted IR. Intervals are denoted by capital

letters, Z ∈ IR. Since Z is a subset of R, the notation z ∈ Z is well-defined. The set

of n-dimensional interval vectors is denoted IRn. In particular, Z ∈ IRn has elements

Zi ∈ IR, i = 1, . . . , n. Every Z ∈ IRn can be regarded as a subset of Rn defined by the

Cartesian product Z1× . . .×Zn, so that z ∈ Rn satisfies z ∈ Z if zi ∈ Zi, i = 1, . . . , n.

The set of n×m interval matrices is denoted IRn×m and defined analogously to IRn;

A ∈ IRn×m has elements Aij ∈ IR, for all i ∈ {1, . . . , n} and j ∈ {1, . . . , m}, and, for

any A ∈ Rn×m with elements aij , A ∈ A if aij ∈ Aij for all indices i and j. For any

D ⊂ Rn, let ID denote the set {Z ∈ IRn : Z ⊂ D}. This notation is also used for

D ⊂ Rn×m.

If v,w ∈ Rn and v ≤ w, then [v,w] denotes the n-dimensional interval [v1, w1]×
. . . ,×[vn, wn]. Moreover, for any Z ∈ IR, the notation zL, zU ∈ Rn will be commonly
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used to denote the vectors such that Z = [zL, zU ]. The notation m(Z) denotes

the midpoint of Z, m(Z) ≡ 0.5(zL + zU), and w(Z) denotes the width of Z, w(Z) ≡
zU−zL. For A ∈ IRn×m, m(A) and w(A) are real-valued matrices defined analogously.

For any z ∈ Rn, the singleton [z, z] is called a degenerate interval.

2.3.1 Inclusion Functions and Interval Extensions

The central task in interval analysis is to compute an interval which encloses the range

of a given function. This is the notion of an inclusion function, formalized below.

Definition 2.3.1. Let f : D ⊂ Rn → Rm, and for any E ⊂ D, let f(E) denote the

image of E under f . A mapping F : D ⊂ ID → IRm is an inclusion function for f on

D if f(X) ⊂ F (X), ∀X ∈ D.

Ideally, an inclusion function should be defined on all of ID; i.e., an interval

enclosure can be computed for the image of any X ∈ ID under f . In practice,

however, this is not always possible. This issue is discussed further after Theorem

2.3.11. Typically, inclusion functions are derived from a simpler object known as an

interval extension.

Definition 2.3.2. Let D ⊂ Rn. A set D ⊂ IRn is an interval extension of D if

every x ∈ D satisfies [x,x] ∈ D. Let f : D → Rm. A function F : D → IRm is

an interval extension of f if D is an interval extension of D and, for every x ∈ D,

F ([x,x]) = [f(x), f(x)].

An interval extension will be an inclusion function if it is inclusion monotonic.

Definition 2.3.3. Let F : D ⊂ IRn → IRm. F is inclusion monotonic on D if

X1 ⊂ X2 =⇒ F (X1) ⊂ F (X2), ∀X1, X2 ∈ D. (2.2)

Theorem 2.3.4. Let f : D ⊂ Rn → Rm and let F : D → IRm be an interval extension

of f . If F is inclusion monotonic on D ∩ ID, then F is an inclusion function for f

on D ∩ ID.
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Proof. Choose any X ∈ D ∩ ID and any x ∈ X. Since x ∈ D, it follows that

[x,x] ∈ D and f(x) ∈ [f(x), f(x)] = F ([x,x]) ⊂ F (X).

The following result is useful for constructing inclusion functions for complex

functions from those of simpler functions.

Lemma 2.3.5. Let f1 : D1 ⊂ Rn → Rm and f2 : D2 ⊂ Rm → Rk, and define

D12 ≡ {x ∈ D1 : f1(x) ∈ D2}. Let F1 : D1 → IRm and F2 : D2 → IRk be

interval extensions of f1 and f2, respectively. Then D12 ≡ {X ∈ D1 : F1(X) ∈ D2}
is an interval extension of D12, and (F2 ◦ F1,D12, IR

k) is an interval extension of

(f2 ◦ f1, D12,R
k). If F1 and F2 are inclusion monotonic on D1 and D2, respectively,

then F2 ◦ F1 is inclusion monotonic on D12.

Proof. First it is shown that x ∈ D12 implies [x,x] ∈ D12. For any x ∈ D12, x ∈ D1

implies that [x,x] ∈ D1 and F1([x,x]) = [f1(x), f1(x)]. Then f1(x) ∈ D2 implies that

F1([x,x]) ∈ D2, so that [x,x] ∈ D12.

To show that (F2 ◦F1,D12, IR
k) is an interval extension of (f2 ◦ f1, D12,Rk), choose

any x ∈ D12. Since D12 is an interval extension of D12, [x,x] ∈ D12. Then,

F2(F1([x,x])) = F2([f1(x), f1(x)]) = [f2(f1(x)), f2(f1(x))].

It remains to show that F2 ◦ F1 is inclusion monotonic on D12. Choose any

X, X̂ ∈ D12 such that X ⊂ X̂. Then F1(X) ⊂ F1(X̂), and both intervals are in D2,

so that F2(F1(X)) ⊂ F2(F1(X̂)).

2.3.2 Interval Arithmetic and the Natural Interval Extension

Just as one adds, multiplies and performs other simple operations on real numbers,

these operations are defined for elements of IR as well. The basic property of these

interval operations is that they are inclusion functions for the corresponding real op-

eration. Using this system, termed interval arithmetic, one can compute an inclusion

function for any factorable function in a very natural way.
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Definition 2.3.6. Define (+, IR2, IR) and (×, IR2, IR) by

+(X, Y ) = X + Y = [xL + yL, xU + yU ],

×(X, Y ) = XY = [min(xLyL, xLyU , xUyL, xUyU),max(xLyL, xLyU , xUyL, xUyU)].

Theorem 2.3.7. (+, IR2, IR) and (×, IR2, IR) are interval extensions of (+,R2,R)

and (×,R2,R), respectively, and they are inclusion monotonic on IR2.

Proof. Clearly, IR2 is an interval extension of R2. For any x ∈ X and y ∈ Y , [x, x] +

[y, y] = [x + y, x + y] and [x, x][y, y] = [min(xy, xy, xy, xy),max(xy, xy, xy, xy)] =

[xy, xy]. For inclusion monotonicity, see [125], §3.3.

Of course, the previous theorem implies that (+, IR2, IR) and (×, IR2, IR) are

inclusion functions for (+,R2,R) and (×,R2,R) on IR2. In particular, for any X, Y ∈
IRn, we have x + y ∈ X + Y and xy ∈ XY , for all x ∈ X and y ∈ Y . Furthermore,

Lemma 2.3.5 implies that these functions may be composed to conclude, for example,

that x+ xy ∈ X +XY , for all x ∈ X and y ∈ Y . Our aim is to extend this recursion

to arbitrary L-computational sequences. However, the ability to do so depends on L.

In particular, it requires the following.

Assumption 2.3.8. For every (u,B,R) ∈ L, an interval extension (u, IB, IR) is

known and can be evaluated computationally. Furthermore, this interval extension is

inclusion monotonic on IB.

Remark 2.3.9. In the assumption above, the notation u is used to denote both

the original univariate function and its interval extension. The ambiguity in this

convention is removed by specifying the domain and codomain of the function, which

is the purpose of using the triplet notation for functions throughout this chapter.

Overloading the notation u in this manner has the advantage that we may write, for

example, exp(X) for some X ∈ IR directly, without defining additional notation for

the interval extension of the exponential.

Interval extensions for a wide variety of univariate functions are compiled in §2.8.

Note that there is no need to define interval subtraction and division explicitly, since
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these operations can be achieved by combining addition and multiplication with uni-

variate negative and reciprocal functions.

Suppose Assumption 2.3.8 holds and (S, πo) is a L-computational sequence. Then,

to any element ((ok, Bk,R), (πk,Rk−1,Rdk)) of S, there corresponds an inclusion mono-

tonic interval extension (ok, IBk, IR). Further, the functions (πk, IR
k−1, IR2) (or

(πk, IR
k−1, IR)) may be defined in the natural way, so that for example πk(V ) =

(Vi, Vj) if πk(v) = (vi, vj). Then, the natural interval extension of (S, πo) is defined

as follows.

Definition 2.3.10. For every L-computational sequence (S, πo), with ni inputs and

no outputs, define the sequence of inclusion factors {(Vk,Dk, IR)}nf

k=1 where

1. For all k = 1, . . . , ni, Dk = IRni and Vk(X) = Xk, ∀X ∈ Dk,

2. For all k = ni + 1, . . . , nf , Dk = {X ∈ Dk−1 : πk ◦ (V1(X), . . . , Vk−1(X)) ∈ IBk}
and Vk(X) = ok ◦ πk ◦ (V1(X), . . . , Vk−1(X)), ∀X ∈ Dk.

The natural interval extension of (S, πo) is the function (FS ,DS , IR
no) defined by

DS ≡ Dnf
and FS(X) = πo ◦ (V1(X), . . . , Vnf

(X)), ∀X ∈ DS .

Theorem 2.3.11. Let (S, πo) be a L-computational sequence with natural function

(fS , DS ,Rno). The natural interval extension (FS ,DS , IR
no) is an interval extension

of (fS , DS ,Rno), and is inclusion monotonic on DS .

Proof. Consider the sequence of factors {(vk, Dk,R)}nf

k=1 and the sequence of inclusion

factors {(Vk,Dk, IR)}nf

k=1. Choose any K ∈ {1, . . . , nf} and suppose that (Vk,Dk, IR)

is an interval extension of (vk, Dk,R), and inclusion monotonic on Dk, for all k ∈
{1, . . . , K − 1}. If K ≤ ni + 1, this is true because, for any k < K, Dk = IRni is

an interval extension of Dk = Rni , Vk([x,x]) = [xk, xk] = [vk(x), vk(x)], and Vk is

trivially inclusion monotonic on IRni.

Now, (v1, . . . , vK−1) is a well-defined mapping from DK−1 into RK−1. By the

inductive hypothesis, (V1, . . . , VK−1), as a mapping from DK−1 into IRK−1, is an in-

terval extension of (v1, . . . , vK−1), and is inclusion monotonic on DK−1. It follows

that πk ◦ (V1, . . . , VK−1) is an interval extension of πk ◦ (v1, . . . , vK−1), and is inclusion
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monotonic on DK−1. By Theorem 2.3.7 and Assumption 2.3.8, (oK , IBK, IR) is an

interval extension of (oK , BK ,R), and is inclusion monotonic on IBK . Then, Lemma

2.3.5 shows that (VK ,DK , IR) is an interval extension of (vK , DK ,R), and it is inclu-

sion monotonic on DK . By induction, this holds for every K ∈ {1, . . . , nf}, and the

theorem follows from the definition of (FS ,DS , IR
no).

Ideally, DS should contain all of IDS , so that for any X ∈ IDS the natural

interval extension provides an interval enclosure of the image of X under f . From

Definition 2.3.10, it is clear that DS will only fail to be the whole of IDS if, for some

X ∈ IDS , a domain violation occurs when evaluating the interval extension of some

univariate function in the computational sequence. Even though fS is well-defined on

DS , this is possible because the value of an inclusion factor Vk(X) may overestimate

the image of X under the corresponding factor vk. However, Definition 2.3.10 and

inclusion monotonicity of the inclusion factors immediately imply the following useful

property.

Lemma 2.3.12. Let (S, πo) be a L-computational sequence with natural interval ex-

tension (FS ,DS , IR
no). For any X ∈ IRni, X ∈ DS implies that IX ⊂ DS .

Definition 2.3.13. Let f : D ⊂ Rn → Rm be a L-factorable function. Then, for any

L-computational sequence describing f , the natural interval extension (FS ,DS , IR
m)

is called a natural interval extension of f .

It is apparent from Theorem 2.3.11 that a natural interval extension of a L-

factorable function is indeed an interval extension, and is inclusion monotonic on DS .

More importantly, it is an inclusion function for f on DS ∩ ID. Moving forward, the

notation ([f ],D, IRm) will be used to denote a natural interval extension of (f , D,Rm).

Example 2.3.1. Consider again the function (2.1), and the computational sequence

discussed in Example 2.2.1. Interval extensions of all of the univariate functions

involved in this sequence are known and in fact quite intuitive. Consider computing

an enclosure of the range of this function on the interval X1 ×X2 = [−1, 3] × [.4, 1].

To do this using the natural interval extension, the sequence of inclusion factors is
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evaluated as follows:

V1(X1, X2) = X1 = [−1, 3],

V2(X1, X2) = X2 = [.4, 1],

V3(X1, X2) = 10V1(X1, X2) = 10[−1, 3] = [−10, 30],

V4(X1, X2) = (V1(X1, X2))
2 = [−1, 3]2 = [0, 9],

V5(X1, X2) = exp(V2(X1, X2)) = exp([.4, 1]) = [exp(.4), e],

V6(X1, X2) = V4(X1, X2) × V5(X1, X2) = [0, 9][exp(.4), e] = [0, 9e],

V7(X1, X2) = V3(X1, X2) + V6(X1, X2) = [−10, 30] + [0, 9e] = [−10, 30 + 9e],

F (X1, X2) = V7(X1, X2) = [−10, 54.5].

By Theorem 2.3.1 and Lemma 2.3.5, it is now guaranteed that the value of (2.1) lies

in interval [−10, 54.5], for any (x1, x2) ∈ [−1, 3] × [.4, 1].

From the previous example, it should be clear that computing natural interval

extensions is easily automatable, and hardly more computationally demanding than

executing the same sequence of computations in real arithmetic. Many libraries are

available for computing interval extensions automatically using the operator over-

loading functionality of object oriented programming languages such as C++ (Pro-

fil: http://www.ti3.tu-harburg.de/keil/profil/index_e.html; Boost: http://

www.boost.org/doc/libs/1_37_0/libs/numeric/interval/doc/interval.htm).

The price that one pays for the efficiency and simplicity of interval arithmetic is

that it often provides very conservative enclosures. Essentially, this is because the

procedure is memoryless; the interval addition defining V7 in example 2.3.1 takes

no account of the fact that both V3 and V6 depend on X1, so that v3 and v6 may

not vary within V3 and V6 independently. This well-known shortcoming is termed the

dependency problem. On the other hand, the interval arithmetic operations, and hence

natural interval extensions under appropriate assumptions on L, have the property

that the computed interval bound becomes less conservative as the input interval is

decreased in width [125].
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2.4 McCormick Analysis

In this section, we begin the development of McCormick’s relaxation technique, which

is completed in Sections 2.6 and 2.7. McCormick’s technique provides a means to

compute convex and concave relaxations of L-factorable functions. Let D ⊂ Rn be

convex. A vector function g : D → Rm is called convex if each component is convex;

i.e.,

g(λx1 + (1 − λ)x2) ≤ λg(x1) + (1 − λ)g(x2), ∀(λ,x1,x2) ∈ [0, 1] ×D ×D,

and it is called concave if the opposite (weak) inequality holds.

Definition 2.4.1. Let D be a convex set in Rn and f : D → Rm. A function

f cv : D → Rm is a convex relaxation, or convex underestimator, of f on D if f cv is

convex on D and f cv(x) ≤ f(x), ∀x ∈ D. Similarly, a function f cc : D → Rm is a

concave relaxation, or concave overestimator, of f on D if f cc is concave on D and

f cc(x) ≥ f(x), ∀x ∈ D.

Suppose f : D → R is L-factorable with the L-computational sequence (S, πo),
S = {((uk, Bk,R), (πk,Rk−1,Rdk))}nf

k=ni+1, and the sequence of factors {(vk, Dk,R)}nf

k=1.

McCormick’s relaxation technique can be thought of as computing a natural relaxation

similar to the natural interval extension of the previous section. When evaluating the

natural interval extension of f on X, the interval X is taken as input and an inter-

val Vk(X) is computed for each factor vk sequentially. In particular, this is done by

interval versions of each operation ok taking intervals as inputs and returning inter-

vals as outputs. Thus, in the evaluation of the interval extension, the basic unit of

information passed from one operation to the next is the interval. In contrast, Mc-

Cormick’s procedure takes an interval X and a point x ∈ X as input, and associates

to each factor an interval Vk(X) and two additional numbers vcv(X,x) and vcc(X,x).

The interpretation of the interval is the same; it encloses the image of X under vk.

The numbers vcv(X,x) and vcc(X,x), respectively, represent the values of convex and

concave relaxations of vk on X evaluated at x. In effect, what is required for Mc-
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Cormick’s procedure is that each operation ok can be replaced with a mapping that

takes an interval, as well as two relaxation values, as input, and returns the same as

output. Thus, there is a direct analogy between McCormick’s relaxation technique

and interval arithmetic. However, the basic unit of information is more complex. It

is the element of the set

MRn ≡ {(ZB, ZC) ∈ IRn × IRn : ZB ∩ ZC 6= ∅}. (2.3)

Elements of MRn are denoted by script capitals, Z ∈ MRn. For any such Z, the

notations ZB, ZC ∈ IRn and (zL, zU , zcv, zcc) ∈ Rn will commonly be used to denote

the intervals and vectors satisfying Z = (ZB, ZC) = ([zL, zU ], [zcv, zcc]).

The representation of the relaxation values zcv and zcc as an interval of course

imposes the basic requirement that zcv ≤ zcc, which is natural given the interpretation

above. The further requirement that ZB ∩ ZC be nonempty is also natural since the

interval bounds ZB and the relaxation values ZC are intended to bound the same

value. Some desirable properties of McCormick’s relaxation procedure will further

require that one works with objects for which zcv, zcc ∈ ZB. Therefore, we make the

following definitions.

Definition 2.4.2. Z ∈ MRn is called proper if ZC ⊂ ZB. The set of all proper

elements of MRn is denoted MRn
prop.

Definition 2.4.3. The function Cut : MRn → MRn
prop is defined by

Cut(Z) ≡ (ZB, ZB ∩ ZC), ∀Z ∈ MRn. (2.4)

Definition 2.4.4. For any z ∈ Rn, the element ([z, z], [z, z]) ∈ MRn is called degen-

erate.

Unlike elements of IR, elements of MR are not subsets of R, though it will be

useful to interpret them as such. To do so unambiguously, we define the enclosure

function.
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Definition 2.4.5. The function Enc : MRn → IRn is defined by

Enc(Z) ≡ ZB ∩ ZC , ∀Z ∈ MRn. (2.5)

According to the previous definition, the notation z ∈ Enc(Z) in well-defined,

while z ∈ Z is not. On the other hand, as elements of IRn × IRn, elements of

MRn are subsets of Rn × Rn, and the inclusion relation for Z1,Z2 ∈ MRn is defined

accordingly.

Definition 2.4.6. For any Z1,Z2 ∈ MRn, the inclusion Z1 ⊂ Z2 holds if and only if

ZB
1 ⊂ ZB

2 and ZC
1 ⊂ ZC

2 .

As with intervals, the set MRn×m can be defined analogously to MRn; A ∈ MRn×m

has elements Aij ∈ MR, for all i ∈ {1, . . . , n} and j ∈ {1, . . . , m}. For anyD ⊂ Rn, let

MD denote the set {Z ∈ MRn : ZB ⊂ D}. This notation is also used for D ⊂ Rn×m.

In what follows, McCormick’s technique is formalized by defining operations on

MRn, leading to a relaxation function analogous to the inclusion function of interval

analysis. This presentation is not standard. However, the resulting method is equiv-

alent and there are numerous advantages. First, the notation is much more compact

and bears a direct relationship with the standard computational implementation of

the method. Second, more precise statements of certain properties are achieved. Fi-

nally, the construction of the generalized McCormick relaxations presented in §2.7

becomes evident and is achieved with minimal additional effort.

2.4.1 Relaxation Functions and McCormick Extensions

By analogy to the inclusion function of §2.3.1, the relaxation function is defined

here as the fundamental object that we wish to compute for a given function f :

D → Rm. As described above, McCormick’s technique takes an interval X ∈ ID

and a point x ∈ X as input and returns an interval F (X) and relaxation values

f cv(X,x) as f cc(X,x) as output. Accordingly, it is sensible to define our notion of

a relaxation function as a mapping F : ID × D → MRn, with some appropriate
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convexity and enclosure properties. Of course, the interpretation of the output is

F(X,x) = (F (X), [f cv(X,x), f cc(X,x)]). However, a much more useful object is

the mapping F : MD → MRn. The same interpretation can be recovered using

arguments of the form X = (X, [x,x]). At the same time, more general inputs are

allowed, which leads directly to the notion of a generalized McCormick relaxation. In

particular, mappings of this form are composable.

Relaxation functions are defined below, after some preliminary concepts are in-

troduced.

Definition 2.4.7. Let X ,Y ∈ MRn. X and Y are coherent, or X is coherent to

Y , if XB = Y B. A set D ⊂ MRn is closed under coherence if, for every coherent

X ,Y ∈ MRn, X ∈ D implies Y ∈ D. If D is closed under coherence, then Q ∈ IRn

is said to be represented in D if there exists X ∈ D with XB = Q. A function

F : D → MRm is coherent if D is closed under coherence and F(X ) is coherent to

F(Y) for every coherent X ,Y ∈ D.

It is easy to see that any set of the form MD, with D ⊂ Rn, is closed under

coherence, and any Q ∈ ID is represented in MD. In order to impose an appropriate

convexity/concavity condition on relaxation functions, it is necessary to define convex

combinations of coherent elements of MRn. Unfortunately, the addition and scalar

multiplication operations on MRn, defined in the next section, are not suitable for

this task because these operations are designed to propagate relaxation information,

not to act as vector space operations. Therefore, for any coherent X1,X2 ∈ MRn with

common interval part Q, we define

Conv(λ,X1,X2) ≡ (Q, λXC
1 + (1 − λ)XC

2 ), ∀λ ∈ [0, 1].

Note in particular that Conv(λ,X1,X2) is coherent to both X1 and X2, so that X1,X2 ∈
D implies that Conv(λ,X1,X2) ∈ D for any D that is closed under coherence.

Definition 2.4.8. A function F : D → MRm is coherently concave on D if it is
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coherent and, for every coherent X1,X2 ∈ D,

F(Conv(λ,X1,X2)) ⊃ Conv(λ,F(X1),F(X2)), ∀λ ∈ [0, 1].

Remark 2.4.9. In the previous definition, the term coherently concave is used instead

of coherently convex because of the direction of the required inclusion. If MRn were

a vector space and one considered the partial ordering imposed by the inclusion

relation (i.e., ≤=⊂ and ≥=⊃), then a definition of concavity through the inclusion

above would be consistent with the standard definition of concavity on a vector space.

As mentioned above, MRn is not a vector space, but we choose the term concave

nonetheless.

Definition 2.4.10. Let f : D ⊂ Rn → Rm. A mapping F : D → MRm is a

relaxation function for f on D if it is coherently concave on D, and every X ∈ D
satisfies, f(x) ∈ Enc(F(X )), ∀x ∈ Enc(X ).

The following lemma shows that this definition indeed provides convex and con-

cave relaxations of f . It uses the notation F(X ) = (FB(X ), [f cv(X ), f cc(X )]).

Lemma 2.4.11. Let f : D ⊂ Rn → Rm and let F : D → MRm be a relaxation

function for f on D. For any X ∈ ID that is represented in D, define the functions

U ,O : X → Rm by

U(x) = f cv((X, [x,x])) and O(x) = f cc((X, [x,x])) (2.6)

for all x ∈ X. Then U is convex on X, O is concave on X, and U(x) ≤ f(x) ≤ O(x),

∀x ∈ X.

Proof. Choose any x ∈ X. Since D is closed under coherence, (X, [x,x]) ∈ D for all

x ∈ X. Noting that x ∈ Enc((X, [x,x])), it follows that f(x) ∈ Enc(F((X, [x,x]))).

In particular, U(x) = f cv((X, [x,x])) ≤ f(x) ≤ f cc((X, [x,x])) = O(x).
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Choose any x1,x2 ∈ X and any λ ∈ [0, 1]. Then

F(Conv(λ,(X, [x1,x1]), (X, [x2,x2])))

⊃ Conv(λ,F((X, [x1,x1])),F((X, [x2,x2]))).

In particular

U(λx1 + (1 − λ)x2) = f cv((X, [λx1 + (1 − λ)x2, λx1 + (1 − λ)x2])),

≤ λf cv((X, [x1,x1])) + (1 − λ)f cv((X, [x2,x2])),

= λU(x1) + (1 − λ)U(x2).

Concavity of O follows analogously.

As with inclusion functions, the enclosure property of a relaxation function will

be achieved through a simpler construction, the McCormick extension, with the help

of a monotonicity property.

Definition 2.4.12. Let D ⊂ Rn. A set D ⊂ MRn is a McCormick extension of

D if every x ∈ D satisfies ([x,x], [x,x]) ∈ D. Let f : D → Rm. A mapping

F : D → MRm is an McCormick extension of f if D is a McCormick extension

of D, and F(([x,x], [x,x])) = ([f(x), f(x)], [f(x), f(x)]), ∀x ∈ D.

Note that, for any D ⊂ Rn, MD is a McCormick extension of D.

Definition 2.4.13. Let F : D ⊂ MRn → MRm. F is inclusion monotonic on D if

X1 ⊂ X2 =⇒ F(X1) ⊂ F(X2), ∀X1,X2 ∈ D.

Theorem 2.4.14. Let f : D ⊂ Rn → Rm and let F : D → MRm be a McCormick

extension of f . If F is inclusion monotonic on D ∩ MD, then every X ∈ D ∩ MD

satisfies f(x) ∈ Enc(F(X )), ∀x ∈ Enc(X ).

Proof. Choose any X ∈ D ∩ MD and any x ∈ Enc(X ). Then x ∈ XB ⊂ D and

hence ([x,x], [x,x]) ∈ D and F(([x,x], [x,x])) = ([f(x), f(x)], [f(x), f(x)]). Then, by

inclusion monotonicity, f(x) ∈ Enc(F(([x,x], [x,x]))) ⊂ Enc(F(X )).
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The following composition results are useful for constructing relaxation functions

for complex functions from those of simpler functions.

Lemma 2.4.15. Let D1 ⊂ MRn and D2 ⊂ MRm be closed under coherence, and let

F1 : D1 → MRm and F2 : D2 → MRk be coherently concave and inclusion monotonic

on D1 and D2, respectively. Then the set D12 ≡ {X ∈ D1 : F1(X ) ∈ D2} is closed

under coherence and F2 ◦ F1 is coherently concave and inclusion monotonic on D12.

Proof. Let X ,Y ∈ MRn be coherent and suppose that X ∈ D12. To show that D12

is closed under coherence, it is shown that Y ∈ D12. Since X is in D12, it is also in

D1, and since D1 is closed under coherence, Y ∈ D1. Since F1 is coherently concave,

F1(X ) and F1(Y) are coherent. But F1(X ) ∈ D2 because X ∈ D12, and hence

F1(Y) ∈ D2 because D2 is closed under coherence. Then, by definition, Y ∈ D12, so

D12 is closed under coherence.

Choose any λ ∈ [0, 1]. Because F1 is coherently concave,

F1(Conv(λ,X ,Y)) ⊃ Conv(λ,F1(X ),F1(Y)), (2.7)

and F1(X ) and F1(Y) are coherent. Because F2 is coherently concave,

F2(Conv(λ,F1(X ),F1(Y))) ⊃ Conv(λ,F2(F1(X )),F2(F1(Y))) (2.8)

and F2(F1(X )) and F2(F1(Y)) are coherent. Since F1(Conv(λ,X ,Y)) is coherent to

F1(X ), it is an element of D2. Since, F2 is inclusion monotonic on D2, combining

(2.7) and (2.8) shows that

F2(F1(Conv(λ,X ,Y))) ⊃ Conv(λ,F2(F1(X )),F2(F1(Y))), (2.9)

which shows that F2 ◦ F1 is coherently concave on D12.

It remains to show that F2 ◦ F1 is inclusion monotonic on D12. Choose any

X ,Y ∈ D12 such that X ⊂ Y . Then F1(X ) ⊂ F1(Y), and both are elements of D2,

so that F2(F1(X )) ⊂ F2(F1(Y)).
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Remark 2.4.16. Note that only inclusion monotonicity of F2 was required to recover

coherent concavity of the composition F2◦F1. This is analogous to standard composi-

tion results for convex and concave functions, where one must assume a monotonicity

property for the outer function.

Lemma 2.4.17. Let f1 : D1 ⊂ Rn → Rm and f2 : D2 ⊂ Rm → Rk, and define

D12 ≡ {x ∈ D1 : f1(x) ∈ D2}. Let F1 : D1 → MRm and F2 : D2 → MRk be

McCormick extensions of f1 and f2, respectively. Then D12 ≡ {X ∈ D1 : F1(X ) ∈ D2}
is a McCormick extension of D12, and (F2 ◦F1,D12,MRk) is a McCormick extension

of (f2 ◦ f1, D12,R
k).

Proof. First it is shown that x ∈ D12 implies ([x,x], [x,x]) ∈ D12. For any x ∈
D12, x ∈ D1 implies that ([x,x], [x,x]) ∈ D1 because D1 is a McCormick ex-

tension of D1. Because F1 is a McCormick extension of f1, F1([x,x], [x,x]) =

([f1(x), f1(x)], [f1(x), f1(x)]). Since x ∈ D12, we have f1(x) ∈ D2, which implies that

F1([x,x], [x,x]) ∈ D2 because D2 is a McCormick extension of D2. By definition, this

implies that ([x,x], [x,x]) ∈ D12.

To show that (F2 ◦ F1,D12,MRk) is a McCormick extension of (f2 ◦ f1, D12,Rk),

choose any x ∈ D12. Since D12 is a McCormick extension of D12, ([x,x], [x,x]) ∈ D12.

Then,

F2(F1(([x,x], [x,x]))) = F2(([f1(x), f1(x)], [f1(x), f1(x)])),

= ([f2(f1(x)), f2(f1(x))], [f2(f1(x)), f2(f1(x))]).

2.4.2 McCormick Arithmetic and the Natural McCormick

Extension

In this section, the basic operations defining L-factorable functions are extended to

MR. Aside from some minor differences discussed below, these extensions are the

addition, multiplication and composition rules of McCormick’s original work [118].
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Definition 2.4.18. Define (+,MR2,MR) by

+(X ,Y) = X + Y = (XB + Y B, (XB ∩XC) + (Y B ∩ Y C)). (2.10)

In the following results, it is shown that (+,MR2,MR) is a McCormick extension

of (+,R2,R), and is coherently concave and inclusion monotonic on MR2.

Theorem 2.4.19. For any coherent X1,X2 ∈ MRn with common interval part Q,

Q ∩ (λXC
1 + (1 − λ)XC

2 ) ⊃ λ(Q ∩XC
1 ) + (1 − λ)(Q ∩XC

2 ), ∀λ ∈ [0, 1].

Proof. Letting Q = [qL, qU ], it suffices to show that

max(qL, λxcv1 + (1 − λ)xcv2 ) ≤ λmax(qL, xcv1 ) + (1 − λ) max(qL, xcv2 ),

min(qU , λxcc1 + (1 − λ)xcc2 ) ≥ λmin(qU , xcc1 ) + (1 − λ) min(qU , xcc2 ).

But this follows directly from the fact that max(qL, ·) and min(qU , ·) are convex and

concave on R, respectively.

Theorem 2.4.20. (+,MR2,MR) is a McCormick extension of (+,R2,R). Further-

more, it is coherently concave and inclusion monotonic on MR2.

Proof. MR2 is clearly a McCormick extension of R2, and for any (x, y) ∈ R2,

([x, x], [x, x]) + ([y, y], [y, y]) = ([x, x] + [y, y], [x, x] + [y, y]), (2.11)

= ([x+ y, x+ y], [x+ y, x+ y]). (2.12)

To show that (+,MR2,MR) is inclusion monotonic, let (X1,Y1), (X2,Y2) ∈ MR2

and suppose that X2 ⊂ X1 and Y2 ⊂ Y1. Then X2 +Y2 = ([XB
2 + Y B

2 ], [(XB
2 ∩XC

2 ) +

(Y B
2 ∩ Y C

2 )]) ⊂ ([XB
1 + Y B

1 ], [(XB
1 ∩XC

1 ) + (Y B
1 ∩ Y C

1 )]) = X1 + Y1.

It remains to show that (+,MR2,MR) is coherently concave on MR2. Clearly,

MR2 is closed under coherence. Choose any coherent (X1,Y1), (X2,Y2) ∈ MR2 and

let Q × R denote their common interval part. It is clear that Z1 = X1 + Y1 and

Z2 = X2 + Y2 are coherent with interval Q + R. Choose any λ ∈ [0, 1] and define
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X̂ = Conv(λ,X1,X2), Ŷ = Conv(λ,Y1,Y2), and Ẑ = X̂ + Ŷ. Then, using Theorem

2.4.19,

ẐC = (Q ∩ X̂C) + (R ∩ Ŷ C), (2.13)

= (Q ∩ (λXC
1 + (1 − λ)XC

2 )) + (R ∩ (λY C
1 + (1 − λ)Y C

2 )), (2.14)

⊃ λ(Q ∩XC
1 ) + (1 − λ)(Q ∩XC

2 ) + λ(R ∩ Y C
1 ) + (1 − λ)(R ∩ Y C

2 ), (2.15)

= λ
[

(Q ∩XC
1 ) + (Q ∩ Y C

1 )
]

+ (1 − λ)
[

(R ∩XC
2 ) + (R ∩ Y C

2 )
]

, (2.16)

= λZC
1 + (1 − λ)ZC

2 . (2.17)

It follows that Ẑ ⊃ Conv(λ,Z1,Z2), which is the desired result.

Definition 2.4.21. Define (×,MR2,MR) by

×(X ,Y) = XY = (XBY B, [zcv, zcc]), (2.18)

where

zcv = max
(

[

yLX̄C + xLȲ C − xLyL
]L
,
[

yUX̄C + xU Ȳ C − xUyU
]L
)

, (2.19)

zcc = min
(

[

yLX̄C + xU Ȳ C − yLxU
]U
,
[

yUX̄C + xLȲ C − yUxL
]U
)

. (2.20)

and X̄ = Cut(X ) and Ȳ = Cut(Y).

In the previous definition, the algebraic expressions in square brackets evaluate

to intervals, and the superscript L or U indicates the lower or upper bound of that

interval, respectively. This definition is based on the convex and concave envelopes

of the bilinear term xy on the intervals XB and Y B, given by

max(yLx+ xLy− yLxL, yUx+ xUy − yUxU)

≤ xy ≤ min(yLx+ xUy − yLxU , yUx+ xLy − yUxL).

From this, it is simple to show that zcv ≤ zcc, zcv ≤ zU and zL ≤ zcc, so that XY is

indeed an element of MR.
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The notation above is not typically used to define McCormick multiplication.

However, expanding zcv, for example, gives

zcv = max([yLX̄C + xLȲ C − xLyL]L, [yUX̄C + xU Ȳ C − xUyU ]L), (2.21)

= max([yLX̄C ]L + [xLȲ C ]L − xLyL, [yUX̄C ]L + [xU Ȳ C ]L − xUyU),

= max(min(yLx̄cv, yLx̄cc) + min(xLȳcv, xLȳcc) − xLyL,

min(yU x̄cv, yU x̄cc) + min(xU ȳcv, xU ȳcc) − xUyU).

Readers familiar with the standard definition will now see that the definition above

is equivalent, with the exception that the Cut operation is not applied to X and Y
in McCormick’s original work [118]. Note also that this operation also appears in

the definition of (+,MR2,MR) (written out explicitly in this case), though not in

McCormick’s original definition. In general, this step potentially makes the results of

these operations sharper. It also makes X̄ and Ȳ proper, which has important con-

sequences for the inclusion monotonicity of McCormick multiplication, as discussed

below.

Theorem 2.4.22. (×,MR2,MR) is a McCormick extension of (×,R2,R).

Proof. Let (x, y) ∈ MR2. Multiplying ([x, x], [x, x]) and ([y, y], [y, y]) as per Definition

2.4.21, the conclusion follows from the observations

zcv = max([y[x, x] + x[y, y]− xy]L, [y[x, x] + x[y, y]− xy]L) = xy,

zcc = min([y[x, x] + x[y, y]− xy]U , [y[x, x] + x[y, y] − xy]U) = xy.

Theorem 2.4.23. (×,MR2,MR) is inclusion monotonic on MR2.

Proof. Let X1,Y1,X2,Y2 ∈ MR and suppose that X2 ⊂ X1 and Y2 ⊂ Y1. It follows

that XB
2 ⊂ XB

1 , Y B
2 ⊂ Y B

1 , X̄C
2 ⊂ X̄C

1 and Ȳ C
2 ⊂ Ȳ C

1 . By Theorem 2.3.7, XB
2 Y

B
2 ⊂

XB
1 Y

B
1 . It remains to show that [zcv2 , z

cc
2 ] ⊂ [zcv1 , z

cc
1 ], where zcv2 , zcc2 , zcv1 and zcc1 are
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defined as in Definition 2.4.21. It will be shown that

zcv1 = max([yL1 X̄
C
1 + xL1 Ȳ

C
1 − xL1 y

L
1 ]L, [yU1 X̄

C
1 + xU1 Ȳ

C
1 − xU1 y

U
1 ]L),

≤ max([yL1 X̄
C
2 + xL1 Ȳ

C
2 − xL1 y

L
1 ]L, [yU1 X̄

C
2 + xU1 Ȳ

C
2 − xU1 y

U
1 ]L),

≤ max([yL2 X̄
C
2 + xL2 Ȳ

C
2 − xL2 y

L
2 ]L, [yU2 X̄

C
2 + xU2 Ȳ

C
2 − xU2 y

U
2 ]L),

= zcv2 .

The proof that zcc1 ≥ zcc2 is analogous. In general, max(a, b) ≤ max(a′, b′) if a ≤ a′

and b ≤ b′. It will be shown that

[yL1 X̄
C
1 + xL1 Ȳ

C
1 − xL1 y

L
1 ]L ≤ [yL1 X̄

C
2 + xL1 Ȳ

C
2 − xL1 y

L
1 ]L (2.22)

≤ [yL2 X̄
C
2 + xL2 Ȳ

C
2 − xL2 y

L
2 ]L.

The remaining inequality is proven analogously. The first inequality in (2.22) follows

directly by inclusion monotonicity of interval multiplication and addition, and the

fact that X̄C
1 ⊃ X̄C

2 and Ȳ C
1 ⊃ Ȳ C

2 . Consider the second inequality in (2.22). First,

it is shown that

[yL1 X̄
C
2 + xL1 Ȳ

C
2 − xL1 y

L
1 ]L = [yL1 (X̄C

2 − xL1 ) + xL1 Ȳ
C
2 ]L, (2.23)

= [yL1 (X̄C
2 − xL1 )]L + [xL1 Ȳ

C
2 ]L, (2.24)

≤ [yL2 (X̄C
2 − xL1 )]L + [xL1 Ȳ

C
2 ]L. (2.25)

Since X̄C
2 ⊂ XB

2 ⊂ XB
1 , the interval (X̄C

2 − xL1 ) contains no negative elements. Since

yL1 ≤ yL2 , it follows that [yL1 (X̄C
2 −xL1 )]L ≤ [yL2 (X̄C

2 −xL1 )]L, which implies the inequality
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above. Then, using an identical argument,

[yL1 X̄
C
2 + xL1 Ȳ

C
2 − xL1 y

L
1 ]L ≤ [yL2 (X̄C

2 − xL1 ) + xL1 Ȳ
C
2 ]L, (2.26)

= [yL2 X̄
C
2 + xL1 Ȳ

C
2 − yL2 x

L
1 ]L, (2.27)

= [yL2 X̄
C
2 + xL1 (Ȳ C

2 − yL2 )]L, (2.28)

≤ [yL2 X̄
C
2 + xL2 (Ȳ C

2 − yL2 )]L, (2.29)

= [yL2 X̄
C
2 + xL2 Ȳ

C
2 − xL2 y

L
2 ]L. (2.30)

This proves the second inequality in (2.22).

Theorem 2.4.24. (×,MR2,MR) is coherently concave on MR2.

Proof. Choose any coherent (X1,Y1), (X2,Y2) ∈ MR2 with common interval part

Q× R. It is clear that X1Y1 and X2Y2 are coherent with common interval part QR.

Choose any λ ∈ [0, 1] and let X̂ = Conv(λ,X1,X2) and Ŷ = Conv(λ,Y1,Y2). By

Lemma 2.4.19, λX̄C
1 + (1− λ)X̄C

2 ⊂ (Q ∩ X̂C) and λȲ C
1 + (1− λ)Ȳ C

2 ⊂ (R ∩ Ŷ C). It

follows that

λrX̄C
1 + (1 − λ)rX̄C

2 ⊂ r(Q ∩ X̂C), (2.31)

λrȲ C
1 + (1 − λ)rȲ C

2 ⊂ r(R ∩ Ŷ C), (2.32)

for any r ∈ R. Then

[yL(Q ∩ X̂C) + xL(R ∩ Ŷ C) − yLxL]L

= [yL(Q ∩ X̂C)]L + [xL(R ∩ Ŷ C)]L − yLxL

≤ [λyLX̄C
1 + (1 − λ)yLX̄C

2 ]L + [λxLȲ C
1 + (1 − λ)xLȲ C

2 ]L − yLxL,

= λ[yLX̄C
1 ]L + (1 − λ)[yLX̄C

2 ]L + λ[xLȲ C
1 ]L + (1 − λ)[xLȲ C

2 ]L − yLxL,

= λ([yLX̄C
1 ]L + [xLȲ C

1 ]L) + (1 − λ)([yLX̄C
2 ]L + [xLȲ C

2 ]L) − yLxL,

= λ([yLX̄C
1 + xLȲ C

1 − yLxL]L) + (1 − λ)([yLX̄C
2 + xLȲ C

2 − yLxL]L).
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By an analogous sequence of manipulations it can be shown that

[yU(Q ∩ X̂C) + xU(R ∩ Ŷ C) − yUxU ]L

≤ λ([yUX̄C
1 + xU Ȳ C

1 − yUxU ]L) + (1 − λ)([yUX̄C
2 + xU Ȳ C

2 − yUxU ]L).

By convexity of max on R2, it follows that

max([yL(Q ∩ X̂C) + xL(R ∩ Ŷ C) − yLxL]L, [yU(Q ∩ X̂C) + xU (R ∩ Ŷ C) − yUxU ]L)

≤ max(λ([yLX̄C
1 + xLȲ C

1 − yLxL]L) + (1 − λ)([yLX̄C
2 + xLȲ C

2 − yLxL]L),

λ([yUX̄C
1 + xU Ȳ C

1 − yUxU ]L) + (1 − λ)([yUX̄C
2 + xU Ȳ C

2 − yUxU ]L)),

≤ λmax([yLX̄C
1 + xLȲ C

1 − yLxL]L, [yUX̄C
1 + xU Ȳ C

1 − yUxU ]L)

+ (1 − λ) max([yLX̄C
2 + xLȲ C

2 − yLxL]L, [yUX̄C
2 + xU Ȳ C

2 − yUxU ]L).

Letting zcv1 , zcv2 and ẑcv be as in Definition 2.4.21, this last inequality is exactly

ẑcv ≤ λzcv1 +(1−λ)zcv2 , and an analogous argument shows that ẑcc ≥ λzcc1 +(1−λ)zcc2 .

Combined, these imply that ẐC ⊃ λZC
1 + (1 − λ)ZC

2 .

By Theorem 2.4.14, it has now been established that the functions (+,MR2,MR)

and (×,MR2,MR) are relaxation functions for (+,R2,R) and (×,R2,R) on MR2,

respectively, and are moreover inclusion monotonic there. It should be noted that

(×,MR2,MR) can be proven to be a relaxation function (×,R2,R) on MR2 directly,

without first showing inclusion monotonicity. This is the standard development, in

particular because (×,MR2,MR) is not inclusion monotonic without the use of the

Cut operation in Definition 2.4.21. This is demonstrated by the following example.

Example 2.4.1. Let X1 = Y1 = ([−1, 1], [−3, 1]) and X2 = Y2 = ([0.7, 1], [−2.5, 1]),

and note that X2 ⊂ X1 and Y2 ⊂ Y1. Despite these inclusion, it will be shown that
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X2Y2 6⊂ X1Y1, if the Cut operations are not used in Definition 2.4.21. Let

zcv1 ≡ max
(

[

yL1X
C
1 + xL1 Y

C
1 − xL1 y

L
1

]L
,
[

yU1 X
C
1 + xU1 Y

C
1 − xU1 y

U
1

]L
)

= max
(

[(−1)[−3, 1] + (−1)[−3, 1] − (−1)(−1)]L ,

[(1)[−3, 1] + (1)[−3, 1] − (1)(1)]L
)

,

= max
(

[[−1, 3] + [−1, 3] − 1]L , [[−3, 1] + [−3, 1] − 1]L
)

,

= max
(

[[−2, 6] − 1]L , [[−6, 2] − 1]L
)

,

= max (−3,−7) = −3.

zcv2 ≡ max
(

[

yL2X
C
2 + xL2 Y

C
2 − xL2 y

L
2

]L
,
[

yU2 X
C
2 + xU2 Y

C
2 − xU2 y

U
2

]L
)

= max
(

[(0.7)[−2.5, 1] + (0.7)[−2.5, 1] − (0.7)(0.7)]L ,

[(1)[−2.5, 1] + (1)[−2.5, 1] − (1)(1)]L
)

,

= max
(

[[−1.75, 0.7] + [−1.75, 0.7] − 0.49]L , [[−2.5, 1] + [−2.5, 1] − 1]L
)

,

= max
(

[[−3.5, 1.4] − 0.49]L , [[−5, 2] − 1]L
)

,

= max (−3.99,−6) = −3.99.

With these definitions, zcv2 < zcv1 , so that inclusion monotonicity is violated.

Since (×,MR2,MR) has been proven to be inclusion monotonic when the Cut

operation is used, but not otherwise, it follows that it is inclusion monotonic on

MRprop in either case. However, one cannot rely on always operating on MRprop. In

the next example, it is shown that (×,MR2
prop,MR) itself may produce elements of

MR that are not proper. That is, MRprop is not closed under multiplication.

Example 2.4.2. Let X = Y = ([−1, 1], [−1, 1]). Clearly, X ,Y ∈ MRprop. Using the
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notation of Definition 2.4.21,

zcv = max([yLX̄C + xLȲ C − xLyL]L, [yUX̄C + xU Ȳ C − xUyU ]L),

= max([[−1, 1] + [−1, 1] − (−1)(−1)]L, [[−1, 1] + [−1, 1] − (1)(1)]L),

= max([[−2, 2] − 1]L, [[−2, 2] − 1]L),

= max([−3, 1]L, [−3, 1]L),

= −3.

But ZB = [−1, 1] × [−1, 1] = [−1, 1]. Therefore, XY /∈ MRprop.

We now define the univariate functions in L on MR. The key contribution of Mc-

Cormick’s original work is the McCormick composition rule, which essentially shows

how an inclusion monotonic relaxation function (u,MB,MR) can be constructed for

any (u,B,R) ∈ L, provided that convex and concave relaxations for u can be com-

puted over a given interval X.

Assumption 2.4.25. For every (u,B,R) ∈ L, functions ucv, ucc : B̄ → R, where

B̄ ≡ {(X, x) ∈ IB × B : x ∈ X}, and xmin, xmax : IB → R are known such that

1. For every X ∈ IB, ucv(X, ·) and ucc(X, ·) are convex and concave relaxations of

u on X, respectively.

2. xmin(X) and xmax(X) are a minimum of ucv(X, ·) on X and a maximum of

ucc(X, ·) on X, respectively.

3. For any X1, X2 ∈ IR with X2 ⊂ X1, u
cv(X1, x) ≤ ucv(X2, x) and ucc(X1, x) ≥

ucc(X2, x) for all x ∈ X2.

4. ucv([x, x], x) = ucc([x, x], x) for every x ∈ B.

Appropriate definitions of ucv, ucc, xmin and xmax are compiled for many univariate

functions in §2.8. In most cases, it is simple to formulate the convex and concave

envelopes of univariate functions. When these are used, Conditions 1, 3 and 4 of

Assumption 2.4.25 hold by definition.
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McCormick’s composition rule now defines relaxation functions for the elements

of L as follows.

Definition 2.4.26. For every (u,B,R) ∈ L, define (u,MB,MR) by

u(X ) =
(

u(XB),
[

ucv(XB,mid(xcv, xcc, xmin(XB))),

ucc(XB,mid(xcv, xcc, xmax(XB)))
])

,

where u(XB) is the value of (u, IB, IR) at XB.

Note that X ∈ MB implies that either xcv ∈ XB or xcc ∈ XB, or both. By

definition xmin(XB), xmax(XB) ∈ XB, so that, in both uses of the mid function above,

at least two of the three arguments lie in XB. It follows that the mid function chooses

an element of XB, and hence of B, in both cases, so that u(X ) is well-defined.

Theorem 2.4.27. (u,MB,MR) is a McCormick extension of (u,B,R).

Proof. Choose any x ∈ B. By Assumption 2.3.8, u([x, x]) = [u(x), u(x)], and by

Conditions 1 and 4 of Assumption 2.4.25, ucv([x, x], x) = ucc([x, x], x) = u(x).

Proving inclusion monotonicity requires the following lemma.

Lemma 2.4.28. Suppose g is a convex function on an interval [xL, xU ] ⊂ R and g

attains its infimum at xmin ∈ [xL, xU ]. Then g is monotone decreasing on [xL, xmin]

and monotone increasing on [xmin, xU ]. Similarly, if g is concave on [xL, xU ] and

attains its supremum at xmax ∈ [xL, xU ], then g is monotone increasing on [xL, xmax]

and monotone decreasing on [xmax, xU ].

Proof. The proof is elementary.

Theorem 2.4.29. (u,MB,MR) is inclusion monotonic on MB.

Proof. Let X1,X2 ∈ MB, suppose that X2 ⊂ X1, and let Z1 = u(X1) and Z2 = u(X2).

By Assumption 2.3.8, it suffices to show that [zcv2 , z
cc
2 ] ⊂ [zcv1 , z

cc
1 ]. It will be shown

that zcv1 ≤ zcv2 . The proof that zcc1 ≥ zcc2 is analogous.
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Denote hmin(Xi) = mid(xcvi , x
cc
i , x

min(XB
i )), i ∈ {1, 2}. To show that zcv1 ≤ zcv2 , It

will be shown that

ucv(XB
1 , h

min(X1)) ≤ ucv(XB
1 , h

min(X2)) ≤ ucv(XB
2 , h

min(X2)). (2.33)

It was argued above that hmin(X1) ∈ XB
1 and hmin(X2) ∈ XB

2 . Since XB
2 ⊂ XB

1 , it

follows that hmin(X2) ∈ XB
1 , and hence the second inequality in (2.33) follows from

Condition 3 of Assumption 2.4.25. It remains to show the first.

By definition, xmin(XB
1 ) is a minimum of ucv(XB

1 , ·) on XB
1 . If hmin(X1) =

xmin(XB
1 ), then the first inequality in (2.33) must be satisfied because hmin(X2) ∈ XB

1 .

Suppose hmin(X1) = xcv1 . The definition of the mid function and the fact that xcv1 ≤
xcc1 require that xmin(XB

1 ) ≤ xcv1 ≤ xcc1 , so hmin(X1) is to the right of xmin(XB
1 ). Since

ucv(XB
1 , ·) is convex on XB

1 , it is monotonically increasing to the right of xmin(XB
1 )

by Lemma 2.4.28. But xcv1 ≤ xcv2 ≤ xcc2 , so if hmin(X2) is xcv2 or xcc1 , then the first

inequality in (2.33) holds. Further, if hmin(X2) = xmin(XB
2 ), the definition of the mid

function requires that xcv2 ≤ xmin(XB
2 ) ≤ xcc2 , so xmin(XB

2 ) is to the right of hmin(X1)

and the first inequality in (2.33) still holds.

Now suppose that hmin(X1) = xcc1 . The definition of the mid function and the fact

that xcv1 ≤ xcc1 require that xmin(XB
1 ) ≥ xcc1 ≥ xcv1 , so hmin(X1) is now to the left of

xmin(XB
1 ). By the convexity of ucv(XB

1 , ·), it is monotonically decreasing to the left

of xmin(XB
1 ) by Lemma 2.4.28. But, by hypothesis, xcc1 ≥ xcc2 ≥ xcv2 , so if hmin(X2) is

xcv2 or xcc2 , then the first inequality in (2.33) holds. Further, if hmin(X2) = xmin(XB
2 ),

the definition of the mid function requires that xcv2 ≤ xmin(XB
2 ) ≤ xcc2 , so xmin(XB

2 )

is to the left of hmin(X1) and the first inequality in (2.33) still holds.

Theorem 2.4.30. (u,MB,MR) is coherently concave on MB.

Proof. Choose any coherent X1,X2 ∈ MB with common interval partQ, any λ ∈ [0, 1]

and let X̂ = Conv(λ,X1,X2). Let Z1 = u(X1), Z2 = u(X2) and Ẑ = u(X̂ ). It will

be shown that ẑcv ≤ λzcv1 + (1 − λ)zcv2 . The proof that ẑcc ≥ λzcc1 + (1 − λ)zcc2 is

analogous.

Let w = ucv(Q, ·) and xmin = xmin(Q). Since w is convex, it can be decomposed
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[118] into a constant part, A ≡ w(xmin), a convex, non-increasing part, wD(x) =

w(min(x, xmin))−A, and a convex, non-decreasing part, wI(x) = w(max(x, xmin))−A,

such that w(x) = wI(x) + wD(x) + A, ∀x ∈ Q.

Since xcv1 ≤ xcc1 , there are three possible orderings of the numbers xcv1 , xcc1 and

xmin. Assuming any of these, it is easy to see that one of the numbers max(xcv1 , x
min)

and min(xcc1 , x
min) is equal to xmin, and the other is equal to mid(xcv1 , x

cc
1 , x

min). Then,

w(mid(xcv1 , x
cc
1 , x

min)) = w(max(xcv1 , x
min)) + w(min(xcc1 , x

min)) −A (2.34)

= w(max(xcv1 , q
L, xmin)) + w(min(xcc1 , q

U , xmin)) −A

= wI(max(xcv1 , q
L)) + wD(min(xcc1 , q

U)) + A,

and by the same arguments

w(mid(xcv2 , x
cc
2 , x

min)) = wI(max(xcv2 , q
L)) + wD(min(xcc2 , q

U)) + A, (2.35)

w(mid(x̂cv, x̂cc, xmin)) = wI(max(x̂cv, qL)) + wD(min(x̂cc, qU)) + A. (2.36)

Observing that max(·, qL) is convex on R,

max(x̂cv, qL) ≤ λmax(xcv1 , q
L) + (1 − λ) max(xcv2 , q

L),

and since wcI is convex and non-decreasing

wI(max(x̂cv, qL)) ≤ wI([λmax(xcv1 , q
L) + (1 − λ) max(xcv2 , q

L)]),

≤ λwI(max(xcv1 , q
L)) + (1 − λ)wI(max(xcv2 , q

L)).

Applying analogous arguments to the term wD(min(x̂cc, qU)), it follows that

wD(min(x̂cc, qU)) ≤ λwD(min(xcc1 , q
U)) + (1 − λ)wD(min(xcc2 , q

U)).
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Now, applying (2.34), (2.35) and (2.36),

w(mid(x̂cv, x̂cc, xmin)) ≤ λwI(max(xcv1 , q
L)) + (1 − λ)wI(max(xcv2 , q

L))

+ λwD(min(xcc1 , q
U)) + (1 − λ)wD(min(xcc2 , q

U)) + A

= λ[wI(max(xcv1 , q
L)) + wD(min(xcc1 , q

U)) + A]

+ (1 − λ)[wI(max(xcv2 , q
L)) + wD(min(xcc2 , q

U)) + A]

= λw(mid(xcv1 , x
cc
1 , x

min)) + (1 − λ)w(mid(xcv2 , x
cc
2 , x

min)).

But this last inequality is exactly ẑcv ≤ λzcv1 + (1 − λ)zcv2 .

By Theorems 2.4.27, 2.4.29, 2.4.30 and 2.4.14, it now follows that each (u,MB,MR)

is a relaxation function of the corresponding (u,B,R) ∈ L. As with the McCormick

multiplication operation, it can be shown directly that (u,MB,MR) is a relaxation

function without proving that it is a McCormick extension or that it is inclusion

monotonic. This is a more standard development, and it does not require Conditions

3 and 4 in Assumption 2.4.25. However, for application to global optimization, both

inclusion monotonicity and the condition for degenerate inputs dictated by the def-

inition of a McCormick extension are very important, and will not necessarily hold

without these additional assumptions.

We now define the natural McCormick extension of a L-computational sequence.

Definition 2.4.31. For every L-computational sequence (S, πo), with ni inputs and

no outputs, define the sequence of relaxation factors {(Vk,Dk,MR)}nf

k=1 where

1. For all k = 1, . . . , ni, Dk = MRni and Vk(X ) = Xk, ∀X ∈ Dk,

2. For all k = ni+1, . . . , nf , Dk = {X ∈ Dk−1 : πk ◦(V1(X ), . . . ,Vk−1(X )) ∈ MBk}
and Vk(X ) = ok ◦ πk ◦ (V1(X ), . . . ,Vk−1(X )), ∀X ∈ Dk.

The natural McCormick extension of (S, πo) is the function (FS ,DS ,MRno) defined

by DS ≡ Dnf
and F(X ) = πo ◦ (V1(X ), . . . ,Vnf

(X )), ∀X ∈ DS .

Theorem 2.4.32. Let (S, πo) be a L-computational sequence with natural function

(fS , DS ,Rno). The natural McCormick extension (FS ,DS ,MRno) is a McCormick
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extension of (fS , DS ,R
no), and it is coherently concave and inclusion monotonic on

DS .

Proof. Consider the sequence of factors {(vk, Dk,R)}nf

k=1 and the sequence of relax-

ation factors {(Vk,Dk,MR)}nf

k=1. Choose any K ∈ {1, . . . , nf} and suppose that

(Vk,Dk,MR) is a McCormick extension of (vk, Dk,R), and coherently concave and

inclusion monotonic on Dk, for all k ∈ {1, . . . , K − 1}. If K ≤ ni + 1, this is

true because, for any k < K, Dk = MRni is a McCormick extension of Dk = Rni,

Vk(([x,x], [x,x])) = ([xk, xk], [xk, xk]) = ([vk(x), vk(x)], [vk(x), vk(x)]) for any x ∈ Dk,

and Vk is trivially inclusion monotonic and coherently concave on MRni.

Now, (v1, . . . , vK−1) is a well-defined mapping from DK−1 into RK−1. By the

inductive hypothesis, (V1, . . . ,VK−1), as a mapping from DK−1 into MRK−1, is a

McCormick extension of (v1, . . . , vK−1), and is inclusion monotonic and coherently

concave on DK−1. It follows that πk ◦ (V1, . . . ,VK−1) is a McCormick extension of

πk ◦ (v1, . . . , vK−1), and is inclusion monotonic and coherently concave on DK−1. By

Theorems 2.4.20, 2.4.22 and 2.4.27, (oK ,MBK ,MR) is a McCormick extension of

(oK , BK ,R), and is coherently concave and inclusion monotonic on MBK by The-

orems 2.4.20, 2.4.23, 2.4.29, 2.4.24 and 2.4.30. Then, Lemma 2.4.17 shows that

(VK ,DK ,MR) is a McCormick extension of (vK , DK ,R), and Lemma 2.4.15 shows

that it is coherently concave and inclusion monotonic on DK . By induction, this

holds for every K ∈ {1, . . . , nf}, and the theorem follows immediately from the defi-

nition of (FS ,DS , IR
no).

Similar to the situation for natural interval extensions, it is generally not possible

to define a natural McCormick extension on all of MDS . However, the situation for

natural McCormick extensions is no more restrictive than that for natural interval

extensions because the domain MB of a univariate function only restricts the interval

part of its argument. In particular, it is easily seen that any X ∈ DS is represented in

DS . Moreover, inclusion monotonicity of the relaxation factors immediately implies

the following.

80



Lemma 2.4.33. Let (S, πo) be a L-computational sequence with natural McCormick

extension (FS ,DS ,MRno). If an interval X ∈ IRni is represented in DS , then every

element of IX is represented in DS ; i.e. MX ⊂ DS.

Definition 2.4.34. Let f : D ⊂ Rn → Rm be a L-factorable function. Then,

for any L-computational sequence describing f , the natural McCormick extension

(FS ,DS ,MRm) is called a natural McCormick extension of f .

It is apparent from Theorem 2.4.32 that a natural McCormick extension of a L-

factorable function is indeed a McCormick extension, and is coherently concave and

inclusion monotonic on DS . More importantly, it is a relaxation function for f on DS∩
MD. In fact, the standard McCormick relaxations of f can be defined from a natural

McCormick extension of f exactly as in Lemma 2.4.11 (see §2.6). Moving forward,

the notation ({f},D,MRm) will be used to denote a natural McCormick extension of

(f , D,Rm). Furthermore, we denote {f}(X ) = (FB(X ), [{f}cv(X ), {f}cc(X )]).

As with natural interval extensions, the evaluation of the natural McCormick ex-

tension of a sequence of computations can be easily automated and is only marginally

more computationally demanding than executing the same sequence of computations

in real arithmetic. Throughout this thesis, natural McCormick extensions are com-

puted using the library MC++ (http://www3.imperial.ac.uk/people/b.chachuat/

research). MC++ is the successor of libMC, which is described in detail in [122].

2.5 Regularity of Functions on IRn and MRn

It should not be surprising that the regularity of a L-factorable function, i.e., whether

it is continuous, Lipschitz, differentiable, etc., depends on the corresponding prop-

erties of the univariate functions in L. In later chapters, it will be very useful to

recognize that natural interval and McCormick extensions also enjoy some regularity

properties, again inherited from the properties of the univariate interval and Mc-

Cormick extensions (u, IB, IR) and (u,MB,MR). In this section, several notions

of regularity are extended to include functions to or from the sets IRn and MRn
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and shown to hold for factorable functions, natural interval extensions, and natural

McCormick extensions under mild assumptions. Among these, the piecewise differ-

entiability of natural interval extensions and all properties of natural McCormick

extensions are new contributions. The properties of factorable functions are apparent

and a Lipschitz condition for natural interval extensions has been previously demon-

strated in [131].

2.5.1 IRn and MRn as Metric Spaces

Let Z, Y ⊂ Rn. The Hausdorff distance between Z and Y , induced by the infinity-

norm distance on Rn, is defined by

dH(Z, Y ) = max

(

sup
y∈Y

inf
z∈Z

‖z − y‖∞, sup
z∈Z

inf
y∈Y

‖z − y‖∞
)

. (2.37)

Let KRn denote the set of all nonempty compact subsets of Rn. It is well-known that

KRn is a complete metric space under dH . In this context dH will be referred to as

the Hausdorff metric. Since IRn ⊂ KRn, it follows that IRn is also a metric space

under dH . If Z, Y ∈ IRn, Z ≡ [zL, zU ] and Y ≡ [yL,yU ], then the Hausdorff metric

on IRn is equivalently expressed as

dH(Z, Y ) = max
(

max
i

|zLi − yLi |,max
i

|zUi − yUi |
)

. (2.38)

Recall that any subset of a metric space is itself a metric space with the same metric.

Then, since MRn is a subset of IR2n, it too is a metric space under the distance

dM(Z,Y) = dH(ZB × ZC , Y B × Y C) (2.39)

= max
(

dH(ZB, Y B), dH(ZC , Y C)
)

, ∀Z,Y ∈ MRn.

In general, the set Rk × IRn × MRm is a metric space, for any k, n,m ∈ N, with
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the metric

d∞ ((x1, Z1,Y1), (x2, Z2,Y2)) = max (‖x1 − x2‖∞, dH(Z1, Z2), dM(Y1,Y2)) . (2.40)

Thus, open and closed subsets of Rk × IRn × MRm are defined in the standard way.

Moreover, for functions mapping to and/or from this space, continuity is defined by

the standard ǫ-δ condition, or equivalently by the condition that the inverse images

of open sets are open.

The practical reason for viewing Rk × IRn×MRm as a metric space is to analyze

the regularity of natural interval and McCormick extensions. In later chapters, some

developments will require that interval and/or McCormick extensions are continuous,

or even Lipschitz, with respect to the bound and relaxation values taken as input.

Consider an interval function F : IRn → IRm. When discussing the regularity of F ,

it is often convenient to think about the dependence of, say, the lower bound FL on

the real vectors zL and zU describing the input interval Z ≡ [zL, zU ]. Other times,

it will be more convenient to think of continuity on the metric space IRn according

to the standard definition. In the remainder of this section, it is shown that these

notions are equivalent, so that we may use whichever is most convenient for the task at

hand. The continuity of natural interval and McCormick extensions is demonstrated

in §2.5.5 and §2.5.6, respectively.

Definition 2.5.1. Define the set

H(k,n,m) ≡ {(x, zL, zU ,yL,yU ,ycv,ycc) ∈ Rk+2n+4m : (2.41)

zL ≤ zU , yL ≤ yU , ycv ≤ ycc, [yL,yU ] ∩ [ycv,ycc] 6= ∅}.

Furthermore, let iR : Rk × IRn × MRm → H(k,n,m) be defined by

iR(x, Z,Y) = (x, zL, zU ,yL,yU ,ycv,ycc), (2.42)

where [zL, zU ] = Z and ([yL,yU ], [ycv,ycc]) = Y .
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The mapping iR identifies its argument with an element of a Euclidean space in

the natural way. It is defined as a mapping into H(k,n,m) so that it is bijective, and

hence invertible. The following lemma follows directly from this definition.

Lemma 2.5.2. (iR,Rk × IRn × MRm,H(k,n,m)) is bijective and isometric; i.e.,

‖iR(x1, Z1,Y1) − iR(x2, Z2,Y2)‖∞ = d∞ ((x1, Z1,Y1), (x2, Z2,Y2)) , (2.43)

for any (x1, Z1,Y1), (x2, Z2,Y2) ∈ Rk × IRn × MRm.

Theorem 2.5.3. Let M : D ⊂ Rk × IRn × MRm → Rl × IRq × MRr. The following

conditions are equivalent:

1. M is continuous on D.

2. iR ◦M is continuous on D.

3. M◦ i−1
R

is continuous on Q ≡ iR(D).

4. iR ◦M ◦ i−1
R

is continuous on Q ≡ iR(D).

Proof. Since iR is an isometry, it follows that both iR and i−1
R

are continuous. Then,

since the composition of continuous functions is continuous, 1 implies 2, 3 and 4, 2

implies 4, and 3 implies 4. To prove the remaining results, it suffices to show that 4

implies 1.

Suppose that 4 holds but 1 does not. Then there exists an open set O ⊂ Rl ×
IRq × MRr such that M−1(O) is not open in D. Consider the image

iR(O) = {iR(a) : a ∈ O} = {b ∈ H(l,q,r) : i−1
R

(b) ∈ O}. (2.44)

By the last equality, it follows that iR(O) is open in H(l,q,r) because it is the inverse

image of the open set O under the continuous mapping i−1
R

. Then, by 4, the inverse

image (iR ◦M ◦ i−1
R

)−1(iR(O)) is open in Q. But

(iR ◦M ◦ i−1
R

)−1(iR(O)) = iR(M−1(i−1
R

(iR(O)))) = iR(M−1(O)), (2.45)
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so that iR(M−1(O)) is open in Q. Since iR is continuous as a mapping from D into

Q = iR(D), it follows that i−1
R

(iR(M−1(O))) is open in D. But i−1
R

(iR(M−1(O))) =

M−1(O), so this contradicts the hypothesis that M−1(O) is not open in D.

Returning to the example of the function F : IRn → IRm, Theorem 2.5.3 shows

that it is equivalent to speak of the continuity of F as a mapping from IRn to IRm

(Condition 1) and the continuity of FL and FU as functions zL and zU on the set

{(zL, zU) ∈ Rn × Rn : zL ≤ zU} (Condition 4).

2.5.2 Lipschitz and Locally Lipschitz Functions

In this section, Lipschitz and locally Lipschitz conditions are defined and some stan-

dard results are presented. For functions to and/or from the spaces IRn or MRn, it

is shown that the analogues of Theorem 2.5.3 hold for these Lipschitz properties as

well.

Definition 2.5.4. Let (X, dX) and (Y, dY ) be metric spaces and let f : X → Y . f is

Lipschitz on X if ∃L > 0 such that

dY (f(x1), f(x2)) ≤ LdX(x1, x2), ∀x1, x2 ∈ X. (2.46)

f is locally Lipschitz on X if, for every x̂ ∈ X, ∃η, L > 0 such that

dY (f(x1), f(x2)) ≤ LdX(x1, x2), ∀x1, x2 ∈ Bη(x̂), (2.47)

where Bη(x̂) ≡ {x ∈ X : dX(x, x̂) < η} is the open ball in X of radius η about x̂.

If f is Lipschitz on X, then it is locally Lipschitz on X. Moreover, if f is locally

Lipschitz on X, then it is uniformly continuous on X. Neither of the converses are

true. Affine functions are Lipschitz, as are finite sums of Lipschitz functions, and the

same is true of locally Lipschitz functions. Compositions and products are discussed

below.

Recall that any subset of a metric space is again a metric space with the same

metric. Then, it is sensible for a function to be Lipschitz or locally Lipschitz on a
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subset. In the latter case, however, one must take care that the open ball is interpreted

as open with respect to the subset. For example, let (Y, dY ) be a metric space and

let f : Rn → Y . Then, f is locally Lipschitz on E ⊂ Rn if, for every x̂ ∈ E, ∃η, L > 0

such that

dY (f(x1), f(x2)) ≤ L‖x1 − x2‖, ∀x1,x2 ∈ E ∩Bη(x̂). (2.48)

Here, Bη(x̂) = {x ∈ Rn : ‖x − x̂‖ < η} is the standard open ball in Rn of radius η

about x̂, so that E ∩ Bη(x̂) = {x ∈ E : ‖x − x̂‖ < η} is the open ball in the metric

space E of radius η about x̂.

Lemma 2.5.5. Let (X, dX) and (Y, dY ) be metric spaces and let f : X → Y be locally

Lipschitz on X. Then f is locally Lipschitz on any E ⊂ X.

Proof. Choose any x̂ ∈ E. Since f is locally Lipschitz on X, ∃η, L > 0 such that

dY (f(x1), f(x2)) ≤ LdX(x1, x2) for all x1, x2 ∈ {x ∈ X : dX(x, x̂) < η}. But since

E ⊂ X, the same inequality must hold for all x1, x2 ∈ {x ∈ E : dX(x, x̂) < η}.

It is very simple to show that the composition of two Lipschitz functions is Lips-

chitz. This also holds true for locally Lipschitz functions.

Theorem 2.5.6. Let (X, dX), (Y, dY ) and (Z, dZ) be metric spaces and let f : EX ⊂
X → Y and g : EY ⊂ Y → Z be locally Lipschitz on EX and EY , respectively. Then

g ◦ f is locally Lipschitz on EXY ≡ {x ∈ EX : f(x) ∈ EY }.

Proof. Choose any x̂ ∈ EXY and let ŷ = f(x̂) ∈ EY . Since g is locally Lipschitz

on EY , ∃ηg, Lg > 0 such that dZ(g(y1), g(y2)) ≤ LgdY (y1, y2) for all y1, y2 ∈ Bηg
(ŷ),

where Bηg
(ŷ) = {y ∈ EY : dY (y, ŷ) < ηg}. Since f : EXY → EY is continuous,

Q = f−1(Bηg
(ŷ)) is open in EXY and contains x̂. Since f is locally Lipschitz on EXY ,

∃ηf , Lf > 0 such that dY (f(x1), f(x2)) ≤ LfdX(x1, x2) for all x1, x2 ∈ Bηf
(x̂), where

Bηf
(x̂) = {x ∈ EXY : d(x, x̂) < ηf}. Since Q is open in EXY , η ∈ (0, ηf ] can be

chosen small enough that the open ball Bη(x̂) (again in EXY ) is a subset of Q, and
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hence f(Bη(x̂)) ⊂ Bηg
(ŷ). Then, for any x1, x2 ∈ Bη(x̂)

dZ(g ◦ f(x1), g ◦ f(x2)) ≤ LgdY (f(x1), f(x2)) ≤ LgLfdX(x1, x2). (2.49)

The following theorem is a very useful fact about locally Lipschitz functions. Let a

compact neighborhood of x in X be a compact subset of X with x in its interior. Recall

that a metric space (X, dX) is said to be locally compact if there exists a compact

neighborhood of every x ∈ X.

Theorem 2.5.7. Let (X, dX) and (Y, dY ) be metric spaces and let f : X → Y . If f

is locally Lipschitz on X then f is Lipschitz on every compact K ⊂ X. If (X, dX) is

locally compact, then the converse holds.

Clearly, Rn is locally compact, since for any x ∈ Rn, the closure of any open ball

about x in Rn, Bǫ(x), is a compact neighborhood of x in Rn. On the other hand, not

all subsets E ⊂ Rn are locally compact metric spaces. If E is open, then it is locally

compact because Bǫ(x) is a compact neighborhood of x in E for small enough ǫ > 0.

If E is closed, it is also locally compact because E∩Bǫ(x) is a compact neighborhood

of x in E. If E is neither open nor closed, then it may not be locally compact because

E ∩ Bǫ(x) may fail to be closed and its closure in Rn may fail to be a subset of E.

Corollary 2.5.8. Let (Y, dY ) be a metric space and let f : E ⊂ Rn → Y . If f is

locally Lipschitz on E then f is Lipschitz on every compact K ⊂ E. If E is either

open or closed, then the converse holds.

In general, products of Lipschitz functions are not Lipschitz. However, we have

the following theorem.

Theorem 2.5.9. Let (X, dX) be a metric space and let (Y, dY ) be a normed space,

and hence a metric space with dY (y1, y2) = ‖y1 − y2‖, ∀y1, y2 ∈ Y . If f, g : X → Y

are Lipschitz and bounded on X, then fg is Lipschitz on X.
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Proof. Choose any x1, x2 ∈ X. Then, using the triangle inequality,

‖f(x1)g(x1)− f(x2)g(x2)‖ (2.50)

≤ ‖f(x1)g(x1) − f(x1)g(x2)‖ + ‖f(x1)g(x2) − f(x2)g(x2)‖,

≤ ‖f(x1)‖‖g(x1) − g(x2)‖ + ‖g(x2)‖‖f(x1) − f(x2)‖,

≤ sup
x∈X

‖f(x)‖LgdX(x1, x2) + sup
x∈X

‖g(x)‖LfdX(x1, x2),

=

[

sup
x∈X

‖f(x)‖Lg + sup
x∈X

‖g(x)‖Lf
]

dX(x1, x2).

Corollary 2.5.10. Let (X, dX) be a locally compact metric space and let (Y, dY ) be

a normed space, and hence a metric space with dY (y1, y2) = ‖y1 − y2‖, ∀y1, y2 ∈ Y .

If f, g : X → Y are locally Lipschitz on X, then fg is locally Lipschitz on X.

Proof. Choose any x ∈ X. Since X is locally compact, there exists a compact neigh-

borhood Kx of x in X. Since both f and g are locally Lipschitz on X, there exists

η > 0 sufficiently small that both f and g are Lipschitz on Bη(x). Choosing η > 0

small enough that Bη(x) ⊂ Kx, continuity ensures that f and g are also bounded on

Bη(x). Then Theorem 2.5.9 implies that fg is Lipschitz on Bη(x).

Since Rk× IRn×MRm is a metric space, Lipschitz and locally Lipschitz functions

are well-defined on this space. The following theorems extend the observations of

Theorem 2.5.3 to these classes of functions as well.

Theorem 2.5.11. Let M : D ⊂ Rk× IRn×MRm → Rl× IRq×MRr. The following

conditions are equivalent:

1. M is Lipschitz on D.

2. iR ◦M is Lipschitz on D.

3. M◦ i−1
R

is Lipschitz on Q ≡ iR(D).

4. iR ◦M ◦ i−1
R

is Lipschitz on Q ≡ iR(D).
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Proof. Since iR is an isometry, it follows that both iR and i−1
R

are Lipschitz. Then,

since the composition of Lipschitz functions is Lipschitz, 1 implies 2, 3 and 4, 2 implies

4, and 3 implies 4. Then, it suffices to show that 4 implies 1.

Suppose that 4 holds and 1 does not. By 4, ∃L > 0 such that

‖iR ◦M ◦ i−1
R

(ã) − iR ◦M ◦ i−1
R

(â)‖∞ ≤ L‖ã− â‖∞, ∀ã, â ∈ Q. (2.51)

Since 1 fails, there exist points (x̃, Z̃, Ỹ) and (x̂, Ẑ, Ŷ) in D such that

d∞

(

M(x̃, Z̃, Ỹ),M(x̂, Ẑ, Ŷ)
)

> Ld∞

(

(x̃, Z̃, Ỹ), (x̂, Ẑ, Ŷ)
)

. (2.52)

By (2.43), this implies that

‖iR ◦M(x̃, Z̃, Ỹ) − iR ◦M(x̂, Ẑ, Ŷ)‖∞ > Ld∞

(

(x̃, Z̃, Ỹ), (x̂, Ẑ, Ŷ)
)

. (2.53)

Now, define ã ≡ iR(x̃, Z̃, Ỹ) and â ≡ iR(x̂, Ẑ, Ŷ). Then this inequality becomes

‖iR ◦M ◦ i−1
R

(ã) − iR ◦M ◦ i−1
R

(â)‖∞ > Ld∞
(

i−1
R

(ã), i−1
R

(â)
)

. (2.54)

Again, (2.43) implies that

‖iR ◦M ◦ i−1
R

(ã) − iR ◦M ◦ i−1
R

(â)‖∞ > L‖iR(i−1
R

(ã)) − iR(i−1
R

(â))‖∞, (2.55)

= L‖ã− â‖∞.

But ã, â ∈ Q, so this contradicts (2.51).

Theorem 2.5.12. Let M : D ⊂ Rk× IRn×MRm → Rl× IRq×MRr. The following

conditions are equivalent:

1. M is locally Lipschitz on D.

2. iR ◦M is locally Lipschitz on D.

3. M◦ i−1
R

is locally Lipschitz on Q ≡ iR(D).
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4. iR ◦M ◦ i−1
R

is locally Lipschitz on Q ≡ iR(D).

Proof. It follows directly from (2.43) that both iR and i−1
R

are Lipschitz. Then, since

the composition of locally Lipschitz functions is locally Lipschitz, 1 implies 2, 3 and

4, 2 implies 4, and 3 implies 4. Then, it suffices to show that 4 implies 1.

Suppose that 4 holds and that M is not locally Lipschitz at (x, Z,Y) ∈ D. Then,

for any η, L > 0, there exist distinct points (x̃, Z̃, Ỹ) and (x̂, Ẑ, Ŷ) in D, both within

η of (x, Z,Y), such that

d∞

(

M(x̃, Z̃, Ỹ),M(x̂, Ẑ, Ŷ)
)

d∞

(

(x̃, Z̃, Ỹ), (x̂, Ẑ, Ŷ)
) > L. (2.56)

In particular, there must exists two sequences of points in D, denoted by (x̃k, Z̃k, Ỹk)
and (x̂k, Ẑk, Ŷk), both converging to (x, Z,Y), such that (x̃k, Z̃k, Ỹk) 6= (x̂k, Ẑk, Ŷk)
for all k ∈ N and

lim sup
k→∞

d∞

(

M(x̃k, Z̃k, Ỹk),M(x̂k, Ẑk, Ŷk)
)

d∞

(

(x̃k, Z̃k, Ỹk), (x̂k, Ẑk, Ŷk)
) = +∞. (2.57)

By (2.43), this implies that

lim sup
k→∞

‖iR ◦M(x̃k, Z̃k, Ỹk) − iR ◦M(x̂k, Ẑk, Ŷk)‖∞
d∞

(

(x̃k, Z̃k, Ỹk), (x̂k, Ẑk, Ŷk)
) = +∞. (2.58)

Now, for every k ∈ N, define ãk ≡ iR(x̃k, Z̃k, Ỹk) and âk ≡ iR(x̂k, Ẑk, Ŷk), so that

lim sup
k→∞

‖iR ◦M ◦ i−1
R

(ãk) − iR ◦M ◦ i−1
R

(âk)‖∞
d∞
(

i−1
R

(ãk), i
−1
R

(âk)
) = +∞. (2.59)

Using (2.43) again, this implies that

lim sup
k→∞

‖iR ◦M ◦ i−1
R

(ãk) − iR ◦M ◦ i−1
R

(âk)‖∞
‖ãk − âk‖∞

= +∞. (2.60)

But for every k ∈ N, ãk, âk ∈ Q. Furthermore, the fact that iR is an isometry implies
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that {ãk} and {âk} converge to a ≡ iR(x, Z,Y). Then, (2.60) contradicts 4.

2.5.3 Piecewise C1 Functions

Definition 4.5.1 in [56] introduces the class of piecewise C1 functions, which is ex-

tended to interval functions here. The formal definition of this class of functions is

not important here. Only the following known facts will be used:

Lemma 2.5.13. Let Ef ⊂ Rn and Eg ⊂ Rm be open.

1. If f ∈ C1(Ef ,Rm), then f is piecewise C1 on Ef .

2. Let f1, f2 : Ef ⊂ Rn → Rm and g : Eg → Rq be piecewise C1 on Ef and Eg,

respectively.

(a) f1 + f2 is piecewise C1 on Ef .

(b) g ◦ f1 is piecewise C1 on the open set Efg ≡ {z ∈ Ef : f1(z) ∈ Eg}.

(c) If m = 1, then f1f2, min(f1, f2) and max(f1, f2) are piecewise C1 on Ef .

3. If f : Ef → Rm is piecewise C1 on Ef , then f is locally Lipschitz on Ef .

4. If f : Ef → Rm is piecewise C1 on Ef , then f is Frechet differentiable everywhere

in Ef except on a subset of Lebesgue measure zero.

Proof. For Conclusions 1 and 2, see p. 92 of [153]. Conclusion 3 is Corollary 4.1.1 in

[153], and Conclusion 4 follows from Theorem 3.1.1 in [56].

The notion of a piecewise C1 function is now extended to interval-valued mappings.

By Theorem 2.5.3, a mapping φ : E ⊂ Rn → IRm is continuous on E if and only

if iR ◦ φ is continuous on E. Then, the following definition is consistent with other

notions of regularity for interval-valued mappings.

Definition 2.5.14. Let E ⊂ Rn be open and let φ : E → IRm. The mapping φ is

called piecewise C1 on E if iR ◦ φ is piecewise C1 on E.
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From the discussion above, it follows that if φ is piecewise C1 on E, then it is

continuous as a mapping from E to IRm. This leads to the following lemma, which

is required for further results to be well-posed.

Lemma 2.5.15. Let φ : E ⊂ Rn → IRm be piecewise C1 on E. If D ⊂ IRm is open,

then

ED ≡ {z ∈ E : φ(z) ∈ D} (2.61)

is open.

Proof. Since φ is piecewise C1 on E, it is continuous on E. Therefore, ED is the

inverse image in E of the open set D under a continuous mapping, and hence it is

open with respect to E. Since E is itself open, ED is open.

The definition of a piecewise C1 interval-valued mapping can now be extended to

mappings from IRm to IRq as follows.

Definition 2.5.16. Let D ⊂ IRm be open and let M : D → IRq. M is called

piecewise C1 on D if, for every piecewise C1 function φ : E ⊂ Rn → IRm, the

mapping

ED ∋ z 7−→M(φ(z)) ∈ IRq (2.62)

is piecewise C1 on the open set ED ≡ {z ∈ E : φ(z) ∈ D}.

As with real-valued functions, a piecewise C1 interval function is locally Lipschitz.

Proving this claim requires the following function, which is important in later chapters

as well.

Definition 2.5.17. Let � : Rn × Rn → IRn be defined by

�(v,w) ≡
[

v − max

(

0,
1

2
(v − w)

)

,w + max

(

0,
1

2
(v − w)

)]

. (2.63)

Interpretation of � is provided by the following lemma. The proof is trivial.
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Lemma 2.5.18. Let v,w ∈ Rn.

1. If v ≤ w, then �(v,w) = [v,w].

2. For every i with vi > wi, �(vi, wi) is the singleton {m([wi, vi])}.

Lemma 2.5.19. � is piecewise C1 on Rn × Rn.

Proof. The result follows from Definition 2.5.17 and Conclusions 1 and 2 of Lemma

2.5.13.

Lemma 2.5.20. Let D ⊂ IRm. If M : D → IRq is piecewise C1 on D, then it is

locally Lipschitz on D.

Proof. Choosing φ = � in Definition 2.5.16, the hypothesis on M implies that the

function iR ◦M ◦ � is piecewise C1 on ED ≡ {(v,w) ∈ Rn × Rn : �(v,w) ∈ D}. By

Conclusion 3 of Lemma 2.5.13, this implies that iR ◦M ◦� is locally Lipschitz on ED.

Recall from Definition 2.5.1 that H(0,n,0) = {(v,w) ∈ R2n : v ≤ w}, and for any

(v,w) ∈ H(0,n,0), i−1
R

(v,w) = [v,w]. Then, the restriction of � to H(0,n,0) is exactly

i−1
R

. This implies that iR ◦M ◦ i−1
R

is locally Lipschitz on Q = {(v,w) ∈ H(0,n,0) :

�(v,w) ∈ D} = {(v,w) ∈ H(0,n,0) : i−1
R

(v,w) ∈ D} = iR(ED). Now Theorem 2.5.12

shows that M is locally Lipschitz on ED.

The composition of piecewise C1 interval functions is again piecewise C1, as shown

by the following lemma.

Lemma 2.5.21. Let D1 ⊂ IRm and D2 ⊂ IRk be open and let M1 : D1 → IRk and

M2 : D2 → IRq be piecewise C1 on D1 and D2, respectively. The set D12 ≡ {Z ∈
D1 : M1(Z) ∈ D2} is open and M2 ◦M1 is piecewise C1 on D12.

Proof. Since M1 is piecewise C1 on D1, it is locally Lipschitz and hence continuous

there. Then, the set D12 is the inverse image in D1 of the open set D2 under a

continuous mapping. Therefore, D12 is open with respect to D1. Since D1 is open in

IRm, so is D12.
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Choose any piecewise C1 mapping φ : E ⊂ Rn → IRm and define ED1
≡ {z ∈ E :

φ(z) ∈ D1}. Now define φ′ : ED1
→ IRk by

φ′(z) = M1(φ(z)), ∀z ∈ ED1
. (2.64)

Since M1 is piecewise C1 on D1, φ
′ is piecewise C1 on ED1

. But since M2 is piecewise

C1 on D2, this implies that

z 7−→ M2(φ
′(z)) = M2(M1(φ(z))) (2.65)

is piecewise C1 on the set

{z ∈ ED1
: φ′(z) ∈ D2} = {z ∈ E : φ(z) ∈ D1 and M1(φ(z)) ∈ D2}, (2.66)

= {z ∈ E : φ(z) ∈ D12}. (2.67)

But φ was chosen arbitrarily, so M2 ◦M1 is piecewise C1 on D12.

Before leaving this section, we introduce the extended intersection of intervals,

which is a useful in later sections, and establish its regularity.

Definition 2.5.22. Let ∩̃ : IRn × IRn → IRn be defined by

∩̃([zL, zU ], [ẑL, ẑU ]) ≡ [mid(zL, zU , ẑL),mid(zL, zU , ẑU)]. (2.68)

Furthermore, define the standard notation Z∩̃Ẑ ≡ ∩̃(Z, Ẑ), ∀Z, Ẑ ∈ IRn.

An interpretation of this function is given by the following lemma.

Lemma 2.5.23. Let Z, Ẑ ∈ IRn.

1. If Z ∩ Ẑ 6= ∅, then Z∩̃Ẑ = Z ∩ Ẑ.

2. For all i such that Zi ∩ Ẑi = ∅, Zi∩̃Ẑi is either {zLi } or {zUi }.

3. Z∩̃Ẑ ⊂ Z.
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The proof of the preceding lemma is straightforward and is omitted.

Lemma 2.5.24. For any Q = [qL,qU ] ∈ IRn, the mapping ∩̃(Q, ·) is an inclusion

monotonic interval extension of mid(qL,qU , ·).

Proof. Let z ∈ Rn. Then, by definition,

∩̃(Q, [z, z]) = [mid(qL,qU , z),mid(qL,qU , z)].

Therefore, ∩̃(Q, ·) is an interval extension of mid(qL,qU , ·). If z1, z2 ∈ Rn and z1 ≤ z2,

then it is obvious that mid(qL,qU , z1) ≤ mid(qL,qU , z2). By the definition of ∩̃(Q, ·),
inclusion monotonicity must follow.

Lemma 2.5.25. ∩̃ is piecewise C1 on IRn × IRn.

Proof. If zL, zU ∈ Rn and zL ≤ zU , it is easily verified that mid(zL, zU , ẑ) is equivalent

to max(zL,min(zU , ẑ)) for all ẑ ∈ Rn. The result now follows from Definition 2.5.22

and Conclusion 2 of Lemma 2.5.13.

2.5.4 Regularity of Factorable Functions

The natural function of a L-computational sequence, and hence any L-factorable

function described by that sequence, inherits some nice properties from the elements

of L.

Theorem 2.5.26. Let (S, πo) be a L-computational sequence with natural function

(fS , DS ,R
m). If u is continuous (resp. locally Lipschitz, Lipschitz, k times continu-

ously differentiable) on B for every (u,B,R) ∈ L, then fS is continuous (resp. locally

Lipschitz, Lipschitz, k times continuously differentiable) on DS. If u is continuous

on B and B is open for every (u,B,R) ∈ L, then DS is open.

Proof. Suppose u is continuous on B and B is open for every (u,B,R) ∈ L. For K =

ni + 1, it is clear that Dk is open and vk is continuous on Dk for all k < K. Suppose

this is true of some arbitraryK ∈ {ni+1, . . . , nf}. Then DK is the inverse image of an

open set under a continuous mapping, and is hence open, and vK is continuous on DK
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by Theorem 4.7 in [145]. Finite induction shows that DS is open and fS is continuous

there. Since Theorem 4.7 in [145] does not require openness, the same argument

shows that fS is continuous on DS if only u is continuous on B for every (u,B,R) ∈ L.

Furthermore, the same argument shows the claims for local Lipschitz continuity and

Lipschitz continuity using well-known composition results (see Theorem 2.5.6), and

for k times continuous differentiability in light of the composition result on p. 199 of

[127].

2.5.5 Regularity of Natural Interval Extensions

In this section, it is shown that natural interval extensions are locally Lipschitz and

piecewise C1 under appropriate assumptions on the elements of L.

Theorem 2.5.27. (+, IR2, IR) and (×, IR2, IR) are piecewise C1 on IR2.

Proof. Let (φ1, φ2) : E ⊂ Rn → IR × IR be piecewise C1 on E, and let F = φ1 + φ2.

Then FL(x) = φL1 (x) + φL2 (x). By Definition 2.5.14, this a sum of two piecewise

C1 functions, and is itself piecewise C1 by Condition 2 of Lemma 2.5.13. Using an

analogous argument for FU , it follows that φ1+φ2 is piecewise C1 on E. Since (φ1, φ2)

was chosen arbitrarily, this implies that (+, IR2, IR) is piecewise C1 on IR2.

Now let F = φ1φ2. Then

FL(x) = min(φL1 (x)φL2 (x), φL1 (x)φU2 (x), φU1 (x)φL2 (x), φU1 (x)φU2 (x)).

Thus, FL is piecewise C1 on E by Condition 2 of Lemma 2.5.13. Using an analogous

argument for FU , it follows that φ1φ2 is piecewise C1 on E. Since (φ1, φ2) was chosen

arbitrarily, this implies that (×, IR2, IR) is piecewise C1 on IR2.

By Theorem 2.5.20, the previous result implies that (+, IR2, IR) and (×, IR2, IR)

are locally Lipschitz on IR2. The next theorem shows that (+, IR2, IR) is in fact

Lipschitz on IR2.

Theorem 2.5.28. (+, IR2, IR) is Lipschitz on IR2.
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Proof. Let fL, fU : H(0,2,0) → R be defined by

[fL(xL, yL, xU , yU), fU(xL, yL, xU , yU)] = [xL, xU ] + [yL, yU ] (2.69)

where H(0,2,0) = {(xL, yL, xU , yU) ∈ R4 : xL ≤ xU , yL ≤ yU}. By Theorem 2.5.11,

it suffices to show that both fL and fU are Lipschitz on H(0,2,0). By definition,

fL(xL, yL, xU , yU) = xL + yL and fU(xL, yL, xU , yU) = xU + yU , so this is clearly

true.

Assumption 2.5.29. For every (u,B,R) ∈ L, the interval extension (u, IB, IR) is

locally Lipschitz on IB.

Theorem 2.5.30. Let (S, πo) be a L-computational sequence. The natural interval

extension (FS ,DS , IR
no) is locally Lipschitz on DS.

Proof. Consider the sequence of inclusion factors {(Vk,Dk, IR)}nf

k=1. Choose any K ∈
{1, . . . , nf} and suppose that (Vk,Dk, IR) is locally Lipschitz on Dk, for all k ∈
{1, . . . , K − 1}. If K ≤ ni + 1, this is obviously true. By Theorem 2.5.27 and

Assumption 2.5.29, (oK , IBK , IR) must be locally Lipschitz on IBK . Then, since

the composition of locally Lipschitz functions is again locally Lipschitz (Theorem

2.5.6), (VK ,DK , IR) is locally Lipschitz on DK . By induction, this holds for every

K ∈ {1, . . . , nf}, and the theorem follows from the definition of (FS ,DS , IR
no).

Corollary 2.5.31. Let f : D ⊂ Rn → Rm be a L-factorable function. Then, every

natural interval extension of f , ([f ],D, IRm) is locally Lipschitz on D.

Of course, obtaining piecewise continuous differentiability of natural interval ex-

tensions requires a stronger assumption on the elements of L. The following lemma

is required to make this assumption well-posed.

Lemma 2.5.32. If D ⊂ Rn is open, then ID is open in IRn.

Proof. If ID is empty, then it is trivially open. Otherwise, choose Z ∈ ID. Then,

Z ⊂ D, and since D is open, ∃ǫ > 0 such that ẑ ∈ D if ‖ẑ − z‖∞ ≤ ǫ and z ∈ Z

(uniformity of ǫ for every z ∈ Z results from the compactness of Z, as per Theorem
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4.6 in [127]). Let Ẑ ∈ IRn satisfy dH(Z, Ẑ) ≤ ǫ. By the definition of dH , this implies

that, for any ẑ ∈ Ẑ, there exists z ∈ Z such that ‖ẑ− z‖∞ ≤ ǫ. But this implies that

Ẑ ⊂ D or, equivalently, Ẑ ∈ ID. Hence, Z is an interior point of ID and, since Z

was chosen arbitrarily, ID is open.

The following assumption is stronger than necessary for most uses of natural

interval extensions in this thesis and will be stated explicitly wherever it is needed.

Assumption 2.5.33. For every (u,B,R) ∈ L, B is open and the interval extension

(u, IB, IR) is piecewise C1 on IB.

Theorem 2.5.34. Let (S, πo) be a L-computational sequence with natural interval

extension (FS ,DS , IR
no). If Assumption 2.5.33 holds, then DS is open and FS is

piecewise C1 on DS .

Proof. Consider the sequence of inclusion factors {(Vk,Dk, IR)}nf

k=1. Choose any

K ∈ {1, . . . , nf} and suppose that Dk is open and Vk is piecewise C1 on Dk, for

all k ∈ {1, . . . , K − 1}. If K ≤ ni + 1, this is obviously true. Since BK is open, IBK

is open by Lemma 2.5.32. Then DK is the inverse image of an open set under a con-

tinuous mapping, and is therefore open. By Theorem 2.5.27 and Assumption 2.5.33,

(oK , IBK , IR) must be piecewise C1 on IBK . Then, since the composition of piecewise

C1 functions is again piecewise C1 by Conclusion 2 of Lemma 2.5.13, (VK ,DK , IR)

is piecewise C1 on DK . By induction, this holds for every K ∈ {1, . . . , nf}, and the

theorem follows from the definition of (FS ,DS , IR
no).

Corollary 2.5.35. Let f : D ⊂ Rn → Rm be a L-factorable function. For every

natural interval extension ([f ],D, IRm) of f satisfying Assumption 2.5.33, D is open

and [f ] is piecewise C1 on D.

Remark 2.5.36.

1. It is clear from the proof of Theorem 2.5.30 that natural interval extensions

remain continuous if the local Lipschitz condition on the univariate interval

extensions in Assumption 2.5.29 is replaced with a continuity assumption.
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2. The conclusion in Theorem 2.5.34 that DS is open does not require that the uni-

variate interval extensions are piecewise C1, as in Assumption 2.5.33. An anal-

ogous proof shows that this conclusion holds if only IB is open and (u, IB, IR)

is continuous on IB for every (u,B,R) ∈ L.

2.5.6 Regularity of Natural McCormick Extensions

In this section, it is shown that natural McCormick extensions are locally Lipschitz

under appropriate assumptions on the elements of L.

Theorem 2.5.37. (Cut,MR,MR) is Lipschitz on MR.

Proof. Let fL, fU , f cv, f cc : H(0,0,1) → R be defined by

([fL(xL, xU , xcv, xcc), fU(xL, xU , xcv, xcc)], (2.70)

[f cv(xL, xU , xcv, xcc), f cc(xL, xU , xcv, xcc)]) = Cut(([xL, xU ], [xcv, xcc])),

where

H(0,0,1) = {(xL, xU , xcv, xcc) ∈ R4 : (2.71)

xL ≤ xU , xcv ≤ xcc, [xL, xU ] ∩ [xcv, xcc] 6= ∅}.

By Theorem 2.5.11, it suffices to show that fL, fU , f cv and f cc are Lipschitz on

H(0,0,1). For fL(xL, xU , xcv, xcc) = xL and fU(xL, xU , xcv, xcc) = xU , this is obvious.

For f cv(xL, xU , xcv, xcc) = max(xL, xcv) and f cc(xL, xU , xcv, xcc) = min(xU , xcc), it

follows from the fact that min and max are Lipschitz on R2.

Theorem 2.5.38. (+,MR2,MR) is Lipschitz on MR2 and (×,MR2,MR) is locally

Lipschitz on MR2.

Proof. Let fL, fU , f cv, f cc : H(0,0,2) → R be defined by (omitting arguments)

([fL, fU ], [f cv, f cc]) = ([xL, xU ], [xcv, xcc]) + ([yL, yU ], [ycv, ycc]), (2.72)
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where

H(0,0,2) = {(xL, yL, xU , yU , xcv, ycv, xcc, ycc) ∈ R8 : (2.73)

xL ≤ xU , yL ≤ yU , xcv ≤ xcc, ycv ≤ ycc,

[xL, xU ] ∩ [xcv, xcc] 6= ∅, [yL, yU ] ∩ [ycv, ycc] 6= ∅}.

By Theorem 2.5.11, the claim for (+,MR2,MR) holds provided that fL, fU , f cv

and f cc are Lipschitz on H(0,0,2). By Theorem 2.5.27, this is true of fL and fU . By

definition (again omitting arguments),

f cv = max(xL, xcv) + max(yL, ycv) and f cc = min(xU , xcc) + min(yU , ycc). (2.74)

From this it is clear that f cv and f cc are Lipschitz on H(0,0,2) because min and max

are Lipschitz on R2.

Now let fL, fU , f cv, f cc : H(0,0,2) → R be defined by (omitting arguments)

([fL, fU ], [f cv, f cc]) = ([xL, xU ], [xcv, xcc]) × ([yL, yU ], [ycv, ycc]). (2.75)

By Theorem 2.5.12, the claim for (×,MR2,MR) holds provided that fL, fU , f cv and

f cc are locally Lipschitz on H(0,2,0). By Theorem 2.5.27, this is true of fL and fU .

The upper and lower bounds of the intervals X̄C and Ȳ C defined in Definition 2.4.21

vary in a Lipschitz manner on H(0,0,2) by Theorem 2.5.37. Then, by composition, it

suffices to show that the expressions

max
(

[

yLX̄C + xLȲ C − xLyL
]L
,
[

yUX̄C + xU Ȳ C − xUyU
]L
)

, (2.76)

min
(

[

yLX̄C + xU Ȳ C − yLxU
]U
,
[

yUX̄C + xLȲ C − yUxL
]U
)

, (2.77)

are locally Lipschitz with respect to the bounds of XB, Y B, X̄C and Ȳ C . But this

is apparent from Theorem 2.5.27 and the fact that min and max are Lipschitz on

R2.

Assumption 2.5.39. For every function (u,B,R) ∈ L, the McCormick extension
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(u,MB,MR) is locally Lipschitz on MB.

Theorem 2.5.40. Let (S, πo) be a L-computational sequence. The natural Mc-

Cormick extension (FS ,DS ,MRno) is locally Lipschitz on DS .

Proof. Consider the sequence of relaxation factors {(Vk,Dk,MR)}nf

k=1. Choose any

K ∈ {1, . . . , nf} and suppose that (Vk,Dk,MR) is locally Lipschitz on Dk, for all

k ∈ {1, . . . , K − 1}. If K ≤ ni + 1, this is obviously true. By Theorem 2.5.38 and

Assumption 2.5.39, (oK ,MBK ,MR) is locally Lipschitz on MBK . Since the composi-

tion of locally Lipschitz functions is locally Lipschitz (Theorem 2.5.6), (VK ,DK ,MR)

is locally Lipschitz on DK . By induction, this holds for every K ∈ {1, . . . , nf}, and

the theorem follows immediately from the definition of (FS ,DS , IR
no).

Corollary 2.5.41. Let f : D ⊂ Rn → Rm be a L-factorable function. Then, every

natural McCormick extension ({f},D,MRm) is locally Lipschitz on D.

Remark 2.5.42. As was the case for natural interval extensions, it is clear from the

proof of Theorem 2.5.40 that continuity of natural McCormick extensions is achieved

if only continuity of the univariate McCormick extensions is assumed in place of the

local Lipschitz condition of Assumption 2.5.39.

To conclude this section, we collect some results that are useful for establishing a

Lipschitz condition for {f} on certain subsets of DS .

Corollary 2.5.43. Let f : D ⊂ Rn → Rm be L-factorable and let {f} : D ⊂ MRn →
MRm be a natural McCormick extension of f . The function iR ◦ {f} ◦ i−1

R
is Lipschitz

on any compact K ⊂ iR(D).

Proof. Since K ⊂ iR(D), iR◦{f}◦i−1
R

is locally Lipschitz onK by Corollary 2.5.41 and

Theorem 2.5.12. Since K is compact, {f} is Lipschitz on K by Theorem 2.5.7.

Lemma 2.5.44. Let f : D ⊂ Rn → Rm be L-factorable and let {f} : D ⊂ MRn →
MRm be a natural McCormick extension of f . If X0 is represented in D, then the

set K ≡ {(xL,xU ,xcv,xcc) ∈ H(0,0,n) : [xL,xU ] ⊂ X0, i−1
R

(xL,xU ,xcv,xcc) ∈ D} is a

compact subset of iR(D).
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Proof. By Lemma 2.4.33, every X ⊂ X0 is represented in D. Moreover, D is closed

under coherence by definition. It follows that K = {(xL,xU ,xcv,xcc) ∈ H(0,0,n) :

[xL,xU ] ⊂ X0}. Since H(0,0,n) is closed, this set is clearly compact.

2.6 Standard McCormick Relaxations

In this section, standard McCormick relaxations [118] are defined in terms of natural

McCormick extensions of L-factorable functions. Though this presentation is not

standard, the resulting relaxations are the same as those defined in McCormick’s

original work, with the caveat that the McCormick addition and multiplication rules

are modified, as discussed in §2.4.2. However, using the results for natural McCormick

extensions in 2.5.6, some new regularity and convergence results for McCormick’s

relaxations are proven here.

Definition 2.6.1. Let f : D ⊂ Rn → Rm be L-factorable and let {f} : D ⊂ MRn →
MRm be a natural McCormick extension of f . For any X ∈ ID that is represented in

D, define U ,O : X → Rm by

U(x) = {f}cv((X, [x,x])) and O(x) = {f}cc((X, [x,x])). (2.78)

The functions U and O are called standard McCormick relaxations of f on X.

By Lemma 2.4.11, it follows immediately that U and O are convex and concave

relaxations of f on X, respectively.

Corollary 2.6.2. Let f : D ⊂ Rn → Rm be L-factorable and let U ,O : X → Rm be

standard McCormick relaxations of f on X. U and O are Lipschitz on X.

Proof. Let ({f},DS,MRm) be the natural McCormick relaxation of f defining U and

O, and let K be defined as in Lemma 2.5.44 with X0 ≡ X. By Corollary 2.5.43,

{f}cv ◦ i−1
R

and {f}cc ◦ i−1
R

are Lipschitz on K. But for every x ∈ X, (xL,xU ,x,x) is

in K, and it follows that U and O are Lipschitz on X.
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2.6.1 McCormick Relaxations on Sequences of Intervals

A primary motivation for constructing convex and concave relaxations is for their use

in branch-and bound global optimization algorithms [84, 171]. There, convex and

concave relaxations are used to obtain lower and/or upper bounds on the range of a

nonconvex function on an interval X. These bounds are then successively refined by

partitioning the interval into a number of subintervals and constructing convex and

concave relaxations valid on each of these subintervals. In such applications, it is im-

portant to understand the relationship between relaxations generated on a nested and

convergent sequence of subintervals of X. From these relationships, one can infer the

limiting behavior of the relaxations when the partition of X is refined infinitely, which

has important consequences for the convergence of global optimization algorithms.

Let f : D ⊂ Rn → Rm, let {f} : D ⊂ MRn → MRm be a natural McCormick

extension of f , and let X0 ∈ IRn be represented in D. In this section, standard

McCormick relaxations of f on subintervals of X0 are investigated. The superscript

ℓ is used to index subintervals Xℓ ⊂ X0, and also relaxations valid on subintervals

of X; i.e. U ℓ and Oℓ denote the McCormick relaxations of f constructed as in Def-

inition 2.6.1 with Xℓ in place of X. We consider a nested and convergent sequence

of subintervals, {Xℓ} → X∗, where X∗ is by necessity a subinterval of X0. The aim

of this analysis is to prove that a branch-and-bound global optimization algorithm

with a bounding operation based on McCormick convex and/or concave relaxations

converges to within a specified tolerance finitely. The reader is referred to Chapter IV

in [84] for a detailed discussion of the convergence of branch-and-bound algorithms

and the requisite properties of bounding operations (see Definition IV.4 and Theorem

IV.3). Here, we claim that the following properties of convex and concave relaxations

are sufficient for this application.

Definition 2.6.3 (Partition monotonic). A procedure which, given any subinterval

Xℓ ⊂ X0, generates convex and concave relaxations of f on Xℓ, respectively U ℓ and

Oℓ, is partition monotonic if, for any subintervals X2 ⊂ X1 ⊂ X, U2(x) ≥ U1(x) and

O2(x) ≤ O1(x), ∀x ∈ X2.
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Definition 2.6.4 (Partition convergent, degenerate perfect). A procedure as in Def-

inition 2.6.3 is partition convergent if, for any nested and convergent sequence of

subintervals of X0, {Xℓ} → X∗, the sequences {U ℓ} and {Oℓ} converge to U∗ and

O∗ uniformly on X∗, where U∗ and O∗ denote the relaxations generated on X∗. A

procedure is degenerate perfect if the condition X∗ = [x,x] for any x ∈ X0 implies

that U∗(x) = f(x) = O∗(x).

Below, it is shown that standard McCormick relaxations are partition monotonic,

partition convergent and degenerate perfect.

Theorem 2.6.5. Standard McCormick relaxations are partition monotonic.

Proof. Choose any subintervals X2 ⊂ X1 ⊂ X0 and any x ∈ X2. Let X 1 =

(X1, [x,x]) and X 2 = (X2, [x,x]). Then, X 2 ⊂ X 1. Since X0 is represented in

D, so are X1 and X2 (Lemma 2.4.33). Then, X 1,X 2 ∈ D. By Theorem 2.4.32,

{f} is inclusion monotonic on D, which implies that {f}(X 2) ⊂ {f}(X 1). From this,

U2(x) = {f}cv(X 2) ≥ {f}cv(X 1) = U1(x) and O2(x) = {f}cc(X 2) ≤ {f}cc(X 1) =

O1(x).

Theorem 2.6.6. Standard McCormick relaxations are degenerate perfect.

Proof. Choose any x ∈ X0. By Theorem 2.4.32, {f} is a McCormick extension of f ,

so that ([x,x], [x,x]) ∈ D and {f}([x,x], [x,x]) = ([f(x), f(x)], [f(x), f(x)]). It follows

that U∗(x) = f(x) = O∗(x).

Lemma 2.6.7. Choose any two subintervals of X0 with nonempty intersection, X1

and X2. Given any ǫ > 0, there exists δ > 0 independent of x such that |U1(x) −
U2(x)| ≤ ǫ and |O1(x)−O2(x)| ≤ ǫ, for all x ∈ X1 ∩X2, provided that max(||xL,1 −
xL,2||∞, ||xU,1 − xU,2||∞) ≤ δ.

Proof. By Theorem 2.5.40, {f} is locally Lipschitz on D. It follows that {f} is

uniformly continuous on D. Then, for any ǫ > 0, there exists δ > 0 such that

dM({f}(X 1), {f}(X 2)) ≤ ǫ for every X 1,X 2 ∈ D with dM(X 1,X 2) ≤ δ. For any x ∈
X1∩X2, choosing X1 = (X1, [x,x]) and X2 = (X2, [x,x]) gives ‖U1(x)−U2(x)‖∞ ≤ ǫ
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and ‖O1(x) − O2(x)‖∞ ≤ ǫ, provided that max(||xL,1 − xL,2||∞, ||xU,1 − xU,2||∞) ≤
δ.

Theorem 2.6.8. Standard McCormick relaxations are partition convergent.

Proof. Choose any nested and convergent sequence of subintervals ofX0, {Xℓ} → X∗.

Given any ǫ > 0, Lemma 2.6.7 provides δ such that |U ℓ(x)−U∗(x)| ≤ ǫ for all x ∈ X∗,

provided that max(||xL,ℓ−xL,∗||∞, ||xU,ℓ−xU,∗||∞) ≤ δ. By the convergence of {Xℓ},
this condition must be satisfied for every ℓ greater than some N , which implies that

{U ℓ} → U∗ uniformly on X∗. The exact same proof applies to {Oℓ}.

Remark 2.6.9. Partition convergence was not addressed in McCormick’s original

work [118] and is in fact stronger than what is necessary to ensure the convergence

of spatial branch-and-bound algorithms using standard McCormick relaxations [84].

2.7 Generalized McCormick Relaxations

In this section, the concept of a generalized McCormick relaxation is introduced.

Given a function f : D ⊂ Rn → Rm, the standard McCormick relaxations essentially

take an interval X and a point x ∈ X, and return values of convex and concave

relaxations of f on X, evaluated at x. In the development so far, this has been

represented by initializing the McCormick evaluation of the computational sequence

describing f with an element of MRn of the form (X, [x,x]). Within this context,

the key observation behind generalized McCormick relaxations is that this is not

the only useful initialization. Of course, the idea that we may evaluate a natural

McCormick extension beginning from any element of MRn is no surprise; it is the

definition. What is perhaps more surprising is that, in some particular cases, very

useful interpretations can be attached to these alternate initializations. This section

details two simple applications, and others will appear in later chapters when the task

of relaxing the solutions of dynamic systems is taken up. Of the two topics below,

the notion of composite relaxations is the essential contribution.
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Definition 2.7.1. Define MC : R4n → MRn be defined by

MC(xL,xU ,xcv,xcc) ≡ (�(xL,xU),�(xL,xU)∩̃�(xcv,xcc)). (2.79)

Definition 2.7.2. Let (S, πo) be a L-computational sequence with natural function

(fS , DS ,Rm) and natural McCormick extension (FS ,DS ,MRno). Define

Φ̃S ≡ {(xL,xU ,xcv,xcc) ∈ R4ni : [xL,xU ] ∈ IDS is represented in DS}. (2.80)

Define the functions Ũ , Õ : Φ̃ → Rn by

Ũ(xL,xU ,xcv,xcc) = F cv
S (MC(xL,xU ,xcv,xcc)), (2.81)

Õ(xL,xU ,xcv,xcc) = F cc
S (MC(xL,xU ,xcv,xcc)). (2.82)

The functions Ũ and Õ are called the generalized McCormick relaxations of (S, πo).

Before considering specific applications in Sections 2.7.1 and 2.7.2, we collect the

fundamental properties of generalized McCormick relaxations below.

Lemma 2.7.3. Let (S, πo) be a L-computational sequence with the natural function

(fS , DS ,Rno) and natural McCormick extension (FS ,DS,MRno). Let X = [xL,xU ] ⊂
IDS be represented in DS and let xcv,xcc ∈ Rni satisfy xcv ≤ xcc. Then

Ũ(xL,xU ,xcv,xcc) ≤ fS(x) ≤ Õ(xL,xU ,xcv,xcc), ∀x ∈ X ∩ [xcv,xcc].

Proof. Let X ≡ MC(xL,xU ,xcv,xcc) = (X,X∩̃[xcv,xcc]). If X ∩ [xcv,xcc] is empty,

then the conclusion trivially holds. Assuming otherwise, it follows that

X ∩ [xcv,xcc] = X∩̃[xcv,xcc] (2.83)

= [mid(xL,xU ,xcv),mid(xL,xU ,xcc)] (2.84)

= [max(xL,xcv),min(xU ,xcc)], (2.85)

Choosing any x ∈ X ∩ [xcv,xcc], it follows that x ∈ Enc(X ). By Theorem 2.4.32,
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FS is a natural McCormick extension of fS , and is inclusion monotonic on DS . Since

X ∈ IDS is represented in DS, it follows that X ∈ DS ∩ MDS . Then, since x ∈
Enc(X ), Theorem 2.4.14 implies that fS(x) ∈ Enc(FS(X )), which gives the desired

inequalities.

Lemma 2.7.4. Let (S, πo) be a L-computational sequence with the natural func-

tion (fS , DS ,R
no) and the natural McCormick extension (FS ,DS,MRno). Let X =

[xL,xU ] ⊂ IDS be represented in DS . Let xcvi ,x
cc
i ∈ Rni, i ∈ {1, 2, 3}, satisfy xcvi ≤ xcci

and X ∩ [xcvi ,x
cc
i ] 6= ∅, ∀i ∈ {1, 2, 3}. Choose any λ ∈ [0, 1] and suppose that

xcv3 ≤ λxcv1 + (1 − λ)xcv1 and xcc3 ≥ λxcc1 + (1 − λ)xcc1 . (2.86)

Then

Ũ(xL,xU ,xcv3 ,x
cc
3 ) ≤ λŨ(xL,xU ,xcv1 ,x

cc
1 ) + (1 − λ)Ũ(xL,xU ,xcv2 ,x

cc
2 ), (2.87)

Õ(xL,xU ,xcv3 ,x
cc
3 ) ≥ λÕ(xL,xU ,xcv1 ,x

cc
1 ) + (1 − λ)Õ(xL,xU ,xcv2 ,x

cc
2 ). (2.88)

Proof. Define x̄cvi = mid(xL,xU ,xcvi ) and x̄cci = mid(xL,xU ,xcci ), ∀i ∈ {1, 2, 3}. Un-

der the given hypotheses,

X∩̃[xcvi ,x
cc
i ] = [x̄cvi , x̄

cc
i ] = [max(xL,xcvi ),min(xU ,xcci )], ∀i ∈ {1, 2, 3}. (2.89)

From (2.86) and the fact that max(xL, ·) and min(xU , ·) are monotonic and, respec-

tively, convex and concave on R, it follows that

x̄cv3 ≤ λx̄cv1 + (1 − λ)x̄cv1 and x̄cc3 ≥ λx̄cc1 + (1 − λ)x̄cc1 . (2.90)

Defining Xi = MC(xLi ,x
U
i ,x

cv
i ,x

cc
i ) for all i ∈ {1, 2, 3}, this further implies that

X3 ⊃ Conv(λ,X1,X2). By Theorem 2.4.32, FS is inclusion monotonic and coherently

concave on DS. Then,

FS(X3) ⊃ FS(Conv(λ,X1,X2)) ⊃ Conv(λ,FS(X1),FS(X2)). (2.91)
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But this implies (2.88) and (2.87).

Theorem 2.7.5. Let (S, πo) be a L-computational sequence with the natural function

(fS , DS ,Rno) and the natural McCormick extension (FS ,DS,MRno). Let P ⊂ Rnp be

convex, let X = [xL,xU ] ⊂ IDS , and let x,xc,xC : P → Rni be such that x(P ) ⊂ X

and xc and xC are, respectively, convex and concave relaxations of x on P . If X is

represented in DS, then the functions O,U : P → Rno defined by

U(p) = Ũ(xL,xU ,xcv(p),xcc(p)), (2.92)

O(p) = Õ(xL,xU ,xcv(p),xcc(p)), (2.93)

are convex and concave relaxations of fS ◦ x on P , respectively.

Proof. From the hypotheses, x(p) ∈ X∩[xcv(p),xcc(p)] and xcv(p) ≤ xcc(p), ∀p ∈ P .

Using the hypotheses on X, Lemma 2.7.3 gives

Ũ(xL,xU ,xcv(p),xcc(p)) ≤ fS(x(p)) ≤ Õ(xL,xU ,xcv(p),xcc(p)), ∀p ∈ P.

Since xcv and xcc are,respectively, convex and concave, convexity and concavity

of Ũ(xL,xU ,xcv(·),xcc(·)) and Õ(xL,xU ,xcv(·),xcc(·)) follows from Lemma 2.7.4.

The following regularity result is a consequence of Theorem 2.5.40.

Corollary 2.7.6. Let (S, πo) be a L-computational sequence. The generalized Mc-

Cormick relaxations of (S, πo) are locally Lipschitz on Φ̃S .

Proof. By Lemmas 2.5.19 and 2.5.25, it is clear that MC is locally Lipschitz on R4ni .

For any (xL,xU ,xcv,xcc) ∈ Φ̃S , [xL,xU ] is represented in DS . It follows that MC

maps Φ̃S into DS . By Theorem 2.5.6, the composition FS ◦ MC must also be locally

Lipschitz on Φ̃S . By the definition of the generalized McCormick relaxations, this

establishes the result.

The following corollary now follows immediately from Theorem 2.5.7.
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Corollary 2.7.7. Let (S, πo) be a L-computational sequence. The generalized Mc-

Cormick relaxations of (S, πo) are Lipschitz on any compact subset of Φ̃S .

Corollary 2.7.8. Let (S, πo) be a L-computational sequence. Let KB ⊂ R2n be

compact and let

K ≡ {(xL,xU ,xcv,xcc) ∈ Φ̃S : (xL,xU) ∈ KB}.

Then the generalized McCormick relaxations of (S, πo) are Lipschitz on K.

Proof. Let (xL,xU ,xcv,xcc) ∈ K. By definition xL ≤ xU and hence MC(xL,xU ,xcv,xcc) =

([xL,xU ], [x̂cv, x̂cc]) for some x̂cv, x̂cc ∈ Rn. By the definition of MC, it follows that

x̂cv ≤ x̂cc and [x̂cv, x̂cc] ⊂ [xL,xU ]. But for any such values, the definition of MC

further shows that MC(xL,xU , x̂cv, x̂cc) = ([xL,xU ], [x̂cv, x̂cc]). From this, it follows

that, for any (xL,xU ,xcv,xcc) ∈ K,

MC ◦ iR ◦ MC(xL,xU ,xcv,xcc) = MC(xL,xU ,xcv,xcc). (2.94)

Then,

FS ◦ MC ◦ iR ◦ MC(xL,xU ,xcv,xcc) = FS ◦ MC(xL,xU ,xcv,xcc), (2.95)

and hence it suffice to show that FS ◦ MC is Lipschitz on

KMC ≡ {iR ◦ MC(xL,xU ,xcv,xcc) : (xL,xU ,xcv,xcc) ∈ K} (2.96)

But

KMC ⊂ {(xL,xU ,xcv,xcc) ∈ Φ̃S : (xL,xU) ∈ KB, xcv,xcc ∈ [xL,xU ]}, (2.97)

and this latter set is closed and bounded and hence compact. Then FS ◦ MC is

Lipschitz on KMC by Corollary 2.7.7.
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2.7.1 Partial Relaxations

For some applications, it is desirable to relax a function with respect to only some of

its arguments. Such relaxations are defined as follows.

Definition 2.7.9. Let S ⊂ Rns, D ⊂ Rny and suppose that f : S × D → Rm. For

any convex Y ⊂ D, two functions U ,O : S×Y → Rm are called partial relaxations of

f on S × Y if, for every s ∈ S, U(s, ·) and O(s, ·) are convex and concave relaxations

of f(s, ·) on Y , respectively.

When f is L-factorable and Y is an interval, partial relaxations can be readily

obtained from a natural McCormick extension.

Theorem 2.7.10. Let S ⊂ Rns, D ⊂ Rny and suppose that f : S × D → Rm is

L-factorable. Let {f} : D → MRm be a natural McCormick extension of f . For any

Y = [yL,yU ] ∈ ID such that [s, s] × Y is represented in D for every s ∈ S, the

functions O,U : S × Y → Rm defined by

U(s,y) ≡ Ũ(s,yL, s,yU , s,y, s,y) = {f}cv(([s, s], [s, s]), (Y, [y,y])), (2.98)

O(s,y) ≡ Õ(s,yL, s,yU , s,y, s,y) = {f}cc(([s, s], [s, s]), (Y, [y,y])), (2.99)

are partial relaxations of f on S × Y .

Proof. The result follows directly from Theorem 2.7.5. In particular, fix any ŝ ∈ S

and consider the definitions P = [ŝ, ŝ] × Y , X = [ŝ, ŝ] × Y and x(s,y) = xcv(s,y) =

xcc(s,y) = (s,y), ∀(s,y) ∈ [ŝ, ŝ] × Y .

Corollary 2.7.11. Define U ,O : S × Y → Rm as in Theorem 2.7.10. Then U and

O are Lipschitz on S ×X.

Proof. Let ({f},D,MRm) be the natural McCormick relaxation of f defining Ũ and

Õ, and let

K ≡ {(sL,yL, sU ,yU , scv,ycv, scc,ycc) ∈ R4(ns+ny) : (2.100)

sL = sU = scv = scc ∈ S, ycv,ycc ∈ [yL,yU ] ⊂ Y }.
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K is clearly compact, and it is a subset of Φ̃ by the assumption that [s, s] × Y is

represented in D for every s ∈ S. Then, by Corollary 2.7.7, Ũ and Õ are Lipschitz on

K. But for every (s,y) ∈ S × Y , (s,yL, s,yU , s,y, s,y) is in K, and it follows that U
and O are Lipschitz on S × Y .

The key result above is the Lipschitz dependence on S. Since changing s requires

changing the bounds sL and sU in the standard relaxation, this result cannot be

proven directly by the continuity result in the standard framework.

2.7.2 Composite Relaxations

In this section, we demonstrate the use of generalized McCormick relaxations to

compute convex and concave relaxations of composite functions. This method is

used extensively to derive relaxations for the solutions of dynamic systems in later

chapters.

Definition 2.7.12. Let P ⊂ Rnp be convex, D ⊂ Rny and f : P × D → Rm.

For any set Y ⊂ D, functions uf , of : P × Rny × Rny → R are called convex and

concave composite relaxations of f on P ×Y if the following condition holds: For any

y,yc,yC : P → Rny with y(P ) ⊂ Y , convex and concave relaxations of the composite

function

P ∋ p 7−→ g(p) ≡ f(p,y(p)) (2.101)

on P are given by the composite mappings

P ∋ p 7−→ gcv(p) ≡ uf (p,y
c(p),yC(p)) (2.102)

P ∋ p 7−→ gcc(p) ≡ of (p,y
c(p),yC(p))

provided that yc and yC are, respectively, convex and concave relaxations of y on P .

When f is L-factorable and P and Y are intervals, composite relaxations can be

readily obtained from a natural McCormick extension as follows.
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Theorem 2.7.13. Let P ∈ IRnp and D ⊂ Rny . Suppose that f : P × D → Rm is

L-factorable and let {f} : D → MRm be a natural McCormick extension of f . For any

Y ∈ ID such that P×Y is represented in D, the functions uf , of : P×Rny×Rny → Rm

defined by

uf (p, z
cv, zcc) ≡ Ũ(pL,yL,pU ,yU ,p, zcv,p, zcc), (2.103)

= {f}cv((P, [p,p]),MC(yL,yU , zcv, zcc)),

of (p, z
cv, zcc) ≡ Õ(pL,yL,pU ,yU ,p, zcv,p, zcc),

= {f}cc((P, [p,p]),MC(yL,yU , zcv, zcc)),

are composite relaxations of f on P × Y .

Proof. Let y,ycv,ycc : P → Rny be such that y(P ) ⊂ Y and ycv and ycc are, respec-

tively, convex and concave relaxations of y on P . Then, the result follows directly

from Theorem 2.7.5 with the definitions P = P , X = P × Y , x(p) = (p,y(p)),

xcv(p) = (p,ycv(p)) and xcc(p) = (p,ycc(p)).

As with standard McCormick relaxations, it can be shown that generating re-

laxations of the composite function g in (2.101) via Theorem 2.7.13 is a partition

monotonic, partition convergent and degenerate perfect procedure, provided that the

relaxations ycv and ycc are generated by a partition monotonic, partition convergent

and degenerate perfect procedure. Let P ∈ IRnp , D ⊂ Rny , f : P × D → Rm and

y : P → D, and define g : P → Rm as in (2.101). Let {f} : D → MRm be a natural

McCormick extension of f , and let Y ∈ ID be such that P × Y is represented in D.

Now, consider a nested and convergent sequence of subintervals of P , {P ℓ} → P ∗.

The following assumption is required.

Assumption 2.7.14. For any subinterval P ℓ ⊂ P , valid bounds for y on P ℓ, Y ℓ =

[yL,ℓ,yU,ℓ], are available. Moreover, for any nested and convergent sequence of subin-

tervals of P , {P ℓ} → P ∗,

1. Y ℓ+1 ⊂ Y ℓ ⊂ Y , for any ℓ ∈ N,
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2. {Y ℓ} → Y ∗, and

3. P ∗ = [p,p] for some p ∈ P implies that Y ∗ = [y(p),y(p)].

For any P ℓ (P ∗), it is now sensible to define the functions gcv,ℓ and gcc,ℓ (gcv,∗ and

gcc,∗) as in (2.102) and (2.103) with P ℓ and Y ℓ (P ∗ and Y ∗) in place of P and Y .

Theorem 2.7.15. Suppose that, given any interval P ℓ ⊂ P , convex and concave

relaxations of y on P ℓ, ycv,ℓ and ycc,ℓ, respectively, are available through a procedure

which is partition monotonic. Then generating convex and concave relaxations of g

on P ℓ by (2.102) and (2.103) is a partition monotonic procedure.

Proof. Choose any subintervals P 2 ⊂ P 1 ⊂ P and any p ∈ P 2. For ℓ ∈ {1, 2}, define

Pℓ = (P ℓ, [p,p]), Yℓ = MC(yL,ℓ,yL,ℓ,ycv,ℓ(p),ycc,ℓ(p)).

Clearly, P2 ⊂ P1. By Condition 1 of Assumption 2.7.14, Y 2 ⊂ Y 1. Furthermore, since

ycv,ℓ and ycc,ℓ are generated by a partition monotonic procedure, ycv,2(p) ≥ ycv,1(p)

and ycc,2(p) ≤ ycc,1(p). Then, it is not difficult to see that Y2 ⊂ Y1.

Since P × Y is represented in D, so are P 1 × Y 1 and P 1 × Y 2 (Lemma 2.4.33).

Then, (P1,Y1), (P2,Y2) ∈ D. By Theorem 2.4.32, {f} is inclusion monotonic on D,

which implies that {f}(P2,Y2) ⊂ {f}(P1,Y1). From this, gcv,2(p) = {f}cv(P2,Y2) ≥
{f}cv(P1,Y1) = gcv,1(p) and gcc,2(p) = {f}cc(P2,Y2) ≤ {f}cc(P1,Y1) = gcc,1(p).

Theorem 2.7.16. Suppose that, given any interval Y ℓ ⊂ Y , convex and concave

relaxations of y on Y ℓ, yc,ℓ and yC,ℓ, respectively, are available through a procedure

which is partition convergent and degenerate perfect. Then generating convex and

concave relaxations of g on P ℓ by (2.102) and (2.103) is a partition convergent and

degenerate perfect procedure.

Proof. Consider any nested and convergent sequence of subintervals of P , {P ℓ} → P ∗.

Choose any p ∈ P ∗ and, for each ℓ ∈ N (and ℓ = ∗), let Pℓ = (P ℓ, [p,p]) and

Yℓ = MC(yL,ℓ,yU,ℓ,ycv,ℓ(p),ycc,ℓ(p)). By the assumption that P × Y is represented

in D, it follows that (Pℓ,Yℓ) ∈ D for every ℓ ∈ N. Now, for each p ∈ P ∗, the
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sequence {(Pℓ,Yℓ)} must converge to (P∗,Y∗) by the convergence of the sequences

{P ℓ}, {Y ℓ}, {ycc,ℓ(p)} and {ycc,ℓ(p)}. Given any δ > 0, each of these sequences has

some integer N above which every element deviates from its limit by less than δ in

the appropriate norm. Further, these integers can be chosen independently of the

point p ∈ P ∗ because {ycv,ℓ} and {ycc,ℓ} are assumed to converge uniformly on P ∗.

Taking the largest of these integers, this implies that, given any δ > 0, it is possible to

find an integer N for which dM((Pℓ,Yℓ), (P∗,Y∗)) < δ for all ℓ ≥ N and all p ∈ P ∗.

Now, by the uniform continuity of {f} on D, this implies that, given any ǫ > 0, there

exists δ such that dM({f}(Pℓ,Yℓ), {f}(P∗,Y∗)) < ǫ if dM((Pℓ,Yℓ), (P∗,Y∗)) < δ,

regardless of p ∈ P ∗. But this condition must be satisfied for large enough ℓ. Then,

for any ǫ > 0, there exists ℓ ∈ N large enough that ‖gcv,ℓ(p) − gcv,∗(p)‖∞ < ǫ and

‖gcc,ℓ(p) − gcc,∗(p)‖∞ < ǫ, for all p ∈ P , which is the desired result.

Now, if P ∗ = [p,p] for some p ∈ P , Condition 3 of Assumption 2.7.14 ensures that

Y ∗ = [y(p),y(p)]. Then, P∗ = ([p,p], [p,p]) and Y∗ = ([y(p),y(p)], [y(p),y(p)]),

and the conclusion follows from the fact that {f} is a McCormick extension of f .

2.8 Univariate Interval and McCormick Extensions

In order to derive natural interval and McCormick extensions, it was necessary to

assume that interval extensions and convex and concave relaxations are available

for the univariate functions in L (Assumptions 2.3.8 and 2.4.25). In this section,

this information is compiled for many of the most common univariate functions.

Univariate functions not listed here can certainly be used in the methods described in

this work, provided that they can be shown to satisfy all assumptions. For information

on constructing convex and concave envelopes for univariate functions of interest, see

[118].

Addition of a constant

u(x) = x+ c, B = R
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uL(X) = xL + c, uU(X) = xU + c

ucv(X, x) = x+ c, xmin(X) = xL

ucc(X, x) = x+ c, xmax(X) = xU

Multiplication by a positive constant

u(x) = cx, c > 0, B = R

uL(X) = cxL, uU(X) = cxU

ucv(X, x) = cx, xmin(X) = xL

ucc(X, x) = cx, xmax(X) = xU

Negative

u(x) = −x, B = R

uL(X) = −xU , uU(X) = −xL

ucv(X, x) = −x, xmin(X) = xU

ucc(X, x) = −x, xmaxX(X) = xL

Reciprocal

u(x) =
1

x
, B = R − {0}

uL(X) =
1

xU
, uU(X) =

1

xL

ucv(X, x) =







1
x

if xL > 0

1
xL + 1/xU−1/xL

xU−xL (x− xL) if xU < 0

ucc(X, x) =







1
x

if xU < 0

1
xL + 1/xU−1/xL

xU−xL (x− xL) if xL > 0

xmin(X) = xU , xmax(X) = xL
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Exponential

u(x) = ex, B = R

uL(X) = ex
L

, uU(X) = ex
U

ucv(X, x) = ex

ucc(X, x) = ex
L

+
ex

U − ex
L

xU − xL
(x− xL)

xmin(X) = xL, xmax(X) = xU

Natural log

u(x) = ln(x), B = (0,+∞)

uL(X) = ln(xL), uU(X) = ln(xU )

ucv(X, x) = ln(xL) +
ln(xU) − ln(xL)

xU − xL
(x− xL)

ucc(X, x) = ln(x)

xmin(X) = xL, xmax(X) = xU

x*ln(x)

u(x) = x ln(x), B = (0,+∞)

uL(X) = xL ln(xL), uU(X) = xU ln(xU)

ucv(X, x) = x ln(x)

ucc(X, x) = xL ln(xL) +
xU ln(xU) − xL ln(xL)

xU − xL
(x− xL)

xmin(X) = xL, xmax(X) = xU

Square root

u(x) =
√
x, B = (0,+∞)
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The set B must be restricted from [0,+∞) to (0,+∞) because
√
x is not Lipschitz

on any interval containing zero.

uL(X) =
√
xL, uU(X) =

√
xU

ucv(X, x) =
√
xL +

√
xU −

√
xL

xU − xL
(x− xL)

ucc(X, x) =
√
x

xmin(X) = xL, xmax(X) = xU

Even integer powers

u(x) = xn, n = 2, 4, . . . , B = R

uL(X) =







0 if 0 ∈ [xL, xU ]

min((xL)n, (xU)n) otherwise

uU(X) = max((xL)n, (xU)n)

ucv(X, x) = xn

ucc(X, x) = (xL)n +
(xU )n − (xL)n

xU − xL
(x− xL)

xmin(X) =







0 if 0 ∈ [xL, xU ]

arg min((xL)n, (xU)n) otherwise

xmax(X) = arg max((xL)n, (xU)n)

Odd integer powers

u(x) = xn, n = 1, 3, . . . , B = R

uL(X) = (xL)n

uU(X) = (xU)n
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The convex envelope is

ucv(X, x) =







xn if x ∈ [x∗, xU ]

(xL)n + (x∗)n−(xL)n

x∗−xL (x− xL) otherwise
,

where

x∗ =



















xU if xU ≤ 0

xL if xL ≥ 0

x′ otherwise

,

and x′ is the solution of

(n− 1)(x′)n − nxL(x′)n−1 + (xL)n = 0.

The concave envelope is

ucc(X, x) =







xn if x ∈ [xL, x∗∗]

(x∗∗)n + (xU )n−(x∗∗)n

xU−x∗∗
(x− x∗∗) otherwise

,

where

x∗∗ =



















xU if xU ≤ 0

xL if xL ≥ 0

x′′ otherwise

,

and x′′ is the solution of

(n− 1)(x′′)n − nxU(x′′)n−1 + (xU )n = 0.

Finally,

xmin(X) = xL,

and

xmax(X) = xU .

118



Sin

u(x) = sin(x), B = R

The convex envelope is first formulated for the case where [xL, xU ] ⊂ [3π/2, 7π/2].

This requires definition of the following points. Let

xinfx,1 = 2π, xinfx,2 = 3π, xmin,1 = 3π
2
, and xmin,2 = 7π

2
.

Next, define

x∗ =







xinfx,1 if xU ≤ xinfx,1

x′ otherwise
,

x∗∗ =







xinfx,2 if xL ≥ xinfx,2

x′′ otherwise
,

where x′ is the solution of

sin(xU ) − sin(x′) = (xU − x′) cosx′

on [xmin,1, xinfx,1] and x′′ is the solution of

sin(x′′) − sin(xL) = (x′′ − xL) cosx′′

on [xinfx,2, xmin,2]. Now let x1 and x2 be defined by

x1 = mid(xL, xU , x∗), x2 = mid(xL, xU , x
∗∗).

Consider the function

η(X, x) =



















sin(x) for x ∈ [xL, x1]

sin(x1) + sin(x2)−sin(x1)
x2−x1

(x− x1) for x ∈ (x1, x2]

sin(x) for x ∈ (x2, x
U ]

.
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It can be verified that η(X, ·) is the convex envelope of sin on [xL, xU ] provided that

[xL, xU ] ⊂ [3π/2, 7π/2]. The convex envelope on any other interval can be obtained by

simple variable transformations and applications of η, as follows. Let n(x) = 1
2π
x+ 1

4

and define n1 = ⌊n(xL)⌋. Further, let n2 equal n(xU) − 1 if n(xU) is an integer and

⌊n(xU )⌋ otherwise. Finally, define

zL = xL − 2(n1 − 1)π,

zU = min(xU − 2(n1 − 1)π, xmin,2),

yL = xmin,1,

yU = xU − 2(n2 − 1)π.

The convex envelope of sin on an arbitrary interval is now stated as

ucv(X, x) =



















η(Z, x− 2(n1 − 1)π) if x− 2(n1 − 1)π ≤ xmin,2

η(Y, x− 2(n2 − 1)π) if x− 2(n2 − 1)π ≥ xmin,1

−1 otherwise

.

Similarly, the lower bound on an arbitrary interval and a minimum of ucv(X, ·) are

given by

uL(X) =







−1 if xU − 2(n1 − 1)π ≥ xmin,2

min(sin(xL), sin(xU)) otherwise

and

xmin(X) =







xmin,2 + 2(n1 − 1)π if xU − 2(n1 − 1)π ≥ xmin,2

arg min(sin(xL), sin(xU)) otherwise
.

Finally, the upper bound, the concave envelope and a maximum of the concave en-
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velope are given by the symmetry relations

uU(X) = −uL(−X),

ucc(X, x) = −ucv(−X,−x),

xmax(X) = −xmin(−X).

Cos

The bounds and relaxations for cos can be obtained from the rules for sin and the

identity

cos(x) = sin(x+
π

2
), ∀x ∈ R.

2.9 Conclusion

In this chapter, the class of factorable functions was introduced, and it was shown

that useful global information about such functions can be automatically computed.

Two methods for obtaining such information were presented. The first, interval arith-

metic, provides guaranteed interval bounds on the range of a factorable function over

an interval of inputs. The second, McCormick’s relaxation technique, provides convex

and concave relaxations of factorable functions. These methods were then analyzed

in detail to establish several new regularity and convergence properties that will be

required in later chapters. Finally, a generalized form of McCormick’s relaxation tech-

nique was introduced which extends the applicability of McCormick-type relaxations

greatly. It was shown here that this technique provides relaxations of composite func-

tions. In Chapters 7 and 8, it will be shown that this technique is also essential for

relaxing the solutions of dynamic systems.
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Chapter 3

State Bounding Theory for

Parametric ODEs and Control

Systems

3.1 Introduction

In this chapter and the next, methods are developed for efficiently computing sharp

interval enclosures of the solutions of nonlinear control systems, subject to permissible

sets of inputs and initial conditions. This set of solution values is called the reachable

set, and the computed interval bounds on this set are called state bounds. Enclosures

of the reachable sets of dynamic systems are useful in many applications, including

uncertainty quantification [75], state and parameter estimation [163, 93, 103, 138, 88],

safety verification [85], fault detection [106] and controller synthesis [110]. The pri-

mary motivation for computing state bounds here, however, is for their use in algo-

rithms for global optimization of dynamic systems [135, 164, 104]. Such algorithms

embed the overestimation of reachable sets as a frequently called subroutine. Ac-

cordingly, we are interested in methods that can provide enclosures quickly (order

10−1s), and focus on mitigating the overestimation that such methods are prone to.

Computing sharp bounds on this time scale is a problem of general interest, both for
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other algorithms that embed reachable set computations and for online applications

such as state estimation [138, 88] and robust model predictive control [102].

For general nonlinear control systems, theoretical characterizations of the reach-

able set are available in terms of invariance domains [13], solutions of integral funnel

equations [133], and solutions of Hamilton-Jacobi-Bellman equations [120]. Despite

this rich body of theory, methods derived from these formulations are computation-

ally demanding. Several more tractable approaches enclose the reachable set within

polytopes or zonotopes. In [41], hyperplanes supporting the reachable set are com-

puted by solving dynamic optimization problems. A variant that produces weaker

enclosures but guarantees convex optimization problems is presented in Chapter 9.

Other methods involve abstraction of the nonlinear system by a hybrid system with

simplified (i.e., linearized) continuous dynamics in modes corresponding to a parti-

tion of the state space [72, 10, 5]. An enclosure for this simplified system is then

augmented by a bound on the abstraction error. Refinement of the partition leads

to sharper enclosures, but higher computational cost. As a representative example,

enclosures computed in [5] took on the order of 101s, making them inappropriate for

the applications of interest here, though they are indeed very sharp.

A less expensive approach is to enclose the reachable set within time-varying

interval bounds. Methods of this type are either based on Taylor approximations

with rigorous error bounds [130], or on viability type conditions, which in the case of

interval enclosures reduce to componentwise differential inequalities [75, 162, 156, 140,

141]. A unique feature of Taylor methods is that they produce validated enclosures,

meaning that the enclosures are guaranteed even when computed on a finite precision

machine. Unfortunately, these methods apply only to ODEs that depend on real

parameters rather than controls, and produce very conservative bounds when the

range of parameters is large (see [140] for comparison with differential inequalities).

This conservatism can be greatly mitigated by using high-order Taylor expansions,

or by using more sophisticated inclusion algebras, such as Taylor model arithmetic

[24, 105], in place of interval arithmetic. Unfortunately, these measures dramatically

increase the computational cost, which in the latter case scales exponentially in the
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number of uncertain initial conditions and parameters.

The primary advantage of differential inequalities approaches is that they can

be implemented using interval arithmetic and numerical integration codes, yielding

bounds at a cost comparable to a single model simulation (order 10−4–10−1s for

systems with a few states). While the enclosures produced by these methods are

mathematically guaranteed, they are not validated. Therefore, they are inappropriate

for investigating long-time behavior of unstable or oscillatory systems. Given the

accuracy of modern numerical integration codes, however, these methods are effective

for stable systems over modest integration times, especially when the reachable set

is large compared to the expected numerical error owing to large parameter ranges.

Moreover, this issue can be overcome using a slightly more involved hybrid formulation

as in [140]. Like Taylor methods, differential inequalities approaches are typically

applied to parametric ODEs, but the extension to controls is less problematic (See

§3.3.2). A more difficult issue is that they are known to yield extremely conservative

enclosures for ODEs that are not quasi-monotone [182] (or cooperative [165]). In

[162], it was shown that this condition is frequently violated in applications. On the

other hand, it was also shown that it is often possible, through physical arguments,

to obtain a crude set G which is independently known to contain the reachable set,

and that greatly improved bounds can be computed by leveraging this information.

A practical implementation was developed for the case where G is an interval.

In this chapter, we develop a framework for effectively using general physical in-

formation in differential inequalities bounding methods, without a significant loss of

efficiency. First, the basic differential inequalities bounding method, which does not

make use of physical information, is presented and its advantages and disadvantages

are discussed in the context of a simple example (§3.3). The use of physical informa-

tion is discussed in detail in §3.4. Unfortunately, it happens that the most intuitive

usage is not always valid, and we present some choice counterexamples in order to

elucidate the fundamental problems. This discussion then motivates the central part

of the chapter, comprising §3.5-§3.7, which contains a detailed analysis of the use of

physical information in differential inequalities through a mathematical abstraction
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in terms of set-valued mappings. This results in an abstract bounding theory, which

clearly isolates the fundamental problems of the conceptual discussion in §3.4 and

prescribes conditions under which one yet arrives at a correct bounding procedure.

From these general principles, we then derive several new bounding methods making

use of physical information in various forms. Some illustrative numerical examples

can be found throughout, and more thorough case studies follow in Chapter §4.

3.2 Problem Statement

For any measurable I ⊂ R, the space of Lebesgue integrable functions u : I → R is

denoted by L1(I). A vector function u : I → Rn is said to be measurable if each

scalar function ui is measurable, and is said to be Lebesgue integrable if each ui is

an element of L1(I). The space of Lebesgue integrable vector functions is denoted by

(L1(I))n.

Let I0 ⊂ R be open, I = [t0, tf ] ⊂ I0, let U ⊂ Rnu be compact, and define the set

of admissible controls

U ≡ {u ∈ (L1(I))nu : u(t) ∈ U for a.e. t ∈ I}. (3.1)

Let the set of admissible initial conditions be a compact set X0 ⊂ Rnx . Finally,

let D ⊃ X0 and let f : I0×U×D → Rnx . Consider the initial value problem in ODEs

ẋ(t,u,x0) = f(t,u(t),x(t,u,x0)), (3.2)

x(t0,u,x0) = x0,

where a solution is any mapping x : I × U × X0 → D such that, for each (u,x0) ∈
U ×X0, the mapping x(·,u,x0) is absolutely continuous and satisfies (3.2) a.e. on I.

The following assumptions hold throughout this chapter.

Assumption 3.2.1. Assume that

1. For any (p, z) ∈ U ×D, f(·,p, z) is measurable on I,
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2. For a.e. t ∈ I, f(t, ·, ·) is continuous on U ×D,

3. For every compact K ⊂ D, ∃αK ∈ L1(I) such that, for a.e. t ∈ I,

‖f(t,p, z)‖1 ≤ αK(t), ∀(p, z) ∈ U ×K.

Assumption 3.2.2. For any z ∈ D, there exists η > 0 and α ∈ L1(I) such that, for

a.e. t ∈ I and every p ∈ U ,

‖f(t,p, z̃) − f(t,p, ẑ)‖∞ ≤ α(t)‖z̃ − ẑ‖∞,

for every z̃, ẑ ∈ Bη(z) ∩D.

Above, Bη(z) denotes the open ball of radius η around z. In case D is open,

Assumptions 3.2.1 and 3.2.2 ensure that a unique solution of (3.2) exists locally [62].

In any case, it is always assumed that, for each (u,x0) ∈ U×X0, there exists a unique

solution of (3.2) on all of I. We are interested in computing the following.

Definition 3.2.3. Two continuous functions v,w : I → Rnx are called state bounds

for (3.2) if x(t,u,x0) ∈ [v(t),w(t)], ∀(t,u,x0) ∈ I × U ×X0.

Remark 3.2.4. In many cases, we are interested in computing bounds on the solu-

tions of an ODE subject to parametric uncertainty. This is simply a special case of

the problem above, since a parameter vector p ∈ Rnp taking values in a compact set

P can simply be regarded as a vector of constant controls, u(t) = p for all t ∈ I,

taking values in U ≡ P . The only disadvantage of this approach is that the bounds

will be valid for any solution that could result from a time-varying parameter vector

taking values in P , while the solutions of interest are only those corresponding to

constant parameter values. Thus, an additional source of conservatism is introduced.

This observation does not seem to be generally appreciated, and this reformulation is

routinely used in the standard differential inequalities method [135, 162]. It will be

used here as well, since a better method is not available.
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3.3 The Standard Differential Inequalities Method

In this section, a standard method for computing state bounds using the theory of

differential inequalities [182, 170] is presented. The key result is Theorem 3.3.2 below,

which gives a set of sufficient conditions under which two functions are guaranteed to

bound the solutions of (3.2) pointwise in t. The statement here differs from statements

in the literature in technical details. Its proof and a discussion of these differences

can be found in §3.3.1 and §3.3.2, respectively.

Definition 3.3.1. Let BLi ,BUi : IRnx → IRnx be defined by BLi ([v,w]) = {z ∈ [v,w] :

zi = vi} and BUi ([v,w]) = {z ∈ [v,w] : zi = wi}, for every i = 1, . . . , nx.

Theorem 3.3.2. Let v,w : I → Rnx be absolutely continuous functions satisfying

(EX): For every t ∈ I and each index i,

1. v(t) ≤ w(t),

2. BLi ([v(t),w(t)]) ⊂ D, BUi ([v(t),w(t)]) ⊂ D.

(IC): v(t0) ≤ x0 ≤ w(t0), ∀x0 ∈ X0.

(RHS): For a.e. t ∈ I and each index i,

1. v̇i(t) ≤ fi(t,p, z), for all z ∈ BLi ([v(t),w(t)]) and p ∈ U ,

2. ẇi(t) ≥ fi(t,p, z), for all z ∈ BUi ([v(t),w(t)]) and p ∈ U .

Then v(t) ≤ x(t,u,x0) ≤ w(t), ∀(t,u,x0) ∈ I × U ×X0.

Conceptually, the key hypotheses of Theorem 3.3.2 are (IC) and (RHS). Hypoth-

esis (IC) simply requires that the bounding trajectories v and w are bounds at t0.

The conditions of (RHS) are the differential inequalities. The purpose of these condi-

tions is to ensure that the solutions of (3.2) cannot cross v and w to the right of t0.

We will have much more to say about these conditions in Section 3.3.1. Theorems

such as Theorem 3.3.2, which establish inequalities between the solution of a dynamic

systems and other trajectories, are sometimes referred to as comparison theorems.
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The hypotheses of Theorem 3.3.2 can be satisfied computationally using interval

arithmetic. Suppose that U and X0 are nu and nx-dimensional intervals, respectively,

and that f is factorable. State bounds can then be computed by solving the ODEs

v̇i(t) = [fi]
L([t, t], U,BLi ([v(t),w(t)])), (3.3)

ẇi(t) = [fi]
U([t, t], U,BUi ([v(t),w(t)])),

[vi(t0), wi(t0)] = X0,i,

for a.e. t ∈ I and each index i. By construction, the intervals over which the interval

extensions of each fi are taken in the right-hand sides of (3.3) are exactly the sets over

which the differential inequalities in Hypothesis (RHS) are required to hold. Thus,

any solutions v and w of (3.3) must satisfy (RHS). Furthermore, Hypothesis (IC) is

satisfied by the choice of initial conditions in (3.3). Then, provided that (EX) holds,

Theorem 3.3.2 ensures that v(t) ≤ x(t,u,x0) ≤ w(t) for all (t,u,x0) ∈ I × U ×X0.

The properties of bounding systems such as (3.3) are analyzed further in §3.5.2, and

it is shown that a unique solution exists, at least locally about t0, and indeed satisfies

(EX). The implementation of Theorem 3.3.2 through (3.3) is due to Harrison [75],

and will be referred to as Harrison’s method throughout.

Example 3.3.1. Consider the reversible chemical reaction

A + B ⇋ C (3.4)

with forward and reverse rate constants kf and kr, respectively, taking place in an

isothermal batch reactor. The time evolution of the species concentrations xA, xB

and xC are described by a system of ODEs of the form (3.2), where x ≡ (xA, xB, xC),

u ≡ (kf , kr), and the right-hand side is defined by f = Sr, where

S ≡











−1 1

−1 1

1 −1











, r(t,p, z) ≡





pfzAzB

przC



 .
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Consider computing state bounds on I = [0, 0.05] min with the fixed initial condition

x0 = (1.5, 0.5, 0) (M) and the (kf , kr) in the interval U ≡ [100, 500] × [0.001, 0.01]

(M−1min−1, min−1). That is, the set of admissible initial conditions is the singleton

X0 = {x0} and the set of admissible controls is

U = {(kf , kr) ∈ (L1(I))2 : (kf(t), kr(t)) ∈ [100, 500]× [0.001, 0.01] for a.e. t ∈ I}.

Here, the solutions of interest correspond to kf and kr that are constant in time,

though the computed bounds will nonetheless be valid for time-varying rate constants,

as discussed in Remark 3.2.4.

Consider the ODE describing xC , which is given by

ẋC(t,u,x0) = kf(t)xA(t,u,x0)xB(t,u,x0) − kr(t)xC(t,u,x0). (3.5)

Denoting U = [kLf , k
U
f ] × [kLr , k

U
r ] and taking natural interval extensions of the right-

hand side function, the bounding differential equations (3.3) for xC are given by

v̇C(t) = kLf vA(t)vB(t) − kUr vC(t), (3.6)

ẇC(t) = kUf wA(t)wB(t) − kLr wC(t),

vC(t0) = wC(t0) = x0,C .

The form of these equations result from the fact that all intervals are guaranteed to

be positive, so that the choice of upper or lower bound for each variable is dictated

simply by the sign of the term in which it appears. For example, the lower bound for

the right-hand side for ẋC , pfzAzB − przC , is computed by taking the lower bound

for every variable in the first term and the upper bound for every variable in the

second term. Note in particular that, in the second term, vC(t) is used in place of

wC(t) since the natural interval extension in this case is taken over BLi ([v(t),w(t)]),

not [v(t),w(t)]. The bounding differential equations for xA and xB are derived anal-

ogously. The solution of these bounding differential equations then gives the state

bounds [v(t),w(t)], for all t ∈ I. These equations were solved numerically using
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Figure 3-1: State bounds for the species concentration xC from Example 3.3.1. Solid
curves are true model solutions computed for 64 constant vectors u = (kf , kr) on a
uniform grid over U = [100, 500]× [0.001, 0.01] (M−1min−1, min−1). Dashed lines are
state bounds computed by solving (3.3).

CVODE [44] with absolute and relative tolerances of 10−5. The state bounds on xC

are shown by the dashed curves in Figure 3-1. The solid curves in Figure 3-1 are

solutions xC(t,u,x0) computed for 64 sampled u = (kf , kr) taking constant values on

a uniform grid over U = [100, 500] × [0.001, 0.01] (M−1min−1, min−1).

It is clear from the figure that the computed trajectories do indeed bound the

model solutions, but they are very conservative and do not represent the true set of

solutions accurately. This issue is especially pronounced for the upper bound. On the

other hand, the computation of these bounds required only 1.8× 10−4 CPU seconds,

less than twice the cost of integrating a single model trajectory, 1.1 × 10−4 s. These

computations were done on a Dell Precision T3400 workstation with a 2.83 GHz Intel

Core2 Quad CPU. One core and 512 MB of memory were dedicated to the job.

The previous example shows that Harrison’s method can potentially produce very

weak bounds. Unfortunately, these bounds are representative of the behavior of

Harrison’s method for many problems. On the other hand, the implementation of

Theorem 3.3.2 using interval arithmetic and a state-of-the-art numerical integration
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routine is very inexpensive. Thus, the aim of this chapter and the next is to find

ways to reduce the conservatism of Harrison’s method, hopefully very significantly,

without compromising its efficiency.

As discussed in the introduction, this will be done by incorporating physical in-

formation into the procedure at a very fundamental level. Examining the results of

Example 3.3.1, it is easy to see that the bounds computed by Harrison’s method disre-

gard intuitive physical limitations. Given the reaction stoichiometry and the specified

initial condition, simple conservation laws demand that xC remains less than 0.5 M

for all time, regardless of u. Yet, the computed upper bound diverges toward +∞.

This suggests that even simple physical observations could be leveraged in order to

compute much sharper bounds. This idea was first suggested in [162], where physical

upper and lower bounds on each state variable, termed natural bounds, were used in

a modified form of Harrison’s method. In general, state bounds resulting from that

method do not demonstrate catastrophic divergence, but still largely fail to provide

an accurate enclosure of the reachable set throughout time.

In the next chapter, it will be shown that, for a very important class of ODE

models in chemical engineering, including that of Example 3.3.1, the physical infor-

mation used in [162], and in fact much more, is readily available and can often put

massive restrictions on the regions of state space that must be considered during a

state bounding computation. In the remainder of this chapter, we develop the theory

required to use this information effectively, while still maintaining an efficient compu-

tational implementation. In comparison to [162], the methods developed here differ

in that arbitrary physical information is considered instead of only natural bounds.

This generalization is very challenging, both theoretically and from an implementa-

tion standpoint, but in the end results in vastly superior bounds for problems where

rich physical information is available.
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3.3.1 Proof of Theorem 3.3.2

Preliminaries

The proof of Theorem 3.3.2 involves some standard facts about absolutely continuous

functions that can be found in [180]. Two important results are stated below. Denote

the space of absolutely continuous functions from [a, b] into R by AC([a, b],R). Recall

that any φ ∈ AC([a, b],R) is differentiable at almost every t ∈ [a, b]. The abbreviation

“a.e. t ∈ [a, b]” is used throughout.

Theorem 3.3.3. If φ ∈ AC([a, b],R) satisfies φ̇(t) ≤ 0 for a.e. t ∈ [a, b], then φ is

non-increasing on [a, b].

Proof. See Theorem 3.1 in [170].

Lemma 3.3.4. For any ǫ > 0 and any β ∈ L1([a, b]), ∃ρ ∈ AC([a, b],R), non-

decreasing, and satisfying

0 < ρ(t) ≤ ǫ, ∀t ∈ [a, b], and ρ̇(t) > |β(t)|ρ(t), a.e. t ∈ [a, b]. (3.7)

Proof. Choose γ > 0, let B(t) =
∫ t

b
(|β(s)| + γ) ds and let ρ(t) = ǫeB(t). Clearly,

ρ > 0 and ρ(b) = ǫ. B is absolutely continuous and hence differentiable a.e. on

[a, b] with Ḃ(t) = |β(t)| + γ. Since B is absolutely continuous and a 7→ ǫea is locally

Lipschitz, ρ is absolutely continuous (See [119]) and, for a.e. t ∈ [a, b], the chain rule

gives

ρ̇(t) = ǫeB(t)(Ḃ(t)) = ρ(t) (|β(t)| + γ) > |β(t)|ρ(t).

Theorem 3.3.3 shows that ρ is non-decreasing.

The proof of Theorem 3.3.2, and similar results in later sections, require a con-

struction that is summarized in the following lemma and corollary.

Lemma 3.3.5. Let δ : I → Rn be a continuous function with δ(t0) ≤ 0. Suppose

∃t ∈ I such that δi(t) > 0 for at least one i ∈ {1, . . . , n}, and define t1 ≡ inf{t ∈ I :

δ(t) 6≤ 0}. Then
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1. t0 ≤ t1 < tf and δ(t) ≤ 0, ∀t ∈ [t0, t1].

2. The set V ≡ {i : ∀γ > 0, ∃t ∈ (t1, t1 + γ] s.t. δi(t) > 0} is nonempty.

Let t4 ∈ (t1, tf ], ǫ > 0 and β ∈ L1([t1, t4]). Then there exists an index j ∈ {1, . . . , n},
a non-decreasing function ρ ∈ AC([t1, t4],R) satisfying (3.7) on [t1, t4], and numbers

t2, t3 ∈ [t1, t4] with t2 < t3 such that the following inequalities hold:

δ(t) < 1ρ(t), ∀t ∈ [t2, t3), (3.8)

0 < δj(t), ∀t ∈ (t2, t3),

δj(t3) = ρ(t3),

δj(t2) = 0.

Proof. By hypothesis, the set {t ∈ I : δ(t) 6≤ 0} is nonempty. Since t1 is a lower

bound, δ(t) ≤ 0 for all t ∈ I such that t < t1. If t1 > t0, then continuity ensures

that this also holds at t1, so that δ(t) ≤ 0, ∀t ∈ [t0, t1]. If t1 = t0, then the same

conclusion holds because δ(t0) ≤ 0. By the assumption that δ(t) 6≤ 0 for some

t ∈ I, it follows that t1 < tf . Since t1 is the greatest lower bound, it follows that the

inequality δ(t) ≤ 0 is violated arbitrarily close to the right of t1. Then, since δ is

finite dimensional, there must be at least one i such that δi(t) > 0 arbitrarily close

to the right of t1. Thus, V 6= ∅.
Choose any t4 ∈ (t1, tf ], ǫ > 0 and β ∈ L1([t1, t4]). Choose m so that ∃t ∈ [t1, t4]

with δi(t) ≥ m > 0, for some i. This must be possible since V is nonempty. By

Lemma 3.3.4, there exists a non-decreasing function ρ ∈ AC([t1, t4],R) satisfying

0 < ρ(t) ≤ min(m/2, ǫ), ∀t ∈ [t1, t4], and ρ̇(t) > |β(t)|ρ(t), a.e. t ∈ [t1, t4].

Let t3 ≡ inf{t ∈ [t1, t4] : δi(t) ≥ ρ(t) for at least one i}. Since ρ < m, this set is

nonempty. Because t3 is a lower bound, δ(t) < 1ρ(t) for all t ∈ [t1, t4] with t < t3.

Since t3 is the greatest lower bound, δj(t3) = ρ(t3) for at least one j. Since δ(t1) ≤ 0,

it follows that t3 ∈ (t1, t4].
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Fix any j such that δj(t3) = ρ(t3) and let t2 ≡ sup{t ∈ [t1, t3] : δj(t) ≤ 0}. Since

δj(t1) ≤ 0, this set is nonempty. Because t2 is an upper bound, δj(t) > 0 for all

t ∈ [t1, t3] with t > t2. Because it is the least upper bound, δj(t2) = 0. It follows that

t2 ∈ [t1, t3).

Corollary 3.3.6. Let φ,v,w : I → Rnx be continuous and satisfy v(t0) ≤ φ(t0) ≤
w(t0). Suppose ∃t ∈ I such that either φi(t) < vi(t) or φi > wi(t), for at least one

i ∈ {1, . . . , nx}, and define

t1 ≡ inf{t ∈ I : φi(t) < vi(t) or φi > wi(t), for at lease one i}. (3.9)

Then

1. t0 ≤ t1 < tf and v(t) ≤ φ(t) ≤ w(t), ∀t ∈ [t0, t1].

2. At least one of the sets

VL ≡ {i : ∀γ > 0, ∃t ∈ (t1, t1 + γ] s.t. φi(t) < vi(t)},

VU ≡ {i : ∀γ > 0, ∃t ∈ (t1, t1 + γ] s.t. φi(t) > wi(t)},

is nonempty.

Let t4 ∈ (t1, tf ], ǫ > 0 and β ∈ L1([t1, t4]). Then there exists an index j ∈ {1, . . . , nx},
a non-decreasing function ρ ∈ AC([t1, t4],R) satisfying (3.7) on [t1, t4], and numbers

t2, t3 ∈ [t1, t4] with t2 < t3 such that

v(t) − 1ρ(t) < φ(t) < w(t) + 1ρ(t), ∀t ∈ [t2, t3) (3.10)

and

φj(t2) = vj(t2), φj(t3) = vj(t3) − ρ(t3), and φj(t) < vj(t), (3.11)
(

or φj(t2) = wj(t2), φj(t3) = wj(t3) + ρ(t3), and φj(t) > wj(t),
)

(3.12)

for all t ∈ (t2, t3).
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Proof. Define δ : I → R2nx by δ(t) ≡ (v(t) − φ(t),φ(t) − w(t)), ∀t ∈ I. By hypoth-

esis, δ(t0) ≤ 0, and ∃t ∈ I such that δi(t) > 0 for at least one i. The conclusion now

follows from Lemma 3.3.5.

We now proceed to the proof of Theorem 3.3.2.

Proof

Choose any (u,x0) ∈ U ×X0 and let x(t) ≡ x(t,u,x0) for convenience. Suppose that

∃t ∈ I such that x(t) /∈ [v(t),w(t)]. We prove a contradiction.

Define t1 as in (3.9) with φ ≡ x, and define x̄(t) ≡ mid(v(t),w(t),x(t)). Noting

that the hypotheses of Corollary 3.3.6 are satisfied with φ ≡ x, Conclusion 1 of that

corollary implies that x̄(t1) = x(t1). Let η > 0 and α ∈ L1(I) satisfy Assumption

3.2.2 with z ≡ x(t1). Choose t4 ∈ (t1, tf ] small enough that x(t), x̄(t) ∈ Bη(x(t1)),

∀t ∈ [t1, t4].

Applying Corollary 3.3.6 with t4, β ≡ α and arbitrary ǫ > 0 yields an index

j ∈ {1, . . . , nx}, a non-decreasing function ρ ∈ AC([t1, t4],R) satisfying (3.7) on

[t1, t4], and numbers t2, t3 ∈ [t1, t4] with t2 < t3 such that (3.10) and (3.12) hold with

φ ≡ x (the proof is analogous if instead (3.11) holds).

It will be shown that Hypothesis (RHS).2 can be applied at the point (t,u(t), x̄(t))

for a.e. t ∈ [t2, t3]. By definition, it is clear that x̄(t) ∈ [v(t),w(t)]. Hypothesis

(EX).1 and (3.12) show that x̄j(t) = mid(vj(t), wj(t), xj(t)) = wj(t) and hence x̄(t) ∈
BUj ([v(t),w(t)]). By Hypothesis (EX).2, this implies that x̄(t) ∈ D.

Now, for a.e. t ∈ [t2, t3], Hypothesis (RHS).2 gives

ẇj(t) ≥ fj(t,u(t), x̄(t)) ≥ fj(t,u(t),x(t)) − α(t)‖x(t) − x̄(t)‖∞.
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By (3.10), ‖x(t) − x̄(t)‖∞ ≤ ρ(t), so that, for a.e. t ∈ [t2, t3],

ẇj(t) + ρ̇(t) ≥ fj(t,u(t),x(t)) − α(t)ρ(t) + ρ̇(t),

> fj(t,u(t),x(t)),

= ẋj(t).

The second inequality above follows from (3.7). By Theorem 3.3.3, this implies that

(xj − wj − ρ) is non-increasing on [t2, t3], so that

xj(t3) − wj(t3) − ρ(t3) ≤ xj(t2) − wj(t2) − ρ(t2).

But, by (3.12), this implies that 0 ≤ −ρ(t2), which contradicts (3.7).

3.3.2 Comments on Similar Results in the Literature

Similar results for ODEs without controls [182] originate from the existence theorem

of Müller [126]. The extension to ODEs with real parameter dependence is apparent

and is discussed in [162]. The extension to ODEs with time-varying inputs has been

stated by several authors [75, 93] and is indeed apparent from Müller’s result in the

case of continuous inputs. The present result holds also for L1 controls. Its proof

requires a different approach and was influenced by Theorem 3.1 in [170], which

applies to quasi-monotone systems under Carathéodory hypotheses. This approach

is required in order to treat weak solutions of (3.2); i.e., solutions which only satisfy

(3.2) for a.e. t ∈ I.

Compared to the statements in [93, 140], note that we require absolute continuity

of the bounds instead of continuity, and require that the differential inequalities hold

almost everywhere with true derivatives, as opposed to everywhere with Dini deriva-

tives. This is again related to the fact that the present result holds for L1 controls,

and hence weak solutions of (3.2). We also note that Hypothesis (EX), which is in-

herent in Müller’s formulation, is notably omitted from the statement in [75]. This

error originates from Remark 12.X(β) in [182] (stated with incomplete proof) and
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is common in the literature. It is easy to see that (EX).2 is necessary in Theorem

3.3.2 because the hypothesis (RHS) is not well-posed without it. Moreover, (EX).1 is

easily motivated by Example 3.3.2 below and is unrelated to the presence of controls

in Theorem 3.3.2. Finally, we note that Theorem 3.3.2 is a special case of a general

characterization of invariant tubes for differential inclusions given in [13]. However,

the presented form is amenable to efficient interval computation whereas the general

form is not.

Example 3.3.2. Let I = [0, 1] and D = R2. Consider the 2-dimensional ODE with

no controls defined by f1(t, z) = z1 − z2, f2(t, z) = z2 − z1, and x0 = [1 1]T. f

clearly satisfies Assumptions 3.2.1 and 3.2.2. Furthermore, with these definitions, it

is clear that x(t) = x0 = [1 1]T is the unique solution of (3.2) on I. Now consider the

functions v and w given by v1(t) = v2(t) = t2 + 1 and w1(t) = w2(t) = −t2 + 1. By

straightforward computation, v̇1(t) = v̇2(t) = 2t and ẇ1(t) = ẇ2(t) = −2t.

Omitting (EX).1, the remaining hypothesis of Theorem 3.3.2 are verified as fol-

lows. Hypothesis (EX).2 is trivial by the choice of D. (IC) is true because v(0) =

x0 = w(0) = [1 1]T. (RHS).1 states that, for i ∈ {1, 2} and a.e. t ∈ [0, 1], vi(t) must

satisfy the stated inequality if v(t) ≤ z ≤ w(t) and zi = vi(t). But, for any t ∈ (0, 1],

w(t) < v(t), so there does not exist any z satisfying these conditions. Therefore,

(RHS).1 is trivially satisfied. By an analogous argument, (RHS).2 is also satisfied.

On the other hand, it is clear that v and w do not satisfy the conclusion of

Theorem 3.3.2 because x(t) = x0 for all t ∈ [0, 1] and t2 + 1 > 1 > −t2 + 1 for all

t ∈ (0, 1], which implies that v(t) > x(t) > w(t) on (0, 1].

3.4 The Use of a Priori Enclosures in Comparison

Theorems

This section provides a conceptual discussion of the use of physical information in the

context of differential inequalities bounding methods. Throughout, we assume that

some set G ⊂ Rnx is available such that x(t,u,x0) ∈ G, ∀(t,u,x0) ∈ I×U ×X0. The
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set G is called an a priori enclosure, since we assume that it is known prior to the

application of a state bounding method. It will be shown that the most natural use

of G in the context of differential inequalities is not valid in general, and that valid

uses can be non-intuitive and depend on the specific form of G (interval, polyhedral,

etc.).

Recall the central hypothesis of Theorem 3.3.2:

(RHS): For a.e. t ∈ I and each index i,

1. v̇i(t) ≤ fi(t,p, z) for all z ∈ BLi ([v(t),w(t)]) and p ∈ U ,

2. ẇi(t) ≥ fi(t,p, z) for all z ∈ BUi ([v(t),w(t)]) and p ∈ U .

Conceptually, (RHS) relates v̇i(t) and ẇi(t) to possible values of the derivatives of

solutions of (3.2) at t, through the values of fi(t, ·, ·). However, it is clear that the

only values of fi(t, ·, ·) which are related to the derivatives of solutions of (3.2) are

those which fi(t, ·, ·) takes at the points (u(t),x(t,u,x0)) with (u,x0) ∈ U×X0. Then,

considering that G satisfies, by definition, x(t,u,x0) ∈ G, ∀(t,u,x0) ∈ I × U × X0,

it seems reasonable to expect that the sets over which the differential inequalities in

(RHS) are required to hold could be restricted in some way by G. Of course, the most

natural restriction is obtained by simply taking the intersection with G to arrive at:

(RHSa): For a.e. t ∈ I and each index i,

1. v̇i(t) ≤ fi(t,p, z) for all z ∈ BLi ([v(t),w(t)]) ∩G and p ∈ U ,

2. ẇi(t) ≥ fi(t,p, z) for all z ∈ BUi ([v(t),w(t)]) ∩G and p ∈ U .

It should be clear that (RHSa) is a weaker hypothesis than (RHS), and thus poten-

tially enables one to characterize sharper bounds through Theorem 3.3.2.

Surprisingly, Theorem 3.3.2 is not generally valid with (RHSa) in place of (RHS).

This claim is contrary to Remark 2.4 in [162] and is proven by the counterexamples

below. These examples show two fundamentally different complications inherent in

(RHSa), which are subsequently discussed.
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Example 3.4.1 (Encountering the Empty Set in (RHSa)). Let I = [0, 1], D = R and

consider the scalar ODE with no controls defined by f(t, z) = z and x0 = 0. Clearly,

the unique solution of (3.2) with these definitions is given by x(t) = 0, ∀t ∈ I.

Assumptions 3.2.1 and 3.2.2 are obviously satisfied.

Choose G = [0, 0], and let v(t) = w(t) = t2 for all t ∈ I. Clearly this satisfies

Hypothesis (EX) of Theorem 3.3.2. Furthermore, (IC) clearly holds, and (RHSa) is

trivially satisfied because, for any t ∈ (0, 1], the set [v(t),w(t)]∩G = [t2, t2]∩[0, 0] = ∅.
Therefore, all of the hypotheses of Theorem 3.3.2 are satisfied, with (RHSa) in place of

(RHS), and the conclusion of that theorem is clearly false because x(t) = 0 < t2 = v(t)

on (0, 1].

Example 3.4.2 (A Regularity Problem on the Boundary of G in (RHSa)). Let

I = [0, 0.5], D = (−0.51, 0.51) × (−2.1, 2.1) and consider the 2-dimensional ODE

with no controls defined by f1(t, z) = −1 and f2(t, z) = z1/
√

1 − z2
1 . Assumption

3.2.1 is easily verified. Further, it can be shown that each fi is Lipschitz on I × D

by simply checking that the partial derivatives with respect to z are bounded on D

(though not on R2), and Assumption 3.2.2 follows. Letting x0 = [0 1]T, it is easily

verified that the unique solution of (3.2) is given by x1(t) = −t and x2(t) =
√

1 − t2.

Let G = {z : z2
1 + z2

2 ≤ 1}. Note that x(t) ∈ G for all t ∈ I.

Now consider the functions v,w : I → Rnx defined by v1(t) = −t, w1(t) = t,

v2(t) = 1 and w2(t) = 2. Hypotheses (EX) and (IC) of Theorem 3.3.2 are easily

verified. Moreover, for any t ∈ (0, 0.5], the set BUi ([v(t),w(t)])∩G is empty for every

i and the set BLi ([v(t),w(t)]) ∩ G is empty for i = 1 and contains the single point

z = [0 1]T for i = 2. Thus, (RHSa).2 is trivially satisfied, and so is (RHSa).1 when

i = 1. (RHSa).1 is satisfied for i = 2 because v̇2(t) = 0 = f2(t, [0 1]T), ∀t ∈ [0, 0.5].

Of course, the conclusion of Theorem 3.3.2 does not hold since x2(0.5) =
√

0.75 /∈
[1, 2] = [v2(0.5), w2(0.5)].

Despite these pessimistic results, it will be shown in the following sections that

hypotheses very similar to (RHSa) can in fact be used to derive strengthened com-

parison theorems and very effective bounding methods. To do so, however, it is
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necessary to dispense with the flawed conceptual idea leading to (RHSa), and come

to grips with the mathematical requirements that a (RHS)-type hypothesis must sat-

isfy. Conceptually, it is tempting to interpret the Hypothesis (RHS) in the following

way: if at any t ∈ I and for any (u,x0) ∈ U × X0, it happens that some solution

xi ≡ xi(·,u,x0) runs into a bound, say vi(t), for the first time, then (t,u(t),x(t)) is

feasible in (RHS).1. Therefore, v̇i(t) ≤ ẋi(t). Moreover, since x(t) ∈ G, the same

argument shows that v̇i(t) ≤ ẋi(t) if we have (RHSa) instead of (RHS). So far, this

argument is correct. What is false is the idea that this differential inequality implies

that vi ≤ xi to the right of t. This implication fails for v and x at t0 in Example

3.4.1.

Examining the proof of Theorem 3.3.2, the hypothesis (RHS) is used in quite

a different way than the intuitive explanation above would suggest. In fact, the

entire proof occurs in the hypothetical situation where x(t) is not in [v(t),w(t)]. The

hypothesis (RHS) is never applied to the point (t,u(t),x(t)), because this point is

not in the required set by construction. Instead (RHS) is applied to a nearby point,

(t,u(t), x̄(t)), that does satisfy the required conditions. Specifically, (t,u(t), x̄(t)) is

nearby in the sense that ‖x(t) − x̄(t)‖∞ ≤ ρ(t) for a.e. t ∈ [t2, t3], and the usefulness

of applying (RHS) at this point to get information about ẋi(t) critically depends on

the Lipschitz condition on fi, as per Assumption 3.2.2.

Lets now consider how (RHSa) fails in the preceding examples, and how this

relates to the proof of Theorem 3.3.2. One fundamental difference between (RHS)

and (RHSa) is that, in the latter, it is possible for the set over which the differential

inequalities are required to hold to be empty. This is exactly the circumstance leading

to the counterexample Example 3.4.1, and it is fairly easy to see how this situation

interrupts the proof of Theorem 3.3.2. Specifically, there is no point x̄(t), nearby or

otherwise, at which (RHSa) can be applied. In Example 3.4.2, empty sets also occur,

but these are not the critical problem. (RHSa) does indeed impose a nontrivial

condition on v̇2(t), for all t ∈ I. However, the only point z for which we must have

v̇2(t) ≤ f2(t, z), according to (RHSa), is not nearby x(t) in the sense above. In

essence, the shape of the set G introduces non-Lipschitz behavior, despite the fact
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that f2 is Lipschitz.

A final rather serious problem with (RHSa) is that the efficient implementa-

tion of the standard differential inequalities method is no longer sensible. The set

BLi ([v(t),w(t)]) ∩ G is not necessarily an interval if G is not an interval, so the hy-

potheses of (RHSa) cannot be satisfied efficiently through interval arithmetic. In

fact, it turns out that the case where G is not an interval is of significant interest in

applications.

Roughly speaking, the solution to all of the problems discussed above is to replace

the intersections with G in (RHSa) with some weaker operations. Conceptually,

these operations overestimate the set BL/Ui ([v(t),w(t)]) ∩ G at each point in time.

Moreover, they return nonempty sets and obey a certain Lipschitz condition. Finally,

these operations can be chosen in order to return intervals or other types of sets that

permit an efficient computational implementation.

In general, what constitutes a valid weaker form of BL/Ui ([v(t),w(t)]) ∩ G will

depend on the particular form of G (interval, polyhedral, etc.). Moreover, this choice

is not unique. Finally, in many cases the difference between BL/Ui ([v(t),w(t)]) ∩ G

and this weaker form are subtle. All of this then begs the question, what are the

general principles that distinguish a valid usage of G in a comparison theorem from

the invalid use of (RHSa)?

To answer this question, these weaker operations are formalized in a general set-

ting in the next section. Strictly, the requirement that these operations never return

the empty set is not absolutely necessary. Nonetheless, it will be inherent in the de-

velopment of the following section. A yet more general presentation permitting empty

sets is given in §3.7, though the resulting methods are more difficult to implement

and therefore not as useful in general.

3.5 A General Comparison Theorem

In this section, a comparison theorem is proven in a very general setting. In light of the

complications discussed in the previous section, the purpose of this abstract analysis
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is to understand the fundamental requirements that one must impose on (RHS)-type

hypotheses in order to arrive at a valid comparison theorem. The approach, then,

is essentially to assume precisely what is required by the method of proof used in

§3.3.1, and work backwards toward implementable methods. First, the problem of

bounding an arbitrary function φ ∈ AC(I,Rn) by two functions v,w ∈ AC(I,Rn) is

considered. State bounds for the ODEs (3.2) are considered explicitly in §3.5.1.

Let DΠ ⊂ I × Rn × Rn and, for every i ∈ {1, . . . , n}, let ΠL
i ,Π

U
i : DΠ → P(R).

That is, for every (t,v,w) ∈ DΠ, ΠL
i (t,v,w) and ΠU

i (t,v,w) are subsets of R. The

following hypothesis provides a very minimal set of requirements relating the map-

pings Π
L/U
i to the function φ in such a way that Theorem 3.5.1 below holds.

Hypothesis 3.5.1. Suppose that (t̂, v̂, ŵ) ∈ I ×Rn×Rn satisfies v̂ ≤ φ(t̂) ≤ ŵ and

either φi(t̂) = v̂i or φi(t̂) = ŵi for at least one i ∈ {1, . . . , n}. Then there exists η > 0

and α ∈ L1(I) such that the following conditions hold for every (v,w) ∈ Bη((v̂, ŵ))

and a.e. t ∈ [t̂, t̂+ η) such that (t,v,w) ∈ DΠ:

1. If φi(t) < vi, then ∃σ ∈ ΠL
i (t,v,w) such that

|σ − φ̇i(t)| ≤ α(t) max (‖max(0,v − φ(t))‖∞, ‖max(0,φ(t) −w)‖∞) . (3.13)

2. If φi(t) > wi, then ∃σ ∈ ΠU
i (t,v,w) such that (3.13) holds.

Theorem 3.5.1. Let φ,v,w ∈ AC(I,Rn) satisfy

(EX): (t,v(t),w(t)) ∈ DΠ, ∀t ∈ I.

(IC): v(t0) ≤ φ(t0) ≤ w(t0).

(RHS): For a.e. t ∈ I and each index i,

1. v̇i(t) ≤ σ for all σ ∈ ΠL
i (t,v(t),w(t)),

2. ẇi(t) ≥ σ for all σ ∈ ΠU
i (t,v(t),w(t)).

If Hypothesis 3.5.1 holds, then v(t) ≤ φ(t) ≤ w(t), ∀t ∈ I.
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Proof. Suppose that ∃t ∈ I such that φi(t) < vi(t) or φi(t) > wi(t), for at least one

i ∈ {1, . . . , n}. It will be shown that this results in a contradiction.

Note that the hypotheses of Corollary 3.3.6 are satisfied and define t1 as in (3.9).

By Conclusion 1 of that corollary, v(t1) ≤ φ(t1) ≤ w(t1). By continuity and Conclu-

sion 2, there must exist at least one i such that either φi(t1) = vi(t1) or φi(t1) = wi(t1).

Let η > 0 and α ∈ L1(I) satisfy Hypothesis 3.5.1 with (t̂, v̂, ŵ) ≡ (t1,v(t1),w(t1)).

Choose t4 ∈ (t1, tf ] small enough that

t ∈ [t1, t1 + η) and (v(t),w(t)) ∈ Bη((v(t1),w(t1))), ∀t ∈ [t1, t4]. (3.14)

Noting that (t,v(t),w(t)) ∈ DΠ for all t ∈ [t1, t4] by Hypothesis (EX), we are now

guaranteed the conditions of Hypothesis 3.5.1 with (t,v,w) ≡ (t,v(t),w(t)), for a.e.

t ∈ [t1, t4].

We now apply Corollary 3.3.6 with t4, arbitrary ǫ > 0 and β = α. This furnishes

an index j ∈ {1, . . . , n}, a non-decreasing function ρ ∈ AC([t1, t4],R) satisfying (3.7)

on [t1, t4], and numbers t2, t3 ∈ [t1, t4] with t2 < t3 such that (3.10)-(3.11) hold (the

proof is analogous if (3.12) holds instead).

For a.e. t ∈ [t2, t3], (3.11) states that φj(t) < vj(t). Then, combining Condition 1

of Hypothesis 3.5.1 and Hypotheses (RHS).1 shows that

v̇j(t) − φ̇j(t) ≤ α(t) max (‖max(0,v(t) − φ(t))‖∞, ‖max(0,φ(t) −w(t))‖∞) ,

(3.15)

for a.e. t ∈ [t2, t3]. But by (3.10),

v̇j(t) − φ̇j(t) < α(t)ρ(t), a.e. t ∈ [t2, t3]. (3.16)

Finally, using (3.7) and recalling that we have used β = α, this implies that

v̇j(t) − φ̇j(t) − ρ̇(t) < α(t)ρ(t) − ρ̇(t) < 0, a.e. t ∈ [t2, t3]. (3.17)
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By Theorem 3.3.3, this implies that (vj − φj − ρ) is non-increasing on [t2, t3], so

that vj(t3) − φj(t3) − ρ(t3) ≤ vj(t2) − φj(t2) − ρ(t2). But by (3.11), this implies that

0 ≤ −ρ(t2), which contradicts (3.7).

3.5.1 Specialization to State Bounds for ODEs

Let DΩ ⊂ I × Rnx × Rnx and, for every i ∈ {1, . . . , nx}, let ΩL
i ,Ω

U
i : DΩ → P(Rnx).

To specialize Theorem 3.5.1 to the task of characterizing state bounds for (3.2), let

φ ≡ x(·,u,x0), for some (u,x0) ∈ U ×X0, and let ΠL
i and ΠU

i take the form

ΠL
i (t,v,w) ≡ {fi(t,p, z) : p ∈ U, z ∈ ΩL

i (t,v,w)), (3.18)

ΠU
i (t,v,w) ≡ {fi(t,p, z) : p ∈ U, z ∈ ΩU

i (t,v,w)), (3.19)

for all (t,v,w) in the set

DΠ ≡ {(t,v,w) ∈ DΩ : Ω
L/U
i (t,v,w) ⊂ D, i = 1, . . . , nx}. (3.20)

It will be shown that Hypothesis 3.5.1 is ensured by imposing the following conditions

on ΩL
i and ΩU

i :

Hypothesis 3.5.2. Let (t̂, v̂, ŵ) ∈ I×Rnx ×Rnx and suppose that ∃(u,x0) ∈ U×X0

such that x ≡ x(·,u,x0) satisfies v̂ ≤ x(t̂) ≤ ŵ and either xi(t̂) = v̂i or xi(t̂) = ŵi

for at least one i ∈ {1, . . . , nx}. Then there exist η, L > 0 such that the following

conditions hold for every (v,w) ∈ Bη((v̂, ŵ)) and a.e. t ∈ [t̂, t̂+η) such that (t,v,w) ∈
DΩ:

1. If xi(t) < vi, then ∃z ∈ ΩL
i (t,v,w) such that

‖x(t) − z‖∞ ≤ Lmax (‖max(0,v − x(t))‖∞, ‖max(0,x(t) −w)‖∞) . (3.21)

2. If xi(t) > wi, then ∃z ∈ ΩU
i (t,v,w) such that (3.21) holds.

Lemma 3.5.2. Suppose that Hypothesis 3.5.2 holds. Then, for any (u,x0) ∈ U ×X0,
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Hypothesis 3.5.1 holds with φ ≡ x(·,u,x0) and the definitions (3.18), (3.19) and

(3.20).

Proof. Choose any (u,x0) ∈ U × X0 and define φ ≡ x(·,u,x0). Let (t̂, v̂, ŵ) ∈
I ×Rnx ×Rnx and suppose that v̂ ≤ φ(t̂) ≤ ŵ and either φi(t̂) = v̂i or φi(t̂) = ŵi for

at least one i ∈ {1, . . . , nx}. Noting that (t̂, v̂, ŵ) satisfies the required properties, let

LΩ, ηΩ > 0 be constants satisfying Hypothesis 3.5.2.

Let ηf > 0 and αf ∈ L1(I) be given by Assumption 3.2.2 with z = φ(t̂). Define

α ≡ LΩαf and choose η ∈ (0,min(ηf , ηΩ)] small enough that

‖φ(t) − φ(t̂)‖∞ < ηf/2, (3.22)

LΩ max (‖max(0,v − φ(t))‖∞, ‖max(0,φ(t) −w)‖∞) < ηf/2, (3.23)

for all t ∈ [t̂, t̂+ η) and every (v,w) ∈ Bη((v̂, ŵ)). It will be shown that Hypothesis

3.5.1 holds with these definitions.

Choose any (v,w) ∈ Bη((v̂, ŵ)). For a.e. t ∈ [t̂, t̂ + η) such that (t,v,w) ∈ DΠ,

the conditions of Hypothesis 3.5.2 hold because η ≤ ηΩ and DΠ ⊂ DΩ. Suppose

that φi(t) < vi. By Condition 1 of Hypothesis 3.5.2, ∃z ∈ ΩL
i (t,v,w) ⊂ D such

that (3.21) holds with L = LΩ and x = φ. Combining this with (3.23) implies

that ‖φ(t) − z‖∞ < ηf/2. By (3.22) and the triangle inequality, it follows that

z ∈ Bηf
(φ(t̂)). This implies that the inequality of Assumption 3.2.2 can be applied

to the points z and φ(t).

Let σ ≡ fi(t,u(t), z). By definition, σ ∈ ΠL
i (t,v,w). Moreover,

|σ − φ̇i(t)| = |fi(t,u(t), z) − fi(t,u(t),φ(t))|, (3.24)

≤ αf(t)‖φ(t) − z‖∞, (3.25)

≤ α(t) max (‖max(0,v − φ(t))‖∞, ‖max(0,φ(t) −w)‖∞) . (3.26)

This proves Condition 1 of Hypothesis 3.5.1, and Condition 2 follows by an analogous

argument.

It is important to note that Hypothesis 3.5.2 only implies Hypothesis 3.5.1 when
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f satisfies the Lipschitz condition of Assumption 3.2.2. The following Hypothesis is

an alternative to Hypothesis 3.5.2 that is sometimes easier to confirm.

Hypothesis 3.5.3. The following conditions hold for all i ∈ {1, . . . , nx}:

1. Let (t,v,w) ∈ I×Rnx×Rnx . If ∃(u,x0) ∈ U×X0 satisfying v ≤ x(t,u,x0) ≤ w

and xi(t,u,x0) = vi, then (t,v,w) ∈ DΩ and x(t,u,x0) ∈ ΩL
i (t,v,w). If

∃(u,x0) ∈ U × X0 satisfying v ≤ x(t,u,x0) ≤ w and xi(t,u,x0) = wi, then

(t,v,w) ∈ DΩ and x(t,u,x0) ∈ ΩU
i (t,v,w).

2. Let (t,v,w) ∈ DΩ. ΩL
i (t,v,w) and ΩU

i (t,v,w) are nonempty and compact.

3. Let (t̂, v̂, ŵ) ∈ DΩ. There exists η, L > 0 such that

dH(ΩL
i (t,v1,w1),Ω

L
i (t,v2,w2)) ≤ Lmax (‖v1 − v2‖∞, ‖w1 − w2‖∞) ,

for every (v1,w1), (v2,w2) ∈ Bη((v̂, ŵ)) and a.e. t ∈ [t̂, t̂+η) such that (t,v1,w1), (t,v2,w2) ∈
DΩ. The analogous condition holds for ΩU

i .

Lemma 3.5.3. Hypothesis 3.5.3 implies Hypothesis 3.5.2.

Proof. Suppose that Hypothesis 3.5.3 holds. Choose any (t̂, v̂, ŵ) ∈ I × Rnx × Rnx

and (u,x0) ∈ U × X0 such that x ≡ x(·,u,x0) satisfies v̂ ≤ x(t̂) ≤ ŵ and either

xi(t̂) = v̂i or xi(t̂) = ŵi for at least one i ∈ {1, . . . , nx}. By Condition 1 of Hypothesis

3.5.3, we must have (t̂, v̂, ŵ) ∈ DΩ. Then, let ηΩ, LΩ > 0 be constants satisfying

Condition 3 of Hypothesis 3.5.3.

Let L = LΩ. Noting that min(v̂,x(t̂)) = v̂ and max(ŵ,x(t̂)) = ŵ, choose η ∈
(0, ηΩ] small enough that

(min(v,x(t)),max(w,x(t))) ∈ BηΩ((v̂, ŵ)), (3.27)

for all (v,w) ∈ Bη((v̂, ŵ)) and every t ∈ [t̂, t̂+ η). It will be shown that Hypothesis

3.5.2 holds with these definitions.

Choose any (v,w) ∈ Bη((v̂, ŵ)). To show Condition 1 of Hypothesis 3.5.2, choose

any t ∈ [t̂, t̂+ η) such that (t,v,w) ∈ DΩ and suppose that xi(t) < vi. It follows that
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xi(t) = min(vi, xi(t)). Noting that min(v,x(t)) ≤ x(t) ≤ max(w,x(t)), Condition

1 of Hypothesis 3.5.3 implies that (t,min(v,x(t)),max(w,x(t))) ∈ DΩ and x(t) ∈
ΩL
i (t,min(v,x(t)),max(w,x(t))).

Condition 3 of Hypothesis 3.5.3 can now be applied with (v1,w1) = (v,w) and

(v2,w2) = (min(v,x(t)),max(w,x(t))) to give

dH(ΩL
i (t,v,w),ΩL

i (t,min(v,x(t)),max(w,x(t)))), (3.28)

≤ LΩ max (‖v − min(v,x(t))‖∞, ‖w − max(w,x(t))‖∞) ,

= LΩ max (‖max(0,v − x(t))‖∞, ‖max(0,x(t) −w)‖∞) .

It was argued above that x(t) ∈ ΩL
i (t,min(v,x(t)),max(w,x(t))). Moreover,

ΩL
i (t,v,w) is nonempty and compact by Condition 2 of Hypothesis 3.5.3. It then

follows from the definition of the Hausdorff metric that ∃z ∈ ΩL
i (t,v,w) such that

‖x(t) − z‖∞ ≤ LΩ max (‖max(0,v − x(t))‖∞, ‖max(0,x(t) − w)‖∞) . (3.29)

This establishes Condition 1 of Hypothesis 3.5.2. Condition 2 is proven analogously.

In light of Theorem 3.5.1 and the previous two lemmas, the following result is now

apparent.

Theorem 3.5.4. Let v,w ∈ AC(I,Rnx) satisfy

(EX): For every t ∈ I and every index i,

1. (t,v(t),w(t)) ∈ DΩ,

2. ΩL
i (t,v(t),w(t)) ⊂ D and ΩU

i (t,v(t),w(t)) ⊂ D.

(IC): v(t0) ≤ x0 ≤ w(t0), ∀x0 ∈ X0.

(RHS): For a.e. t ∈ I and each index i,

1. v̇i(t) ≤ fi(t,p, z) for all z ∈ ΩL
i (t,v(t),w(t)) and p ∈ U ,
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2. ẇi(t) ≥ fi(t,p, z) for all z ∈ ΩU
i (t,v(t),w(t)) and p ∈ U .

If either Hypothesis 3.5.2 or Hypothesis 3.5.3 holds, then v(t) ≤ x(t,u,x0) ≤ w(t),

∀(t,u,x0) ∈ I × U ×X0.

3.5.2 Computation of State Bounds

This section briefly describes how state bounds can be computed using Theorem 3.5.4.

The formulations presented here will be made more precise for the specific instances

of Theorem 3.5.4 given in §3.6.

For each index i, let f
i
, f i : I × U ×D → R and consider the coupled system of

ODEs described by

v̇i(t) =min
(p,z)

f
i
(t,p, z) , vi(t0) = min

z∈X0

zi, (3.30)

s.t. z ∈ ΩL
i (t,v(t),w(t)), p ∈ U

ẇi(t) =max
(p,z)

f i(t,p, z) , wi(t0) = max
z∈X0

zi,

s.t. z ∈ ΩU
i (t,v(t),w(t)), p ∈ U

for a.e. t ∈ I and every index i. Of course, some regularity will be required of f
i
and

f i, as well as ΩL
i and ΩU

i , in order for this system to have a well-defined solution.

However, if (3.30) does permit a solution, and f
i

and f i are chosen appropriately,

then this solution provides state bounds for (3.2).

Corollary 3.5.5. Suppose that v,w ∈ AC(I,Rnx) satisfy (3.30) for a.e. t ∈ I.

Further, suppose that, for a.e. t ∈ I and every index i, the functions f
i
and f i are such

that f
i
(t,p, z) ≤ fi(t,p, z), ∀(p, z) ∈ U×ΩL

i (t,v(t),w(t)) and fi(t,p, z) ≤ f i(t,p, z),

∀(p, z) ∈ U × ΩU
i (t,v(t),w(t)). If either Hypothesis 3.5.2 or Hypothesis 3.5.3 holds,

then v(t) ≤ x(t,u,x0) ≤ w(t), ∀(t,u,x0) ∈ I × U ×X0.

Proof. It follows immediately from (3.30) and the assumptions on the functions f
i
and

f i that Hypotheses (IC) and (RHS) of Theorem 3.5.4 are satisfied. Furthermore, if v

and w satisfy (3.30) on I, then they must remain in the domains of definition of the
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functions appearing in the right-hand sides of (3.30) . In particular, (t,v(t),w(t)) ∈
DΩ and Ω

L/U
i (t,v(t),w(t)) ⊂ D for all t ∈ I and every index i. Then v and w also

satisfy Hypothesis (EX) of Theorem 3.5.4, and the conclusion follows.

Note that one possible choice of f
i
and f i that is guaranteed to satisfy Corollary

3.5.5 is f
i

= f i = fi, for each i. However, this makes solving the optimization

problems defining the right-hand sides of (3.30) prohibitively expensive in general.

As with Harrison’s method, it is possible to greatly simplify (3.30) through the use of

interval extensions. For this implementation, the following assumptions are required.

Assumption 3.5.6.

1. U and X0 are nu and nx-dimensional intervals, respectively.

2. An inclusion monotonic interval extension for f , [f ] : Df ⊂ II×IU×ID → IRnx

is available.

Assumption 3.5.7. ΩL
i ,Ω

U
i : DΩ → IRnx for all i ∈ {1, . . . , nx}.

Under Assumptions 3.5.6 and 3.5.7, the basic interval implementation of Theorem

3.5.4 is given by the ODEs

v̇i(t) = [fi]
L([t, t], U,ΩL

i (t,v(t),w(t))), (3.31)

ẇi(t) = [fi]
U([t, t], U,ΩU

i (t,v(t),w(t))),

[vi(t0), wi(t0)] = X0,i,

for a.e. t ∈ I and each index i.

Corollary 3.5.8. Suppose that Assumptions 3.5.6 and 3.5.7 hold and let v,w ∈
AC(I,Rnx) satisfy (3.31) a.e. on I. If either Hypothesis 3.5.2 or Hypothesis 3.5.3

holds, then v(t) ≤ x(t,u,x0) ≤ w(t), ∀(t,u,x0) ∈ I × U ×X0.

Proof. Since v and w satisfy (3.31) on I, they must remain in the domains of def-

inition of the right-hand side functions. It follows that (t,v(t),w(t)) ∈ DΩ and

([t, t], U,Ω
L/U
i (t,v(t),w(t))) ∈ Df , ∀t ∈ I and every i. The latter implies that
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Ω
L/U
i (t,v(t),w(t)) ⊂ D, ∀t ∈ I and every i, and hence Hypothesis (EX) of The-

orem 3.5.4 holds. Hypotheses (IC) of Theorem 3.5.4 is satisfied by (3.31). Finally,

Hypothesis (RHS) is satisfied by (3.31) and the enclosure property of inclusion mono-

tonic interval extensions (Theorem 2.3.4). The conclusion now follows from Theorem

3.5.4.

The existence of a unique solution of (3.31) can be guaranteed, at least locally

about t0, provided that the following regularity assumptions hold.

Assumption 3.5.9.

1. [f ] is continuous on Df .

2. Let i ∈ {1, . . . , nx} and let (t̂, Ẑ) ∈ I × IRnx satisfy ([t̂, t̂], U, Ẑ) ∈ Df . There

exists η, L > 0 such that

dH([fi]([t, t], U, Z1), [fi]([t, t], U, Z2)) ≤ LdH(Z1, Z2),

∀(Z1, Z2) ∈ Bη(Ẑ) and every t ∈ [t̂, t̂+ η) such that ([t, t], U, Z1), ([t, t], U, Z2) ∈
Df .

Assumption 3.5.10. For all i ∈ {1, . . . , nx}, ΩL
i ,Ω

U
i : DΩ → IRnx are continuous.

Lemma 3.5.11. Suppose that Assumptions 3.5.6, 3.5.9, 3.5.10 and Hypothesis 3.5.3

hold. If there exists an open set B ⊂ D, a number ǫ > 0, and an interval J ≡ [t0, t0+ǫ]

satisfying

1. J × Bǫ((x
L
0 ,x

U
0 )) ⊂ DΩ,

2. IJ × IU × IB ⊂ Df ,

3. Ω
L/U
i (t0,x

L
0 ,x

U
0 ) ⊂ B for all i ∈ {1, . . . , nx},

then there exists I ′ = [t0, t0 + η] ⊂ I, η > 0, and two functions v,w ∈ AC(I ′,Rnx)

satisfying (3.31) for a.e. t ∈ I ′. Moreover, this solution is unique.
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Proof. Choose any i ∈ {1, . . . , nx} and let ηΩ, LΩ > 0 be the constants of Condition

3 of Hypothesis 3.5.3 with (t̂, v̂, ŵ) ≡ (t0,x
L
0 ,x

U
0 ). By hypothesis, ΩL

i (t0,x
L
0 ,x

U
0 ) ⊂

B and hence ([t0, t0], U,Ω
L
i (t0,x

L
0 ,x

U
0 )) ∈ Df . Let ηf , Lf > 0 be the constants of

Condition 2 of Assumption 3.5.9 with (t̂, Ẑ) ≡ (t0,Ω
L
i (t0,x

L
0 ,x

U
0 )).

By Assumption 3.5.10, we may choose γ ∈ (0,min(ǫ, ηΩ, ηf)] so small that ΩL
i

maps [t0, t0 + γ] × Bγ((x
L
0 ,x

U
0 )) into B ∩ Bηf

(ΩL
i (t0,x

L
0 ,x

U
0 )). Then, Condition 1 of

Assumption 3.5.9 implies that the mapping (t,v,w) 7−→ [fi]
L([t, t], U,ΩL

i (t,v,w)) is

defined and continuous on [t0, t0 + γ] × Bγ((x
L
0 ,x

U
0 )). Moreover,

|[fi]L([t, t], U,ΩL
i (t,v1,w1))−[fi]

L([t, t], U,ΩL
i (t,v2,w2))|

≤ LfdH(ΩL
i (t,v1,w1),Ω

L
i (t,v2,w2)),

≤ LfLΩ max (‖v1 − v2‖∞, ‖w1 −w2‖∞) ,

for every (v1,w1), (v2,w2) ∈ Bγ((x
L
0 ,x

U
0 )) and a.e. t ∈ [t0, t0 + γ].

Repeating this argument for ΩU
i and all i ∈ {1, . . . , nx}, it is possible to choose

γ so small that the right-hand sides of the ODEs (3.31) are defined and continuous

on [t0, t0 + γ]×Bγ((x
L
0 ,x

U
0 )), and Lipschitz on Bγ((x

L
0 ,x

U
0 )) uniformly on [t0, t0 + γ].

Then, the existence and uniqueness of a solution of (3.31) on some [t0, t0 + η] ⊂ I

follows from Theorem 3.1 in [91].

3.5.3 Recovering Harrison’s Method

Consider again the standard case where no a priori enclosure is available. To recover

Theorem 3.3.2 and Harrison’s method from Theorem 3.5.4 and (3.31), we need only

define DΩ, ΩL
i and ΩU

i appropriately and check Hypothesis 3.5.3.

Consider the definitions

DΩ ≡ {(t,v,w) ∈ I × Rnx × Rnx : v ≤ w}, (3.32)

ΩL
i (t,v,w) ≡ BLi ([v,w]),

ΩU
i (t,v,w) ≡ BUi ([v,w]).
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Let (t,v,w) ∈ I × Rnx × Rnx and suppose there exists (u,x0) ∈ U × X0 satisfying

x(t,u,x0) ∈ [v,w] and xi(t,u,x0) = vi. Then clearly v ≤ w, and hence (t,v,w) ∈
DΩ. Furthermore, x(t,u,x0) ∈ BLi ([v,w]). Thus, Condition 1 of Hypothesis 3.5.3

holds. Since each ΩL
i (t,v,w) and ΩU

i (t,v,w) maps into IRnx , Condition 2 holds as

well. Condition 3 holds since

dH
(

ΩL
i (t,v,w),ΩL

i (t,v
′,w′)

)

= max

(

max
j

|vj − v′j |,max
j 6=i

|wj − w′
j |
)

,

for all (t,v,w), (t,v′,w′) ∈ DΩ (analogous arguments hold for ΩU
i ). Now, Theorem

3.5.4 reduces to Theorem 3.3.2, and the interval implementation (3.31) reduces to

Harrison’s method.

3.5.4 Extending DΩ

In the definitions (3.32), DΩ is not open with respect to variations in (v,w) with t

fixed. This also turns out to be the case for many of the more obvious definitions

of DΩ, ΩL
i and ΩU

i making use of a priori enclosures in §3.6. In general, this is

undesirable for two reasons. First, Hypothesis 1 of Lemma 3.5.11 will not hold in

general, so this result cannot be used to guarantee that the ODEs (3.31) have a

solution. Second, it potentially causes problems when solving (3.31) numerically.

Fortunately, Hypothesis 3.5.3 allows considerable freedom in the choice of DΩ, ΩL
i

and ΩU
i , so that this problem can almost always be avoided. In the case where no a

priori enclosure is used, a better definition can be obtained through the use of the �

mapping defined in Definition 2.5.17.

Consider the definitions

DΩ ≡ I × Rnx × Rnx , (3.33)

ΩL
i (t,v,w) ≡ BLi (�(v,w)),

ΩU
i (t,v,w) ≡ BUi (�(v,w)).

As with the definitions (3.32), it is straightforward to show that Hypothesis 3.5.3 holds
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with the definitions (3.33). Then, using (3.31), these definitions provide a variant of

Harrison’s method that is theoretically and numerically better behaved. They also

provide an interesting variant of Theorem 3.3.2 where, notably, Hypothesis (EX) no

longer requires that v(t) ≤ w(t), ∀t ∈ I. This does not contradict Example 3.3.2

because the hypothesis (RHS) is strengthened under the definitions (3.33).

Corollary 3.5.12. Let DΩ, ΩL
i and ΩU

i be defined by (3.33). Let Assumptions 3.5.6

and 3.5.9 hold. If there exists an open set B ⊂ D, a number ǫ > 0, and an interval

J ≡ [t0, t0 + ǫ] satisfying

1. IJ × IU × IB ⊂ Df ,

2. Ω
L/U
i (t0,x

L
0 ,x

U
0 ) ⊂ B for all i ∈ {1, . . . , nx},

then there exists I ′ = [t0, t0 + η] ⊂ I, η > 0, and a unique solution of (3.31) on t ∈ I ′

satisfying v(t) ≤ x(t,u,x0) ≤ w(t), ∀(t,u,x0) ∈ I ′ × U ×X0.

Proof. Assumption 3.5.10 and Hypotheses 1 of Lemma 3.5.11 both clearly hold. Then,

existence and uniqueness follows from Lemma 3.5.11, and the bounding property from

Corollary 3.5.8.

3.6 State Bounds with a Priori Enclosures

In this section, it is again assumed that, by physical or mathematical arguments,

x(t,u,x0) is known a priori to lie in some crude enclosure G ⊂ Rnx, for all (t,u,x0) ∈
I×U×X0. We consider the use of such information in the context of Theorem 3.5.4 to

derive state bounds under much weaker hypotheses than those required by Theorem

3.3.2. In most of the cases considered, efficient methods for computing these improved

bounds follow directly from Corollary 3.5.8.

Because the functions ΩL
i and ΩU

i in Theorem 3.5.4 are permitted to vary with

t, it is possible to handle the more general situation where G : I → P(Rnx) and

x(t,u,x0) ∈ G(t), for all (t,u,x0) ∈ I × U ×X0. One example of this is considered

in §3.7.
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3.6.1 An Interval Approach for General Enclosures

Consider an arbitrary a priori enclosure G and suppose that the following mapping

is available.

Definition 3.6.1. Let DI ⊂ IRnx be such that {Z ∈ IRnx : Z ∩ G 6= ∅} ⊂ DI , and

let IG : DI → IRnx satisfy

1. IG(Z) ⊂ Z for all Z ∈ DI with Z ∩G 6= ∅,

2. for any Z ∈ DI , if z ∈ Z and z /∈ IG(Z), then z /∈ G,

3. for every Ẑ ∈ DI , ∃η, L > 0 such that dH(IG(Z1), IG(Z2)) ≤ LIdH(Z1, Z2), for

all Z1, Z2 ∈ DI ∩Bη(Ẑ).

In words, IG is a locally Lipschitz interval mapping which tightens a given interval

Z by discarding points which are not in G. We show that Hypothesis 3.5.3 holds with

DΩ ≡ {(t,v,w) ∈ I × Rnx × Rnx : �(v,w) ∈ DI}, (3.34)

ΩL
i (t,v,w) ≡ BLi (IG(�(v,w))),

ΩU
i (t,v,w) ≡ BUi (IG(�(v,w))).

To show Condition 1 of Hypothesis 3.5.3, let (t,v,w) ∈ I×Rnx×Rnx and suppose that

there exists (u,x0) ∈ U ×X0 such that x(t,u,x0) ∈ [v,w]. Then [v,w] ∩G 6= ∅ and

hence [v,w] ∈ DI , so that (t,v,w) ∈ DΩ. Further, x(t,u,x0) ∈ [v,w]∩G implies that

x(t,u,x0) ∈ IG(�(v,w)) by the contrapositive of Condition 2 in Definition 3.6.1. If in

addition xi(t,u,x0) = vi for some i, then x(t,u,x0) ∈ BLi (IG(�(v,w))) = ΩL
i (v,w)

by Condition 1 in Definition 3.6.1. Condition 2 of Hypothesis 3.5.3 is true because

each ΩL
i and ΩU

i maps into IRnx . By Lemma 2.5.19 and Condition 3 in Definition

3.6.1, it is clear that each ΩL
i and ΩU

i is a composition of locally Lipschitz functions,

so that Condition 3 of Hypothesis 3.5.3 holds as well.

By Corollary 3.5.8, state bounds for (3.2) are given by the solutions of (3.31) with

the definitions (3.34). Thus, if a suitable mapping IG can be derived, an enclosure
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of the reachable set of (3.2) which takes advantage of an arbitrary a priori enclosure

can be computed efficiently using interval computations.

Remark 3.6.2. Solving (3.31) with the definitions (3.34) should be distinguished

from the näıve approach of solving (3.31) with the definitions (3.33) and subsequently

applying IG (or simply intersecting with G). In the former, G is used to prevent

conservatism in the interval enclosure from propagating forward in time, resulting

in a much tighter enclosure. Interested readers should also note that, in contrast to

Harrison’s method, the validity of the method presented here does not follow readily

from the standard results of viability theory, since it was not required that G be an

invariance domain and hence no assumption was made concerning the values of f on

∂([v(t),w(t)]∩G). These observations hold equally for all methods in the remainder

of §3.6.

If IG is defined on all of IRnx , then another valid bounding method results from

inverting the order of the operations BL/Ui and IG in (3.34). To verify this, we need

only show that Hypotheses 3.5.3 holds with

DΩ ≡ I × Rnx × Rnx , (3.35)

ΩL
i (t,v,w) ≡ IG(BLi (�(v,w))),

ΩU
i (t,v,w) ≡ IG(BUi (�(v,w))).

The mapping IG(BL/Ui (·)) is defined on IRnx and maps into IRnx in a locally Lipschitz

manner by Condition 3 of Definition 3.6.1. Further, for any (t,v,w) ∈ I×Rnx ×Rnx ,

if there exists (u,x0) ∈ U ×X0 satisfying x(t,u,x0) ∈ [v,w] and xi(t,u,x0) = vi for

some i, then x(t,u,x0) is in BLi (�(v,w)) and hence in IG(BLi (�(v,w))) by Condition

2 of Definition 3.6.1. Thus, Hypotheses 3.5.3 holds and Corollary 3.5.8 shows that

the solutions of (3.31) with the definitions (3.35) are state bounds for (3.2).

Evaluating Ω
L/U
i in (3.35) requires 2nx evaluations of IG, as opposed to only one

for the definitions in (3.34). However, the former is much more effective because IG
operates on each face of [v(t),w(t)] independently.
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3.6.2 An Interval Approach for Convex Polyhedra

Suppose thatG ≡ {z : Az ≤ b}, with A ∈ Rm×nx and b ∈ Rm. One possible mapping

IG is constructed as follows. Denote the kth row of A by Ak and the elements by

ak,i. It is desirable to tighten a given interval [v,w] by excluding only points which

violate Akz − bk ≤ 0 for at least one k. Supposing that ak,i > 0, rearranging this

inequality for zi and applying interval arithmetic to bound the right-hand side from

above gives

zi ≤
1

ak,i

(

∑

j 6=i

max (−ak,jvj,−ak,jwj) + bk

)

. (3.36)

If (3.36) is satisfied with wi on the left-hand side, then wi cannot be tightened without

excluding points which satisfy Akz − bk ≤ 0. On the other hand, if (3.36) is false

with vi on the left-hand side, then no element of [v,w] satisfies Akz− bk ≤ 0 and the

assignment wi := vi only eliminates points violating Akz − bk ≤ 0 from the resulting

interval. Finally, if (3.36) is false with wi on the left-hand side, then no vector

z ∈ [v,w] with zi = wi can possibly satisfy Akz − bk ≤ 0, and the assignment wi :=

1
ak,i

(

∑

j 6=i max (−ak,jvj ,−ak,jwj) + bk

)

only eliminates points violating Akz− bk ≤ 0

from the resulting interval. Applying the same logic to the case where ak,i < 0, it can

be seen that Definition 3.6.1 is satisfied by the following mapping.

Definition 3.6.3. Define IG for any [v,w] ∈ DI ≡ IRnx by the procedure:

1. Assign [v̂, ŵ] := [v,w], set k = 1 and set i = 1.

2. If ak,i = 0, go to 3. Let γ be the middle value of v̂i, ŵi and

1
ak,i

(

∑

j 6=i max(−ak,j v̂j,−ak,jŵj) + bk

)

.

If ak,i > 0, set ŵi := γ. If ak,i < 0, set v̂i := γ.

3. If k < m, set k := k + 1 and go to 2.

4. If i < nx, set k := 1 and i := i+ 1 and go to 2.

5. Set IG([v,w]) := [v̂, ŵ].
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x1

x2

x1

x2

Figure 3-2: Schematic representation of the bounds tightening procedure described in
Definition 3.6.3. Shaded regions depict G; boxes depict hypothetical intervals [v,w].
Left: [v,w] is not entirely contained within the shaded region, yet no bound can be
refined without excluding points in [v,w] ∩ G. Right: w1 may be reduced to the
dashed line without excluding any point in [v,w] ∩G.

The bounds tightening procedure described in Definition 3.6.3 is represented

schematically in Figure 3-2. In each panel, the shaded region depicts G, while the

boxes depict hypothetical intervals [v,w]. On the left, [v,w] is not entirely contained

within the shaded region, yet no bound can be refined without excluding points in

[v,w] ∩G. Alternatively, the right-hand schematic shows a situation where w1 may

be reduced to the dashed line without excluding any point in [v,w] ∩G.

With Definition 3.6.3, Conditions 1 and 2 of Definition 3.6.1 are satisfied by con-

struction. Noting that the function mid(a, b, c), which returns the middle value of

its arguments, is Lipschitz on R3 with constant 1, Condition 3 can be verified by

observing that IG is computed by executing a finite number of operations on v and

w, each of which is clearly Lipschitz (addition, constant multiplication, mid, etc.).

Thus, two bounding methods result from Definition 3.6.3; one through the definitions

(3.34), and the other through the definitions (3.35). In practice, we find that the

additional cost associated with (3.35) is far outweighed by the quality of the resulting

enclosures. This method is demonstrated in Chapter 4.
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3.6.3 An Optimization Approach for Convex Polyhedra

Consider again the case where G is a convex polyhedral set, G ≡ {z : Az ≤ b}.
Another useful instance of Theorem 3.5.4 follows from the definitions

DΩ ≡ {(t,v,w) ∈ I × Rnx × Rnx : [v,w] ∩G 6= ∅}, (3.37)

ΩL
i (t,v,w) ≡

{

z ∈ [v,w] ∩G : zi = min
ψ∈[v,w]∩G

ψi

}

,

ΩU
i (t,v,w) ≡

{

z ∈ [v,w] ∩G : zi = max
ψ∈[v,w]∩G

ψi

}

.

Let (t,v,w) ∈ I×Rnx ×Rnx , and define v∗i (t,v,w) ≡ minψ∈[v,w]∩G ψi. Condition 1 of

Hypothesis 3.5.3 holds because, if x(t,u,x0) ∈ [v,w] for some (u,x0) ∈ U ×X0, then

x(t,u,x0) ∈ [v,w] ∩G by the definition of G, so (t,v,w) ∈ DΩ. Further, combining

x(t,u,x0) ∈ [v,w] ∩ G with xi(t,u,x0) = vi implies that v∗i (t,v,w) ≤ xi(t,u,x0) =

vi ≤ v∗i (t,v,w), so that x(t,u,x0) ∈ ΩL
i (t,v,w).

Since each ΩL
i (t,v,w) and ΩU

i (t,v,w) is a nonempty, bounded polyhedral set,

Condition 2 of Hypothesis 3.5.3 also holds. To show Condition 3, the following

Theorem is required.

Theorem 3.6.4. Fix any A ∈ Rm×n and c ∈ Rn and, for each b ∈ Rm, define S(b) ≡
{z : Az ≤ b} and S∗(b) ≡ arg minz∈S(b)c

Tz. ∃L ∈ R+ such that dH(S(b), S(b′)) ≤
L‖b − b′‖∞ and dH(S∗(b), S∗(b′)) ≤ L‖b − b′‖∞, ∀b,b′ ∈ Rm, provided that these

sets are nonempty.

Proof. See Theorems 2.2 and 2.4 in [115].

Theorem 3.6.4 shows that v∗i (t,v,w) is a Lipschitz mapping on DΩ because v and

w only effect the right-hand side data of the linear program minψ∈[v,w]∩G ψi. Then,

noting that ΩL
i (t,v,w) = {z ∈ [v,w] ∩ G : zi = v∗i (t,v,w)}, a second application of

Theorem 3.6.4 gives

dH(ΩL
i (t,v,w),ΩL

i (t,v
′,w′)) ≤ L1 (‖v − v′‖∞ + ‖w − w′‖∞ + |v∗i (t,v,w) − v∗i (t,v

′,w′)|)

≤ L1L2 (‖v − v′‖∞ + ‖w − w′‖∞) ,

159



for all (t,v,w), (t,v′,w′) ∈ DΩ.

Now by Theorem 3.5.4 and Corollary 3.5.5, if the functions f
i
and f i are chosen

appropriately, state bounds are given by the solutions, if any, of the system of ODEs:

v̇i(t) = min
(p,z)

f
i
(t,p, z) , vi(t0) = min

z∈X0

zi, (3.38)

s.t. z ∈ [v(t),w(t)] ∩G, p ∈ U

zi = min
ψ∈[v(t),w(t)]∩G

ψi

ẇi(t) = max
(p,z)

f i(t,p, z) , wi(t0) = max
z∈X0

zi,

s.t. z ∈ [v(t),w(t)] ∩G, p ∈ U

zi = max
ψ∈[v(t),w(t)]∩G

ψi

for a.e. t ∈ I and each i. In the case where U and X0 are convex polyhedral sets

and f
i

and f i are chosen as affine relaxations of fi for each i, evaluating the right-

hand sides of (3.38) requires solving 2nx bilevel linear programs. Thus, solving (3.38)

computationally might seem impractical. On the other hand, the right-hand sides of

(3.38) could in principle be reformulated as linear complementarity systems, for which

efficient numerical solution seems possible. At present, there is no such numerical

solver available, and the details of numerically implementing (3.38) are left for future

consideration.

3.6.4 Comparison with Existing Results

As discussed in §3.4, the idea of including physical information in differential inequal-

ities bounding methods is due to [162]. In that article, a method was developed for

using interval a priori enclosures. To compare with the present developments, we let

G ≡ [gL, gU ] ∈ IRnx , which is indeed a convex polyhedral set, and apply the methods

of §3.6.2. With IG defined as in Definition 3.6.3, it is easily verified that both (3.34)
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and (3.35) specify

ΩL
i (t,v,w) ≡ BLi ([v,w]) ∩G, (3.39)

ΩU
i (t,v,w) ≡ BUi ([v,w]) ∩G,

provided that v ≤ w and the above intersections are nonempty. These definitions also

describe the method in [162]. However, while both (3.34) and (3.35) are well defined

in the case of empty intersections, the proof in [162] is not clear on the appropriate

action in this case. The text in [162] states that the choice of v̇i (or ẇi(t)) is arbitrary

in such cases. Though this is not justified in [162], it is proven in §3.7 below. Finally,

note that the results in [162] were proven for parametric ODEs, while the present

results provide the extension to control systems.

3.7 Differential Inequalities with Switching Con-

ditions

Recall Hypothesis (RHSa) discussed in §3.4. In that section, it was shown that the

standard comparison theorem, Theorem 3.3.2, does not hold with (RHSa) in place

of (RHS), at least for some sets G. One of the primary complications leading to

this situation is that the sets over which the differential inequalities in (RHSa) must

hold can be empty. Theoretically, this causes problems because it trivializes the

hypothesis; no meaningful condition is imposed on the corresponding v̇i or ẇi in such

situations. However, it turns out that it is not necessary for all 2nx of the conditions

making up a (RHS) type hypothesis to hold for all t ∈ I.

In this section, we reproduce the derivation of the general comparison theorem of

§3.5, only this time with an additional feature. It will be permissible that some or all

of the 2nx conditions in the (RHS) hypothesis, for at least some t, are inactive; i.e.

simply do not hold. Given this possibility, we derive general requirements governing

which of these conditions must hold, and when, so that a correct comparison theorem

is nonetheless achieved.
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3.7.1 Preliminaries

The following lemma and corollary are generalizations of Lemma 3.3.5 and Corollary

3.3.6.

Lemma 3.7.1. Let δ : I → Rn be a continuous function with δ(t0) ≤ 0. Suppose

∃t ∈ I such that δi(t) > 0 for at least one i ∈ {1, . . . , n}, and define t1 ≡ inf{t ∈ I :

δ(t) 6≤ 0}. Then

1. t0 ≤ t1 < tf and δ(t) ≤ 0, ∀t ∈ [t0, t1].

2. The set V ≡ {i : ∀γ > 0, ∃t ∈ (t1, t1 + γ] s.t. δi(t) > 0} is nonempty.

Let t4 ∈ (t1, tf ], ǫ > 0, β ∈ L1([t1, t4]), and let A be a subset of {1, . . . , n} containing

at least one element of V. Then there exists an index j ∈ A, a non-decreasing function

ρ ∈ AC([t1, t4],R) satisfying (3.7) on [t1, t4], and numbers t2, t3 ∈ [t1, t4] with t2 < t3

such that the following inequalities hold:

δi(t) < ρ(t), ∀t ∈ [t2, t3), ∀i ∈ A, (3.40)

0 < δj(t), ∀t ∈ (t2, t3),

δj(t3) = ρ(t3),

δj(t2) = 0.

Proof. Conclusions 1 and 2 follow from Lemma 3.3.5. Choose any t4 ∈ (t1, tf ], ǫ > 0,

β ∈ L1([t1, t4]) and A as in the statement of the lemma. Choose m so that ∃t ∈ [t1, t4]

with δi(t) ≥ m > 0, for some i ∈ A. This must be possible since A contains an element

of V. By Lemma 3.3.4, there exists a non-decreasing function ρ ∈ AC([t1, t4],R)

satisfying

0 < ρ(t) ≤ min(m/2, ǫ), ∀t ∈ [t1, t4], and ρ̇(t) > |β(t)|ρ(t), a.e. t ∈ [t1, t4].

Let t3 ≡ inf{t ∈ [t1, t4] : δi(t) ≥ ρ(t) for at least one i ∈ A}. Since ρ < m, this set

is nonempty. Because t3 is a lower bound, δi(t) < ρ(t), ∀i ∈ A, for all t ∈ [t1, t4] with
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t < t3. Since t3 is the greatest lower bound, δj(t3) = ρ(t3) for at least one j ∈ A.

Since δ(t1) ≤ 0, it follows that t3 ∈ (t1, t4].

Fix any j such that δj(t3) = ρ(t3) and let t2 ≡ sup{t ∈ [t1, t3] : δj(t) ≤ 0}. Since

δj(t1) ≤ 0, this set is nonempty. Because t2 is an upper bound, δj(t) > 0 for all

t ∈ [t1, t3] with t > t2. Because it is the least upper bound, δj(t2) = 0. It follows that

t2 ∈ [t1, t3).

Corollary 3.7.2. Let φ,v,w : I → Rn be continuous and satisfy v(t0) ≤ φ(t0) ≤
w(t0). Suppose ∃t ∈ I such that either φi(t) < vi(t) or φi(t) > wi(t), for at least one

i ∈ {1, . . . , n}, and define

t1 ≡ inf{t ∈ I : φi(t) < vi(t) or φi(t) > wi(t), for at least one i}. (3.41)

Then

1. t0 ≤ t1 < tf and v(t) ≤ φ(t) ≤ w(t), ∀t ∈ [t0, t1].

2. At least one of the sets

VL ≡ {i : ∀γ > 0, ∃t ∈ (t1, t1 + γ] s.t. φi(t) < vi(t)},

VU ≡ {i : ∀γ > 0, ∃t ∈ (t1, t1 + γ] s.t. φi(t) > wi(t)},

is nonempty.

Let t4 ∈ (t1, tf ], ǫ > 0, β ∈ L1([t1, t4]), and let AL and AU be subsets of {1, . . . , n}
such that, either AL∩VL 6= ∅ or AU ∩VU 6= ∅. Then there exists j ∈ AL (or j ∈ AU),

a non-decreasing function ρ ∈ AC([t1, t4],R) satisfying (3.7) on [t1, t4], and numbers

t2, t3 ∈ [t1, t4] with t2 < t3 such that

φi(t) > vi(t) − ρ(t), ∀t ∈ [t2, t3), ∀i ∈ AL, (3.42)

φi(t) < wi(t) + ρ(t), ∀t ∈ [t2, t3), ∀i ∈ AU , (3.43)

163



and

φj(t2) = vj(t2), φj(t3) = vj(t3) − ρ(t3), and φj(t) < vj(t), (3.44)
(

or φj(t2) = wj(t2), φj(t3) = wj(t3) + ρ(t3), and φj(t) > wj(t),
)

(3.45)

for all t ∈ (t2, t3).

Proof. Define δ : I → R2n by δ(t) ≡ (v(t) − φ(t),φ(t) −w(t)), ∀t ∈ I. By hypothe-

sis, δ(t0) ≤ 0, and ∃t ∈ I such that δi(t) > 0 for at least one i. The conclusion now

follows from Lemma 3.7.1.

3.7.2 A General Comparison Theorem with Switching Con-

ditions

Let DΠ ⊂ I × Rn × Rn and, for every i ∈ {1, . . . , n}, let ΠL
i ,Π

U
i : DΠ → P(R) and

sLi , s
U
i : DΠ → R. Here, the mappings ΠL

i and ΠU
i will play exactly the same role as

they did in §3.5. The new feature is the switching conditions, sLi and sUi , the sign of

which determines whether or not the corresponding differential inequality is required

to hold. For any (t, z,v,w) ∈ I × Rn × Rn × Rn, define the index sets

VL(z,v,w) ≡ {i : zi < vi},

VU(z,v,w) ≡ {i : zi > wi},

AL(t,v,w) ≡ {i : sLi (t,v,w) > 0},

AU(t,v,w) ≡ {i : sUi (t,v,w) > 0}.

The sets VL and VU are the sets of violating indices, respectively. The sets AL and

AU are the sets of active indices.

Let φ ∈ AC(I,Rn). As in §3.5, the problem of bounding φ by two functions

v,w ∈ AC(I,Rn) is considered first. State bounds for the ODEs (3.2) are considered

explicitly in §3.7.3. The following hypothesis gives a minimal set of conditions relating

φ to the functions sLi , s
U
i , ΠL

i and ΠU
i in such a way that Theorem 3.7.4 below holds.
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Hypothesis 3.7.1. Suppose that (t̂, v̂, ŵ) ∈ I ×Rn×Rn satisfies v̂ ≤ φ(t̂) ≤ ŵ and

either φi(t̂) = v̂i or φi(t̂) = ŵi for at least one i ∈ {1, . . . , n}. Then there exists η > 0

and α ∈ L1(I) such that the following conditions hold for every (v,w) ∈ Bη((v̂, ŵ))

and a.e. t ∈ [t̂, t̂+ η) such that (t,v,w) ∈ DΠ:

1. If VL(φ(t),v,w) ∪ VU(φ(t),v,w) 6= ∅, then at least one of the sets

QL(t,v,w) ≡ AL(t,v,w) ∩ VL(φ(t),v,w),

QU(t,v,w) ≡ AU(t,v,w) ∩ VU(φ(t),v,w),

is nonempty.

2. If i ∈ QL(t,v,w), then ∃σ ∈ ΠL
i (t,v,w) such that

|σ − φ̇i(t)| ≤ α(t) max

(

max
i∈QL(t,v,w)

(vi − φi(t)), max
i∈QU (t,v,w)

(φi(t) − wi)

)

. (3.46)

3. If i ∈ QU (t,v,w), then ∃σ ∈ ΠU
i (t,v,w) such that (3.46) holds.

Theorem 3.7.4 requires one further technical assumption concerning transition

times.

Definition 3.7.3. Let v,w ∈ AC(I,Rn) satisfy (t,v(t),w(t)) ∈ DΠ, ∀t ∈ I. Call

t ∈ I a transition time for (v,w) if, for every δ > 0, ∃t′, t′′ ∈ Bδ(t) ∩ I such that

either

AL(t′,v(t′),w(t′)) 6= AL(t′′,v(t′′),w(t′′)), or

AU(t′,v(t′),w(t′)) 6= AU(t′′,v(t′′),w(t′′)).

A general comparison theorem can now be stated in terms of the mappings ΠL
i

and ΠU
i .

Theorem 3.7.4. Let φ,v,w ∈ AC(I,Rn) satisfy

(EX): (t,v(t),w(t)) ∈ DΠ, ∀t ∈ I.
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(IC): v(t0) ≤ φ(t0) ≤ w(t0).

(RHS): For a.e. t ∈ I and each index i,

1. If sLi (t,v(t),w(t)) > 0, then v̇i(t) ≤ σ for all σ ∈ ΠL
i (t,v(t),w(t)),

2. If sUi (t,v(t),w(t)) > 0, then ẇi(t) ≥ σ for all σ ∈ ΠU
i (t,v(t),w(t)).

If Hypotheses 3.7.1 holds and (v,w) has finitely many transition times in I, then

v(t) ≤ φ(t) ≤ w(t), ∀t ∈ I.

Proof. Suppose that ∃t ∈ I such that φi(t) < vi(t) or φi(t) > wi(t), for at least one

i ∈ {1, . . . , n}. We prove a contradiction.

Noting that the hypotheses of Corollary 3.7.2 are satisfied, define t1 as in (3.41).

By Conclusion 1 of Corollary 3.7.2, v(t1) ≤ φ(t1) ≤ w(t1). By continuity and

Conclusion 2 of the same, there must exist at least one i such that either φi(t1) =

vi(t1) or φi(t1) = wi(t1). Let η > 0 and α ∈ L1(I) satisfy Hypothesis 3.7.1 with

(t̂, v̂, ŵ) ≡ (t1,v(t1),w(t1)). Choose t5 ∈ (t1, tf ] small enough that

t ∈ [t1, t1 + η) and (v(t),w(t)) ∈ Bη((v(t1),w(t1))), ∀t ∈ [t1, t5]. (3.47)

Noting that (t,v(t),w(t)) ∈ DΠ for all t ∈ [t1, t5] by Hypothesis (EX), we are now

guaranteed the conditions of Hypothesis 3.7.1 with (t,v,w) ≡ (t,v(t),w(t)), for a.e.

t ∈ [t1, t5].

By hypothesis, there are at most a finite number of transition times in [t1, t5].

Then, there must exist t4 ∈ (t1, t5] such that there are no transition times in (t1, t4].

Let AL and AU denote the constant sets AL(t,v(t),w(t)) and AU(t,v(t),w(t)) on

(t1, t4], respectively. Further, let VL and VU be as in Conclusion 2 of Corollary 3.7.2.

In order to apply that corollary, it will now be shown that one of the sets AL ∩VL or

AU ∩ VU is nonempty.

If i /∈ VL, then t4 may be chosen small enough that i /∈ VL(φ(t),v(t),w(t)),

∀t ∈ (t1, t4]. Using a similar argument for VU , choose t4 small enough that

VL(φ(t),v(t),w(t)) ⊂ VL and VU(φ(t),v(t),w(t)) ⊂ VU , ∀t ∈ (t1, t4]. (3.48)
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Now, Conclusion 2 of Corollary 3.7.2 implies that ∃t ∈ (t1, t4] with at least one

of VL(φ(t),v(t),w(t)) or VU(φ(t),v(t),w(t)) nonempty. Then, using Condition 1 of

Hypothesis 3.7.1 and (3.48), it follows that at least one of the sets AL∩VL or AU∩VU

is nonempty.

We now apply Corollary 3.7.2 with t4, arbitrary ǫ > 0, β = α and AL and AU . This

furnishes an index j ∈ AL (or j ∈ AU), a non-decreasing function ρ ∈ AC([t1, t4],R)

satisfying (3.7) on [t1, t4], and numbers t2, t3 ∈ [t1, t4] with t2 < t3 such that (3.42)-

(3.43) and (3.44) (or (3.45)) hold. Assume that j ∈ AL, so that (3.44) holds. The

proof is analogous if j ∈ AU instead.

For a.e. t ∈ [t2, t3], (3.44) implies that j ∈ VL(φ(t),v(t),w(t)). Furthermore,

j ∈ AL by construction. Then, let σ ∈ ΠL
i (t,v(t),w(t)) satisfy Condition 2 of

Hypothesis 3.7.1. Using Hypotheses (RHS).1,

v̇j(t) − φ̇j(t) ≤ σ − φ̇j(t), (3.49)

≤ |σ − φ̇j(t)|,

≤ α(t) max

(

max
i∈QL(t,v(t),w(t))

(vi(t) − φi(t)), max
i∈QU (t,v(t),w(t))

(φi(t) − wi(t))

)

,

for a.e. t ∈ [t2, t3]. For any i ∈ QL(t,v(t),w(t)), (3.42) ensures that (vi(t) − φi(t)) <

ρ(t). Using an analogous argument for i ∈ QU (t,v(t),w(t)), (3.49) implies

v̇j(t) − φ̇j(t) < α(t)ρ(t), a.e. t ∈ [t2, t3]. (3.50)

Finally, using (3.7) and recalling that we have used β = α, this implies that

v̇j(t) − φ̇j(t) − ρ̇(t) < α(t)ρ(t) − ρ̇(t), (3.51)

< 0, a.e. t ∈ [t2, t3]. (3.52)

By Theorem 3.3.3, this implies that (vj − φj − ρ) is non-increasing on [t2, t3], so

that vj(t3) − φj(t3) − ρ(t3) ≤ vj(t2) − φj(t2) − ρ(t2). But by (3.44), this implies that

0 ≤ −ρ(t2), which contradicts (3.7).
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The following hypothesis eliminates the need to assume a finite number of tran-

sition times in Theorem 3.7.4 by putting much more stringent requirements on the

switching conditions.

Hypothesis 3.7.2. Suppose that (t̂, v̂, ŵ) ∈ I ×Rn×Rn satisfies v̂ ≤ φ(t̂) ≤ ŵ and

either φi(t̂) = v̂i or φi(t̂) = ŵi for at least one i ∈ {1, . . . , n}. Then there exists η > 0

such that, for every (v,w) ∈ Bη((v̂, ŵ)) and a.e. t ∈ [t̂, t̂+η) such that (t,v,w) ∈ DΠ,

VL(φ(t),v,w) ⊂ AL(t,v,w) and VU (φ(t),v,w) ⊂ AU(t,v,w).

Theorem 3.7.5. Let φ,v,w ∈ AC(I,Rn) satisfy

(EX): (t,v(t),w(t)) ∈ DΠ, ∀t ∈ I.

(IC): v(t0) ≤ φ(t0) ≤ w(t0).

(RHS): For a.e. t ∈ I and each index i,

1. If sLi (t,v(t),w(t)) > 0, then v̇i(t) ≤ σ for all σ ∈ ΠL
i (t,v(t),w(t)),

2. If sUi (t,v(t),w(t)) > 0, then ẇi(t) ≥ σ for all σ ∈ ΠU
i (t,v(t),w(t)).

If Hypothesis 3.7.1 and Hypothesis 3.7.2 hold, then v(t) ≤ φ(t) ≤ w(t), ∀t ∈ I.

Proof. The proof is exactly the same as that of Theorem 3.5.1. It is only necessary

to verify that the use of the (RHS) condition on v̇j(t) is valid for a.e. t ∈ [t2, t3]. But

by construction, φj(t) < vj(t). Then, j ∈ VL(φ(t),v,w), and hence in AL(t,v,w) by

Hypothesis 3.7.2.

3.7.3 Specialization to State Bounds for ODEs

Let DΩ ⊂ I × Rnx × Rnx and, for every i ∈ {1, . . . , nx}, let sLi , s
U
i : DΩ → R,

ΩL
i ,Ω

U
i : DΩ → P(Rnx). To specialize Theorem 3.7.4 to the task of characterizing

state bounds for (3.2), let φ ≡ x(·,u,x0), for some (u,x0) ∈ U ×X0, and let ΠL
i and

ΠU
i take the form

ΠL
i (t,v,w) ≡ {fi(t,p, z) : p ∈ U, z ∈ ΩL

i (t,v,w)), (3.53)

ΠU
i (t,v,w) ≡ {fi(t,p, z) : p ∈ U, z ∈ ΩU

i (t,v,w)), (3.54)
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for all (t,v,w) in the set

DΠ ≡ {(t,v,w) ∈ DΩ : Ω
L/U
i (t,v,w) ⊂ D, i = 1, . . . , nx}. (3.55)

It will be shown that Hypothesis 3.7.1 is ensured by imposing the following conditions

on ΩL
i and ΩU

i :

Hypothesis 3.7.3. Let (t̂, v̂, ŵ) ∈ I×Rnx ×Rnx and suppose that ∃(u,x0) ∈ U×X0

such that x ≡ x(·,u,x0) satisfies v̂ ≤ x(t̂) ≤ ŵ and either xi(t̂) = v̂i or xi(t̂) = ŵi

for at least one i ∈ {1, . . . , nx}. Then there exist η, L > 0 such that the following

conditions hold for every (v,w) ∈ Bη((v̂, ŵ)) and a.e. t ∈ [t̂, t̂+η) such that (t,v,w) ∈
DΩ:

1. If VL(x(t),v,w) ∪ VU(x(t),v,w) 6= ∅, then at least one of the sets

QL(t,v,w) ≡ AL(t,v,w) ∩ VL(x(t),v,w),

QU(t,v,w) ≡ AU(t,v,w) ∩ VU(x(t),v,w),

is nonempty.

2. If i ∈ QL(t,v,w), then ∃z ∈ ΩL
i (t,v,w) such that

‖x(t) − z‖∞ ≤ Lmax

(

max
i∈QL(t,v,w)

(vi − xi(t)), max
i∈QU (t,v,w)

(xi(t) − wi)

)

. (3.56)

3. If i ∈ QU (t,v,w), then ∃z ∈ ΩU
i (t,v,w) such that (3.56) holds.

Lemma 3.7.6. Suppose that Hypothesis 3.7.3 holds. Then, for any (u,x0) ∈ U ×X0,

Hypothesis 3.7.1 holds with φ ≡ x(·,u,x0) and the definitions (3.53), (3.54) and

(3.55).

Proof. Choose any (u,x0) ∈ U × X0 and define φ ≡ x(·,u,x0). Let (t̂, v̂, ŵ) ∈
I ×Rnx ×Rnx and suppose that v̂ ≤ φ(t̂) ≤ ŵ and either φi(t̂) = v̂i or φi(t̂) = ŵi for

at least one i ∈ {1, . . . , nx}. Noting that (t̂, v̂, ŵ) satisfies the required properties, let

LΩ, ηΩ > 0 be constants satisfying Hypothesis 3.7.3.
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Let ηf > 0 and αf ∈ L1(I) be given by Assumption 3.2.2 with z = φ(t̂). Define

α ≡ LΩαf and choose η ∈ (0,min(ηf , ηΩ)] small enough that

‖φ(t) − φ(t̂)‖∞ < ηf/2, (3.57)

LΩ max (‖max(0,v − φ(t))‖∞, ‖max(0,φ(t) −w)‖∞) < ηf/2, (3.58)

for all t ∈ [t̂, t̂+ η) and every (v,w) ∈ Bη((v̂, ŵ)). It will be shown that Hypothesis

3.7.1 holds with these definitions.

Choose any (v,w) ∈ Bη((v̂, ŵ)). For a.e. t ∈ [t̂, t̂ + η) such that (t,v,w) ∈ DΠ,

the conditions of Hypothesis 3.7.3 hold because η ≤ ηΩ and DΠ ⊂ DΩ. Condition 1

of Hypothesis 3.7.1 follows directly from Condition 1 of Hypothesis 3.7.3. Suppose

that i ∈ QL(t,v,w). By Condition 2 of Hypothesis 3.7.3, ∃z ∈ ΩL
i (t,v,w) ⊂ D

such that (3.56) holds with L = LΩ and x = φ. Combining this with (3.58) implies

that ‖φ(t) − z‖∞ < ηf/2. By (3.57) and the triangle inequality, it follows that

z ∈ Bηf
(φ(t̂)). This implies that the inequality of Assumption 3.2.2 can be applied

to the points z and φ(t).

Let σ ≡ fi(t,u(t), z). By definition, σ ∈ ΠL
i (t,v,w). Moreover,

|σ − φ̇i(t)| = |fi(t,u(t), z) − fi(t,u(t),φ(t))|, (3.59)

≤ αf(t)‖φ(t) − z‖∞, (3.60)

≤ αf(t)LΩ max

(

max
i∈QL(t,v,w)

(vi − φi(t)), max
i∈QU (t,v,w)

(φi(t) − wi)

)

. (3.61)

This proves Condition 2 of Hypothesis 3.7.1, and Condition 3 follows by an analogous

argument.

It will also be convenient to have an analogue of Hypothesis 3.7.2 in terms of ΩL
i

and ΩU
i .

Hypothesis 3.7.4. Let (t̂, v̂, ŵ) ∈ I×Rnx ×Rnx and suppose that ∃(u,x0) ∈ U×X0

such that x ≡ x(·,u,x0) satisfies v̂ ≤ x(t̂) ≤ ŵ and either xi(t̂) = v̂i or xi(t̂) = ŵi

for at least one i ∈ {1, . . . , nx}. Then there exist η > 0 such that, for every (v,w) ∈
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Bη((v̂, ŵ)) and a.e. t ∈ [t̂, t̂+η) such that (t,v,w) ∈ DΩ, VL(x(t),v,w) ⊂ AL(t,v,w)

and VU(x(t),v,w) ⊂ AU(t,v,w).

Lemma 3.7.7. Suppose that Hypothesis 3.7.4 holds. Then, for any (u,x0) ∈ U ×X0,

Hypothesis 3.7.2 holds with φ ≡ x(·,u,x0) and the definitions (3.53), (3.54) and

(3.55).

Proof. Choose any (u,x0) ∈ U × X0 and define φ ≡ x(·,u,x0). Let (t̂, v̂, ŵ) ∈
I ×Rnx ×Rnx and suppose that v̂ ≤ φ(t̂) ≤ ŵ and either φi(t̂) = v̂i or φi(t̂) = ŵi for

at least one i ∈ {1, . . . , nx}. Noting that (t̂, v̂, ŵ) satisfies the required properties, let

η > 0 be the constant satisfying Hypothesis 3.7.4.

Choose any (v,w) ∈ Bη((v̂, ŵ)). For a.e. t ∈ [t̂, t̂ + η) such that (t,v,w) ∈ DΠ,

the condition of Hypothesis 3.7.4 holds because DΠ ⊂ DΩ. Then VL(φ(t),v,w) ⊂
AL(t,v,w) and VU(φ(t),v,w) ⊂ AU(t,v,w), which is the desired result.

In light of Theorem 3.7.4 and the previous two lemmas, the following result is now

apparent.

Theorem 3.7.8. Let v,w ∈ AC(I,Rnx) satisfy

(EX): For every t ∈ I and every index i,

1. (t,v(t),w(t)) ∈ DΩ,

2. ΩL
i (t,v(t),w(t)) ⊂ D and ΩU

i (t,v(t),w(t)) ⊂ D.

(IC): v(t0) ≤ x0 ≤ w(t0), ∀x0 ∈ X0.

(RHS): For a.e. t ∈ I and each index i,

1. If sLi (t,v(t),w(t)) > 0, then v̇i(t) ≤ fi(t,p, z) for all p ∈ U and

z ∈ ΩL
i (t,v(t),w(t)).

2. If sUi (t,v(t),w(t)) > 0, then ẇi(t) ≥ fi(t,p, z) for all p ∈ U and

z ∈ ΩU
i (t,v(t),w(t)).
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If Hypothesis 3.7.3 holds and (v,w) has a finite number of transition times in I, then

v(t) ≤ x(t,u,x0) ≤ w(t), ∀(t,u,x0) ∈ I × U × X0. If Hypotheses 3.7.4 holds, then

the assumption of finitely many transition times can be relaxed and the conclusion

remains true.

3.7.4 Application to Convex Polyhedral a Priori Enclosures

Let G ⊂ Rnx satisfy x(t,u,x0) ∈ G, ∀(t,u,x0) ∈ I × U × X0. It was shown in §3.4

that the Hypothesis (RHSa) is not generally permissible in Theorem 3.3.2. One of the

many problems caused by such a hypothesis is that the set over which the differential

inequalities in (RHSa) must hold can potentially be empty. In this section, it is

shown that this is not problematic for the important class of convex polyhedral a

priori enclosures.

Assume that G ≡ {z : Az ≤ b}, with A ∈ Rm×nx and b ∈ Rm, and consider the

definitions

DΩ ≡ {(t,v,w) ∈ I × Rnx × Rnx : G ∩ [v,w] 6= ∅}, (3.62)

ΩL
i (t,v,w) ≡ G ∩ BLi ([v,w]),

ΩU
i (t,v,w) ≡ G ∩ BUi ([v,w]).

To check the validity of these definitions via Hypothesis 3.7.3, define

sLi (t,v,w) =







1 if ΩL
i (t,v,w) 6= ∅

−1 otherwise
, (3.63)

sUi (t,v,w) =







1 if ΩU
i (t,v,w) 6= ∅

−1 otherwise
, (3.64)

for all i ∈ {1, . . . , nx}. Hypothesis 3.7.3 is established through the following three

lemmas.

Lemma 3.7.9. Let (t,v,w) ∈ DΩ and z ∈ G. If VL(z,v,w)∪VU(z,v,w) 6= ∅, then
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one of the sets

VL(z,v,w) ∩ AL(t,v,w) or VU(z,v,w) ∩AU(t,v,w)

is nonempty.

Proof. Choose any ẑ ∈ G ∩ [v,w] and consider the line segment

l(λ) = ẑ + λ(z − ẑ), λ ∈ [0, 1].

First note that l(λ) ∈ G for all λ ∈ [0, 1] by convexity. Now, by definition of the sets

VL(z,v,w) and VU(z,v,w),

i ∈ VL(z,v,w) =⇒ ∃λi : li(λ) ≥ vi, ∀λ ∈ [0, λi] and li(λ
i) = vi,

i ∈ VU (z,v,w) =⇒ ∃λi : li(λ) ≤ wi, ∀λ ∈ [0, λi] and li(λ
i) = wi,

i /∈ VL(z,v,w) ∪ VU(z,v,w) =⇒ li(λ) ∈ [vi, wi], ∀λ ∈ [0, 1].

Suppose VL(z,v,w)∪VU(z,v,w) 6= ∅ and let λ∗ ≡ mini∈(VL(z,v,w)∪VU (z,v,w)) λ
i. Then

l(λ∗) ∈ G ∩ [v,w] and li(λ
∗) = vi (or li(λ

∗) = wi) for some i ∈ VL(z,v,w) (or

i ∈ VU(z,v,w)). For any such i, ΩL
i (t,v,w) 6= ∅ and hence i ∈ AL(t,v,w) (or

ΩU
i (t,v,w) 6= ∅ and hence i ∈ AU(t,v,w)).

Lemma 3.7.10. Let (t,v,w) ∈ DΩ and define

[v,w]A ≡ {z ∈ Rnx : zi ≥ vi, ∀i ∈ AL(t,v,w), zi ≤ wi, ∀i ∈ AU(t,v,w)}. (3.65)

Then G ∩ [v,w] = G ∩ [v,w]A.

Proof. It is clear that (G ∩ [v,w]) ⊂ (G ∩ [v,w]A). Suppose that the conclusion is

false and choose any z ∈ G ∩ [v,w]A such that z /∈ G ∩ [v,w]. By this choice of z,

one of the sets VL(z,v,w) or VU (z,v,w) is nonempty, in which case Lemma 3.7.9

shows that either VL(z,v,w)∩AL(t,v,w) or VU(z,v,w)∩AU(t,v,w) is nonempty.

This, however, implies that z /∈ [v,w]A, which is a contradiction.
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Lemma 3.7.11. Choose any (u,x0) ∈ U × X0 and define x ≡ x(·,u,x0). There

exists L > 0 such that the following conditions hold for every (t,v,w) ∈ DΩ:

1. If i ∈ QL(t,v,w), then ∃z ∈ ΩL
i (t,v,w) such that

‖x(t) − z‖∞ ≤ Lmax

(

max
i∈QL(t,v,w)

(vi − xi(t)), max
i∈QU (t,v,w)

(xi(t) − wi)

)

, (3.66)

where QL and QU are defined as in Hypothesis 3.7.3.

2. If i ∈ QU (t,v,w), then ∃z ∈ ΩU
i (t,v,w) such that (3.66) holds.

Proof. Let (t,v,w) ∈ DΩ and suppose that i ∈ QL(t,v,w). Define the sets

M1 ≡ {z ∈ G : zj ≥ vj , ∀j ∈ AL(t,v,w), zj ≤ wj, ∀j ∈ AU(t,v,w), zi = vi},

M2 ≡ {z ∈ G : zj ≥ min(xj(t), vj), ∀j ∈ AL(t,v,w),

zj ≤ max(xj(t), wj), ∀j ∈ AU(t,v,w), zi = min(xi(t), vi)}.

Note that min(x(t),v) ≤ x(t) ≤ max(x(t),w). Further, i ∈ QL(t,v,w) implies

that xi(t) < vi and hence xi(t) = min(xi(t), vi). It follows that x(t) ∈ M2. Be-

cause (t,v,w) ∈ DΩ, G ∩ [v,w] 6= ∅. Furthermore, i ∈ QL(t,v,w) implies that

G∩BLi ([v,w]) 6= ∅, so that M1 6= ∅. Then, M1 and M2 are systems of linear inequal-

ities which differ only in their right-hand side data, and both are nonempty. Using

Theorem 3.6.4, this implies that there exists L > 0 satisfying

dH(M1,M2) ≤ Lmax

(

max
i∈AL(t,v,w)

|vi − min(xi(t), vi)|, max
i∈AU (t,v,w)

|max(xi(t), wi) − wi|
)

,

≤ Lmax

(

max
i∈AL(t,v,w)

|max(vi − xi(t), 0)|, max
i∈AU (t,v,w)

|max(xi(t) − wi, 0)|
)

,

= Lmax

(

max
i∈QL(t,v,w)

(vi − xi(t)), max
i∈QU (t,v,w)

(xi(t) − wi)

)

.

Since x(t) ∈ M2, the definition of the Hausdorff metric implies that there exists
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z ∈ M1 such that

‖x(t) − z‖∞ ≤ Lmax

(

max
i∈QL(t,v,w)

(vi − xi(t)), max
i∈QU (t,v,w)

(xi(t) − wi)

)

. (3.67)

But, by Lemma 3.7.10, M1 = {z ∈ G ∩ [v,w]A : zi = vi} = {z ∈ G ∩ [v,w] :

zi = vi} = ΩL
i (t,v,w), and hence z ∈ ΩL

i (t,v,w). This proves Conclusion 1, and

Conclusion 2 follows from an analogous argument.

The previous lemmas imply the following comparison theorem for convex polyhe-

dral a priori enclosures.

Theorem 3.7.12. Let v,w ∈ AC(I,Rnx) satisfy

(EX): For every t ∈ I and every index i,

1. G ∩ [v(t),w(t)] 6= ∅,

2. G ∩ BLi (v(t),w(t)) ⊂ D and G ∩ BUi (v(t),w(t)) ⊂ D.

(IC): v(t0) ≤ x0 ≤ w(t0), ∀x0 ∈ X0.

(RHS): For a.e. t ∈ I and each index i,

1. v̇i(t) ≤ fi(t,p, z) for all p ∈ U and z ∈ G ∩ BLi (v(t),w(t)).

2. ẇi(t) ≥ fi(t,p, z) for all p ∈ U and z ∈ G ∩ BUi (v(t),w(t)).

If (v,w) has finitely many transition times in I, then v(t) ≤ x(t,u,x0) ≤ w(t),

∀(t,u,x0) ∈ I × U ×X0.

Proof. By Theorem 3.7.8, it suffices to show that Hypothesis 3.7.3 holds. Let (t̂, v̂, ŵ) ∈
I × Rnx × Rnx and suppose that ∃(u,x0) ∈ U ×X0 such that x ≡ x(·,u,x0) satisfies

v̂ ≤ x(t̂) ≤ ŵ and either xi(t̂) = v̂i or xi(t̂) = ŵi for at least one i ∈ {1, . . . , nx}.
Choose an arbitrary η > 0 and let L > 0 be the constant of Lemma 3.7.11. It will be

shown that Hypothesis 3.7.3 holds with these definitions.

Choose any (v,w) ∈ Bη((v̂, ŵ)) and any t ∈ [t̂, t̂ + η) such that (t,v,w) ∈ DΩ.

Condition 1 of Hypothesis 3.7.3 follows by applying Lemma 3.7.9 with z ≡ x(t).

Condition 2 follows by applying Lemma 3.7.11.
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3.7.5 Application to Interval a priori Enclosures

As a second application of the theory in this section, we prove a comparison theorem

involving a time-varying interval a priori enclosure.

Theorem 3.7.13. Let X : I → IRnx satisfy x(t,u,x0) ∈ X(t) ≡ [xL(t),xU(t)],

∀(t,u,x0) ∈ I × U ×X0, and assume that D is open. Let v,w ∈ AC(I,Rnx) satisfy

(EX): X(t) ∩ [v(t),w(t)] 6= ∅, ∀t ∈ I.

(IC): v(t0) ≤ x0 ≤ w(t0), ∀x0 ∈ X0.

(RHS): For a.e. t ∈ I and each index i,

1. If vi(t) > xLi (t), then v̇i(t) ≤ fi(t,p, z) for all p ∈ U and z ∈ D ∩
X(t) ∩ BLi ([v(t),w(t)]),

2. If wi(t) < xUi (t), then ẇi(t) ≥ fi(t,p, z) for all p ∈ U and z ∈ D ∩
X(t) ∩ BUi ([v(t),w(t)]).

Then v(t) ≤ x(t,u,x0) ≤ w(t), ∀(t,u,x0) ∈ I × U ×X0.

Proof. By Theorem 3.7.8, it suffices to show that Hypotheses 3.7.4 and 3.7.3 hold

with the definitions

DΩ ≡ {(t,v,w) ∈ I × Rnx × Rnx : X(t) ∩ [v,w] 6= ∅}, (3.68)

ΩL
i (t,v,w) ≡ D ∩X(t) ∩ BLi ([v,w]),

ΩU
i (t,v,w) ≡ D ∩X(t) ∩ BUi ([v,w]),

sLi (t,v,w) ≡ vi − xLi (t),

sUi (t,v,w) ≡ xUi (t) − wi.

Consider Hypothesis 3.7.4 first. Let (t̂, v̂, ŵ) ∈ I × Rnx × Rnx and suppose that

there exists (u,x0) ∈ U × X0 such that x ≡ x(·,u,x0) satisfies v̂ ≤ x(t̂) ≤ ŵ

and either xi(t̂) = v̂i or xi(t̂) = ŵi for at least one i ∈ {1, . . . , nx}. Choose any

η > 0, any (v,w) ∈ Bη((v̂, ŵ)) and any t ∈ [t̂, t̂ + η) such that (t,v,w) ∈ DΩ.
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If i ∈ VL(x(t),v,w), then xi(t) < vi by definition. But then sLi (t,v,w) > 0, so

that i ∈ AL(t,v,w). Applying and analogous argument for i ∈ VU(x(t),v,w), this

establishes Hypothesis 3.7.2.

To show Hypothesis 3.7.3, consider (t̂, v̂, ŵ) as above. Making the definition

z(t,v,w) ≡ mid(v,w,x(t)), choose η > 0 so small that z(t,v,w) ∈ Bη(x(t̂)) ⊂ D,

for all (v,w) ∈ Bη((v̂, ŵ)) and t ∈ [t̂, t̂ + η). Choose any (v,w) ∈ Bη((v̂, ŵ)),

any t ∈ [t̂, t̂ + η) such that (t,v,w) ∈ DΩ. Condition 1 of Hypothesis 3.7.3 follows

immediately from Hypothesis 3.7.2. To show Condition 2, choose any i ∈ QL(t,v,w).

Since xi(t) < vi ≤ wi, z(t,v,w) ∈ BLi ([v,w]). By the choice of η, z(t,v,w) ∈ D.

To show that z(t,v,w) ∈ X(t) as well, choose any j. If zj(t,v,w) = xj(t) then

zj(t,v,w) ∈ Xj(t) by definition. If zj(t,v,w) = wj, then vj ≤ wj ≤ xj(t) ≤ xUj (t)

and it follows from the fact that [vj , wj] ∩Xj(t) 6= ∅ that zj(t,v,w) ∈ Xj(t). Using

an analogous argument for the case zj(t,v,w) = vj , it follows that z(t,v,w) ∈
ΩL
i (t,v,w). Now, by the definition of z, it follows that

‖x(t) − z‖∞ ≤ max(‖max(0,v − x(t))‖∞, ‖max(0,x(t) − w‖∞). (3.69)

Applying Hypothesis 3.7.2, this is exactly

‖x(t) − z‖∞ ≤ max

(

max
i∈QL(t,v,w)

(vi − xi(t)), max
i∈QU (t,v,w)

(xi(t) − wi)

)

. (3.70)

Thus, Condition 2 of Hypothesis 3.7.3 holds, and Condition 3 is proven analogously.

3.8 Conclusions and Future Work

In this chapter, the problem of efficiently computing interval bounds on the solutions

of parametric ODEs and control systems was considered. In particular, the use of

known a priori enclosures, derived from physical information, was investigated as a

means to enhance the performance of interval methods based on differential inequali-

ties, while maintaining the ability to use efficient interval computations. Toward this
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end, a general comparison theorem was established in which the use of the a priori

enclosure is abstracted in terms of set-valued mappings which are required to satisfy

several key conditions. From these conditions, the basic requirements that an interval

refinement operation IG (based on an arbitrary a priori enclosure G) must satisfy in

order to result in a valid bounding method were derived. An appropriate definition

of this operation was given for the case when G is a convex polyhedron, resulting in

a novel computational method. This method is demonstrated for several numerical

examples in the next chapter.

When G is not a convex polyhedron, the framework of Section 3.6.1 still applies,

but no valid definition of IG is currently available. The use of interval Newton meth-

ods and constraint propagation techniques are promising in this regard and warrant

future investigation. In addition to interval-based methods, the general comparison

theorem derived here also suggests other approaches, such as the method of §3.6.3

using linear programming relaxations. This method can potentially describe sharper

bounds than an interval-based method and also warrants further investigation into

an efficient computational implementation.

In §3.7, some of the key restrictions imposed on the general comparison theorem of

§3.5 were further relaxed. This analysis leads to some interesting results suggesting

that sharper bounds could be obtained, at least in the case of convex polyhedral

a priori enclosures. However, this theory is also lacking an efficient computational

implementation. As opposed to the developments in §3.6, where state bounds could

be described as the solutions of a system of ODEs, it seems that the state bounds

derived in §3.7 would be more naturally described as the solutions of a hybrid system.

At present, it is not clear whether this additional complexity would be justified by

the resulting improvement in the bounds.
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Chapter 4

Bounding the Solutions of

Chemical Kinetics Models

4.1 Introduction

The previous chapter introduced several new methods for computing interval bounds

on the solutions of parametric ODEs and control systems. In particular, these meth-

ods are able to use efficiently known physical information about the solutions of such

systems as a means to reduce conservatism in the computed bounds. In this chap-

ter, these methods are applied to ODE models of chemical reaction kinetics. Such

models are very important in chemical engineering applications and are commonly

cited as a primary motivation for state bounding methods [164, 135, 105] and re-

lated algorithms [163, 103, 106, 85, 164, 104, 37, 36, 123]. It will be shown that very

rich physical information about the solutions of chemical kinetics models is available

through a relatively simple analysis of the stoichiometry matrix. In particular, the

solutions often obey affine reaction invariants, which are closely related to the notion

of exact model reduction [63, 66, 181]. Through numerous examples, it is shown that

using this information in conjunction with the bounding methods of the previous

chapter results in state bounds that are substantially tighter than those computed by

a similar methods that cannot make use of this physical information (i.e., Harrison’s

method). Moreover, this improvement is achieved at a small additional cost, making
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these methods appropriate for the class of problems that we set out to address in

§3.1.

4.2 Physical Information in Reaction Models

Chemical reaction kinetics are most commonly modeled by a coupled system of ODEs

[9] of the form

ẋ(t,u,x0) = Sr(t,u(t),x(t,u,x0)), x(t0,u,x0) = x0. (4.1)

The state variables x represent the concentrations of chemical species, the rate func-

tions r : I×U ×D → Rnr describe the rates of all possible reactions between species,

and the stoichiometry matrix S ∈ Rnx×nr encodes the proportionalities by which the

concentration of each species is effected by the occurence of each reaction. A simple

model of this type has already been studied in Example 3.3.1. Throughout this chap-

ter, it is assumed that Assumptions 3.2.1 and 3.2.2 hold with f = r. In this case, it

is simple to show that (4.1) satisfies the requirements of §3.2, so that the bounding

methods of Chapter 3 can be applied.

Information about the solutions of a chemical kinetics models is available in the

form of affine reaction invariants and natural bounds. Both are obtained by a simple

analysis of the stoichiometry matrix. To be clear, this information is available prior

to the application of a differential inequalities bounding method of the type described

in the previous chapter. The combination of natural bounds and reaction invariants

often constitutes a massive restriction on the region of state space in which solutions

potentially lie. This is demonstrated for the model of Example 3.3.1 below. Thus,

the impact of leveraging such information in a state bounding method is potentially

very significant. Of course, models of the form (4.1) are not restricted to chemical

kinetics, so the ideas here likely apply in other important application areas as well

(e.g., electrical circuit models [174]).
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4.2.1 Affine Reaction Invariants

An affine reaction invariant is a linear combination of the state variables x which does

not change as x evolves in time [181]. That is, a vector m ∈ Rnx is an affine reaction

invariant if

mTx(t,u,x0) = mTx0, ∀(t,u,x0) ∈ I × U ×X0. (4.2)

It is easily seen from (4.1) that the reaction invariants of a kinetic model include every

vector m which lies in the left null space of the stoichiometry matrix, N (ST), since

mTẋ(t,u,x0) = mTSr(t,u(t),x(t,u,x0)) = 0. Additional affine reaction invariants

can exist if the range of the rate function r has dimension less than nr [60]. However,

this is a kinetic phenomena, not a stoichiometric one, and it is difficult in practice to

identify and make use of such invariants, so these are not considered here.

Since every vector in N (ST) must be an affine reaction invariant, it is clear that

every kinetic model for which S is not full row rank must have at least one affine reac-

tion invariant. In fact, the number of linearly independent affine reaction invariants

is equal to the dimension of N (ST). Kinetic models very often have stoichiometry

matrices which are not full row rank because of conservation laws which are implicit in

the model, such as overall mass and atomic balances [63, 66, 181]. This is particularly

true of models of biological reaction networks [58].

A basis for N (ST) provides a complete set of linearly independent reaction invari-

ants. Such a basis is easily obtained from the singular value decomposition of ST, or

directly using the MATLAB routine null. Throughout, we denote by M ∈ Rm×nx a

matrix whose rows form a basis of N (ST), so that

Mx(t,u,x0) = Mx0, ∀(t,u,x0) ∈ I × U ×X0. (4.3)
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4.2.2 Natural Bounds

In addition to reaction invariants, physical considerations very often suggest a crude

interval XN = [xN,L,xN,U ] such that

xN,L ≤ x(t,u,x0) ≤ xN,U , ∀(t,u,x0) ∈ I × U ×X0. (4.4)

These bounds are referred to as natural bounds [162], and arise from a number of

considerations. Though it is not clear from (4.1), the solutions of chemical kinetics

models are always nonnegative, provided that the initial conditions are nonnegative.

Physically, this is because they represent concentrations of chemical species. Mathe-

matically, it is because rate functions (i.e., components of r) that act to decrease the

concentration of some chemical species, xi, are always zero if xi is zero. Combined

with nonnegative initial conditions, this implies that x is nonnegative [13].

Other natural bounds may be implied by the directionality of reactions. If some

of the reactions in a given reaction network are not reversible, the flow of mass or

atomic elements throughout the network is hindered. For example, if a particular

reactant is consumed but never generated, then a natural upper bound is given by

its initial concentration.

Finally, additional natural bounds may be implied by conservation laws. If, for

example, the volume and number of molecules in a reacting system is conserved, then

the maximum concentration of any given species is bounded by the total concentra-

tion at the initial time. Bounds of this type are actually nothing more than the effects

of nonnegativity constraints on other species, acting through an affine reaction in-

variant. In particular, the bounds XN , which may at first contain only nonnegativity
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constraints, may always be refined by solving the programs

xN,Li := inf
z,x0

zi (4.5)

s.t. M(z − x0) = 0

z ∈ XN , x0 ∈ X0

xN,Ui := sup
z,x0

zi (4.6)

s.t. M(z − x0) = 0

z ∈ XN , x0 ∈ X0

for each i = 1, . . . , nx. If X0 is a convex polyhedral set, then these are simple linear

programs. Thus, natural bounds arising from complex stoichiometric relationships

between species can be easily computed using the matrix M. However, it should be

noted that information based on the directionality of reactions is not contained in S

(and hence in M) and therefore cannot be ascertained by solving the linear programs

above. Such observations should be included in the initial set of natural bounds, prior

to refinement through (4.5) and (4.6).

Example 4.2.1. Consider again the reversible chemical reaction

A + B ⇋ C (4.7)

first considered in Example 3.3.1. Recall that the time evolution of the species con-

centrations xA, xB and xC in an isothermal batch reactor is described by a kinetic

model of the form (4.1) with x ≡ [xA xB xC ]T, u ≡ [kf kr]
T, and

S ≡











−1 1

−1 1

1 −1











, r(t,u, z) ≡





kfzAzB

krzC



 .

The stoichiometry matrix has dimension 3× 2, yet is only rank 1, so the model must

have two linearly independent reaction invariants. Computing the null space of ST
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using the MATLAB routine null gives the basis vectors

M =





−0.8165 0.40825 −0.40825

0.0 −0.7071 −0.7071



 .

Though it is not necessary for further computations, one can obtain more physically

meaningful reaction invariants through elementary row operations. Here, we find the

vectors mT
1 = [1 1 2] and mT

2 = [1 − 1 0], so that

xA + xB + 2xC = x0,A + x0,B + 2x0,C , (4.8)

xA − xB = x0,A − x0,B.

Physically, the first invariant represents the overall mass balance for the system,

while the second represents the proportionality between the species A and B, which

is maintained because they react with 1-to-1 stoichiometry.

The intersection of the subspaces of Rnx with normals m1 and m2, translated by

the initial condition vector, contain all points in Rnx which satisfy the two invariants

above, respectively. These planes, restricted to the positive orthant, are shown in

Figure 4-1. From this it is determined that the only possible solutions of the kinetic

model must lie in the intersection of these two planes, regardless of (t,u) ∈ I × U .

The direction y depicted in the figure is a linear combination of xA, xB and xC along

which the solution vector x evolves in time as the reaction proceeds. We will have

more to say about this coordinate in §4.4.

The meaning of the programs (4.5) and (4.6) is easily seen from Figure 4-1. Clearly,

the combination of nonnegativity constraints and the plotted reaction invariants im-

plies the natural bounds XN = [1, 1.5] × [0, 0.5] × [0, 0.5].

4.2.3 A Polyhedral a Priori Enclosure

Consider computing state bounds for (4.1) with given sets of admissible initial condi-

tions and controls, X0 and U , respectively (see §3.2). If X0 is an interval, then affine

reaction invariants and natural bounds can be combined to give an a priori enclosure
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Figure 4-1: Planes in Rnx containing all points in the positive orthant which satisfy
the affine reaction invariants (4.8). All solutions lie on the intersection of these
two planes, for all (t,p) ∈ I × P . The point at (1.5, 0.5, 0) represents the initial
condition. The direction y is orthogonal to the normals of both planes, m1 and m2,
and demonstrates an axis along which the time evolution of the reaction can be fully
described (see Section 4.4).

185



for the solutions of (4.1) of the form

G ≡ {z ∈ Rnx : z ∈ XN , Mz ∈ MX0}. (4.9)

Expanding the interval multiplication MX0, G can be written as a convex polyhedral

set in standard form, G = {z ∈ Rnx : Az ≤ b}. Thus, the bounding methods of

§3.6 are applicable. From Figure 4-1, it is evident that G can potentially put a large

restriction on the regions of state space that must be considered when computing state

bounds. In the following section, the method of §3.6.2 is applied to three examples

and shown to make very effective use of this restriction.

4.3 Numerical Examples

All numerical experiments in this section were performed on a Dell Precision T3400

workstation with a 2.83 GHz Intel Core2 Quad CPU. One core and 512 MB of memory

were dedicated to each job. Numerical integration was carried out using the software

CVODE [44] with absolute and relative tolerances of 10−5. Interval extensions were com-

puted automatically using the library MC++ (http://www3.imperial.ac.uk/people/

b.chachuat/research). MC++ is the successor of libMC, which is described in detail

in [122].

For ease of comparison, recall that Harrison’s method refers to the state bounding

method given by solving (3.31) with the definitions (3.33). The method given by

solving (3.31) with (3.35), IG as in Definition 3.6.3 and G a convex polyhedral set

will be called the full-space invariant (FSI) method. Later, this will be contrasted

with the so-called reduced-space methods developed in §4.4. In the special case where

G ≡ XN , the FSI method will be called Singer’s method, after the author of [162].

Note, however, that this may not be identically the implementation used in [162], as

discussed in §3.6.4.

Example 4.3.1. Consider again the model of Example 3.3.1. There, state bounds

were computed using Harrison’s method with I = [0, 0.05] min, the set of admissible
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controls

U = {(kf , kr) ∈ (L1(I))2 : (kf(t), kr(t)) ∈ [100, 500]× [0.001, 0.01] for a.e. t ∈ I},

and the singleton set of admissible initial conditions X0 = {x0} with x0 = (1.5, 0.5, 0)

(M). Here, state bounds are computed by Singer’s method and the FSI method and

compared. For ease of reference, the results of Harrison’s method are reproduced

as the dashed curves in Figure 4-2 below. In all figures in this section, solid curves

represent true model solutions computed for sampled points (u,x0) ∈ U ×X0.

In Example 4.2.1, it was shown that this model has two reaction invariants,

M =





−0.8165 0.40825 −0.40825

0.0 −0.7071 −0.7071



 ,

and natural bounds XN = [1, 1.5] × [0, 0.5] × [0, 0.5]. Given this information, the

results of Singer’s method are shown by the crosses in Figure 4-2. The blue circles

are the results of the FSI method applied with

G ≡ {z ∈ R3 : Mz = Mx0, z ∈ XN}. (4.10)

From Figure 4-2, it is clear that both methods provide much more reasonable

bounds than Harrison’s method, which does not make use of any physical information.

However, while Singer’s method prevents divergence of the upper bound, it still fails

to provide an accurate enclosure of the model solutions throughout time. On the other

hand, the state bounds computed using the FSI method are exact for this problem.

That is, it is possible to realize the bounding trajectories with true model solutions.

Recall from Example 3.3.1 that Harrison’s method produces bounds in 1.8×10−4s,

while integration of a single trajectory requires 1.1× 10−4s. Singer’s method requires

3.1× 10−4s, while the FSI method requires 1.72× 10−3s. Thus, using natural bounds

nearly doubles the cost of Harrison’s method and produces bounds that are reasonable

but weak, while obtaining exact bounds using natural bounds and reaction invariants
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Figure 4-2: State bounds on xC from Example 3.3.1 computed by Harrison’s method
(dashed), Singer’s method (crosses), and the FSI method (circles). Solid curves are
true model solutions.

increases the cost by a factor of about 10. Though this latter increase is substantial,

the absolute cost remains small. For slightly less than the cost of sampling trajectories

on a 4 × 4 grid over U , we obtain a sharp, guaranteed enclosure.

Example 4.3.2. Consider the chemical reaction network

A → B → C.

Assuming elementary reactions and Arrhenius rate constants, the concentrations of

the chemical species, denoted xA, xB and xC, in a closed system with temperature

control are given by a kinetic model of the form (4.1), where x ≡ (xA, xB, xC), u ≡ T ,

and

S ≡











−1 0

1 −1

0 1











, r(t, p, z) ≡





A1e
−E1/(Rp)zA

A2e
−E2/(Rp)zB



 .

Above, R = 8.314 J
mol·K

is the universal gas constant, A1 = 2400 s−1, A2 = 8800 s−1,

E1 = 6.9×103 (J/mol) and E2 = 1.69×104 (J/mol). Note that this system is neither
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linear nor control-linear because the right-hand side functions contain products of the

states and nonlinear functions of the control.

Consider bounding the reachable set on I = [0, 0.08] (s) with the fixed initial

condition x0 = (1.5, 0.5, 0.0) (M) and the temperature bounded between 300 and 600

K. That is, the set of admissible initial conditions is the singleton X0 = {x0} and

the set of admissible controls is

U = {T ∈ L1(I) : T (t) ∈ [300, 600] (K) for a.e. t ∈ I}.

With no further information, state bounds can be computed by Harrison’s method.

The resulting bounds on xB are shown in Figure 4-3, along with several model solu-

tions for temperature profiles in U . These solutions correspond to piecewise constant

temperature profiles with 8 epochs of length 0.01s, taking one of 8 possible temper-

ature values in the first epoch, spaced evenly in the interval [300, 600] K, and one

of two possible values in each remaining epoch, 300K or 600K. Clearly, the method

provides valid bounds on all model solutions shown. Moreover, the choice of piecewise

constant controls was simply for computational convenience; by Corollary 3.5.8 and

the discussion in §3.5.3, the solutions of (3.31) are guaranteed to bound the model

solutions with any T ∈ U .

For this example, the cost of integrating a single trajectory is 1.7 × 10−4s. Harri-

son’s method requires only 4.6×10−4s, but again produces very conservative bounds.

However, a valid a priori enclosure can be obtained as follows. First, since x0 ≥ 0, it

follows that all model solutions are nonnegative for all (t, T ) ∈ I × U . Furthermore,

xA cannot be generated, so it is bounded above by 1.5 (this is an example of a bound

based on the directionality of reactions that cannot be inferred from S, as discussed in

§4.2). The stoichiometry matrix has rank 2, so there is one linearly independent reac-

tion invariant, which is easily seen to be mT = 1T. Combining these observations, the

programs (4.5) and (4.6) give the refined natural bounds XN = [1.5, 2]× [0, 2]× [0, 2].
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Figure 4-3: State bounds on xB in Example 4.3.2 computed by Harrison’s method
(dashed) and the FSI method (circles), along with true model solutions for several
piecewise constant temperature profiles (solid).

Then, a second set of state bounds can be computed using the FSI method with

G ≡ {z ∈ R3 : (0, 0, 0) ≤ z ≤ (1.5, 2, 2), 1Tz = 1Tx0}.

The resulting bound, shown by the circles in Figure 4-3, are very tight. Moreover,

this computation took only 2.7 × 10−3s; less than 6 times longer than the standard

method with no physical information.

Example 4.3.3. Consider the enzymatic reaction network with 6 states [2]:

A + F ⇋ F : A → F + A′,

A′ + R ⇋ R : A′ → R + A.

With x ≡ (xA, xF, xF:A, xA′ , xR, xR:A′) and the controls u = (k1, . . . , k6) representing

the rate constants for all six reactions, the dynamics in a closed system are described
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by a kinetic model of the form (4.1) with

S ≡





























−1 1 0 0 0 1

−1 1 1 0 0 0

1 −1 −1 0 0 0

0 0 1 −1 1 0

0 0 0 −1 1 1

0 0 0 1 −1 −1





























, r(t,p, z) ≡





























p1zAzF

p2zF:A

p3zF:A

p4zA′zR

p5zR:A′

p6zR:A′





























.

Consider computing state bounds for this model with I = [0, 0.04] (s), the fixed

initial condition x0 = (20, 34, 0, 0, 16, 0) (M) and uncertain rate parameters ki ∈
[k̂i, 10k̂i], where

k̂ = (0.1, 0.033, 16, 5, 0.5, 0.3).

That is, X0 = {x0} and the set of admissible controls is

U = {u ∈ (L1(I))6 : u(t) ∈ [k̂, 10k̂] for a.e. t ∈ I}.

The results of Harrison’s method are shown in Figures 4-4 and 4-5, along with true

model solutions corresponding to constant u taking values on a uniform grid with

three points in each of the six dimensions. As discussed in Remark 3.2.4, the com-

puted bounds are also valid for time-varying u ∈ U . Due to the large number of

parameters considered, sampling true model solutions becomes unmanageable for

piece-wise constant u, even with only 3 epochs. Some such trajectories were explored

manually and none were found to lie outside of the set reachable with constant u.

For this example, integration of a single model solution required 1.7 × 10−4s,

while Harrison’s method required 2.37×10−3s. The resulting bounds diverge rapidly,

providing no useful information about the reachable set. In fact, the divergence is

so rapid in this case that numerical integration is slower than one might expect. In

previous examples, the CPU time for Harrison’s method compared more favorably
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with that of integrating a single model solution.

An a priori enclosure is derived as follows. Since x0 ≥ 0, it follows that all model

solutions must be nonnegative for all (t,u) ∈ I × U . The stoichiometry matrix has

rank 3, indicating that there are 3 linearly independent affine reaction invariants.

Applying the MATLAB routine null to ST, a basis for the left null space of S, and

hence a complete set of linearly independent reaction invariants, is given by the rows

of

M =











−0.5743 0.2150 −0.3593 −0.5743 0.2872 −0.2872

−0.0589 0.7329 0.6740 −0.0589 0.0295 −0.0295

0 0.0000 0.0000 0.0000 0.7071 0.7071











.

Through elementary row operations, it is not difficult to show that the basis

M =











0 −1 −1 0 0 0

1 −1 0 1 −1 0

−1 1 0 −1 0 −1











.

defines the same subspace. Physically, the rows of M describe stoichiometric relation-

ships between species which result from the cyclic structure of the reaction network.

Such cycles are very common in biological networks, where they are referred to as

metabolic pools [58]. Combining this with nonnegativity through (4.5) and (4.6) gives

the natural bounds XN = [0, 20] × [0, 24] × [0, 20] × [0, 24] × [0, 16] × [0, 16].

A second set of state bounds can now be computed using the FSI method with

G ≡ {z ∈ R6 : z ∈ XN , Mz = Mx0}.

The resulting bounds are shown in Figures 4-4 and 4-5. Clearly, the bounds produced

by this approach do not diverge, and in fact track the true solution set very accurately.

Moreover, this computation takes only 9.11 × 10−3s; about 4 times longer than the

standard approach without using physical information.
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Figure 4-4: State bounds on xA in Example 4.3.3 computed by Harrison’s method
(dashed) and the FSI method (circles), along with true model solutions for constant
u on a uniform grid (solid).
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Figure 4-5: State bounds on xR:A′ in Example 4.3.3 computed by Harrison’s method
(dashed) and the FSI method (circles), along with true model solutions for constant
u on a uniform grid (solid).
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4.4 Reduced Kinetic Models

In the previous section, it was shown that using natural bounds and affine reaction

invariants in conjunction with the state bounding methods developed in Chapter 3

results in dramatic improvements over existing bounding methods. In the remainder

of this chapter, we investigate an alternative method that uses reaction invariants in

a very different way. It is well known that the solution of (4.1) can be fully described

by a reduced system of ODEs of dimension nx−m, where m is the number of linearly

independent affine reaction invariants [181]. Then, the alternative approach is to

construct such a reduced system, bound its solutions, and then recover state bounds

for the original system through an affine transformation.

To illustrate this idea, recall Figure 4-1 from Example 4.2.1. The Figure shows

that, though the kinetic model in question has three state variables, the affine reaction

invariants render the evolution of the system essentially one dimensional. That is, the

time evolution of the system may be described completely by its progression along

the direction y shown in the Figure. Accordingly, we consider computing bounds

on the linear combination y, rather than on each of the species concentrations xA,

xB and xC . This is illustrated in Figure 4-6. The image on the upper left shows

a box in (xA, xB, xC)-space which represents hypothetical state bounds computed

for some t′ ∈ I. The bounds are represented by a box, or 3-dimensional interval,

simply because the bounding procedures discussed so far compute an upper and

lower bound for each of the three state variables. However, it has been shown that all

model solutions must lie on the y-axis, so every point inside of the depicted box that

does not lie on the y-axis, and hence violates at least one of the reaction invariants,

cannot possibly be a solution. Therefore, there is significant overestimation in this

enclosure, simply on account of using a 3-dimensional interval. Moreover, integrating

the bounding differential equations (3.31) forward from t′, using Harrison’s method

for example, requires taking the necessary natural interval extensions of the model

right-hand side functions over the entire box, even though only points on the y-axis

can be true model solutions. In this manner, the overestimation inherent in these
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state bounds propagates forward in time and weakens the computed bounds for every

t′ ≤ t ≤ tf . Of course, the purpose of the FSI method is to refine this box using the

reaction invariants, so that overestimation is prevented from propagating forward in

time insofar as possible. Nonetheless, the end result is still a 3-dimensional interval

that is geometrically forced to overestimate the true solution set significantly.

On the other hand, if a variable transformation is carried out which defines y as

a linear combination of xA, xB and xC , as depicted, and bounds are constructed for

y, then the problem is alleviated. The brackets along the y-axis in the lower right

of Figure 4-6 depict hypothetical bounds of this type. Though the bounds along the

y-axis may overestimate the set of true model solutions, they may not include any

points which violate the reaction invariants. Because the time evolution of the entire

model can be recovered only from knowledge of the time evolution along the y-axis,

valid bounds on xA, xB and xC can be recovered from valid bounds on y. Of course,

the resulting bounds will suffer from overestimation because, for any t ∈ I, the true

set of model solutions is not a 3-dimensional interval. However, the major advantage

of this approach is that this overestimation is prevented from propagating forward

during integration of the bounding differential equations since only bounds on the

linear combination y are propagated forward in time.

Despite this geometric advantage, this approach is not generally superior to the

FSI method demonstrated in the previous section. It requires much of the same

theory, has similar cost, and typically produces bounds that are comparable but worse.

However, often enough to encourage curiosity, the resulting bounds are sharper. Thus,

there is an open opportunity to better understand and exploit the advantages of this

approach in the future.

4.4.1 Constructing Reduced Models

As mentioned above, the solution of (4.1) can be fully described by a reduced system

of ODEs of dimension nx −m, where m is the number of linearly independent affine

reaction invariants. Such a reduced system can always be constructed by choosing

an appropriate subset of the original state variables [11, 181], or using the Moore-
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Figure 4-6: Geometric representation of state bounds in the full state space (upper
left) and in the lower dimensional space (lower right) defined by the affine reaction
invariants.

Penrose inverse of S [63, 181]. Theorem 4.4.6 below describes a more general family

of reduced models based on {1, 2}-inverses [21].

Definition 4.4.1. For any matrix D ∈ Rn×m, A ∈ Rm×n is called a {1, 2}-inverse of

D if DAD = D and ADA = A.

Lemma 4.4.2. For any D ∈ Rn×m, a {1, 2}-inverse exists.

Proof. See Theorem 1, Ch.1 Sec.2 and Lemma 3, Ch.1 Sec.4 in [21].

Definition 4.4.3. Let L and M be complementary subspaces of Rn. Denote by

PL,M : Rn → Rn the unique linear operator such that

z = PL,Mz + (I − PL,M)z = u + v, (4.11)

where u ∈ L and v ∈M . PL,M is referred to as the projector onto L along M .

Lemma 4.4.4. PL,Mz = z if and only if z ∈ L.
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Proof. See Theorem 8 and Lemma 1(e), Sec. 4 Ch. 2 in [21].

Lemma 4.4.5. If A ∈ Rn×m and D ∈ Rm×n are {1, 2}-inverses of each other, then

DA = PR(D),N (A) and AD = PR(A),N (D).

Proof. See Corollary 7, Sec. 4 Ch. 2 in [21].

The following theorem defines a reduced system in terms of a pair of {1, 2}-
inverses and demonstrates that the solution of this system can be mapped uniquely

to the solution of (4.1).

Theorem 4.4.6. Consider the kinetic model (4.1) and suppose that the rank of S

is ny < nx. Let A ∈ Rny×nx and D ∈ Rnx×ny be {1, 2}-inverses, and suppose that

the range of D is equal the range of S, i.e., R(D) = R(S). If (4.1) has a unique

solution, then there exists a unique solution of the reduced system

ẏ(t,u,x0) = ASr(t,u(t),Dy(t,u,x0) + x0), y(t0,u,x0) = 0. (4.12)

Moreover, y satisfies

1. y(t,u,x0) = A(x(t,u,x0) − x0),

2. x(t,u,x0) = Dy(t,u,x0) + x0,

for all (t,u,x0) ∈ I × U ×X0.

Proof. Consider the solution of (4.1), x, and note that

(x(t,u,x0) − x0) =

∫ t

t0

Sr(s,u(s),x(s,u,x0))ds, (4.13)

= S

∫ t

t0

r(s,u(s),x(s,u,x0))ds,

∈ R(S) = R(D),

for all (t,u,x0) ∈ I × U × X0. Define y(t,u,x0) ≡ A(x(t,u,x0) − x0). Then

Dy(t,u,x0) = DA(x(t,u,x0) − x0), and combining this with (4.13), Lemmas 4.4.4
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and 4.4.5 imply that Dy(t,u,x0) = (x(t,u,x0) − x0). Differentiating y now gives

ẏ(t,u,x0) = Aẋ(t,u,x0), (4.14)

= ASr(t,u(t),x(t,u,x0))

= ASr(t,u(t),Dy(t,u,x0)) + x0).

Thus, (4.12) has at least one solution satisfying 1 and 2.

Now consider a second solution of (4.12), z, and define φ(t,u,x0) ≡ Dz(t,u,x0)+

x0. By differentiation,

φ̇(t,u,x0) = Dż(t,u,x0), (4.15)

= DASr(t,u(t),Dz(t,u,x0) + x0),

= Sr(t,u(t),φ(t,u,x0)),

for all (t,u,x0) ∈ I×U×X0. Therefore, uniqueness implies that φ = x on I×U×X0,

and hence x(t,u,x0) = Dz(t,u,x0) + x0. In particular,

ADz(t,u,x0) = A(x(t,u,x0) − x0), ∀(t,u,x0) ∈ I × U ×X0. (4.16)

From the form of (4.12) and the fact that z(t0,u,x0) = 0 ∈ R(A), it follows that

z(t,u,x0) ∈ R(A) for all (t,u,x0) ∈ I×U×X0. Combining this with (4.16), Lemmas

4.4.4 and 4.4.5 imply that z(t,u,x0) = A(x(t,u,x0) − x0). Then it has been shown

that z(t,u,x0) = y(t,u,x0) for all (t,u,x0) ∈ I ×U ×X0, so the solution of (4.12) is

unique.

Given a stoichiometry matrix S which is not full row rank, the hypotheses of

Theorem 4.4.6 are easily satisfied. The matrix D may be formed simply by choosing

any maximal set of linearly independent columns of S. Algorithms for computing a

{1, 2}-inverse of D can be found in [21], so a suitable matrix A is readily available.

For example, the well-known Moore-Penrose inverse is a {1, 2}-inverse and can be

computed using the MATLAB routine pinv. It is interesting to note that if A is the
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Moore-Penrose inverse of D, then AD = I always holds. Thus, if S is full column

rank, then D = S is an appropriate choice and the reduced system (4.12) reduces to

ẏ(t,u,x0) = ADr(t,u(t),Dy(t,u,x0) + x0),

= r(t,u(t),Dy(t,u,x0) + x0),

with y(t,u,x0) = 0. In this case y corresponds to the well-known extents of reaction

representation of a kinetic model [63].

The connection between the reduced model (4.12) and the underlying reaction

invariants follows from Conclusions 1 and 2 in Theorem 4.4.6. Combining these gives

(x(t,u,x0) − x0) = Dy(t,u,x0), (4.17)

= DA(x(t,u,x0) − x0),

which implies that (I − DA)x(t,u,x0) = (I − DA)x0. Thus, the rows of the matrix

(I − DA) are affine reaction invariants of the original kinetic model and, of these,

nx − ny must be linearly independent.

Example 4.4.1. Consider again the kinetic model given in Example 4.2.1. Since S

has rank 1, any one column spans its entire range. Choosing D ≡ [−1 − 1 1]T,

the Moore-Penrose inverse of D is computed by the MATLAB routine pinv as A =

[−1/3 − 1/3 1/3]. Since the hypotheses of Theorem 4.4.6 are satisfied, a reduced

kinetic model is given by

ẏ(t,u,x0) = ASr(t,u(t),Dy(t,u,x0) + x0) (4.18)

= kf(−y(t,u,x0) + x0,A)(−y(t,u,x0) + x0,B)

− kr(y(t,u,x0) + x0,C).

A complete set of linearly independent reaction invariants for the original model is
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given by the rows of (I −DA), which evaluates to

(I − DA) =











2/3 −1/3 1/3

−1/3 2/3 1/3

1/3 1/3 2/3











.

This matrix is rank 2, as expected, and it is easy to check that any 2 rows form a

basis for N (ST). Moreover, the basis of Example 4.2.1 is easily obtained through

elementary row operations.

4.4.2 Reduced Space State Bounding

Given an arbitrary kinetic model of the form (4.1), where S is not full row rank, The-

orem 4.4.6 provides a means for constructing a reduced model which can describe the

time evolution of the original model fully through Conclusion 2 of that theorem. Of

course, any of the bounding methods described in Chapter 3 can be applied directly

to this reduced model. To avoid confusion, denote state bounds for the original and

reduced models by xL,xU : I → Rnx and yL,yU : I → Rny , respectively. Further-

more, assume that X0 is an interval. Then, having computed yL and yU by any of

the available methods, Conclusion 2 of Theorem 4.4.6 implies that state bounds for

(4.1) are given by

[xL(t),xU(t)] = D[yL(t),yU(t)] +X0, ∀t ∈ I. (4.19)

In what follows, any method for computing state bounds for (4.1) through (4.19) is

referred to as a reduced-space method, in contrast to the full-space methods that have

been considered thus far.

The simplest reduced-space method results from applying Harrison’s method to

(4.12). Indeed, the affine reaction invariants of the original model have essentially

been used to define the reduced model. Provided that the smallest possible reduction

in dimension was made, the reduced model does not itself satisfy any affine reaction

invariants. Therefore, there is seemingly no need to resort to the methods of §3.6 to
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compute state bounds for (4.12). However, it turns out that such a reduced-space

Harrison’s method does not produce sharp bounds. One reason for this is that the

natural bounds XN , in particular the nonnegativity constraints, are not exploited.

Ironically, the affine variable transformation from x to y that eliminates the need

to deal directly with reaction invariants also convolutes the natural bounds. That is,

the simple interval constraint x(t,u,x0) ∈ XN for all I × U × X0 can be written in

terms of the reduced variables y only as the more complicated polyhedral constraint

xN,L ≤ Dy(t,u,x0) + x0 ≤ xN,U , ∀(t,u,x0) ∈ I × U ×X0. (4.20)

Thus, to obtain sharp bounds from a reduced-space method, one is again forced to

deal directly with a priori enclosures.

Define the reduced-space natural bounds Y N = [yN,L,yN,U ] as the solutions of the

following linear programs:

yN,Li := inf
φ,z,x0

φi (4.21)

s.t. φ = A(z− x0)

z ∈ XN , x0 ∈ X0

yN,Ui := sup
φ,z,x0

φi (4.22)

s.t. φ = A(z− x0)

z ∈ XN , x0 ∈ X0,

for all i = 1, . . . , ny. Combining Y N with (4.20) gives the a priori enclosure for the

solutions of (4.12),

G ≡ {z ∈ Rny : z ∈ Y N , Dz ∈ XN −X0}, (4.23)

Expanding the interval operations, it is easily seen that G is a convex polyhedral set.

To compute state bounds on the solutions of (4.12), we will essentially apply the

FSI method using the set G above. To do this, it is necessary to ensure that the
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right-hand sides of (4.12) satisfy Assumptions and 3.2.1 and 3.2.2, and to derive an

inclusion monotonic interval extension of these functions in order to use the efficient

interval implementation (3.31). Actually, this will be done for a modified reduced

system defined below, which has the advantage that XN can be further exploited in

the interval extension of its right-hand side functions.

Definition 4.4.7. Let Dy ⊂ Rny and h : I × U ×X0 ×Dy → Rny be defined by

Dy ≡ {y ∈ Rny : mid(xN,L,xN,U ,Dy + x0) ∈ D, ∀x0 ∈ X0},

h(t,p,x0,y) ≡ ASr(t,p,mid(xN,L,xN,U ,Dy + x0)).

Assumption 4.4.8. Let y be the unique solution of (4.12). Then y(t,u,x0) ∈ Dy,

∀(t,u,x0) ∈ I × U ×X0.

Corollary 4.4.9. Let the hypotheses of Theorem 4.4.6 hold. If Assumption 4.4.8

holds, then the solution of (4.12) is also a solution of

ẏ(t,u,x0) = h(t,u(t),y(t,u,x0)), y(t0,u,x0) = 0, (4.24)

on I × U ×X0.

Proof. Let y be the unique solution of (4.12). By Conclusion 2 of Theorem 4.4.6,

Dy(t,u,x0) + x0 = x(t,u,x0), and hence

mid(xN,L,xU,N ,Dy(t,u,x0) + x0) = Dy(t,u,x0) + x0, (4.25)

for all (t,u,x0) ∈ I × U ×X0. Then, y is also a solution of (4.24).

Next it is shown that the ODEs (4.24) satisfy the assumption of §3.2. This justifies

applying the bounding methods developed in Chapter 3 to (4.24). It also implies

that the solution of (4.24) is unique. For the following lemma, note that the initial

condition of the reduced system (4.24) is always 0, and the initial condition vector

for the full model x0 plays the role of a parameter in the right-hand side function.
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Lemma 4.4.10. If Assumptions 3.2.1 and 3.2.2 hold with f ≡ r, then they hold with

f ≡ h, under the interpretation U ≡ U ×X0 and D ≡ Dy.

Proof. Fix any (p,x0, zy) ∈ U ×X0 ×Dy. Then mid(xN,L,xN,U ,Dzy + x0) ∈ D and

Condition 1 of Assumption 3.2.1 implies that r(·,p,mid(xN,L,xN,U ,Dzy+x0)) is mea-

surable on I. If follows that ASr(·,p,mid(xN,L,xN,U ,Dzy + x0)) is also measurable

on I, which establishes Condition 1 of Assumption 3.2.1 with f ≡ h.

For a.e. t ∈ I, Condition 2 of Assumption 3.2.1 states that r(t, ·, ·) is continuous

on P ×D. It follows that h(t, ·, ·, ·) is continuous on U ×X0 ×Dy. This establishes

Condition 2 of Assumption 3.2.1 with f ≡ h.

Choose any compact Ky ⊂ Dy. The set K ≡ {mid(xN,L,xN,U ,Dzy + x0) : zy ∈
Ky, x0 ∈ X0} is compact, and K ⊂ D by the definition of Dy. By Condition 3 of

Assumption 3.2.1, ∃α ∈ L1(I) such that ‖r(t,p, zx)‖1 ≤ α(t) for a.e. t ∈ I and every

(p, zx) ∈ U × K. But this implies that ‖ASr(t,p,mid(xN,L,xN,U ,Dzy + x0))‖1 ≤
‖AS‖1α(t) for a.e. t ∈ I and every (p,x0, zy) ∈ U ×X0 ×Ky. This proves Condition

3 of Assumption 3.2.1 with f ≡ h.

Choose any zy ∈ Dy and any x̄0 ∈ X0. By the definition of Dy, the point

zx ≡ mid(xN,L,xN,U ,Dzy + x̄0) is in D. Then, Assumption 3.2.2 furnishes η > 0 and

ᾱ ∈ L1(I) such that, for a.e. t ∈ I and every p ∈ U ,

‖r(t,p, z̃x) − r(t,p, ẑx)‖∞ ≤ ᾱ(t)‖z̃x − ẑx‖∞,

for every z̃, ẑ ∈ Bη(z) ∩ D. Choose ǭ > 0 small enough that mid(xN,L,xN,U ,Dẑy +

x0) ∈ Bη(zx) if ẑy ∈ Bǭ(zy) and x0 ∈ Bǭ(x̄0). Then, for a.e. t ∈ I and any (p,x0) ∈
U ×Bǭ(x̄0),

‖ASr(t,p,mid(xN,L,xN,U ,Dz̃y + x0))−ASr(t,p,mid(xN,L,xN,U ,Dẑy + x0))‖∞,

≤ ‖AS‖ᾱ(t)‖D‖‖z̃y − ẑy‖∞,

for any z̃y, ẑy ∈ Bǭ(zy) ∩Dy, where the matrix norms are induced infinity-norms.

The previous construction provides a cover of X0 by open balls. Since X0 is
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compact, we may choose a finite subcover, Bǫ1(x
1
0), . . . , BǫK(xK0 ). Let ǫ ≡ mink ǫk and

define β ∈ L1(I) by β(t) = ‖AS‖‖D‖maxk αk(t). Then, for any (p,x0) ∈ U × X0,

there is a k such that x0 ∈ Bǫk(x
k
0), and hence

‖ASr(t,p,mid(xN,L,xN,U ,Dz̃y + x0))−ASr(t,p,mid(xN,L,xN,U ,Dẑy + x0))‖∞
≤ ‖AS‖αk(t)‖D‖‖z̃y − ẑy‖∞,

≤ β(t)‖z̃y − ẑy‖∞,

for any z̃y, ẑy ∈ Bǫ(zy) ∩Dy. Thus, Assumption 3.2.2 holds with f ≡ h.

Next, an inclusion monotonic interval extension for h is derived. Suppose that

Assumption 3.5.6 holds with f = r, so that an inclusion monotonic interval extension

[r] : Dr ⊂ II × IU × ID → Rnr is available. Then, an inclusion monotonic interval

extension of h can be defined as follows.

Definition 4.4.11. Define [h] : DH → IRny by

DH ≡ {(I ′, U ′, X ′
0, Y

′) ∈ II × IU × IX0 × IDy : (I ′, U ′, XN ∩̃ (DY ′ +X ′
0)) ∈ Dr},

[h](I ′, U ′, X ′
0, Y

′) ≡ (AS)[r](I ′, U ′, XN ∩̃ (DY ′ +X ′
0)).

Lemma 4.4.12. ([h],DH , IR
ny) is an inclusion monotonic interval extension of (h, I×

U ×X0 ×Dy,Rny).

Proof. The lemma follows from Theorem 2.3.7, Lemma 2.5.24, and Lemma 2.3.5.

The advantage of bounding the reduced system (4.24) as opposed to (4.12) is

apparent from the previous definition and lemma. The intersection with XN in the

definition of [h] would not be permitted otherwise. This particular usage of XN has

a very profound impact on the resulting state bounds because it prevents the interval

extension of the rate function r from being taken over intervals which contain non-

physical points, such as negative species concentrations.

Another important point to note about the definition of [h] is the order of the

multiplications (AS)[r]. If this product is evaluated instead as A(S[r]), a much weaker
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interval extension can result. For example suppose that AiSr evaluates to something

like r1 + r2 + r3 − r2. Then (AiS)[r] = [r1] + [r3], whereas A(S[r]) gives the weaker

enclosure [r1] + [r2] + [r3] − [r2].

Now consider the bounding system

ẏLi (t) = [hi]
L([t, t], U,ΩL

i (t,y
L(t),yU(t))), (4.26)

ẏUi (t) = [hi]
U([t, t], U,ΩU

i (t,yL(t),yU(t))),

for a.e. t ∈ I and every i ∈ {1, . . . , ny}, where

DΩ ≡ I × Rny × Rny , (4.27)

ΩL
i (t,y

L,yU) ≡ BLi (IG(�(yL,yU))),

ΩU
i (t,yL,yU) ≡ BUi (IG(�(yL,yU))).

Above, IG is defined as in Definition 3.6.3 and G is defined by (4.23).

Corollary 4.4.13. Suppose that yL,yU ∈ AC(I,Rnx) satisfy (4.26) a.e. on I. If

Assumption 4.4.8 holds, then yL(t) ≤ y(t,u,x0) ≤ yU(t), ∀(t,u,x0) ∈ I × U × X0.

Moreover, let

[xL(t),xU(t)] = XN ∩
(

DIG([yL(t),yU(t)]) +X0

)

, ∀t ∈ I.

Then xL(t) ≤ x(t,u,x0) ≤ xU(t), ∀(t,u,x0) ∈ I × U ×X0.

Proof. In light of Lemma 4.4.10, yL(t) ≤ y(t,u,x0) ≤ yU(t), ∀(t,u,x0) ∈ I×U×X0,

provided that the hypotheses of Corollary 3.5.8 hold. Assumption 3.5.6 holds with

f ≡ h by Lemma 4.4.12. Assumption 3.5.7 follows directly from the definitions (4.27).

Finally, Hypothesis 3.5.3 was proven in §3.6.1.

Since y(t,u,x0) ∈ [yL(t),yU(t)], ∀(t,u,x0) ∈ I×U×X0, it follows from Condition

2 of Definition 3.6.1 that y(t,u,x0) ∈ IG([yL(t),yU(t)]), ∀(t,u,x0) ∈ I×U ×X0. By

Conclusion 2 of Theorem 4.4.6, x(t,u,x0) = Dy(t,u,x0)+x0, ∀(t,u,x0) ∈ I×U×X0,

and hence x(t,u,x0) ∈
(

DIG([yL(t),yU(t)]) +X0

)

, ∀(t,u,x0) ∈ I × U ×X0. By the
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definition of XN , the corollary follows.

4.5 Numerical Examples

State bounds for the case studies below were computed using a custom C++ code which

takes as instance specific input D, A, XN , Y N , S, X0, U and routines for evaluating

the function r. MATLAB was used to compute A, XN and Y N from D as described

in Sections 4.4.1, 4.2.2 and 4.4.2. The MATLAB routine pinv was used to compute

A, and linprog was used to compute XN and Y N . From this input, it is trivial

to evaluate the right-hand side function of the reduced model (4.24). All interval

extensions were computed using the C++ library MC++ (http://www3.imperial.ac.

uk/people/b.chachuat/research), and numerical integration was carried out using

the package CVODE [44]. Hardware details can be found in §4.3.

Again, for ease of comparison, the method names introduced in §4.3 will be used

here as well. In addition, let the reduced-space invariant (RSI) method refer to the

method given by first solving (4.26) with the definitions (4.27), G a polyhedral set

and IG as in Definition 3.6.3, and then computing state bounds for (4.1) exactly as

in Corollary 4.4.13.

Example 4.5.1. Consider again the model of Example 4.3.1. There, state bounds

were computed using Singer’s method and the FSI method with I = [0, 0.05] min,

the set of admissible controls

U = {(kf , kr) ∈ (L1(I))2 : (kf(t), kr(t)) ∈ [100, 500]× [0.001, 0.01] for a.e. t ∈ I},

and the singleton set of admissible initial conditions X0 = {x0} with x0 = (1.5, 0.5, 0)

(M). Here, state bounds are computed by the RSI method and compared. For ease

of reference, the results of Singer’s method are reproduced as the dashed curves in

Figure 4-7 below. In all figures in this section, solid curves are true model solutions

computed for sampled points (u,x0) ∈ U ×X0.

From Example 4.4.1, a reduced model is given by (4.24) with D = [−1 − 1 1]T
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and A = [−1/3 − 1/3 1/3]. Furthermore, natural bounds were derived in Example

4.2.1 as XN = [1, 1.5] × [0, 0.5] × [0, 0.5]. Reduced space natural bounds Y N can be

computed by solving the linear programs

yN,L := inf
φ,z

φ (4.28)

s.t. φ = −1

3
(zA − 1.5) − 1

3
(zB − 0.5) +

1

3
zC


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yN,U := sup
φ,z

φ (4.29)

s.t. φ = −1

3
(zA − 1.5) − 1

3
(zB − 0.5) +

1

3
zC
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which yield Y N ≡ [0, 0.5].

Defining the set G as in (4.23), the condition z ∈ G is characterized by the

following inequality constraints

yN,L ≤ z ≤ yN,U ,

(−xU0,A + xN,LA ) ≤ −z ≤ (−xL0,A + xN,UA ),

(−xU0,B + xN,LB ) ≤ −z ≤ (−xL0,B + xN,UB ),

(−xU0,C + xN,LC ) ≤ z ≤ (−xL0,C + xN,UC ),

where the bottom three lines result from the constraint Dz ∈ XN −X0. Therefore,
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G ≡ {z ∈ R : Jz ≤ b}, where

J =




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



0.5

0

0

0.5

0

0.5

0.5

0









































. (4.30)

Now, ΩL
i and ΩU

i as in (4.27) can be evaluated by directly applying IG as per Definition

3.6.3.

The results of the RSI state bounding method are show for xC by the circles in

Figure 4-7. Clearly, the bounds generated through the RSI method are much tighter

than those computed by Singer’s method. The results of the FSI method presented in

Example 4.2.1 are identical to those of the RSI method here. In fact, both methods

produce the the best possible bounds for this problem.

Example 4.5.2 (An initial condition problem). Consider the reaction network

A + B → C (4.31)

A + C → D

with mass-action kinetics. Letting x = (xA, xB, xC , xD) and u = k1, the dynamics of

this system in an isothermal batch reactor are described by a kinetic model of the

from (4.1) with

S =

















−1 −1

−1 0

1 −1

0 1

















, r(t, p, z) =





pzAzB

20zAzC



 , (4.32)
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Figure 4-7: State bounds for the species concentration xC from Example 4.5.1 com-
puted by Singer’s method (dashed) and the RSI method (circles). Solid curves are
true model solutions.

Let I = [0, 0.1] s and suppose that k1 is only known to within an order of magnitude,

so that the single control u = k1 is restricted to

U = {k1 ∈ L1(I) : k1(t) ∈ [50, 500] M−1s−1 for a.e. t ∈ I}.

In addition, suppose that x0,B is measured as 1M with a ±5% error, so that the set

of admissible initial conditions is X0 = [1, 1] × [0.95, 1.05] × [0, 0].

State bounds for this model were computed using Singer’s method and the RSI

method. Since S has rank 2, D = S was chosen for the latter, and A was computed

as the Moore-Penrose inverse of D by the MATLAB routine pinv. The result is

A =





−1/3 −1/3 1/3 0

−1/3 0 −1/3 1/3



 .

From the reaction network, it can be seen that A and B are only consumed and C

and D are limited by the amounts of A and B. Using these observations, the initial

natural bounds were given as XN = [0, 1] × [0, 1.05] × [0, 1] × [0, 1], and refined via
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the programs (4.5) and (4.6) to give XN = [0, 1]× [0, 1.05]× [0, 1]× [0, 0.5]. Y N was

computed by solving the programs (4.21) and (4.22), resulting in Y N ≡ [0, 1]×[0, 0.5].

Defining the set G as in (4.23), the condition z ∈ G is characterized by the

following inequality constraints

yN,L ≤ z1 ≤ yN,U ,

yN,L ≤ z2 ≤ yN,U ,

(xN,UA − xU0,A) ≤ −z1 − z2 ≤ (xN,LA − xL0,A),

(xN,UB − xU0,B) ≤ −z1 ≤ (xN,LB − xL0,B),

(xN,LC − xU0,C) ≤ z1 − z2 ≤ (xN,UC − xL0,C),

(xN,LD − xU0,D) ≤ z2 ≤ (xN,UD − xL0,D)

Therefore, G can easily be put in the form {z ∈ R2 : Jz ≤ b}, and ΩL
i and ΩU

i as in

(4.27) can be evaluated by applying IG as per Definition 3.6.3.

State bounds computed for xB are shown in Figure 4-8. The dashed lines are

the bounds computed by Singer’s method, while the circles show the results of the

RSI method. Clearly, the RSI method produces much sharper bounds than Singer’s

method.

Example 4.5.3 (A PFR control problem). Consider the reaction network

R1 + R2 → I1

R1 + I1 → A

I1 → C

C + I1 ⇋ I2

Pt → Pt∗,

with rate coefficients k1, . . . , k6 (k5 denotes the reverse rate coefficient for the fourth

reaction). All rate coefficients are temperature dependent through the standard Ar-
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Figure 4-8: State bounds for the species concentration xB from Example 4.5.2 com-
puted by Singer’s method (dashed) and the RSI method (circles). Solid curves are
true model solutions.

rhenius expression

ki(T ) = k0,ie
−Ei/RT ,

where R is the universal gas constant and values for k0,i and Ei are listed in Table 4.1.

Except for the first reaction, all reactions are considered to be elementary and obey

mass-action kinetics. The first reaction takes place over a platinum catalyst with the

rate expression given in (4.35), and deactivation of the catalyst is described by the

final reaction. These reactions are considered in a plug flow reactor at steady state,

and the response to various temperature profiles is bounded using Singer’s method

and the RSI method.

With x = (xR1, xR2, xI1, xI2, xA, xC , xPt, xPt∗) and u = T , this system is described

by a kinetic model of the form (4.1) with

dx

dζ
(ζ, T,x0) = Sr(ζ, T (t),x(ζ, T,x0)), x(0, T,x0) = x0, (4.33)
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where ζ is the dimensionless reactor axial coordinate, S and r are given by

S =









































−1 −1 0 0 0 0

−1 0 0 0 0 0

1 −1 −1 −1 1 0

0 0 0 1 −1 0

0 1 0 0 0 0

0 0 1 −1 1 0

0 0 0 0 0 −1

0 0 0 0 0 1









































(4.34)

and

r(t, p, z) =





























τk1(p)zR1zR2zPt/(0.7 + zPt)

τk2(p)zR1zI1

τk3(p)zI1

τk4(p)zI1xC

τk5(p)zI2

τk6(p)zPt





























. (4.35)

τ denotes the residence time, which is taken to be 1000 s. In contrast to the previous

three examples, this system is not closed and does not obey mass action kinetics

strictly. Nonetheless, the resulting kinetic model is of the form (4.1), so all of the

methods presented are applicable.

We consider the solutions of this model for ζ ∈ I = [0, 1] and temperatures in the

range U = [350, 450] K, so that the set of admissible controls is

U = {T ∈ L1(I) : T (ζ) ∈ [350, 450] K for a.e. ζ ∈ I}.

The set of admissible initial conditions isX0 = {x0} with x0 = (516, 258, 0, 0, 0, 0, 1.1, 0)

(mol/m3).

To derive a reduced model, D was chosen as a maximal set of linearly independent
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columns of S,

D =









































−1 −1 0 0 0

−1 0 0 0 0

1 −1 −1 −1 0

0 0 0 1 0

0 1 0 0 0

0 0 1 −1 0

0 0 0 0 −1

0 0 0 0 1









































, (4.36)

and A chosen as the Moore-Penrose inverse of D, computed by the MATLAB pinv

routine as

A =























−0.3333 −0.5417 0.1250 0.2500 −0.2083 0.125 0 0

−0.3333 0.2083 −0.125 −0.25 0.5417 −0.125 0 0

0 −0.375 −0.375 0.25 −0.375 0.625 0 0

0 −0.25 −0.25 0.5 −0.25 −0.25 0 0

0 0 0 0 0 0 −0.5 0.5























.

The natural bounds before refinement through (4.5) and (4.6) were

XN = [0,516] × [0, 258] × [0, 258] × [0, 258]

× [0, 258] × [0, 258] × [0, 1.1] × [0, 1.1] (mol/m3),

and (4.6) refined the fourth upper bound to 129 (mol/m3).

State bounds computed for the species xR1 and xC are shown in Figures 4-9 and

4-10, respectively, along with many solutions for several constant T ∈ [350, 450]. The

dashed lines are the bounds computed by Singer’s method, while the circles show

the results of the RSI method. Clearly, the RSI method produces much sharper

bounds than Singer’s method. Among all species in the reaction network, the bounds

on xR1 in Figure 4-9 are typical, whereas the bounds on xC shown in Figure 4-10

are comparatively tight. There are other species in the model for which the bounds
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Table 4.1: Values for the rate coefficients and activation energies, k0,i and Ei, for the
kinetic model in Example 4.5.3.

i k0,i (m3/mol · s) or (1/s) Ei (J/mol)
1 7.5 × 104 78240
2 1.01 45605
3 1.22 × 1011 103345
4 3.58 × 10−2 32217
5 7.33 × 109 91211
6 1.39 × 10−4 0
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Figure 4-9: State bounds for the species concentration xR1 from Example 4.5.3 com-
puted by Singer’s method (dashed) and the RSI method (circles). Solid curves are
true model solutions.

computed by both methods are tight, and still others for which both methods give

weak bounds (data not shown). In all cases, the bounds generated by the RSI method

are superior to those generated using Singer’s method. Finally, note that the bounds

computed by Singer’s method are often only reasonable because they are intersected

with the natural bounds in the figures. For example, the upper bounding trajectory

from Singer’s method in Figure 4-10 carries almost no information that is not already

known from the natural upper bound. In contrast, the upper bound computed from

the RSI method tracks the upper limit of xC accurately along the entire length of the

reactor.
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Figure 4-10: State bounds for the species concentration xC from Example 4.5.3 com-
puted by Singer’s method (dashed) and the RSI method (circles). Solid curves are
true model solutions.

Example 4.5.4 (A parameter estimation problem). In [163], global parameter esti-

mation and model verification is carried out for the proposed kinetic mechanism

(CH3)3CO + 1, 4-C6H8 → c-C6H7 + (CH3)3COH

c-C6H7 + O2 ⇋ p-C6H7OO

c-C6H7 + O2 ⇋ o-C6H7OO

o-C6H7OO → C6H6 + HO2

2c-C6H7 → Products.

Global parameter estimation requires the solution of a global dynamic optimization

problem (least-squares minimization), which in turn requires the computation of state

bounds for this model. In [163], this was done using Singer’s method. Here, the RSI

method is applied and the results are compared.

The unknown parameters are the forward rate constants for the second and third

reactions, which are only known to lie in the interval [100, 600] (M−1µs−1), and the for-

ward rate constant for the fourth reaction, which is restricted to the interval [0.001, 50]

(µs−1). That is u = (k2, k3, k4) and U ≡ [100, 600] × [100, 600] × [0.001, 50] (wider
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parameter ranges are considered in [162], but the global optimization algorithm em-

ployed there also involves computing state bounds over subintervals of U , so this is a

closely related problem, and the state bounds are more clearly illustrated over these

ranges). Ordering the variables as

x = (x(CH3)3CO, x1,4-C6H8
, xc-C6H7

, x(CH3)3COH

xO2
, xp-C6H7OO, xo-C6H7OO, xC6H6

, xHO2
, xProducts),

The full kinetic model for this system in an isothermal batch reactor is now described

by

S =


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












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,

and

r(t,p, z) =























k1z1z2

p2(z3z5 − (1/K2)z6)

p3(z3z5 − (1/K3)z7)

p4z7

k5z
2
3
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















,

where the values of the constants k1, k5, K2 and K3 are given in Table 2 of [163] for
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298 K. The set of admissible initial conditions is the singleton containing

x0 = (1.53 × 10−4, 0.4, 0, 0, 0.0019, 0, 0, 0, 0, 0).

To construct a reduced model, D = S was chosen since S is full column rank. A

was again chosen as the Moore-Penrose inverse of D, computed by the MATLAB pinv

routine as

A =























−0.3150 −0.3150 0.0551 0.3150 −0.0394

−0.0157 −0.0157 −0.0472 0.0157 −0.2520

−0.0236 −0.0236 −0.0709 0.0236 −0.3780

−0.0079 −0.0079 −0.0236 0.0079 −0.1260

−0.1102 −0.1102 −0.3307 0.1102 0.2362

0.0157 0.0157 0.0079 0.0079 0.1102

0.7008 −0.2992 −0.1496 −0.1496 −0.0945

−0.4488 0.5512 0.2756 0.2756 −0.1417

−0.1496 −0.1496 0.4252 0.4252 −0.0472

−0.0945 −0.0945 −0.0472 −0.0472 0.3386












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







.

The natural bounds before refinement by (4.5) and (4.6) were

XN = [0, 1.53 × 10−4] × [0, 0.4] × [0, 0.4025] × [0, 0.4025]

× [0, 0.4025] × [0, 0.4025]× [0, 0.4025] × [0, 0.4025]

× [0, 0.4025]× [0, 0.4025] (M).

The first two upper bounds result from the initial conditions and the fact that neither

(CH3)3CO or 1, 4-C6H8 are generated in the network. The remaining upper bounds

are set according to the total number of moles in the system initially, since it is

clear from the stoichiometry that the total number of moles will never exceed the

initial number. In [163], parameter estimation is done by fitting the kinetic model

to measured absorbance data. In Figures 4-11 and 4-12, state bounds are shown for
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two of the principle contributors to the measured absorbance, xp-C6H7OO and xc-C6H7
.

State bounds computed using the RSI method are shown by circles, while those from

Singer’s method are shown by dashed lines. For xp-C6H7OO (Figure 4-11), the bounds

computed using the RSI method are tighter. However, for xc-C6H7
Singer’s method

produces tighter bounds than the RSI method. Theoretically, this is possible for two

reasons. First, though the affine reaction invariants are enforced by the construction

of the reduced model, it was shown in Section 4.4.2 that the natural bounds XN can

only be enforced approximately. Secondly, the right-hand side functions of the reduced

system (4.24) are potentially more involved than those of the original system due to

the additional matrix multiplications. Accordingly, the natural interval extensions of

the reduced system right-hand side functions may be weaker than those of the original

model right-hand sides. As seen in Figure 4-12, these factors may overwhelm the

geometric benefit of bounding the reduced system, and weak bounds result. When

this occurs, it is very likely that a different reduced system may produce better

bounds. That is, one can choose different matrices A and D and apply the RSI

method again to obtain a different set of state bounds.

Consider the matrices

D =
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,
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and

A =























0 1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0 0


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

.

It is not difficult to verify that A is a {1, 2}-inverse of D (not the Moore-Penrose

inverse in this case) and that R(S) = R(D). The state bounds computed by the

RSI method using these matrices are shown by the crosses in Figures 4-11 and 4-12.

In both figures, these state bounds agree exactly with those computed using Singer’s

method. Of course, this is an improvement for xc-C6H7
, but not for xp-C6H7OO. This

should not be surprising from the form of A. Here, A was chosen so that the reduced

variables are a subset of the original state variables, rather than linear combinations.

These are often referred to as reference components in the literature [66]. If the chosen

reference components are capable of describing the full system dynamics, then D can

be computed as D = R(AR)−1, where R is a maximal set of linearly independent

columns of S. It is worth noting that the state bounds computed using these matrices

are at least as good as those computed by Singer’s method for every species except

xProducts.

4.6 The Role of Redundancy

In this chapter, we have not provided a direct comparison between the FSI and RSI

methods; that is, between the efficacy of using affine reaction invariants in the form of

a bounds tightening procedure in the full space, and using them to derive a reduced

model for bounding. However, one general principle can be gleaned from Example

4.3.2, where Singer’s method and the FSI method were compared, but not the RSI

method. By inspection, one reduced model is obvious. If the relation 1T(x(t, T,x0)−
x0) = 0 is used to eliminate xC from the model, then resulting reduced system is
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Figure 4-11: State bounds for the species concentration xp-C6H7OO from Example 4.5.4.
Dashed lines are state bounds computed by Singer’s method. Two independent sets
of state bounds were computed by applying the RSI method with two different pairs
of A and D matrices as input. These bounds are shown by circles and crosses,
respectively. Solid curves are true model solutions.
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Figure 4-12: State bounds for the species concentration xc-C6H7
from Example 4.5.4.

Dashed lines are state bounds computed by Singer’s method. Two independent sets
of state bounds were computed by applying the RSI method with two different pairs
of A and D matrices as input. These bounds are shown by circles and crosses,
respectively. Solid curves are true model solutions.
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given simply by the ODEs for xA and xB, unmodified. However, since elimination

of xC leaves the ODEs for xA and xB unchanged, bounding this reduced model will

again produce the weak bounds shown by the dashed lines in Figure 4-3. Thus, for

this example, FSI is clearly a better method.

One way to understand the efficacy of the FSI method for this example is to

note that the reaction invariant is redundant with the three original ODEs. The FSI

method makes use of all four redundant equations, whereas the RSI method eliminates

one. In interval computations, it is generally known that multiple expressions for

the same quantity may result in different enclosures, and that sharper enclosures

result from using all available information. In line with this observation, the previous

discussion shows that it is better to exploit redundancy in a kinetic model than to

eliminate it by reformulation. This is a strong argument for FSI. On the other hand,

it is worth exploring whether or not the reduced-space methods improve if some

additional redundant equations from the original model are appended to the reduced

system for the purposes of bounding. In essence, this leads to a bigger open question:

is there any inherent advantage to using a variable transformation in state bounding

methods? For Taylor methods, the answer is emphatically in the affirmative [128].

The question has apparently never been explored for differential inequalities methods.

4.7 Conclusions and Future Work

In this chapter, the state bounding methods developed in Chapter 3 were applied to

ODE models of chemical reaction kinetics. It was shown that the special structure

of such models affords a wealth of information constraining possible model solutions.

This information takes the form of affine reaction invariants and natural bounds,

both of which can be derived through a simple analysis of the stoichiometry matrix.

Through several case studies, it was shown that the state bounding method developed

for polyhedral a priori enclosures in §3.6.2, dubbed the FSI method, makes very

effective use of this information. In particular, the FSI method produces bounds that

are significantly tighter than those available through Harrison’s method or Singer’s
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method. More importantly, these bounds display only mild overestimation when

compared to a large sample of true model solutions. Finally, the cost of this method

remains small, increasing the cost of Harrison’s method by no more than a factor of

10 for any problem considered.

The presence of affine reaction invariants in a chemical kinetics model also im-

plies that the system can be described by a reduced model in a lower dimensional

space. Accordingly, a further state bounding method was developed to investigate

the advantages of computing bounds on such a reduced model. It was found that this

approach is typically superior to Harrison’s method and Singer’s method, but not to

the FSI method. However, a much more thorough comparison between these com-

peting methods is in order, including CPU times. Another observation that warrants

further investigation is that this reduced-space method is sensitive to the specific vari-

able transformation used, with some reduced models producing substantially sharper

bounds than others.
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Chapter 5

State Bounding Theory for

Semi-Explicit Index-One DAEs

5.1 Introduction

In this chapter and the next, two methods are developed for computing interval

bounds on the solutions of nonlinear, semi-explicit index-one differential-algebraic

equations (DAEs) subject to a given set of initial conditions and model parame-

ters. These parameters may represent uncertain constants in the model, as well as

parametrized control inputs or disturbances. As discussed in detail in Chapter 3,

computing enclosures of the reachable sets of dynamic systems is a classical problem

with a wide variety of applications, including propagating uncertainty through dy-

namic models [75, 162, 140, 141], solving state and parameter estimation problems

[163, 103, 138, 88], safety verification and fault detection in dynamic systems [85, 106],

global optimization of dynamic systems [164, 36, 104, 135], validated numerical inte-

gration [130], controller design and synthesis [132, 110], and verification of continuous

and hybrid systems [176, 40, 70]. However, nearly all available methods apply only

to systems of explicit ordinary differential equations (ODEs) (see Chapter 3 for a

review of these methods). On the other hand, many dynamic systems encountered in

applications are best modeled by DAEs [27, 117].

The state bouding methods developed in this chapter apply to the class of semi-
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explicit index-one DAEs. The fact that such DAEs are equivalent to an explicit

system of ODEs, the so-called underlying ODEs (see Remark 5.3.3), suggests that

methods for ODEs could be applied directly. Unfortunately, this turns out to be

unworkable because ODE methods require that the right-hand side functions are

factorable. For the underlying ODEs, this necessitates an explicit expression for the

inverse of the Jacobian of the algebraic equations, which would be very difficult to

obtain in general (this requires the construction of the cofactor matrix, which has a

factorial number of terms [168]). Moreover, the theoretical reduction to explicit ODEs

is only valid locally around a given solution trajectory. This proves problematic for

ODE methods because the computed enclosures may come to contain regions of state

space on which this reduction is invalid. For these reasons, it is necessary to develop

a dedicated theory.

This chapter presents the theoretical developments requried to characterize state

bounds for the solutions of DAEs, while Chapter 6 discusses numerical methods. The

first theoretical contribution is an interval inclusion test that verifies the existence

and uniqueness of a DAE solution within a given interval. This test combines a well-

known interval inclusion test for solutions of ODEs (used in standard interval Taylor

series bounding methods [130]) with an interval inclusion test for solutions of systems

of nonlinear algebraic equations from the literature on interval Newton methods [131].

The second theoretical contribution is a pair of results using differential inequalities

to derive bounding trajectories corresponding to the differential state variables; i.e.,

those state variables whose time derivatives are given explicitly by the DAE equations.

Together, these contributions lead to the first bounding method proposed in Chapter

6. The final theoretical contribution is a result combining differential inequalities and

interval Newton methods to compute bounds on both the differential and algebraic

variables simultaneously. This result leads to the second method described in Chapter

6. Owing to the use of standard numerical integration codes in our implementation,

the proposed methods produce enclosures that are mathematically guaranteed but

not validated (i.e., they do not account for the numerical error in their computation).

However, the existence and uniqueness test described above can be implemented in
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a validated manner, thus providing a key step towards validated bounding methods

for DAEs.

A previous method for bounding the solutions of semi-explicit DAEs was pro-

posed in [142]. This method is not based on differential inequalities, but it does

involve an existence and uniqueness test based on an interval Newton method (the

interval Krawczyk method). However, rather than combining the interval Krawczyk

inclusion test with an interval inclusion tests for ODE solutions, as is done this work,

the authors apply the interval Krawczyk inclusion test to the system of nonlinear

integral equations obtained by replacing each instance of the differential variables

in the original DAEs by the integrals of their time derivatives. The validity of this

approach is unclear, since no justification is given for applying an inclusion test for

real-valued solutions of algebraic equations to a system of functional equations defined

on a function space.

The article [83] presents an algorithm for computing interval bounds on the solu-

tions of implicit ODEs using Taylor models, which can be extended to treat DAEs as

well. This method first computes a high-order polynomial approximation of the ODE

solution, and then attempts to find a rigorous error bound by satisfying an inclusion

test. Satisfying this inclusion test, which uses Taylor models rather than intervals,

implies existence and uniqueness of an ODE solution near the polynomial approx-

imation, i.e., within the validated error bound. This algorithm appears capable of

computing very tight bounds, but requires the computation of a potentially very large

number of Taylor coefficients. This method does not make use of differential inequal-

ities. Furthermore, in addition to the use of Taylor models in place of intervals, the

existence and uniqueness test proven in [83] is fundamentally different from the one

presented here (and the one used in [142]) because it is derived through direct rear-

rangement of the implicit ODE equations into fixed-point form, rather than through

application of the mean-value theorem, as is done in all interval Newton methods (see

Remark 5.4.6).

Finally, in [45], a method for approximating the reachable sets of semi-explicit

index-one DAEs is proposed, based on level set methods for ODEs [176]. Methods
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of this type are designed to provide an accurate approximation of the reachable set,

rather than a rigorous enclosure of it. Accordingly, these methods are not appropriate

for many applications of interest [163, 138, 85, 106, 164, 36].

The remainder this chapter is organized as follows. Notation and relevant back-

ground material is presented in §5.2. Section 5.3 formally describes the DAEs consid-

ered and presents basic results. In §5.4, an interval test for existence and uniqueness

of solutions is described. Section 5.5 proves three results using differential inequalities

to characterize bounding trajectories. Computational implementation of these results

and case studies are presented in Chapter 6.

5.2 Preliminaries

For any open D ⊂ Rn, Ck(D,Rm) denotes the set of k-times continuously differen-

tiable mappings from D into Rm. For a general D ⊂ Rn, φ ∈ Ck(D,Rm) if there

exists an open set D̃ ⊃ D and a function φ̃ ∈ Ck(D̃,Rm) such that φ̃|D = φ.

The following result is standard ([127], p. 160).

Lemma 5.2.1. Let D ⊂ Rn and φ ∈ C1(D,Rm). Then, for any compact K ⊂ D,

∃LK ∈ R+ such that ‖φ(z) − φ(ẑ)‖1 ≤ LK‖z − ẑ‖1, ∀(z, ẑ) ∈ K ×K.

Let Ds ⊂ Rns, Dr ⊂ Rnr , and ℓ ∈ Ck(Ds × Dr,R
nr) with k ≥ 1. For any

(ŝ, r̂) ∈ Ds×Dr, the Jacobian matrix of the mapping ℓ(ŝ, ·) at r̂ is denoted by ∂ℓ
∂r

(ŝ, r̂).

The implicit function theorem is required below and stated here for reference.

Theorem 5.2.2 (Implicit Function Theorem). Let Ds ⊂ Rns and Dr ⊂ Rnr be open

and let ℓ ∈ Ck(Ds ×Dr,Rnr). Suppose that (s0, r0) ∈ Ds ×Dr satisfies ℓ(s0, r0) = 0

and det∂ℓ
∂r

(s0, r0) 6= 0. Then there exists an open ball around s0, V0 ⊂ Ds, an open

ball around r0, Q0 ⊂ Dr, and h ∈ Ck(V0, Q0) satisfying

1. h(s0) = r0,

2. For any s ∈ V0, the vector r = h(s) is the unique element of Q0 satisfying

ℓ(s, r) = 0,
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3. det∂ℓ
∂r

(s, r) 6= 0, ∀(s, r) ∈ V0 ×Q0.

Proof. See Theorem 9.2 in [127] and Theorem 9.28 in [145].

5.3 Problem Statement

In this section, the system of DAEs under consideration is defined and the problem of

computing interval bounds is stated formally. Because we are interested in computing

interval enclosures of the possible solutions of this system, it is necessary to have

clear statements of the existence and uniqueness properties of these solutions. The

basic local existence result is well-known [96] and is not proven here. On the other

hand, certain arguments in this work require very particular properties related to

uniqueness, so the relevant analysis is provided. Detailed proofs are relegated to

§5.3.4.

5.3.1 Semi-explicit DAEs

Let Dt ⊂ R, Dp ⊂ Rnp, Dx ⊂ Rnx and Dy ⊂ Rny be open sets, and let f : Dt ×
Dp × Dx × Dy → Rnx , g : Dt × Dp × Dx × Dy → Rny and x0 : Dp → Dx be C1

functions. Given some t0 ∈ Dt, consider the initial value problem in semi-explicit

differential-algebraic equations

ẋ(t,p) = f(t,p,x(t,p),y(t,p))

0 = g(t,p,x(t,p),y(t,p))







, (5.1a)

x(t0,p) = x0(p), (5.1b)

where t is the independent variable, p is a vector of problem parameters, ẋ(t,p)

denotes the derivative of x(·,p) at t, and x0 specifies the parametric initial conditions.

A solution of (5.1) is defined below.
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Definition 5.3.1. Define the sets

G ≡ {(t,p, zx, zy) ∈ Dt ×Dp ×Dx ×Dy : g(t,p, zx, zy) = 0},

G0 ≡ {(t,p, zx, zy) ∈ G : x0(p) = zx},

GR ≡ {(t,p, zx, zy) ∈ Dt ×Dp ×Dx ×Dy : det
∂g

∂y
(t,p, zx, zy) 6= 0}.

Definition 5.3.2. Let I ⊂ Dt be connected, and let P ⊂ Dp. A function (x,y) ∈
C1(I × P,Dx)× C1(I × P,Dy) is called a solution of (5.1a) on I × P if (5.1a) holds

for all (t,p) ∈ I × P . If in addition (t,p,x(t,p),y(t,p)) ∈ GR, ∀(t,p) ∈ I × P , then

(x,y) is called regular. When t0 ∈ I is specified and x also satisfies (5.1b), (x,y) it

is called a (regular) solution of (5.1) on I × P .

Remark 5.3.3. In this thesis, the assumption that (5.1) has differential index 1 is

not stated directly, but rather implied by restricting our results to regular solutions,

as defined above. Indeed, these notions are identical in this case, since, for any regular

solution of (5.1) on I × P , a single differentiation of the algebraic equations g gives

the underlying ODEs

ẋ(t,p) = f(t,p,x(t,p),y(t,p)), (5.2)

ẏ(t,p) = −
(

∂g

∂y

)−1
(

∂g

∂x
f(t,p,x(t,p),y(t,p)) +

∂g

∂t

)

, (5.3)

for all (t,p) ∈ I×P , where all partial derivatives of g are evaluated at (t,p,x(t,p),y(t,p)).

5.3.2 Existence and Uniqueness

Existence of a solution of (5.1) can of course only be guaranteed locally. The main

result is stated in terms of local solutions, defined as follows.

Definition 5.3.4. For any (t0, p̂, x̂0, ŷ0) ∈ G0, a mapping (x,y) ∈ C1(I ′ × P ′, Dx) ×
C1(I ′×P ′, Dy) is called a solution of (5.1) local to (t0, p̂, x̂0, ŷ0) if I ′ and P ′ are open

balls containing t0 and p̂, respectively, x and y satisfy (5.1) on I ′×P ′, and y(t0, p̂) =
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ŷ0. If in addition x and y satisfy (t,p,x(t,p),y(t,p)) ∈ GR, ∀(t,p) ∈ I ′ × P ′, then

(x,y) is called regular.

Theorem 5.3.5. Let (t0, p̂, x̂0, ŷ0) ∈ G0∩GR. There exists a regular solution of (5.1)

local to (t0, p̂, x̂0, ŷ0).

Proof. See Theorems 4.13 and 4.18 in [96].

For any (x,y) ∈ C1(I ′×P ′, Dx)×C1(I ′×P ′, Dy) satisfying (5.1), the initial value

of y must obviously satisfy g(t0,p,x(t0,p),y(t0,p)) = 0 for each p ∈ P ′. Therefore,

these values cannot be specified arbitrarily. On the other hand, this equation may

have multiple solutions in Dy, so that in general more information (in addition to

(5.1)) is required to specify a solution uniquely. As will be shown below, uniqueness of

regular local solutions follows from the additional condition y(t0, p̂) = ŷ0 in Definition

5.3.4. The following example demonstrates that uniqueness is not guaranteed in the

absence of this condition.

Example 5.3.1. Let I ≡ [0, δ] ⊂ Dt = R, Dp = ∅, Dx = Dy = R, and define

g(t, zx, zy) = z2
y − zx. With fixed initial condition x0 = 1 at t0 = 0, there are two

possible values for y(t0) satisfying g(t0, x(t0), y(t0)) = 0; y(t0) = 1 and y(t0) = −1.

Letting f(t, zx, zy) = 1, clearly x(t) = 1 + t satisfies ẋ(t) = 1 = f(t, x(t), y(t))

for any y : I → R. However, both y(t) =
√

1 + t and y(t) = −
√

1 + t result in

g(t, x(t), y(t)) = (y(t))2 − x(t) = 0. In particular, y(t) =
√

1 + t is a solution of (5.1)

local to (t0, x̂0, ŷ0) = (0, 1, 1), while y(t) = −
√

1 + t is a solution of (5.1) local to

(t0, x̂0, ŷ0) = (0, 1,−1).

A detailed analysis of the uniqueness properties of solutions of (5.1) is given in

§5.3.4. The most relevant conclusion is the following.

Corollary 5.3.6. Let (x,y) ∈ C1(I × P,Dx)×C1(I × P,Dy) and (x∗,y∗) ∈ C1(Ĩ ×
P̃ , Dx) × C1(Ĩ × P̃ , Dy) be solutions of (5.1) on I × P and Ĩ × P̃ , respectively, with

some t0 ∈ I ∩ Ĩ, and suppose that (x,y) is regular. If P̂ ⊂ P ∩ P̃ is connected and

∃p̂ ∈ P̂ such that y(t0, p̂) = y∗(t0, p̂), then x(t,p) = x∗(t,p) and y(t,p) = y∗(t,p),

∀(t,p) ∈ (I ∩ Ĩ) × P̂ .
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Proof. See §5.3.4.

5.3.3 State Bounds

The primary aim of this chapter and the next is to compute interval bounds for the

solutions of (5.1). Let I = [t0, tf ] ⊂ Dt and P ⊂ Dp be intervals and suppose that

(x,y) ∈ C1(I ×P,Dx)×C1(I ×P,Dy) is a regular solution of (5.1) on I ×P . Then,

our objective is to compute functions xL,xU : I → Rnx and yL,yU : I → Rny such

that

xL(t) ≤ x(t,p) ≤ xU(t) and yL(t) ≤ y(t,p) ≤ yU(t), ∀(t,p) ∈ I × P.

These functions are referred to as state bounds for the solution (x,y).

Recall that (5.1) may have multiple regular solutions on I × P corresponding

to different solution branches of the algebraic equations (see Example 5.3.1). In

the methods of this chapter, a single solution is specified for bounding through an

interval, either provided as input or computed, which, for each p ∈ P , contains

exactly one initial condition for y which is consistent with x0(p) (see Theorem 5.4.8).

This interval specifies which solution branch defines y at t0, and hence the solution is

uniquely determined on I×P (Corollary 5.3.6). In principle, Theorem 5.5.2 provides

bounds valid for all regular solutions of (5.1), but we do not pursue a method for

computing such bounds.

In order to compute state bounds, we will make use of inclusion monotonic interval

extensions of the functions f , g and ∂g
∂y

. It will be assumed throughout that such

functions are available and, for convenience, that they are defined on all of IDt ×
IDp× IDx× IDy. Of course, if f , g and ∂g

∂y
are L-factorable, then the natural interval

extensions of §2.3.2 may be used.

5.3.4 Uniqueness Proofs

Lemma 5.3.7. Let E ⊂ Rn be connected and let ψ : E → R be continuous. If the set

{ξ ∈ E : ψ(ξ) = 0} is nonempty and open with respect to E, then ψ(ξ) = 0, ∀ξ ∈ E.
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Proof. Let E1 = {ξ ∈ E : ψ(ξ) = 0} and E2 = {ξ ∈ E : ψ(ξ) 6= 0}, and note that

E1 ∩ E2 = ∅ and E1 ∪ E2 = E. Since E is connected, it cannot be written as the

disjoint union of two nonempty open (w.r.t. E) sets. But E1 is nonempty and open

w.r.t. E by hypothesis, and E2 is open w.r.t. E because it is the inverse image of an

open set under a continuous mapping on E. Hence, E2 = ∅ and E1 = E.

Lemma 5.3.8. Let (x,y) ∈ C1(I × P,Dx) × C1(I × P,Dy) and (x∗,y∗) ∈ C1(Ĩ ×
P̃ , Dx) ×C1(Ĩ × P̃ , Dy) be solutions of (5.1a) on I × P and Ĩ × P̃ , respectively, and

suppose that (x,y) is regular. Then

1. For any (t′,p′) ∈ I ×P , there exists an open ball around (t′,p′), U ′ ⊂ Dt×Dp,

an open ball around (t′,p′,x(t′,p′)), V ′ ⊂ Dt × Dp × Dx, an open ball around

y(t′,p′), Q′ ⊂ Dy, and a function h ∈ C1(V ′, Q′) satisfying (t,p,x(t,p)) ∈ V ′

and y(t,p) = h(t,p,x(t,p)) ∈ Q′, ∀(t,p) ∈ U ′ ∩ (I × P ).

2. If P̂ ⊂ P ∩P̃ is connected and ∃(t′, p̂) ∈ (I∩ Ĩ)×P̂ such that x(t′,p) = x∗(t′,p),

∀p ∈ P̂ , and y(t′, p̂) = y∗(t′, p̂), then y(t′,p) = y∗(t′,p), ∀p ∈ P̂ .

Proof. Choose any (t′,p′) ∈ I×P . Since (x,y) is a regular solution of (5.1a) on I×P ,

(t′,p′,x(t′,p′),y(t′,p′)) ∈ G ∩GR. Then, by Theorem 5.2.2, there exists an open ball

around (t′,p′,x(t′,p′)), V ′ ⊂ Dt ×Dp ×Dx, an open ball around y(t′,p′), Q′ ⊂ Dy,

and a function h ∈ C1(V ′, Q′) such that h(t′,p′,x(t′,p′)) = y(t′,p′) and, for each

(t,p, zx) ∈ V ′, h(t,p, zx) is the unique element ofQ′ satisfying g(t,p, zx,h(t,p, zx)) =

0. Now, by continuity, there exists an open ball U ′ around the point (t′,p′) small

enough that (t,p,x(t,p)) ∈ V ′ for every (t,p) ∈ U ′ ∩ (I × P ), and it follows that

g(t,p,x(t,p),h(t,p,x(t,p))) = 0, ∀(t,p) ∈ U ′ ∩ (I × P ). (5.4)

Again by continuity, it is possible to choose U ′ small enough that y(t,p) ∈ Q′ for all

(t,p) ∈ U ′ ∩ (I × P ), which implies, by the uniqueness property of h in Q′, that

y(t,p) = h(t,p,x(t,p)), ∀(t,p) ∈ U ′ ∩ (I × P ). (5.5)
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This establishes the first conclusion of the lemma.

To prove the second conclusion, choose any P̂ , p̂ and t′ as in the hypothesis of

the lemma and define

R ≡ {p ∈ P̂ : ‖y(t′,p) − y∗(t′,p)‖ = 0}. (5.6)

By hypothesis, p̂ ∈ R so that R is nonempty. It will be shown than R is open

with respect to P̂ . Choose any p′ ∈ R and, corresponding to the point (t′,p′),

let U ′, V ′, Q′ and h be as in the first conclusion of the lemma. By hypothesis,

(t′,p′,x∗(t′,p′)) = (t′,p′,x(t′,p′)) ∈ V ′, and by the definition of R, y∗(t′,p′) =

y(t′,p′) ∈ Q′, so continuity implies that we may choose an open all around p′, Jp′ ,

small enough that Jp′ ×{t′} ⊂ U ′, and (t′,p,x∗(t′,p)) ∈ V ′ and y∗(t′,p) ∈ Q′, for all

p ∈ Jp′ ∩ P̃ . Then the first conclusion of the theorem gives

y(t′,p) = h(t′,p,x(t′,p)), ∀p ∈ Jp′ ∩ P̂ , (5.7)

and an identical argument shows that

y∗(t′,p) = h(t′,p,x∗(t′,p)), ∀p ∈ Jp′ ∩ P̂ . (5.8)

But x∗(t′,p) = x(t′,p), ∀p ∈ P̂ by hypothesis, so this implies that y∗(t′,p) = y(t′,p),

∀p ∈ Jp′ ∩ P̂ . Thus R is open with respect to P̂ . Now, since P̂ is connected by

hypothesis and R is nonempty and open with respect to P̂ , Lemma 5.3.7 shows that

R = P̂ ; i.e. y∗(t′,p) = y(t′,p), ∀p ∈ P̂ .

Lemma 5.3.9. Let (x,y) ∈ C1(I × P,Dx) × C1(I × P,Dy) and (x∗,y∗) ∈ C1(Ĩ ×
P̃ , Dx) × C1(Ĩ × P̃ , Dy) be solutions of (5.1a) on I × P and Ĩ × P̃ , respectively,

and suppose that (x,y) is regular. If P̂ ⊂ P ∩ P̃ is connected and compact and

∃(t̂, p̂) ∈ (I ∩ Ĩ) × P̂ such that x(t̂,p) = x∗(t̂,p), ∀p ∈ P̂ , and y(t̂, p̂) = y∗(t̂, p̂),

then x(t,p) = x∗(t,p) and y(t,p) = y∗(t,p), ∀(t,p) ∈ (I ∩ Ĩ) × P̂ .
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Proof. Choose any P̂ , p̂ and t̂ as in the hypothesis of the lemma and define

R ≡ {t ∈ I ∩ Ĩ : max
p∈P̂

(‖x(t,p) − x∗(t,p)‖) + ‖y(t, p̂) − y∗(t, p̂)‖ = 0}. (5.9)

R is nonempty since it contains t̂. It will be shown that R is open with respect

to I ∩ Ĩ. Choose any t′ ∈ R. Applying the second conclusion of Lemma 5.3.8, we

have y∗(t′,p) = y(t′,p), ∀p ∈ P̂ . Choose any p′ ∈ P̂ and, corresponding to the

point (t′,p′), let U ′, V ′, Q′ and h be as in the first conclusion of Lemma 5.3.8. By

the definition of R, (t′,p′,x∗(t′,p′)) = (t′,p′,x(t′,p′)) ∈ V ′ and, by the argument

above, y∗(t′,p′) = y(t′,p′) ∈ Q′. Then continuity implies that there exists an open

ball around t′, Jt′ , and an open ball around p′, Jp′ , such that Jt′ × Jp′ ⊂ U ′, and

(t,p,x∗(t,p)) ∈ V ′ and y∗(t,p) ∈ Q′, for all (t,p) ∈ (Jt′ × Jp′) ∩ (Ĩ × P̃ ). From

Lemma 5.3.8, we have

y(t,p) = h(t,p,x(t,p)), ∀(t,p) ∈ (Jt′ × Jp′) ∩ (I × P̂ ), (5.10)

and an identical argument using the uniqueness property of h in Q′ shows that

y∗(t,p) = h(t,p,x∗(t,p)), ∀(t,p) ∈ (Jt′ × Jp′) ∩ (Ĩ × P̂ ). (5.11)

Then, by definition,

ẋ(t,p) = f(t,p,x(t,p),h(t,p,x(t,p))), ∀(t,p) ∈ (Jt′ × Jp′) ∩ (I × P̂ ), (5.12)

ẋ∗(t,p) = f(t,p,x∗(t,p),h(t,p,x∗(t,p))), ∀(t,p) ∈ (Jt′ × Jp′) ∩ (Ĩ × P̂ ). (5.13)

But f and h are continuously differentiable and hence the mapping (t,p, zx) 7→
f(t,p,h(t,p, zx)) is Lipschitz on V ′ by Lemma 5.2.1. The definition of R gives

x(t′,p) = x∗(t′,p), ∀p ∈ P̂ , so a standard application of Gronwall’s inequality

shows that x(t,p) = x∗(t,p), ∀(t,p) ∈ (Jt′ × Jp′) ∩ ((I ∩ Ĩ) × P̂ ). Furthermore,

this implies that y(t,p) = h(t,p,x(t,p)) = h(t,p,x∗(t,p)) = y∗(t,p), ∀(t,p) ∈
(Jt′ × Jp′) ∩ ((I ∩ Ĩ) × P̂ ).
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Now, since p′ ∈ P̂ was chosen arbitrarily, the preceding construction applies

to every p ∈ P̂ . Thus, to every q ∈ P̂ , there corresponds an open ball around

t′, Jt′(q), and an open ball around q, Jq, such that (x,y)(t,p) = (x∗,y∗)(t,p),

∀(t,p) ∈ (Jt′(q) × Jq) ∩ ((I ∩ Ĩ) × P̂ ). Noting that the Jq constructed in this

way form an open cover of P̂ , compactness of P̂ implies that there exist finitely

many elements of P̂ , q1, . . . ,qn, such that P̂ is covered by Jq1
∪ . . . ∪ Jqn

. Let

J∗
t′ ≡ Jt′(q1) ∩ . . . ∩ Jt′(qn). Then, for every p ∈ P̂ , there exists i ∈ {1, . . . , n}

such that p ∈ Jqi
, which implies that (x,y)(t,p) = (x∗,y∗)(t,p), ∀t ∈ J∗

t′ ∩ (I ∩ Ĩ).
Therefore, J∗

t′ ∩ (I ∩ Ĩ) is contained in R, so that t′ is an interior point of R when

viewed as a subset of I ∩ Ĩ, and since t′ ∈ R was chosen arbitrarily, R is open with

respect to I ∩ Ĩ. Since I ∩ Ĩ is connected and R is nonempty and open with respect

to I ∩ Ĩ, Lemma 5.3.7 shows that R = I ∩ Ĩ. But by definition, this implies that

x(t,p) = x∗(t,p) and y(t, p̂) = y∗(t, p̂), ∀(t,p) ∈ (I ∩ Ĩ) × P̂ . Finally, the second

conclusion of Lemma 5.3.8 implies that y(t,p) = y∗(t,p), ∀(t,p) ∈ (I ∩ Ĩ) × P̂ .

Theorem 5.3.10. Let (x,y) ∈ C1(I ×P,Dx)×C1(I ×P,Dy) and (x∗,y∗) ∈ C1(Ĩ ×
P̃ , Dx) ×C1(Ĩ × P̃ , Dy) be solutions of (5.1a) on I × P and Ĩ × P̃ , respectively, and

suppose that (x,y) is regular. If P̂ ⊂ P ∩ P̃ is connected and ∃(t̂, p̂) ∈ (I ∩ Ĩ) × P̂

such that x(t̂,p) = x∗(t̂,p), ∀p ∈ P̂ , and y(t̂, p̂) = y∗(t̂, p̂), then x(t,p) = x∗(t,p)

and y(t,p) = y∗(t,p), ∀(t,p) ∈ (I ∩ Ĩ) × P̂ .

Proof. Choose any p ∈ P̂ . Clearly, {p} ⊂ P ∩ P̃ is compact and connected, and

Lemma 5.3.8 guarantees that y(t̂,p) = y∗(t̂,p). Then Lemma 5.3.9 shows that

x(t,p) = x∗(t,p) and y(t,p) = y∗(t,p), ∀t ∈ I ∩ Ĩ.

Corollary 5.3.6 is a simple consequence of these developments. By the definition

of a solution of (5.1), we have x(t0,p) = x∗(t0,p), ∀p ∈ P̂ , and y(t0, p̂) = y∗(t0, p̂)

by hypothesis. Since P̂ is connected, the result follows from Theorem 5.3.10.
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5.4 An Interval Inclusion Test for DAE Solutions

This section presents an interval inclusion test which can computationally guarantee

the existence and uniqueness of a solution of (5.1) over intervals I ′ and P ′ satisfying

the test. When successful, the test provides intervals which are guaranteed to enclose

the solutions x and y on I ′ × P ′. This test is very similar to the Phase 1 step of

standard interval Taylor series bounding methods for ODEs [130]. The complicating

factor here is of course the presence of the algebraic variables y and the fact that they

are defined implicitly. To overcome this obstacle, a well-known interval inclusion test

for existence and uniqueness of solutions of systems of nonlinear algebraic equations

is used. This inclusion test is based on the interval Hansen-Sengupta method [131].

This method is described below, and its application to DAEs is discussed in §5.4.2.

5.4.1 The Interval Hansen-Sengupta Method

Let Ds ⊂ Rns and Dr ⊂ Rnr be open, and let ℓ ∈ Ck(Ds × Dr,Rnr). Furthermore,

assume that inclusion monotonic interval extensions of r and ∂ℓ
∂r

are available, [r] and
[

∂ℓ
∂r

]

, and are defined on all of IDs × IDr. Given intervals S ⊂ Ds and R ⊂ Dr, we

are concerned with (i) determining if there exist points r ∈ R such that ℓ(s, r) = 0

for some s ∈ S, and (ii) computing a refined interval R′ ⊂ R which contains all such

r. Conceptually, this is done by using the mean value theorem to characterize the

zeros of ℓ. For any (s, r) ∈ S × R such that ℓ(s, r) = 0, any r̃ ∈ R, r̃ 6= r, and any

index i, the mean value theorem states that ∃ξ[i] ∈ R such that ξ[i] = r̃+ λ(r− r̃) for

some λ ∈ (0, 1), and

∂ℓi
∂r

(s, ξ[i]) (r − r̃) = −ℓi(s, r̃). (5.14)

Noting that ξ[i] ∈ R because ξ[i] = r̃ + λ(r − r̃) and r, r̃ ∈ R, consider the interval

linear equations

[

∂ℓi
∂r

]

(S,R) (r − r̃) = − [ℓi] (S, r̃), (5.15)
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which can be written in matrix form, preconditioned by any C ∈ Rnr×nr , as

C

[

∂ℓ

∂r

]

(S,R) (r − r̃) = −C [ℓ] (S, r̃). (5.16)

The solution set of (5.16) is the set of all ρ ∈ Rnr such that Aρ = b for some

A ∈ C
[

∂ℓ
∂r

]

(S,R) and b ∈ −C [ℓ] (S, r̃). Clearly, any r ∈ R satisfying ℓ(s, r) = 0 for

some s ∈ S must correspond to an element (r− r̃) = ρ of this solution set. Thus, we

are interested in computing an interval enclosure of the solution set of (5.16).

For Q ⊂ R, let hull(Q) denote the interval hull of Q; i.e, the smallest interval

containing Q. To state the Hansen-Sengupta method formally, the following definition

is useful.

Definition 5.4.1. For all A,B, Z ∈ IR, let

Γ(A,B, Z) ≡ hull ({z ∈ Z : az = b for some (a, b) ∈ A× B}) .

The following lemma provides a way to evaluate Γ computationally.

Lemma 5.4.2. For all A,B, Z ∈ IR,

Γ(A,B, Z) =































B/A ∩ Z if 0 /∈ A

hull
(

Z\int([bL/aL, bL/aU ])
)

if 0 ∈ A and bL > 0

hull
(

Z\int([bU/aU , bU/aL])
)

if 0 ∈ A and bU < 0

Z if 0 ∈ A and 0 ∈ B

, (5.17)

where B/A denotes interval division,

B/A = [min(bL/aL, bU/aL, bL/aU , bU/aU),max(bL/aL, bU/aL, bL/aU , bU/aU)].

Proof. See Proposition 4.3.1 in [131].

For any A,B, Z ∈ IR, either Γ(A,B, Z) ∈ IR or Γ(A,B, Z) = ∅. For convenience,

the definition of Γ is extended so that Γ(A,B, Z) = ∅ when any of A, B, or Z is

empty. Furthermore, we adopt the convention that any arithmetic operation between
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an element of IR and ∅ returns ∅, and any Cartesian product involving ∅ is equivalent

to ∅. The following definition generalizes Γ for application to n dimensional linear

systems.

Definition 5.4.3. For A ∈ IRn×n, B,Z ∈ IRn, let

Wi ≡ Γ

(

Aii, Bi −
∑

j<i

AijWj −
∑

j>i

AijZj , Zi

)

,

for all i = 1, . . . , n. Define Γ(A,B, Z) ≡W1 × . . .×Wn.

Applying Γ to (5.16) gives the following variant of the well-known result Theorem

5.1.8 in [131].

Theorem 5.4.4. Let S ∈ IDs, R ∈ IDr, r̃ ∈ R, C ∈ Rnr×nr , and let

H(S,R, r̃,C) ≡ r̃ + Γ

(

C

[

∂ℓ

∂r

]

(S,R),−C [ℓ] (S, r̃), (R− r̃)

)

.

With R′ ≡ H(S,R, r̃,C), the following conclusions hold:

1. If (s, r) ∈ S × R satisfies ℓ(s, r) = 0, then r ∈ R′.

2. If R′ = ∅, then ∄(s, r) ∈ S ×R such that ℓ(s, r) = 0.

3. If r̃ ∈ int(R) and ∅ 6= R′ ⊂ int(R), then ∃H ∈ Ck(S,R′) such that, for every

s ∈ S, r = H(s) is the unique element of R satisfying ℓ(s, r) = 0. Moreover,

the interval matrix C
[

∂ℓ
∂r

]

(S,R) does not contain a singular matrix and does

not contain zero in any of its diagonal elements.

Proof. Suppose first that S is a singleton, S ≡ [s, s], for some s ∈ Ds. Then, noting

that [ℓ]([s, s], r̃) = ℓ(s, r̃) by the definition of an interval extension, applying Corol-

lary 5.1.5 and Theorem 5.1.8 in [131] to the function ℓ(s, ·) proves the theorem (the

properties of C
[

∂ℓ
∂r

]

(S,R) in Conclusion 3 result from Theorem 4.4.5 (ii) in [131]).

Next, suppose that S is not a singleton. Fix any s ∈ S and suppose that r ∈ R

satisfies ℓ(s, r) = 0. Since the theorem holds for [s, s] as shown above, we must
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have r ∈ H([s, s], R, r̃,C). But, by the inclusion monotonicity of natural interval ex-

tensions, C
[

∂ℓ
∂r

]

([s, s], R) ⊂ C
[

∂ℓ
∂r

]

(S,R) and −C[ℓ]([s, s], r̃) ⊂ −C [ℓ] (S, r̃). Then

Proposition 4.3.4 in [131] gives

H([s, s], R, r̃,C) = r̃ + Γ

(

C

[

∂ℓ

∂r

]

([s, s], R),−C [ℓ] ([s, s], r̃), (R− r̃)

)

, (5.18)

⊂ r̃ + Γ

(

C

[

∂ℓ

∂r

]

(S,R),−C [ℓ] (S, r̃), (R− r̃)

)

, (5.19)

= H(S,R, r̃,C). (5.20)

Therefore, r ∈ R′, which proves 1, and 2 is an immediate consequence.

To prove Conclusion 3, suppose that r̃ ∈ int(R), and ∅ 6= R′ ⊂ int(R). Theorem

4.4.5 (ii) in [131] again establishes the properties of C
[

∂ℓ
∂r

]

(S,R). By Theorem 5.5.1

in [131] (see also Corollary 5.1.5), there exists a continuous function H : S → R such

that, for every s ∈ S, r = H(s) is the unique element of R satisfying ℓ(s, r) = 0.

By Conclusion 1 of the present theorem, H : S → R′. It only remains to show that

H ∈ Ck(S,R′).

Choosing any ŝ ∈ S, Theorem 5.2.2 can be applied at the point (ŝ,H(ŝ)) to

conclude that there exists an open ball around ŝ, Vŝ ⊂ Ds, an open ball around H(ŝ),

Qŝ, and hŝ ∈ Ck(Vŝ, Qŝ) such that hŝ(ŝ) = H(ŝ) and, for every s ∈ Vŝ, r = hŝ(s) is

the unique element of Qŝ satisfying ℓ(s, r) = 0. By continuity of H, it is possible to

choose an open ball Uŝ around ŝ small enough that H maps Uŝ∩S into Qŝ. Then, by

the uniqueness property of hŝ in Qŝ, H = hŝ on Uŝ ∩S. The fact that H ∈ Ck(S,R′)

now follows from Lemma 23.1 in [127].

Remark 5.4.5. When applying Theorem 5.4.4, one should always choose a nonsin-

gular preconditioner C. In fact, the inclusion test ∅ 6= R′ ⊂ int(R) in Conclusion 3

will never be satisfied if C is singular. However, the theorem holds in any case, so

nonsingularity is not assumed.

Remark 5.4.6. The interval inclusion test given in part 3 of Theorem 5.4.4 is based

on a characterization of the zeros of ℓ derived from the mean-value theorem. Al-

ternatively, an inclusion test can be derived from Brouwer’s fixed point theorem
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without using the mean value theorem. This requires deriving a fixed point equation,

r = φ(s, r), with the same solutions as the original equations. For example, assuming

that
(

∂ℓ
∂r

)

is nonsingular on S ×R, let

φ(s, r) ≡ r −
(

∂ℓ

∂r

)−1

(s, r)ℓ(s, r). (5.21)

Brouwer’s fixed point theorem can be used to show that the inclusion [φ](S,R) ⊂ R

guarantees the existence of H : S → R satisfying H(s) = φ(s,H(s)), and hence

ℓ(s,H(s)) = 0, for all s ∈ S. However, it is easily demonstrated that this inclusion will

almost never be satisfied when the natural interval extension of φ is used. Denoting

the natural interval extension of the second term on the right-hand side of (5.21) over

S ×R by M , the natural interval extension of φ is computed as [φ](S,R) := R−M .

If ∃(s, r) ∈ S × R satisfying ℓ(s, r) = 0, then we must have 0 ∈ M , and hence

[φ](S,R) ⊃ R. Therefore, the desired inclusion will only hold when [φ](S,R) = R.

This requires M = [0, 0], which can only occur in trivial cases.

5.4.2 An Interval Existence and Uniqueness Test for DAEs

Applying Theorem 5.4.4 to the algebraic equations in (5.1) gives the following corol-

lary.

Corollary 5.4.7. Let (I, P, Zx, Zy) ∈ IDt × IDp × IDx × IDy, z̃y ∈ Zy, C ∈ Rny×ny

and define

H(I, P, Zx, Zy, z̃y,C)

≡ z̃y + Γ

(

C

[

∂g

∂y

]

(I, P, Zx, Zy),−C [g] (I, P, Zx, z̃y), (Zy − z̃y)

)

.

With Z ′
y ≡ H(I, P, Zx, Zy, z̃y,C), the following conclusions hold:

1. If (t,p, zx, zy) ∈ I × P × Zx × Zy satisfies g(t,p, zx, zy) = 0, then zy ∈ Z ′
y.

2. If Z ′
y = ∅, then ∄(t,p, zx, zy) ∈ I × P × Zx × Zy such that g(t,p, zx, zy) = 0.
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3. If z̃y ∈ int(Zy) and ∅ 6= Z ′
y ⊂ int(Zy), then ∃H ∈ C1(I ×P ×Zx, Z

′
y) such that,

for every (t,p, zx) ∈ I × P × Zx, zy = H(t,p, zx) is the unique element of Zy

satisfying g(t,p, zx, zy) = 0. Moreover, the interval matrix C
[

∂g
∂y

]

(I, P, Zx, Zy)

does not contain a singular matrix and does not contain zero in any of its

diagonal elements.

Proof. The result follows immediately from Theorem 5.4.4.

The following theorem is the main result of this section.

Theorem 5.4.8. Let (I, P, Zx, Zy) ∈ IDt × IDp × IDx × IDy, z̃y ∈ Zy, C ∈ Rny×ny ,

and define H(I, P, Zx, Zy, z̃y,C) as in Corollary 5.4.7. Furthermore, let X0 ∈ IRnx

satisfy x0(P ) ⊂ X0 and denote I = [t0, tf ]. If the inclusions

z̃y ∈ int(Zy), (5.22)

∅ 6= Z ′
y ≡ H(I, P, Zx, Zy, z̃y,C) ⊂ int(Zy), (5.23)

X0 + [0, tf − t0] [f ] (I, P, Zx, Z
′
y) ⊂ Zx, (5.24)

hold, then there exists a regular solution of (5.1) on I×P satisfying (x(t,p),y(t,p)) ∈
Zx× Z ′

y for all (t,p) ∈ I×P . Furthermore, for any connected Ĩ ⊂ I containing t0, any

connected P̃ ⊂ P , and any solution (x∗,y∗) of (5.1) on Ĩ× P̃ , either (x∗,y∗) = (x,y)

on Ĩ × P̃ , or y∗(t0,p) /∈ Zy, ∀p ∈ P̃ .

Proof. By Conclusion 3 of Corollary 5.4.7, C
[

∂g
∂y

]

(I, P, Zx, Zy) contains no singular

matrix and ∃H ∈ C1(I × P × Zx, Z
′
y) such that, for every (t,p, zx) ∈ I × P × Zx,

zy = H(t,p, zx) is the unique element of Zy satisfying g(t,p, zx, zy) = 0.

Choose any x0 ∈ C1(I × P, Zx) and define the sequence {xk} by

xk+1(t,p) = x0(p) +

∫ t

t0

f(s,p,xk(s,p),H(s,p,xk(s,p)))ds, ∀(t,p) ∈ I × P.

(5.25)
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If xk ∈ C1(I × P, Zx), which is true for k = 0, then xk+1 is well-defined and

xk+1(t,p) ∈ X0 + [0, tf − t0] [f ] (I, P, Zx, Z
′
y) ⊂ Zx, ∀(t,p) ∈ I × P. (5.26)

Then, by induction, xk ∈ C1(I × P, Zx), ∀k ∈ N.

Noting that both f and H are continuously differentiable, the mapping (t,p, zx) 7→
f(t,p, zx,H(t,p, zx)) is Lipschitz on I × P × Zx by Lemma 5.2.1. Then, a standard

inductive argument (see [78], Ch. II, Thm. 1.1) shows that {xk} converges uniformly

on I × P to a continuous limit function, denoted x, and x satisfies

ẋ(t,p) = f(t,p,x(t,p),H(t,p,x(t,p))), x(t0,p) = x0(p), ∀(t,p) ∈ I × P.

(5.27)

Since ẋ is continuous on I×P , x ∈ C1(I×P, Zx). Then, we may define y : I×P → Dy

by y(t,p) ≡ H(t,p,x(t,p)). With this definition, y ∈ C1(I × P, Z ′
y) and

g(t,p,x(t,p),y(t,p)) = g(t,p,x(t,p),H(t,p,x(t,p))) = 0, ∀(t,p) ∈ I × P.

(5.28)

Therefore, (x,y) is a solution of (5.1) on I×P . Since C
[

∂g
∂y

]

(I, P, Zx, Zy), and hence
[

∂g
∂y

]

(I, P, Zx, Zy), contains no singular matrix, (x,y) must be regular.

Now consider any connected Ĩ ⊂ I containing t0, any connected P̃ ⊂ P , and

any solution (x∗,y∗) of (5.1) on Ĩ × P̃ . If y∗(t0,p) ∈ Zy for some p ∈ P̃ , then the

fact that H(t0,p,x0(p)) satisfies g(t0,p,x0(p),H(t0,p,x0(p))) = 0 uniquely among

elements of Zy implies that y∗(t0,p) = H(t0,p,x0(p)) = y(t0,p). Then the fact that

(x,y) = (x∗,y∗) on Ĩ × P̃ follows from Corollary 5.3.6.

By checking some relatively simple inclusions, Theorem 5.4.8 provides a compu-

tational means to verify existence and uniqueness of a solution of (5.1) on given

intervals I×P , and provides a valid interval enclosure of this solution. In Chapter 6,

an efficient numerical procedure for satisfying these inclusions is presented. In the fol-

lowing section, this result is used to develop computationally useful characterizations
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of bounding trajectories for the solutions of (5.1).

5.5 Bounding DAE Solutions using Differential In-

equalities

This section presents three comparison theorems which provide sufficient conditions,

in terms of differential inequalities, for mappings v,w : I → Rnx to satisfy

v(t) ≤ x(t,p) ≤ w(t), ∀(t,p) ∈ I × P, (5.29)

for some solution of (5.1) on I × P . The first such theorem (Theorem 5.5.2) is

very general, but does not suggest a complete computational bounding procedure

for reasons discussed below. The remaining two results are modifications of Theorem

5.5.2 that address these issues. The following lemma is required to minimize repeated

arguments.

Lemma 5.5.1. Let I = [t0, tf ] ⊂ Dt and P ⊂ Dp be intervals and let (x,y) be a

regular solution of (5.1) on I × P . Choose any continuous v,w : I → Rnx and any

p̂ ∈ P and define

x̄(t, p̂) ≡ mid(v(t),w(t),x(t, p̂)). (5.30)

For any t1 ∈ [t0, tf ) such that x̄(t1, p̂) = x(t1, p̂), there exists t4 ∈ (t1, tf ], L > 0, and

a continuous function ȳ : [t1, t4] × P → Rny such that

(x̄(t, p̂), ȳ(t, p̂)) ∈ Dx ×Dy, (5.31)

g(t, p̂, x̄(t, p̂), ȳ(t, p̂)) = 0, (5.32)

‖y(t, p̂) − ȳ(t, p̂)‖∞ ≤ L‖x(t, p̂) − x̄(t, p̂)‖∞, (5.33)

‖ẋ(t, p̂) − f(t, p̂, x̄(t, p̂), ȳ(t, p̂))‖∞ ≤ L‖x(t, p̂) − x̄(t, p̂)‖∞, (5.34)

for all t ∈ [t1, t4].
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Proof. Since (x,y) is regular, Theorem 5.2.2 may be applied to conclude that their

exists an open ball around (t1, p̂,x(t1, p̂)), V1 ⊂ Dt × Dp × Dx, and a function

h ∈ C1(V1, Dy) such that y(t1, p̂) = h(t1, p̂,x(t1, p̂)) and

g(t,p, zx,h(t,p, zx)) = 0, ∀(t,p, zx) ∈ V1. (5.35)

Moreover, Lemma 5.3.8 shows that there exists an open ball around (t1, p̂), U1 ⊂ Dt×
Dp, such that (t,p,x(t,p)) ∈ V1 and y(t,p) = h(t,p,x(t,p)), ∀(t,p) ∈ U1 ∩ (I × P ).

Since x̄(·, p̂) is continuous and (t1, p̂, x̄(t1, p̂)) = (t1, p̂,x(t1, p̂)) ∈ V1, U1 may be

chosen small enough that in addition (t,p, x̄(t, p̂)) ∈ V1, ∀(t,p) ∈ U1 ∩ (I × P ).

Choosing t4 > t1 such that [t1, t4]×{p̂} ⊂ U1∩(I×P ), define ȳ(t, p̂) ≡ h(t, p̂, x̄(t, p̂)),

∀t ∈ [t1, t4]. Equation (5.31) now follows since h maps into Dy, and (5.32) follows

from (5.35).

Since both f and h are continuously differentiable, the mappings

(t,p, zx) 7→ h(t,p, zx),

(t,p, zx) 7→ f(t,p, zx,h(t,p, zx)),

are Lipschitz on any compact K ⊂ V1 by Lemma 5.2.1. Let K ≡ {(t,p, zx) ∈ V1 :

t ∈ [t1, t4], p = p̂, zx = x(t, p̂) or zx = x̄(t, p̂)}. Letting L be the maximum of the

corresponding Lipschitz constants, we arrive at (5.33) and (5.34).

Theorem 5.5.2. Let I = [t0, tf ] ⊂ Dt and P ⊂ Dp be intervals and let v,w ∈
AC(I,Rnx) satisfy

(EX): v(t) ≤ w(t), ∀t ∈ I.

(IC): v(t0) ≤ x0(p) ≤ w(t0), ∀p ∈ P .

(RHS): For a.e. t ∈ I and each index i,

1. v̇i(t) ≤ fi(t,p, zx, zy) for all (p, zx, zy) ∈ P ×Dx ×Dy such that

zx ∈ BLi ([v(t),w(t)]) and g(t,p, zx, zy) = 0,
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2. ẇi(t) ≥ fi(t,p, zx, zy) for all (p, zx, zy) ∈ P ×Dx ×Dy such that

zx ∈ BUi ([v(t),w(t)]) and g(t,p, zx, zy) = 0.

Then every regular solution of (5.1) on I×P satisfies x(t,p) ∈ [v(t),w(t)], ∀(t,p) ∈
I × P .

Proof. Let (x,y) be any regular solution of (5.1) on I × P . Choose any p̂ ∈ P and

suppose that there exists t ∈ I such that x(t, p̂) /∈ [v(t),w(t)]. It will be shown that

this results in a contradiction.

Define t1 as in (3.9) with φ = x(·, p̂) and define x̄ as in (5.30). Noting that the

hypotheses of Corollary 3.3.6 are satisfied, Conclusion 1 of Corollary 3.3.6 implies that

x̄(t1, p̂) = x(t1, p̂). Then, the hypotheses of Lemma 5.5.1 are verified, so that there

exists t4 ∈ (t1, tf ], L > 0 and ȳ satisfying (5.31)-(5.34). Applying Corollary 3.3.6

with t4, β = L and arbitrary ǫ > 0 yields an index j ∈ {1, . . . , nx}, a non-decreasing

function ρ ∈ AC([t1, t4],R) satisfying (3.7) on [t1, t4], and numbers t2, t3 ∈ [t1, t4] with

t2 < t3 such that (3.10) and (3.11) hold with φ = x(·, p̂) (the proof is analogous if

instead (3.12) holds).

It will now be shown that v̇j(t) − ρ′(t) ≤ ẋj(t, p̂) for a.e. t ∈ [t2, t3]. Choose any

t ∈ (t2, t3). By (3.11) and Hypothesis (EX), we have xj(t, p̂) < vj(t) ≤ wj(t). By

definition, this implies that x̄(t, p̂) ∈ BLj ([v(t),w(t)]). Then, by (5.31) and (5.32),

the point (p̂, x̄(t, p̂), ȳ(t, p̂)) satisfies all of the of conditions of Hypothesis (RHS).1.

Combining this with (5.34) gives

v̇j(t) ≤ fj(t, p̂, x̄(t, p̂), ȳ(t, p̂)) ≤ ẋj(t, p̂) + L‖x(t, p̂) − x̄(t, p̂)‖∞, (5.36)

for a.e. t ∈ [t2, t3]. By (3.10), ‖x(t, p̂)−x̄(t, p̂)‖∞ is bounded by ρ(t) for all t ∈ [t2, t3).

Then, since ρ′(t) > Lρ(t) for a.e. t ∈ [t1, t4],

v̇j(t) − ρ′(t) ≤ ẋj(t, p̂) + Lρ(t) − ρ′(t) < ẋj(t, p̂), (5.37)

for a.e. t ∈ [t2, t3].

Applying Theorem 3.3.3, the function vj−ρ−xj(·, p̂) is non-increasing on (t2, t3),
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so that in particular,

vj(t3) − ρ(t3) − xj(t3, p̂) ≤ vj(t2) − ρ(t2) − xj(t2, p̂). (5.38)

Using (3.11), this implies that 0 ≤ −ρ(t2), which is a contradiction because ρ(t) > 0

for all t ∈ [t2, t3]. Thus, we must have x(t, p̂) ∈ [v(t),w(t)], ∀t ∈ I. In fact, since

p̂ ∈ P was chosen arbitrarily, we have x(t,p) ∈ [v(t),w(t)], ∀(t,p) ∈ I × P .

Theorem 5.5.2 is very similar to the results for bounding the solutions of explicit

ODEs presented in Chapter 3. There, it was shown that interval arithmetic can be

used to derive an auxiliary system of ODEs whose solutions satisfy conditions analo-

gous to (IC) and (RHS) in Theorem 5.5.2, and these ODEs can be solved efficiently

using a state-of-the-art numerical integrator to provide bounds. We present similar

approaches for DAEs in Chapter 6. However, there is a problem with using Theorem

5.5.2 directly. Using interval methods to satisfy (RHS) would require some procedure

for computing bounds on the zeros of g(t,p, zx, ·) with (t,p, zx) restricted to a given

interval. Using the interval Hansen-Sengupta method, it is only possible to refine

such an enclosure when provided with a guaranteed a priori enclosure.

A further complication is that Theorem 5.5.2 produces bounds that enclose all

regular solutions of (5.1) on I × P . However, in applications it is very likely that

there will be a particular solution of interest, specified by a consistent initial condition

y(t0, p̂) for some p̂ ∈ P (see Corollary 5.3.6). Theorem 5.5.2 provides no mechanism

for restricting v and w based on this information because (RHS) requires that v̇i and

ẇi bound fi(t,p, zx, zy) for all zy satisfying g(t,p, zx, zy) = 0. The following theorem

shows that both of these problems can be avoided by modifying (RHS) in the case

where intervals satisfying the conditions of Theorem 5.4.8 are available.

Theorem 5.5.3. Let (I, P, Zx, Zy, Z
′
y) ∈ IDt × IDp × IDx × IDy × IDy, I = [t0, tf ]

and Z ′
y ⊂ Zy, and let (x,y) ∈ C1(I × P, Zx) × C1(I × P, Z ′

y) be a regular solution

of (5.1) on I × P . Suppose further that ∃H ∈ C1(I × P × Zx, Z
′
y) such that, for

every (t,p, zx) ∈ I × P × Zx, zy = H(t,p, zx) is the unique element of Zy satisfying

g(t,p, zx, zy) = 0. Let v,w ∈ AC(I,Rnx) satisfy
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(EX): v(t) ≤ w(t) and Zx ∩ [v(t),w(t)] 6= ∅, ∀t ∈ I.

(IC): v(t0) ≤ x0(p) ≤ w(t0), ∀p ∈ P .

(RHS): For a.e. t ∈ I and each index i,

1. v̇i(t) ≤ fi(t,p, zx, zy) for all (p, zx, zy) ∈ P × Zx × Z ′
y such that

zx ∈ BLi (Zx ∩ [v(t),w(t)]) and g(t,p, zx, zy) = 0,

2. ẇi(t) ≥ fi(t,p, zx, zy) for all (p, zx, zy) ∈ P × Zx × Z ′
y such that

zx ∈ BUi (Zx ∩ [v(t),w(t)]) and g(t,p, zx, zy) = 0.

Then x(t,p) ∈ [v(t),w(t)] for all (t,p) ∈ I × P .

Proof. Choose any p̂ ∈ P and suppose that there exists t ∈ I such that x(t, p̂) /∈
[v(t),w(t)]. It will be shown that this results in a contradiction.

Define x̄(t, p̂) as in (5.30). Clearly, x̄(t, p̂) ∈ [v(t),w(t)], ∀t ∈ I. Let [zLx , z
U
x ] ≡ Zx.

Since xj(t, p̂) ∈ [zLx,j, z
U
x,j] by definition, it follows that x̄j(t, p̂) ∈ [zLx,j, z

U
x,j] for any

index j such that xj(t, p̂) = x̄j(t, p̂). Alternatively, for any j such that xj(t, p̂) 6=
x̄j(t, p̂), we have xj(t, p̂) < vj(t) (or xj(t, p̂) > wj(t)), which, combined with the fact

that Zx ∩ [v(t),w(t)] is nonempty by hypothesis, gives

zLx,j ≤ xj(t, p̂) < vj(t) = mid(vj(t), wj(t), xj(t, p̂)) = x̄j(t, p̂) ≤ zUx,j (5.39)
(

or zUx,j ≥ xj(t, p̂) > wj(t) = mid(vj(t), wj(t), xj(t, p̂)) = x̄j(t, p̂) ≥ zLx,j

)

. (5.40)

Therefore x̄(t, p̂) ∈ Zx.

Define t1 as in (3.9) with φ = x(·, p̂), define t4 ≡ tf , and define ȳ(t, p̂) ≡
H(t, p̂, x̄(t, p̂)), ∀t ∈ I. By the definition of H, it follows that ȳ(t, p̂) ∈ Z ′

y for

all t ∈ [t1, t4] and (5.32) holds. Moreover, it can be shown that (5.34) holds by noting

that the function

(t,p, zx) 7→ f(t,p, zx,H(t,p, zx)),

is Lipschitz on compact subsets of I × P × Zx, exactly as in Lemma 5.5.1. Applying

Corollary 3.3.6 with t4, β = L and arbitrary ǫ > 0 yields an index j ∈ {1, . . . , nx},
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a non-decreasing function ρ ∈ AC([t1, t4],R) satisfying (3.7) on [t1, t4], and numbers

t2, t3 ∈ [t1, t4] with t2 < t3 such that (3.10) and (3.11) hold with φ = x(·, p̂) (the

proof is analogous if instead (3.12) holds).

It will now be shown that (5.36) holds for a.e. t ∈ [t2, t3]. Choose any t ∈ (t2, t3).

It was argued above that x̄(t, p̂) ∈ Zx ∩ [v(t),w(t)] and ȳ(t, p̂) ∈ Z ′
y. By (3.11)

and Hypothesis (EX), we have zLx,j ≤ xj(t, p̂) < vj(t) = mid(vj(t), wj(t), xj(t, p̂)) =

x̄j(t, p̂), and therefore x̄(t, p̂) ∈ BLj (Zx ∩ [v(t),w(t)]). Then, by (5.32), the point

(p̂, x̄(t, p̂), ȳ(t, p̂)) satisfies all of the conditions of Hypothesis (RHS).1. Combining

this with (5.34) proves (5.36), and the remainder of the proof follows exactly as is the

proof of Theorem 5.5.2.

The final result below shows that the complications with Theorem 5.5.2 can also

be avoided without having to first satisfy the conditions of Theorem 5.4.8, as in

Theorem 5.5.3. Instead, we require satisfaction of (5.23) pointwise along the bounding

trajectories v and w, as in the following Hypothesis.

Hypothesis 5.5.1. Let (I, P ) ∈ IDt × IDp, C : I → Rny×ny and z̃y : I → Rny .

Suppose that zLy , z
U
y : I → Rny and v,w : I → Rnx are continuous and satisfy

(EX): v(t) ≤ w(t) and zLy (t) ≤ zUy (t), ∀t ∈ I.

(ALG): For all t ∈ I,

([v(t),w(t)], Zy(t)) ∈ IDx × IDy, (5.41)

z̃y(t) ∈ int(Zy(t)), (5.42)

∅ 6= Z ′
y(t) ≡ H([t, t], P, [v(t),w(t)], Zy(t), z̃y(t),C(t)) ⊂ int(Zy(t)), (5.43)

where Zy(t) ≡ [zLy (t), z
U
y (t)] and H is defined as in Corollary 5.4.7.

Lemma 5.5.4. Suppose Hypothesis 5.5.1 holds and define

V ≡ {(t,p, zx) ∈ I × P ×Dx : zx ∈ [v(t),w(t)]}. (5.44)
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There exists H ∈ C1(V,Dy) such that, for every (t,p, zx) ∈ V , zy = H(t,p, zx) is an

element of Z ′
y(t) and satisfies g(t,p, zx, zy) = 0 uniquely among elements of Zy(t).

Proof. Choose any t ∈ I and define Vt ≡ [t, t] × P × [v(t),w(t)]. By Hypothesis

5.5.1 and Conclusion 3 of Corollary 5.4.7, there exists Ht ∈ C1(Vt, Z
′
y(t)) such that,

for every (t,p, zx) ∈ Vt, zy = Ht(t,p, zx) is the unique element of Zy(t) satisfying

g(t,p, zx, zy) = 0. Define H : V → Dy by H(t,p, zx) = Ht(t,p, zx). By the proper-

ties of each Ht above, it only remains to show that H ∈ C1(V,Dy).

By Lemma 23.1 in [127], it suffices to show that, for every (t̂, p̂, ẑx) ∈ V , there

exists an open ball Û and a function ĥ ∈ C1(Û , Dy) that agrees with H on Û ∩ V .

Choose any such point and let ẑy = H(t̂, p̂, ẑx). Applying Theorem 5.2.2 at the point

(t̂, p̂, ẑx, ẑy) gives an open ball around (t̂, p̂, ẑx), V̂ ⊂ Dt × Dp × Dx, an open ball

around ẑy, Q̂ ⊂ Dy, and ĥ ∈ C1(V̂ , Q̂) such that ĥ(t̂, p̂, ẑx) = ẑy and, for every

(t,p, zx) ∈ V̂ , zy = ĥ(t,p, zx) is the unique element of Q̂ satisfying g(t,p, zx) = 0.

Noting that ẑy = H(t̂, p̂, ẑx) is in Z ′
y(t̂), and hence in int(Zy(t̂)) by (5.43), choose an

open ball Q̂′ around ẑy such that its closure is contained in int(Zy(t̂)). By continuity

of zLy and zUy , ∃δ > 0 such that Q̂′ ⊂ int(Zy(t)), for all t ∈ I with |t − t̂| < δ.

By continuity of ĥ, there exists an open ball around (t̂, p̂, ẑx), Û ⊂ V̂ , so small

that any (t,p, zx) ∈ Û ∩ V has |t − t̂| < δ and ĥ(t,p, zx) ∈ Q̂′. Then, for any

(t,p, zx) ∈ Û ∩ V , both ĥ(t,p, zx) and H(t,p, zx) are zeros of g(t,p, zx, ·) in Zy(t),

and hence ĥ(t,p, zx) = H(t,p, zx).

Lemma 5.5.5. Suppose Hypothesis 5.5.1 holds and let (x,y) be a solution of (5.1)

on I × P . For any I ′ ≡ [t′, t′′] ⊂ I and p′ ∈ P , the following implication holds:

x(t,p) ∈ [v(t),w(t)], ∀(t,p) ∈ I ′ × P

y(t′,p′) ∈ Zy(t
′)







=⇒
y(t,p) ∈ Z ′

y(t),

∀(t,p) ∈ I ′ × P
(5.45)

Proof. First, it is shown that the implication

(x(t,p),y(t,p)) ∈ [v(t),w(t)] × Zy(t) =⇒ y(t,p) ∈ Z ′
y(t) (5.46)

holds for any (t,p) ∈ I × P . Let V and H be as in Lemma 5.5.4 and suppose that
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the hypothesis of (5.46) holds. By definition H(t,p,x(t,p)) is the unique zero of

g(t,p,x(t,p), ·) in Zy(t). But y(t,p) is a zero of g(t,p,x(t,p), ·) in Zy(t), and hence

y(t,p) = H(t,p,x(t,p)). Noting that H maps into Z ′
y(t), (5.46) is established.

Under the hypotheses of (5.45), (5.46) implies that y(t′,p′) ∈ Z ′
y(t

′). If the

conclusion of (5.45) fails, then there must exist (t2,p2) ∈ (t′, t′′] × P such that

y(t2,p2) /∈ Z ′
y(t2). Furthermore, this point must satisfy y(t2,p2) /∈ Zy(t2), since

otherwise (5.46) provides a contradiction. Continuity of y, zLy and zUy then imply

that ∃(t1,p1) ∈ (t′, t′′] × P such that y(t1,p1) is an element of the boundary of

Zy(t1), and hence of Zy(t1), but not an element of Z ′
y(t1) ⊂ int(Zy(t1)). Again, (5.46)

provides a contradiction.

Theorem 5.5.6. Suppose Hypothesis 5.5.1 holds. Additionally, let v,w be absolutely

continuous and satisfy

(IC): v(t0) ≤ x0(p) ≤ w(t0), ∀p ∈ P .

(RHS): For a.e. t ∈ I and each index i,

1. v̇i(t) ≤ fi(t,p, zx, zy) for all (p, zx, zy) ∈ P × Dx × Z ′
y(t) such that

zx ∈ BLi ([v(t),w(t)]) and g(t,p, zx, zy) = 0,

2. ẇi(t) ≥ fi(t,p, zx, zy) for all (p, zx, zy) ∈ P × Dx × Z ′
y(t) such that

zx ∈ BUi ([v(t),w(t)]) and g(t,p, zx, zy) = 0.

Then every regular solution of (5.1) on I × P with y(t0, p̃) ∈ Zy(t0) for at least one

p̃ ∈ P must satisfy (x(t,p),y(t,p)) ∈ [v(t),w(t)] × Z ′
y(t) for all (t,p) ∈ I × P .

Proof. Let (x,y) be a regular solution of (5.1) on I × P satisfying y(t0, p̃) ∈ Zy(t0)

for some p̃ ∈ P . Choose any p̂ ∈ P and suppose that there exists t ∈ I such that

x(t, p̂) /∈ [v(t),w(t)]. It will be shown that this results in a contradiction.

Define t1 as in (3.9) with φ ≡ x(·, p̂). Noting that the hypotheses of Corollary

3.3.6 are satisfied, Conclusion 1 of that corollary and (5.45) imply that y(t, p̂) ∈
Z ′
y(t), ∀t ∈ [t0, t1]. Define x̄ as in Lemma 5.5.1. Noting that x̄(t1, p̂) = x(t1, p̂) by

Conclusion 1 of Corollary 3.3.6, Lemma 5.5.1 furnishes t4 ∈ (t1, tf ], L > 0 and ȳ
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satisfying (5.31)-(5.34). By (5.33) and (5.43), ȳ(t1, p̂) = y(t1, p̂) ∈ int(Zy(t1)). By

continuity of ȳ, zLy , zUy , it is possible to restrict t4 so that

ȳ(t, p̂) ∈ Zy(t), ∀t ∈ [t1, t4]. (5.47)

We now apply Corollary 3.3.6 with t4, β = L and arbitrary ǫ > 0. This yields an

index j ∈ {1, . . . , nx}, a non-decreasing function ρ ∈ AC([t1, t4],R) satisfying (3.7)

on [t1, t4], and numbers t2, t3 ∈ [t1, t4] with t2 < t3 such that (3.10) and (3.11) hold

with φ ≡ x(·, p̂) (the proof is analogous if instead (3.12) holds).

It will now be shown that (5.36) holds for a.e. t ∈ [t2, t3]. Choose any t ∈ (t2, t3).

By (3.11) and Hypothesis 5.5.1 (EX), we have xj(t, p̂) < vj(t) ≤ wj(t). By definition,

this implies that x̄(t, p̂) ∈ BLj ([v(t),w(t)]). Since x̄(t, p̂) ∈ [v(t),w(t)] and ȳ(t, p̂) is

a zero of g(t, p̂, x̄(t, p̂), ·) by (5.32), Equation (5.47) and Corollary 5.4.7 show that

ȳ(t, p̂) ∈ Z ′
y(t). Then, by (5.31) and (5.32), the point (p̂, x̄(t, p̂), ȳ(t, p̂)) satisfies all

of the conditions of (RHS).1. Combining this with (5.34) proves (5.36) and, exactly as

is the proof of Theorem 5.5.2, we conclude that x(t,p) ∈ [v(t),w(t)], ∀(t,p) ∈ I×P .

The theorem now follows from (5.45).

5.6 Conclusions

We have presented a detailed analysis characterizing interval enclosures of the so-

lutions of semi-explicit, index-one DAEs subject to uncertain initial conditions and

parameters. The primary contributions are (1) a set of conditions guaranteeing ex-

istence and uniqueness of a solution and providing a crude enclosure, and (2) three

theorems giving sufficient conditions for some functions to describe bounds on one

or all solutions pointwise in the independent variable. What remains is to develop

methods for satisfying these conditions computationally, thus leading to efficient,

constructive procedures for computing bounds. We take up this task in Chapter 6.
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Chapter 6

Computing State Bounds for

Semi-Explicit Index-One DAEs

6.1 Introduction

In the previous chapter, several theoretical results were presented that provide compu-

tationally useful characterizations of interval bounds on the solutions of semi-explicit

index-one DAEs. In this chapter, these results are used to derive two efficient numer-

ical methods for computing such bounds. The first method proceeds in two-phases,

as described in §6.3. In Phase 1, the interval inclusion test of §5.4 is applied to ver-

ify existence and uniqueness of a DAE solution, and to provide a crude enclosure of

this solution. Unfortunately, this test is difficult to satisfy computationally because

it involves implicit conditions. This challenge is addressed in §6.4. Using the crude

enclosure from Phase 1, the second phase computes refined, time-varying bounds on

the DAE solution using the results of §5.5. The implementation of Phase 2 involves

numerical integration of an auxiliary system of ODEs whose solutions describe the

desired bounds, and is described in §6.5.

The second proposed bounding method, which is described in §6.6, reduces the

first method to a single phase based on Theorem 5.5.6 in §5.5. The computation of

the resulting bounds is similar to Phase 2 of the first method, only here the auxiliary

system to be solved is described by semi-explicit DAEs.
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The two-phase framework described above is analogous to the two-phase approach

used for validated integration of ODEs [130]. Indeed, Phase 1 of this approach pro-

vides a key step toward the development of validated methods for DAEs. In Phase

2, however, we deviate from this approach by using a standard numerical integra-

tion code to compute refined bounds via the theory of differential inequalities. The

resulting bounds are mathematically guaranteed, but subject to the error of numer-

ical integration. Therefore, this method is not validated, and the same is true of

the single-phase method. On the other hand, the use of state-of-the-art numerical

integration codes leads to a very effective implementation. In §6.7, both methods are

applied to numerical examples and shown to produce accurate bounds very efficiently.

6.2 Preliminaries

6.2.1 Extended Interval Functions

The methods of this chapter will make extensive use of intervals and interval-valued

functions. For computational reasons, it is often convenient to extend such functions

outside their domains in a regular manner. For example, it is desirable to define the

behavior of an interval function taking the argument [v,w] if, by some numerical

error, we have vi > wi for some i. There is a large literature on interval implementa-

tions that account for numerical error in a conservative manner in order to avoid these

types of issues altogether. However, as we will see, the proposed methods for DAEs

present unique challenges. As a particular example, we will make use of an algebraic

equation solver to locate v and w such that [v,w] satisfies an implicit interval equa-

tion. Though the solution is guaranteed to satisfy v ≤ w, this may not hold for some

iterate produced by the solver. If no provisions are made for this situation, the solver

will be forced to abort. On the other hand, if the participating interval functions are

extended onto Rn × Rn in a regular manner, this situation poses no problem for the

solver, which may eventually converge to a solution describing a proper interval.

Some basic extended interval operations have already been defined in previous
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chapters, including the � function (Definition 2.5.17) and the extended intersection

∩̃ (Definition 2.5.22). Both of these will be used throughout this chapter. Moreover,

we will make use of two modified forms of the interval function Γ (Definition 5.4.3).

Definition 6.2.1. Let

D∗ ≡ {(A,B, Z) ∈ IRn×n × IRn × IRn : 0 6∈ Aii, ∀i = 1, . . . , n}, (6.1)

and define Γ∗ : D∗ → IRn by Γ∗(A,B, Z) ≡W ∗
1 × . . .×W ∗

n , where

W ∗
i =

1

Aii

(

Bi −
∑

k<i

AikW
∗
k −

∑

k>i

AikZk

)

, ∀i ∈ {1, . . . , n}. (6.2)

Definition 6.2.2. Define Γ+ : D∗ → IRn by Γ+(A,B, Z) ≡ W+
1 × . . .×W+

ny
, where

W+
i = Zi∩̃

1

Aii

(

Bi −
∑

k<i

AikW
+
k −

∑

k>i

AikZk

)

, ∀i ∈ {1, . . . , n}. (6.3)

The functions Γ+ and Γ∗ differ from Γ in that they omit or extend the intersection

with Z in the definition of Γ. We have the following properties and relationships.

Lemma 6.2.3. Let (A,B, Z) ∈ IRn×n × IRn × IRn and (Ã, B̃, Z̃) ∈ IA× IB × IZ.

1. If (A,B, Z) ∈ D∗, then (Ã, B̂, Ẑ) ∈ D∗, ∀B̂, Ẑ ∈ IRn.

2. If (A,B, Z) ∈ D∗, then Γ∗(Ã, B̃, Z̃) ⊂ Γ∗(A,B, Z).

3. If (A,B, Z) ∈ D∗, then Γ+(A,B, Z) ⊂ Z.

4. If (A,B, Z) ∈ D∗ and Γ(A,B, Z) 6= ∅, then Γ+(A,B, Z) = Γ(A,B, Z).

5. If (A,B, Z) ∈ D∗ and Γ∗(A,B, Z) ⊂ Z, then Γ∗(A,B, Z) = Γ(A,B, Z).

6. If ∅ 6= Γ(A,B, Z) ⊂ int(Z), then (A,B, Z) ∈ D∗ and Γ∗(A,B, Z) = Γ(A,B, Z).

Proof. Conclusion 1 is obvious and 2 follows from inclusion monotonicity of interval

arithmetic. Conclusion 3 follows from Conclusion 3 of Lemma 2.5.23. To show 4 and

253



5, suppose (A,B, Z) ∈ D∗ and denote Γ(A,B, Z) ≡W1 × . . .×Wn,

Wi = Zi ∩
1

Aii

(

Bi −
∑

k<i

AikWk −
∑

k>i

AikZk

)

, ∀i = 1, . . . , n. (6.4)

Define W+
i as in (6.3), choose any i ∈ {1, . . . , n} and assume that Wi = W+

i for all

k < i, which is trivially true if i = 1. Then, comparing (6.4) and (6.3), Conclusion

1 of Lemma 2.5.23 implies that Wi = W+
i if Wi 6= ∅. Then, Conclusion 4 follows by

finite induction.

To show 5, define W ∗
i as in (6.2) and assume that Wi = W ∗

i for all k < i, which

is again trivially true if i = 1. Comparing (6.4) and (6.2) yields Wi = Zi ∩W ∗
i . But

the assumption that Γ∗(A,B, Z) ⊂ Z implies that W ∗
i ⊂ Zi, and hence Wi = W ∗

i .

Therefore, Conclusion 5 also follows by finite induction.

To show 6, suppose ∅ 6= Γ(A,B, Z) ⊂ int(Z). Theorem 4.4.5 (ii) of [131] implies

(A,B, Z) ∈ D∗. Now denoting Γ(A,B, Z) ≡ W1 × . . . × Wn, (6.4) again holds.

Assuming that Wi = W ∗
i for all k < i (trivial for i = 1) and comparing (6.4) and

(6.2) again yields Wi = Zi ∩W ∗
i . The assumption that Γ(A,B, Z) ⊂ int(Z) implies

that Wi ⊂ int(Zi), which is only possible if Wi = W ∗
i . Then, Conclusion 6 follows by

finite induction.

The following definition formalizes the notation H from Corollary 5.4.7, with

a slight modification to reflect the fact that, in the proposed methods, the reference

point z̃y is a function of Zy and does not need to be specified independently. Notation

is also introduced for iterative application of H, and extended forms based on Γ+ and

Γ∗ are defined.

Definition 6.2.4. Let z̃y : IDy → Rny , define MΓ : IDt×IDp×IDx×IDy×IRny×ny →
IRny×ny × IRny × IRny by

MΓ(I, P, Zx, Zy,C) ≡
(

C

[

∂g

∂y

]

(I, P, Zx, Zy),−C [g] (I, P, Zx, z̃(Zy)), Zy − z̃(Zy)

)

,
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and define the set

D∗
H ≡

{

(I, P, Zx, Zy,C) ∈ IDt × IDp × IDx × IDy× IRny×ny :

MΓ(I, P, Zx, Zy,C) ∈ D∗
}

.

For every K ∈ N, let HK : IDt × IDp × IDx × IDy × IRny×ny → IRny be defined

by HK(I, P, Zx, Z
0
y ,C) ≡ ZK

y , where Zk+1
y = z̃(Zk

y ) + Γ
(

MΓ(I, P, Zx, Z
k
y ,C)

)

, ∀k ∈
{0, . . . , K − 1}. Furthermore, define H+,K : D∗

H → IRny exactly as HK with Γ+ in

place of Γ, and define H∗ : D∗
H → IRny exactly as H1 with Γ∗ in place of Γ. Finally,

define the set

DK
H ≡

{

(I, P, Zx, Zy,C) ∈ D∗
H : HK(I, P, Zx, Zy,C) 6= ∅

}

.

For simplicity, the superscript K on HK and H+,K will be omitted when K =

1. When K > 1, some justification for Definition 6.2.4 is needed. For any k ∈
{0, . . . , K − 1} with Zk

y ∈ IDy, the definition of Γ implies that Zk+1
y ⊂ Zk

y , and hence

Zk+1
y ∈ IDy. Then, a simple inductive argument shows that HK is well-defined for

any K ∈ N. In the definition of H+,K , we similarly note that (I, P, Zx, Z
k
y ,C) ∈ D∗

H

implies Zk+1
y ⊂ Zk

y by Conclusion 3 of Lemma 6.2.3. It follows by Conclusion 1 of

Lemma 6.2.5 below that (I, P, Zx, Z
k+1
y ,C) ∈ D∗

H, so that again induction shows that

H+,K is well-defined.

In Definition 6.2.4, the preconditioner C is allowed to be an interval matrix. This

makes H∗, H+,K and HK pure interval functions and is only done for consistency with

the results on regularity of interval functions in the next section. In the proposed

methods, C will always be a real matrix. To conform with Definition 6.2.4, C is

simply identified with the corresponding degenerate element of IRny×ny .

Specific definitions for z̃ will be given when HK , H+,K or H∗ are used in later

sections. The results in the remainder of this section are independent of this choice.

Lemma 6.2.5. Let K ∈ N, let (I, P, Zx, Zy,C) ∈ IDt × IDp × IDx × IDy × IRny×ny

and let (Ĩ , P̃ , Z̃x, Z̃y, C̃) ∈ II × IP × IZx × IZy × IC.
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1. If (I, P, Zx, Zy,C) ∈ D∗
H, then (Ĩ , P̃ , Z̃x, Z̃y, C̃) ∈ D∗

H.

2. If (I, P, Zx, Zy,C) ∈ D∗
H, then H∗(Ĩ , P̃ , Z̃x, Zy, C̃) ⊂ H∗(I, P, Zx, Zy,C).

3. If (I, P, Zx, Zy,C) ∈ D∗
H, then H+,K(I, P, Zx, Zy,C) ⊂ Zy.

4. If (I, P, Zx, Zy,C) ∈ DK
H , then HK(I, P, Zx, Zy,C) = H+,K(I, P, Zx, Zy,C).

5. If (I, P, Zx, Zy,C) ∈ D∗
H and H∗(I, P, Zx, Zy,C) ⊂ Zy, then

H(I, P, Zx, Zy,C) = H∗(I, P, Zx, Zy,C). (6.5)

6. If ∅ 6= H(I, P, Zx, Zy,C) ⊂ int(Zy), then (I, P, Zx, Zy,C) ∈ D∗
H and (6.5) holds.

7. If ∅ 6= H(I, P, Zx, Zy,C) ⊂ int(Zy), z̃y(Zy) ∈ int(Zy), and C is degenerate, then

(Ĩ , P̃ , Z̃x, Zy,C) ∈ DK
H .

Proof. Conclusions 1 and 2 follow from inclusion monotonicity of interval arithmetic

and the corresponding conclusions of Lemma 6.2.3 (it is essential in 2 that Zy, and not

Z̃y, appears on the left, since otherwise z̃ will be modified and inclusion monotonic-

ity does not apply). Conclusion 3 was argued inductively in the discussion above.

Conclusion 4 follows by inductive application of Conclusion 4 in Lemma 6.2.3. Con-

clusions 5 and 6 are direct applications of the corresponding conclusions of Lemma

6.2.3. Assume the hypotheses of 7. By Conclusion 3 of Corollary (5.4.7), to every

(t,p, zx) ∈ I × P × Zx there corresponds some zy ∈ Zy satisfying g(t,p, zx, zy) = 0.

Choosing any (t,p, zx) ∈ Ĩ × P̃ × Z̃x, Conclusion 1 of the same shows that the corre-

sponding zy must be in HK(Ĩ , P̃ , Z̃x, Zy,C). By Conclusion 1 of the present lemma,

this implies (Ĩ , P̃ , Z̃x, Zy,C) ∈ DK
H .

6.2.2 Regularity of Interval Functions

Recall the interval extensions [f ], [g] and
[

∂g
∂y

]

. For certain computations required

by the proposed bounding methods, these mappings, as well as others defined in the

previous section, will be requried to be piecewise C1 as defined in §2.5.3.
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Assumption 6.2.6. Let c : Dt × Dp × Dx × Dy → R represent any of fi, gj or

∂gj

∂yk
, with indices i ∈ {1, . . . , nx} and j, k ∈ {1, . . . , ny}. The interval extension [c] is

piecewise C1 on the open set IDt × IDp × IDx × IDy.

Remark 6.2.7. When c is L-factorable and [c] is the natural interval extension (as

it is in our implementation), Assumption 6.2.6 holds under minor restrictions on the

factors of c. As shown in §2.5.5, if the interval extension of each univariate function

in L is piecewise C1 on an open domain, then [c] is piecewise C1 by Theorem 2.5.34.

We now establish that several other interval mappings of interest are also piecewise

C1.

Lemma 6.2.8. D∗ is open and both Γ+ and Γ∗ are piecewise C1 on D∗.

Proof. Let U ≡ {(A,b, z) ∈ Rn×n × Rn ×Rn : Aii 6= 0, ∀i = 1, . . . , n}. By definition,

IU = D∗. Since U is open, D∗ is open by Lemma 2.5.32. It follows from (6.2), the

rules of interval addition, subtraction, multiplication and division (see [131]), and

Conclusion 2 of Lemma 2.5.13 that Γ∗ is piecewise C1 on D∗. For Γ+, (6.3) leads to

the same conclusion by additionally applying Lemmas 2.5.25 and 2.5.21.

Theorem 6.2.9. Suppose Assumption 6.2.6 holds and the function z̃y in Definition

6.2.4 is piecewise C1 on IDy. Then D∗
H is open and HK,+ and H∗ are piecewise C1

on D∗
H.

Proof. Under the stated hypotheses, it follows from the rules of interval addition,

subtraction and multiplication and Conclusion 2 of Lemma 2.5.13 that MΓ in Defi-

nition 6.2.4 is piecewise C1 on IDt × IDp × IDx × IDy × IRny×ny . By Lemma 6.2.8,

Γ∗ and Γ+ are piecewise C1 on D∗, which is open. Then Lemma 2.5.21 implies that

D∗
H is open and Γ∗ ◦MΓ is piecewise C1 there, so that H∗ is piecewise C1 on D∗

H by

the hypothesis on z̃y and Conclusion 2 of Lemma 2.5.13. For H+,K , we additionally

note that (I, P, Zx, Z
k
y ,C) ∈ D∗

H for all k ∈ {0, . . . , K − 1} (see discussion following

Definition 6.2.4). Then, the result follows by K applications of Lemmas 2.5.21 and

Lemma 2.5.13.
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6.3 A Generic Two-Phase Algorithm

In this section, we introduce the first bounding method of this chapter, which is based

on a time-stepping framework outlined in Algorithm 1 below. In a generic time step

j, the algorithm proceeds in two phases. The purpose of Phase 1 is to establishes

existence and uniqueness of a solution (x,y) of (5.1) on Ij×P , for some time interval

Ij = [tj−1, tj], and to determine crude enclosures Zx,j and Z ′
y,j satisfying

(x(t,p),y(t,p)) ∈ Zx,j × Z ′
y,j , ∀(t,p) ∈ Ij × P. (6.6)

Subsequently, Phase 2 computes refined intervals Xj ⊂ Zx,j and Yj ⊂ Z ′
y,j such that

(x(tj ,p),y(tj,p)) ∈ Xj × Yj, ∀p ∈ P. (6.7)

In contrast to Zx,j and Z ′
y,j, the refined bounds Xj and Yj are valid only at tj . The

method for computing these refinements is not specified in Algorithm 1. Our approach

is the subject of §6.5.

As input, Algorithm 1 takes intervals I = [t0, tf ] ⊂ Dt, P ⊂ Dp and X0 ⊂ Dx

under the assumption that x0(P ) ⊂ X0, ∀p ∈ P . The final input is a vector ŷ0 ∈ Dy

satisfying g(t0, p̂,x0(p̂), ŷ0) = 0 for some p̂ ∈ P . The purpose of this vector is to

specify a particular solution of interest in case the DAE in question permits multiple

regular solutions (see Example 5.3.1). Phases 1 and 2 described above correspond to

Steps 3 and 6, respectively. Finally, the algorithm makes use of the functions HK

and z̃y from Definition 6.2.4, and is independent of the choice of z̃y. Choices for z̃y

and C are discussed in §6.4.1.

Algorithm 1 (Two-phase algorithm)

1. Input: I = [t0, tf ], P , X0, ŷ0.

2. Initialize j := 1, Y0 := [ŷ0, ŷ0].
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3. Find Ij = [tj−1, tj ], Zx,j, Zy,j and Cj satisfying

(Ij , P, Zx,j, Zy,j,Cj) ∈ IDt × IDp × IDx × IDy × Rny×ny , (6.8)

Yj−1 ⊂ Zy,j, (6.9)

z̃y(Zy,j) ∈ int(Zy,j), (6.10)

∅ 6= Z ′
y,j ≡ H(Ij , P, Zx,j, Zy,j,Cj) ⊂ int(Zy,j), (6.11)

Xj−1 + [0, tj − tj−1] [f ] (Ij , P, Zx,j, Z
′
y,j) ⊂ Zx,j. (6.12)

4. Set Xj := Zx,j and Yj := Z ′
y,j. If j = 1, set Y0 := Z ′

y,j.

5. If j = 1, refine Y0 (see §6.5).

6. Refine Xj and Yj (see §6.5).

7. If tj ≥ tf , terminate. Otherwise, set j := j + 1 and go to 3.

The behavior of Algorithm 1 is formalized in Corollary 6.3.2 below. Of course,

this depends on the refinement procedures in Steps 5 and 6, which have not yet been

specified. Therefore, we assume the following:

Assumption 6.3.1. Consider an iteration J ∈ N of Algorithm 1 and suppose that

Steps 3-4 are complete. Let (x,y) be a regular solution of (5.1) on [t0, tJ ]×P satisfying

(6.6) for all j ∈ {1, . . . , J}. If J = 1, the refinement to Y0 computed in Step 5 satisfies

(6.7) with j = 0. Suppose that Step 5 is complete. If (x,y) additionally satisfies (6.7)

for all j ∈ {0, . . . , J−1}, then Step 6 produces XJ and YJ satisfying (6.7) with j = J .

Corollary 6.3.2. Let (I, P,X0, ŷ0) ∈ IDt × IDp × IDx × Dy satisfy x0(p) ∈ X0,

∀p ∈ P , and g(t0, p̂,x0(p̂), ŷ0) = 0 for some p̂ ∈ P . Suppose that Algorithm 1 has

completed J iterations, furnishing the intervals Y0 and

Ij , Zx,j, Zy,j, Z
′
y,j, Xj , Yj , j = 1, . . . , J. (6.13)

Then there exists a regular solution (x,y) of (5.1) on [t0, tJ ] × P with y(t0, p̂) =

ŷ0, satisfying (6.6) for every j ∈ {1, . . . , J} and (6.7) for every j ∈ {0, . . . , J}.
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Furthermore, for any Ĩ = [t0, t̃] ⊂ [t0, tJ ], any connected P̃ ⊂ P , and any solution

(x∗,y∗) of (5.1) on Ĩ × P̃ , either (x∗,y∗) = (x,y) on Ĩ × P̃ , or y∗(t0,p) /∈ Zy,1,

∀p ∈ P̃ .

Proof. Define (x∗,y∗) as above and suppose that y∗(t0,p) ∈ Zy,1 for at least one

p ∈ P̃ . Consider the following inductive hypotheses for k ∈ {1, . . . , J}:

1. There exists a regular solution (x,y) of (5.1) on [t0, tk] × P ,

2. (x,y) = (x∗,y∗) on [t0,min(tk, t̃)] × P̃ ,

3. (6.6) holds for j ∈ {1, . . . , k},

4. y(t0, p̂) = ŷ0,

5. (6.7) holds for j ∈ {0, . . . , k}.

It suffices to show that these hypotheses hold with k = J .

Let k = 1. Since (6.8)-(6.12) hold with j = 1, Theorem 5.4.8 establishes Hypothe-

ses 1-3. Because ŷ0 is a zero of g(t0, p̂,x0(p̂), ·) and ŷ0 ∈ Zy,1 by (6.9), Hypothesis 4

follows from Conclusion 3 of Corollary 5.4.7. Applying Assumption 6.3.1 with J = 1

proves Hypothesis 5.

Choose any k ∈ {1, . . . , J − 1} and assume Hypotheses 1-5. Since x(tk, P ) ⊂ Xk

and (6.8)-(6.12) hold with j = k + 1, Theorem 5.4.8 furnishes a regular solution of

(5.1a) on Ik+1 × P , (x̂, ŷ) ∈ C1(Ik+1 × P, Zx,k+1) × C1(Ik+1 × P, Z ′
y,k+1), satisfying

x̂(tk,p) = x(tk,p), ∀p ∈ P . Noting that both y(tk,p) and ŷ(tk,p) are zeros of

g(tk,p,x(tk,p), ·) and y(tk,p) ∈ Yk ⊂ Zy,k+1 by (6.9), it follows from Conclusion 3

of Corollary 5.4.7 that y(tk,p) = ŷ(tk,p), ∀p ∈ P . If t̃ ≥ tk, Hypothesis 2 implies

that we also have x̂(tk,p) = x∗(tk,p) and ŷ(tk,p) = y∗(tk,p), ∀p ∈ P̃ , so that

(x̂, ŷ) = (x∗,y∗) on [tk,min(tk+1, t̃)] × P̃ by Theorem 5.4.8.

From the arguments above, (x̂, ŷ) extends (x,y) onto all of [t0, tk+1]×P , and this

extension satisfies Hypothesis 1-4 with k := k + 1. Applying Assumption 6.3.1 with

J = k + 1 establishes Hypotheses 5, and finite induction completes the proof.
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From Corollary 6.3.2, it is clear that Algorithm 1 produces bounds on a single,

isolated solution of (5.1) specified by the input ŷ0. This input can be ignored by

omitting (6.9) when j = 1. However, the algorithm still produces bounds on a unique

solution dictated by the interval Zy,1 found in the first time step. If one is interested in

bounds on all solutions, then Algorithm 1 would need to be applied to each solution

in turn, though it has no provisions for exhaustively enumerating solutions. This

problem is not pursued in this thesis, though a good starting point is provided by

Theorem 5.5.2. On the other hand, if there is a particular solution of interest, then

Algorithm 1 avoids any unnecessary conservatism that would result from bounding

other solutions as well.

6.4 Satisfying the Existence and Uniqueness Test

Computationally (Phase 1)

In this section, the execution of Step 3 in a single time step J of Algorithm 1 is

considered. Based on the previous time step, it is assumed that there exists a regular

solution (x,y) of (5.1) on [t0, tJ−1]×P satisfying y(t0, p̂) = ŷ0 and x(tJ−1, P ) ⊂ XJ−1.

The objective is to derive an automatic computational procedure for finding intervals

IJ , Zx,J , Zy,J and CJ satisfying (6.8)-(6.12). Though we present an effective method

for this task, it is generally impossible to guarantee that such intervals can be found.

This seems to be an inherent complication owing to the implicit nature of nonlinear

DAEs, and hence of the inclusion (6.11), and it appears in much the same form in both

of the methods in [142] and [83]. However, it is important to note that the validity

of any intervals provided by Step 3 is guaranteed, regardless of the method used to

find them. The proposed procedure will either succeed in satisfying (6.8)-(6.12), and

hence (6.6) with j = J , or it will fail and report an error, forcing Algorithm 1 to

terminate prematurely.

Since the implicit conditions (6.11) and (6.12) are the most challenging, they are

addressed first. The key insight used to satisfy these conditions is that, once some
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putative CJ and tJ have been chosen, intervals Zx,J and Zy,J satisfying (6.11) and

(6.12) are related to solutions of a square system of real-valued algebraic equations

that can be solved by standard methods with a few caveats. This approach is devel-

oped below. A complete algorithm for satisfying all of the conditions (6.8)-(6.12) is

presented in §6.4.2.

Lemma 6.4.1. The conditions (6.8) and (6.11), with j = J , are equivalent to

(IJ , P, Zx,J , Zy,J ,CJ) ∈ D∗
H, (6.14)

H∗(IJ , P, Zx,J , Zy,J ,CJ) ⊂ int(Zy,J), (6.15)

provided that CJ is degenerate.

Proof. The result is a direct application of Conclusions 5 and 6 of Lemma 6.2.5.

For the following result, denote [xLJ−1,x
U
J−1] ≡ XJ−1 and

[H∗,L(I, P, Zx, Zy,C),H∗,U(I, P, Zx, Zy,C)] ≡ H∗(I, P, Zx, Zy,C). (6.16)

Lemma 6.4.2. Let IJ ≡ [tJ−1, tJ ] ∈ IDt, P ∈ IDp, CJ ∈ Rny×ny and γ > 0. If the

vectors zLx , z
U
x ∈ Rnx and zLy , z

U
y ∈ Rny satisfy

(IJ , P,�(zLx , z
U
x ),�(zLy , z

U
y ),CJ) ∈ D∗

H, (6.17)

z′y
L

:= H∗,L(IJ , P,�(zLx , z
U
x ),�(zLy , z

U
y ),CJ), (6.18)

z′y
U

:= H∗,U(IJ , P,�(zLx , z
U
x ),�(zLy , z

U
y ),CJ), (6.19)

0 = zLy − z′y
L

+ 1γ, (6.20)

0 = −zUy + z′y
U

+ 1γ, (6.21)

0 = zLx − xLJ−1 − [0, tJ − tJ−1][f ]
L(IJ , P,�(zLx , z

U
x ),�(z′y

L
, z′y

U
)) + 1γ, (6.22)

0 = −zUx + xUJ−1 + [0, tJ − tJ−1][f ]
U (IJ , P,�(zLx , z

U
x ),�(z′y

L
, z′y

U
)) + 1γ, (6.23)

then zLx < zUx and zLy < zUy , and Zx,J ≡ [zLx , z
U
x ] and Zy,J ≡ [zLy , z

U
y ] satisfy (6.8),

(6.11) and (6.12) with j = J . Furthermore, these conclusions remain true if the
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right-hand sides of (6.20)-(6.23) are componentwise less than γ.

Proof. It suffices to prove the case where the right-hand sides of (6.20)-(6.23) are

componentwise less than γ. Since H∗ returns an interval, z′y
L ≤ z′y

U and hence

zLy < z′y
L ≤ z′y

U
< zUy . (6.24)

An analogous argument shows that zLx < zUx .

Let Zx,J and Zy,J be as in the statement of the lemma, and let Z ′
y = [z′y

L, z′y
U ].

Then, (6.17) implies (6.14) and (6.24) implies (6.15). Then, (6.8) and (6.11) follow

from Lemma 6.4.1. Again, an argument analogous to (6.24) shows that XJ−1+[0, tJ−
tJ−1][f ](IJ , P, Zx,J , Z

′
y,J) ⊂ int(Zx,J), which implies (6.12).

Equations (6.20)-(6.23) form a system of nonlinear algebraic equations of the

general form

L(z) = 0, (6.25)

where z is a concatenation of the vectors zLx , zUx , zLy and zUy , and the domain of L

is specified by (6.17). To compute intervals satisfying the existence and uniqueness

conditions (6.8), (6.11) and (6.12), (6.25) is solved using a Newton-type iteration of

the form

zk+1 := zk − J̃−1(zk)L(zk) (6.26)

(this should not be confused with the interval Newton method used to derive H∗,

and hence equations (6.20) and (6.21)). During this iteration, we may terminate

whenever L(zk) < 1γ for some iterate, and Lemma 6.4.2 ensures that zk furnishes

the desired intervals. Using the definition of H∗ and the rules of interval arithmetic,

it is in principle possible to write out explicit expressions for the functions L, though

they may be very cumbersome. Then, the only complication with this approach is

that L is in general nonsmooth owing to the rules of interval arithmetic. Even so, the
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developments of §6.2.2 imply sufficient regularity of L for a Newton-type method to

be well motivated.

Lemma 6.4.3. Let IJ ≡ [tJ−1, tJ ] ∈ IDt, P ∈ IDp, CJ ∈ IRny×ny and γ > 0.

Suppose Assumption 6.2.6 holds and the function z̃y in Definition 6.2.4 is piecewise

C1 on IDy. Then the set

E∗
H ≡

{

(zLx , z
U
x , z

L
y , z

U
y ) ∈ R2(nx+ny) : (IJ , P,�(zLx , z

U
x ),�(zLy , z

U
y ),CJ) ∈ D∗

H

}

(6.27)

is open and L is Frechet differentiable a.e. in E∗
H.

Proof. Define φ : R2(nx+ny) → IR × IRnp × IRnx × IRny × IRny×ny by

φ(zLx , z
U
x , z

L
y , z

U
y ) ≡ (IJ , P,�(zLx , z

U
x ),�(zLy , z

U
y ),CJ). (6.28)

By Lemma 2.5.19, φ is piecewise C1 on R2(nx+ny). By Theorem 6.2.9, D∗
H is open

and H∗ is piecewise C1 there. Then Lemma 2.5.15 shows that E∗
H is open by and

it follows from Definition 2.5.16 that the right-hand sides of (6.20) and (6.21) are

piecewise C1 on E∗
H. From Assumption 6.2.6, the same holds for (6.22) and (6.23).

Then, Conclusion 4 of Lemma 2.5.13 implies differentiability a.e. in E∗
H.

To implement (6.26), the matrix J̃(zk) is computed by forward automatic differ-

entiation [74]. Automatic differentiation (AD) provides exact derivative evaluations

for factorable functions by propagating derivatives through the sequence of factors by

repeated application of the addition, multiplication and chain rules of differentiation.

As mentioned above, the right-hand sides of (6.20)-(6.23) may involve nonsmooth

operations resulting from the rules of interval arithmetic. If these operations are

piecewise C1, as we have assumed, then AD can be easily extended to handle them

as well. For example, consider the operation

c(z) = min(a(z), b(z)), (6.29)

which is ubiquitous in interval computations. To propagate derivatives through this
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operation, we simply let ∂c/∂z equal ∂a/∂z when a(z) ≤ b(z), and ∂b/∂z when a(z) >

b(z). The value assigned to the derivative when a(z) = b(z) is arbitrary. Extending

this approach to other simple piecewise C1 functions, an in house C++ library has

been developed that uses operator overloading to both do interval computations and

compute such pseudo-derivatives of the resulting bounds. During the differentiation

of L at some point z, the evaluation of any operation at a nondifferentiable point

(e.g., when a(z) = b(z) above) implies that z is a member of the set of measure zero

in Lemma 6.4.3. For all other points, this scheme results in the true Jacobian.

A thorough survey of methods for solving nonsmooth equations is given in [56].

Among these, the semi-smooth Newton methods, which are based on the set-valued

generalized Jacobian, provide the most satisfactory convergence properties, similar to

those of a standard Newton iteration. Unfortunately, there is little work on computing

an element of the generalized Jacobian. It is known that the directional derivatives

of piecewise C1 functions obey a chain rule, from which it follows that the forward

mode of AD will give correct directional derivatives [73, 153]. On the other hand, the

matrix formed by computing the directional derivatives in all coordinate directions

is not necessarily an element of the generalized Jacobian [92]. From this, it follows

that J̃, as computed above, will not necessarily be an element of the generalized

Jacobian, and hence (6.26) may not enjoy the properties of semi-smooth Newton

methods. However, [92] also presents a modified forward mode AD algorithm that

is guaranteed to generate an element of the generalized Jacobian for functions where

the nonsmoothness arises from the absolute value function. Further work is underway

to extend this method to a much broader class of functions. Thus, the prospects for

improving the iteration (6.26) in the future are promising. Finally, we emphasize

again that the use of this iteration is still valid. It will either succeed in satisfying

(6.8)-(6.12), or it will fail and report an error. Under no circumstances will Algorithm

1 proceed with invalid bounds computed through the use of this iteration.

Remark 6.4.4. During the search for a computational means of satisfying (6.11), a

significant amount of experimentation was done with methods that, modulo various
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heuristics, centered around the iteration

Zy,J := H∗(IJ , P, Zx,J , Zy,J ,CJ) + [−1γ, 1γ] (6.30)

(here, Zx,J is fixed, having been selected earlier by other means). Though this avoids

evaluation and inversion of J̃, we had only limited success. In hindsight, this approach

can be viewed as an attempt to solve the system of equations (6.20)-(6.21) using a

successive substitution algorithm. Even for the best heuristics found, our results were

exactly what one should expect in light of this observation: slow convergence for some

systems and disastrous divergence for others. In comparison, the iteration (6.26) is

much more robust.

6.4.1 Specification of CJ and z̃y

In the Phase 1 implementation below, H∗ is implemented with

z̃y(Zy) ≡ m(Zy), ∀Zy ∈ IRny . (6.31)

Note in particular that this guarantees (6.10) for any Zy,J with nonempty interior.

In practice, the choice of preconditioner can have a large impact on the sharpness

of the bounds Zx,J and Zy,J , and even the ability to satisfy (6.11) and (6.12) at all.

A good preconditioner for evaluating H∗(I, P, Zx, Zy,C) is the midpoint inverse

C ≡
(

m

([

∂g

∂y

]

(I, P, Zx, Zy)

))−1

. (6.32)

For efficiency reasons, however, it is desirable to compute a preconditioner only once

per time step of Algorithm 1. Therefore, the definition

CJ ≡
(

m

([

∂g

∂y

]

([tJ−1, tJ−1], P,XJ−1, YJ−1)

))−1

(6.33)

is used instead. Thus, CJ is constant throughout the iteration (6.26). For J >

1, XJ−1 and YJ−1 are subsets of Zx,J−1 and Zy,J−1, and these intervals will have
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satisfied (6.8)-(6.12) with j = J − 1 in the previous time step. It follows that the

inverse in (6.33) exists because
[

∂g
∂y

]

([tJ−2, tJ−1], P, Zx,J−1, Zy,J−1) cannot contain any

singular matrices (Corollary 5.4.7). If invertibility fails for J = 1, then the inverse of

∂g
∂y

(t0, p̂,x(p̂), ŷ0) is used instead. If this matrix is singular, then the corresponding

solution of (5.1) is not regular and the method does not apply.

6.4.2 Phase 1 Algorithm

Algorithm 2 below describes the complete implementation of Step 3 of Algorithm 1.

Algorithm 2 terminates with flag = 0 when (6.8)-(6.12) have been satisfied success-

fully, and returns flag = −1 otherwise. For the examples in §6.7, Algorithm 2 is im-

plemented with γ = 10−4, H MAX = 1, H MIN = 10−6 and PH1 MAX ITER = 10.

Algorithm 2 (Phase 1)

1. Input: [t0, tf ], P , γ, tJ−1, XJ−1, YJ−1, ∆tJ−1.

2. Assign ∆tJ := min(2∆tJ−1,H MAX, tf − tJ−1 + H MIN) and tJ := tJ−1 + ∆tJ .

3. Assign zLx := xLJ−1 − 1γ, zUx := xUJ−1 + 1γ, zLy := yLJ−1 − 1γ, zUy := yUJ−1 + 1γ.

4. With initial guesses from 3, apply the iteration (6.26) described above.

(a) If PH1 MAX ITER iterations are taken without success, go to 6.

(b) If any iterate violates (6.17), go to 6.

(c) If (zLx , z
U
x , z

L
y , z

U
y ) is found such that the right-hand sides of (6.20)-(6.23)

are componentwise less than γ, set Zx,J := [zLx , z
U
x ] and Zy,J := [zLy , z

U
y ]

and go to 5.

5. If YJ−1 ⊂ Zy,J , terminate with flag = 0. Otherwise, go to 6.

6. Assign ∆tJ := ∆tJ/2 and tJ := tJ−1+∆tJ . If ∆tJ ≥ H MIN go to 3. Otherwise,

terminate with flag = −1.

Suppose that Algorithm 2 returns 0. By Step 4 and Lemma 6.4.2, (6.8), (6.11)

and (6.12) are satisfied. Since (6.11) implies that Zy,J has nonempty interior, (6.10)
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is guaranteed by the choice of z̃y in §6.4.1. Finally, (6.9) is verified by Step 5. Then,

Phase 1 is complete. The only way Algorithm 2 can fail is if ∆tJ is reduced below

H MIN by repeated failure in Step 4 or 5. To avoid many such failures, ∆tJ is bounded

by 2∆tJ−1.

In practice, Step 4 succeeds reliably when the intervals IJ and P are narrow, and

becomes less reliable as they are widened. This is natural given that (6.6) follows from

(6.8)-(6.12). When IJ and P are narrow, (6.8)-(6.12) can potentially be satisfied by

narrower intervals Zx,J and Zy,J . Working with narrower intervals in turn reduces the

overestimation incurred through interval computations, and reduces the likelihood of

violating (6.8). Both of these factors make Step 4 more likely to succeed.

When Step 4 fails, the recourse is to half ∆tJ and try again. On the other hand,

Algorithm 2 does not resort to partitioning P . Though algorithms for bisecting P and

propagating bounds valid on each partition element separately are easily conceivable,

computational efficiency will be lost if many partitions are required, so this strategy

is avoided. With P fixed, one can create pathological problems for which it is im-

possible to satisfy (6.11), and therefore there is no theoretical guarantee that Step 4

will succeed. This happens, for example, if the algebraic equations permit multiple

solution branches on [tJ−1, tJ−1] × P × XJ−1 and it is geometrically impossible to

enclose one uniquely by an interval (see Corollary 5.4.7).

Though the condition (6.9) is checked in Step 5 of Algorithm 2, no special attempt

is made to guarantee it. The condition (6.9) is merely a provision for the case where

(5.1) permits multiple regular solutions. Its purpose is to ensure that the interval

Zy,J computed in Step 4 encloses the solution of (5.1) that is consistent with the

input ŷ0 in Algorithm 1, rather than jumping to some other solution (see the proof

of Corollary 6.3.2). Since the initial guesses specified in Step 3 are in the vicinity of

the solution of interest, (6.9) is likely to hold whenever Step 4 succeeds.
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6.4.3 Phase 1 Refinement

Before moving on to Phase 2 of Algorithm 1, Zx,J and Zy,J may be refined by itera-

tively assigning

Zx,J := (XJ−1 + [0, tJ − tJ−1] [f ] (IJ , P, Zx,J , Zy,J)) ∩ Zx,J , (6.34)

Zy,J := H(IJ , P, Zx,J , Zy,J ,CJ). (6.35)

By (6.7), it is clear that

x(t,p) = x(tJ−1,p) +

∫ t

tJ−1

f(s,p,x(s,p),y(s,p))ds, (6.36)

∈ XJ−1 + [0, t− tJ−1] [f ] (IJ , P, Zx,J , Zy,J), (6.37)

for all (t,p) ∈ IJ × P . Therefore, (6.6) remains valid after the assignment (6.34).

By Conclusion 1 of Corollary 5.4.7, the same is true of the assignment (6.35). Note

that these refinements are distinct from the refinements XJ and YJ detailed in §6.5

in that (6.6) remains true. That is, the refined intervals still provide bounds on all

of IJ × P , rather than only at tJ , as in (6.7). For the examples in §6.7, (6.34) and

(6.35) are applied with a maximum of 50 iterations, terminating early if the absolute

or relative change between each bound in successive iterates is less that 10−8.

6.5 Computing Refined Enclosures Using Differ-

ential Inequalities (Phase 2)

In this section, we consider the implementation of Step 6 in a single time step J

of Algorithm 1. It is assumed that a solution (x,y) of (5.1) exists on [t0, tJ ] × P ,

and that Y0 and (Ij, Zx,j, Zy,j, Z
′
y,j, Cj, Xj, Yj) are available and satisfy (6.6) and

(6.8)-(6.12) for all j ∈ {1, . . . , J} and (6.7) for all j ∈ {0, . . . , J − 1}. The present

task is to compute refined intervals XJ ⊂ Zx,J and YJ ⊂ Z ′
y,J satisfying (6.7) with

j = J .
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By the assumption that (6.8)-(6.12) hold with j = J , Corollary 5.4.7 guarantees

that ∃H ∈ C1(IJ × P × Zx,J , Z
′
y,J) such that, for every (t,p, zx) ∈ IJ × P × Zx,J ,

zy = H(t,p, zx) is the unique element of Zy,J satisfying g(t,p, zx, zy) = 0. Therefore,

we aim to apply Theorem 5.5.3 to derive time-varying bounds on (x,y) over IJ .

Choose any K ∈ N and, for every i ∈ {1, . . . , nx}, define

φLi , φ
U
i : R × Rnx × Rnx → IR × IRnp × IRnx × IRny × IRny×ny , (6.38)

YL
i ,YU

i : R × Rnx × Rnx → IRny , (6.39)

ψLi , ψ
U
i : R × Rnx × Rnx → IR × IRnp × IRnx × IRny , (6.40)

by

φLi (t,v,w) ≡
(

IJ ∩̃[t, t], P,BLi (Zx,J∩̃�(v,w)), Z ′
y,J ,CJ

)

, (6.41)

φUi (t,v,w) ≡
(

IJ ∩̃[t, t], P,BUi (Zx,J∩̃�(v,w)), Z ′
y,J ,CJ

)

, (6.42)

YL
i (t,v,w) ≡ H+,K(φLi (t,v,w)), (6.43)

YU
i (t,v,w) ≡ H+,K(φUi (t,v,w)), (6.44)

ψLi (t,v,w) ≡
(

IJ ∩̃[t, t], P,BLi (Zx,J∩̃�(v,w)),YL
i (t,v,w)

)

, (6.45)

ψUi (t,v,w) ≡
(

IJ ∩̃[t, t], P,BUi (Zx,J∩̃�(v,w)),YU
i (t,v,w),

)

. (6.46)

Now, consider the initial value problem in ODEs

v̇i(t) = [fi]
L (ψLi (t,v(t),w(t))), (6.47)

ẇi(t) = [fi]
U (ψUi (t,v(t),w(t))), (6.48)

for all i = 1, . . . , nx, with initial conditions

[v(tJ−1),w(tJ−1)] = XJ−1. (6.49)

The following results show that these ODEs are well-defined and have a unique solu-

tion describing the desired bounds. It is assumed thoughout that Assumption 6.2.6
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holds and z̃y is the midpoint, as in §6.4.1.

Corollary 6.5.1. When viewed as functions of (t,v,w), the right-hand sides of

(6.47) and (6.48) are defined and piecewise C1 on R × Rnx × Rnx. Furthermore,

YL
i (t,v,w) = HK

(

φLi (t,v,w)
)

and YU
i (t,v,w) = HK

(

φUi (t,v,w)
)

, (6.50)

for all (t,v,w) ∈ R × Rnx × Rnx and every i = 1, . . . , nx.

Proof. Choose any i ∈ {1, . . . , nx} and any (t,v,w) ∈ R×Rnx×Rnx. By Conclusion 3

of Lemma 2.5.23, φLi (t,v,w) ⊂ (IJ , P, Zx,J , Zy,J ,CJ). Using (6.8), (6.10) and (6.11),

Conclusion 7 of Lemma 6.2.5 implies that φLi (t,v,w) ∈ DK
H . Then, YL

i (t,v,w) is

well-defined and Conclusion 4 of Lemma 6.2.5 shows (6.50) (an analogous argument

holds for YU
i ).

Now (6.50) implies that YL
i (t,v,w) ⊂ Z ′

y,J . It follows that ψLi (t,v,w) is in IDt×
IDp × IDx × IDy. Then, the right-hand side of (6.47) is defined on R × Rnx × Rnx .

By Lemmas 2.5.19 and 2.5.25 and Definition 3.3.1, it is clear that φLi is piecewise

C1 on R × Rnx × Rnx , which is open. Theorem 6.2.9 shows that H+,K , and hence

YL
i = H+,K ◦φLi , is also piecewise C1 on R×Rnx ×Rnx . It follows that ψLi is piecewise

C1 on R × Rnx × Rnx . Finally, Assumption 6.2.6 implies that [fi]
L ◦ ψLi is piecewise

C1 on R × Rnx × Rnx , which is the desired result (an analogous argument holds for

[fi]
U ◦ ψUi ).

Lemma 6.5.2. There exist v,w ∈ C1(IJ ,Rnx) satisfying the ODEs (6.47)-(6.49).

Moreover, this solution is unique and satisfies v(t) ≤ w(t) and [v(t),w(t)]∩Zx,J 6= ∅,
∀t ∈ IJ .

Proof. Consider the ODEs

ṡ(t) = 1, (6.51)

v̇i(t) = [fi]
L (ψLi (s(t),v(t),w(t))), (6.52)

ẇi(t) = [fi]
U (ψUi (s(t),v(t),w(t))), (6.53)
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with initial conditions (6.49) and s(t0) = t0. This system simply describes the bound-

ing ODEs (6.47) and (6.48) in autonomous form.

By Corollary 6.5.1 and Conclusion 3 of Lemma 2.5.13, the right-hand sides of

(6.51)-(6.53) are locally Lipschitz continuous on R × Rnx × Rnx. Moreover, ψL and

ψU are easily seen to map into subsets of (IJ , P, Zx,J , Zy,J). Thus, the right-hand

sides of (6.51)-(6.53) are also bounded on R × Rnx × Rnx by

max
(

1,
∣

∣[fi]
L(IJ , P, Zx,J , Zy,J)

∣

∣ ,
∣

∣[fi]
U(IJ , P, Zx,J , Zy,J)

∣

∣

)

. (6.54)

For any (ŝ, v̂, ŵ) ∈ R × Rnx × Rnx and any i ∈ {1, . . . , nx}, the definitions of �

and ∩̃ guarantee that

v̂i = ŵi =⇒ (Zx,J)i ∩̃�(v̂i, ŵi) is a singleton, (6.55)

=⇒ BLi (Zx,J∩̃�(v̂, ŵ)) = BUi (Zx,J∩̃�(v̂, ŵ)), (6.56)

=⇒ YL
i (ŝ, v̂, ŵ) = YU

i (ŝ, v̂, ŵ), (6.57)

=⇒ [fi]
L (ψLi (ŝ, v̂, ŵ)) ≤ [fi]

U (ψUi (ŝ, v̂, ŵ)). (6.58)

This implies that K ≡ {(ŝ, v̂, ŵ) ∈ R × Rnx × Rnx : v̂ ≤ ŵ} is a viability domain

for the ODEs (6.51)-(6.53) (Definition 1.1.5 in [13]). Combining this with continu-

ity and boundedness of the right-hand sides, Nagumo’s Theorem implies that there

exist s ∈ C1(IJ ,R
n) and v,w ∈ C1(IJ ,R

nx) satisfying (6.51)-(6.53) and satisfying

(s(t),v(t),w(t)) ∈ K, and hence v(t) ≤ w(t), ∀t ∈ IJ (see Theorem 1.2.4 in [13]).

Clearly, this v,w also satisfies (6.47)-(6.49). Due to the local Lipschitz continuity of

the ODE right-hand side functions on R×Rnx×Rnx , uniqueness follows by a standard

application of Gronwall’s inequality.

Let [xLJ−1,i, x
U
J−1,i] and [z′Ly,J,i, z

′U
y,J,i] denote the ith components of XJ−1 and Z ′

y,J ,
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respectively. By (6.12) and the integral form of (6.47),

vi(t) = vi(tJ−1) +

∫ t

tJ−1

[fi]
L (ψLi (s,v(s),w(s)))ds, (6.59)

≥ xLJ−1,i +

∫ t

tJ−1

[fi]
L (IJ , P, Zx,J , Z

′
y,J), (6.60)

≥ xLJ−1,i + [0, tJ − tJ−1] [fi]
L (IJ , P, Zx,J , Z

′
y,J) ≥ zLx,J,i, ∀t ∈ IJ . (6.61)

Using an analogous argument for wi, it follows that [v(t),w(t)] ⊂ Zx,J , ∀t ∈ IJ .

Corollary 6.5.3. Let v,w ∈ C1(IJ ,Rnx) be the unique solutions of (6.47)-(6.49).

Then

x(t,p) ∈ [v(t),w(t)], (6.62)

y(t,p) ∈ Y(t,v(t),w(t)) ≡ Hq ([t, t], P, Zx,J ∩ [v(t),w(t)], Zy,J) , (6.63)

for all (t,p) ∈ IJ × P and any q ∈ N.

Proof. To show (6.62), it suffices to establish the hypotheses of Theorem 5.5.3 with

(I, Zx, Z
′
y) = (IJ , Zx,J , Z

′
y,J), tf = tJ , t0 = tJ−1 and x0 = xJ−1 ≡ x(tJ−1, ·). By

(6.8)-(6.12) and Corollary 5.4.7, there exists H ∈ C1(IJ × P × Zx,J , Z
′
y,J) such that,

for every (t,p, zx) ∈ IJ × P × Zx,J , zy = H(t,p, zx) is the unique element of Zy,J

satisfying g(t,p, zx, zy) = 0. Then, it only remains to satisfy the hypotheses (EX),

(IC) and (RHS). (EX) holds by Lemma 6.5.2. By (6.49) and (6.7) with j = J−1, (IC)

is clearly satisfied. Choose any t ∈ IJ . If there exists (p, zx, zy) ∈ P×Zx,J×Z ′
y,J such

that g(t,p, zx, zy) = 0 and zx ∈ BLi (Zx,J ∩ [v(t),w(t)]), then (6.50) and Conclusion 1

of Corollary 5.4.7 ensure that zy ∈ YL
i (t,v(t),w(t)). It follows that

fi(t,p, zx, zy) ∈ [fi]([t, t], P,BLi (Zx,J ∩ [v(t),w(t)]),YL
i (t,v(t),w(t))), (6.64)

= [fi](ψ
L
i (t,v(t),w(t))), (6.65)

and hence (6.47) ensures that (RHS).1 is satisfied. Proof of (RHS).2 is analogous.

Then, (6.62) holds, and (6.63) follows from Conclusion 1 of Corollary 5.4.7.
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According to Corollary 6.5.3, Step 6 of Algorithm 1 can be accomplished by solving

(6.47)-(6.49) on IJ and assigning XJ := [v(tJ),w(tJ)] and YJ := Y(tJ ,v(tJ),w(tJ)).

Provided that numerical error is not a crucial concern, these ODEs can be solved

numerically using any state of the art code. In the examples in §6.7, we use CVODE

[44] with absolute and relative tolerances of 10−5. The evaluation of YL
i and YU

i for

each i can make evaluating the right-hand sides of (6.47)-(6.48) costly, so K should

be small (see §6.6.1). On the other hand, q can be fairly large, because Y is evaluated

after numerical integration is complete rather than within the right-hand sides of

(6.47) and (6.48). Moreover, Y need only be evaluated at select points of interest

in IJ , since only the value at tJ , which defines YJ , will effect the next time step of

Algorithm 1. In §6.7, we choose K = 5 and evaluate Y with q = 50 at all points

shown in the plots there.

6.6 A Single-Phase Method

In this section, a single-phase method is presented which essentially combines the two

phases of the previous approach. In short, time-varying bounds for both the differen-

tial and the algebraic state variables will be computed by satisfying the hypotheses

of Theorem 5.5.6. As before, let I = [t0, tf ] ⊂ Dt, P ⊂ Dp and X0 ⊂ Dx be intervals

and suppose that x0(P ) ⊂ X0.

For every i ∈ {1, . . . , nx}, let

η : R × Rnx × Rnx × Rny × Rny → IR × IRnp × IRnx × IRny (6.66)

C : Einv → IRny×ny , (6.67)

φ, φLi , φ
U
i : Einv → IR × IRnp × IRnx × IRny × IRny×ny , (6.68)

YL
i ,YU

i : E∗
H → IRny , (6.69)

ψLi , ψ
U
i : E∗

H → IR × IRnp × IRnx × IRny , (6.70)
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where

EID ≡
{

(t,v,w, zLy , z
U
y ) ∈ R × Rnx × Rnx × Rny × Rny : (6.71)

η(t,v,w, zLy , z
U
y ) ∈ IDt × IDp × IDx × IDy

}

, (6.72)

Dinv ≡
{

Q ∈ IRny×ny : det (m (Q)) 6= 0
}

, (6.73)

Einv ≡
{

(t,v,w, zLy , z
U
y ) ∈ EID :

[

∂g

∂y

]

(η(t,v,w, zLy , z
U
y )) ∈ Dinv

}

, (6.74)

E∗
H ≡

{

(t,v,w, zLy , z
U
y ) ∈ Einv : φ(t,v,w, zLy , z

U
y ) ∈ D∗

H

}

. (6.75)

Choosing any K ∈ N, define the functions in (6.66)-(6.70) by

η(t,v,w, zLy , z
U
y ) ≡

(

I∩̃[t, t], P,�(v,w),�(zLy , z
U
y )
)

, (6.76)

C(t,v,w, zLy , z
U
y ) ≡ m

([

∂g

∂y

]

(η(t,v,w, zLy , z
U
y ))

)−1

, (6.77)

φ(t,v,w, zLy , z
U
y ) ≡

(

I∩̃[t, t], P,�(v,w),�(zLy , z
U
y ),C(t,v,w, zLy , z

U
y )
)

, (6.78)

φLi (t,v,w, z
L
y , z

U
y ) ≡

(

I∩̃[t, t], P,BLi (�(v,w)),�(zLy , z
U
y ),C(t,v,w, zLy , z

U
y )
)

, (6.79)

φUi (t,v,w, zLy , z
U
y ) ≡

(

I∩̃[t, t], P,BUi (�(v,w)),�(zLy , z
U
y ),C(t,v,w, zLy , z

U
y )
)

, (6.80)

YL
i (t,v,w, zLy , z

U
y ) ≡ H+,K(φLi (t,v,w, z

L
y , z

U
y )), (6.81)

YU
i (t,v,w, zLy , z

U
y ) ≡ H+,K(φUi (t,v,w, zLy , z

U
y )), (6.82)

ψLi (t,v,w, zLy , z
U
y ) ≡

(

I∩̃[t, t], P,BLi (�(v,w)),YL
i (t,v,w, zLy , z

U
y )
)

, (6.83)

ψUi (t,v,w, zLy , z
U
y ) ≡

(

I∩̃[t, t], P,BUi (�(v,w)),YU
i (t,v,w, zLy , z

U
y )
)

. (6.84)

For any continuous and pointwise positive γ : I → R, consider the initial value

problem in DAEs

v̇i(t) = [fi]
L (ψLi (t,v(t),w(t), zLy (t), z

U
y (t))), (6.85)

ẇi(t) = [fi]
U (ψUi (t,v(t),w(t), zLy (t), z

U
y (t))), (6.86)

0 = zLy (t) −H∗,L(φ(t,v(t),w(t), zLy (t), z
U
y (t))) + 1γ(t), (6.87)

0 = −zUy (t) + H∗,U(φ(t,v(t),w(t), zLy (t), z
U
y (t))) + 1γ(t), (6.88)
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for all i = 1, . . . , nx, with initial conditions

[v(t0),w(t0)] = X0. (6.89)

In the following results, it will be shown that the solutions of these DAEs describe

the desired bounds. It is assumed thoughout that Assumption 6.2.6 holds and z̃y is

the midpoint, as in §6.4.1.

Corollary 6.6.1. E∗
H is open and, when viewed as functions of (t,v,w, zLy , z

U
y ), the

right-hand sides of (6.85)-(6.88) are defined and piecewise C1 on E∗
H.

Proof. By Lemmas 2.5.19 and 2.5.25, η is piecewise C1 on IDt × IDp × IDx × IDy.

Since this set is open, EID is open by Lemma 2.5.15. Moreover, the set of nonsingular

matrices is open. Then, since m(·) is clearly a continuous function from IRny×ny to

Rny×ny , Dinv is the inverse image of an open set under a continuous mapping, and is

hence open. By Assumption 6.2.6,
[

∂g
∂y

]

◦ η is piecewise C1 on EID. Then, another

application of Lemma 2.5.15 now shows that Einv is open. The fact that C is piecewise

C1 on Einv now follows from the definition of m(·) and the fact that the inverse of

a matrix is a differentiable function of its elements. Combining this with Lemmas

2.5.19 and 2.5.25 shows that φ, φLi and φUi are piecewise C1 on Einv, so that openness

of D∗
H and a final application of Lemma 2.5.15 show that E∗

H is open.

Choose any i ∈ {1, . . . , nx}. By the definition of E∗
H and Conclusion 1 of Lemma

6.2.5,

φLi (t,v,w, z
L
y , z

U
y ) ∈ D∗

H, ∀(t,v,w, zLy , z
U
y ) ∈ E∗

H. (6.90)

Theorem 6.2.9 shows that H∗ and H+,K are piecewise C1 on D∗
H, and hence H∗ ◦ φ

and YL
i = H+,K ◦ φLi are piecewise C1 on E∗

H. It follows that the right-hand side of

(6.87) and ψLi are piecewise C1 on E∗
H. For any (t,v,w, zLy , z

U
y ) ∈ E∗

H, the definition

of H+,K implies that YL
i (t,v,w, zLy , z

U
y ) ⊂ �(zLy , z

U
y ), and hence

ψLi (t,v,w, zLy , z
U
y ) ⊂ η(t,v,w, zLy , z

U
y ) ⊂ Dt ×Dp ×Dx ×Dy. (6.91)
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Then, Assumption 6.2.6 implies that [fi]
L ◦ ψLi is piecewise C1 on E∗

H. Analogous

arguments hold for the right-hand sides of (6.88) and (6.86).

In contrast to the analysis of the Phase 2 bounding ODEs in §6.5, existence and

uniqueness of a solution of (6.85)-(6.89) does not follow from standard results because

the participating functions are only piecewise C1, rather than C1. However, such a

result seems quite plausible. From a variant of the implicit function theorem in [153],

one can write an invertibility condition for the right-hand sides of (6.87)-(6.88) which

guarantees the existence of a piecewise C1 implicit function locally around a consistent

initial condition. By Conclusion 3 of Lemma 2.5.13, this would imply that v and w

are, locally, described by ODEs with locally Lipschitz continuous right-hand sides.

Combining this with standard results for Lipschitz ODEs then implies that there

exists a solution in a neighborhood of t0 with v and w continuously differentiable

and zLy and zUy piecewise C1. We do not pursue this development formally here.

Instead, we will assume that such a solution exists on an open set I0 containing I and

demonstrate that it must describe the desired bounds.

Lemma 6.6.2. Let (v,w, zLy , z
U
y ) be a solution of (6.85)-(6.89). Then v(t) ≤ w(t)

and zLy (t) < zUy (t) for all t ∈ I.

Proof. Arguing as in Lemma 6.4.2, it is clear from (6.87) and (6.88) that any solution

must satisfy zLy (t) < zUy (t) for all t ∈ I.

For a contradiction, suppose that {t ∈ I : vi(t) > wi(t) for at least one i} is

nonempty and let t1 < tf denote its infimum. Because t1 is a lower bound, v(t) ≤
w(t), ∀t ∈ [t0, t1]. Because t1 is the greatest lower bound, it follows that vi(t) > wi(t)

for at least one i for t arbitrarily close to the right of t1.

Now, treating zLy and zUy as known functions, consider the ODEs

ṡ(t) = 1, (6.92)

v̇∗i (t) = [fi]
L (ψLi (s(t),v∗(t),w∗(t), zLy (s(t)), z

U
y (s(t)))), (6.93)

ẇ∗
i (t) = [fi]

U (ψUi (s(t),v∗(t),w∗(t), zLy (s(t)), z
U
y (s(t)))), (6.94)
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for all i = 1, . . . , nx. Corollary 6.6.1 implies that the right-hand sides of these ODEs

are piecewise C1, and hence locally Lipschitz continuous, on the set

Q ≡
{

(ŝ, v̂, ŵ) ∈ I0 × Rnx × Rnx : (ŝ, v̂, ŵ, zLy (ŝ), z
U
y (ŝ)) ∈ E∗

H

}

. (6.95)

We refer to these ODEs as the reduced ODEs and consider them with initial contitions

(s(t1),v
∗(t1),w

∗(t1)) = (t1,v(t1),w(t1)). Clearly, for any solution (s,v∗,w∗) of the

reduced ODEs on [tt, t1 + δ], (s,v,w) is also a solution.

For any (ŝ, v̂, ŵ) ∈ Q and any i ∈ {1, . . . , nx},

v̂i = ŵi =⇒ BLi (�(v̂, ŵ)) = BUi (�(v̂, ŵ)), (6.96)

=⇒ YL
i (ŝ, v̂, ŵ, zLy (ŝ), z

U
y (ŝ)) = YU

i (ŝ, v̂, ŵ, zLy (ŝ), z
U
y (ŝ)), (6.97)

=⇒ [fi]
L (ψLi (ŝ, v̂, ŵ, zLy (ŝ), z

U
y (ŝ))) ≤ [fi]

U (ψUi (ŝ, v̂, ŵ, zLy (ŝ), z
U
y (ŝ))).

(6.98)

This implies that K ≡ {(ŝ, v̂, ŵ) ∈ I × Rnx × Rnx : v̂ ≤ ŵ} is a viability domain

for the reduced ODEs (Definition 1.1.5 in [13]). Combining this with continuity the

right-hand sides, Nagumo’s Theorem implies that there exist δ > 0 s ∈ C1([t1, t1 +

δ],R) and v∗,w∗ ∈ C1([t1, t1 + δ],Rnx) satisfying the reduced ODEs and satisfying

(s(t),v∗(t),w∗(t)) ∈ K, and hence v∗(t) ≤ w∗(t), ∀t ∈ [t1, t1 + δ] (see Theorem 1.2.3

in [13]). But by the definition of t1, (s,v,w) leaves K immediately to the right of t1.

Therefore, (s,v,w) 6= (s,v∗,w∗) on [t1, t1 + δ]. But it has been shown above that the

right-hand sides of the reduced ODEs are locally Lipschitz continuous, so a standard

application of Gronwall’s inequality yields a contradiction.

Corollary 6.6.3. Let (v,w, zLy , z
U
y ) be a solution of (6.85)-(6.89) on I. Then any

regular solution (x,y) of (5.1) on I × P satisfying y(t0, p̃) ∈ [zLy (t0), z
U
y (t0)] for at

least one p̃ ∈ P also satisfies

x(t,p) ∈ [v(t),w(t)], (6.99)

y(t,p) ∈ Y(t,v(t),w(t), zLy (t), z
U
y (t)) ≡ Hq

(

φ
(

t,v(t),w(t), zLy (t), z
U
y (t)

))

, (6.100)
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for all (t,p) ∈ I × P and any q ∈ N.

Proof. Consider Hypothesis 5.5.1. By Lemma 6.6.2, the condition (EX) holds. Since

(v,w, zLy , z
U
y ) satisfy (6.87)-(6.88) on I, we must have (t,v(t),w(t), zLy (t), z

U
y (t)) ∈

E∗
H, ∀t ∈ I. Then, by (6.87), (6.88) and Conclusion 5 of Lemma 6.2.5, the condition

(ALG) in Hypothesis 5.5.1 also holds. Now, it suffices to establish Hypotheses (IC)

and (RHS) of Theorem 5.5.6. (IC) holds by (6.89). To show (RHS).1, choose any

t ∈ I and suppose ∃(p̂, ẑx, ẑy) ∈ P ×Dx × [zLy (t), z
U
y (t)] such that g(t, p̂, ẑx, ẑy) = 0

and ẑx ∈ BLi ([v(t),w(t)]). By definition,

φLi (t,v(t),w(t), zLy (t), z
U
y (t)) ⊂ φ(t,v(t),w(t), zLy (t), z

U
y (t)). (6.101)

Then, by Conclusions 5 and 7 of Lemma 6.2.5, satisfaction of (6.87) and (6.88) implies

that φLi (t,v(t),w(t), zLy (t), z
U
y (t)) ∈ DK

H . By Conclusion 4 of the same,

YL
i (t,v(t),w(t), zLy (t), z

U
y (t)) = HK(φLi (t,v(t),w(t), zLy (t), z

U
y (t))). (6.102)

Then, Conclusion 1 of Corollary 5.4.7 ensures that ẑy ∈ YL
i (t,v(t),w(t), zLy (t), z

U
y (t)).

It follows that

fi(t, p̂, ẑx, ẑy) ∈ [fi]([t, t], P,BLi ([v(t),w(t)]),YL
i (t,v(t),w(t), zLy (t), z

U
y (t))), (6.103)

= [fi](ψ
L
i (t,v(t),w(t), zLy (t), z

U
y (t))), (6.104)

and hence (6.85) ensures that (RHS).1 is satisfied. Proof of (RHS).2 is analogous.

A primary distinction between the two-phase and single-phase methods thus far is

that the former is able to verify existence of a solution, while this has been assumed

for the latter. It is shown below that the conditions of Corollary 6.6.3 are in fact

sufficient to assert existence as well.

Theorem 6.6.4. Let (v,w, zLy , z
U
y ) be a solution of (6.85)-(6.89) on I. Then there

exists a regular solution (x,y) of (5.1) on I ×P satisfying (6.99) and (6.100) for all

(t,p) ∈ I × P and any q ∈ N.
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Proof. Let A be the set of points (t̂, v̂, ŵ, ẑLy , ẑ
U
y ) ∈ E∗

H such that

H∗,L(φ(t̂, v̂, ŵ, ẑLy , ẑ
U
y )) > ẑLy and H∗,U(φ(t̂, v̂, ŵ, ẑLy , ẑ

U
y )) < ẑUy . (6.105)

By Theorem (6.6.1), A is open. Furthermore, A ⊃ K, where K is the image of I

under φ(·,v(·),w(·), zLy (·), zUy (·)) because (v,w, zLy , z
U
y ) satisfy (6.87)-(6.88). Because

K is compact, ∃δ > 0 such that q ∈ K and ‖q − q′‖∞ ≤ δ implies q′ ∈ A. As a

special case, this implies that (6.105) holds with (t̂, v̂, ŵ, ẑLy , ẑ
U
y ) = (t,v(t)−1δ,w(t)+

1δ, zLy (t), z
U
y (t)) for every t ∈ I. Arguing as in Corollary 6.6.3, this implies that

Hypothesis 5.5.1 is satisfied with [v(t) − 1δ,w(t) + 1δ] in place of [v(t),w(t)].

Define

Vδ ≡ {(t,p, zx) ∈ I × P ×Dx : zx ∈ [v(t) − 1δ,w(t) + 1δ]}. (6.106)

By Lemma 5.5.4, ∃Hδ ∈ C1(Vδ, Dy) such that, for every (t,p, zx) ∈ Vδ, zy =

Hδ(t,p, zx) is an element of Z ′
y(t) and satisfies g(t,p, zx, zy) = 0 uniquely among

elements of Zy(t).

Now consider the system of ODEs

ẋ(t,p) = f(t,p,x(t,p),Hδ(t,p,x(t,p))), x(t0,p) = x0(p). (6.107)

By the definition of C1 functions (see §6.2), the right-hand side above is defined and

C1 on an open set Ṽ ⊃ Vδ. Fixing any p ∈ P , it follows that there exists a unique

solution of (6.107), x(·,p) ∈ C1([t0, t̃], Dx), for some sufficiently small t̃ ∈ (t0, tf ] (see

[78], Ch. II, Thm. 1.1). Furthermore, this solution can be extended to a maximal

interval of existence [t0, t
∗) such that (t,p,x(t,p)) → ∂Ṽ as t → t∗ (see [78], Ch.

II, Thm. 3.1). Formally, this means that, for any compact K ⊂ Ṽ , there exists

t̂ ∈ (t0, t
∗) with (t̂,p,x(t̂,p)) /∈ K.

Note that Vδ is compact and suppose that t∗ ≤ tf . Then, since (t0,p,x0(p)) ∈
Vδ, continuity ensures that ∃t′ ∈ (t0, tf) with (t,p,x(t,p)) ∈ Vδ, ∀t ∈ [t0, t

′], and

x(t′,p) /∈ [v(t′),w(t′)]. Define y(t,p) ≡ Hδ(t,p,x(t,p)), ∀t ∈ [t0, t
′]. It follows
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from the properties of Hδ on Vδ that (x,y) is a solution of (5.1) on [t0, t
′] × {p}. It

further follows that y(t,p) ∈ Zy(t), ∀t ∈ [t0, t
′]. Then, Conclusion 3 of Corollary 5.4.7

shows that this solution is regular. By Corollary 6.6.3, this implies that x(t′,p) ∈
[v(t′),w(t′)], which is a contradiction. Therefore, t∗ > tf .

Since p ∈ P was arbitrary, the previous construction defines (x,y) ∈ C1(I ×
P,Dx ×Dy), which is C1 because f and Hδ are. Arguing as above, this is a regular

solution of (5.1) on I × P and satisfies (6.99) and (6.100) for all (t,p) ∈ I × P and

any q ∈ N.

In light of Theorem 6.6.4, the single-phase bounding method is simply to solve the

DAEs (6.85)-(6.89). Provided that numerical error is not a critical concern, this can

be done using any state-of-the-art DAE solver. In the case studies in §6.7 we use IDA

[82] with absolute and relative tolerances of 10−5. Furthermore, we choose K = 4 and

γ(t) = 10−4, ∀t ∈ I. In addition to the function evaluators, IDA is provided with an

additional routine to compute the system Jacobian. This is done using the forward

mode AD scheme discussed in §6.4, with the exception that the contribution to the

Jacobian owing to the dependence of C on (v,w, zLy , z
U
y ) is ignored.

6.6.1 Computational Complexity of the Single-Phase and Two-

Phase Methods

Suppose that the cost of evaluating any of the functions [fi], [gj] or [
∂gj

∂yk
] is O(m),

where m can be interpreted as the number of bits required to store the longest code

list describing one of these functions (i.e., the factorable representation of Chapter

2). Then complexity of a single evaluation of the right-hand sides of (6.85)-(6.88)

is O
(

nxK
(

mn2
y + n3

y

))

. The contributions to this figure are described in Table 6.1.

From the table, it can be seen that the cost of a right-hand side evaluation is domi-

nated by the evaluation of YL/U
i and hence H+,K . The complexity of this step derives

from the O(mn2
y) evaluation of [∂g

∂y
] and the O(n3

y) multiplication C[∂g
∂y

]. In addi-

tion to right-hand side evaluations, numerical integration of (6.85)-(6.89) will require

O((nx + ny)
3) operations due to matrix factorization in the corrector iteration.

281



Table 6.1: Computational complexity of evaluating the right-hand sides of (6.85)-
(6.88). The left portion shows the sequence of computations, from top to bottom,
using the definitions (6.76)-(6.84). The right portion shows the complexity of evaluat-
ing each function on the left, assuming that values for all previous computations (i.e.
all quantities directly above the function on the left portion of the table) are given.
For functions with subscript i, the tabulated complexities are for all i = 1, . . . , nx
evaluations.

η nx + ny
C mn2

y + n3
y

φ φLi φUi 1 nx nx
H∗ ◦ φ YL

i YU
i mn2

y + n3
y nxK

(

mn2
y + n3

y

)

nxK
(

mn2
y + n3

y

)

ψLi ψUi 0 0
[fi]

L ◦ ψLi [fi]
U ◦ ψUi nxm nxm

The complexity of the two-phase method is the same as that of the single-phase

method. By a similar analysis, evaluation of the right-hand sides of (6.47) and (6.48) is

O
(

nxK
(

mn2
y + n3

y

))

, while numerical integration requires O (n3
x) operations. Phase 1

is dominated by Step 4 of Algorithm 2, which requires the O((ny+nx)
3) factorization

of J̃. In practice, we find that the single-phase method is significantly more efficient

than the two-phase method (see §6.7).

Table 6.1 suggests some target areas for efficiency gains in the single-phase method,

and similar considerations also apply to the two-phase method. An approach that

removes a factor of nx from the entries in the last two columns of the fourth row

is to replace each YL
i and YU

i by Y(t,v,w) ≡ H+,K(φ(t,v,w)). It is not difficult

to show that Corollary 6.6.3 remains true, and because Y is used for all i, H+,K

only needs to be evaluated once in order to compute the right-hand sides of the

entire system. However, the resulting bounds are weaker, and our experience suggests

that the original implementation is well worth the effort. Another approach is to

eliminate the n3
y terms in the second and fourth rows of Table 6.1 by using a different

preconditioning scheme and/or exploiting sparsity of ∂g/∂y. For larger systems, this

will become important not only for efficiency, but also because computing C by direct

matrix inversion will become numerically unstable. We leave these considerations for

future work.
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6.7 Case Studies

The computations presented in this section were performed on a Dell Precision T3400

workstation with a 2.83 GHz Intel Core2 Quad CPU. All experiments had one core

and 512 MB of memory dedicated to the job. All interval computations and differen-

tiation of interval equations was done using an in house C++ library based on operator

overloading.

Example 6.7.1 (A simple DAE with a singularity). Consider the semi-explicit DAEs

ẋ(t, p) = −px(t, p) − 0.1y(t, p), (6.108)

0 = y(t, p) − sin (p)
√

y(t, p)
− 25x(t, p),

with initial condition x0 = 1 at t0 = 0 and p ∈ P ≡ [0.5, 4.0]. We note that the

solutions y(t,p) approach 0 for all p ∈ P (Figure 6-2). Since the algebraic equation

is not defined at y = 0, this poses an interesting challenge for bounding because

even slight conservatism in the bounds for y will eventually enclose 0 and cause the

methods to fail.

The results of applying the two proposed bounding approaches are shown in Fig-

ures 6-1 and 6-2. Note that the refined time-varying bounds computed in Phase 2 of

the two-phase method are not shown because they are indistinguishable from those

computed by the single-phase method (scrutiny shows that the latter are slightly

sharper). The bounds produced by both methods are very sharp until roughly

t = 0.25, where some slight overestimation becomes apparent. Computational times

and other performace statistics are shown in Table 6.3 for various values of tf (see

also Table 6.2).

With tf = 0.25, neither method has any significant difficulty and both produce

bounds very efficiently. As tf is increased to 0.30 and 0.33, the effort required of both

methods increases significantly, with the increase for the two-phase method being

more pronounced. For both methods, failure occurs around t = 0.3313 and bounds

cannot be propagated further. For the single-phase method, IDA terminates after
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the corrector iteration fails to converge with minimum step size. Similarly for the

two-phase method, repeated failures in Step 4 of Algorithm 2 cause the time step to

be reduced below H MIN (via Step 6). Indeed, the time steps taken by Algorithm

1 are evident from the staircase structure of the Phase 1 bounds in Figures 6-1 and

6-2, and are seen to shrink dramatically as t approaches 0.3313.

The ultimate cause of failure is that the inclusion (6.11), and analogously the

equations (6.87)-(6.88), becomes difficult to satisfy. For the two-phase approach,

the statistic STP in Table 6.3 shows that the relative number of failed time steps is

increasing with increasing final time. These correspond to failures in Step 4 of Algo-

rithm 2, which are split evenly between cases (a) and (b), with (b) occurring because

0 ∈ �(zLy , z
U
y ) for some iterate. In the single-phase approach, the corrector iteration

in IDA encounters the same problems. Table 6.3 shows disproportionate increases

in both the number of time steps and the number of corrector iterations required by

IDA as tf is increased, indicating that the solver is having trouble satisfying (6.87)-

(6.88). Despite their eventual failures, both methods produce bounds over a longer

time horizon than any other approaches tried (see Remark 6.4.4).

On the whole, the two bounding methods fail at nearly the same time and produce

nearly identical bounds where they are successful. In cases where the two-phase

method reaches the final time with few, large time steps, the CPU time is nearly

equivalent to that of the single phase method. On the other hand, the single-phase

method is significantly faster in the difficult experiments where tf approaches the

failure time of 0.3313.

Example 6.7.2 (Simple distillation). Consider the simple distillation of a Benzene/

Toluene mixture. Following the analysis in [49], this process can be described by the
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Table 6.2: Definition of algorithm statistics presented in Tables 6.3 and 6.4.

CPU(s) Both methods: Computational time for the com-
plete bounding algorithm.

Ph1(s) Two-phase method: Time spent in Phase 1 (Step
3 of Algorithm 1 as in §6.4).

Ph2(s) Two-phase method: Time spent in Phase 2 (Step
6 of Algorithm 1 as in §6.5).

STP Two-phase method: Number of time steps taken
by Algorithm 1 over the number of attempted steps
(the difference is the number of visits to Step 6 in
Algorithm 2). Single-phase method: Number of
times steps required by IDA [82] to solve (6.85)-
(6.89).

CRI Single-phase method: Cumulative number of cor-
rector iterations during solution of (6.85)-(6.89) by
IDA [82].

Table 6.3: Algorithm statistics for Example 6.7.1. Columns represents single experi-
ments, which vary in the specified value of tf .

tf 0.25 0.30 0.33
Two-Phase Method Statistics

CPU(s) 0.0026 0.0055 0.0500
Ph1(s) 0.0007 0.0020 0.0280
Ph2(s) 0.0019 0.0034 0.0212
STP 4/5 11/25 100/214
Single-Phase Method Statistics

CPU(s) 0.0020 0.0024 0.0089
STP 40 45 84
CRI 58 73 268
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Figure 6-1: Solutions x(t, p) of (6.108) for 16 values of p ∈ [0.5, 4.0] (solid curves),
along with bounds from the single-phase method (circles) and bounds from Phase 1
of the two-phase method (crosses). Bounds from Phase 2 of the two-phase method
are indistinguishable from the single-phase bounds and are not shown.

system of semi-explicit index-one DAEs

dφB

dξ
= φB − ψB, (6.109)

0 = φB + φT − 1,

0 = ψB + ψT − 1,

0 = PψB −Psat
B (T )φB,

0 = PψT −Psat
T (T )φT,

where the subscripts B and T denote Benzene and Toluene, respectively, φ is a liquid

phase mole fraction, ψ is a vapor phase mole fraction, T denotes temperature, P de-

notes pressure, and the vapor pressures Psat
B (T ) and Psat

T (T ) are given by the Antoine

expression

log10 Psat
i (T ) = Ai −

Bi

T + Ci
, i ∈ {B,T}. (6.110)
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Figure 6-2: Solutions y(t, p) of (6.108) for 16 values of p ∈ [0.5, 4.0] (solid curves),
along with bounds from the single-phase method (circles) and bounds from Phase 1
of the two-phase method (crosses). Bounds from Phase 2 of the two-phase method
are indistinguishable from the single-phase bounds and are not shown.

The independent variable ξ is a dimensionless warped time (see [49]). The last two

equations in (6.109) are derived assuming that Benzene/ Toluene is an ideal mix-

ture. Nominal values of the Antoine coefficients in (6.110) are given for temperature

in degrees C and pressures in mm HG in [53] as: AB = 6.87987, BB = 1196.76,

CB = 219.161, AT = 6.95087, BT = 1342.31 and CT = 219.187. With P = 759.81

mm Hg constant, we consider bounding the solutions of (6.109), x = φB and y =

(φT, ψB, ψT, T ), over the interval ξ ∈ [0, 6], while considering various combinations of

the Antoine coefficients as uncertain parameters. Computational times and algorithm

statistics are presented in Table 6.4, where the first row indicates the Antoine coeffi-

cients which are considered to be uncertain, and the second row describes the interval

P as a percent deviation around the nominal values of these coefficients. Though the

uncertainty ranges considered may seem small, they describe a wide range of solution

behavior because the corresponding parameters appear inside of an exponential in

the model equations. Indeed, within a 6% deviation from the nominal value of AB

alone, the most volatile component can switch from Benzene to Toluene.
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In the case where p = (AB, BB, AT, BT) and the deviation is ±0.2%, the results

of both bounding methods are shown for φB, ψB and T in Figures 6-3, 6-4 and

6-5, respectively. Again, the time-varying bounds computed in Phase 2 of the two-

phase method are not shown because they are indistinguishable from the single-phase

bounds. Both methods provide very tight bounds on φB throughout the ξ interval of

interest, and very reasonable bounds on ψB and T , with tight bounds at the beginning

and end of the integration time.

In contrast to the simple example of the previous section, Algorithm 1 is forced

to take relatively small time steps here. In Figures 6-3, 6-4 and 6-5, every cross

plotted marks the end of a single such step. For experiments requiring many time

steps of Algorithm 1, most are taken between ξ values of about 1.2 and 2.6. Within

this interval, it is difficult to satisfy the inclusions of Step 3 and the step must be

restricted often. In Figures 6-4 and 6-5, sharp jumps in the Phase 1 bounds can be

observed at values of ξ where a relatively large step has been achieved after a difficult

period through which the step size has been kept small. These jumps reflect the fact

that wider Zx,j and Zy,j are required to satisfy (6.11) and (6.12) over large steps.

For the single-phase method, one similarly observes that IDA takes more time steps

for ξ ∈ [1.2, 2.6], where it is difficult to satisfy (6.87)-(6.88). When the parameter

interval P is sufficiently wide, neither algorithm is able to produce bounds through

the difficult region between ξ = 1.2 and ξ = 2.6 (see Table 6.4). For example, when

all six Antoine coefficients are considered as unknown with a ±0.2% deviation, both

algorithms fail near ξ = 1.53.

As in the first example, the two bounding methods are equally robust and produce

nearly identical bounds. However, the single-phase method is faster than the two-

phase method in every experiment, with a factor varying between 3.5 to 7.

6.8 Conclusions and Future Work

Two methods have been proposed for computing interval bounds on the solutions

of semi-explicit index-one DAEs over a range of initial conditions and problem pa-
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Table 6.4: Algorithm statistics for Example 6.7.2. Each column represents a single
experiment. The first row indicates the model parameters considered as uncertain,
and the second row indicates the percent deviation considered around the nominal pa-
rameter values. The symbol † indicates that the algorithm terminated unsuccessfully
before ξ = 6.0.

[AB BT] [AB BB AT BT] [AB BB CB AT BT CT]
±0.2% ±0.4% ±0.2% ±0.3%† ±0.1% ±0.2%†

ξ 6.0 6.0 6.0 1.090 6.0 1.534
Two-Phase Method Statistics

CPU(s) 0.073 0.1610 0.1637 0.24 0.0929 0.22
Ph1(s) 0.0315 0.0746 0.0800 0.16 0.0413 0.15
Ph2(s) 0.0412 0.0862 0.0835 0.08 0.0516 0.07
STP 44/88 93/187 96/193 100/214 55/110 100/209

Single-Phase Method Statistics
CPU(s) 0.0204 0.0229 0.0241 0.06 0.0185 0.06

STP 77 83 103 89 77 91
CRI 110 132 160 259 103 244

rameters. The first method is a two-phase approach using an interval existence and

uniqueness test in Phase 1 and a refinement procedure based on differential inequal-

ities in Phase 2. Efficient implementations for both phases were presented using

interval computations and a state-of-the-art ODE solver. The second method com-

bines the two phases of the first method and requires numerical solution of a system

of semi-explicit DAEs. Two case studies were considered, demonstrating that both

methods produce sharp bounds very efficiently, with the single-phase method being

consistently faster.

Several potential improvements to the presented algorithms remain to be explored.

In the case of ODEs, it has been shown that problem specific physical information

can often be incorporated into bounding methods based on differential inequalities

to achieve significantly sharper bounds (see Chapters 3 and 4). The use of such

information should be explored for sharpening the results in Theorems 5.4.8, 5.5.2,

5.5.3 and 5.5.6. The bounding methods presented here demonsrate that the presence

of implicit equations can be overcome through the use of interval Newton methods.

Thus, a further area of research is to extend these ideas to the problem of bounding
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Figure 6-3: Solutions φB(ξ,p) of (6.109) for p = (AB, BB, AT, BT) uniformly sampled
within a ±0.2% deviation from nominal values (solid curves), along with bounds from
the single-phase method (circles) and bounds from Phase 1 of the two-phase method
(crosses). Bounds from Phase 2 of the two-phase method are indistinguishable from
the single-phase bounds and are not shown.

fully implicit DAEs. Finally, these ideas could also be used to compute bounds on the

solutions of high-index systems by combining the approach here with the derivative

array equations.
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Figure 6-4: Solutions ψB(ξ,p) of (6.109) for p = (AB, BB, AT, BT) uniformly sampled
within a ±0.2% deviation from nominal values (solid curves), along with bounds from
the single-phase method (circles) and bounds from Phase 1 of the two-phase method
(crosses). Bounds from Phase 2 of the two-phase method are indistinguishable from
the single-phase bounds and are not shown.
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Figure 6-5: Solutions T (ξ,p) of (6.109) for p = (AB, BB, AT, BT) uniformly sampled
within a ±0.2% deviation from nominal values (solid curves), along with bounds from
the single-phase method (circles) and bounds from Phase 1 of the two-phase method
(crosses). Bounds from Phase 2 of the two-phase method are indistinguishable from
the single-phase bounds and are not shown.
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Chapter 7

State Relaxations for Parametric

ODEs

7.1 Introduction

In this chapter, two methods are developed for computing convex and concave relax-

ations of the parametric solutions of nonlinear ordinary differential equations (ODEs).

In particular, a general system of ODEs is considered where both the initial condi-

tions and the right-hand side functions depend on a real parameter vector. Given

such a system, an auxiliary system of ODEs is derived which describes convex under-

estimators and concave overestimators for each of the state variables with respect to

the parameters, pointwise in the independent variable. These relaxations are termed

state relaxations.

There are two motivations for computing state relaxations here. First, they pro-

vide another method for enclosing the reachable sets of parametric ODEs, in addition

to the methods for computing state bounds presented in Chapter 3. Since state re-

laxations are parameter dependent and are evaluated one parameter value at a time,

deriving a useful enclosure from them is not entirely direct and is the subject of

Chapter 9. The second motivation for computing state relaxations is for their use

in deterministic global optimization algorithms for problems with ODEs embedded

[135, 164, 104]. The computation of state relaxations for this application is the subject
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of several recent articles [162, 157, 151, 150]. Largely owing to the difficulty of this

computation and the weaknesses of available methods, it remains an unfortunate fact

that state-of-the-art deterministic methods for global dynamic optimization can only

solve problems of modest size with reasonable computational effort, typically on the

order of 5 state variables and 5 decisions. On the other hand, potential applications

for such techniques are ubiquitous, including parameter estimation problems with

dynamic models [163, 55, 42, 103], optimal control of batch processes [167, 34], safety

verification problems [85], optimal catalyst blending [108], optimal drug scheduling

[35, 116], etc. Moreover, representative case studies in the literature suggest that

these applications commonly lead to problems with multiple suboptimal local min-

ima, especially when the embedded dynamic system involves a model of chemical

reaction kinetics [108, 55, 16]. Thus, the need for improved relaxation techniques is

clear.

The first method for computing state relaxations was proposed by Esposito and

Floudas [54] using a dynamic extension of the αBB convexification theory described

in [7]. This method relies on a finite sampling step to bound the second-order sensi-

tivities of the ODEs, and therefore cannot guarantee that the resulting relaxations are

convex. In [135], bounds on these sensitivities are computed, resulting in guaranteed

convex relaxations, yet these relaxations are typically very weak and the second-order

sensitivities are costly to evaluate. Much more recently, two related approaches have

been developed in which McCormick’s relaxation technique is applied to a charac-

terization of the ODE solution by a Taylor expansion with a rigorous enclosure of

the truncation error [151, 150]. These methods extend interval bounding techniques

based on a similar analysis [104] and appear capable of providing very tight relax-

ations when a sufficiently high-order expansion is used. On the other hand, computing

relaxations of a high-order Taylor expansion is very expensive for high-dimensional

problems, and the existence of an appropriate compromise in the context of global

optimization remains an open question.

In this chapter, we consider methods of a third type [161, 162, 157, 158], where

state relaxations are computed as the solutions of an auxiliary system of ODEs which

294



are derived by relaxing the right-hand sides of the original ODEs in various manners.

Methods of this type have the advantage that they are efficient and relatively simple

to implement. Since the auxiliary ODEs can be solved by numerical integration, the

cost of evaluating these relaxations is comparable to that of simulating the original

dynamic system. This approach originates with the method in [162], which describes

affine state relaxations. Here, two new classes of auxiliary ODEs are defined, and both

are proven to describe valid state relaxations as their solutions. In contrast to the

method in [162], both of these methods produce state relaxations that are potentially

non-affine with respect to the ODE parameters (these will be called nonlinear for

brevity).

In order to develop these methods, we consider in a general context the basic

requirements that must be imposed on an auxiliary system in order to guarantee that

it describes valid state relaxations as its solutions. We arrive at two independent

sets of sufficient conditions, leading to the two proposed relaxation methods. The

first set of conditions, termed relaxation amplifying dynamics, was developed first

and can be shown to provide much tighter relaxations than the affine theory in [162]

for highly nonlinear problems on large parameter ranges. This is due to the fact that

the parametric ODE solution is itself highly nonlinear over large parameter ranges,

and can therefore be better approximated by a nonlinear relaxation. On the other

hand, preliminary numerical experiments show that the affine relaxations are often

superior in the context of branch-and-bound global optimization because they provide

tighter relaxations over small intervals, where the original ODE solution is only weakly

nonlinear.

Motivated by these observations, we present a conceptual analysis of the condi-

tions of relaxation amplifying dynamics and demonstrate that relaxations resulting

from this theory necessarily have several undesirable properties. At the same time,

this analysis suggests a much weaker set of conditions, termed relaxation preserving

dynamics, which essentially integrate the most advantageous aspects of the original

nonlinear relaxation theory and the affine theory in [162]. A second method is then

derived based on these weaker conditions.
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In §7.6, we develop numerical methods for computing state relaxations according

to both of the theories discussed above. In both cases, auxiliary systems satisfying

the required properties are derived through the use of natural McCormick extensions

according to the generalized McCormick relaxation technique presented in Chapter 2.

Like the affine relaxation theory in [162], evaluating these relaxations involves a single

numerical integration of the auxiliary system. For the relaxations derived through

the use of convexity amplifying dynamics, this simulation is straightforward. For the

relaxations derived through the use of convexity preserving dynamics, the auxiliary

system is slightly more complicated and must be simulated as a hybrid system with

state events [136].

Several other seemingly related notions of convexity and relaxation appear in the

literature on optimal control and ODE theory which are relevant to this work in vary-

ing degrees. In [15], sufficient conditions are given under which an optimal control

problem on a general Hilbert space is convex, based on classical results on the com-

position of convex functions. If this Hilbert space is taken as a finite-dimensional real

vector space, as would result from reformulation through control parameterization

[173], this notion of convexity is equivalent to that in the work presented here. How-

ever, the conditions in [15] are extremely restrictive, and no constructive procedure

is given for generating convex and concave relaxations of nonconvex problems. In

more classical results regarding sufficient optimality conditions for optimal control

problems [177, 159], convexity of the Hamiltonian is assumed with respect to the

state variables and the controls. Convexity in this sense treats the states and con-

trols as unrelated, whereas the purpose of this work is to approximate the parametric

dependence of the state variables by convex and concave functions, so these notions

are distinct. The article [143] (and the references therein) details conditions for the

reachable set of a system of ODEs beginning from a ball of initial conditions to be

convex. Again, this is an unrelated notion because a convex set in state space does

not imply convex dependence on the initial conditions for each state variable, nor

the converse. Finally, the term relaxation is often applied to optimal control and

variational problems where the set of admissible controls is enlarged or embedded in
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a larger space (i.e., measure-valued controls), and/or the cost functional is underes-

timated by a lower semicontinuous functional [183, 64]. Though similar in spirit, the

type of relaxations considered here are fundamentally different (see Definition 7.2.1).

7.2 State Relaxations for a Generic Function

Let I = [t0, tf ] ⊂ R and P ⊂ Rnp be compact intervals and let x : I × P → Rnx be a

continuous function such that x(·,p) is absolutely continuous on I for every p ∈ P .

In this section and the following two, we consider computing state relaxations for such

an arbitrary function. The purpose of this generality is to apply the same theory to

ODEs and DAEs alike. State relaxations for x are defined as follows.

Definition 7.2.1. Continuous functions xcv,xcc : I × P → Rnx are called state

relaxations for x on I × P if, for every t ∈ I, xcv(t, ·) is convex on P , xcc(t, ·) is

concave on P , and xcv(t,p) ≤ x(t,p) ≤ xcc(t,p), ∀p ∈ P .

Remark 7.2.2. The requirement that P is an np-dimensional compact interval is

primarily for computational reasons. The theoretical developments to follow could

deal just as easily with a more general compact, convex set in Rnp. In particular,

McCormick’s relaxation technique [118] requires that P be an interval.

With one caveat, the approaches in this thesis compute state relaxations as the

solutions of an auxiliary system of ODEs of the form

ẋcv(t,p) = u(t,p,xcv(t,p),xcc(t,p)), xcv(t0,p) = xcv0 (p), (7.1)

ẋcc(t,p) = o(t,p,xcv(t,p),xcc(t,p)), xcc(t0,p) = xcc0 (p),

where xcv0 ,x
cc
0 : P → Rnx and u, o : I×P×Rnx×Rnx → Rnx . The following regularity

assumption holds throughout this chapter.

Assumption 7.2.3. The ODEs (7.1) satisfy the following conditions:

1. xcv0 and xcc0 are continuous on P ,
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2. u and o are continuous on I × P × Rnx × Rnx ,

3. There exists L ∈ R+ such that

‖u(t,p, zcv, zcc) − u(t,p, ẑcv, ẑcc)‖∞ + ‖o(t,p, zcv, zcc) − o(t,p, ẑcv, ẑcc)‖∞
≤ L (‖zcv − ẑcv‖∞ + ‖zcc − ẑcc‖∞)

for all (t,p, zcv, zcc, ẑcv, ẑcc) ∈ I × P × Rnx × Rnx × Rnx × Rnx .

It is always assumed that the functions xcv0 and xcc0 are, respectively, convex and

concave relaxations of x(t0, ·) on P . The conditions that are required of u and o in

order to guarantee that (7.1) furnishes state relaxations as its solutions are of course

more difficult to formulate and impose. This is the primary question addressed in

this chapter, and two sets of sufficient conditions are presented.

Once these conditions have been formulated, they are applied to the case where x

is the solution of a system of parametric ODEs in §7.6, and to the case where x is the

solution of a system of semi-explicit DAEs in Chapter 8. In both of these cases, the

required functions u and o are derived using the generalized McCormick relaxations

of Chapter 2.

Both in the construction of u and o in these cases, and in the statement of the

required conditions on these functions, we will make use of state bounds. These can

of course be computed by any of the methods in Chapters 3-6.

Assumption 7.2.4. State bounds xL,xU : I → Rnx for x on I × P are available;

i.e., x(t,p) ∈ X(t) ≡ [xL(t),xU(t)], ∀(t,p) ∈ I × P .

7.3 Relaxation Amplifying Dynamics

In this section, we give the first set of conditions on (u, o), under the name relaxation

amplifying dynamics, that guarantee that (7.1) furnishes state relaxations of x as its

solutions. The functions (u, o) are said to describe relaxation amplifying dynamics
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if they describe both bound amplifying dynamics and convexity amplifying dynamics,

defined below.

Definition 7.3.1. The functions (u, o) describe bound amplifying dynamics for x on

I ×P if, for arbitrary functions zcv, zcc : I ×P → Rnx and every p ∈ P , the following

condition holds: For a.e. t ∈ I such that zcv(t,p) ≤ x(t,p) ≤ zcc(t,p), u and o

satisfy

u(t,p, zcv(t,p), zcc(t,p)) ≤ ẋ(t,p) ≤ o(t,p, zcv(t,p), zcc(t,p)).

Note that the condition of the previous definition holds pointwise in p; i.e., both

the hypotheses and the conclusion need only hold at a single p ∈ P . In order to make

equally general statements of convexity/concavity assumptions on (u, o), the notion

of a function being consistent with convexity at a point is useful.

Definition 7.3.2. A function g : P → Rn is consistent with convexity at a point

(λ,p1,p2) ∈ (0, 1) × P × P if

g(λp1 + (1 − λ)p2) ≤ λg(p1) + (1 − λ)g(p2).

It is consistent with concavity at (λ,p1,p2) if the opposite (weak) inequality holds.

Definition 7.3.3. The functions (u, o) describe convexity amplifying dynamics for

x on I × P if, for arbitrary functions zcv, zcc : I × P → Rnx and every (λ,p1,p2) ∈
(0, 1) × P × P , the following condition holds: For a.e. t ∈ I such that

1. zcv(t, ·) is consistent with convexity at (λ,p1,p2),

2. zcc(t, ·) is consistent with concavity at (λ,p1,p2),

3. zcv(t,q) ≤ x(t,q) ≤ zcc(t,q), ∀q ∈ {p1,p2, λp1 + (1 − λ)p2},

the functions

P ∋ p 7−→ u(t,p, zcv(t,p), zcc(t,p)) and P ∋ p 7−→ o(t,p, zcv(t,p), zcc(t,p))
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are, respectively, consistent with convexity and consistent with concavity at (λ,p1,p2).

To interpret these definitions, let (xcv,xcc) be a solution of (7.1) and suppose that,

for some t̂ ∈ I, it is known that xcv(t̂, ·) and xcc(t̂, ·) are, respectively, convex and

concave relaxations of x(t̂, ·) on P . Then applying Definition 7.3.1 with zcv ≡ xcv

and zcc ≡ xcc, and using Equation (7.1),

ẋcv(t̂,p) ≤ ẋ(t̂,p) ≤ ẋcc(t̂,p), ∀p ∈ P. (7.2)

Moreover, choosing any (λ,p1,p2) ∈ (0, 1)× P ×P and letting p̄ ≡ λp1 + (1− λ)p2,

Definition 7.3.3 implies that

ẋcv(t̂, p̄) ≤ λẋcv(t̂,p1) + (1 − λ)ẋcv(t̂,p2), (7.3)

ẋcc(t̂, p̄) ≥ λẋcc(t̂,p1) + (1 − λ)ẋcc(t̂,p2).

Intuitively, these inequalities suggest that the bounding properties and the convexity

and concavity properties of (xcv,xcc) should be preserved to the right of t̂. Indeed,

we have the following theorem.

Theorem 7.3.4. Suppose that Assumption 7.2.3 holds. Let xcv0 ,x
cc
0 : P → Rnx

be, respectively, convex and concave relaxations of x0 on P , and let (u, o) describe

relaxation amplifying dynamics for x on I × P . Then (7.1) has a unique solution

(xcv,xcc) on all of I × P , and xcv and xcc are state relaxations for x on I × P .

This result shows that state relaxations for x can be evaluated by simply inte-

grating any auxiliary system that satisfies Assumption 7.2.3 and describes relaxation

amplifying dynamics. In §7.6, we show how to construct such a system automat-

ically using generalized McCormick relaxations in the case where x is the solution

of a system of parametric ODEs. Combining this with a state-of-the-art numerical

integration code, Theorem 7.3.4 provides a simple and efficient means of computing

state relaxations. However, this method also has some significant drawbacks that

lead to the second, weaker set of conditions on (u, o) presented in §7.4.

300



7.3.1 Proof of Theorem 7.3.4

Preliminaries

The proof uses a standard construction in ODE theory known as successive approxi-

mations (or Picard iterates) [43], presented in the following theorem.

Theorem 7.3.5. Let I = [t0, tf ] ⊂ R, P ∈ IRnp, and let v0 : P → Rnv and h :

I × P × Rnv → Rnv be continuous functions. Furthermore, suppose ∃L ∈ R+ such

that

‖h(t,p, z) − h(t,p, ẑ)‖1 ≤ L‖z − ẑ‖1, ∀(t,p, z, ẑ) ∈ I × P × Rnv × Rnv .

Given any continuous function v0 : I × P → Rnv , the successive approximations

defined recursively by

vk+1(t,p) = v0(p) +

∫ t

t0

h(s,p,vk(s,p))ds (7.4)

exist as continuous functions on I × P and converge uniformly to a solution of

v̇(t,p) = h(t,p,v(t,p)), v(t0,p) = v0(p), (7.5)

on I × P . Furthermore, this solution is unique.

Proof. By hypothesis, v0 is defined and continuous on all of I ×P . Supposing this is

true of vk, (7.4) defines vk+1 on all of I×P and continuity follows from the continuity

of v0 and h. Thus, induction shows that each vk is defined and continuous on all of

I × P .

Now define

γ ≡ max
(t,p)∈I×P

‖h(t,p,v1(t,p)) − h(t,p,v0(t,p))‖1.
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It will be shown that

‖vk+1(t,p) − vk(t,p)‖1 ≤
γLk(t− t0)

k

Lk!
, (7.6)

for all (t,p) ∈ I × P and every k ∈ N. For k = 1, (7.4) directly gives

‖v2(t,p) − v1(t,p)‖1 ≤
∫ t

t0

‖h(s,p,v1(s,p)) − h(s,p,v0(s,p))‖1ds ≤ γ(t− t0),

for all (t,p) ∈ I × P . Supposing that (7.6) holds for some arbitrary k, it must also

hold for k + 1 since

‖vk+2(t,p) − vk+1(t,p)‖1 ≤
∫ t

t0

‖h(s,p,vk+1(s,p)) − h(s,p,vk(s,p))‖1ds,

≤ L

∫ t

t0

‖vk+1(s,p) − vk(s,p)‖1ds,

≤ γLk+1

Lk!

∫ t

t0

(s− t0)
kds,

≤ γLk+1(t− t0)
k+1

L(k + 1)!
,

for all (t,p) ∈ I × P . Thus, induction proves (7.6). Now, for any n,m ∈ N with

m > n, Equation (7.6) and the triangle inequality give

‖vn(t,p) − vm(t,p)‖1 ≤ ‖vn+1(t,p) − vn(t,p)‖1 + . . .+ ‖vm(t,p) − vm−1(t,p)‖1,

≤ γLn(tf − t0)
n

Ln!
+ . . .+

γLm−1(tf − t0)
m−1

L(m− 1)!
,

≤
∞
∑

k=n

γLk(tf − t0)
k

Lk!
,

for all (t,p) ∈ I × P . But

∞
∑

k=0

γLk(tf − t0)
k

Lk!
=
γ

L
eL(tf−t0) <∞,
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and hence limn→∞

∑∞
k=n

γLk(tf−t0)k

Lk!
= 0, which implies that the sequence {vk} is

uniformly Cauchy on I × P , and hence converges uniformly to a continuous limit

function there.

Next it is shown that this limit function, denoted v, is a solution of (7.5) on I×P .

From the Lipschitz condition on h,

‖
∫ t

t0

h(s,p,vk(s,p))ds−
∫ t

t0

h(s,p,v(s,p))ds‖1 ≤ L

∫ t

t0

‖vk(s,p) − v(s,p)‖1ds,

for all (t,p) ∈ I × P , so that the uniform convergence of {vk} to v on I × P implies

that limk→∞

∫ t

t0
h(s,p,vk(s,p))ds =

∫ t

t0
h(s,p,v(s,p))ds, for all (t,p) ∈ I×P . Then,

taking limits on both sides of (7.4) gives

v(t,p) = v0(p) +

∫ t

t0

h(s,p,v(s,p))ds, ∀(t,p) ∈ I × P,

which, by the fundamental theorem of calculus and continuity of the integrand, implies

that v is a solution of (7.5). Uniqueness of v now follows (for each fixed p ∈ P ), by

a standard application of Gronwall’s inequality (Theorem 1.1, Ch. III, [78]).

Proof

Define xcv,0(t,p) = xL(t) and xcc,0(t,p) = xU(t), ∀(t,p) ∈ I × P , and consider the

successive approximations defined recursively by

xcv,k+1(t,p) = xcv0 (p) +

∫ t

t0

u(s,p,xcv,k(s,p),xcc,k(s,p))ds, (7.7)

xcc,k+1(t,p) = xcc0 (p) +

∫ t

t0

o(s,p,xcv,k(s,p),xcc,k(s,p))ds.

Note that u and o are defined on I×P ×Rnx ×Rnx and Lipschitz on all of Rnx ×Rnx

uniformly on I × P by Assumption 7.2.3. Thus, Theorem 7.3.5 may be applied to

(7.1), which proves that the successive approximations xcv,k and xcc,k in (7.7) exist

and converge uniformly to the unique solutions of (7.1), xcv and xcc, on I × P .

Next, note that xcv,0(t, ·) and xcc,0(t, ·) are trivially convex and concave relaxations
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of x(t, ·) on P , respectively, for each fixed t ∈ I. Suppose that the same is true of

xcv,k and xcc,k. Then, choosing any p ∈ P , we may apply Definition 7.3.1 with

(zcv, zcc) ≡ (xcv,k,xcc,k) to conclude that

u(t,p,xcv,k(t,p),xcc,k(t,p)) ≤ ẋ(t,p) ≤ o(t,p,xcv,k(t,p),xcc,k(t,p)),

for a.e. t ∈ I. Combining this with integral monotonicity,

∫ t

t0

u(s,p,xcv,k(s,p),xcc,k(s,p))ds ≤
∫ t

t0

ẋ(s,p)ds,

≤
∫ t

t0

o(s,p,xcv,k(s,p),xcc,k(s,p))ds,

for all (t,p) ∈ I × P . But since xcv0 (p) ≤ x(t0,p) ≤ xcc0 (p) for all p ∈ P , (7.7) shows

that

xcv,k+1(t,p) ≤ x(t0,p) +

∫ t

t0

ẋ(s,p)ds ≤ xcc,k+1(t,p), ∀(t,p) ∈ I × P,

which gives

xcv,k+1(t,p) ≤ x(t,p) ≤ xcc,k+1(t,p), ∀(t,p) ∈ I × P.

For every t ∈ I, convexity of xcv,k(t, ·) on P implies that it is consistent with

convexity at every (λ,p1,p2) ∈ (0, 1) × P × P , and the analogous observation holds

for xcc,k(t, ·). Then, choosing any (λ,p1,p2) ∈ (0, 1) × P × P , Conditions 1 and 2 of

Definition 7.3.3 hold with (zcv, zcc) ≡ (xcv,k,xcc,k). Moreover, the fact xcv,k(t,p) ≤
x(t,p) ≤ xcc,k(t,p), ∀(t,p) ∈ I × P , implies that Condition 3 holds as well. Then,

Definition 7.3.3 implies that

u(t, p̂,xcv,k(t, p̂),xcc,k(t, p̂)) ≤λu(t,p1,x
cv,k(t,p1),x

cc,k(t,p1))

+ (1 − λ)u(t,p2,x
cv,k(t,p2),x

cc,k(t,p2)),

for a.e. t ∈ I, where p̂ ≡ λp1 + (1 − λ)p2. By monotonicity and linearity of the

304



integral,

∫ t

t0

u(s, p̂,xcv,k(s, p̂),xcc,k(s, p̂))ds ≤λ
∫ t

t0

u(s,p1,x
cv,k(s,p1),x

cc,k(s,p1))ds

+ (1 − λ)

∫ t

t0

u(s,p2,x
cv,k(s,p2),x

cc,k(s,p2))ds,

for every t ∈ I. Making the analogous concavity arguments for o and noting that the

conditions of Definition 7.3.3 hold for all (λ,p1,p2) ∈ (0, 1)×P ×P , this implies that

∫ t

t0

u(s, ·,xcv,k(s, ·),xcc,k(s, ·))ds and

∫ t

t0

o(s, ·,xcv,k(s, ·),xcc,k(s, ·))ds

are, respectively, convex and concave on P , for every fixed t ∈ I. Since xcv0 and

xcc0 are respectively convex and concave by hypothesis, (7.7) shows that xcv,k+1 and

xcc,k+1 are, respectively, convex and concave on P for every fixed t ∈ I. Therefore, by

induction, xcv,k(t, ·) and xcc,k(t, ·) are, respectively, convex and concave relaxations of

x(t, ·) on P , for each fixed t ∈ I and every k ∈ N.

It was shown above that, as k → ∞, xcv,k and xcc,k converge uniformly to the

unique solutions of (7.1) on I × P . Then, taking limits, it is clear that xcv(t, ·) and

xcc(t, ·) are, respectively, convex and concave relaxations of x(t, ·) on P , for each fixed

t ∈ I.

7.4 Relaxation Preserving Dynamics

In this section, a second set of sufficient conditions on (u, o) is developed. Through a

conceptual discussion, it is shown that the requirement of relaxation amplifying dy-

namics (Definitions 7.3.1 and 7.3.3) imply two very undesirable properties of (xcv,xcc).

We use these observations to motivate the weaker requirements of relaxation preserv-

ing dynamics, which potentially describe much tighter relaxations.

Suppose that (u, o) describe relaxation amplifying dynamics for x on I × P and

let xcv,xcc : I × P → Rnx be solutions of (7.1). Consider again Definition 7.3.1

and suppose that xcv(t,p) ≤ x(t,p) ≤ xcc(t,p), ∀(t,p) ∈ I × P , as desired. Then
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Definition 7.3.1 implies that (7.2) holds for a.e. t̂ ∈ I, and it follows that, for example,

the difference x(·,p)−xcv(·,p) is non-decreasing on I, for every p ∈ P (See Theorem

3.3.3). In other words, once a certain level of conservatism in the underestimator

xcv(·,p) has been established, it can only be amplified as t increases (hence the

name). Clearly, an analogous argument holds for the upper bound xcc.

Similarly, suppose that xcv(t, ·) and xcc(t, ·) are, respectively, convex and concave

on P for all t ∈ I, as desired. Then, choosing any (λ,p1,p2) ∈ (0, 1) × P × P and

letting p̄ ≡ λp1 + (1 − λ)p2, Definition 7.3.3 implies that (7.3) holds for all t̂ ∈ I.

Again, it follows that the difference

[λxcv(·,p1) + (1 − λ)xcv(·,p2)] − xcv(·, p̄)

is a non-decreasing on I; i.e., xcv(t, ·) becomes in a sense more convex as t increases.

Similarly, xcc(t, ·) becomes more concave with increasing t, and these trends are quite

regardless of the parametric behavior of x.

These observations motivate a more conservative set of conditions on (u, o). Con-

sider, for example, the upper bounding property of xcc. Suppose that, for some

(t̂,p) ∈ I × P and some i ∈ {1, . . . , nx}, it happens that xi(t̂,p) < xcci (t̂,p). Then,

regardless of the values of ẋi(t̂,p) and ẋcci (t̂,p), continuity ensures that ∃δ > 0 such

that xi(t,p) ≤ xcci (t,p), ∀t ∈ [t̂, t̂ + δ]. Thus, there is no reason to require that

ẋi(t̂,p) ≤ ẋcci (t̂,p), because xi(·,p) and xcci (·,p) are not in danger of crossing imme-

diately to the right of t̂. This suggests that it should only be necessary to require

that ẋi(t̂,p) ≤ ẋcci (t̂,p) in the situation where xi(t̂,p) = xcci (t̂,p) which leads to the

notion of bound preserving dynamics.

Definition 7.4.1. The functions (u, o) describe bound preserving dynamics for x

on I × P if, for arbitrary functions zcv, zcc : I × P → Rnx , every p ∈ P and every

i ∈ {1, . . . , nx}, the following conditions hold:

1. For a.e. t ∈ I such that zcv(t,p), zcc(t,p) ∈ X(t), zcv(t,p) ≤ zcc(t,p) and
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zcvi (t,p) = zcci (t,p), ui and oi satisfy

ui(t,p, z
cv(t,p), zcc(t,p)) ≤ oi(t,p, z

cv(t,p), zcc(t,p)). (7.8)

2. For a.e. t ∈ I such that zcv(t,p), zcc(t,p) ∈ X(t), zcv(t,p) ≤ x(t,p) ≤ zcc(t,p)

and xi(t,p) = zcvi (t,p), ui satisfies ui(t,p, z
cv(t,p), zcc(t,p)) ≤ ẋi(t,p).

3. For a.e. t ∈ I such that zcv(t,p), zcc(t,p) ∈ X(t), zcv(t,p) ≤ x(t,p) ≤ zcc(t,p)

and xi(t,p) = zcci (t,p), oi satisfies oi(t,p, z
cv(t,p), zcc(t,p)) ≥ ẋi(t,p).

The intuitive principle behind this definition has its roots in viability theory and

the study of differential inequalities [13, 182]. Indeed, this idea was used extensively in

the state bounding results of Chapter 3. A very interesting result of the development

here is that a similar observation can be used to weaken significantly the requirements

of convexity amplifying dynamics. To see this, choose any (λ,p1,p2) ∈ (0, 1)×P ×P ,

let p̄ ≡ λp1 + (1 − λ)p2, and suppose that, for some t̂ ∈ I and some i ∈ {1, . . . , nx},
it happens that

xcvi (t̂, p̄) < λxcvi (t̂,p1) + (1 − λ)xcvi (t̂,p2). (7.9)

Then, again, there is no need to require that

ẋcvi (t̂, p̄) ≤ λẋcvi (t̂,p1) + (1 − λ)ẋcvi (t̂,p2), (7.10)

since mere continuity ensures that ∃δ > 0 with

xcvi (t, p̄) ≤ λxcvi (t,p1) + (1 − λ)xcvi (t,p2), ∀t ∈ [t̂, t̂+ δ]. (7.11)

This suggest that (7.10) need only hold in the case where

xcvi (t̂, p̄) = λxcvi (t̂,p1) + (1 − λ)xcvi (t̂,p2). (7.12)
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Definition 7.4.2. The functions (u, o) describe convexity preserving dynamics for

x on I × P if, for arbitrary functions zcv, zcc : I × P → Rnx and every (λ,p1,p2) ∈
(0, 1)×P ×P , the following condition holds: For every i ∈ {1, . . . , nx} and a.e. t ∈ I

such that

1. zcv(t, ·) is consistent with convexity at (λ,p1,p2),

2. zcc(t, ·) is consistent with concavity at (λ,p1,p2),

3. zcv(t,q) ≤ x(t,q) ≤ zcc(t,q) and zcv(t,q), zcc(t,q) ∈ X(t), ∀q ∈ {p1,p2, λp1 +

(1 − λ)p2},

the functions u and o satisfy

1. If zcvi (t, p̄) = λzcvi (t,p1) + (1 − λ)zcvi (t,p2), then the composite function P ∋
p 7→ ui(t,p, z

cv(t,p), zcc(t,p)) is consistent with convexity at (λ,p1,p2),

2. If zcci (t, p̄) = λzcci (t,p1) + (1 − λ)zcci (t,p2), then the composite function P ∋
p 7→ oi(t,p, z

cv(t,p), zcc(t,p)) is consistent with concavity at (λ,p1,p2).

If (u, o) describe both bound preserving dynamics and convexity preserving dy-

namics, then it will be said that they describe relaxation preserving dynamics. The

main result of this chapter is the proof that, if (u, o) describe relaxation preserving

dynamics for x on I × P , then state relaxations for x on I × P are given by the

solutions of a system of ODEs similar to (7.1). This is the subject of the next sec-

tion. Though these conditions may seem cumbersome, it will be shown that they can

be satisfied automatically through a construction based on generalized McCormick

relaxations in the case where x is the solution of a system of ODEs or semi-explicit

DAEs. In fact, this construction requires only a minor modification of the procedure

used to construct functions satisfying relaxation amplifying dynamics. Thus, this

results in a second method for computing state relaxations. In §7.7, it is shown that

in the case of ODEs these relaxations offer significant improvements over relaxations

derived by existing methods, as well as those derived through relaxation amplifying

dynamics.
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7.5 Sufficiency of Relaxation Preserving Dynamics

Even under the assumption that (u, o) describe relaxation preserving dynamics for

x on I × P , the solutions of (7.1) will not necessarily be state relaxations for x on

I × P . The reason is that the required properties of (xcv,xcc) only follow from the

properties of (u, o) provided that xcv(t,p),xcc(t,p) ∈ X(t), ∀(t,p) ∈ I × P (Note

the role of X(t) in Definitions 7.4.1 and 7.4.2). Unfortunately, this inclusion is not

guaranteed by (7.1).

Accordingly, it is necessary to modify (7.1). In doing this, it is assumed that the

state bounds xL and xU are absolutely continuous functions. Recall that an absolutely

continuous function is differentiable almost everywhere, so that ẋL(t) and ẋU(t) are

well defined for a.e. t ∈ I. For the state bounding methods of Chapter 3, xL and xU

are themselves given by the solution of an auxiliary system of ODEs, so that absolute

continuity of these functions follows directly. Now, consider the auxiliary system of

ODEs described by

ẋcvi (t,p) =



















ui(t,p,x
cv(t,p),xcc(t,p)) if xcvi (t,p) ∈ [xLi (t), xUi (t)]

max(ẋLi (t), ui(t,p,x
cv(t,p),xcc(t,p))) if xcvi (t,p) < xLi (t)

min(ẋUi (t), ui(t,p,x
cv(t,p),xcc(t,p))) if xcvi (t,p) > xUi (t)

,

(7.13)

ẋcci (t,p) =



















oi(t,p,x
cv(t,p),xcc(t,p)) if xcci (t,p) ∈ [xLi (t), x

U
i (t)]

max(ẋLi (t), oi(t,p,x
cv(t,p),xcc(t,p))) if xcci (t,p) < xLi (t)

min(ẋUi (t), oi(t,p,x
cv(t,p),xcc(t,p))) if xcci (t,p) > xUi (t)

,

xcvi (t0,p) = max(xLi (t0), x
cv
0,i(p)), xcci (t0,p) = min(xUi (t0), x

cc
0,i(p)),

for each i = 1, . . . , nx. It is shown in Lemma 7.5.3 below that the solutions of this

system satisfy xcv(t,p),xcc(t,p) ∈ X(t), ∀(t,p) ∈ I × P . Having established this,

the fact that (xcv,xcc) are state relaxations for x on I × P is derived from the fact

that (u, o) satisfy relaxation preserving dynamics for x on I×P in Sections 7.5.1 and

7.5.2.
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To begin, it is necessary to define precisely what constitutes a solution of (7.13).

We follow the classical definition of a solution for a system of ODEs with discontinuous

right-hand sides from Chapter 2, §4 in [62], which in the case of (7.13) reduces to the

following:

Definition 7.5.1. Two functions xcv,xcc : I × P → Rnx are solutions of (7.13) on

I × P if, for each i and every p ∈ P , xcvi (·,p) and xcci (·,p) are absolutely contin-

uous on I, the initial conditions xcvi (t0,p) = max(xLi (t0), x
cv
0,i(p)) and xcci (t0,p) =

min(xUi (t0), x
cc
0,i(p)) are satisfied, and, for a.e. t ∈ I, ẋcvi (t,p) satisfies (7.13) if

xcvi (t,p) 6= xLi (t) and xcvi (t,p) 6= xUi (t), and otherwise satisfies

ẋcvi (t,p) ∈ [ui(t,p,x
cv(t,p),xcc(t,p)),max(ẋLi (t), ui(t,p,x

cv(t,p),xcc(t,p)))]

if xcvi (t,p) = xLi (t),

ẋcvi (t,p) ∈ [min(ẋUi (t), ui(t,p,x
cv(t,p),xcc(t,p))), ui(t,p,x

cv(t,p),xcc(t,p))]

if xcvi (t,p) = xUi (t),

and ẋcci (t,p) satisfies (7.13) if xcci (t,p) 6= xLi (t) and xcci (t,p) 6= xUi (t), and otherwise

satisfies

ẋcci (t,p) ∈ [oi(t,p,x
cv(t,p),xcc(t,p)),max(ẋLi (t), oi(t,p,x

cv(t,p),xcc(t,p)))]

if xcci (t,p) = xLi (t),

ẋcci (t,p) ∈ [min(ẋUi (t), oi(t,p,x
cv(t,p),xcc(t,p))), oi(t,p,x

cv(t,p),xcc(t,p))]

if xcci (t,p) = xUi (t).

Remark 7.5.2. The definition of a solution above is weak in the sense that it permits

ẋcvi (t,p) and ẋcci (t,p) to take a range of values whenever the solutions lie on potential

points of discontinuity of the right-hand side functions in (7.13); i.e. xcvi (t,p) = xLi (t),

xcvi (t,p) = xUi (t), xcci (t,p) = xLi (t) or xcci (t,p) = xUi (t). The advantage of this

definition is that local existence and uniqueness of a solution of (7.13) in this sense

follows from the classical results in [62] (see Theorem 1 in Chapter 2, §7.2, and

Theorem 1 in Chapter 2, §10). On the other hand, this generality does not impede
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the arguments establishing that (xcv,xcc) are state relaxations for x on I×P . In fact,

it will be shown in the course of these developments that (xcv,xcc) actually satisfy

a much simpler set of conditions, which enable (xcv,xcc) to be approximated using

numerical integration with event detection (See Lemma 7.5.6).

It is now shown that the solutions of (7.13) satisfy xcv(t,p),xcc(t,p) ∈ X(t),

∀(t,p) ∈ I × P .

Lemma 7.5.3. Let (xcv,xcc) be a solution of (7.13) on I×P . Then xcv(t,p),xcc(t,p) ∈
X(t), ∀(t,p) ∈ I × P .

Proof. Suppose there exists p ∈ P , i ∈ {1, . . . , nx} and t̂ ∈ I for which xcvi (t̂,p) <

xLi (t̂). We show a contradiction (the proof is analogous if xcvi (t̂,p) > xUi (t̂) or

xcci (t̂,p) /∈ [xLi (t̂), xUi (t̂)]). Let t1 ≡ sup{s ∈ [t0, t̂] : xcvi (s,p) ≥ xLi (s)}. Since

xcvi (t0,p) ≥ xLi (t0), this set is nonempty. Because t1 is an upper bound, we have

xcvi (t,p) < xLi (t) for all t ∈ [t0, t̂] with t > t1. Because t1 is the least upper bound, we

must have xcvi (t,p) ≥ xLi (t) immediately to the left of t1. By continuity, this implies

that xcvi (t1,p) = xLi (t1), and hence t1 ∈ [t0, t̂).

Then, for a.e. t ∈ [t1, t̂], Definition 7.5.1 implies that

ẋcvi (t,p) = max(ẋLi (t), ui(t,p,x
cv(t,p),xcc(t,p))) ≥ ẋLi (t).

Applying Theorem 3.3.3, (xLi − xcvi (·,p)) is non-increasing on [t1, t̂], and hence 0 =

xLi (t1) − xcvi (t1,p) ≥ xLi (t̂) − xcvi (t̂,p). But then xcvi (t̂,p) ≥ xLi (t̂), which is a contra-

diction.

7.5.1 Bounding properties

Under the assumption that (u, o) satisfy bound amplifying dynamics for x on I ×P ,

the fact that the solutions of (7.1) bound x on I × P is in essence a consequence of

integral monotonicity. On the other hand, establishing this result for the solutions of

(7.13), under the weaker assumption that (u, o) satisfy bound preserving dynamics for
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x on I×P , requires much more sophisticated arguments using differential inequalities

[182]. We first establish that xcv(t,p) ≤ xcc(t,p), ∀(t,p) ∈ I × P .

Lemma 7.5.4. Let (xcv,xcc) be a solution of (7.13) on I × P and suppose that As-

sumption 7.2.3 holds. If (u, o) describe bound preserving dynamics, then xcv(t,p) ≤
xcc(t,p), ∀(t,p) ∈ I × P .

Proof. Choose any p ∈ P and suppose that xcvj (t̂,p) > xccj (t̂,p) for some t̂ ∈ I and

some j ∈ {1, . . . , nx}. It will be shown that this results in a contradiction.

Define δ : I → Rnx by δ(t) ≡ xcv(t,p)−xcc(t,p), ∀t ∈ I. By hypothesis, δj(t̂) > 0

for at least one j, and δ(t0) ≤ 0 since

xcv(t0,p) = max(xL(t0),x
cv
0 (p)) ≤ x0(p) ≤ min(xU(t),xcc0 (p)) = xcc(t0,p).

Then, the hypotheses of Lemma 3.3.5 are satisfied. Define t1 as in that lemma.

Let L ∈ R+ be the Lipschitz constant of Assumption 7.2.3. Applying Lemma 3.3.5

with t4 ≡ tf , β ≡ 2L and arbitrary ǫ > 0 furnishes an index j ∈ {1, . . . , nx}, a

non-decreasing function ρ ∈ AC([t1, tf ],R) satisfying

0 < ρ(t), ∀t ∈ [t1, tf ], and ρ̇(t) > 2Lρ(t), a.e. t ∈ [t1, tf ],

and numbers t2, t3 ∈ [t1, tf ] with t2 < t3 such that the following inequalities hold:

xcv(t,p) < xcc(t,p) + 1ρ(t), ∀t ∈ [t2, t3), (7.14)

xccj (t,p) < xcvj (t,p), ∀t ∈ (t2, t3),

xcvj (t3,p) = xccj (t3,p) + ρ(t3),

xcvj (t2,p) = xccj (t2,p).

Define xcv,†(t,p) ≡ min(xcv(t,p),xcc(t,p)), ∀t ∈ I. By Lemma 7.5.3, xcc(t,p) ∈
X(t), ∀t ∈ I, so the second inequality in (7.14) shows that xcvj (t,p) > xLj (t), for a.e.
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t ∈ [t2, t3]. Using Definition 7.5.1, Assumption 7.2.3 and the first inequality in (7.14),

ẋcvj (t,p) ≤ uj(t,p,x
cv(t,p),xcc(t,p)),

≤ uj(t,p,x
cv,†(t,p),xcc(t,p)) + L‖xcv(t,p) − xcv,†(t,p)‖∞

≤ uj(t,p,x
cv,†(t,p),xcc(t,p)) + Lρ(t),

for a.e. t ∈ [t2, t3]. Next, note that xcc(t,p),xcv,†(t,p) ∈ X(t), ∀t ∈ I, by Lemma

7.5.3. Moreover, xcv,†j (t) = xccj (t,p), ∀t ∈ [t2, t3] by the second inequality in (7.14).

Since (u, o) describe bound preserving dynamics for x on I × P , this implies that

Condition 1 of Definition 7.4.1 may be applied with (zcv, zcc) ≡ (xcv,†,xcc). This

gives

ẋcvj (t,p) ≤ uj(t,p,x
cv,†(t,p),xcc(t,p)) + Lρ(t),

≤ oj(t,p,x
cv,†(t,p),xcc(t,p)) + Lρ(t),

≤ oj(t,p,x
cv(t,p),xcc(t,p)) + Lρ(t) + L‖xcv,†(t,p) − xcv(t,p))‖∞,

≤ oj(t,p,x
cv(t,p),xcc(t,p)) + 2Lρ(t),

for a.e. t ∈ [t2, t3]. Because xcvj (t,p) > xccj (t,p) for a.e. t ∈ [t2, t3] by (7.14), it follows

that xccj (t,p) < xUj (t) (Lemma 7.5.3). Therefore, Definition 7.5.1 gives

ẋcvj (t,p) ≤ ẋccj (t,p) + 2Lρ(t) < ẋccj (t,p) + ρ̇(t), for a.e. t ∈ [t2, t3].

By Theorem 3.3.3, this implies that

xcvj (t3,p) − xccj (t3,p) − ρ(t3) ≤ xcvj (t2,p) − xccj (t2,p) − ρ(t2).

By (7.14) this implies that −ρ(t2) ≥ 0, which is a contradiction.

Theorem 7.5.5. Let (xcv,xcc) be a solution of (7.13) on I × P and suppose that

Assumption 7.2.3 holds. If (u, o) describe bound preserving dynamics for x on I×P ,

then xcv(t,p) ≤ x(t,p) ≤ xcc(t,p), ∀(t,p) ∈ I × P .
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Proof. Fix any p ∈ P and suppose ∃t ∈ I such that x(t,p) /∈ [xcv(t,p),xcc(t,p)]. It

will be shown that this results in a contradiction.

Noting that xcv(t0,p) ≤ x(t0,p) ≤ xcc(t0,p), define t1 as in Corollary 3.3.6. Let L

be the Lipschitz constant of Assumption 7.2.3. Applying Corollary 3.3.6 with t4 = tf ,

β = L and arbitrary ǫ > 0 gives an index j ∈ {1, . . . , nx}, a non-decreasing function

ρ ∈ AC([t1, tf ],R) satisfying

0 < ρ(t), ∀t ∈ [t1, tf ], and ρ̇(t) > Lρ(t), a.e. t ∈ [t1, tf ],

and numbers t2, t3 ∈ [t1, tf ] with t2 < t3 such that the following inequalities hold:

xcv(t,p) − 1ρ(t) < x(t,p) < xcc(t,p) + 1ρ(t), ∀t ∈ [t2, t3), (7.15)

xccj (t,p) < xj(t), ∀t ∈ (t2, t3),

xj(t3,p) = xccj (t3,p) + ρ(t3),

xj(t2,p) = xccj (t2,p).

Strictly, Corollary 3.3.6 permits an alternative set of inequalities, but the proof is

analogous in that case.

For a.e. t ∈ [t2, t3], the fact that xccj (t,p) < xj(t,p) implies that xccj (t,p) < xUj (t).

Then, Definition 7.5.1 gives

ẋccj (t,p) ≥ oj(t,p,x
cv(t,p),xcc(t,p)), for a.e. t ∈ [t2, t3]. (7.16)

Define x̃cv(t) = min(x(t,p),xcv(t,p)) and x̃cc(t,p) = max(x(t,p),xcc(t,p)) for all

t ∈ I. Clearly, x̃cv(t,p) ≤ x(t,p) ≤ x̃cc(t,p) for all t ∈ I. Lemma 7.5.3 implies that

x̃cv(t,p), x̃cc(t,p) ∈ X(t), ∀t ∈ I. Finally, the second inequality in (7.15) implies that

x̃ccj (t,p) = xj(t,p) for a.e. t ∈ [t2, t3]. Then, since (u, o) describe bound preserving

dynamics for x on I × P , this implies that Condition 3 of Definition 7.4.1 can be
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applied with (zcv, zcc) ≡ (x̃cv, x̃cc) for a.e. t ∈ [t2, t3]. This gives

oj(t,p, x̃
cv(t,p), x̃cc(t,p)) ≥ ẋj(t,p), for a.e. t ∈ [t2, t3]. (7.17)

To combine (7.17) and (7.16), note that the first inequality in (7.15) implies that

‖xcv(t,p) − x̃cv(t,p)‖∞ + ‖xcc(t,p) − x̃cc(t,p)‖∞ ≤ ρ(t) for a.e. t ∈ [t2, t3]. Then,

ẋccj (t,p) ≥ oj(t,p,x
cv(t,p),xcc(t,p)), (7.18)

≥ oj(t,p, x̃
cv(t,p), x̃cc(t,p)) − Lρ(t), (7.19)

≥ ẋj(t,p) − Lρ(t), (7.20)

for a.e. t ∈ [t2, t3]. Adding ρ̇(t) to both sides and recalling that ρ̇(t) > Lρ(t) for a.e.

t ∈ [t2, t3], it follows that

ẋccj (t,p) + ρ̇(t) ≥ ẋj(t,p) − Lρ(t) + ρ̇(t) > ẋj(t), (7.21)

for a.e. t ∈ [t2, t3]. By Theorem 3.3.3, this implies that (xccj (t,p) + ρ(t) − xj(t,p)) is

non-decreasing on [t2, t3], so that

xccj (t3,p) + ρ(t3) − xj(t3,p) ≥ xccj (t2,p) + ρ(t2) − xj(t2,p).

But, by (7.15), this implies that 0 ≥ ρ(t2), which is a contradiction.

Based on the results above, it is now possible to show that the solutions of (7.13)

actually satisfy a simpler set of conditions than those given in Definition 7.5.1. These

conditions show that, for almost every t ∈ I, the functions ẋcvi (·,p) and ẋcci (·,p) take

values which are consistent with those generated by simulating (7.13) as a hybrid

system with state events, as described in §7.6.3.

Lemma 7.5.6. Let (xcv,xcc) be a solution of (7.13) on I ×P and fix any p ∈ P and

any i ∈ {1, . . . , nx}. If (u, o) describe bound preserving dynamics for x on I ×P and
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Assumption 7.2.3 holds, then the sets

S1 = {t ∈ I : xcvi (t,p) = xLi (t), ẋcvi (t,p) 6= max(ẋLi (t), ui(t,p,x
cv(t,p),xcc(t,p)))}

S2 = {t ∈ I : xcci (t,p) = xUi (t), ẋcci (t,p) 6= min(ẋUi (t), oi(t,p,x
cv(t,p),xcc(t,p)))}

S3 = {t ∈ I : xcvi (t,p) = xUi (t), ẋUi (t) < ui(t,p,x
cv(t,p),xcc(t,p))}

S4 = {t ∈ I : xcci (t,p) = xLi (t), ẋLi (t) > oi(t,p,x
cv(t,p),xcc(t,p))}

have measure zero and hence, for a.e. t ∈ I,

ẋcvi (t,p) = ui(t,p,x
cv(t,p),xcc(t,p)) if xcvi (t,p) 6= xLi (t), (7.22)

ẋcvi (t,p) = max(ẋLi (t), ui(t,p,x
cv(t,p)xcc(t,p)) otherwise, (7.23)

ẋcci (t,p) = oi(t,p,x
cv(t,p),xcc(t,p)) if xcci (t,p) 6= xUi (t), (7.24)

ẋcci (t,p) = min(ẋUi (t), oi(t,p,x
cv(t,p),xcc(t,p))) otherwise. (7.25)

Proof. Choose any p ∈ P and any i ∈ {1, . . . , nx}. Let Q = {t ∈ I : xcvi (t,p) =

xLi (t)}. It will be shown that

ẋcvi (t,p) = max(ẋLi (t), ui(t,p,x
cv(t,p),xcc(t,p))) (7.26)

for almost every t ∈ Q, which implies that S1 has measure zero.

For any t ∈ Q, the fact that xcvi (s,p) ≥ xLi (s), ∀s ∈ I, implies that

xLi (t) − xLi (s)

t− s
=
xcvi (t,p) − xLi (s)

t− s
≤ xcvi (t,p) − xcvi (s,p)

t− s
, ∀s ∈ (t, tf ].

Since xLi and xcvi (·,p) are differentiable at a.e. t ∈ I, taking limits above implies that

ẋLi (t) ≤ ẋcvi (t,p) for a.e. t ∈ Q.

Now, by Definition 7.5.1, the fact that xLi (t) = xcvi (t,p) implies that

ẋcvi (t,p) ∈ [ui(t,p,x
cv(t,p),xcc(t,p)),max(ẋLi (t), ui(t,p,x

cv(t,p),xcc(t,p)))] (7.27)
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for a.e. t ∈ Q. Suppose first that t ∈ Q satisfies

max(ẋLi (t), ui(t,p,x
cv(t,p),xcc(t,p))) = ẋLi (t). (7.28)

Using (7.27),

ẋcvi (t,p) ≤ max(ẋLi (t), ui(t,p,x
cv(t,p),xcc(t,p))) = ẋLi (t),

and, since it was established above that ẋLi (t) ≤ ẋcvi (t,p) for a.e. t ∈ Q, it follows

that (7.26) holds for a.e. t ∈ Q satisfying (7.28).

On the other hand, suppose that t ∈ Q satisfies

max(ẋLi (t), ui(t,p,x
cv(t,p),xcc(t,p))) = ui(t,p,x

cv(t,p),xcc(t,p)). (7.29)

Then the right-hand side of (7.27) is a singleton and it follows that (7.26) holds for

a.e. t ∈ Q satisfying (7.29). Since either (7.28) or (7.29) holds for every t ∈ Q, (7.26)

holds for a.e. t ∈ Q and hence S1 has measure zero. The proof that S2 has measure

zero is analogous.

Next, consider S3. For any t ∈ S3, it follows from Theorem 7.5.5 that xcvi (t,p) =

xi(t,p) = xUi (t). Because (u, o) describe bound preserving dynamics for x on I × P ,

this implies that

ẋUi (t) < ui(t,p,x
cv(t,p),xcc(t,p)) ≤ ẋi(t,p), for a.e. t ∈ S3.

On the other hand, for any t ∈ S3, the fact that xi(s,p) ≤ xUi (s), ∀s ∈ I implies that

xUi (t) − xUi (s)

t− s
=
xi(t,p) − xUi (s)

t− s
≥ xi(t,p) − xi(s,p)

t− s
, ∀s ∈ (t, tf ].

Since xUi and xi(·,p) are differentiable at a.e. t ∈ I, taking limits above implies that

ẋUi (t) ≥ ẋi(t,p) for a.e. t ∈ S3. Thus S3 has measure zero. The proof that S4 has

measure zero is analogous.
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7.5.2 Convexity/concavity properties

Theorem 7.5.7. Let (xcv,xcc) be a solution of (7.13) on I × P and suppose that

Assumption 7.2.3 holds. If (u, o) describe bound preserving dynamics and convexity

preserving dynamics for x on I×P , then xcv(t, ·) and xcc(t, ·) are, respectively, convex

and concave on P , for every t ∈ I.

Proof. Choose any p1,p2 ∈ P , any λ ∈ (0, 1), and, for all t ∈ I, define

p̄ ≡ λp1 + (1 − λ)p2,

x̄cv(t) ≡ λxcv(t,p1) + (1 − λ)xcv(t,p2),

x̄cc(t) ≡ λxcc(t,p1) + (1 − λ)xcc(t,p2).

To arrive at a contradiction, suppose that there exists t̂ ∈ I such that either xcvj (t̂, p̄) >

x̄cvj (t̂) or xccj (t̂, p̄) < x̄ccj (t̂), for at least one index j. Define δ : I → R2nx by

δ(t) ≡ (xcv(t, p̄) − x̄cv(t), x̄cc(t) − xcc(t, p̄)) , ∀t ∈ I.

Then, δj(t̂) > 0 for at least one j, and δ(t0) ≤ 0 since xcv(t0, ·) and xcc(t0, ·) are convex

and concave on P , respectively. Then, the hypotheses of Lemma 3.3.5 are satisfied.

Define t1 as in that lemma. Let L ∈ R+ be the Lipschitz constant of Assumption

7.2.3. Applying Lemma 3.3.5 with t4 ≡ tf , β ≡ 2L and arbitrary ǫ > 0 furnishes an

index j ∈ {1, . . . , nx}, a non-decreasing function ρ ∈ AC([t1, tf ],R) satisfying

0 < ρ(t), ∀t ∈ [t1, tf ], and ρ̇(t) > 2Lρ(t), a.e. t ∈ [t1, tf ],
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and numbers t2, t3 ∈ [t1, tf ] with t2 < t3 such that the following inequalities hold:

xcv(t, p̄) < x̄cv(t) + 1ρ(t), ∀t ∈ [t2, t3), (7.30)

xcc(t, p̄) > x̄cc(t) − 1ρ(t), ∀t ∈ [t2, t3),

x̄cvj (t) < xcvj (t, p̄), ∀t ∈ (t2, t3),

xcvj (t3, p̄) = x̄cvj (t3) + ρ(t3),

xcvj (t2, p̄) = x̄cvj (t2).

In fact, Lemma 3.3.5 permits the alternate possibility that the last three lines of

(7.30) show analogous inequalities for a violation of the concavity of xccj (t, ·) on [t2, t3]

for some j; i.e., xccj (t, p̄) < x̄ccj (t). The proof in this case is analogous and we proceed

assuming that (7.30) holds.

Since xcv(t,p1),x
cv(t,p2) ∈ X(t), ∀t ∈ I (Lemma 7.5.3), the same holds for x̄cv(t)

and the third inequality in (7.30) implies that xcvj (t, p̄) > xLj (t), ∀t ∈ (t2, t3). Then,

by Lemma 7.5.6,

ẋcvj (t, p̄) = uj(t, p̄,x
cv(t, p̄),xcc(t, p̄)), for a.e. t ∈ [t2, t3].

Define xcv,∗(t, p̄) = min(xcv(t, p̄), x̄cv(t)) and xcc,∗(t, p̄) = max(xcc(t, p̄), x̄cc(t)),

∀t ∈ [t2, t3]. Assumption 7.2.3 gives

ẋcvj (t, p̄) ≤ uj(t, p̄,x
cv,∗(t, p̄),xcc,∗(t, p̄))

+ L (‖xcv(t, p̄) − xcv,∗(t, p̄)‖∞ + ‖xcc(t, p̄) − xcc,∗(t, p̄)‖∞) ,

for a.e. t ∈ [t2, t3]. By the first and second inequalities in (7.30), it follows that

ẋcvj (t, p̄) ≤ uj(t, p̄,x
cv,∗(t, p̄),xcc,∗(t, p̄)) + 2Lρ(t)

< uj(t, p̄,x
cv,∗(t, p̄),xcc,∗(t, p̄)) + ρ̇(t), for a.e. t ∈ [t2, t3].

Next, we use the fact that (u, o) describe convexity preserving dynamics for x on
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I × P to show that

ẋcvj (t, p̄) < uj(t, p̄,x
cv,∗(t, p̄),xcc,∗(t, p̄)) + ρ̇(t) (7.31)

≤ λuj(t,p1,x
cv(t,p1),x

cc(t,p1))

+ (1 − λ)uj(t,p2,x
cv(t,p2),x

cc(t,p2)) + ρ̇(t),

for a.e. t ∈ [t2, t3]. To justify this, note that Theorem 7.5.5 ensures that xcv(t,p1) ≤
x(t,p1) ≤ xcc(t,p1), xcv(t,p2) ≤ x(t,p2) ≤ xcc(t,p2) and

xcv,∗(t, p̄) ≤ xcv(t, p̄) ≤ x(t, p̄) ≤ xcc(t, p̄) ≤ xcc,∗(t, p̄), ∀t ∈ [t2, t3].

Moreover, noting that xcv(t,q),xcc(t,q) ∈ X(t), ∀q ∈ {p1,p2, p̄}, by Lemma 7.5.3,

we must have x̄cv(t), x̄cc(t) ∈ X(t) since these are convex combinations of elements of

X(t), and it follows that xcv,∗(t, p̄),xcc,∗(t, p̄) ∈ X(t). Finally, the definitions of xcv,∗

and xcc,∗ imply that

xcv,∗(t, p̄) ≤ x̄cv(t) = λxcv(t,p1) + (1 − λ)xcv(t,p2),

xcc,∗(t, p̄) ≥ x̄cc(t) = λxcc(t,p1) + (1 − λ)xcc(t,p2),

for all t ∈ [t2, t3], and the third inequality in (7.30) provides

xcv,∗j (t, p̄) = x̄cvj (t) = λxcvj (t,p1) + (1 − λ)xcvj (t,p2), ∀t ∈ [t2, t3].

Therefore, (7.31) results from applying Definition 7.4.2 with arbitrary functions zcv, zcc :

I × P → Rnx satisfying

zcv(t,p1) = xcv(t,p1), zcv(t,p2) = xcv(t,p2), zcv(t, p̄) = xcv,∗(t, p̄), (7.32)

zcc(t,p1) = xcc(t,p1), zcc(t,p2) = xcc(t,p2), zcc(t, p̄) = xcc,∗(t, p̄),

for a.e. t ∈ [t1, t2].
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Now, by Lemma 7.5.6,

ẋcvj (t,p1) ≥ uj(t,p1,x
cv(t,p1),x

cc(t,p1)),

ẋcvj (t,p2) ≥ uj(t,p2,x
cv(t,p2),x

cc(t,p2)),

for a.e. t ∈ [t2, t3], so that (7.31) gives

ẋcvj (t, p̄) < λẋcvj (t,p1) + (1 − λ)ẋcvj (t,p2) + ρ̇(t) = ˙̄xcvj (t) + ρ̇(t), (7.33)

for a.e. t ∈ [t2, t3]. By Theorem 3.3.3, this implies that xcvj (t, p̄) − x̄cvj (t) − ρ(t) is

non-increasing on [t2, t3], so that

xcvj (t3, p̄) − x̄cvj (t3) − ρ(t3) ≤ xcvj (t2, p̄) − x̄cvj (t2) − ρ(t2).

By the last two equalities in (7.30), this implies that 0 ≤ −ρ(t2), which is a contra-

diction. Therefore,

xcv(t, λp1 + (1 − λ)p2) = xcv(t, p̄) ≤ x̄cv(t) = λxcv(t,p1) + (1 − λ)xcv(t,p2), (7.34)

xcc(t, λp1 + (1 − λ)p2) = xcc(t, p̄) ≥ x̄cc(t) = λxcc(t,p1) + (1 − λ)xcc(t,p2), (7.35)

for all t ∈ I. Since the choice of p1,p2 ∈ P and λ ∈ (0, 1) was arbitrary, (7.34) and

(7.35) hold for all p1,p2 ∈ P and λ ∈ (0, 1).

7.6 State Relaxations for ODEs

In this section, we apply the state relaxation theories of the previous sections to the

case where x is the solution of a system of parametric ODEs. Let I = [t0, tf ] ⊂ R

and P ⊂ Rnp be compact intervals, let D ⊂ Rnx be open, and let x0 : P → D and

f : I × P ×D → Rnx be continuous mappings. Consider the initial value problem

ẋ(t,p) = f(t,p,x(t,p)), x(t0,p) = x0(p). (7.36)
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A solution of (7.36) is any continuous x : I × P → D such that, for every p ∈ P ,

x(·,p) is continuously differentiable and satisfies (7.36) on I (with derivatives from

the right and left at t0 and tf , respectively).

Assumption 7.6.1. For every compact K ⊂ D, ∃LK ∈ R+ such that

‖f(t,p, z) − f(t,p, ẑ)‖∞ ≤ LK‖z − ẑ‖∞, ∀(t,p, z, ẑ) ∈ I × P ×K ×K.

For any compact K ⊂ D, a function satisfying the inequality of Assumption

7.6.1 is said to be Lipschitz on K uniformly on I × P . Under Assumption 7.6.1, the

existence of a unique solution to (7.36) can be ensured locally (by, for example, a

straightforward extension of Theorem 3.1 in [91]). In what follows, it will always be

assumed that Assumption 7.6.1 holds, and that the unique solution of (7.36) exists

on all of I × P .

Since the solution of (7.36) is continuously differentiable on I for every p ∈ P , it

is also absolutely continuous on I for every p ∈ P . Then, the developments of the

previous sections imply that any (u, o) which describe either relaxation amplifying or

relaxation preserving dynamics for x on I×P can be used to compute state relaxations

of x on I × P through the solution of either (7.1) of (7.13). It remains to develop a

computational procedure for constructing and evaluating appropriate functions xcv0 ,

xcc0 , u and o. This is done here using natural McCormick extensions. The following

assumption is required.

Assumption 7.6.2. The functions x0 and f are L-factorable with natural McCormick

extensions {x0} : D0 → MRnx and {f} : Df → MRnx . Moreover, P is represented in

D0 and [t, t] × P ×X(t) is represented in Df for every t ∈ I.

The initial condition functions c0 and C0 can now be constructed and evaluated by

computing the standard McCormick relaxations of x0. Furthermore, these functions

will satisfy Assumption 7.2.3 by Corollary 2.6.2.
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7.6.1 Constructing Relaxation Amplifying Dynamics

Define uf , of : I × P × Rnx × Rnx → Rnx by

uf (t,p, z
cv, zcc) ≡ {f}cv(([t, t], [t, t]), (P, [p,p]),MC(xL(t),xU(t), zcv, zcc)), (7.37)

of(t,p, z
cv, zcc) ≡ {f}cc(([t, t], [t, t]), (P, [p,p]),MC(xL(t),xU(t), zcv, zcc)).

For the benefit of the next section, the lemmas below establish properties of

(uf , of) that are stronger than required to show that they describe relaxation ampli-

fying dynamics.

Lemma 7.6.3. For arbitrary functions zcv, zcc : I × P → Rnx and every p ∈ P , the

following conditions hold:

1. For a.e. t ∈ I such that zcv(t,p) ≤ zcc(t,p) and X(t) ∩ [zcv(t,p), zcc(t,p)] 6= ∅,
uf and of satisfy

uf (t,p, z
cv(t,p), zcc(t,p)) ≤ of(t,p, z

cv(t,p), zcc(t,p)). (7.38)

2. For a.e. t ∈ I such that zcv(t,p) ≤ x(t,p) ≤ zcc(t,p), uf and of satisfy

uf (t,p, z
cv(t,p), zcc(t,p)) ≤ ẋ(t,p) ≤ of(t,p, z

cv(t,p), zcc(t,p)). (7.39)

Proof. Choose arbitrary functions zcc, zcv : I × P → Rnx and any p ∈ P . For any

t ∈ I, (7.38) follows from (7.37) and the fact that {f} takes values in MRnx . Next,

suppose that t ∈ I is such that zcv(t,p) ≤ x(t,p) ≤ zcc(t,p). Since [t, t] × P ×X(t)

is represented in Df , Lemma 2.7.3 may be applied with x ≡ (t,p,x(t,p)), xcv ≡
(t,p, zcv(t,p)) and xcc ≡ (t,p, zcc(t,p)) to establish (7.39).

Corollary 7.6.4. The functions (uf , of) describe bound amplifying dynamics for x

on I × P .

Proof. This follows immediately from Conclusion 2 of Lemma 7.6.3.
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Lemma 7.6.5. For arbitrary functions zcv, zcc : I ×P → Rnx and every (λ,p1,p2) ∈
(0, 1) × P × P , the following condition holds: For a.e. t ∈ I such that

1. zcv(t, ·) is consistent with convexity at (λ,p1,p2),

2. zcc(t, ·) is consistent with concavity at (λ,p1,p2),

3. zcv(t,q) ≤ zcc(t,q) and X(t)∩ [zcv(t,q), zcc(t,q)] 6= ∅, for all q ∈ {p1,p2, λp1 +

(1 − λ)p2},

the functions

P ∋ p 7−→ uf(t,p, z
cv(t,p), zcc(t,p)) and P ∋ p 7−→ of (t,p, z

cv(t,p), zcc(t,p))

are, respectively, consistent with convexity and consistent with concavity at (λ,p1,p2).

Proof. Choose arbitrary functions zcc, zcv : I×P → Rnx , let (λ,p1,p2) ∈ (0, 1)×P ×
P , define p3 ≡ λp1 + (1 − λ)p2, and suppose that t ∈ I is such that Conditions 1-3

hold. Since [t, t] × P ×X(t) is represented in Df , Lemma 2.7.4 may be applied with

xcvi ≡ (t,pi, z
cv(t,pi)) and xcci ≡ (t,pi, z

cc(t,pi)), ∀i ∈ {1, 2, 3}. By (7.37), this gives

the desired result.

Corollary 7.6.6. The functions (uf , of) describe convexity amplifying dynamics for

x on I × P .

Proof. Choose arbitrary functions zcc, zcv : I × P :→ Rnx , let (λ,p1,p2) ∈ (0, 1) ×
P × P , define p3 ≡ λp1 + (1 − λ)p2, and suppose that t ∈ I is such that Conditions

1-3 of Definition 7.3.3 hold. Since x(t,q) ∈ X(t), ∀q ∈ {p1,p2, λp1 + (1 − λ)p2},
Conditions 1-3 of Lemma 7.6.5 are verified, and the conclusion follows.

Lemma 7.6.7. The functions (uf , of ) satisfy Assumption 7.2.3.

Proof. Consider the set

KB ≡ {(sL,qL, zL, sU ,qU , zU) ∈ R2(1+np+nx) : sL = sU ∈ I,

[qL,qU ] ⊂ P, [zL, zU ] ⊂ X(sL)},
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and let

K ≡ {(sL,qL, zL, sU ,qU , zU , scv,qcv, zcv, scc,qcc, zcc) ∈ R4(1+np+nx) : (7.40)

(sL,qL, zL, sU ,qU , zU) ∈ KB}.

Clearly, KB is closed and bounded, and hence compact. By the assumption that

[t, t] × P ×X(t) is represented in Df for every t ∈ I, Corollary 2.7.8 may be applied

to conclude that {f}cv ◦MC and {f}cc ◦MC are Lipschitz on K. Denote the Lipschitz

constant by L.

For any (t,p, zcv, zcc) ∈ I × P × Rnx × Rnx , it is easily verified that the point

(t,pL,xL(t), t,pU ,xU(t), t,p, zcv, t,p, zcc) is an element of K. By continuity of xL and

xU , it follows that uf and of are continuous on I × P × Rnx × Rnx . Furthermore, it

follows that the Lipschitz condition of Assumption 7.2.3 is satisfied with the constant

L.

Remark 7.6.8. Note that the global Lipschitz condition of Assumption 7.2.3 is made

possible by the use of the state bounds X(t) and does not imply a global Lipschitz

condition on f . For fixed (t,p) ∈ I × P , the construction of uf and of involves

mapping any arguments (zcv, zcc) ∈ Rnx ×Rnx into X(t)×X(t) in a Lipschitz manner

(using the MC function), so that Lipschitz continuity of uf (t,p, ·, ·) and of(t,p, ·, ·)
is really only required on this compact interval.

7.6.2 Constructing Relaxation Preserving Dynamics

Let ũ, õ : I × P × Rnx × Rnx → Rnx be arbitrary functions satisfying the condi-

tions of Lemmas 7.6.3 and 7.6.5. In this section, functions (u, o) describing relax-

ation preserving dynamics are derived from (ũ, õ). In practice, we will always choose

(ũ, õ) = (uf , of). The notation (ũ, õ) is used only to highlight the fact that the

results below are not particular to the construction of §7.6.1.

Definition 7.6.9. For each i ∈ {1, . . . , nx}, define Rcv
i ,Rcc

i : Rnx ×Rnx → Rnx ×Rnx

by Rcv
i (zcv, zcc) = (zcv, ẑcc), where ẑcck = zcck if k 6= i and ẑcci = zcvi , and Rcc

i (zcv, zcc) =
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(ẑcv, zcc), where ẑcvk = zcvk if k 6= i and ẑcvi = zcci .

For the remainder of this section, define u, o : I × P × Rnx × Rnx → Rnx by

ui(t,p, z
cv, zcc) ≡ ũi(t,p,Rcv

i (zcv, zcc)),

oi(t,p, z
cv, zcc) ≡ õi(t,p,Rcc

i (zcv, zcc)),

for all (t,p, zcv, zcc) ∈ I × P × Rnx × Rnx and each i ∈ {1, . . . , nx}.

Lemma 7.6.10. If (ũ, õ) satisfy the conditions of Lemma 7.6.3, then (u, o) describe

bound preserving dynamics for x on I × P .

Proof. To show that (u, o) describe bound preserving dynamics, let zcv, zcc : I×P →
Rnx be arbitrary functions and choose any p ∈ P and any i ∈ {1, . . . , nx}. To show

Condition 1 of Definition 7.4.1, suppose t ∈ I is such that zcv(t,p), zcc(t,p) ∈ X(t),

zcv(t,p) ≤ zcc(t,p) and zcvi (t,p) = zcci (t,p). Let (z̃cv(t,p), z̃cc(t,p)) ≡ Rcv
i (zcv(t,p), zcc(t,p)).

Since zcv(t,p) ≤ zcc(t,p), it follows that z̃cv(t,p) ≤ z̃cc(t,p), and since zcv(t,p), zcc(t,p) ∈
X(t), it follows that z̃cv(t,p), z̃cc(t,p) ∈ X(t). Then Condition 1 of Lemma 7.6.3 can

be applied to (z̃cv(t,p), z̃cc(t,p)) to conclude that

ui(t,p, z
cv(t,p), zcc(t,p)) = ũi(t,p, z̃

cv(t,p), z̃cc(t,p)) ≤ õi(t,p, z̃
cv(t,p), z̃cc(t,p)).

But, because zcvi (t,p) = zcci (t,p), it follows that (z̃cv(t,p), z̃cc(t,p)) = Rcc
i (zcv(t,p), zcc(t,p))

as well, and hence

ui(t,p, z
cv(t,p), zcc(t,p)) ≤ oi(t,p, z

cv(t,p), zcc(t,p)).

This proves Condition 1 of Definition 7.4.1.

To show Condition 2, suppose t ∈ I is such that zcv(t,p), zcc(t,p) ∈ X(t),

zcv(t,p) ≤ x(t,p) ≤ zcc(t,p) and xi(t,p) = zcvi (t,p). Let (z̃cv(t,p), z̃cc(t,p)) ≡
Rcv
i (zcv(t,p), zcc(t,p)). Since xi(t,p) = zcvi (t,p), it follows that z̃cv(t,p) ≤ x(t,p) ≤
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z̃cc(t,p). Then Condition 2 of Lemma 7.6.3 can be applied to conclude that

ui(t,p, z
cv(t,p), zcc(t,p)) = ũi(t,p, z̃

cv(t,p), z̃cc(t,p)) ≤ ẋi(t,p).

This proves Condition 2 of Definition 7.4.1, and Condition 3 is shown analogously.

Lemma 7.6.11. If (ũ, õ) satisfy the condition of Lemma 7.6.5, then (u, o) describe

convexity preserving dynamics for x on I × P .

Proof. To show that (u, o) describe convexity preserving dynamics, let zcv, zcc : I ×
P → Rnx be arbitrary functions, choose any (λ,p1,p2) ∈ (0, 1) × P × P and define

p̄ ≡ λp1 + (1 − λ)p2. Choose any i ∈ {1, . . . , nx} and suppose t ∈ I is such that

1. zcv(t, ·) is consistent with convexity at (λ,p1,p2),

2. zcc(t, ·) is consistent with concavity at (λ,p1,p2),

3. zcv(t,q) ≤ x(t,q) ≤ zcc(t,q) and zcv(t,q), zcc(t,q) ∈ X(t), ∀q ∈ {p1,p2, p̄}.

Let (z̃cv(t,p), z̃cc(t,p)) ≡ Rcv
i (zcv(t,p), zcc(t,p)), ∀p ∈ P . By the definition of

Rcv
i , it is clear that

z̃cv(t,q) ≤ z̃cc(t,q) and z̃cv(t,q), z̃cc(t,q) ∈ X(t), ∀q ∈ {p1,p2, p̄}. (7.41)

If zcvi (t, p̄) = λzcvi (t,p1) + (1 − λ)zcvi (t,p2), then

z̃cvi (t, p̄) = λz̃cvi (t,p1) + (1 − λ)z̃cvi (t,p2), (7.42)

z̃cci (t, p̄) = λz̃cci (t,p1) + (1 − λ)z̃cci (t,p2),

and, combining this with the hypotheses on zcv and zcc implies that z̃cv and z̃cc are,

respectively, consistent with convexity and consistent with concavity at (λ,p1,p2).
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Then, since (ũ, õ) satisfy the condition of Lemma 7.6.5,

ui(t, p̄, z
cv(t, p̄), zcc(t, p̄))

= ũi(t, p̄, z̃
cv(t, p̄), z̃cc(t, p̄))

≤ λũi(t,p1, z̃
cv(t,p1), z̃

cc(t,p1)) + (1 − λ)ũi(t,p2, z̃
cv(t,p2), z̃

cc(t,p2))

= λui(t,p1, z
cv(t,p1), z

cc(t,p1)) + (1 − λ)ui(t,p2, z
cv(t,p2), z

cc(t,p2)).

On the other hand, letting (z̃cv(t,p), z̃cc(t,p)) ≡ Rcc
i (zcv(t,p), zcc(t,p)) and supposing

that zcci (t, p̄) = λzcci (t,p1) + (1− λ)zcci (t,p2), (7.41) and (7.42) again hold and hence

oi(t, p̄, z
cv(t, p̄), zcc(t, p̄))

= õi(t, p̄, z̃
cv(t, p̄), z̃cc(t, p̄))

≥ λõi(t,p1, z̃
cv(t,p1), z̃

cc(t,p1)) + (1 − λ)õi(t,p2, z̃
cv(t,p2), z̃

cc(t,p2))

= λoi(t,p1, z
cv(t,p1), z

cc(t,p1)) + (1 − λ)oi(t,p2, z
cv(t,p2), z

cc(t,p2)).

For the computations described in the following section, we will always use (ũ, õ) =

(uf , of), where (uf , of) are as described in §7.6.1. In addition to guaranteeing that

(u, o) describe relaxation preserving dynamics, this choice also guarantees continuity

of (u, o) on I×P ×Rnx ×Rnx , as well as the global Lipschitz condition of Assumption

7.2.3. Since both of these properties hold for (uf , of), it is trivial to show that they

hold for (u, o) as defined in this section.

7.6.3 Implementation

This section describes the computational implementation of the state relaxation the-

ories developed for ODEs in the previous sections. Following the results in §7.6.2, we
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define u, o : I × P × Rnx × Rnx → Rnx by

ui(t,p, z
cv, zcc) ≡ uf,i(t,p,Rcv

i (zcv, zcc)),

oi(t,p, z
cv, zcc) ≡ of,i(t,p,Rcc

i (zcv, zcc)),

for each i ∈ {1, . . . , nx}, where (uf , of) are defined by (7.37).

For the numerical examples in §7.7, state bounds are computed using Harrison’s

method. As with all of the methods described in Chapter 3, Harrison’s method

describes xL and xU as the solutions of another auxiliary system of ODEs. Given

(tf ,p) ∈ I × P at which the values xcv(tf ,p) and xcc(tf ,p) are desired, the ODEs

describing the state bounds are numerically integrated simultaneously with the aux-

iliary ODEs (either (7.1) or (7.13)) at p, from t0 to tf . Thus, the values xL(t),

xU(t), ẋL(t) and ẋU(t) are available at every time-step during numerical integra-

tion. To begin this computation, the initial conditions xcv0 (p) and xcc0 (p) are com-

puted by taking standard McCormick relaxations of x0 on P , evaluated at p. This

is done using the C++ library MC++, which automatically computes interval exten-

sions and McCormick relaxations of factorable functions using operator overloading

(http://www3.imperial.ac.uk/people/b.chachuat/research). MC++ is the successor of

libMC, which is described in detail in [122]. Whenever it is required to evaluate the

right-hand side of (7.1) or (7.13), the functions ui and oi are evaluated automatically

using MC++ according to the discussion in the previous sections and the definitions in

Chapter 2.

Remark 7.6.12. When using any of the more sophisticated state bounding methods

developed in Chapter 3, one must take care that the derivatives ẋL(t) and ẋU(t)

appearing in the right-hand sides of (7.13) correspond exactly to the bounds xL(t) and

xU(t) used in the computation of (u, o) as per §7.6.1 and §7.6.2. For example, it is not

valid to evaluate the natural McCormick extensions defining (u, o) over the interval

resulting from a refinement of X(t) based on some known physical information, unless

ẋL(t) and ẋU(t) are adjusted accordingly.

For both state relaxation methods, numerical simulation of the auxiliary ODEs is
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done using CVODE [44] with relative and absolute tolerances of 1×10−8. The simulation

of (7.1) is straightforward. To simulate a solution of (7.13), we numerically integrate

the system

ẋcvi (t,p) =







ui(t,p,x
cv(t,p),xcc(t,p)) if bcvi = 0

max(ẋLi (t), ui(t,p,x
cv(t,p),xcc(t,p))) if bcvi = 1

, (7.43)

ẋcci (t,p) =







oi(t,p,x
cv(t,p),xcc(t,p)) if bcci = 0

min(ẋUi (t), oi(t,p,x
cv(t,p),xcc(t,p))) if bcci = 1

,

with initial conditions as in (7.13), where bcvi and bcci are Boolean variables which

ideally satisfy

bcvi =







0 if xcvi (t,p) > xLi (t)

1 if xcvi (t,p) ≤ xLi (t)
, bcci =







0 if xcci (t,p) < xUi (t)

1 if xcci (t,p) ≥ xUi (t)
. (7.44)

In practice, the values of each bcvi and bcci are set according to an event detection

scheme described below. Assuming that a solution (xcv,xcc) of (7.13) exists on I ×P

(see Remark 7.5.2), Lemmas 7.5.3 and 7.5.6 imply that (xcv,xcc) is a solution of (7.43)

in the sense that, for each p ∈ P , xcv(·,p) and xcc(·,p) satisfy (7.43) and (7.44) for

a.e. t ∈ I. Furthermore, it follows from Assumption 7.2.3 and Theorem 1 in Chapter

2, §10 of [62] that this is the unique solution of (7.43). Thus, computing the solution of

(7.43) furnishes the solution of (7.13), which guarantees that the computed (xcv,xcc)

are state relaxations for (7.36) on I × P .

The numerical simulation of (7.43) is carried out as follows. At t0, the variables bcvi

and bcci are set according to (7.44). With these variables fixed, numerical integration

of (7.43) is initiated using CVODES [44]. CVODES offers a built-in feature which checks

for zero crossings of user supplied event functions g(t) during each integration step,

and locates event times te at which gj(te) = 0 for some j using a bisection algorithm.
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For the integration of (7.43), we provide the event functions

gi(t) = xcvi (t,p) − xLi (t) − bcvi ǫ,

gnx+i(t) = xUi (t) − xcci (t,p) − bcci ǫ,

for i ∈ {1, . . . , nx}. Starting from t0, the system (7.43) is integrated until a root

of any of these event functions is located. Suppose that, for some tj ∈ I and some

index i, xcvi (tj,p) > xLi (t) and bcvi = 0 as desired. If, after the next integration

step [tj , tj+1], it is found that xcvi (tj+1,p) < xLi (tj+1), then a zero crossing of gi(t) =

xcvi (t,p) − xLi (t) has occurred and CVODES will search for a point te ∈ [tj , tj+1] such

that xcvi (te,p) = xLi (te). Then, integration is stopped at te, b
cv
i is reset to 1 in order to

specify the correct evolution of xcvi (·,p) to the right of te, and integration is resumed.

In addition to specifying the correct evolution of c(·,p) to the right of te, setting

bcvi = 1 also introduces an epsilon perturbation into the event function gi. This is to

avoid repeatedly ‘finding’ roots of gi, since if ẋLi (t) > ui(t,p,x
cv(t,p),xcc(t,p)) for

some nontrivial period of time to the right of te, then the equality xcvi (t,p) = xLi (t)

will persist (indeed, this is the intended behavior).

Next, suppose that, for some tj ∈ I and some index i, xcvi (tj,p) = xLi (t) and

bcvi = 1 as desired. Further, suppose that after the next integration step [tj , tj+1],

it happens that xcvi (tj+1,p) > xLi (tj+1). If ǫ > 0 is sufficiently small, then a zero

crossing of gi(t) = xcvi (t,p) − xLi (t) + ǫ will be detected and CVODES will search for a

point te ∈ [tj , tj+1] such that gi(te) = xcvi (te,p)−xLi (te)− ǫ = 0. Again, integration is

stopped in order to reset bcvi to 0. On account of the ǫ perturbation in gi, the event

where xcvi (·,p) ceases to equal xLi is not found precisely, and therefore the value of

ẋcvi (·,p) is not adjusted as per (7.43) until slightly too late. However, this is a minor

issue for this particular system since the fact that such an event has occurred implies

that ẋLi (t) has been strictly less than ui(t,p,x
cv(t,p),xcc(t,p)) for some nontrivial

period of time before the root gi(t) = xcvi (t,p) − xLi (t) − ǫ = 0 was detected, and
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hence

ẋcvi (t,p) = max(ẋLi (t), ui(t,p,x
cv(t,p),xcc(t,p))),

= ui(t,p,x
cv(t,p),xcc(t,p)),

over that same period, exactly as if bcvi = 0. Of course, the variables bcci are managed

in an analogous fashion.

An alternative approach to detecting this last event, i.e. where xcvi (tj ,p) = xLi (tj)

and xcvi (·,p) − xLi first becomes positive at some te ∈ [tj , tj+1], is to search for a zero

crossing of the function ui(t,p,x
cv(t,p),xcc(t,p)) − ẋLi (t). Since this function must

become positive immediately to the right of te, the event will be detected provided

that this function is negative at tj . We do not use this implementation here for the

following reason. For the purposes of optimization, it may be desirable to evaluate

xcv(tf , ·) and xcc(tf , ·) at several points in P . However, the state bounds need only be

integrated once because P is constant. In this case, it is beneficial to store the state

bounding trajectories and evaluate xL and xU when needed by interpolation. Values

for ẋL and ẋU can be computed by evaluating the right-hands sides of the bounding

ODEs. However, in this scheme there is some numerical disagreement between the

values ẋL(t̂) and ẋU(t̂) computed at some point t̂ and the behavior of the interpolated

values xL(t) and xU(t) for t immediately to the right of t̂. Though this inconsistency

is minor, it does cause significant complications for an event detection scheme based

on precise values of ẋL and ẋU .

7.7 Numerical Examples

All numerical experiments in this section were performed on a Dell Precision T3400

workstation with a 2.83 GHz Intel Core2 Quad CPU. One core and 512 MB of memory

were dedicated to each job.

Example 7.7.1 (Relaxation Amplifying Dynamics). Section 1.2.4 of [91] discusses

a negative resistance circuit consisting of an inductor, a capacitor and a resistive
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Figure 7-1: The parametric final time solution of the ODEs (7.45), x1(tf , ·), on the
interval P = [0.01, 0.5]2.

element in parallel. The circuit can be described by the nonlinear ODEs

ẋ1 =
1

L
x2, ẋ2 = − 1

C
[x1 − x2 +

1

3
x3

2], (7.45)

where L and C are the inductance and capacitance respectively, x1 is the current

through the inductor, and x2 is the voltage across the capacitor. It is assumed that

time, C, L, x1 and x2 are scaled so that the equations above are dimensionless and all

quantities are of order one with the possible exception of (1/L) and (1/C). Therefore,

the initial value problem with x0,1 = x0,2 = 1, t0 = 0 and tf = 5 is considered.

Letting the parameters be p1 = (1/C) and p2 = (1/L), the solution x1(tf , ·) on the set

P = [pL1 , p
U
1 ]×[pL2 , p

U
2 ] = [0.01, 0.5]×[0.01, 0.5] is shown in Figure 7-1. The parametric

final time solution is clearly nonconvex, with a single maximum at (p1, p2) = (0.01, 0.5)

and two local minima, the global minimum at (p1, p2) = (0.5, 0.5), and a suboptimal

local minimum at (p1, p2) = (0.01, 0.01).

Since x0 is constant, appropriate convex and concave relaxations are simply xcv0 =
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Table 7.1: Factorization and computation of f1 at (t,p,x) and u1 and o1 at (t,p, z,y).

i vi Vi Vi

1 p1 P1 (P1, [p1, p1])
2 x2 X2(t) MC(xL

2
(t), xU

2
(t), z2, y2))

3 v1v2 V1V2 V1V2

Table 7.2: Factorization and computation of f2 at (t,p,x) and u2 and o2 at (t,p, z,y).

i vi Vi Vi

1 p2 P2 (P2, [p2, p2])
2 x1 X1(t) MC(xL

1
(t), xU

1
(t), z1, y1)

3 x2 X2(t) MC(xL
2
(t), xU

2
(t), z2, y2)

4 v3

3
V 3

3
V3

3

5 (1/3)v4 (1/3)V4 (1/3)V4

6 −v3 −V3 −VL
3

7 v2 + v6 V2 + V6 V2 + V6

8 v7 + v5 V7 + V5 V7 + V5

9 −v1 −V1 −V1

10 v8v9 V8V9 V8V9

xcc0 = x0. Then, beginning from the function

f = [f1, f2]
T =

[

p1x2, −p2

(

x1 − x2 +
1

3
x3

2

)]T

, (7.46)

it remains to construct functions u and o satisfying relaxation amplifying dynamics.

For any (t,p, z,y) ∈ I × P × Rnx × Rnx , appropriate values for the functions u

and o at (t,p, z,y) can be computed by evaluating the natural McCormick exten-

sion {f}(([t, t], [t, t]), (P, [p,p]),MC(xL(t),xU(t), z,y)). This is implemented by the

factorable representations of f1 and f2 shown in Tables 7.1 and 7.2, with factors vi,

inclusion factors Vi, and relaxation factors Vi. Now u1(t,p, z,y) and o1(t,p, z,y)

evaluate to Vcv3 and Vcc3 in Table 7.1, respectively, and u2(t,p, z,y) and o2(t,p, z,y)

evaluate to Vcv10 and Vcc10 in Table 7.2, respectively.

Given the functions xcv0 , xcc0 , u and o as described above, convex and concave

relaxations for the parametric solution of (7.45) were generated by application of

Theorem 7.3.4. The resulting relaxations are shown in Figure 7-2. Clearly, the

minimum of the convex relaxation underestimates the global minimum of x1(tf , ·).
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Figure 7-2: State relaxations for x1(tf , ·), the solution of the ODEs (7.45), constructed
over the interval P = [0.01, 0.5]2.

Figure 7-3 shows a second pair of convex and concave relaxations, plotted with

the first, constructed in exactly the same way over the subinterval P 1 = [0.3, 0.5]2

(the solution of (7.45) has been omitted for clarity). Clearly, the relaxations become

much tighter when taken over a subinterval of the original parameter interval P .

Example 7.7.2 (Relaxation Preserving Dynamics). Consider the nonlinear ODEs

ẋ1(t,p) = −(2 + sin(p1/3))(x1(t,p))2 + p2x1(t,p)x2(t,p), x1(t0,p) = 1, (7.47)

ẋ2(t,p) = sin(p1/3)(x1(t,p))2 − p2x1(t,p)x2(t,p), x2(t0,p) = 0.5,

where p = (p1, p2) ∈ P ≡ [−6.5, 6.5] × [0.01, 0.5] and I ≡ [t0, tf ] = [0.0, 2.0]. State

relaxations for this system on I×P were computed using the affine relaxation method

in [162], as well as the two nonlinear state relaxations methods presented here. For

brevity, we will refer to state relaxations computed through the theory of relaxation

amplifying dynamics as RAD relaxations, and those computed through relaxation

preserving dynamics as RPD relaxations.

The results are shown in Figures 7-4 and 7-5. In both figures, the parametric

solution x2(t, ·), along with convex and concave relaxations computed by all three
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Figure 7-3: State relaxations for x1(tf , ·), the solution of the ODEs (7.45), constructed
over the interval P = [0.01, 0.5]2 and the subinterval P 1 = [0.3, 0.5]2.

methods, is plotted as a function of p1, with p2 = 0.5 fixed. Figure 7-4 displays

these functions at t = 0.1, after only a short integration time, while Figure 7-5 shows

them at t = tf = 2.0. In the case of the affine and RAD relaxations, the figures

actually display max(xL2 (t), c2(t, ·)) and min(xU2 (t), C2(t, ·)), in order to compare the

best bounds that would be available from each method in a branch-and-bound setting

(this makes the affine relaxations appear non-affine in some figures). Of course, the

RPD always remain tighter than the state bounds by construction (Lemma 7.5.3).

After a short integration time, the nonlinear methods produce almost identical

results (the curves nearly overlap in Figure 7-4). On the other hand, the affine

relaxations are weaker for many values of p1 because the parametric solution x2(t, ·)
is highly nonlinear. After a long integration time, the RPD relaxations proposed here

are significantly tighter than those resulting from either of the other two methods.

The strength of the RAD relaxations apparently deteriorates with integration time,

so that at t = 2.0 the advantages of nonlinearity are nearly lost. This is attributed to

the fact that this method is based on bound amplifying dynamics, whereas the RPD
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relaxations are based on bound preserving dynamics. The bounding properties of the

affine state relaxations in [162] are also essentially based on the principle of bound

preserving dynamics. However, the affine nature of these relaxations is a consequence

of linear systems theory, not convexity preserving dynamics.

In order to demonstrate the convergence behavior of these methods, Figure 7-6

shows state relaxations constructed on the interval P ∗ ≡ [−4.9,−4.6] × [0.45, 0.5],

again plotted as functions of p1 with p2 = 0.5 fixed and t = 2.0. The parametric solu-

tion x2(2.0, ·) is much more nearly linear on P ∗, so that the advantages of nonlinear

relaxations are diminished. It is clear from this figure that the RAD relaxations are

the weakest on small intervals. These relaxations are also much more convex/concave

than seems warranted by the curvature of x2(2.0, ·). In contrast, the affine relaxations

provide very reasonable bounds on this smaller interval, in part because x2(2.0, ·) is

more nearly linear, but also because the bounding properties of these relaxations

are based on bound preserving dynamics. However, the RPD relaxations are again

the strongest. These relaxations not only make use of bound preserving dynamics,

but also of convexity preserving dynamics, so that the advantages of nonlinearity are

maintained without the excessive convexification demonstrated by the RAD theory.

Example 7.7.3. Consider again the chemical kinetics model of Example 4.5.4. Using

experimental data from [172], globally optimal parameter estimates for this model

were computed in [163] using the global dynamic optimization algorithm of [164],

which is based on the affine state relaxation method in [162]. In this example, RAD

and RPD state relaxations are computed for this problem and compared to the affine

relaxations of [162].

The kinetic model takes the form

ẋ(t,p) = Sr(t,p,x(t,p)),

where S and r are give in Example 4.5.4 and p = (k2, k3, k4). The parameters k2

and k3 are restricted to the interval [1, 1200] (M−1µs−1), and k4 is restricted to the

interval [0.001, 100] (µs−1). That is P ≡ [1, 1200]× [1, 1200]× [0.001, 100]. The initial
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Figure 7-4: The parametric solution x2 (solid), along with affine state relaxations
(dot-dashed), RAD (squares) and RPD (dashed) state relaxations, constructed on P
and plotted as functions of p1 with p2 = 0.5 and t = 0.1 fixed.

conditions are the same as in Example 4.5.4.

State relaxations for this system were computed on the time interval I ≡ [0, 4.5] µs.

Due to the very fast time constants in this system, this time horizon is long enough for

the system to nearly reach steady-state for all parameter values. For all three state

relaxation methods, numerical integration of the auxiliary system was done using

CVODES [44] with absolute and relative error tolerances of 10−10. These tolerances

were used because some state variables in the original system take meaningful nonzero

values on the order of 10−8 M.

In [163], parameter estimation for this system was done by fitting the model to

measured absorbance data. The absorbance depends on the species concentrations

according to

Abs(x(t,p)) ≡ 1470x3(t,p) + 140(x6(t,p) + x7(t,p)). (7.48)

Figures 7-7 and 7-8 below show relaxations of x6(tf , ·) and Abs(x(tf , ·)) on P , respec-

tively, for the final time tf = 4.5 µs. Having computed state relaxations, convex and
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Figure 7-5: The parametric solution x2 (solid), along with affine state relaxations
(dot-dashed), RAD (squares) and RPD (dashed) state relaxations, constructed on P
and plotted as functions of p1 with p2 = 0.5 and t = 2.0 fixed.

concave relaxations for Abs(x(tf , ·)) are given by

uAbs(x
cv(tf ,p),xcc(tf ,p)) ≡ 1470xcv3 (t,p) + 140(xcv6 (t,p) + xcv7 (t,p)),

oAbs(x
cv(tf ,p),xcc(tf ,p)) ≡ 1470xcc3 (t,p) + 140(xcc6 (t,p) + xcc7 (t,p)).

To illustrate the convergence behavior of the three relaxation methods, Figures 7-9

and 7-10 show relaxations of x6(tf , ·) and Abs(x(tf , ·)), respectively, on a much smaller

interval containing the globally optimal parameter values from [163], P ∗ ≡ [475, 550]×
[375, 425] × [17, 21]. In all figures, the depicted relaxations are constructed over the

entire interval P (or P ∗), but plotted for clarity only as functions of k2, with (k3, k4)

fixed at the globally optimal values from [163], (403 M−1µs−1, 19.2µs−1). In the case

of the affine and first generation nonlinear relaxations, Figures 7-7 and 7-9 actually

display max(xL6 (t), xcv6 (t, ·)) and min(xU6 (t), xcc6 (t, ·)). The relaxations in Figures 7-8

and 7-10 are similarly truncated at upper and lower bounds for Abs(x(tf , ·)) on P

(resp. P ∗) computed by taking the natural interval extension of (7.48) using the

state bounds. Though the parameter dependence of the true model solutions in these
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Figure 7-6: The parametric solution x2 (solid), along with affine state state relaxations
(dot-dashed), RAD (squares) and RPD (dashed) state relaxations, constructed on P
and plotted as functions of p1 with p2 = 0.5 and t = 2.0 fixed.

figures appears to be fairly simple, these figures show only the dependence on k2 with

the other two parameters fixed. In [163], it is shown that the corresponding parameter

estimation problem is indeed nonconvex and has numerous suboptimal local minima.

As in the previous example, the RAD nonlinear relaxations are superior to the

affine relaxations on the large interval P due to their nonlinearity. However, on the

smaller interval P ∗ the situation is reversed, showing again that the RAD nonlinear

relaxations converge much more slowly than do the affine relaxations. On the other

hand, the RPD relaxations provide much tighter bounds than either of the other

methods on both large and small intervals.

7.8 Conclusion

Given a nonlinear system of ODEs (7.36), two sets of sufficient conditions have been

established for a system of auxiliary differential equations of the form (7.1) to describe

convex and concave relaxations of each state variable with respect to the ODE param-

eters, pointwise in the independent variable. Furthermore, computational methods
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Figure 7-7: The parametric solution x6 (solid), along with affine state relaxations
(dot-dashed), RAD (squares) and RPD (dashed) state relaxations, constructed on P
and plotted as functions of k2 with k3 = 403.0 M−1µs−1, k4 = 19.2 µs−1 and t = 4.5
µs fixed.

were developed for automatically constructing and solving the required auxiliary sys-

tem for both sets of conditions. Through a conceptual analysis, corroborated by

numerical results, it has been shown that the second relaxation theory, based on the

concept of relaxation preserving dynamics, is superior to the first. It has also been

shown through numerical examples that this relaxation theory significantly outper-

forms a related existing method for computing affine state relaxations.
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Figure 7-8: The absorbance Abs(x(tf , ·)) (solid), along with affine state relaxations
(dot-dashed), RAD (squares) and RPD (dashed) state relaxations, constructed on P
and plotted as functions of k2 with k3 = 403.0 M−1µs−1, k4 = 19.2 µs−1 and t = 4.5
µs fixed.
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Figure 7-9: The parametric solution x6 (solid), along with affine state relaxations
(dot-dashed), RAD (squares) and RPD (dashed) state relaxations, constructed on P ∗

and plotted as functions of k2 with k3 = 403.0 M−1µs−1, k4 = 19.2 µs−1 and t = 4.5
µs fixed.
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Figure 7-10: The absorbance Abs(x(tf , ·)) (solid), along with affine state relaxations
(dot-dashed), RAD (squares) and RPD (dashed) state relaxations, constructed on P ∗

and plotted as functions of k2 with k3 = 403.0 M−1µs−1, k4 = 19.2 µs−1 and t = 4.5
µs fixed.
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Chapter 8

State Relaxations for Semi-Explicit

Index-One DAEs

8.1 Introduction

This chapter considers the computation of state relaxations for the solutions of a

general system of nonlinear, semi-explicit index-one differential-algebraic equations

(DAEs), which is parameterized in the governing equations and initial conditions by

a real parameter vector. As in Chapter 7, there are two primary motivations for this

construction. First, to provide another means to compute enclosures of the reachable

sets of DAEs, in addition to the state bounding methods of Chapter 6, and second,

for their use in deterministic global optimization algorithms for problems with DAEs

embedded.

At present, there does not exist a fully deterministic algorithm for solving opti-

mization problems with DAEs embedded to global optimality. In [42], problems of

this type are addressed by discretizing the embedded DAEs by collocation on finite

elements. This reduces the original dynamic optimization problem to a standard

nonlinear program which can be solved by existing global optimization techniques.

However, it was found that a fine discretization creates problems which are too large

for global optimization routines to solve in reasonable time, and coarser discretization

could not represent the original dynamics well enough to produce reliable results (the
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optimal objective value was found to depend strongly on the discretization). In [55],

a method was proposed which does not require discretization. However, the method

employs a sampling procedure to obtain global information concerning the embed-

ded dynamics and hence cannot guarantee global optimality. Here, we provide two

guaranteed methods for computing state relaxations for the solutions of semi-explicit

DAEs. Thus, using a branch-and-bound framework as in [55] (see Chapter 1), the

state relaxation methods developed here lead to a deterministic global optimization

algorithm for problems with DAEs embedded.

8.2 Problem Statement

In this chapter, we apply the state relaxation methods developed in §7.3 and §7.4

to functions (x,y) ∈ C1(I,×P,Rnx) × C1(I,×P,Rny) that are the solutions of semi-

explicit index-one systems of DAEs. The class of DAEs considered here is exactly the

same as that considered in Chapter 5. The relevant assumptions are repeated here

for convenience. Let Dt ⊂ R, Dp ⊂ Rnp, Dx ⊂ Rnx and Dy ⊂ Rny be open sets, and

let f : Dt ×Dp ×Dx ×Dy → Rnx , g : Dt ×Dp ×Dx ×Dy → Rny and x0 : Dp → Dx

be C1 functions. Given t0 ∈ Dt, consider the initial value problem

ẋ(t,p) = f(t,p,x(t,p),y(t,p))

0 = g(t,p,x(t,p),y(t,p))







, (8.1a)

x(t0,p) = x0(p). (8.1b)

A solution of (8.1) is defined in Definition 5.3.2.

8.2.1 State Bounds and Related Assumptions

To derive state relaxations for some solution (x,y) of (8.1) on I × P , state bounds

on this solution will be required. This will be done using the single-phase method

of Chapter 6. From the results there, it can be seen that successful completion of

this method provides bounds and a preconditioning matrix satisfying several useful

346



properties related to existence and uniqueness of a solution of (8.1) and invertability

of ∂g
∂y

. These conditions are summarized in the following assumption, which holds in

the remainder of the chapter.

Assumption 8.2.1. Let I = [t0, tf ] ⊂ Dt and P ⊂ Dp be intervals. Continuous

functions C : I → Rny×ny , xL,xU : I → Rnx and yL,yU : I → Rny are available and

satisfy the following conditions with X(t) ≡ [xL(t),xU(t)] and Y (t) ≡ [yL(t),yU(t)]:

1. There exists a regular solution of (8.1) on I × P satisfying

(x(t,p),y(t,p)) ∈ X(t) × Y (t), ∀(t,p) ∈ I × P. (8.2)

2. For any other solution (x∗,y∗) of (8.1) on I × P , y∗(t0,p) /∈ Y (t0), ∀p ∈ P .

3. X(t) × Y (t) ⊂ Dx ×Dy, ∀t ∈ I.

4. For every t ∈ I, the interval matrix C(t)
[

∂g
∂y

]

(t, P,X(t), Y (t)) does not contain

any singular matrix and does not contain zero in any of its diagonal elements.

5. For every (t,p, zx) ∈ I × P × Dx with zx ∈ X(t), there is a unique point

zy ∈ Y (t) such that g(t,p, zx, zy) = 0.

The bounding methods of Chapter 6 produce state bounds on a single regular

solution (x,y) of (8.1), which is evident from Assumption 8.2.1. Of course, this

implies that the state relaxations derived here will not be valid for all solutions

of (8.1), but will be specific to the solution of Condition 1. For applications in

which there is a single solution of interest, this has the advantage that we avoid

unnecessary conservatism in the relaxations that might result from bounding multiple

solutions. On the other hand, if one is interested in all possible solutions, then the

relaxation method presented here would need to be combined with some procedure

for exhaustively enumerating regular solutions of (8.1). We do not pursue such a

procedure here, though analogous search methods for pure algebraic systems have

been thoroughly studied [131]. In any case, it seems problematic to work with state

relaxations that are valid for multiple solutions simultaneously, at least in the context
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of global optimization, since this would make the required convergence properties

impossible (convergence conditions in the case of ODEs are given in [158]).

In the remainder of this chapter, the notations I, P , (x,y), X, Y and C will refer

to the quantities of Assumption 8.2.1.

8.2.2 The Auxiliary System

As in Chapter 7, state relaxations will be computed as the solutions of an auxiliary

system of ODEs. Here, this system takes the form

ẋcv(t,p) = uf (t,p,x
cv(t,p),xcc(t,p),ycv(t,p),ycc(t,p)), (8.3)

ẋcc(t,p) = of (t,p,x
cv(t,p),xcc(t,p),ycv(t,p),ycc(t,p)),

ycv(t,p) = ūKψ (t,p,xcv(t,p),xcc(t,p)),

ycc(t,p) = ōKψ (t,p,xcv(t,p),xcc(t,p)),

xcv(t0,p) = xcv0 (p),

xcc(t0,p) = xcc0 (p).

The reason for the particular notations here will become clear in later sections.

Though this system has algebraic equations, they are explicit, so that we may

consider it as a system of ODEs for xcv and xcc. Our approach then, is to derive func-

tions uf , of , ūKψ and ōKψ such that the system (8.3) describes relaxation amplifying

dynamics for x on I ×P . Then, a modification exactly analogous to that in Chapter

7 will be applied to arrive at a system describing relaxation preserving dynamics for

x on I × P . Again, this system will not be exactly of the form (8.3) and will involve

state events.

In constructing appropriate functions uf , of , ūKψ and ōKψ , a crucial step is to

compute convex and concave relaxations for the algebraic variables y given state

relaxations for x. This is essentially what the functions ūKψ and ōKψ accomplish. This

then serves the added purpose of providing a means to compute state relaxations for

y after solving (8.3).
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Of course, natural McCormick extensions will play a key role in defining the

required functions. Therefore, the following assumption is required throughout.

Assumption 8.2.2. The functions x0, f , g and ∂g
∂y

are L-factorable with natural

McCormick extensions x0 : D0 → MRnx , {f} : D → MRnx , {g} : D → MRny

and { ∂g
∂y
} : D → MRny×ny . Furthermore, P is represented in D0 and the interval

[t, t] × P ×X(t) × Y (t) is represented in D for every t ∈ I.

8.3 Relaxing the Algebraic States

In this section, appropriate functions ūKψ and ōKψ are derived. Essentially, these

functions compute relaxations of y(t, ·) on P , for each fixed t ∈ I, when provided with

state relaxations for x as input. Conceptually, this is accomplished by deriving from

g a semi-explicit expression for y which can be iteratively relaxed by McCormick’s

relaxation procedure.

As the development proceeds, we will periodically stop to illustrate the proposed

methods for the simple DAEs

ẋ(t, p) = −1

2
(y(t, p) − 1

2
p)x(t, p), x0(p) = 1, (8.4)

0 = y(t, p) − 2 sin(p)
√

y(t, p)
− 7x(t, p),

where t ∈ I = [0, 0.2] and p ∈ P ≡ [−1, 2.5]. Applying, the single-phase method

of Chapter 6, state bounds were computed for the unique regular solution of these

DAEs satisfying the consistent initial condition (1, 7.354) ∈ X(t0)×Y (t0) for p = 0.5.

Numerical results for this example are presented in §8.6.

8.3.1 Characterizing the Algebraic States

Below, the solutions of g(t,p, zx, zy) = 0 are characterized through an application of

the mean value theorem. The following notation is convenient.
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Definition 8.3.1. For all (t,p, zx, zy) ∈ Dt × Dp × Dx × Dy, define the matrix

M(t,p, zx, zy) ≡ C(t)∂g
∂y

(t,p, zx, zy), and denote the elements of M by mij .

Definition 8.3.2. Let ỹ : I × P → Rny denote an arbitrary function that is affine

on P for every fixed t ∈ I and satisfies ỹ(t,p) ∈ Y (t), ∀(t,p) ∈ I × P .

The function ỹ is essentially used as a reference point in the application of the

mean value theorem below. The assumption that it is affine on P for every fixed t ∈ I

is not required for this purpose, but is required for the relaxation scheme described

in §8.3.2.

Theorem 8.3.3. Let zx : I × P → Rnx satisfy zx(t,p) ∈ X(t), ∀(t,p) ∈ I × P ,

and let zy : I × P → Rny be the unique function satisfying zy(t,p) ∈ Y (t) and

g(t,p, zx(t,p), zy(t,p)) = 0, ∀(t,p) ∈ I × P (see Condition 5 of Assumption 8.2.1).

There exists λ : I × P → [0, 1]ny such that the definition ξi(t,p) ≡ ỹ(t,p) +

λi(t,p)(zy(t,p) − ỹ(t,p)) satisfies

zy,i(t,p) = ỹi(t,p) − 1

mii(t,p, zx(t,p), ξi(t,p))

[

Ci(t)g(t,p, zx(t,p), ỹ(t,p))

+
∑

j 6=i

mij(t,p, zx(t,p), ξi(t,p))(zy,j(t,p) − ỹj(t,p))

]

, (8.5)

for all (t,p) ∈ I × P and every i ∈ {1, . . . , ny}, where Ci denotes the ith row of C.

Proof. Fix any (t,p) ∈ I × P and note that zy(t,p), ỹ(t,p) ∈ Y (t). Since g ∈
C1(Dt × Dp × Dx × Dy,Rny), it is clear that Ci(t)g(t,p, zx(t,p), ·) is differentiable

on Dy. Since Y (t) ⊂ Dy is convex, the mean value theorem asserts that there exists

λi(t,p) ∈ [0, 1] such that ξi(t,p) ≡ ỹ(t,p) + λi(t,p)(zy(t,p) − ỹ(t,p)) satisfies

Ci(t)
(∂g

∂y
(t,p, zx(t,p), ξi(t,p))

)

(zy(t,p) − ỹ(t,p))

= Ci(t)g(t,p, zx(t,p), zy(t,p)) −Ci(t)g(t,p, zy(t,p), ỹ(t,p)),

= −Ci(t)g(t,p, zy(t,p), ỹ(t,p)),

where the last equality follows from the fact that g(t,p, zx(t,p), zy(t,p)) = 0. This
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is equivalent to

Mi(t,p, zx(t,p), ξi(t,p))(zy(t,p) − ỹ(t,p)) = −Ci(t)g(t,p, zx(t,p), ỹ(t,p)),

where Mi denotes the ith row of M. Since mii(t,p, zx(t,p), ξi(t,p)) 6= 0 by Condition

4 of Assumption 8.2.1, zy,i(t,p) can be isolated on the left to give (8.5). Then, it has

been shown that, for arbitrary, (t,p) and i, there exists λi(t,p) ∈ [0, 1] such that

(8.5) is satisfied with ξi(t,p) ≡ ỹ(t,p) + λi(t,p)(zy(t,p) − ỹ(t,p)). Accordingly,

∃λ : I × P → [0, 1]ny satisfying the theorem.

The following definitions simplify Theorem 8.3.3 to give Corollary 8.3.6. This

Corollary provides the characterization of y required to construct the desired relax-

ations.

Definition 8.3.4. Define the set

Φ+ ≡ {(t,p, zx, zy, z̃y,λ, Ĉ) : (t,p,λ) ∈ I × P × [0, 1]ny , zx ∈ X(t),

zy, z̃y ∈ Y (t), Ĉ = C(t)}.

Definition 8.3.5. Define ψ : Φ+ → Rny elementwise, for each i ∈ {1, . . . , ny}, by

ψi(t,p, zx, zy, z̃y,λ, Ĉ) = z̃y,i −
1

mii(t,p, zx, ξ
i)

[

Ĉig(t,p, zx, z̃y)

+
∑

j 6=i

mij(t,p, zx, ξ
i)(zy,j − z̃y,j)

]

, (8.6)

where ξi ≡ z̃y + λi(zy − z̃y) and mij is the ijth element of Ĉ∂g
∂y

.

Corollary 8.3.6. Let zx : I × P → Rnx satisfy zx(t,p) ∈ X(t), ∀(t,p) ∈ I × P ,

and let zy : I × P → Rny be the unique function satisfying zy(t,p) ∈ Y (t) and

g(t,p, zx(t,p), zy(t,p)) = 0, ∀(t,p) ∈ I × P . There exists λ : I × P → [0, 1]ny such

that

zy(t,p) = ψ(t,p, zx(t,p), zy(t,p), ỹ(t,p),λ(t,p),C(t)), ∀(t,p) ∈ I × P. (8.7)
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In particular, there exists λ : I × P → [0, 1]ny such that

y(t,p) = ψ(t,p,x(t,p),y(t,p), ỹ(t,p),λ(t,p),C(t)), ∀(t,p) ∈ I × P. (8.8)

Example 8.3.1. Consider the algebraic equation in (8.4), defined by the function

g(t, p, zx, zy) = zy −
2 sin(p)
√
zy

− 7zx.

Differentiating and applying the mean-value theorem as in Theorem 8.3.3, ψ is given

by

ψ(t, p, zx, zy, z̃y, λ, ĉ) = z̃y −
1

1 + sin(p)

(z̃y+λ(zy−z̃y))
3
2

(

z̃y −
2 sin(p)
√

z̃y
− 7zx

)

. (8.9)

Note that the matrix C of Assumption 8.2.1 is 1×1 in this case and therefore cancels

out in the definition of ψ. In order to characterize the solution y through Corollary

8.3.6, a reference trajectory ỹ must be specified. For the numerical results in §8.6,

ỹ(t, p) = 0.5(yL(t) + yU(t)) was chosen for all t ∈ I.

8.3.2 An Iterative Relaxation Scheme

The characterization of y given in Corollary 8.3.6 can be used to relax y by an iterative

scheme. First, note that Definition 8.3.5 and Assumption 8.2.2 guarantee that ψ is

L-factorable. Let {ψ} : Dψ → MRny be a natural McCormick extension. Since the

set [t, t] × P × X(t) × Y (t) is represented in D by Assumption 8.2.2, it follows that

[t, t]×P ×X(t)×Y (t)× Ỹ (t)× [0, 1]× [C(t),C(t)] is represented in Dψ provided that

no division by an interval containing zero occurs. But by Condition 4 of Assumption

8.2.1, such a division is impossible.

Evaluating the natural McCormick extension of ψ requires bounds on all of its

arguments. By definition, Y (t) is a valid bound on the reference point ỹ(t,p), ∀p ∈ P .

However, sharper bounds will usually be available, as in Example 8.3.1 above, where

the reference point is constant with respect to p. Therefore, we define independent

352



bounds for ỹ below.

Definition 8.3.7. Let ỹL, ỹU : I → Rny be functions satisfying ỹ(t,p) ∈ Ỹ (t) ≡
[ỹL(t), ỹU(t)] ⊂ Y (t), ∀(t,p) ∈ I × P .

Definition 8.3.8. Let uψ, oψ : I × P ×Rnx ×Rnx ×Rny ×Rny → Rny be defined by

uψ(t,p, zcvx , z
cc
x , z

cv
y , z

cc
y ) = max(zcvy , {ψ}cv(T ,P,X ,Y , Ỹ,L, C))

oψ(t,p, zcvx , z
cc
x , z

cv
y , z

cc
y ) = min(zccy , {ψ}cc(T ,P,X ,Y , Ỹ,L, C))

where

X = MC(xL(t),xU(t), zcvx , z
cc
x ) T = MC(t, t, t, t),

Y = MC(yL(t),yU(t), zcvy , z
cc
y ), P = MC(p,p,p,p),

Ỹ = MC(ỹL(t), ỹU(t), ỹ(t,p), ỹ(t,p)), L = MC(0, 1, 0, 1),

C = MC(C(t),C(t),C(t),C(t)).

It will be shown that the previous definition provides a means to compute state

relaxations for y on I × P as a refinement of the state bounds. In particular, the

following theorem holds.

Theorem 8.3.9. Let xcv,xcc : I×P → Rnx be state relaxations for x on I×P . Then

state relaxations for y on I × P , ycv,ycc : I × P → Rny are given by the definitions

ycv(t,p) = uψ(t,p,xcv(t,p),xcc(t,p),yL(t),yU(t)),

ycc(t,p) = oψ(t,p,x
cv(t,p),xcc(t,p),yL(t),yU(t)).

This theorem is proven through a series of more fundamental lemmas that will be

required to show that (8.3) satisfies the conditions of relaxation amplifying dynamics

in 8.4.

Lemma 8.3.10. Let (t,p, zx) ∈ I × P × Rnx satisfy zx ∈ X(t), and let zy ∈ Rny be

the unique point satisfying zy ∈ Y (t) and g(t,p, zx, zy) = 0. For any zcvx , z
cc
x ∈ Rnx
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and zcvy , z
cc
y ∈ Rny satisfying zcvx ≤ zx ≤ zccx and zcvy ≤ zy ≤ zccy ,

uψ(t,p, zcvx , z
cc
x , z

cv
y , z

cc
y ) ≤ zy ≤ oψ(t,p, zcvx , z

cc
x , z

cv
y , z

cc
y ). (8.10)

Proof. Choose any (t,p, zx, zy) ∈ I×P×Rnx ×Rny as in the statement. By Corollary

8.3.6, there exists λ ∈ [0, 1]ny such that

zy = ψ(t,p, zx, zy, ỹ(t,p),λ,C(t)). (8.11)

Choose any zcvx , z
cc
x ∈ Rnx and zcvy , z

cc
y ∈ Rny and suppose that zcvx ≤ zx ≤ zccx and

zcvy ≤ zy ≤ zccy . Using the notation of Definition 8.3.8, define

u′
ψ(t,p, z

cv
x , z

cc
x , z

cv
y , z

cc
y ) ≡ {ψ}cv(T ,P,X ,Y , Ỹ,L, C), (8.12)

o′
ψ(t,p, z

cv
x , z

cc
x , z

cv
y , z

cc
y ) ≡ {ψ}cc(T ,P,X ,Y , Ỹ,L, C).

That is, u′
ψ and o′

ψ are the same as uψ and oψ up to the application of the min and

max functions. By hypothesis,

zx ∈ X(t) ∩ [zcvx , z
cc
x ], zy ∈ Y (t) ∩ [zcvy , z

cc
y ]. (8.13)

Additionally, we make the trivial observations

t ∈ [t, t] ∩ [t, t], ỹ(t,p) ∈ Ỹ (t) ∩ [ỹ(t,p), ỹ(t,p)], (8.14)

p ∈ P ∩ [p,p], C(t) ∈ [C(t),C(t)] ∩ [C(t),C(t)],

λ ∈ [0, 1] ∩ [0, 1].

By Assumption 8.2.2 and Condition 4 of Assumption 8.2.1, the interval

[t, t] × P ×X(t) × Y (t) × Ỹ (t) × [0, 1] × [C(t),C(t)], (8.15)
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is represented in Dψ. Then, by (8.13) and (8.14), we may apply Lemma 2.7.3 with

x := (t,p, zx, zy, ỹ(t,p),λ,C(t)), (8.16)

xcv := (t,p, zcvx , z
cv
y , ỹ(t,p), 0,C(t)),

xcc := (t,p, zccx , z
cc
y , ỹ(t,p), 1,C(t)).

This gives

u′
ψ(t,p, zcvx , z

cc
x , z

cv
y , z

cc
y ) ≤ ψ(t,p, zx, zy, ỹ(t,p),λ,C(t)) ≤ o′

ψ(t,p, z
cv
x , z

cc
x , z

cv
y , z

cc
y ).

Combining this with (8.11) yields

u′
ψ(t,p, zcvx , z

cc
x , z

cv
y , z

cc
y ) ≤ zy ≤ o′

ψ(t,p, zcvx , z
cc
x , z

cv
y , z

cc
y ). (8.17)

Combining this with zcvy ≤ zy ≤ zccy gives (8.10).

Lemma 8.3.11. Let zx : I × P → Rnx and zy : I × P → Rny satisfy zx(t,p) ∈ X(t)

and zy(t,p) ∈ Y (t), ∀(t,p) ∈ I ×P . Let zcvx , z
cc
x : I ×P → Rnx and zcvy , z

cc
y : I ×P →

Rny and choose any (λ,p1,p2) ∈ (0, 1) × P × P . For any t ∈ I, if

1. zcvx (t, ·) and zcvy (t, ·) are consistent with convexity at (λ,p1,p2),

2. zccx (t, ·) and zccy (t, ·) are consistent with concavity at (λ,p1,p2),

3. zcvx (t,q) ≤ zx(t,q) ≤ zccx (t,q) and zcvy (t,q) ≤ zy(t,q) ≤ zccy (t,q) for all q ∈
{p1,p2, λp1 + (1 − λ)p2},

then the functions

P ∋ p 7−→ uψ(t,p, zcvx (t,p), zccx (t,p), zcvy (t,p), zccy (t,p)), (8.18)

P ∋ p 7−→ oψ(t,p, z
cv
x (t,p), zccx (t,p), zcvy (t,p), zccy (t,p)),

are, respectively, consistent with convexity and consistent with concavity at (λ,p1,p2).
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Proof. Choose any (λ,p1,p2) ∈ (0, 1) × P × P , define p3 ≡ λp1 + (1 − λ)p2, and

suppose that t ∈ I is such that Conditions 1-3 hold.

By Assumption 8.2.2 and Condition 4 of Assumption 8.2.1, the interval

X := [t, t] × P ×X(t) × Y (t) × Ỹ (t) × [0, 1] × [C(t),C(t)], (8.19)

is represented in Dψ. We will apply Lemma 2.7.4 with

xcvi := (t,pi, z
cv
x (t,pi), z

cv
y (t,pi), ỹ(t,pi), 0,C(t)),

xcci := (t,pi, z
cc
x (t,pi), z

cc
y (t,pi), ỹ(t,pi), 1,C(t)),

and i ∈ {1, 2, 3}. To verify the hypotheses of that lemma, we first show that X ∩
[xcvi ,x

cc
i ] 6= ∅ for all i ∈ {1, 2, 3}. By hypothesis,

X(t) ∩ [zcvx (t,pi), z
cc
x (t,pi)] 6= ∅, Y (t) ∩ [zcvy (t,pi), z

cc
y (t,pi)] 6= ∅, (8.20)

for all i ∈ {1, 2, 3}, because these intervals contain zx(t,pi) and zy(t,pi), respectively.

Additionally, we make the trivial observations

[t, t] ∩ [t, t] 6= ∅, Ỹ (t) ∩ [ỹ(t,pi), ỹ(t,pi)] 6= ∅, (8.21)

P ∩ [pi,pi] 6= ∅, [C(t),C(t)] ∩ [C(t),C(t)] 6= ∅,

[0, 1] ∩ [0, 1] 6= ∅,

for all i ∈ {1, 2, 3}.

Now, when considered as functions on P , the constant values t, 0, 1 and C(t), as

well as the identity function p, are all both consistent with convexity and consistent

with concavity at (λ,p1,p2). Moreover, by the assumption that ỹ(t, ·) is affine on P ,

it is also both consistent with convexity and consistent with concavity at (λ,p1,p2).

Combining this with Hypotheses 1 and 2 of the present lemma, Theorem 2.7.4 now
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shows that

P ∋ p 7−→ u′
ψ(t,p, zcvx (t,p), zccx (t,p), zcvy (t,p), zccy (t,p)), (8.22)

P ∋ p 7−→ o′
ψ(t,p, z

cv
x (t,p), zccx (t,p), zcvy (t,p), zccy (t,p)),

are, respectively, consistent with convexity and consistent with concavity at (λ,p1,p2)

(u′
ψ and o′

ψ are defined as in (8.12)).

Since the min of two convex functions is convex, Definition 8.3.8, Hypothesis 1

and (8.22) imply that

P ∋ p 7−→ uψ(t,p, zcvx (t,p), zccx (t,p), zcvy (t,p), zccy (t,p)) (8.23)

is consistent with convexity at (λ,p1,p2). Arguing analogously for oψ, this proves

the lemma.

Lemma 8.3.12. uψ and oψ are continuous on I × P × Rnx × Rnx × Rny × Rny .

Moreover, ∃L ∈ R+ such that

‖uψ(t,p, zcvx , z
cc
x , z

cv
y , z

cc
y ) − uψ(t,p, ẑcvx , ẑ

cc
x , ẑ

cv
y , ẑ

cc
y )‖∞

+ ‖oψ(t,p, zcvx , z
cc
x , z

cv
y , z

cc
y ) − oψ(t,p, ẑcvx , ẑ

cc
x , ẑ

cv
y , ẑ

cc
y )‖∞

≤ L(‖zcvx − ẑcvx ‖∞ + ‖zccx − ẑccx ‖∞ + ‖zcvy − ẑcvy ‖∞ + ‖zccy − ẑccy ‖∞)

for all (t,p, zcvx , z
cc
x , ẑ

cv
x , ẑ

cc
x , z

cv
y , z

cc
y , ẑ

cv
y , ẑ

cc
y ) ∈ I × P × R4nx × R4ny .

Proof. This assertions follows from Corollary 2.7.8 by a construction exactly analo-

gous to the proof of Lemma 7.6.7.

Theorem 8.3.9 can now be proven by noting that, for any t ∈ I, yL(t) and yU(t)

are, respectively convex and concave relaxations of y(t, ·) on P . Then, the conclusion

follows at once from Lemmas 8.3.10 and 8.3.11. Thus, Theorem 8.3.9 gives a simple

method for refining the state bounds yL and yU to obtain state relaxations for y. An

example of this construction is given in Example 8.3.2 below.
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Example 8.3.2. Recall the definition of ψ in (8.9) for the example DAE (8.4). The

construction of uψ and oψ for this example is shown here. Note, however, that this

is only illustrative. The entire procedure can be easily automated using operator

overloading, as in MC++ (http://www3.imperial.ac.uk/people/b.chachuat/research).

First, bounds on the reference trajectory, ỹL and ỹU , are required as per Definition

8.3.7. Since ỹ was chosen to be constant with respect to p in Example 8.3.1, we choose

ỹL(t) = ỹU(t) = ỹ(t), ∀t ∈ I. Furthermore, note that ỹ(t, ·) is trivially affine for each

t ∈ I.

For any (t, p, zcvx , z
cc
x , z

cv
y , z

cc
y ) ∈ I × P × R4, appropriate values for uψ and oψ are

computed by evaluating the natural McCormick extension of ψ with the initializations

given in Definition 8.3.8. This is implemented by the factorization of ψ shown in

Table 8.1 with factors vk, inclusion factors Vk, and relaxation factors, Vk. The values

uψ(t, p, z
cv
x , z

cc
x , z

cv
y , z

cc
y ) and oψ(t, p, z

cv
x , z

cc
x , z

cv
y , z

cc
y ) are given by Vcv25 and Vcc25 in Table

8.1, respectively.

The state relaxations given by Theorem 8.3.9 can obviously be refined iteratively.

That is, sequences of state relaxations for y, {ycv,k} and {ycc,k}, can be computed

by recursive application of uψ and oψ. However, a direct recursive application of

uψ and oψ is not the most efficient way to accomplish such an iterative refinement.

In particular, this would update each ycv,k+1
j and ycc,k+1

j based on the relaxations

ycv,k and ycc,k, regardless of j. However, if the sequence of computations updates

ycv,k1 and ycc,k1 before ycv,k2 and ycc,k2 , for example, then the updated relaxations ycv,k+1
1

and ycc,k+1
1 can be used in the subsequent computation of ycv,k+1

2 and ycc,k+1
2 . This

accelerated updating scheme is analogous to that used in the Gauss-Seidel algorithm

for iteratively solving systems of equations. The following functions describes this

procedure.

Definition 8.3.13. For any K ∈ N, define the functions ūKψ , ō
K
ψ : I×P×Rnx×Rnx →

Rny by

ūKψ (t,p, zcvx , z
cc
x ) ≡ zcv,Ky and ōKψ (t,p, zcvx , z

cc
x ) ≡ zcc,Ky ,
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Table 8.1: Factorization and computation of ψ at (t, p, zx, zy, z̃y, λ) and uψ and oψ at
(t, p, zcvx , z

cc
x , z

cv
y , z

cc
y ).

k vk Vk Vk

1 p P MC(p, p, p, p)
2 zx X(t) MC(xL(t), xU (t), zcv

x , zcc
x )

3 zy Y (t) MC(yL(t), yU (t), zcv
y , zcc

y )

4 z̃y Ỹ (t) MC(ỹL(t), ỹU (t), ỹ(t,p), ỹ(t,p))
5 λ [0, 1] MC(0, 1, 0, 1)
6 −v4 −V4 −V4

7 v3 + v6 V3 + V6 V3 + V6

8 v5v7 V5V7 V5V7

9 v4 + v8 V4 + V8 V4 + V8

10 (v9)
3/2 (V9)

3/2 (V9)
3/2

11 1/v10 1/V10 1/V10

12 sin(v1) sin(V1) sin(V1)
13 v11v12 V11V12 V11V12

14 1 + v13 1 + V13 1 + V13

15 1/v14 1/V14 1/V14

16
√

v4

√
V4

√V4

17 1/v16 1/V16 1/V16

18 −2v12 −2V12 −2V12

19 v17v18 V17V18 V17V18

20 v4 + v19 V4 + V19 V4 + V19

21 −7v2 −7V2 −7v2

22 v20 + v21 V20 + V21 V20 + V21

23 v15v22 V15V22 V15V22

24 −v23 −V23 −V23

25 v4 + v24 V4 + V24 V4 + V24
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where zcv,0y = yL(t), zcc,0y = yU(t), and

γ
cv,k
i = (zcv,k+1

y,1 , . . . , zcv,k+1
y,i−1 , zcv,ky,i , . . . , z

cv,k
y,ny

)

γ
cc,k
i = (zcc,k+1

y,1 , . . . , zcc,k+1
y,i−1 , z

cc,k
y,i , . . . , z

cc,k
y,ny

)

zcv,k+1
y,i = uψ,i(t,p, z

cv
x , z

cc
x ,γ

cv,k
i ,γcc,ki )

zcc,k+1
y,i = oψ,i(t,p, z

cv
x , z

cc
x ,γ

cv,k
i ,γcc,ki )

for all i = 1, . . . , ny and all 0 ≤ k < K.

Theorem 8.3.14. Let xcv,xcc : I × P → Rnx be state relaxations for x on I × P .

Then state relaxations for y on I × P , ycv,ycc : I × P → Rny are given by the

definitions

ycv(t,p) = ūKψ (t,p,xcv(t,p),xcc(t,p)),

ycc(t,p) = ōKψ (t,p,xcv(t,p),xcc(t,p)).

Again, this result is proven through a series of more fundamental lemmas.

Lemma 8.3.15. For any (t,p, zcvx , z
cc
x ) ∈ I×P×Rnx×Rnx satisfying X(t)∩[zcvx , z

cc
x ] 6=

∅,

yL(t) ≤ ūKψ (t,p, zcvx , z
cc
x ) ≤ ōKψ (t,p, zcvx , z

cc
x ) ≤ yU(t). (8.24)

Moreover, choosing any zx ∈ X(t) ∩ [zcvx , z
cc
x ],

ūKψ (t,p, zcvx , z
cc
x ) ≤ zy ≤ ōKψ (t,p, zcvx , z

cc
x ), (8.25)

where zy ∈ Rny is the unique point satisfying zy ∈ Y (t) and g(t,p, zx, zy) = 0.

Proof. Choose any (t,p, zcvx , z
cc
x ) ∈ I × P × Rnx × Rnx and suppose that X(t) ∩

[zcvx , z
cc
x ] 6= ∅. Define the quantities zcv,ky , zcc,ky , γcv,ki and γ

cc,k
i as in Definition

8.3.13. Since zcv,0y = yL(t) and zcc,0y = yU(t) by definition, the inequalities yL(t) ≤
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ūKψ (t,p, zcvx , z
cc
x ) and ōKψ (t,p, zcvx , z

cc
x ) ≤ yU(t) follow from the use of the min and max

functions in the definition of uψ and oψ using a trivial inductive argument. Since,

∃zx ∈ X(t) ∩ [zcvx , z
cc
x ], it suffices to show (8.25), since this then implies (8.24).

Choose any zx ∈ X(t) ∩ [zcvx , z
cc
x ] 6= ∅ and define zy accordingly. By definition,

zy ∈ [zcv,0y , zcc,0y ]. Suppose that this is true for some arbitrary k ≥ 0. Since γcv,k1 =

zcv,ky and γcc,k1 = zcc,ky , zy ∈ [γcv,k1 ,γcc,k1 ]. Then, Lemma 8.3.10 implies that zy,1 ∈
[zcv,k+1
y,1 , zcc,k+1

y,1 ]. Suppose that, for some 1 < ℓ ≤ ny, zy,i ∈ [zcv,k+1
y,i , zcc,k+1

y,i ], for all

i < ℓ. By definition, it follows that zy ∈ [γcv,kℓ ,γcc,kℓ ]. By Lemma 8.3.10, this implies

that zy,ℓ ∈ [zcv,k+1
y,ℓ , zcc,k+1

y,ℓ ]. Now, applying finite induction over ℓ shows that zy ∈
[zcv,k+1
y , zcc,k+1

y ]. Induction over k shows that this conclusion holds for all k ∈ N.

Lemma 8.3.16. Let zcvx , z
cc
x : I×P → Rnx and choose any (λ,p1,p2) ∈ (0, 1)×P×P .

For every t ∈ I such that

1. zcvx (t, ·) is consistent with convexity at (λ,p1,p2),

2. zccx (t, ·) is consistent with concavity at (λ,p1,p2),

3. X(t) ∩ [zcvx (t,q), zccx (t,q)] 6= ∅, ∀q ∈ {p1,p2, λp1 + (1 − λ)p2},

the functions

P ∋ p 7−→ ūKψ (t,p, zcvx (t,p), zccx (t,p)),

P ∋ p 7−→ ōKψ (t,p, zcvx (t,p), zccx (t,p)),

are, respectively, consistent with convexity and consistent with concavity at (λ,p1,p2).

Proof. Considering the evaluation of ūKψ and ōKψ at (t,p, zcvx (t,p), zccx (t,p)), define

the quantities zcv,ky (t,p), zcc,ky (t,p), γcv,ki (t,p) and γcc,ki (t,p) according to Definition

8.3.13 for all (t,p) ∈ I × P , all k ∈ {1, . . . , K} and all i ∈ {1, . . . , ny}.
Choose any (λ,p1,p2) ∈ (0, 1)×P ×P , define p3 ≡ λp1 +(1−λ)p2, and suppose

that t ∈ I is such that 1-3 hold. By Hypothesis 3, it is possible to choose a function

zx : I × P → Rnx such that zx(s,p) ∈ X(s), ∀(s,p) ∈ I × P and zx(t,pi) ∈
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[zcvx (t,pi), z
cc
x (t,pi)], ∀i ∈ {1, 2, 3}. Let zy : I × P → Rny be the unique function

satisfying zy(s,p) ∈ Y (s) and g(s,p, zx(s,p), zy(s,p)) = 0, ∀(s,p) ∈ I × P .

For arbitrary functions rcv, rcc : I × P → Rny , consider the hypotheses:

1. rcv(t, ·) is consistent with convexity at (λ,p1,p2),

2. rcv(t, ·) is consistent with concavity at (λ,p1,p2),

3. rcv(t,pi) ≤ zy(t,pi) ≤ rcc(t,pi), ∀i ∈ {1, 2, 3}.

By definition, the Hypotheses 1-3 above hold with (rcv, rcc) = (zcv,0y , zcc,0y ). As an

inductive hypothesis, suppose that this is true for some k ≥ 0.

Since γcv,k1 = zcv,ky and γcc,k1 = zcc,ky , 1-3 hold with (rcv, rcc) = (γcv,k1 ,γcc,k1 ). Sup-

pose that, for some 1 ≤ ℓ < ny, Hypotheses 1-3 hold with (rcv, rcc) = (γcv,kℓ ,γcc,kℓ ).

Then, Lemma 8.3.11 may be applied with (zcvy , z
cc
y ) := (γcv,kℓ ,γcc,kℓ ). This implies that

zcv,k+1
y,ℓ (t, ·) and zcc,k+1

y,ℓ (t, ·) are, respectively, consistent with convexity and consistent

with concavity at (λ,p1,p2). For each i ∈ {1, 2, 3}, applying Lemma 8.3.10 with

(zx, z
cv
x , z

cv
x ) := (zx(t,pi), z

cv
x (t,pi), z

cc
x (t,pi)), (8.26)

(zy, z
cv
y , z

cv
y ) := (zy(t,pi),γ

cv,k
ℓ (t,pi),γ

cc,k
ℓ (t,pi)), (8.27)

proves that zcv,k+1
y,ℓ (t,pi) ≤ zy,ℓ(t,pi) ≤ zcc,k+1

y,ℓ (t,pi). It follows that Hypotheses 1-3

hold with (rcv, rcc) = (γcv,kℓ+1 ,γ
cc,k
ℓ+1). Finite induction over ℓ shows that 1-3 hold with

(rcv, rcc) = (γcv,kny
,γcc,kny

). Then, one more application of the inductive step above shows

that zcv,k+1
y,ny

(t, ·) and zcc,k+1
y,ny

(t, ·) are, respectively, consistent with convexity and consis-

tent with concavity at (λ,p1,p2), and that zcv,k+1
y,ny

(t,pi) ≤ zy,ny
(t,pi) ≤ zcc,k+1

y,ny
(t,pi),

∀i ∈ {1, 2, 3}. Combining this with the fact that 1-3 hold with (rcv, rcc) = (γcv,kny
,γcc,kny

),

it follows that 1-3 hold with (rcv, rcc) = (zcv,k+1, zcc,k+1). Induction over k now shows

that this conclusion holds for all 0 ≤ k ≤ K. In particular, Hypotheses 1 and 2 hold

with (rcv, rcc) = (zcv,K , zcc,K), which is the desired result.

Theorem 8.3.14 now follows directly from Lemmas 8.3.15 and 8.3.16.
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8.4 Relaxation Amplifying Dynamics

In the previous section, the functions ūKψ and ōKψ were defined. To specify fully the

auxiliary system (8.3), it remains to define xcv0 , xcc0 , uf and of . These functions

are defined below, and it is then shown that (8.3) furnishes state relaxations as its

solutions by appealing to the theory of relaxation amplifying dynamics (§7.3).

Definition 8.4.1. Let uf , of : I × P × Rnx × Rnx × Rny × Rny → Rny and xcv0 ,x
cc
0 :

P → Rnx → Rnx be defined by

uf(t,p, z
cv
x , z

cc
x , z

cv
y , z

cc
y ) = {f}cv(T ,P,X ,Y), xcv0 (p) = {x0}cv(P),

of(t,p, z
cv
x , z

cc
x , z

cv
y , z

cc
y ) = {f}cc(T ,P,X ,Y), xcc0 (p) = {x0}cc(P),

where

X = MC(xL(t),xU(t), zcvx , z
cc
x ), T = MC(t, t, t, t).

Y = MC(yL(t),yU(t), zcvy , z
cc
y ), P = MC(p,p,p,p).

Because the algebraic equations in the auxiliary system (8.3) are explicit, it can

be viewed as a system of explicit ODEs with right-hand side functions u, o : I ×P ×
Rnx × Rnx defined by

u(t,p, zcvx , z
cc
x ) ≡ uf (t,p, z

cv
x , z

cc
x , ū

K
ψ (t,p, zcvx , z

cc
x ), ōKψ (t,p, zcvx , z

cc
x )), (8.28)

o(t,p, zcvx , z
cc
x ) ≡ of (t,p, z

cv
x , z

cc
x , ū

K
ψ (t,p, zcvx , z

cc
x ), ōKψ (t,p, zcvx , z

cc
x )).

In the following results, it is established that (u, o) defined in this way describe

relaxation amplifying dynamics for x on I × P .

Lemma 8.4.2. For arbitrary functions zcvx , z
cc
x : I × P → Rnx and every p ∈ P , the

following conditions hold:

1. For a.e. t ∈ I such that zcvx (t,p) ≤ zccx (t,p) and X(t) ∩ [zcvx (t,p), zccx (t,p)] 6= ∅,
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u and o satisfy

u(t,p, zcvx (t,p), zccx (t,p)) ≤ o(t,p, zcvx (t,p), zccx (t,p)). (8.29)

2. For a.e. t ∈ I such that zcvx (t,p) ≤ x(t,p) ≤ zccx (t,p), u and o satisfy

u(t,p, zcvx (t,p), zccx (t,p)) ≤ ẋ(t,p) ≤ o(t,p, zcvx (t,p), zccx (t,p)). (8.30)

Proof. Choose arbitrary functions zcvx , z
cc
x : I × P → Rnx and let p ∈ P . For any

t ∈ I, (8.29) follows from Definition 8.4.1 and the fact that {f} takes values in MRnx .

Suppose that t ∈ I is such that zcvx (t,p) ≤ x(t,p) ≤ zccx (t,p). Define

zcvy (t,p) ≡ ūKψ (t,p, zcvx (t,p), zccx (t,p)), (8.31)

zccy (t,p) ≡ ōKψ (t,p, zcvx (t,p), zccx (t,p)).

Applying Lemma 8.3.15 with (zx, z
cv
x , z

cc
x ) := (x(t,p), zcvx (t,p), zccx (t,p)) proves that

zcvy (t,p) ≤ y(t,p) ≤ zccy (t,p). (8.32)

By Assumption 8.2.2, the interval [t, t]× P ×X(t)× Y (t) is represented in D. Thus,

Lemma 2.7.3 may be applied with

x := (t,p,x(t,p),y(t,p)), (8.33)

xcv := (t,p, zcvx (t,p), zcvy (t,p)),

xcc := (t,p, zccx (t,p), zccy (t,p)),
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to conclude that

uf (t,p, z
cv
x (t,p), zccx (t,p), zcvy (t,p), zccy (t,p)) (8.34)

≤ f(t,p,x(t,p),y(t,p))

≤ of(t,p, z
cv
x (t,p), zccx (t,p), zcvy (t,p), zccy (t,p)),

which is the desired inequality.

Corollary 8.4.3. The functions (u, o) describe bound amplifying dynamics for x on

I × P .

Proof. This follows immediately from Conclusion 2 of Lemma 8.4.2.

Lemma 8.4.4. Let zcvx , z
cc
x : I×P → Rnx and choose any (λ,p1,p2) ∈ (0, 1)×P ×P .

For every t ∈ I such that

1. zcvx (t, ·) is consistent with convexity at (λ,p1,p2),

2. zccx (t, ·) is consistent with concavity at (λ,p1,p2),

3. X(t) ∩ [zcvx (t,q), zccx (t,q)] 6= ∅, ∀q ∈ {p1,p2, λp1 + (1 − λ)p2},

the functions

P ∋ p 7−→ u(t,p, zcvx (t,p), zccx (t,p)),

P ∋ p 7−→ o(t,p, zcvx (t,p), zccx (t,p)),

are, respectively, consistent with convexity and consistent with concavity at (λ,p1,p2).

Proof. Define zcvy (t,p) and zccy (t,p) as in (8.31), for all (t,p) ∈ I×P . Let (λ,p1,p2) ∈
(0, 1) × P × P , define p3 ≡ λp1 + (1 − λ)p2, and suppose that t ∈ I is such that

Conditions 1-3 hold. Under these hypotheses, Lemma 8.3.16 implies that zcvy (t, ·) and

zccy (t, ·) are, respectively, consistent with convexity and consistent with concavity at

(λ,p1,p2). Moreover, for each i ∈ {1, 2, 3}, applying Lemma 8.3.15 with (zcvx , z
cc
x ) :=
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(zcvx (t,pi), z
cc
x (t,pi)) proves that zcvy (t,pi) ≤ zccy (t,pi) and [zcvy (t,pi), z

cc
y (t,pi)] ⊂ Y (t),

and hence Y (t) ∩ [zcvy (t,pi), z
cc
y (t,pi)] 6= ∅.

By Assumption 8.2.2, the interval [t, t] × P × X(t) × Y (t) is represented in D.

Thus, Lemma 2.7.4 may be applied with

xcvi ≡ (t,pi, z
cv
x (t,pi), z

cv
y (t,pi)), (8.35)

xcci ≡ (t,pi, z
cc
x (t,pi), z

cc
y (t,pi)), (8.36)

for all i ∈ {1, 2, 3}, to conclude that the functions

P ∋ p 7−→ uf (t,p, z
cv
x (t,p), zccx (t,p), zcvy (t,p), zccy (t,p)), (8.37)

P ∋ p 7−→ of (t,p, z
cv
x (t,p), zccx (t,p), zcvy (t,p), zccy (t,p)),

are, respectively, consistent with convexity and consistent with concavity at (λ,p1,p2).

By (8.28) and (8.31), this is the desired result.

Corollary 8.4.5. The functions (u, o) describe convexity amplifying dynamics for x

on I × P .

Proof. Choose arbitrary functions zcvx , z
cc
x : I×P → Rnx , let (λ,p1,p2) ∈ (0, 1)×P ×

P , and suppose that t ∈ I is such that Conditions 1-3 of Definition 7.3.3 hold. This

immediately implies that Conditions 1-3 of Lemma 8.4.4 are satisfied, which gives the

desired conclusion.

It has now been shown that (u, o) describe relaxation amplifying dynamics for x

on I × P . In order to guarantee that (8.3) describes state relaxations for x on I × P

as its solutions, the conditions of Assumption 7.2.3 must be verified as well. Since

the initial conditions in (8.3) are defined to be the standard McCormick relaxations

of x0 on P , they are Lipschitz on P on account of Corollary 2.6.2. Then, Assumption

7.2.3 holds in light of the following lemma.

Lemma 8.4.6. The functions u and o are continuous on I×P×Rnx×Rnx . Moreover,
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∃L ∈ R+ such that

‖u(t,p, zcvx , z
cc
x ) − u(t,p, ẑcvx , ẑ

cc
x )‖∞+‖o(t,p, zcvx , z

cc
x ) − o(t,p, ẑcvx , ẑ

cc
x )‖∞ (8.38)

≤ L(‖zcvx − ẑcvx ‖∞ + ‖zccx − ẑccx ‖∞),

for all (t,p, zcvx , z
cc
x , ẑ

cv
x , ẑ

cc
x ) ∈ I × P × R4nx.

Proof. Using Corollary 2.7.8 and a construction exactly analogous to the proof of

Lemma 7.6.7, it is straightforward to show that uf and of are continuous on I ×P ×
Rnx × Rnx × Rny × Rny , and ∃Lf ∈ R+ such that

‖uf (t,p, zcvx , zccx , zcvy , zccy ) − uf (t,p, ẑ
cv
x , ẑ

cc
x , ẑ

cv
y , ẑ

cc
y )‖∞ (8.39)

+ ‖of(t,p, zcvx , zccx , zcvy , zccy ) − of (t,p, ẑ
cv
x , ẑ

cc
x , ẑ

cv
y , ẑ

cc
y )‖∞ (8.40)

≤ Lf (‖zcvx − ẑcvx ‖∞ + ‖zccx − ẑccx ‖∞ + ‖zcvy − ẑcvy ‖∞ + ‖zccy − ẑccy ‖∞), (8.41)

for all (t,p, zcvx , z
cc
x , ẑ

cv
x , ẑ

cc
x , z

cv
y , z

cc
y , ẑ

cv
y , ẑ

cc
y ) ∈ I × P × R4nx × R4ny .

Sine the composition of continuous functions is continuous, it follows from Lemma

8.3.12 that ūKψ and ōKψ are continuous on I × P × Rnx × Rnx . Moreover, since the

composition of Lipschitz functions is Lipschitz, it further follows from Lemma 8.3.12

that ∃Lψ ∈ R+ such that

‖ūKψ (t,p, zcvx , z
cc
x ) − ūKψ (t,p, ẑcvx , ẑ

cc
x )‖∞+‖ōKψ (t,p, zcvx , z

cc
x ) − ōKψ (t,p, ẑcvx , ẑ

cc
x )‖∞

≤ Lψ(‖zcvx − ẑcvx ‖∞ + ‖zccx − ẑccx ‖∞),

for all (t,p, zcvx , z
cc
x , ẑ

cv
x , ẑ

cc
x ) ∈ I×P×R4nx . Again using composition results, it follows

that u and o are continuous, and that (8.38) holds with L = LfLψ.

Corollary 8.4.7. The auxiliary system (8.3) has a unique solution (xcv,xcc,ycv,ycc)

on all of I × P , and xcv, xcc, ycv and ycc are state relaxations for (x,y) on I × P .

Proof. Existence of the solution and the fact that xcv and xcc are state relaxations of

x on I×P follows from Theorem 7.3.4. The fact that ycv and ycc are state relaxations

of y on I × P follows from Theorem 8.3.9.
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Table 8.2: Factorization and computation of f at (t, p, zx, zy) and uf and of at
(t, p, zcvx , z

cc
x , z

cv
y , z

cc
y ).

k vk Vk Vk

1 p P MC(p, p, p, p)
2 zx X(t) MC(xL(t), xU (t), zcv

x , zcc
x )

3 zy Y (t) MC(yL(t), yU (t), zcv
y , zcc

y )

4 −(1/2)v1 −(1/2)V1 −(1/2)V1

5 v3 + v4 V3 + V4 V3 + V4

6 −(1/2)v5 −(1/2)V5 −(1/2)V5

7 v6v2 V6V2 V6V2

According to the previous Corollary, state relaxations of (x,y) on I × P can be

computed by constructing the auxiliary system of DAEs (8.3) and solving it using

any standard numerical integration technique. For the DAEs (8.4), the construction

of this system was initiated in Examples 8.3.1 and 8.3.2, and is completed in the

following example.

Example 8.4.1. Consider the functions

f(t, p, zx, zy) = −1

2
(zy −

1

2
p)zx, x0(p) = 1,

from the example DAEs (8.4). Here, we demonstrate the computation of xcv0 , xcc0 , uf

and of for this example, as per Definition 8.4.1. Since x0 is constant, appropriate

convex and concave relaxations are simply xcv0 = xcc0 = x0.

Now consider uf and of . For any (t, p, zcvx , z
cc
x , z

cv
y , z

cc
y ) ∈ I × P × Rnx × Rnx ×

Rny ×Rny , appropriate values for the functions uf and of at (t, p, zcvx , z
cc
x , z

cv
y , z

cc
y ) are

computed by evaluating the natural McCormick extension of ψ with the initializations

given in Definition 8.4.1. This is implemented by the factorization of f shown in Table

8.2 with factors vk, inclusion factors Vk, and relaxation factors, Vk. The values of

uf(t, p, z
cv
x , z

cc
x , z

cv
y , z

cc
y ) and of(t, p, z

cv
x , z

cc
x , z

cv
y , z

cc
y ) are given by Vcv7 and Vcc7 in Table

8.2, respectively.
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8.5 Relaxation Preserving Dynamics

In this section, a modified auxiliary system is defined which provides sharper state

relaxations for (x,y) by appealing to the theory of relaxation preserving dynamics

(§7.4). Given the properties already established for the functions (u, o) defined by

(8.28), functions describing relaxation preserving dynamics for x on I × P can be

derived through the use of the functions Rcv
i and Rcc

i (Definition 7.6.9), exactly as in

§7.6.2.

For the remainder of this section, define u, o : I × P × Rnx × Rnx → Rnx by

ui(t,p, z
cv
x , z

cc
x ) = uf,i(t,p,Rcv

i (zcvx , z
cc
x ), ūKψ (t,p,Rcv

i (zcvx , z
cc
x )), (8.42)

ōKψ (t,p,Rcv
i (zcvx , z

cc
x ))),

oi(t,p, z
cv
x , z

cc
x ) = of,i(t,p,Rcc

i (zcvx , z
cc
x ), ūKψ (t,p,Rcc

i (zcvx , z
cc
x )),

ōKψ (t,p,Rcc
i (zcvx , z

cc
x ))),

for all (t,p, zcvx , z
cc
x ) ∈ I × P × Rnx × Rnx and each i ∈ {1, . . . , nx}.

Corollary 8.5.1. Define (u, o) as in (8.42). The functions (u, o) describe bound

preserving dynamics for x on I × P .

Proof. This is an immediate consequence of Lemmas 8.4.2 and 7.6.10.

Corollary 8.5.2. Define (u, o) as in (8.42). The functions (u, o) describe convexity

preserving dynamics for x on I × P .

Proof. This is an immediate consequence of Lemmas 8.4.4 and 7.6.11.

Given the previous two Corollaries, it follows from Theorems 7.5.5 and 7.5.7 in

§7.5 that state relaxations for x on I×P are given by the solutions of (7.13) with the
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definitions (8.42). Using the simplification of Lemma 7.5.6, this system is defined by

ẋcvi (t,p) =































uf,i(t,p,Rcv
i (xcv(t,p),xcc(t,p)),ycvi,cv(t,p),ycci,cv(t,p))

if xcvi (t,p) 6= xLi (t)

max(ẋLi (t), uf,i(t,p,Rcv
i (xcv(t,p),xcc(t,p)),ycvi,cv(t,p),ycci,cv(t,p)))

otherwise

,

ycvi,cv(t,p) = ūKψ (t,p,Rcv
i (xcv(t,p),xcc(t,p))),

ycci,cv(t,p) = ōKψ (t,p,Rcv
i (xcv(t,p),xcc(t,p))),

ẋcci (t,p) =































of,i(t,p,Rcc
i (xcv(t,p),xcc(t,p)),ycvi,cc(t,p),ycci,cc(t,p))

if xcci (t,p) 6= xUi (t)

min(ẋUi (t), of,i(t,p,Rcc
i (xcv(t,p),xcc(t,p)),ycvi,cc(t,p),ycci,cc(t,p)))

otherwise

,

ycvi,cc(t,p) = ūKψ (t,p,Rcc
i (xcv(t,p),xcc(t,p))),

ycci,cc(t,p) = ōKψ (t,p,Rcc
i (xcv(t,p),xcc(t,p))),

xcvi (t0,p) = max(xLi (t0), x
cv
0,i(p)), xcci (t0,p) = min(xUi (t0), x

cc
0,i(p)), (8.43)

for each i = 1, . . . , nx. Note that the explicit equations for the algebraic relaxations

are composed with Rcv
i and Rcc

i , so that there are 2nx complete sets of ny alge-

braic variables involved in this system. In general, it is not necessary for either of

(ycvi,cv,y
cc
i,cv) or (ycvi,cc,y

cc
i,cc) to be state relaxations for y on I × P , for any i. However,

state relaxations for y on I×P can be computed after the solution of (8.43) through

the definitions

ycv(t,p) = ūKψ (t,p,xcv(t,p),xcc(t,p)), (8.44)

ycc(t,p) = ōKψ (t,p,xcv(t,p),xcc(t,p)),

as per Theorem 8.3.14.
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8.6 Numerical Examples

All numerical experiments in this section were performed on a Dell Precision T3400

workstation with a 2.83 GHz Intel Core2 Quad CPU. One core and 512 MB of memory

were dedicated to each job.

Example 8.6.1. Numerical results for the DAEs (8.4) are shown in Figures 8-1 and 8-

2. The figures show the parametric final time solutions x(t, ·) and y(t, ·), respectively,

which are both nonconvex (solid curves). The figures also show the state bounds at

tf , computed using the single-phase method of Chapter 6 (circles). Finally, Figures

8-1 and 8-2 show state relaxations for (x, y), computed by deriving and solving the

systems (8.3) (squares) and (8.43) (dashed). In constructing ūKψ and ōKψ by definition

8.3.13, the value K = 10 was used. For numerical solution, (8.3) was regarded as an

explicit system of ODEs and integrated using the BDF method in CVODES [44] with

relative and absolute tolerances of 1× 10−6. The system (8.43) was also solved using

CVODES through the event detection scheme described in §7.6.3. Clearly, the state

relaxations derived through the theory of relaxation preserving dynamics are much

tighter than those derived through relaxation amplifying dynamics.

8.7 Conclusion

Two numerical method has been presented for computing convex and concave relax-

ations of the parametric solutions of a system of nonlinear, semi-explicit, index-one

DAEs. Relaxations of the algebraic variables are computed by iterative refinement

of known interval bounds which are available from the methods of Chapter 6. This

procedure is then used in the definition of an auxiliary system of DAEs, the solu-

tions of which provide the desired relaxations of both the differential and algebraic

variables. This relaxation procedure was demonstrated for a simple example prob-

lem, and the computed relaxations were shown to provide tight approximations to

the original DAE solutions. Analogous to the results for ODEs in Chapter 7, it was

observed that state relaxations computed based on the concept of relaxation preserv-

371



−1 −0.5 0 0.5 1 1.5 2 2.5
0.5

0.52

0.54

0.56

0.58

0.6

0.62

0.64

0.66

0.68

0.7

p

Figure 8-1: Parametric final time solution of (8.4), x(tf , ·) (solid line), along with
interval bounds (circles) and convex and concave relaxations, xcv(tf , ·) and xcc(tf , ·),
computed by solving (8.3) (squares) and (8.43) (dashed lines).
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Figure 8-2: Parametric final time solution of (8.4), y(tf , ·) (solid line), along with
interval bounds (circles) and convex and concave relaxations, ycv(tf , ·) and ycc(tf , ·),
computed by solving (8.3) (squares) and (8.43) (dashed lines).
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ing dynamics are significantly sharper than those computed based on the concept of

relaxation amplifying dynamics. Finally, note that no discretization of the original

DAEs is required in order to construct these relaxations, aside from that inherent in

the numerical solution of the auxiliary DAEs.

The primary motivation for constructing convex and concave relaxations of DAE

solutions is for their use in deterministic global optimization algorithms for problems

with DAEs embedded. Based on existing methods for problems with ODEs embed-

ded, the ability to construct relaxations of DAE solutions leads directly to such an

algorithm.
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Chapter 9

Convex Polyhedral Enclosures of

Reachable Sets

9.1 Introduction

In this chapter, an efficient method is presented for computing convex polyhedral en-

closures of the reachable sets of parametric ODEs and semi-explicit index-one DAEs.

Informally, the reachable set of a dynamic system at some fixed time is the set of

states which can be attained at the given time by solutions of the system with ini-

tial conditions, parameters, controls and disturbances in some specified sets. The

computation of reachable sets, or conservative approximations of them, is a classical

problem with a long history [68]. Reachability analysis is also closely related to the

construction of discrete abstractions and plays a central role in problems in controller

design and synthesis [132, 110], fault detection [106] and verification of continuous

and hybrid systems [85, 99, 40, 20, 184].

A variety of methods exist for computing conservative approximations of the reach-

able sets of dynamic systems. Many of these methods are only possible or tractable

for linear systems [20, 97], while others require the costly solution of Hamilton-Jacobi-

Bellman equations [98, 132]. If an interval enclosure is sufficient, a number of more

efficient methods are available, including those developed in Chapters 3 - 6. However,

interval methods can produce quite conservative enclosures, especially if no additional
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physical information can be provided to the method (see Chapter 4). Finally, there

are several methods which compute approximations of the reachable set by construct-

ing supporting hyperplanes. These hyperplanes are obtained either from the solutions

of adjoint equations [68, 143], or by specifying the normal to the desired hyperplane

and computing an appropriate intercept by solving a dynamic optimization problem

[39, 41]. Unfortunately, nonconvexity of the reachable set makes implementation im-

practical in both cases. In the latter case, nonconvexity of the reachable set leads

to nonconvex dynamic optimization problems which must be solved to guaranteed

global optimality. In the former case, the resulting hyperplanes are not guaranteed

to support the reachable set when it is nonconvex. In response to this issue, some

authors have developed conditions for the convexity of reachable sets of nonlinear dy-

namic systems [143, 137]. Unfortunately, these results involve bounds on the size of

the sets of permissible initial states and controls and/or bounds on the time horizon

which are extremely restrictive in the general case.

Here, it is shown that a convex enclosure of the reachable set for some fixed time

can be computed efficiently, regardless of whether or not the reachable set is itself

convex. The method for doing this relies on the computation of state relaxations,

described in Chapters 7 and 8. Using these relaxations, a convex enclosure of the

reachable set can be expressed as an infinite intersection of halfspaces, and a valid

convex polyhedral outer approximation of this set is given by considering any finite

subset of these halfspaces. As in [39], each halfspace is defined by a hyperplane

computed by first specifying its normal and subsequently computing a suitable inter-

cept through the solution of a dynamic optimization problem. However, unlike the

method presented in [39], these optimization problems are guaranteed to be convex,

even when the reachable set is nonconvex.

9.2 Problem Statement

Let I = [t0, tf ] ⊂ R and P ⊂ Rnp be compact intervals and let x : I × P → Rnx be a

continuous function such that x(·,p) is absolutely continuous on I for every p ∈ P .
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For the developments in this chapter, it is irrelevant whether this function is the

solution of a system of parametric ODEs, as in Chapter 7, or the solution of a system of

semi-explicit DAEs, as in Chapter 8 (in the latter case we interpret x as the complete

vector of DAE states (x,y)). We only assume that, by one of the methods in those

chapters, state relaxations xcv,xcc : I × P → Rnx are available; i.e., for every t ∈ I,

xcv(t, ·) is convex on P , xcc(t, ·) is concave on P , and xcv(t,p) ≤ x(t,p) ≤ xcc(t,p),

∀p ∈ P . The objective of this chapter is to solve the following problem.

Problem 9.2.1. Given any fixed t ∈ I, compute a convex set A ⊂ Rnx such that the

image of the interval P under x(t, ·) is contained in A.

9.3 Convex enclosures of reachable sets

In this section, state relaxations are used in order to construct a convex enclosure

of the image x(t, P ) for some fixed t ∈ I. As proven in the following theorem, the

desired convex enclosure of the image x(t, P ) is the set

A ≡
⋃

p∈P

[xcv(t,p),xcc(t,p)]. (9.1)

Unfortunately, this set is not immediately useful for computations and further deriva-

tions will be required to arrive at a more useful formulation.

Theorem 9.3.1. A is convex and contains x(t, P ).

Proof. Given any p ∈ P , xcv(t,p) ≤ x(t,p) ≤ xcc(t,p) by the definition of xcv and

xcc, and hence x(t,p) ∈ A. It remains to show that A is convex. Let z1, z2 ∈ A and

choose any λ ∈ [0, 1]. By definition, ∃p1,p2 ∈ P such that z1 ∈ [xcv(t,p1),x
cc(t,p1)]

and z2 ∈ [xcv(t,p2),x
cc(t,p2)]. Using these inclusions along with the convexity and
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concavity of xcv(t, ·) and xcc(t, ·) on P , respectively,

xcv(t, λp1 + (1 − λ)p2) ≤ λxcv(t,p1) + (1 − λ)xcv(t,p2)

≤ λz1 + (1 − λ)z2

≤ λxcc(t,p1) + (1 − λ)xcc(t,p2)

≤ xcc(t, λp1 + (1 − λ)p2).

But λp1 + (1 − λ)p2 ∈ P , which implies that λz1 + (1 − λ)z2 ∈ A and hence A is

convex.

Though A is in fact a convex enclosure of x(t, P ) as desired, it is not immediately

useful for computation because it is expressed in terms of an infinite union of intervals.

In the following section, it shown that A can be expressed more usefully as an infinite

intersection of halfspaces which can be computed efficiently.

9.3.1 A dual representation of A

Let Snx denote the unit sphere in Rnx with respect to the one norm, and define

d∗(µ) = min
z∈A

µTz, ∀µ ∈ Snx . (9.2)

This function is well defined on account of the following lemma. Also, note that, for

each µ ∈ Snx , the optimization problem defining d∗(µ) is guaranteed to be convex

by Theorem 9.3.1.

Lemma 9.3.2. A is compact

Proof. Since P is compact and xcv(t, ·) and xcc(t, ·) are continuous on P , these func-

tions are bounded on P and it follows thatA is also bounded. To show thatA is closed,

consider any convergent sequence of elements of A, {zn} → z∗. By the definition of A,

there exists a corresponding sequence {pn} in P such that zn ∈ [xcv(t,pn),x
cc(t,pn)],

∀n ∈ N. Compactness of P then implies that there exists a convergent subsequence

{pnk
} → p∗ ∈ P , and by taking limits, the continuity of xcv(t, ·) and xcc(t, ·) on P
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ensures that z∗ ∈ [xcv(t,p∗),xcc(t,p∗)] ⊂ A. Thus, A is also closed and compactness

follows from the Heine-Borel Theorem.

Corollary 9.3.3. For every µ ∈ Snx, ∃z∗ ∈ A such that d∗(µ) = µTz∗.

It is now possible to formulate an alternate representation of A as an infinite

intersection of halfspaces. Define the halfspaces

H+(µ) ≡ {z ∈ Rnx : µTz ≥ d∗(µ)},

for all µ ∈ Snx. Now let

A∗ ≡
⋂

µ∈Snx

H+(µ). (9.3)

Theorem 9.3.4. A∗ = A.

Proof. For any µ ∈ Snx, the definition of d∗(µ) ensures that µTz ≥ d∗(µ), ∀z ∈ A.

Therefore, A ⊂ H+(µ), ∀µ ∈ Snx, and hence A ⊂ A∗. To conclude that A∗ ⊂
A, it is assumed that ẑ /∈ A and shown that ẑ /∈ A∗. Because A is closed and

convex, the separating hyperplane theorem furnishes σ such that σTẑ < σTz, ∀z ∈ A

(Proposition B.14 in [23]). Letting, µ = σ/‖σ‖1, we have µTẑ < µTz, ∀z ∈ A, which

implies that ẑ /∈ H+(µ) and hence ẑ /∈ A∗.

9.3.2 Computation of A

Given the alternate representation of A as the infinite intersection of halfspaces A∗,

it is possible to compute a convex polyhedral enclosure of A, and hence of x(t, P ),

by considering any finite number of these halfspaces. In particular, choosing any

µ[1], . . . ,µ[m] ∈ Snx, a convex polyhedral enclosure of x(t, P ) is given by

PA(µ[1], . . . ,µ[m]) ≡
m
⋂

j=1

H+(µ[j]). (9.4)

In order to characterize the set PA(µ[1], . . . ,µ[m]) completely, it is necessary to com-

pute d∗(µ[j]) for all j = 1, . . . , m. This task is simplified by the following lemma.
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Lemma 9.3.5. For any µ ∈ Snx,

d∗(µ) = min
p∈P

nx
∑

i=1

min (µix
cv
i (t,p), µix

cc
i (t,p)) .

Proof. Choose any µ ∈ Snx and let z∗ ∈ A be such that d∗(µ) = µTz∗ (Corollary

9.3.3). Since z∗ ∈ A, ∃p∗ ∈ P such that z∗ ∈ [xcv(t,p∗),xcc(t,p∗)]. For any such p∗,

min
z∈[xcv(t,p∗),xcc(t,p∗)]

µTz ≤ µTz∗

= d∗(µ)

≤ min
z∈[xcv(t,p∗),xcc(t,p∗)]

µTz,

where the first inequality follows from feasibility of z∗ in [xcv(t,p∗),xcc(t,p∗)] and

the second holds because z∗ is optimal in A ⊃ [xcv(t,p∗),xcc(t,p∗)]. Clearly, these

inequalities imply that

d∗(µ) = min
z∈[xcv(t,p∗),xcc(t,p∗)]

µTz

=
nx
∑

i=1

min (µix
cv
i (t,p∗), µix

cc
i (t,p∗)) .

Finally, if ∃p̂ ∈ P such that

nx
∑

i=1

min (µix
cv
i (t, p̂), µix

cc
i (t, p̂))

<

nx
∑

i=1

min (µix
cv
i (t,p∗), µix

cc
i (t,p∗)) ,

then the vector ẑ defined by ẑi = xcvi (t, p̂) if µi ≥ 0 and ẑi = xcci (t, p̂) otherwise is

an element of [xcv(t, p̂),xcc(t, p̂)], and hence of A, for which µTẑ < µTz∗, which is a

contradiction. Therefore, since p∗ ∈ P ,

d∗(µ) = min
p∈P

nx
∑

i=1

min (µix
cv
i (t,p), µix

cc
i (t,p)) .
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Fixing any µ ∈ Snx , the previous lemma defines d∗(µ) as the solution value of

a convex dynamic optimization problem; convexity follows from the sign of each µi

and the convexity and concavity, respectively, of xcv(t, ·) and xcc(t, ·) on P , while the

program is dynamic because evaluating the state relaxations xcv and xcc requires the

solution of an auxiliary system of ODEs (see Chapters 7 and 8). Programs of this type

are easily solved using modern dynamic simulation techniques in conjunction with a

local NLP solver. Thus, computation of the enclosure PA(µ[1], . . . ,µ[m]) requires the

solution of m convex dynamic optimization problems. Owing to the use of the state

relaxations xcv and xcc, the convexity of these programs holds even when the image

x(t, P ) is nonconvex.

9.4 Numerical Example

All numerical experiments in this section were performed on a Dell Precision T3400

workstation with a 2.83 GHz Intel Core2 Quad CPU. One core and 512 MB of memory

were dedicated to each job.

Example 9.4.1. Consider again the system of parametric ODEs given in Example

7.7.1:

ẋ1 =
1

L
x2, ẋ2 = − 1

C
[x1 − x2 +

1

3
x3

2], (9.5)

with x0,1 = x0,2 = 1, p1 = (1/C), p2 = (1/L), t0 = 0 and tf = 3.5. In order to com-

pute a polyhedral enclosure of the reachable set of (9.5) at tf , state relaxations were

computed using convexity amplifying dynamics as described in Chapter 7. For im-

plementation details, see Example 7.7.1. The solution x1(tf , ·) and the corresponding

state relaxations on the set P = [0.01, 0.5] × [0.01, 0.5] are shown in Fig. 9-1.

Using the state relaxations shown in Fig. 9-1, a convex enclosure of the reach-

able set of (9.5) can be computed as described in §9.3. The diamonds in Fig. 9-2

show points sampled from the reachable set at tf by evaluating x(tf ,p) for p on a
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Figure 9-1: State relaxations of the solution of the ODEs (9.5), x1(tf , ·), on the
interval P = [0.01, 0.5] × [0.01, 0.5].

uniform grid over P = [0.01, 0.5] × [0.01, 0.5]. From these sampled points, it can be

seen that the reachable set is almost certainly nonconvex. The circles in the same

figure show points sampled from the set A (see (9.1)) by again considering a uniform

grid over P , and for each p on this grid, sampling several points from the interval

[xcv(tf ,p),xcc(tf ,p)]. Of course, it is impossible to compute A finitely using the rep-

resentation (9.1). On the other hand, the dual representation of A (A∗ in §9.3.1)

can be used to compute a polyhedral enclosure of A, and hence x(t, P ), of the form

(9.4). Such an enclosure is shown by the solid lines in Fig. 9-2, which correspond

to the multipliers µ[1] = [1 0]T, µ[2] = [0 1]T, µ[3] = [0.5 0.5]T, µ[4] = [0.5 −0.5]T,

µ[5] = [−0.75 0.25]T, µ[6] = [0.95 0.05]T and µ[6+j] = −µ[j] for j = 1, . . . , 4. Clearly,

the resulting convex polyhedral set encloses the nonconvex image x(tf , P ).

Due to the size of this example, the cost of adequately sampling x(tf , P ) is com-

parable to that of computing the convex polyhedral enclosure in Figure 9-2. However,

the cost of sampling grows exponentially with the number of parameters, while the

proposed procedure involves only numerical integration and convex optimization, so

is polynomial time.
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Figure 9-2: Sampled points from the image x(tf , P ) (diamonds), sampled points from
the set A (circles), and supporting hyperplanes to A forming a polyhedral enclosure
of x(tf , P ) (solid lines).

9.5 Conclusions

A method has been described which uses state relaxations to compute efficiently a

convex polyhedral enclosure of the reachable set of a dynamic system. Given the

methods for computing state relaxations in Chapters 7 and 8, this method can be

directly applied to systems of parametric ODEs and systems of semi-explicit index

one DAEs. Given state relaxations, a convex enclosure of the reachable set for any

fixed time is easily formulated, but is expressed in terms of an infinite union of

intervals. It was shown that this enclosure can be equivalently expressed as an infinite

intersection of halfspaces, so that a convex polyhedral enclosure of the reachable

set can be computed by considering only some finite number m of these halfspaces.

Computing an appropriate intercept for each halfspace requires the solution of one

convex dynamic optimization problem. Unlike other similar methods in the literature,

the use of state relaxations ensures that this optimization problem is convex even when

the reachable set is nonconvex. Accordingly, a valid convex polyhedral enclosure is

obtained by solving m convex dynamic optimization problems, even in the case where
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the reachable set is itself nonconvex. This procedure was demonstrated for a small

example with a nonconvex reachable set and a valid convex enclosure was obtained.
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Chapter 10

Deterministic Global Optimization

with DAEs Embedded

10.1 Introduction

In this chapter, we present a deterministic global optimization algorithm for solv-

ing problems with semi-explicit index-one DAEs embedded. This problem has been

addressed previously in two articles [55, 42]. In both articles, the authors propose

methods based on the simultaneous approach to dynamic optimization. That is,

these methods apply a total discretization approach, resulting in a large-scale NLP

with equality constraints approximating the original dynamics. To solve this NLP to

global optimality, a spatial branch-and-bound (B&B) algorithm is used, as described

in §1.3.3. However, given the size of the NLPs generated through the simultane-

ous approach and the worst-case exponential run-time of the spatial B&B algorithm,

this cannot be considered a practical approach to global dynamic optimization. In

both articles, it is clear that an adequate discretization of the state variables creates

problems which are too large to be solved in reasonable time by a global optimiza-

tion routine, and coarser discretizations can not represent the original dynamics well

enough to produce reliable results (the optimal objective value was found to depend

strongly on the discretization).

In [55], a second method was proposed based on the sequential approach to dy-
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namic optimization, and shown to significantly outperform the simultaneous approach

for several numerical examples. This method is also based on a spatial B&B proce-

dure. However, the lower bounding procedure is based on a finite sampling step,

and therefore this algorithm must be considered heuristic rather than determinis-

tic. For optimization problems with explicit ODEs embedded, this deficiency has

been overcome by the method in [135]. Subsequently, other methods have emerged

for solving problems with ODEs embedded to global optimality using the sequential

approach [164, 104]. However, for problems with DAEs embedded, a deterministic

global optimization algorithm based on the sequential approach has not previously

been achieved. We accomplish this task here using the relaxation techniques described

in Chapter 8.

10.2 Problem Statement

In this section, the dynamic optimization problem under consideration is stated for-

mally. The embedded system of DAEs is exactly the same as that considered in

Chapters 5, 6 and 8, with the exception that one additional specification is made for

the algebraic variables at the initial time. As discussed below, this specification guar-

antees uniqueness of the DAE solution, so that the dynamic optimization problem is

well-posed.

Let Dt ⊂ R, Dp ⊂ Rnp, Dx ⊂ Rnx and Dy ⊂ Rny be open sets, and let f :

Dt ×Dp ×Dx ×Dy → Rnx, g : Dt ×Dp ×Dx ×Dy → Rny and x0 : Dp → Dx be C1

functions. Furthermore, let I ≡ [t0, tf ] ⊂ Dt and P ∈ IDp. Finally, let p̂ ∈ P and

ŷ0 ∈ Dy satisfy g(t0, p̂,x0(p̂), ŷ0) = 0. Now, the embedded system of semi-explicit

DAEs is given by

ẋ(t,p) = f(t,p,x(t,p),y(t,p))

0 = g(t,p,x(t,p),y(t,p))







, (10.1a)

x(t0,p) = x0(p). (10.1b)

y(t0, p̂) = ŷ0. (10.1c)
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A function (x,y) ∈ C1(I×P,Dx)×C1(I×P,Dy) is a solution of (10.1) on I×P if

(10.1c) holds, (10.1b) is satisfied for all p ∈ P , and (10.1a) holds for all (t,p) ∈ I×P .

If in addition det∂g
∂y

(t,p,x(t,p),y(t,p)) 6= 0, ∀(t,p) ∈ I × P , then (x,y) is called

regular. If p̂ and ŷ0 satisfy det∂g
∂y

(t0, p̂,x0(p̂), ŷ0) 6= 0, then the existence of a regular

solution of (10.1a)-(10.1b) local to (t0, p̂,x0(p̂), ŷ0) (Definition 5.3.4) is guaranteed

by Theorem 5.3.5. Throughout this chapter, we assume the following.

Assumption 10.2.1. A regular solution (x,y) of (10.1) exists on all of I × P .

It was shown in Example 5.3.1 that there may be multiple regular solutions of

(10.1a)-(10.1b). However, the specification (10.1c) ensures that the solution of As-

sumption 10.2.1 is unique. This fact follows directly from Corollary 5.3.6. In the

remainder of this chapter, the notation (x,y) refers specifically to this solution.

Let (φ,h) : Dp ×Dx ×Dy → R × Rnc be continuous. The dynamic optimization

problem addressed in this chapter is stated as follows:

Problem 10.2.1.

min
p∈P

φ(p,x(tf ,p),y(tf ,p)) (10.2)

s.t. h(p,x(tf ,p),y(tf ,p)) ≤ 0,

where (x,y) is the unique solution of (10.1) on I × P .

Note that Problem 10.2.1 is an optimization problem on a Euclidean space. In par-

ticular, the state variables are not considered as decisions, because they are uniquely

specified for every (t,p) ∈ I × P . The ability to pose the problem in this way is

crucial to the solution method described in the next section, and is made possible

by the fact that the DAE solution (x,y) is unique. Again, this uniqueness is a re-

sult of the specification (10.1c). In most applications, there is a consistent initial

condition of interest, so that this specification is easily made. On the other hand, if

one is interested in an optimization problem that considers all possible solutions of

(10.1), then some additional method will be required for exhaustively enumerating
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such solutions. We do not pursue such an algorithm here. Several simple extensions

of Problem 10.2.1 are discussed in the following remark.

Remark 10.2.2.

1. The optimization formulation above does not include integral terms in the ob-

jective and constraints; i.e.,

min
p∈P

φ(p,x(tf ,p),y(tf ,p)) +

∫ tf

t0

ψ(s,p,x(s,p),y(s,p))ds (10.3)

s.t. h(p,x(tf ,p),y(tf ,p)) +

∫ tf

t0

ℓ(s,p,x(s,p),y(s,p))ds ≤ 0.

However, problems with integral terms can always be recast in the form of

Problem 10.2.1 by introducing quadrature variables (zψ, zℓ) : I × P → R × Rnc

satisfying the differential equations

żψ(t,p) = ψ(t,p,x(t,p),y(t,p)), zψ(t0,p) = 0, (10.4)

żℓ(t,p) = ℓ(t,p,x(t,p),y(t,p)), zℓ(t0,p) = 0.

From these definitions, it follows that

zψ(tf ,p) =

∫ tf

t0

ψ(s,p,x(s,p),y(s,p))ds, (10.5)

zℓ(tf ,p) =

∫ tf

t0

ℓ(s,p,x(s,p),y(s,p))ds.

Then, the dynamic optimization problem (10.3) can be written in the form of

Problem 10.2.1 by augmenting the embedded DAEs (10.1) with the equations

(10.4).

2. In parameter estimation problems, the objective and constraints typically de-

pend on the values of the DAE solution at several points in the time interval I;
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i.e.,

min
p∈P

φ(p,x(t0,p), . . . ,x(tm,p),y(t0,p), . . . ,y(tm,p)) (10.6)

s.t. h(p,x(t0,p), . . . ,x(tm,p),y(t0,p), . . . ,y(tm,p)) ≤ 0.

The algorithm for solving Problem 10.2.1 presented below is easily extended to

this case. The restriction to final time terms only simplifies the notation.

In order to use natural McCormick extensions in the proposed optimization algo-

rithm, the following assumption is required throughout.

Assumption 10.2.3. The functions x0, f , g, ∂g
∂y

, φ and h are L-factorable with

natural McCormick extensions x0 : D0 → MRnx , {f} : D → MRnx, {g} : D → MRny ,

{ ∂g
∂y
} : D → MRny×ny , {φ} : E → MR and {h} : E → MRnc .

10.3 A Global Optimization Algorithm

In this section, a deterministic algorithm is described for solving Problem 10.2.1 to

global optimality. Since Problem 10.2.1 is formulated as an optimization problem

on a Euclidean space, the basic approach is to apply a standard spatial branch-and-

bound algorithm, as discussed in §1.3.3. For each node visited by the algorithm, it is

necessary to provide upper and lower bounds on the globally optimal objective value

of the following subproblem, where P ℓ ∈ IP :

Problem 10.3.1.

min
p∈P ℓ

φ(p,x(tf ,p),y(tf ,p)) (10.7)

s.t. h(p,x(tf ,p),y(tf ,p)) ≤ 0, (10.8)

where (x,y) is the unique solution of (10.1) on I × P ℓ.

In the following sections, the computation of these bounds is described in detail.

A complete statement of the proposed algorithm is given in §10.3.5.
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10.3.1 The Upper-Bounding Procedure

To compute an upper bound on the globally optimal objective value of Problem

10.3.1, this problem is solved to local optimality using the sequential approach. The

optimization is done using the package SNOPT [69]. SNOPT uses a sparse sequential-

quadratic-programming algorithm with quasi-Newton approximations of the Hessian,

and is specialized to problems where the objective and constraints, and their gradi-

ents, are expensive to evaluate. This is true for Problem 10.3.1 because these evalu-

ations require numerical integration and sensitivity analysis of the embedded DAEs.

Numerical integration is done using the package IDAS [82]. For any given p ∈ P ℓ,

the initial condition y(t0,p) is computed using a consistent initialization routine for

semi-explicit DAEs provided in IDAS. An initial guess function yguess
0 : P → Rny

must be provided by the user such that the consistent initialization solver converges

to y(t0,p) from yguess
0 (p), for all p ∈ P . IDAS provides parametric sensitivities for

the solution of the embedded DAEs automatically, which are used to evaluate the

gradients of the objective and constraints in Problem 10.3.1. Differentiation of the

objective and constraint functions and evaluation of the right-hand sides of the sensi-

tivity system are done by forward mode automatic differentiation using the package

FADBAD++ (http://www.fadbad.com). All solver tolerances are given in §10.4.

10.3.2 The Lower-Bounding Procedure

To compute a lower bound on the optimal objective function value of Problem 10.3.1,

we construct and solve a convex underestimating program. As discussed in §1.3.4, the

primary complication in doing this is that the objective and constraint functions in

Problem 10.3.1 are not L-factorable functions of p, so standard relaxation techniques

cannot be applied. Of course, this problem is circumvented using the state bounding

and relaxation techniques developed throughout this thesis.
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Computing State Bounds

The first step in the lower-bounding procedure is to compute state bounds for (x,y)

on I×P ℓ. Using the single-phase method described in Chapter 6, this is accomplished

by numerically integrating the systems of DAEs (6.85)-(6.88), with P ℓ in place of P in

(6.76)-(6.84). For all of the numerical experiments in this chapter, we set γ(t) = 10−4,

∀t ∈ I (see (6.87)-(6.88)). The integer K, which determines how many Hansen-

Sengupta iterations are done when evaluating the right-hand sides of (6.85) and (6.86),

is an important parameter in the proposed optimization algorithm. The value of this

parameter and its effect on the performance of the algorithm is discussed for specific

numerical examples in §10.4.

The DAEs (6.85)-(6.88) are solved using IDAS [82]. The initial conditions for the

bounds on the differential variables x are given by (6.89). The initial conditions for

the algebraic bounds are found by solving (6.87)-(6.88) at t0 using the consistent ini-

tialization routine provided in IDAS. The initial guess for this computation is specified

as zLy (t0) = zUy (t0) = y(t0, m(P ℓ)), where y(t0, m(P ℓ)) is computed as in §10.3.1. The

algebraic bounds provided by this initialization problem must contain y(t0, m(P ℓ)).

If this is false, then the computed initial bounds pertain to a different regular solution

of the embedded DAEs than that specified by ŷ0, and the state bounding algorithm

will terminate with an error flag. Otherwise, the solution of (6.85)-(6.89) provides

state bounds for (x,y) on I × P ℓ by Corollary 6.6.3. After numerical integration,

the computed state bounds for the algebraic variables are refined by q = K further

Hansen-Sengupta iterations, as in the conclusion of Corollary 6.6.3. In practice, this

iteration is only done at tf because only the state bounds at tf will effect the objective

and constraints of the lower bounding problem derived below.

In the remainder of this chapter, the state bounds for (x,y) on I×P ℓ computed by

the procedure above will be denoted by xL,ℓ,xU,ℓ : I → Rnx and yL,ℓ,yU,ℓ : I → Rnx .

Furthermore, we define Xℓ(t) ≡ [xL,ℓ(t),xU,ℓ(t)] and Y ℓ(t) ≡ [yL,ℓ(t),yU,ℓ(t)].

391



The Convex Underestimating Subproblem

Once state bounds have been computed, we may derived a convex underestimating

program for Problem 10.3.1. In order to use natural McCormick extensions, we make

the following assumption:

Assumption 10.3.1. The interval P ℓ ×Xℓ(tf ) × Y ℓ(tf) is represented in E .

Under Assumption 10.3.1, we may define the functions (uℓφ,u
ℓ
h) : P ℓ×Rnx ×Rnx ×

Rny × Rny → R × Rnh by

uℓφ(p, z
cv
x , z

cc
x , z

cv
y , z

cc
y ) ≡ {φ}cv(MC(pL,ℓ,pU,ℓ,p,p), (10.9)

MC(xL,ℓ(tf),x
U,ℓ(tf ), z

cv
x , z

cc
x ),

MC(yL,ℓ(tf ),y
U,ℓ(tf), z

cv
y , z

cc
y )),

uℓh(p, z
cv
x , z

cc
x , z

cv
y , z

cc
y ) ≡ {h}cv(MC(pL,ℓ,pU,ℓ,p,p), (10.10)

MC(xL,ℓ(tf),x
U,ℓ(tf ), z

cv
x , z

cc
x ),

MC(yL,ℓ(tf ),y
U,ℓ(tf), z

cv
y , z

cc
y )).

A convex underestimating program for Problem 10.3.1 is now given by:

Problem 10.3.2.

min
p∈P ℓ

uℓφ(p,x
cv,ℓ(tf ,p),xcc,ℓ(tf ,p),ycv,ℓ(tf ,p),ycc,ℓ(tf ,p)) (10.11)

s.t. uℓh(p,x
cv,ℓ(tf ,p),xcc,ℓ(tf ,p),ycv,ℓ(tf ,p),ycc,ℓ(tf ,p)) ≤ 0,

where xcv,ℓ, xcc,ℓ, ycv,ℓ and ycc,ℓ are state relaxations of (x,y) on I × P ℓ.

The fact that the objective and constraints of Problem 10.3.2 are convex relax-

ations of the objective and constraints of Problem 10.3.1 on P ℓ, respectively, follows

from Theorem 2.7.13.

To compute a lower bound on the optimal objective function value of Problem

10.3.1, Problem 10.3.2 is solved to global optimality. The optimal solution found is

denoted by p̌ℓ. Due to the use of McCormick’s relaxation technique, it is possible that
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the objective and constraints in Problem 10.3.2 are non-differentiable. However, given

subgradients for the state relaxations (see below), subgradients for the objective and

constraint functions are easily computed using the subgradient propagation rules for

McCormick relaxations developed in [122]. In our implementation, the computation

of the natural McCormick extensions in Problem 10.3.2, and their subgradients, is

done automatically using the library MC++ (http://www3.imperial.ac.uk/people/

b.chachuat/research). Because Problem 10.3.1 is a potentially nonsmooth convex

optimization problem, it would be best to solve it using a specialized nonsmooth

solver, such as a bundle method [112, 107]. However, these methods are not as

mature as those for differentiable problems, and the available solvers of this type

remain problematic. For the time being, we have implemented the code SNOPT to solve

Problem 10.3.2. In lieu of gradient information, SNOPT is provided with subgradients

as described above. While nonsmoothness in Problem 10.3.2 should be expected to

lead to some inefficiency and numerical difficulties in SNOPT, this did not cause serious

complications for the numerical examples in §10.4.

For each p ∈ P ℓ visited by the optimizer during the solution of Problem 10.3.2,

state relaxations and subgradients must be evaluated at (tf ,p). State relaxations are

computed using the theory of relaxation preserving dynamics developed in Chapter

8. Let x̃cv,ℓ, x̃cc,ℓ, ỹcv,ℓ, and ỹcc,ℓ denote the solutions of the auxiliary system (8.43),

derived with P ℓ in place of P . For the state relaxations in Problem 10.3.2, we consider

two alternatives:

1. Directly use (xcv,ℓ,xcc,ℓ,ycv,ℓ,ycc,ℓ) = (x̃cv,ℓ, x̃cc,ℓ, ỹcv,ℓ, ỹcc,ℓ),

2. Define (xcv,ℓ,xcc,ℓ,ycv,ℓ,ycc,ℓ) as the affine state relaxations specified by the val-

ues and subgradients of (x̃cv,ℓ, x̃cc,ℓ, ỹcv,ℓ, ỹcc,ℓ) at (tf , m(P ℓ)).

Clearly, the first option will result in tighter relaxations, and hence a sharper lower

bound. On the other hand, this option requires the solution of the auxiliary system

(8.43) for every p ∈ P ℓ visited by the optimizer during the solution of Problem

10.3.2. In contrast, the second option requires only a single numerical integration of

(8.43). In practice, numerical integration of the state bounds and state relaxations
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dominates the cost of the lower-bounding procedure, even when the second option

is used. This makes the first option impractical, so the second option is used for all

of the numerical examples in §10.4. The additional conservatism introduced by this

linearization when P ℓ is wide is not expected to be as problematic as it is in the

affine relaxation method for ODEs [162], as discussed in Chapter 7. This is because

here the linearization is applied to the solution of the auxiliary system, whereas the

method in [162] uses linearization in the definition of the auxiliary system itself. In

the latter case, the conservatism of linearization effects the state relaxations at early

times and propagates forward, weakening the state relaxations at later times. In the

method here, the conservatism of linearization is introduced only after the solution

of the auxiliary system, and does not effect that solution in any way.

To compute state relaxations according to Option 2 above, the auxiliary sys-

tem (8.43) is solved once at m(P ℓ) to evaluate x̃cv,ℓ(tf , m(P ℓ)), x̃cc,ℓ(tf , m(P ℓ)),

ỹcv,ℓ(tf , m(P ℓ)) and ỹcc,ℓ(tf , m(P ℓ)). Using the state bounds computed by the single

phase method of Chapter 6 as described in the previous section, Assumption 8.2.1

holds. Supposing further that the factorability Assumption 8.2.2 holds, the auxiliary

system (8.43) is well-defined and all of the participating functions are evaluated by

taking natural McCormick extensions. In our implementation, this is done automat-

ically using MC++. The integer K in the auxiliary system (8.43), which determines

how many refinement iterations are applied to the algebraic state relaxations when

evaluating the system right-hand side functions, is an important parameter in the

proposed optimization algorithm. The value of this parameter and its effect on the

performance of the algorithm is discussed for specific numerical examples in §10.4.

The auxiliary system is solved numerically as an explicit system of ODEs with state

events as described in §7.6.3.

Evaluating the right-hand side functions of the auxiliary system (8.43) requires

values for the state bounds and the time-varying preconditioning matrix C computed

during integration of the state bounds. These quantities are evaluated whenever they

are required by interpolation from stored data. Time derivatives of xL,ℓ and xU,ℓ are

computed when required by evaluating the right-hand sides of (6.85) and (6.86). This
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scheme requires that the values of the state bounds, the value of the preconditioner

C, and the order of the integration method are stored at every time point visited

during numerical integration of the state bounds. An alternative implementation is

to integrate the state bounds and state relaxations simultaneously. This was avoided

in order to facilitate comparison with the first state relaxation option discussed above,

which requires multiple integrations of the state relaxations but only one integration

of the state bounds.

It remains to compute subgradients for the state relaxations x̃cv,ℓ(tf , ·), x̃cc,ℓ(tf , ·),
ỹcv,ℓ(tf , ·) and ỹcc,ℓ(tf , ·) at m(P ℓ). First, note that ỹcv,ℓ(tf , ·) and ỹcc,ℓ(tf , ·) are given

explicitly as functions of x̃cv,ℓ(tf , ·) and x̃cc,ℓ(tf , ·) by the iterative refinement in (8.44).

Then, it suffices to compute subgradients for x̃cv,ℓ(tf , ·) and x̃cc,ℓ(tf , ·) at m(P ℓ). From

these, subgradients for ỹcv,ℓ(tf , ·) and ỹcc,ℓ(tf , ·) are computed by applying the rules

for subgradient propagation for McCormick relaxations to the equations (8.44) using

MC++ [122].

Subgradients for the functions x̃cv,ℓ(tf , ·) and x̃cc,ℓ(tf , ·) are computed by sensitiv-

ity analysis. Recall that the auxiliary system (8.43) is solved for x̃cv,ℓ and x̃cc,ℓ as

an explicit system of ODEs with state events. We consider first the computation of

subgradients by sensitivity analysis on an interval of time [te1, te2] during which the

mode of the auxiliary system does not change. That is, the Boolean variables bcvi and

bcci in (8.43), for i = 1, . . . , nx, are constant. In any such mode, x̃cv,ℓ and x̃cc,ℓ evolve

according to a system of explicit ODEs with continuous right-hand side functions of

the general form

˙̃xcv(t,p) = wcv(t,p, x̃cv(t,p), x̃cc(t,p)), (10.12)

˙̃xcc(t,p) = wcc(t,p, x̃cv(t,p), x̃cc(t,p)). (10.13)

In the case where x̃cv,ℓ(t1e, ·) and x̃cc,ℓ(t1e, ·) are differentiable at m(P ℓ) and the func-

tions

wcv(t, ·, x̃cv(t, ·), x̃cc(t, ·)) and wcc(t, ·, x̃cv(t, ·), x̃cc(t, ·)) (10.14)

395



are continuously differentiable at m(P ℓ), for every t ∈ [te1, te2], it is well know that

the solutions x̃cv,ℓ(t2e, ·) and x̃cc,ℓ(t2e, ·) are differentiable at m(P ℓ) as well. By con-

vexity (resp. concavity), these derivatives are equivalent to the unique subgradients

of x̃cv,ℓ(t2e, ·) and x̃cc,ℓ(t2e, ·) at m(P ℓ). Moreover, these derivatives can be com-

puted as the final time solutions of a sensitivity system; i.e., a system of explicit

ODEs, coupled to (10.12), whose initial conditions are the derivatives of x̃cv,ℓ(t1e, ·)
and x̃cc,ℓ(t1e, ·) at m(P ℓ) and whose right-hand side functions map the derivatives

of x̃cv,ℓ(t, ·) and x̃cc,ℓ(t, ·) at m(P ℓ) to the derivatives of the functions (10.14) at

m(P ℓ), for any t ∈ [te1, te2]. However, due to the use of McCormick relaxations in the

auxiliary system (8.43), the functions in (10.14) are potentially non-differentiable at

m(P ℓ). Therefore, we define the sensitivity system for (8.43) by specifying the initial

conditions as subgradients of x̃cv,ℓ(t1e, ·) and x̃cc,ℓ(t1e, ·) at m(P ℓ), and by defining the

right-hand sides as the functions that map a given pair of subgradients for x̃cv,ℓ(t, ·)
and x̃cc,ℓ(t, ·) at m(P ℓ) to subgradients of the functions (10.14) at m(P ℓ) according

to the subgradient propagation rules for McCormick relaxations [122].

A formal proof that the modified sensitivity system described above furnishes

subgradients of x̃cv,ℓ(t2e, ·) and x̃cc,ℓ(t2e, ·) at m(P ℓ) as its final time solution is left

for future work. We note, however, that it may be possible in many cases to ensure

differentiability of x̃cv,ℓ(t2e, ·) and x̃cc,ℓ(t2e, ·) at m(P ℓ), in which case the validity of

our approach follows directly. In particular, it is known that x̃cv,ℓ(t2e, ·) and x̃cc,ℓ(t2e, ·)
will be differentiable at m(P ℓ) if the points in time at which the functions (10.14)

are non-differentiable at m(P ℓ) form a set of measure zero in [t1e, t2e] [185]. In this

case, the derivatives of x̃cv,ℓ(t2e, ·) and x̃cc,ℓ(t2e, ·) at m(P ℓ) are again given as the

final time solutions of a standard sensitivity system with one exception; the value of

the right-hand sides of the sensitivity system may take arbitrary values at all points

t ∈ [t1e, t2e] for which the functions in (10.14) are non-differentiable at m(P ℓ). At

points of differentiability, the functions (10.14) have a unique subgradient that is

equal to the derivative. It follows that the sensitivity approach described above will

furnish the true derivatives x̃cv,ℓ(t2e, ·) and x̃cc,ℓ(t2e, ·) at m(P ℓ) in this case. Given

the sources of nonsmoothness in McCormick’s relaxation technique, it seems unlikely
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that the right-hand side functions of the auxiliary system, within a single mode, will

be non-differentiable other than at a finite number of points in I. An important area

for future work is to formalize verifiable conditions under which this is the case.

From the discussion above, we can derive a sensitivity system corresponding to

every mode of the auxiliary system (8.43). Whenever an event occurs during the

simulation of (8.43), there is a change in the mode of the system, and a corresponding

change in the sensitivity system. Moreover, the sensitivity values themselves may be

reset at the event time, since the final time sensitivities computed in the previous mode

will not necessarily be valid initial conditions for the sensitivity equations in the new

mode. Suppose for example that an event occurs at te ∈ I in which bcvi changes. In

such an event, the right-hand side function describing ˙̃xcv,ℓi changes discontinuously at

te, and the equations for the sensitivities for x̃cv,ℓi are changed accordingly. In addition,

the sensitivities for xcv,ℓi are reset before integration is resumed. If bcvi changes from 0

to 1, then this event signifies that x̃cv,ℓi (te, m(P ℓ)) has reached the lower bound xLi (te)

and will slide along this bound to the right of te. In this case, the sensitivities for

x̃cv,ℓi (te, ·) are reset to 0 before integration is resumed. Since it was proven in Chapter

8 that x̃cv,ℓi (t,m(P ℓ)) ≥ xLi (t) for all t ∈ I, 0 is a valid subgradient for x̃cv,ℓi (t,m(P ℓ))

whenever x̃cv,ℓi (t,m(M ℓ)) = xLi (t). In the opposite event, where bcvi is changed from 1

to 0, the sensitivities for x̃cv,ℓi will already be 0, so that no reset is required. In both

cases, it can be shown that these reinitializations are consistent with the sensitivity

theory for hybrid systems developed in [67]. For all other relaxations aside from x̃cv,ℓi ,

the corresponding right-hand side functions in the auxiliary system do not suffer

a discontinuity at te, so no changes are required either in the sensitivities or their

right-hand side functions for these relaxations.

Using the scheme outlined above, numerical integration of the auxiliary system

and the appended sensitivity system is done by the code CVODES [82], using built-

in sensitivity analysis and event detection features. Solver tolerances are given in

§10.4. Rarely, very long integration times are observed for the auxiliary system due

to chattering in the event detection scheme. To avoid this cost during optimization,

the number of events is limited to 8nx. If this number is exceeded, the lower-bounding
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procedure is aborted and the lower bound for the problematic node is not updated.

The maximum number of integration steps between events or times ti at which the

state relaxation values are required for evaluating the objective or constraints of

Problem 10.3.2 (see Remark 10.2.2 (2)) is set to the CVODES default of 500.

10.3.3 Domain Reduction

Upon successful solution of the lower bounding problem, SNOPT provides a vector

µ ∈ Rnp of duality multipliers for the constraints pL,ℓ ≤ p ≤ pU,ℓ. The ith multiplier

is positive if the ith lower bound is active, negative if the ith upper bound is active,

and zero otherwise. If the node in question is not fathomed by value dominance (see

§10.3.5), then these multipliers can be used to refine the interval P ℓ by a standard

procedure [146]. The refinement is given by

pL,ℓi := max

(

pL,ℓi , pU,ℓi − LBDℓ − UBD + ǫ

µi

)

if µi < 0, (10.15)

pU,ℓi := min

(

pU,ℓi , pL,ℓi − LBDℓ − UBD + ǫ

µi

)

if µi > 0,

for i = 1, . . . , np, where LBDℓ is the optimal objective value for the lower bounding

problem in the current node, UBD is the incumbent upper bound, and ǫ is the

absolute branch-and-bound tolerance (see §10.3.5). Though this refinement can be

applied iteratively, in the case studies in this chapter it is applied only once per node,

in a loop from i = 1 to i = np.

10.3.4 Generation Skipping

For many numerical examples, we find that the proposed lower-bounding procedure

often fails because the numerical integration of the state bounds fails. As discussed

in detail in Chapter 6, this failure is related to an inability to guarantee existence

and uniqueness of a solution of the original DAE model, and is especially problematic

on very wide intervals P ℓ. When the state bounding procedure fails, a lower bound

cannot be computed. The problematic node is simply partitioned and its children are
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placed on the stack. This sequence of events is then repeated until branching produces

intervals narrow enough for the state bounding procedure to succeed, whereupon lower

bounds become available.

For some problems, this process can account for a large portion of the overall run-

time. In particular, a failed attempt to integrate state bounds can be significantly

more expensive than a successful one because the integrator may take may steps in

its attempts to succeed (the maximum number of integration steps is limited to 1000

for this reason). In such situations, it is clearly advantageous to initialize the stack

with a sufficiently fine partition of P and thereby avoid the cost of repeated failures in

the state bounding algorithm. There are two complications with this idea in general.

First, examples show that a sufficiently fine partition can be highly nonuniform.

Secondly, the required partition is not known in advance. For these reasons, it is

desirable to derive a heuristic which generates an appropriate partition dynamically.

In the algorithm below, this is optionally accomplished by a generation skipping

heuristic. Simply, if the state bounding procedure fails in a given node, then it is not

attempted for any of the children of that node out to NGS generations, where NGS

is a user specified integer. When such a child is popped from the stack, the upper

bounding problem is solved, the node is branched, and its children are returned to

the stack. Of course, when NGS = 0, we recover the standard B&B algorithm. The

heuristic is off. When NGS > 0, then P is selectively and aggressively partitioned in

areas of the search space in which the state bounding procedure has difficulties. There

is an obvious tradeoff to this heuristic. When NGS is small, many expensive failures

of the state bounding procedure may occur with no gain of information. When NGS

is large, aggressive partitioning may lead to a large number of nodes representing

regions of the search space on which adequate bounds could have been achieved with

many fewer nodes.

10.3.5 Algorithm Statement

The proposed B&B algorithm is formally stated below. The stack is denoted by Σ,

and has elements of the form (P ℓ, LBDℓ, N ℓ
GS) where P ℓ is a subinterval of P , LBDℓ
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is a lower bound on the optimal objective value of the Subproblem 10.3.1, and N ℓ
GS

is an integer related to the generation skipping heuristic discussed in the previous

section. The inputs to the algorithm are P , the absolute B&B convergence tolerance

ǫ > 0, the integer NGS defined in §10.3.4, and an integer NMS defining the mesh size

used for computing an initial upper bound using multistart. Upon successful termi-

nation, the algorithm produces an interval [UBD,UBD − ǫ] guaranteed to contain

the optimal objective value of Problem 10.2.1, and a feasible point p∗ ∈ P satisfying

φ(p∗,x(tf ,p
∗),y(tf ,p

∗)) = UBD.

Algorithm 3 (Global Dynamic Optimization with DAEs Embedded)

1. Input: P , ǫ, NGS, NMS.

2. Initialization

(a) Set Σ = {(P,−∞, 0)}, LBD = −∞, UBD = +∞, p∗ = m(P ).

3. Multistart

(a) Solve Problem 10.2.1 to local optimality from (NMS)
np initial guesses on a

uniform grid over P .

(b) Set UBD to the lowest objective value found and set p∗ to the correspond-

ing solution value.

4. Termination

(a) Delete from Σ all nodes (P ℓ, LBDℓ, N ℓ
GS) with LBDℓ ≥ UBD − ǫ.

(b) If Σ = ∅, terminate. If UBD = +∞, the instance is infeasible. Otherwise,

the optimal objective value lies in [UBD,UBD − ǫ] and p∗ is a feasible

point satisfying φ(p∗,x(tf ,p
∗),y(tf ,p

∗)) = UBD.

5. Node Selection

(a) Pop and delete a node (P ℓ, LBDℓ, N ℓ
GS) from Σ such that LBDℓ is less

than or equal to the lower bound of every other node in Σ. Set LBD :=

max(LBD,LBDℓ).
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6. Generation Skipping

(a) If N ℓ
GS 6= 0, go to 9.

7. Lower-Bounding Procedure

(a) Compute the state bounds Xℓ and Y ℓ.

i. If this fails, set N ℓ
GS := NGS + 1 and go to 9.

ii. Set LBDℓ := max(LBDℓ, [φ]L(P ℓ, Xℓ(tf), Y
ℓ(tf ))).

iii. (Fathom by infeasibility) If [hi]
L(P ℓ, Xℓ(tf), Y

ℓ(tf ))) > 0 for any i, go

to 4.

iv. (Fathom by value dominance) If LBDℓ ≥ UBD − ǫ, go to 4.

(b) Solve Problem 10.3.2 to global optimality.

i. If this fails, go to 9.

ii. If an optimal solution p̌ is found, set

LBDℓ := max
(

LBDℓ, uℓφ(p̌,x
cv,ℓ(tf , p̌),xcc,ℓ(tf , p̌),

ycv,ℓ(tf , p̌),ycc,ℓ(tf , p̌))
)

.

iii. (Fathom by infeasibility) If Problem 10.3.2 is infeasible, go to 4.

iv. (Fathom by value dominance) If LBDℓ ≥ UBD − ǫ, go to 4.

8. Domain Reduction (Optional)

(a) Refine P ℓ by executing the assignments (10.15) in a single loop from i = 1

to i = np.

9. Upper-Bounding Procedure

(a) Solve Problem 10.3.1 to local optimality.

i. If this fails, go to 10.

ii. If a solution p̂ is found with objective value UBDℓ < UBD, set

UBD := UBDℓ and p∗ := p̂.
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Table 10.1: Tolerances for Algorithm 3 used in numerical examples.

Task Solver abstol reltol
State integration IDAS 1 × 10−8 1 × 10−7

Upper bounding problem SNOPT 1 × 10−5 1 × 10−5

State bounds integration IDAS 1 × 10−6 1 × 10−6

State relaxations integration CVODES 1 × 10−6 1 × 10−6

Lower bounding problem SNOPT 1 × 10−5 1 × 10−5

B&B Alg. 3 1 × 10−3 –

10. Branching

(a) Compute j, the smallest integer in arg max
i=1,...,np

w(P ℓ
i ).

(b) Create intervals P ℓ′ and P ℓ′′ by bisecting P ℓ in the jth coordinate direction.

(c) Set N ℓ′

GS = N ℓ′′

GS = max(0, N ℓ
GS − 1).

(d) Push the nodes (P ℓ′, LBDℓ, N ℓ′

GS) and (P ℓ′′, LBDℓ, N ℓ′′

GS) onto the stack Σ.

(e) Go to 4.

10.4 Numerical Examples

All numerical experiments in this section were performed on a Dell Precision T3400

workstation with a 2.83 GHz Intel Core2 Quad CPU. One core and 512 MB of memory

were dedicated to each job.

Example 10.4.1 (Mathematical Example). We first consider a mathematical exam-

ple that is highly nonlinear and nonconvex:

min
p∈P

10x(tf ,p) − y(tf ,p) + 0.5 sin(8p2 − 0.5) (10.16)
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where (x, y) is the unique solution of

ẋ(tf ,p) = −(0.1y(tf ,p) − 3p1e
−5t)(x(tf ,p) − 0.5p2), (10.17)

0 = y(tf ,p) − 2 sin(5p1 + 1)
√

y(tf ,p)
− (15 + 2p2)x(tf ,p), (10.18)

x0(tf ,p) = 1, (10.19)

y(t0, p̂) = 16.415, p̂ = (0, 0.5), (10.20)

on I × P .

Above, I = [t0, tf ] = [0, 1] and P = [−1, 1] × [0, pU2 ]. We will consider both

the case where pU2 = 1.0 and pU2 = 1.1. The objective function is plotted on the

larger interval in Figure 10-1. The objective function is clearly nonconvex and has

nine isolated local minima in both cases. The important difference between the

problem with pU2 = 1.0 and that with pU2 = 1.1 is that when pU2 = 1.0 the global

minima is unconstrained, occurring at p∗ = (0.1469, 0.7438) with an objective value

of φ∗ = −4.6674366. In contrast, when pU2 = 1.1, the global minimum is constrained,

occurring at p∗ = (0.14155058, 1.1) with an objective value of φ∗ = −4.9324536.

Optimization results are given in Table 10.3. In addition to pU2 , several parameters

and options in Algorithm 3 were varied to investigate their influence on the overall

performance. Table 10.2 defines the shorthand used to display these results in Table

10.3. For all experiments NMS = 2 and the generation skipping heuristic was not

used (i.e., NGS = 0). The correct optimal solution was located for every experiment

in Table 10.3. In the best cases, the proposed algorithm solved the problem in 1.33

s and 115 nodes with pU2 = 1.0, and in 0.67 s and 53 nodes with pU2 = 1.1. A

representative convex relaxation of the objective function is shown in Figure 10-2.

In Runs 1 and 3, the advantage of computing state relaxations is illustrated by

comparing the proposed algorithm to a simpler version in which the lower bound is

computed using only state bounds and interval arithmetic (Step 7b in Algorithm 3

is omitted). Though the cost per node increases by a factor of 4 when the full lower

bounding procedure is used, this is dramatically outweighed by a reduction in the
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Figure 10-1: Objective function for Example 10.4.1 on P = [−1, 1] × [0, 1.1].

0
0.1

0.2
0.3

0.4 0.4

0.6

0.8

1
−5.5

−5

−4.5

−4

−3.5

p
2p

1

Figure 10-2: Convex relaxation of the objective function for Example 10.4.1 on P ℓ =
[0, 0.25] × [0.5, 1]. This interval contains the unconstrained global solution on P =
[−1, 1] × [0, 1] and corresponds to the 18th node processed in Run 3 of Table 10.3.
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Table 10.2: Shorthand definitions used in Tables 10.3 and 10.4

LBP Lower bounding procedure. Either Step 7 is done
as written (R), or Step 7b is skipped (I).

DR Indicates whether domain reduction is used (Step
10.3.3 in Algorithm 3).

K Number of refinement iterations in the right-hand
sides of the auxiliary systems defining the state
bounds (K in (6.85) and (6.86)) and state relax-
ations (K in (8.43)). The same number is used for
both.

GS Integer used for the generation skipping heuristic
(NGS in Algorithm 3).

CPU(s) Total CPU time for Algorithm 3.
Nodes Number of nodes processed by Algorithm 3.
s/N Cost per node (CPU(s)/Nodes).
BFail Number of nodes visited by Algorithm 3 for which

the state bounding computation failed.
Rfail Number of nodes visited by Algorithm 3 for which

the state relaxation computation failed.

Table 10.3: Optimization results for Example 10.4.1.

Run pU2 DR LBP K CPU(s) Nodes s/N BFail RFail
1 1.0 N I 1 217.1 74,623 0.003 5 –
2 1.0 N I 3 325.9 74,623 0.004 5 –
3 1.0 N R 1 1.67 145 0.012 5 0
4 1.0 N R 3 3.18 145 0.022 5 0
5 1.0 Y R 1 1.33 115 0.012 5 0
6 1.0 Y R 3 2.60 115 0.023 5 1
7 1.1 N I 1 4.3 1,253 0.003 4 –
8 1.1 N I 3 6.1 1,251 0.005 4 –
9 1.1 N R 1 1.06 87 0.012 4 0
10 1.1 N R 3 1.92 87 0.022 4 0
11 1.1 Y R 1 0.67 53 0.013 4 0
12 1.1 Y R 3 1.23 53 0.023 4 0
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required number of nodes of 3 orders of magnitude, and a reduction in the CPU time

of 2 orders of magnitude.

Comparing Runs 3 and 4, it is found that the number of refinement iterations

K has a rather significant effect on the cost per node. For this example, iterations

beyond the first do not effect the node count and are not worth the additional effort.

This observation is repeated throughout the table, and holds even in the case of an

interval lower-bounding procedure (see Runs 1 and 2).

The effect of using domain reduction is seen by comparing Runs 3 and 5. For this

example, the additional cost per node in insignificant. In general, it will be true for

dynamic optimization problems that the cost of a simple domain reduction scheme

like the one used here will be dominated by the cost of numerical integration in the

lower-bounding problem. Using domain reduction reduces the number of nodes and

the CPU time both by about 20%. The action of the domain reduction procedure can

be seen more clearly in Figure 10-3, which shows all of the nodes fathomed in Run 5

as shaded subintervals of P . Without domain reduction, these intervals would form

a partition of P upon termination of Algorithm 3. Accordingly, white space in the

figure corresponds to regions that were eliminated through domain reduction. The

global minimum is indicated by the red diamond.

Runs 7-12 in Table 10.3 are exactly analogous to Runs 1-6, except that pU2 = 1.1,

and hence the global minimum is now constrained with p∗2 = pU2 . In general, problems

with unconstrained solutions are more difficult for spatial-B&B algorithms because

the objective function is necessarily flat in the vicinity of such a solution. Because of

this, nodes that contain points nearby an unconstrained solution, but do not contain

the solution itself, cannot be fathomed by value dominance unless the lower-bound is

very accurate. This causes the B&B procedure to generate a large number of nodes

with diminishing interval width in the vicinity of the unconstrained solution, termed

the cluster effect [50]. The severity of this problem is known to be related to the rate

of convergence of the lower-bounding procedure.

For this example, the results in Table 10.3 indeed show that global optimization

is significantly more efficient when the global minimum lies on an active bound con-
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Figure 10-3: Intervals in the search space P = [−1, 1] × [0, 1] that were fathomed by
value dominance (shaded boxes) in Example 10.4.1 (Run 5). White space indicates
regions that were eliminated by domain reduction. The global minimum is marked
by the red diamond.

straint. This is most dramatically true when the interval lower-bounding procedure

is used. Comparing Runs 1 and 7, it is clear that the interval lower-bounding proce-

dure suffers severe clustering in the case of an unconstrained solution. Comparatively,

Runs 3 and 9 suggest that the effect of clustering is much less serious for the lower-

bounding problem using state relaxations. This lends evidence to presumption that

the state relaxations have a higher-order of convergence than do the state bounds.

Comparing Runs 9 and 11, it is seen that domain reduction reduces the number

of nodes by nearly 40% in the case of a constrained solution, as compared to 20% in

the unconstrained case. The action of the domain reduction procedure in the former

case is illustrated in Figure 10-4.

Example 10.4.2 (Kinetic Parameter Estimation with PSSA). In this example, we

consider a parameter estimation problem posed in [55]. The DAEs in this problem

model a chemical reaction network converting methanol to various hydrocarbons,

and the parameters p = (p1, . . . , p5) to be determined are related to reaction rate

constants. The single algebraic equation in the model results from a pseudo-steady
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Figure 10-4: Intervals in the search space P = [−1, 1]× [0, 1.1] that were fathomed by
value dominance (shaded boxes) in Example 10.4.1 (Run 11). White space indicates
regions that were eliminated by domain reduction. The global minimum is marked
by the red diamond.

state approximation applied to a reactive intermediate. For a detailed derivation of

this model, see [55].

The problem is stated mathematically as

min
p∈P

3
∑

i=1

16
∑

k=1

(x̂ki − xi(tk,p))2, (10.21)

where, omitting arguments for clarity, (x, y) is the unique solution of

ẋ1 = −x1(2p1 + p3 + p4) + x2y, (10.22)

ẋ2 = x1(p3 + p2y) − x2y, (10.23)

ẋ3 = x1(p4 + p5y) + x2y, (10.24)

0 = x1(p1 − y(p2 + p5)) − x2y, (10.25)

with x(t0,p) = (1, 0, 0), y(t0, p̂) = 0.952 and p̂ = (10, 10.5, 0, 0, 0).

Above, the constants x̂ki are experimental measurements of xi taken at 16 time
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points tk in the interval I = [t0, tf ] = [0, 1.2]. These measurements are tabulated

in [55]. In the original problem statement in [55], each pi is assumed to lie in the

interval [0, 20], so that P = [0, 20]5, and the problem was solved with the constraint

0.1 ≤ p2 + p5 in order to avoid singularity of ∂g
∂y

.

As discussed in §10.1, the method used to solve this problem in [55] is not rigorous.

Since the crucial step in the lower-bounding procedure relies on a finite sampling step,

there is no possibility for significant conservatism in the lower bound. As a result,

the method in [55] is much less computationally intensive than the method proposed

here. In particular, we find that it is not possible to solve the full five dimensional

problem with Algorithm 3 in reasonable time. On the other hand, the method in [55]

does not provide a guarantee of global optimality, and therefore it is not meaningful

to compare the performance of Algorithm 3 to the method in [55].

Here, we solve two simplified instances of the problem with Algorithm 3. In the

first, we consider the two parameter problem given by setting P = [0, 20] × [1, 20] ×
[0, 0]× [0, 0]× [0, 0] (from the results in [55], it is known that p3 = p4 = p5 = 0 at the

global solution). In the second case, we consider the three parameter problem given

by setting P = [0, 20] × [1, 20] × [0, 20] × [0, 0] × [0, 0]. We do not use the constraint

0.1 ≤ p2 +p5 in either case. Rather, pL2 is set to 1 instead of 0 to avoid the singularity

in the model. This is because only the interval P , and not the constraint 0.1 ≤ p2+p5,

is used during the computation of state bounds. Since this computation will fail if

the index-one assumption fails in P , the interval P must be restricted.

The reader may have noted that the algebraic equation in the embedded DAEs

can be explicitly rearranged for y provided that x1(p2 + p5)+x2 is nonzero. Carrying

out this rearrangement and substituting throughout the system clearly results in an

explicit system of ODEs. We only solve the problem as a DAE here because it has

been posed as a benchmark problem in this form in the literature [55]. In fact,

between the two articles which have previously presented methods for solving global

optimization problems with DAEs embedded [55, 42], this is the only problem in

which the embedded system was not written as an explicit system of ODEs.

Optimization results are shown in Table 10.4 (see definitions in Table 10.2). For
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Figure 10-5: Experimental data (green squares) and the optimal state trajectory
(yellow triangles) for x2 in Example 10.4.2, superimposed on 100 trajectories for
parameters on a uniform grid over P (red solid lines).

this example, the full lower-bounding procedure was used in every experiment, and the

global solution was correctly located in every case as p∗ = (5.2407, 1.2176, 0, 0, 0) with

objective value φ∗ = 0.1069. For the two parameter problem, the best performance

in terms of CPU time required 425s. For the three parameter problem, the fastest

solution time required 8,431s (2h 20m 31s). In both cases, this was achieved with

a generation skipping heuristic, so the number of nodes is inflated. The optimal

trajectory and measured data for x2 are shown in Figure 10-5, overlaid on a large

sample of feasible trajectories.

It is immediately evident from Table 10.4 that this problem is much more difficult

than Example 10.4.1, even in the two parameter case. The convergence behavior

of the upper and lower bounds for Run 2 is shown in Figure 10-6. From this plot,

one can attribute the large number of nodes required to solve this problem to two

sources. Firstly, a finite lower bound was not achieved until after 6,109 nodes were

processed. This is due to repeated failures in the state bounding procedure, of which

there were 3,053. Secondly, the rate at which the lower bounds converge toward the

upper bounds in Figure 10-6 decreases abruptly after roughly 6262 nodes have been
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Table 10.4: Optimization results for Example 10.4.2.

Run Decisions DR K GS CPU(s) Nodes s/N BFail RFail
1 (p1, p2) N 2 0 593 7,611 0.078 3,053 220
2 (p1, p2) Y 2 0 593 7,599 0.078 3,053 221
3 (p1, p2) Y 6 0 1,200 6,725 0.178 2,482 339
4 (p1, p2) Y 2 1 425 9,067 0.047 1,280 162
5 (p1, p2) Y 2 2 571 16,221 0.035 1,094 133
6 (p1, p2) Y 2 3 604 20,037 0.030 627 92
7 (p1, p2, p3) Y 2 0 12,404 154,911 0.080 70,677 9,342
8 (p1, p2, p3) Y 2 1 8,431 211,689 0.04 33,240 7,978

processed. This is due to the cluster effect, as demonstrated below.

To better understand the performance of Algorithm 3 in Run 2, it is helpful to

see the subintervals of P generated by branching during the course of the algorithm.

These are shown in Figure 10-7 and, zoomed in near the global solution, in Figure 10-

8. In both figures, the shaded boxes are nodes fathomed by value dominance, while

white space represents regions that were eliminated by domain reduction. Firstly,

these figures show that the effect of domain reduction is minimal for this problem,

which is corroborated by comparing Runs 1 and 2 in Table 10.4. These figures also

clearly demonstrate the cluster effect, which is to be expected because no constraints

are active at the global solution. From Figure 10-7, however, one also notes a very high

density of small intervals all along the pL2 boundary, even quite far from the solution.

The explanation for this is given in Figure 10-9, which shows nodes for which the

state bounding procedure (white boxes) or the state relaxation procedure (shaded

boxes with dashed outline) failed. From this figure, it is clear that the accumulation

of small intervals along the bottom of Figure 10-7 is not due to the cluster effect, but

rather results from repeated failure of the state bounding procedure in this region.

The state bounding procedure evidently has a very difficult time verifying existence

and uniqueness of the DAE solution in this region, though the ultimate reason for

this is not understood. Failure of the state relaxation procedure is much less frequent

and is believed to result from chattering in the event detection scheme (see §10.3.2).

To elucidate the source of the abrupt change in the slope of the lower bound curve
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Figure 10-6: Convergence of the upper (black squares) and lower (red triangles)
bounds on the globally optimal objective value for Example 10.4.2 (Run 2) as a
function of the number of nodes processed.
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Figure 10-7: Intervals in the search space P that were fathomed by value dominance
(shaded boxes) in Example 10.4.2 (Run 2). White space indicates regions that were
eliminated by domain reduction. The global minimum is marked by the red diamond.
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Figure 10-8: A closer look at intervals in the search space P that were fathomed by
value dominance (shaded boxes) in the vicinity of the global minimum (red diamond)
in Example 10.4.2 (Run 2). White space indicates regions that were eliminated by
domain reduction.
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Figure 10-9: Intervals in P visited by Algorithm 3 in Example 10.4.2 (Run 2) where
either the computation of state bounds (white boxes) or state relaxations (shaded
boxes with dashed outline) failed. Intervals are plotted in the order they were visited,
so that smaller intervals cover larger intervals where failures may also have occurred.
The global minimum is marked by the red diamond.
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Figure 10-10: Intervals from the first 6,275 nodes visited by Algorithm 3 that were
fathomed by value dominance (shaded boxes) in Example 10.4.2 (Run 2). White
space corresponds to nodes remaining on the stack. The qualitative slope change in
the lower bounds in Figure 10-6 occurs at this stage in the algorithm. The global
minimum is marked by the red diamond.

in Figure 10-6, the nodes fathomed by Algorithm 3 prior to the change, which occurs

near node 6, 275, are plotted in Figures 10-10 and 10-11. From these figures, it is clear

that the reduced rate of convergence after 6,275 nodes is directly correlated with the

onset of clustering around the global solution.

Considering Figure 10-6 and the BFail column in Table 10.4, it is evident that the

repeated failure of the state bounding procedure is more problematic than the cluster

effect for this problem. From Figure 10-6, one can see that the onset of clustering

occurs only after more than 80% of the total nodes have been processed. In contrast,

the state bounding procedure failed on 40% of the total nodes. Figure 10-12 shows

that the bahavior of the problem with three decision variables (Run 7) is analogous,

with only 6% of the total node count related to clustering, and failure of the state

bounding procedure for some 46% of the total nodes.
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Figure 10-11: A closer look at intervals from the first 6,275 nodes visited by Algorithm
3 that were fathomed by value dominance (shaded boxes) in the vicinity of the global
minimum (red diamond) in Example 10.4.2 (Run 2). White space corresponds to
nodes remaining on the stack. The qualitative slope change in the lower bounds in
Figure 10-6 occurs at this stage in the algorithm.
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Figure 10-12: Convergence of the upper (black squares) and lower (red triangles)
bounds on the globally optimal objective value for Example 10.4.2 (Run 7) as a
function of the number of nodes processed.
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10.5 Conclusion

In this chapter, a deterministic global optimization algorithm for problems with semi-

explicit index-one DAEs embedded was developed. The algorithm is based on a

spatial-B&B framework and uses the sequential approach to dynamic optimization.

The lower-bounding procedure is enabled by the state bounding and relaxation tech-

niques developed throughout this thesis.

The performance of the algorithm was demonstrated on two example problems.

The first test problem was highly nonlinear and displayed multiple suboptimal local

minima. Nonetheless, the proposed algorithm was shown to locate the global solution

with only minor computational effort. By introducing a small perturbation in in

the host interval, it was shown that the performance of the algorithm is significantly

improved when the optimal solution lies on a constraint, all other things being roughly

equal. This is due to the cluster effect and is typical of global optimization algorithms.

However, the state relaxation method using relaxation preserving dynamics developed

in Chapter 8 was shown to be effective for reducing the cluster effect, at least when

compared to an interval lower-bounding procedure.

The second test problem was much more challenging. Again, the proposed algo-

rithm was able to provide a guaranteed global solution, but with significant computa-

tional expense. The cluster effect was again a source of inefficiency for this problem,

but was overshadowed by difficulties in the state bounding procedure. As discussed

in detail in Chapter 6, failure of the single-phase state bounding method is caused by

an inability to verify existence and uniqueness of a solution of the embedded DAEs on

the given interval. From experiments with the single-phase method, it is known that

the DAEs of Example 10.4.2 are particularly difficult from a state bounding prospec-

tive, though it is not clear why. Thus, more experiments are needed to determine

whether the state bounding procedure will typically be the weak link in Algorithm

3, or if Example 10.4.2 is exceptional in this regard. In any case, a more robust

bounding method should be considered a key target for future research.

In the proposed algorithm, we have implemented only one very simple form of
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domain reduction. However, it is known that efficient global optimization algorithms

rely very heavily on a variety of domain reduction techniques. Therefore, a primary

goal for future work is to implement more sophisticated domain reduction techniques,

potentially specialized to dynamic problems. Moreover, advanced techniques for com-

bating the cluster effect, such as convexity detection and the computation of exclusion

regions, should also be pursued.
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Chapter 11

Convex Relaxations for Nonconvex

Optimal Control Problems

11.1 Introduction

Consider the open-loop optimal control problem informally stated as

inf
u∈U

φ(u(tf),x(tf ,u)) (11.1)

s.t. g(u(tf),x(tf ,u)) ≤ 0

q(t,u(t),x(t,u)) ≤ 0, a.e. t ∈ [t0, tf ],

where U is a subset of (L1([t0, tf ]))
nu and, for each u ∈ U , x(·,u) is an absolutely

continuous solution of

ẋ(t,u) = f(t,u(t),x(t,u)), a.e. t ∈ [t0, tf ], (11.2)

x(t0,u) = x0,

which is assumed unique. This problem is of general interest and has been the sub-

ject of intense research for decades [22]. Nonetheless, (11.1) is an infinite dimensional

problem and, as such, there is no general purpose algorithm for solving it to guaran-

teed global optimality. If the control functions u are approximated by a finite number
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of real parameters [173], then the resulting approximation of (11.1) can be solved to

global optimality using any of the methods described in the articles [135, 164, 104].

However, this approach may be unsatisfactory for both theoretical and practical rea-

sons. Theoretically, the solution so obtained is only globally optimal for an approx-

imate problem. Practically, it often happens that many parameters are required to

accurately approximate a single control function, making the approximate NLP large.

Based on these shortcomings, it is desirable to develop a method for solving (11.1)

to guaranteed global optimality directly in the infinite-dimensional setting. In this

chapter, we provide a crucial step towards accomplishing this through a branch-and-

bound (B&B) approach. In particular, we present a method for computing a guar-

anteed lower bound on the optimal objective value of (11.1). For finite-dimensional

optimization problems, providing a valid lower-bounding procedure is the most dif-

ficult aspect of applying the B&B framework, and is typically the key development

required to extend B&B techniques to a new class of problems. However, infinite-

dimensional problems introduce new complications, and therefore we cannot present

a complete B&B global optimization algorithm for (11.1) at this time. Specifically, we

have so far found no way to partition an infinite-dimensional set in a way that is both

exhaustive and useful for refining the lower bound computed through the procedure

given here.

To compute a lower bound on the optimal objective value of (11.1), we construct

an auxiliary optimal control problem, called a relaxation of (11.1), with the properties

(a) the optimal objective value is guaranteed to underestimate the infimum in (11.1),

and (b) it is convex in the sense that the feasible set is a convex subset of U and

the mapping taking u to the objective value is convex on this set. Because it is

convex, this relaxed problem is in principle solvable to global optimality. For example,

necessary and sufficient optimality conditions for such programs are derived in [15],

and gradient based solution methods are proposed. Supposing that such a solution

can be obtained, this procedure generates a guaranteed lower bound on the solution

of (11.1). In [15], conditions were also studied under which (11.1) can be guaranteed

to be convex, based on arguments similar to those presented in §11.5. In contrast,
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the method presented here is not used to verify convexity, but rather to construct a

convex optimization problem which underestimates a given instance of (11.1), even

when (11.1) is nonconvex.

By analogy to the global dynamic optimization methods presented in [135, 164,

104] (and the method for semi-explicit index-one DAEs presented in Chapter 10), the

proposed lower-bounding procedure depends on the ability to compute state bounds

and a form of state relaxations for the embedded control system (11.2). It has already

been shown in Chapter 3 that state bounds for (11.2) can be computed without the

need for control parameterization. The main result of this chapter is that the same is

essentially true for state relaxations. By a suitable reinterpretation of McCormick’s

relaxation technique, it is shown that convex and concave relaxations of the solutions

of (11.2) on a convex subset of L1([t0, tf ]) can be derived and evaluated computation-

ally by exactly the same techniques already developed in Chapter 7.

11.1.1 Basic Approach

Let I = [t0, tf ] ⊂ R, let Ū ⊂ Rnu be compact, and let U : I → IRnu be a continuous

mapping such that U(t) = [uL(t),uU(t)] ⊂ Ū , ∀t ∈ I. In the remainder of this

chapter, the set of admissible controls is defined by

U ≡ {u ∈ (L1(I))nu : u(t) ∈ U(t) a.e. in I} (11.3)

and is assumed nonempty. It is trivial to verify that U is a convex subset of the

vector space (L1(I))nu. Finally, let D ⊂ Rnx be open and suppose that the mappings

in (11.1) have the form φ : Ū ×D → R, g : Ū ×D → Rng , and q : I × Ū ×D → Rnq .

Assumptions regarding the control systems (11.2) are discussed in §11.5. We note

here that the solution has the form x : I × U → D.

In order to construct a convex underestimating program for (11.1), convex under-
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estimating functions are derived for the mappings

U ∋ u 7−→ Fφ(u) ≡ φ(u(tf ),x(tf ,u)), (11.4)

U ∋ u 7−→ Fg(u) ≡ g(u(tf),x(tf ,u)), (11.5)

and the family of mappings

U ∋ u 7−→ Fq,t(u) ≡ q(t,u(t),x(t,u)), (11.6)

for a.e. t ∈ I. Defining the relaxed program with these convex underestimators in

place of the mappings above, both convexity and the desired underestimation property

follow from standard arguments [84, 15].

11.2 McCormick Relaxations on Vector Spaces

Convex relaxations for the mappings (11.4), (11.5) and (11.6) will be derived using

McCormick’s relaxation technique (see Chapter 2). The novelty in the present appli-

cation is that these functions are not defined on Rn, but rather on U , which is a subset

of the function space L1([t0, tf ]). To treat this case, it is shown here that the basic

properties of McCormick relaxations are preserved when one considers an arbitrary

vector space in place of Rn. Considering the form of the mappings (11.4), (11.5) and

(11.6), we are particularly interested in extending the composite relaxation technique

of §2.7.2 to the case where the inner function is defined on an arbitrary vector space.

Let V be a vector space. Clearly, convex combinations of the elements of V are

well-defined. Then, convexity of a subset C ⊂ V is defined in the standard way.

Moreover, convexity and concavity of functions mapping C into R are defined by the

standard inequalities. Relaxations in this context are defined as follows.

Definition 11.2.1. Let V be a vector space, let C ⊂ V be convex, and let h, hcv, hcc :

C → R. The function hcv is called a convex relaxation of h on C if hcv is convex on

C and hcv(v) ≤ h(v), ∀v ∈ C. Similarly, hcc is called a concave relaxation of h
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on C if hcc is concave on C and hcc(v) ≥ h(v), ∀v ∈ C. The terms convex and

concave relaxation will also be used for vector functions when these conditions hold

componentwise.

The definition of a composite relaxation from §2.7.2 can now be extended to

functions on V .

Definition 11.2.2. Let Q ⊂ Rny and w : Q → Rm. For any Y ⊂ Q, functions

uw, ow : Rny × Rny → R are called convex and concave composite relaxations of w

on Y if the following condition holds: For any vector space V , and convex C ⊂ V ,

and any y,ycv,ycc : C → Rny with y(C) ⊂ Y , convex and concave relaxations of the

composite function

C ∋ v 7−→ h(v) ≡ w(y(v)) (11.7)

on C are given by the composite mappings

C ∋ v 7−→ hcv(v) ≡ uw(ycv(v),ycc(v)) (11.8)

C ∋ v 7−→ hcc(v) ≡ ow(ycv(v),ycc(v))

provided that ycv and ycc are, respectively, convex and concave relaxations of y on

C.

When y is L-factorable and Y is an interval, composite relaxations can be readily

obtained from a natural McCormick extension as follows.

Theorem 11.2.3. Let Q ⊂ Rny and let w : Q → Rm be L-factorable with natural

McCormick extension {w} : Q → MRm. For any Y ∈ IQ such that Y is represented

in Q, the functions uw, ow : Rny × Rny → Rm defined by

uw(zcv, zcc) ≡ {w}cv(MC(yL,yU , zcv, zcc)), (11.9)

ow(zcv, zcc) ≡ {w}cc(MC(yL,yU , zcv, zcc)),

are composite relaxations of w on Y .
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Proof. Choose any vector space V , any convex C ⊂ V , and any y,ycv,ycc : C → Rny

such that y(C) ⊂ Y and ycv and ycc are, respectively, convex and concave relaxations

of y on C. For any v ∈ C, these hypothesis ensure that ycv(v) ≤ ycc(v) and

y(v) ∈ Y ∩[ycv(v),ycc(v)]. Then, applying Lemma 2.7.3 with the definitions X := Y ,

x := y(xcv), xcv := ycv(v) and xcc := ycc(v) gives the inequality

uw(ycv(v),ycc(v)) ≤ w(y(v)) ≤ ow(ycv(v),ycc(v)). (11.10)

Then, using the definitions (11.7) and (11.8), the functions hcv and hcc underestimate

and overestimate h on C, respectively.

Next, choose any (λ,v1,v2) ∈ [0, 1] × C × C and let v3 = λv1 + (1 − λ)v2. By

hypothesis,

ycv(v3) ≤ λycv(v1) + (1 − λ)ycv(v2),

ycc(v3) ≥ λycc(v1) + (1 − λ)ycc(v2),

and Y ∩ [ycv(vi),y
cc(vi)] 6= ∅, for all i ∈ {1, 2, 3}. Then, applying Lemma 2.7.4 with

the definitions X := Y , xcvi := ycv(vi) and xcci := ycc(vi), for i ∈ {1, 2, 3}, gives the

inequalities

uw(ycv(v3),y
cc(v3)) ≤ λuw(ycv(v1),y

cc(v1)) + (1 − λ)uw(ycv(v2),y
cc(v2)),

ow(ycv(v3),y
cc(v3)) ≥ λow(ycv(v1),y

cc(v1)) + (1 − λ)ow(ycv(v2),y
cc(v2)).

Therefore, the functions hcv and hcc defined by (11.8) are convex and concave on C,

respectively.

Remark 11.2.4. Since the previous theorem holds for any L-factorable outer func-

tion, it holds for the simple cases where the outer function is any of (+,R2,R),

(×,R2,R) or (u,B,R) ∈ L. Thus, the previous result establishes that McCormick’s

relaxation rules for these basic operations are applicable in an arbitrary vector space

without modification.

424



11.3 Relaxing the Objective and Constraints

In this section, the results of §11.2 are applied to compute relaxations of the functions

(11.4), (11.5) and (11.6), under the assumption that convex and concave relaxations

of x(t, ·) on U are available for every t ∈ I (see §11.5). The following assumptions are

required.

Assumption 11.3.1. Functions xL,xU : I → Rnx are available such that x(t,u) ∈
X(t) ≡ [xL(t),xU(t)], ∀(t,u) ∈ I × U , and X(t) ⊂ D, ∀t ∈ I.

Assumption 11.3.2. The functions φ, g, q and f are L-factorable with natural

McCormick extensions {φ} : E → MR, {g} : E → MRng , {q} : D → MRnq and

{f} : D → MRnf . Moreover, the interval U(tf ) × X(tf) is represented in E and, for

every t ∈ I, the interval I × U(t) ×X(t) is represented in D.

Of course, the state bounds of Assumption 11.3.1 can be computed using any of

the methods presented in Chapters 3 and 4. Using Assumption 11.3.2, we now derive

a convex relaxation for the mapping Fq,t. Define the function uq : I×Ū×Rnx×Rnx →
Rnx by

uq(t,p, z
cv, zcc) ≡ {q}cv(MC(t, t, t, t),MC(uL(t),uU(t),p,p), (11.11)

MC(xL(t),xU(t), zcv, zcc)).

From Theorem 11.2.3, we have the following lemma.

Lemma 11.3.3. For any ψc,ψC : I × U → Rnx and any t ∈ I, the function

U(t) × U ∋ (p,u) 7−→ uq(t,p,ψcv(t,u),ψcc(t,u))

is a convex relaxation of

U(t) × U ∋ (p,u) 7−→ q(t,p,x(t,u))
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on U(t)×U , provided that ψcv(t, ·) and ψcc(t, ·) are, respectively, convex and concave

relaxations of x(t, ·) on U .

Proof. The set Rnu ×L1(I) is a vector space, and for any fixed t ∈ I, the set U(t)×U
is convex. Then, the result follows from Theorem 11.2.3 using the definitions Q :=

I × Ū ×D, h := q, V := Rnu × L1(I), C := U(t) × U , Y := [t, t] × U(t) ×X(t), and

U(t) × U ∋ (p,u) 7−→ y(p,u) ≡ (t,p,x(t,u)),

U(t) × U ∋ (p,u) 7−→ ycv(p,u) ≡ (t,p,ψcv(t,u)),

U(t) × U ∋ (p,u) 7−→ ycc(p,u) ≡ (t,p,ψcc(t,u)).

Theorem 11.3.4. For any ψc,ψC : I × U → Rnx and a.e. t ∈ I, the mapping

U ∋ u 7−→ F cv
q,t(u) ≡ uq(t,u(t),ψcv(t,u),ψcc(t,u))

is a convex relaxation of Fq,t on U , provided that ψcv(t, ·) and ψcc(t, ·) are, respec-

tively, convex and concave relaxations of x(t, ·) on U .

Proof. Choose any (λ,u1,u2) ∈ [0, 1]×U ×U and let u3 = λu1 + (1− λ)u2. Clearly,

u3(t) = λu1(t) + (1 − λ)u2(t) for all t ∈ I. For a.e. t ∈ I, u1(t),u2(t),u3(t) ∈ U(t),

and hence Lemma 11.3.3 shows that

uq(t,u3(t),ψ
cv(t,u3),ψ

cc(t,u3)) ≤λuq(t,u1(t),ψ
cv(t,u1),ψ

cc(t,u1))

+ (1 − λ)uq(t,u2(t),ψ
cv(t,u2),ψ

cc(t,u2))

and uq(t,ui(t),ψ
cv(t,ui),ψ

cc(t,ui)) ≤ q(t,ui(t),x(t,ui)) for all i ∈ {1, 2, 3}.

It is not difficult to see that relaxations of Fφ and Fg can also be constructed by

analogous procedures. Thus, the task of deriving a convex underestimating program

for (11.1) has been reduced to that of deriving convex and concave relaxations for the

end-point map of the control system (11.2). That development occupies the remainder

of the chapter.
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11.4 Relaxing Integral Functionals

Let Ū , U(t) and U be defined as in §11.1.1. In this section, relaxations of the functional

U ∋ u 7−→ H(u) ≡
∫ t

t0

h(s,u(s))ds, (11.12)

are considered, where h : I × Ū → Rn. Though no integral functionals appear in

(11.1), the development in this section is required for relaxing the end-point maps

of control systems in §11.5. Indeed, integral functionals have not been included in

(11.1) because they can be treated by augmenting quadrature variables to the control

system (11.2). For the benefit of §11.5, the following lemma is stated for a more

general functionals than above.

Lemma 11.4.1. Let h : I × Ū × U → Rn and suppose that the mapping t 7→
h(t,u(t),u) is in (L1(I))n for every u ∈ U . If, for a.e. t ∈ I, the mapping

U(t) × U ∋ (p,u) 7−→ h(t,p,u)

is convex on U(t) × U , then the mapping

U ∋ u 7−→ H(u) ≡
∫ t

t0

h(s,u(s),u)ds

is convex on U , for every t ∈ I.

Proof. Choose any (λ,u1,u2) ∈ [0, 1]×U ×U and let u3 = λu1 + (1− λ)u2. Clearly,

u3(s) = λu1(s) + (1 − λ)u2(s) for all s ∈ I. For a.e. s ∈ I, the hypothesis on h and

the fact that u1(s),u2(s) ∈ U(s) imply that

h(s,u3(s),u3) ≤ λh(s,u1(s),u1) + (1 − λ)h(s,u2(s),u2).

Since this holds for a.e s ∈ I, linearity and monotonicity of the integral imply that,
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for any t ∈ I,

∫ t

t0

h(s,u3(s),u3)ds ≤ λ

∫ t

t0

h(s,u1(s),u1)ds+ (1 − λ)

∫ t

t0

h(s,u2(s),u2)ds.

The result follows since u1,u2 ∈ U and λ ∈ (0, 1) are arbitrary.

Lemma 11.4.1 will be used in its full generality in §11.5. For the moment, consider

the functional H as defined in (11.12), with h : I × Ū → Rn. Suppose further that

h is L-factorable with natural McCormick extension {h} : K → Rn, and that U(t) is

represented in K for every t ∈ I. Finally define the function uh : I × Rnu → Rn by

uh(t,p) ≡ {h}cv(MC(t, t, t, t),MC(uL(t),uU(t),p,p)). (11.13)

Then, we have the following corollary of Lemma 11.4.1.

Corollary 11.4.2. Suppose that the mapping t 7→ h(t,u(t)) is in (L1(I))n for every

u ∈ U . Then the mapping

U ∋ u 7−→ Hcv(u) ≡
∫ t

t0

uh(s,u(s))ds (11.14)

is convex a convex relaxation of H on U .

Proof. For any t ∈ I, convexity of uh(t, ·) on U(t) follows from Theorem 2.7.10. Then,

the result follows from Lemma 11.4.1, provided that the mapping t 7→ uh(t,u(t)) is

in (L1(I))n for every u ∈ U .

Since U is continuous, uh is continuous by Corollary 2.7.11. Choosing any u ∈ U ,

it follows that t 7→ uh(t,u(t)) is measurable (see [8]). Furthermore, uh is bounded

on I × Ū , which implies that t 7→ uh(t,u(t)) is bounded almost everywhere on I, and

hence it is integrable on I.
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11.5 State Relaxations for Control Systems

Let Ū , U(t), U and D be defined as in §11.1.1, and consider the control system (11.2),

where f : I × Ū ×D → Rnx . The following assumption holds throughout this section.

Assumption 11.5.1. f is continuous on I × Ū ×D and, for every compact K ⊂ D,

∃LK ∈ R+ such that

‖f(t,p, z) − f(t,p, ẑ)‖1 ≤ LK‖z − ẑ‖1,

for every (t,p, z, ẑ) ∈ I × Ū ×K ×K.

Under Assumption 11.5.1, it can be shown by standard methods that there exists

a closed interval I ′ ⊂ I such that, corresponding to each u ∈ U there exists a unique,

absolutely continuous solution of (11.2) on I ′. It is assumed that such a solution

exists on all of I; that is, there exists a unique mapping x : I × U → D satisfying

(11.2) a.e. in I for every u ∈ U . The objective of this section is to derive relaxations

for the family of mappings Xt(u) ≡ x(t,u) on U , for each t ∈ I. It will be shown

that these relaxations are given by the solutions of a suitable auxiliary control system

which can be generated using McCormick’s relaxation technique. The development

here is analogous to the development of state relaxations for parametric ODEs using

relaxation amplifying dynamics in Chapter 7. The development of a relaxation theory

based on relaxation preserving dynamics for control systems is left for future work.

Let uf , of : I × Ū × Rnx × Rnx → Rnx be defined by

uf (t,p, z
cv, zcc) = {f}cv(MC(t, t, t, t),MC(uL(t),uU(t),p,p), (11.15)

MC(xL(t),xU(t), zcv, zcc)),

of (t,p, z
cv, zcc) = {f}cc(MC(t, t, t, t),MC(uL(t),uU(t),p,p),

MC(xL(t),xU(t), zcv, zcc)).

The following properties of these functions will be required below.
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Corollary 11.5.2. For any ψc,ψC : I × U → Rnx and a.e. t ∈ I, the functions

U(t) × U ∋ (p,u) 7−→ uf (t,p,ψ
cv(t,u),ψcc(t,u))

U(t) × U ∋ (p,u) 7−→ of (t,p,ψ
cv(t,u),ψcc(t,u))

are, respectively, convex and concave relaxations of

U(t) × U ∋ (p,u) 7−→ f(t,p,x(t,u))

on U(t)×U , provided that ψcv(t, ·) and ψcc(t, ·) are, respectively, convex and concave

relaxations of x(t, ·) on U .

Proof. The result follows from Theorem 11.2.3, arguing exactly as in the proof of

Lemma 11.3.3.

Corollary 11.5.3. uf and of are continuous on I × Ū × Rnx × Rnx, and ∃L ∈ R+

such that

‖uf (t,p, z,y) − uf (t,p, ẑ, ŷ)‖1+‖of (t,p, z,y) − of (t,p, ẑ, ŷ)‖1

≤ L(‖z − ẑ‖1 + ‖y − ŷ‖1)

for all (t,p, z,y, ẑ, ŷ) ∈ I × Ū × Rnx × Rnx × Rnx × Rnx.

Proof. The result follows from Corollary 2.7.8 using an argument analogous to that

in Lemma 7.6.7.

Now, define the auxiliary control system by

ẋcv(t,u) = uf (t,u(t),xcv(t,u),xcc(t,u)), xcv(t0,u) = x0, (11.16)

ẋcc(t,u) = of (t,u(t),xcv(t,u),xcc(t,u)), xcc(t0,u) = x0,

for a.e. t ∈ I and every u ∈ U . The main result of this section is the following:
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Theorem 11.5.4. The auxiliary system (11.16) has a unique solution (xcv,xcc) on

all of I×U , and xcv(t, ·) and xcc(t, ·) are, respectively, convex and concave relaxations

of x(t, ·) on U , for every t ∈ I.

According to the previous theorem, the desired relaxations of the endpoint map

Xt are given by X cv
t (u) ≡ xcv(t,u) and X cc

t (u) ≡ xcc(t,u), ∀(t,u) ∈ I×U . Combining

these relaxations with the analysis in §11.1.1 and 11.3, the desired relaxation of (11.1)

are readily derived.

11.5.1 Proof of Theorem 11.5.4

Preliminaries

Theorem 11.5.5. Consider the ODEs (11.2) and suppose that f is continuous on

I × Ū × Rnx and ∃L ∈ R+ such that

‖f(t,p, z) − f(t,p, ẑ)‖1 ≤ L‖z − ẑ‖1,

for every (t,p, z, ẑ) ∈ I × Ū × Rnx × Rnx. Given any x0 : I × U → Rnx such

that x0(·,u) is absolutely continuous on I for any u ∈ U , the sequence of successive

approximations defined recursively by

xk+1(t,u) = x0 +

∫ t

t0

f(s,u(s),xk(s,u))ds (11.17)

satisfies the following conditions:

1. For each u ∈ U , each xk exists and is absolutely continuous on I,

2. For each u ∈ U , the sequence {xk(·,u)} converges uniformly on I to an abso-

lutely continuous limit function x(·,u) satisfying (11.2) uniquely.

Proof. Fix any u ∈ U . By hypothesis, x0(·,u) is absolutely continuous on I. Suppose

this is true of xk. Continuity of f and measurability of u and xk(·,u) imply that

f(·,u(·),xk(·,u)) is measurable (see [8]). Since this function is also bounded a.e. on
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I, it is integrable and hence (11.17) defines xk+1(·,u) as an absolutely continuous

function on I. Induction shows that this property holds for all k ∈ N.

Define γ(t) ≡ ‖f(t,u(t),x1(t,u))− f(t,u(t),x0(t,u))‖1 and let γ̄ = ess supt∈Iγ(t).

The assumption that U(t) ⊂ Ū for all t ∈ I, with Ū compact, along with the conti-

nuity of f , x1 and x0, ensures that γ̄ is finite. It will be shown that

‖xk+1(t,u) − xk(t,u)‖1 ≤
γ̄Lk(t− t0)

k

Lk!
, (11.18)

for all t ∈ I and every k ∈ N. For k = 1, (11.17) directly gives

‖x2(t,u) − x1(t,u)‖1 ≤
∫ t

t0

‖f(s,u(s),x1(s,u)) − f(s,u(s),x0(s,u))‖1ds

≤ γ̄(t− t0), ∀t ∈ I.

Supposing that (11.18) holds for some arbitrary k, the Lipschitz condition on f gives

‖xk+2(t,u) − xk+1(t,u)‖1 ≤ L

∫ t

t0

‖xk+1(s,u) − xk(s,u)‖1ds,

≤ γ̄Lk+1

Lk!

∫ t

t0

(s− t0)
kds,

≤ γ̄Lk+1(t− t0)
k+1

L(k + 1)!
, ∀t ∈ I.

Thus, induction proves (11.18). Now, for any n,m ∈ N with m > n, expansion by

the triangle inequality and application of Equation (11.18) gives

‖xm(t,u) − xn(t,u)‖1 ≤
m−1
∑

k=n

γ̄Lk(tf − t0)
k

Lk!
, (11.19)

for all t ∈ I. But

∞
∑

k=0

γ̄Lk(tf − t0)
k

Lk!
=
γ̄

L
eL(tf−t0) < +∞,
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and hence

lim
n→∞

∞
∑

k=n

γ̄Lk(tf − t0)
k

Lk!
= 0, (11.20)

which implies by (11.19) that the sequence {xk(·,u)} is uniformly Cauchy on I. Con-

tinuity implies that this sequence converges uniformly to a continuous limit function

x(·,u) on I.

Next, it is shown that x is a solution of (11.2) on I × U . For any u ∈ U , the

Lipschitz condition on f gives,

‖
∫ t

t0

f(s,u(s),xk(s,u))ds−
∫ t

t0

f(s,u(s),x(s,u))ds‖1

≤ L

∫ t

t0

‖xk(s,u) − x(s,u)‖1ds, ∀t ∈ I,

so uniform convergence of {xk(·,u)} to x(·,u) on I implies that

lim
k→∞

∫ t

t0

f(s,u(s),xk(s,u))ds =

∫ t

t0

f(s,u(s),x(s,u))ds, ∀t ∈ I.

Then, taking limits on both sides of (11.17) gives

x(t,u) = x0 +

∫ t

t0

f(s,u(s),x(s,u))ds, ∀t ∈ I,

which implies that x(·,u) is absolutely continuous and solves (11.2). Uniqueness of x

now follows (for each fixed u ∈ U) by a standard application of Gronwall’s inequality

(Proposition 1, Ch. 2, Sec. 4, [14]).

Proof

Choose any vectors xL,xU ∈ Rnx , such that xL ≤ x(t,u) ≤ xU , ∀(t,u) ∈ I × U .

Under Assumption 11.3.1, such vectors certainly exist. Let xcv,0(t,u) = xL and

xcc,0(t,u) = xU , ∀(t,u) ∈ I × U , and consider the successive approximations defined
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recursively by

xcv,k+1(t,u) = x0 +

∫ t

t0

uf (s,u(s),xcv,k(s,u),xcc,k(s,u))ds, (11.21)

xcc,k+1(t,u) = x0 +

∫ t

t0

of (s,u(s),xcv,k(s,u),xcc,k(s,u))ds.

Note that uf and of are defined on I×Ū×Rnx ×Rnx and Lipschitz on all of Rnx ×Rnx

uniformly on I × Ū by Corollary 11.5.3. Thus, Theorem 11.5.5 may be applied to

(11.16), which shows that the successive approximations xcv,k and xcc,k in (11.21)

exist and, for each fixed u ∈ U , converge uniformly on I to the unique solutions of

(11.16), xcv(·,u) and xcc(·,u).

Next, note that xcv,0(t, ·) and xcc,0(t, ·) are trivially convex and concave relaxations

of x(t, ·) on U , respectively, for each fixed t ∈ I. Suppose that the same is true of

xcv,k and xcc,k. Then, by Corollary 11.5.2,

U(t) × U ∋ (p,u) 7−→ uf (t,p,x
cv,k(t,u),xcc,k(t,u))

U(t) × U ∋ (p,u) 7−→ of (t,p,x
cv,k(t,u),xcc,k(t,u))

are, respectively, convex and concave relaxations of

U(t) × U ∋ (p,u) 7−→ f(t,p,x(t,u))

on U(t) × U , for all t ∈ I. Lemma 11.4.1 shows that

U ∋ u 7−→
∫ t

t0

uf (s,u(s),xcv,k(s,u),xcc,k(s,u))ds

U ∋ u 7−→
∫ t

t0

of (s,u(s),xcv,k(s,u),xcc,k(s,u))ds

are, respectively, convex and concave on U , for every fixed t ∈ I. Then, (11.21) shows

that xcv,k+1(t, ·) and xcc,k+1(t, ·) are, respectively, convex and concave on U for every

fixed t ∈ I.

Now, considering the under and overestimating properties of the functions uf and
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of described above, for any u ∈ U and a.e. s ∈ I, we have

uf (s,u(s),xcv,k(s,u),xcc,k(s,u)) ≤ f(s,u(s),x(s,u)),

≤ of (s,u(s),xcv,k(s,u),xcc,k(s,u)).

Combining this with integral monotonicity,

∫ t

t0

uf (s,u(s),xcv,k(s,u),xcc,k(s,u))ds ≤
∫ t

t0

f(s,u(s),x(s,u))ds,

≤
∫ t

t0

of (s,u(s),xcv,k(s,u),xcc,k(s,u))ds,

for all (t,u) ∈ I × U . Then, (11.21) shows that

xcv,k+1(t,u) ≤ x0 +

∫ t

t0

f(s,u(s),x(s,u))ds ≤ xcc,k+1(t,u), ∀(t,u) ∈ I × U ,

which, by the integral form of (11.2), gives

xcv,k+1(t,u) ≤ x(t,u) ≤ xcc,k+1(t,u), ∀(t,u) ∈ I × U .

Therefore, by induction, xcv,k(t, ·) and xcc,k(t, ·) are, respectively, convex and concave

relaxations of x(t, ·) on U , for each fixed t ∈ I and every k ∈ N.

It was shown above that, as k → ∞, xcv,k and xcc,k converge pointwise to the

unique solutions of (11.16) on I × U . Then, taking limits, it is clear that xcv(t, ·)
and xcc(t, ·) are, respectively, convex and concave relaxations of x(t, ·) on U , for each

fixed t ∈ I.

11.6 Conclusions

A method has been presented for computing a rigorous lower bound for the non-

convex optimal control problem (11.1). In particular, a constructive procedure was

described, based on natural McCormick extensions, which produces a convex op-

timization problem whose solution is guaranteed to underestimate the infimum in
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(11.1). Supposing that this convex program can be solved to global optimality, using

for example the methods described in [15], a guaranteed lower bound on the infimum

in (11.1) is obtained. Computing guaranteed lower bounds is a crucial step required

by branch-and-bound global optimization algorithms. Thus, the method developed

here provides a key ingredient required for branch-and-bound global optimization of

nonconvex optimal control problems. Finally, the proposed lower bounding technique

is distinguished from previous work in that it does not require control parameteri-

zation. The derived relaxations are valid in the original space of admissible control

functions.
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Chapter 12

Concluding Remarks

The work in this thesis has addressed two problems of broad interest concerning the

behavior of nonlinear differential-algebraic process models subject to a range of per-

missible process inputs. In contrast to classical methods for treating such problems,

the methods herein provide information that is global in nature. The first problem

addressed was that of enclosing the set of all possible solutions of a given DAE model

subject to a range of permissible input functions and/or model parameters. This anal-

ysis is useful in nearly any application in which process disturbances and/or model

uncertainties are of significant concern, and has numerous practical applications in

process control. The second problem addressed was that of solving optimization prob-

lems constrained by differential-algebraic equations to guaranteed global optimality.

Such optimization problems arise in the design and control of transient processes, as

well as in the important area of parameter estimation for dynamic process models.

12.1 Summary of Contributions

12.1.1 Algorithms

The most immediate and tangible results of this thesis are the algorithms that have

been developed for the tasks outlined above. In Chapters 3 and 4, the full-space

bounding (FSB) and reduced-space bounding (RSB) methods were developed for com-
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puting time-varying interval bounds on the solutions of explicit ODE models subject

to a permissible set of input functions and/or model parameters. These methods ex-

tend a standard bounding technique which is known to be very efficient but also very

conservative. For problems where it is possible through physical insight to provide

an a priori convex polyhedral enclosure of the ODE solutions, the FSB and RSB

methods are able to achieve a dramatic reduction in the conservatism of the result-

ing bounds by exploiting this information at a fundamental level within the bounding

procedure. These methods are implemented using only efficient interval computations

and a state-of-the-art numerical integration routine, so that improved enclosures are

achieved without sacrificing the computational efficiency of the original method. Fi-

nally, it was demonstrated that the class of problems for which the required a priori

information is available is by no means small or insignificant. Rather, it contains

the important class of systems that can be regarded as describing fluxes through a

network, notably including models of chemical reaction kinetics. For such systems, a

priori physical information can be obtained and exploited easily and automatically

by a simple matrix analysis.

In Chapters 5 and 6, the two-phase and single-phase methods were developed

for computing interval bounds on the solutions of systems of nonlinear semi-explicit

index-one DAEs subject to a range of model parameters. Again, an efficient numerical

implementation of both methods was developed using an interval Newton type method

and a state-of-the-art numerical integration routine. Numerical case studies for these

algorithms demonstrate that they are capable of producing results with the same

efficiency that makes differential inequalities methods for ODEs attractive. Moreover,

as compared to the ODE methods, the methods developed for semi-explicit index-one

DAEs provide very reasonable bounds, especially considering the fact that, at present,

no a priori physical information is used in their computation. Thus, these methods

extend the efficient class of differential inequalities based bounding techniques to

systems of DAEs for the first time.

In Chapter 7, two algorithms were presented for computing nonlinear convex and

concave relaxations of the parametric solutions of nonlinear ODEs. For both methods,
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relaxations are computed through the numerical solution of an auxiliary system of

ODEs that is derived efficiently and automatically using the generalized McCormick

relaxation technique developed in Chapter 2. Comparing these methods, the superior

method was found to be method using relaxation preserving dynamics (RPD). Com-

pared to the state-of-the-art relaxation method in [164], the RPD method was shown

to provide significantly tighter relaxations. In Chapter 8, the methods of Chapter

7 were extended to handle systems of nonlinear semi-explicit index-one DAEs, pro-

viding convex and concave relaxations for the solutions of such systems for the first

time.

In Chapter 9, a further algorithm was developed for enclosing the solutions of

parametric ODEs and semi-explicit index-one DAEs, in this case within a convex

polyhedral set rather than an interval. It was shown that the resulting enclosure

can be significantly sharper than the interval enclosures produced by the methods

of Chapters 3-6. On the other hand, obtaining a valid enclosure from this technique

has previously only been possible through the global solution of several potentially

nonconvex dynamic optimization problems, which is prohibitively expensive in general

[39, 41]. Using the relaxation techniques developed in Chapters 7 and 8, the proposed

algorithm is able to provide a guaranteed convex polyhedral enclosure while solving

only convex dynamic optimization problems.

In Chapter 10, a deterministic global optimization algorithm was developed for

problems with semi-explicit index-one DAEs embedded. This algorithm is based on a

standard spatial branch-and-bound framework, where the lower bounding procedure

is enabled by the relaxation techniques developed in Chapter 8. Aside from intractable

methods based on a total discretization approach, this is the first method capable of

solving optimization problems with DAEs embedded to guaranteed global optimality.

The algorithm has been demonstrated for several numerical case studies and shown

to perform comparably to state-of-the-art methods for optimization problems with

ODEs embedded.
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12.1.2 Theoretical Contributions

The objective of this thesis has always been to develop practical numerical meth-

ods for practical engineering problems. Even so, the final result is largely a piece of

abstract mathematical analysis. Throughout this analysis, certain results, computa-

tional techniques, and basic principles have emerged that marked turning points in

the thesis and seem to be significant contributions in their own right. A significant

effort has been made throughout the thesis to present these ideas in the most general

and broadly applicable way possible. To be sure, this has robbed some chapters of

a degree of clarity and intuition that they might otherwise have had. On the other

hand, it has also simplified matters in several places where distinct variations of a

method could be proven by application of the same result, or where methods for

ODEs and DAEs could be derived by a unified abstract development. However, the

primary motivation for this generality is that global dynamic optimization is a field

in flux. While many of the numerical results presented herein are promising and rep-

resent significant advances over the state-of-the-art, it is nonetheless clear that much

work remains to be done before these methods can be routinely applied to practical

engineering problems. Thus, it is worthwile to point out some of the fundamental

theoretical contributions of the thesis that, as the field progresses, may prove to be

useful beyond the specific methods that have so far been derived from them.

The first of these contributions is the abstract development of McCormick’s relax-

ation technique in Chapter 2, leading to the notion of a natural McCormick extension,

or equivalently, a generalized McCormick relaxation. The fundamental contribution

of this analysis is the ability to construct relaxations of multivariate compositions

(§2.7.2). This capability is essential for the proposed numerical implementation of

the relaxation theories for ODEs and DAEs developed in Chapters 7 and 8. Fur-

thermore, it is essential for making use of these relaxations for constructing convex

underestimating programs in the context of global dynamic optimization. Notably,

this procedure permits one to compute relaxations of non-factorable functions by a

fairly direct application of McCormick’s technique. As another example of this, gen-
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eralized McCormick relaxations have also been used to compute convex and concave

relaxations for the solutions of implicit systems of nonlinear algebraic equations [169].

On the whole, this procedure extends the reach of McCormick’s relaxation technique,

and hence global optimization, to the important class of optimization problems in

which the objective and constraints are implicitly defined by the solutions of an em-

bedded model.

Among the most important theoretical contributions of this thesis are the general

comparison theorems of Chapter 3 (Theorems 3.5.1 and 3.5.4). From these results,

we have developed very effective bounding procedures for parametric ODEs whose

solutions are known to lie within convex polyhedral sets. However, Theorems 3.5.1

and 3.5.4 address a much broader issue. In particular, the conditions of these the-

orems formally delineate valid and invalid uses of arbitrary auxiliary information in

the context of differential inequalities bounding techniques. The use of redundant

information to refine conservative approximations is a well-established tenet of global

optimization and rigorous computing at large, and the numerical results of Chapter

4 clearly demonstrate that this tool is no less essential for dynamic problems. What

instead seems unique to dynamic problems is that the distinction between valid and

invalid uses of such information, at least with regards to differential inequalities, is

complicated to the point of mathematical pedantry. Thus the utility of Theorems

3.5.1 and 3.5.4 is that they allow one to check the validity of putative new bounding

techniques with the relative ease of verifying a few simple conditions. A particularly

useful incarnation of these conditions was presented in §3.6.1, where simple criteria

are established for a valid use of efficient interval computations to exploit an arbitrary

a priori enclosure. Among other applications, this suggests an avenue for exploiting

nonlinear solution invariants in dynamic models using, for example, interval Newton

type methods as in Chapter 5.

The final broadly important theoretical contribution of this thesis is the formu-

lation of the conditions of relaxation amplifying dynamics (RAD) and relaxation

preserving dynamics (RPD). Of course, these conditions underly the novel relax-

ation methods for ODEs and DAEs developed in Chapters 7 and 8. However, these
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conditions provide important insights beyond the implementations given here. The

conditions of RAD have been shown to result in relaxations which accumulate con-

servatism and become in a sense more convex (or concave) as integration proceeds.

These properties in turn result in unnecessarily weak relaxations and, at least empir-

ically, a poor rate of convergence. Interestingly, these properties are a direct result

of precisely the same conditions from which the method derives its validity in the

first place. Thus, the conditions of RAD are illustrative of two fundamental issues for

global optimization that are unique to dynamic problems and have not been previ-

ously understood. On the other hand, the conditions of RPD correct these problems

and result in very satisfactory relaxation techniques. The conditions through which

RPD type relaxations are guaranteed to underestimate and overestimate the function

of interest are derived from standard arguments in the theory of differential inequal-

ities. On the other hand, the principle through which the RPD conditions impart

convexity and concavity on the resulting relaxations is entirely novel and has not

previously been exploited by any method. As such, it provides a new principle for

relaxing the solutions of dynamic systems that can be used to motivate and analyze

future methods.

In both the state bounding theory of Chapter 3 and the relaxation theory of

Chapter 7, the fundamental results have been proven for an arbitrary absolutely

continuous function. That is, these results do not require that the function to be

bounded or relaxed is a solution of a particular type of dynamic system. Though we

have proposed complete methods only for systems of ODEs and semi-explicit index-

one DAEs, the fundamental principles may be applied directly to the solutions of

more complex systems including fully implicit DAEs, high-index DAEs, and hybrid

discrete-continuous dynamical systems. Deriving practical computational methods

from these conditions then only requires that one can construct appropriate auxiliary

systems. For this task, it seems very likely that generalized McCormick relaxations

will again prove to be a useful tool.
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12.2 Outlook

It is difficult to appraise the state-of-the-art in reachability computations for nonlinear

dynamic systems. Mostly, this is because the literature has historically developed into

several pockets that remain largely isolated from one another. The most prominent

of these are the literature on Taylor methods, originally developed for the purposes

of validated numerical integration, the literature on differential inequalities, which

were used only as a mathematical tool until fairly recently, and the literature in the

process control community, where methods are largely rooted in linear systems theory

and applied to nonlinear systems through the extensive use of local linear approxima-

tions. Because they are based on quite distinct ideas, these classes of methods each

come with a unique list of advantageous and disadvantages with respect to accuracy

and computational efficiency that make an intuitive comparison difficult. Moreover,

given the lack of communication between these literatures and the complexity of

implementing some of the available methods, there have been no adequate numeri-

cal comparisons between these classes of methods, and unfortunately too few good

comparisons even within them.

What does seem to be generally agreed upon is that it is extremely difficult to

compute accurate global information about the solutions of nonlinear dynamic mod-

els. In all the available literature, there are almost no examples demonstrating a

reasonably sharp enclosure for a nonlinear system with more than three state vari-

ables and three uncertain parameters. Even for small systems, computing very sharp

enclosures can require exorbitant computational effort. With the methods developed

in this thesis, we have demonstrated accurate bounds on the solutions of substantially

larger models subject to larger uncertainty. While these results represent significant

advances, the models considered here are still a far cry from the size and complexity

of those arising in many important applications.

Fortunately, there are many avenues for future research. Among these, probably

few would be as enlightening as simply taking stock of the available methods and un-

dertaking extensive numerical comparisons. Again, the classes of methods described
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above are based on fairly distinct ideas, and it is reasonable to suspect that such a

comparison would enable one to incorporate the advantageous features of each into

a new generation of methods. For example, the enabling features of early Taylor

methods are the use of high-order Taylor series expansions of the states with respect

to time, and effective control of the wrapping effect through, for example, Lohner’s

method [130]. Neither of these techniques has ever been leveraged in the context of

differential inequalities, though it it seems very likely that they could be.

If there is one contribution of this thesis that should resonate throughout the field,

it is the observation that using redundant information in a bounding technique can

have a profound impact on the quality of the resulting enclosure. As we have men-

tioned previously, the use of redundant information to refine conservative approxima-

tions is a well-established and highly successful technique in the areas of constraint

propagation and global optimization. However, to our knowledge, it has not been

previously been used in the context of reachable set computations. The dramatic

effect of using such information in the methods of this thesis makes a compelling case

that similar methods will be a key ingredient for addressing larger and more complex

models in the future. There are several topics to explore in this regard, such as the

existence of other important classes of systems that we have not considered for which

a priori information is readily available, and the question of whether or not it is ef-

fective to augment a system artificially with additional redundant equations in order

to obtain a sharper enclosure through similar methods.

At the outset of this thesis, the state-of-the-art in global dynamic optimization

was undoubtedly the method of Singer and Barton [164], which has been demon-

strated to solve problems with up to three state variables and three decision variables

in reasonable computational time. Since then, there as been quite a lot of activity. In

addition to the methods developed in this thesis, impressive new methods for com-

puting enclosures and relaxations of the solutions of ODEs have been proposed by Lin

and Stadtherr [105, 104] and Sahlodin and Chachuat [151, 150]. When implemented

in a complete global optimization algorithm [104], the method of Stadtherr and Lin

has been shown to outperform that of Singer and Barton for some but not all test
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problems, and has been shown to solve one problem with up to five decisions.

Unfortunately, the improved bounding and relaxation methods for ODEs devel-

oped in this thesis have not yet been implemented in a complete optimization algo-

rithm. However, compared to the methods used in [164], the bounding and relaxation

methods developed here have been shown to be much tighter, which is expected to

result in a significantly improved global optimization algorithm. Because they were

developed only very recently, the methods of Sahlodin and Chachuat [151, 150] have

also not yet been demonstrated within a global optimization algorithm. Furthermore,

they have not been compared to the improved relaxation methods of this thesis,

though they have been shown to compare very favorably to the method Stadtherr

and Lin [105]. Thus, a fair assessment of the field at present is that there are many

interesting and potentially powerful ideas available, and too few useful metrics and

numerical comparisons by which to understand them and direct future efforts.

With the results of this thesis, global dynamic optimization methods have been

extended to problems with semi-explicit index-one DAEs embedded for the first time.

However, like existing methods for ODEs, the practical applicability of this method

is limited to very small problems. Thus, much work remains to be done before this

method can be applied to most problems of practical interest.

There are several target areas for future research in global optimization of ODEs

an DAEs. In the case of DAEs, an obvious task is to extend the bounding methods

based on a priori enclosures developed here to the case of DAEs. This alone should

lead to a substantial improvement in the performance of the global optimization

algorithm of Chapter 10.

Following the work in [30], there has recently been a renewed interest in the

convergence rate of lower bounding procedures, which can have a very significant effect

on the overall run-time of a spatial B&B algorithm. The issue of convergence rate

has been almost completely ignored in the literature on global dynamic optimization

to date, and at present there is no convergence rate analysis available for any of the

available techniques. These analyses are therefore a primary target for future research

in understanding and improving the available global dynamic optimization methods.
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Another important area for future work is to develop effective constraint propaga-

tion and optimality based range reduction techniques for global dynamic optimization

problems. For standard NLPs, these methods have revolutionized modern methods,

which could not otherwise address practical problem instances. Such methods have

been employed in the algorithms of Singer and Barton [164] and Lin and Stadtherr

[104], but not nearly to the same extent. A related criticism of the field, and partic-

ularly of this thesis, is that the problem of enclosing and/or relaxing the solutions of

the embedded dynamic system has largely been treated in isolation from the rest of

the optimization problem. Certainly, these computations are the weak point of the

available algorithms and account for their limited applicability. On the other hand,

effective algorithms for standard NLPs suggest that all of the available information

in a problem should be brought to bear in all aspects of the lower bounding compu-

tation. Why then, has as it always seemed appropriate to bound all solutions of the

embedded dynamic system when we are only interested in those that are feasible and

potentially optimal? This and other similar questions deserve serious consideration

moving forward.

446



Bibliography

[1] O. Abel and Wolfgang Marquardt. Scenario-integrated modeling and optimiza-
tion of dynamic systems. AIChE Journal, 46(4):803–823, 2000.

[2] Bambang S. Adiwijaya, Paul I. Barton, and Bruce Tidor. Biological network de-
sign strategies: discovery through dynamic optimization. Mol. BioSyst., 2:650–
659, 2006.

[3] C. S. Adjiman, I. P. Androulakis, and C. A. Floudas. A global optimization
method, αBB, for general twice-differentiable constrained NLPs - II. imple-
mentation and computational results. Computers and Chemical Engineering,
22(9):1159–1179, 1998.

[4] C. S. Adjiman, S. Dallwig, C. A. Floudas, and A. Neumaier. A global opti-
mization method, αBB, for general twice-differentiable constrained NLPs - I.
theoretical advances. Computers and Chemical Engineering, 22(9):1137–1158,
1998.

[5] M. Althoff, O. Stursberg, and M. Buss. Reachability analysis of nonlinear
systems with uncertain parameters using conservative linearization. In Proc.
47th IEEE Conference on Decision and Control, pages 4042–4048, 2008.

[6] R. Alur, T. A. Henzinger, and P.-H. Ho. Automatic symbolic verification of
embedded systems. IEEE Transactions on Software Engineering, 22(3):181–
201, 1996.

[7] I. P. Androulakis, C. D. Maranas, and C. A. Floudas. αBB: A global opti-
mization method for general constrained nonconvex problems. J. Glob. Optim.,
7:337–363, 1995.

[8] Jurgen Appell and Petr P. Zabrejko. Nonlinear superposition operators. Cam-
bridge University Press, Cambridge, 1990.

[9] Rutherford Aris. Prolegomena to the rational analysis of systems of chemical
reactions. Arch. Rational Mech. Anal., 19(2):81–99, 1965.

[10] E. Asarin, T. Dang, G. Frehse, A. Girard, C. Le Guernic, and O. Maler. Recent
progress in continuous and hybrid reachability analysis. In Proc. 2006 IEEE
Conference on Computer Aided Control System Design, pages 1582–1587, Mu-
nich, Germany, 2006.

447



[11] O. A. Asbjornsen and M. Fjeld. Response modes of continuous stirred tank
reactors. Chem. Eng. Sci., 25:1627–1636, 1970.

[12] Uri M. Ascher and Linda R. Petzold. Computer Methods for Ordinary Dif-
ferential Equations and Differential-Algebraic Equations. SIAM, Philidelphia,
1998.

[13] Jean-Pierre Aubin. Viability Theory. Birkhauser, Boston, MA, 1991.

[14] Jean-Pierre Aubin and Arrigo Cellina. Differential Inclusions. Springer, Berlin,
1984.

[15] Vadim Azhmyakov and Jorg Raisch. Convex control systems and convex optimal
control. IEEE Trans. Automat. Contr., 53(4):993–998, 2008.

[16] J.R. Banga and W.D. Seider. Global optimization of chemical processes using
stochastic algorithms. In C.A. Floudas and P.M. Pardalos, editors, State of the
Art in Global Optimization: Computational Methods and Applications. Kluwer
Academic Publishing, 1996.

[17] P.I. Barton, J.R. Banga, and S. Galan. Optimization of Hybrid discrete /conti-
nouos dynamic systems. Computers and Chemical Engineering, 4(9/10):2171–
2182, 2000.

[18] P.I. Barton and C.C. Pantelides. Modeling of combined discrete /continuous
processes. AIChE Journal, 40:966–979, 1994.

[19] R. Bellman. Dynamic Programming. Princeton University Press, New Jersey,
1957.

[20] A. Bemporad and M. Morari. Verification of hybrid systems via mathematical
programming. In Hybrid Systems: Computation and Control, volume 1569 of
Lecture Notes in Computer Science, pages 31–45, 1999.

[21] A. Ben-Israel and T.N.E. Greville. Generalized Inverses: Theory and Applica-
tions. Springer-Verlag, New York, 2 edition, 2003.

[22] Leonard D. Berkovitz. Optimal Control Theory. Springer, New York, 1974.

[23] Dimitri P. Bertsekas. Nonlinear Programming. Athena Scientific, Belmont, MA,
2 edition, 1999.

[24] M. Berz and K. Makino. Verified integration of ODEs and flows using differential
algebraic methods on high-order Taylor models. Reliable Computing, 4:361–369,
1998.

[25] T.K. Bhatia and L.T. Biegler. Dynamic optimization in the design and schedul-
ing of multiproduct batch plants. Ind Eng Chem Res, 35:2234–2246, 1996.

448



[26] L. T. Biegler and V. M. Zavala. Large-scale nonlinear programming using
IPOPT: An integrating framework for enterprise-wide dynamic optimization.
Comp. and Chem. Eng., 33(3):575–582, 2009.

[27] Wojciech Blajer. Index of differential-algebraic equations governing the dynam-
ics of contrained mechanical systems. Appl. Math. Modelling, 16:70–77, 1992.

[28] Franco Blanchini. Set invariance in control. Automatica, 35:1747–1767, 1999.

[29] H.G. Bock. Numerical treatment of inverse problems in chemical reaction ki-
netics, pages 102–125. Springer Series in Chemical Physics. Springer Verlag,
1981.

[30] A. Bompadre and Alexander Mitsos. Convergence rate of McCormick relax-
ations. J. Glob. Optim., 52(1):1–28, 2012.

[31] D. Bonvin. Optimal control of batch reactors - a personal view. J. Proc. Cont.,
8(5-6):355–368, 1998.

[32] R.G. Brusch and R.H. Schappelle. Solution of highly constrained optimal con-
trol problems using nonlinear programming. AIAA Journal, 11(2):135–136,
1973.

[33] A. E. Jr. Bryson and Y.-C. Ho. Applied Optimal Control. Hemisphere Publishing
Corporation, Washington, 1975.

[34] E.F. Carrasco and J.R. Banga. Dynamic optimization of batch reactors using
adaptive stochastic algorithms. Ind Eng Chem Res, 36(6):2252–2261, 1997.

[35] F. Castiglione and B. Piccoli. Cancer immunotherapy, mathematical modeling
and optimal control. J Theor Biol, 247:723–732, 2007.

[36] Benoit Chachuat, Adam B. Singer, and Paul I. Barton. Global mixed-integer
dynamic optimization. AIChE Journal, 51(8):2235–2253, 2005.

[37] Benoit Chachuat, Adam B. Singer, and Paul I. Barton. Global methods for dy-
namic optimization and mixed-integer dynamic optimization. Ind. Eng. Chem.
Res., 45:8373–8392, 2006.

[38] F. L. Chernousko and A. A. Lyubushin. Methods of successive approximations
for solution of optimal control problems. Optimal Control Applications and
Methods, 3:101–114, 1982.

[39] A. Chutinan and B.H. Krogh. Computing polyhedral approximations to flow
pipes for dynamic systems. In Proc. 37th IEEE Conference on Decision and
Control, volume 2, pages 2089–2094, Tampa, FL, Dec. 1998.

449



[40] A. Chutinan and B.H. Krogh. Verification of polyhedral-invariant hybrid au-
tomata using polygonal flow pipe approximations. In Hybrid Systems: Compu-
tation and Control, volume 1569 of Lecture Notes in Computer Science, pages
76–90, 1999.

[41] A. Chutinan and B.H. Krogh. Computational techniques for hybrid system
verification. IEEE Trans. Automat. Contr., 48(1):64–75, 2003.

[42] Michal Cizniar, Marian Podmajersky, Tomas Hirmajer, Miroslav Fikar, and Ab-
derrazak M. Latifi. Global optimization for parameter estimation of differential-
algebraic systems. Chemical Papers, 63(3):274–283, 2009.

[43] Earl A. Coddington and Norman Levinson. Theory of Ordinary Differential
Equations. McGraw-Hill, New York, 1955.

[44] S. D. Cohen and A. C. Hindmarsh. CVODE, A Stiff/Nonstiff ODE Solver in
C. Computers in Physics, 10(2):138–143, 1996.

[45] Elizabeth Ann Cross and Ian M. Mitchell. Level set methods for computing
reachable sets of systems with differential algebraic equation dynamics. In Proc.
2008 American Control Conference, pages 2260–22–65, June 2008.

[46] J. E. Cuthrell and L. T. Biegler. On the optimization of differential-algebraic
process systems. AIChE Journal, 33(8):1257–1270, 1987.

[47] Bernard Dacorogna. Introduction to the Calculus of Variations. Imperial College
Press, London, 2004.

[48] V.D. Dimitriadis, N. Shah, and C.C. Pantelides. Modeling and safety verifica-
tion of discrete /continuous processing systems. AIChE Journal, 43(4):1041–
1059, 1997.

[49] Michael F. Doherty and Michael F. Malone. Conceptual Design of Distillation
Systems. McGraw-Hill, New York, 2001.

[50] K. S. Du and R.B. Kearfott. The cluster problem in multivariate global opti-
mization. J. Glob. Optim., 5(3):253–265, 1994.

[51] G. Dunnebier, J. Fricke, and K. U. Klatt. Optimal design and operation of sim-
ulated moving bed chromatographic reactors. Ind Eng Chem Res, 39(7):2290–
2304, 2000.

[52] E. Elbeltagi, T. Hagazy, and D. Grierson. Comparison among five evolutionary-
based optimization algorithms. Advanced Engineering Informatics, 19(1):43–53,
2005.

[53] Richard J. Elliott and Carl T. Lira. Introductory Chemical Engineering Ther-
modynamics. Prentice-Hall, Upper Saddle River, NJ, 1999.

450



[54] William R. Esposito and Christodoulos A. Floudas. Deterministic global op-
timization in nonlinear optimal control problems. J. Glob. Optim., 17:97–126,
2000.

[55] William R. Esposito and Christodoulos A. Floudas. Global optimization for the
parameter estimation of differential-algebraic systems. Ind. Eng. Chem. Res.,
39:1291–1310, 2000.

[56] F. Facchinei and J. S. Pang. Finite-Dimensional Variational Inequalities and
Complementarity Problems, volume 1. Springer, New York, 2003.

[57] James E. Falk and Richard M. Soland. An algorithm for separable nonconvex
programming problems. Management Science, 15(9):550–569, 1969.

[58] Iman Famili and Bernhard O. Palsson. The convex basis of the left null space
of the stoichiometric matrix leads to the definition of metabolically meaningful
pools. Biophysical Journal, 85:16–26, 2003.

[59] W.F. Feehery, J.E. Tolsma, and P.I. Barton. Efficient sensitivity analysis
of large-scale differential-algebraic systems. Applied Numerical Mathematics,
25(1):41–54, 1997.

[60] Martin Feinberg and Friedrich J. M. Horn. Chemical mechanism structure and
the coincidence of the stoichiometric and kinetic subspaces. Arch. Rational
Mech. Anal., 66(1):83–97, 1977.

[61] M. Fikar, M.A. Latifi, and Y. Creff. Optimal changeover profiles for an industrial
depropanizer. Chemical Engineering Science, 54(13):2715–2120, 1999.

[62] A. F. Filippov. Differential Equations with Discontinuous Righthand Sides.
Kluwer Academic Publishers, Dordrecht, The Netherlands, 1988.

[63] M. Fjeld, O. A. Asbjornsen, and K. J. Astrom. Reaction invariants and their
importance in the analysis of eigenvectors, state observability and controllability
of the continuous stirred tank reactor. Chem. Eng. Sci., 29:1917–1926, 1974.

[64] Irene Fonseca and Giovanni Leoni. Modern Methods in the Calculus of Varia-
tions: Lp Spaces. Springer Monographs in Mathematics. Springer, New York,
2007.

[65] D. Fouskakis and D. Draper. Stochastic optimization: A review. International
Statistical Review, 70(3):315–349, 2002.

[66] Sagar B. Gadewar, Michael F. Doherty, and Michael F. Malone. A system-
atic method for reaction invariants and mole balances for complex chemistries.
Computers and Chemical Engineering, 25:1199–1217, 2001.

[67] S. Galan, W.F. Feehery, and P.I. Barton. Parametric sensitivity functions for
hybrid discrete /continuous systems. Applied Numerical Mathematics, 31(1):17–
48, 1999.

451



[68] Jonathan E. Gayek. A survey of techniques for approximating reachable and
controllable sets. In Proc. 30th IEEE Conference on Decision and Control,
pages 1724–1729, Brighton, England, Dec. 1991.

[69] P. E. Gill, W. Murray, and M. A. Saunders. SNOPT: An SQP algorithm for
large-scale constrained optimization. SIAM J Optim, 12(4):979–1006, 2002.

[70] A Girard. Reachability of uncertain linear systems using zonotopes. In Man-
fred Morari and L. Thiele, editors, Hybrid Systems: Computation and Control,
volume 3414 of Lecture Notes in Computer Science, pages 291–305, 2005.

[71] J. L. Gouze, A. Rapaport, and M. Z. Hadj-Sadok. Interval observers for uncer-
tain biological systems. Ecological Modelling, 133:45–56, 2000.

[72] M. R. Greenstreet and Ian M. Mitchell. Reachability analysis using polygonal
projections. In Hybrid Systems: Computation and Control, volume 1569 of
Lecture Notes in Computer Science, pages 103–116, 1999.

[73] A. Griewank. Automatic directional differentiation of nonsmooth composite
functions. In R. Durier and C. Michelot, editors, Recent Developments in Opti-
mization, volume 429 of Lecture Notes in Economics and Mathematical Systems,
pages 155–169, 1995.

[74] Andreas Griewank. Evaluating Derivatives: Principles and Techniques of Algo-
rithmic Differentiation. SIAM, 3600 University City Science Center, Philadel-
phia, PA, 2000.

[75] G. W. Harrison. Dynamic models with uncertain parameters. In X.J.R. Avula,
editor, Proc. of the First International Conference on Mathematical Modeling,
volume 1, pages 295–304, 1977.

[76] G. W. Harrison. Compartmental models with uncertain flow rates. Mathemat-
ical Biosciences, 43:131–139, 1979.

[77] R. F. Hartl, S. P. Sethi, and R. G. Vickson. A survey of the maximum-principles
for optimal-control problems with state constraints. SIAM Review, 37(2):181–
218, 1995.

[78] Philip Hartman. Ordinary differential equations. SIAM, Philidelphia, PA, sec-
ond edition, 2002.

[79] T. A. Henzinger, P.-H. Ho, and H. Wong-Toi. Algorithmic analysis of nonlinear
hybrid systems. IEEE Transactions on Automatic Control, 43(4):540–554, 1998.

[80] T. A. Henzinger, B. Horowitz, R. Majumdar, and H. Wong-Toi. Beyond
HyTech: Hybrid systems analysis using interval numerical methods. In Hybrid
Systems: Computation and Control, volume 1790 of Lecture Notes in Computer
Science, pages 130–144, 2000.

452



[81] Magnus R. Hestenes. Calculus of Variations and Optimal Control Theory. John
Wiley and Sons, Inc., New York, 1966.

[82] A. C. Hindmarsh, P. N. Brown, K. E. Grant, S. L. Lee, R. Serban, D. E.
Shumaker, and C. S. Woodward. SUNDIALS, suite of nonlinear and differen-
tial/algebraic equation solvers. ACM Transactions on Mathematical Software,
31:363–396, 2005.

[83] Jens Hoefkens, Martin Berz, and Kyoto Makino. Computing validated solu-
tions of implicit differential equations. Advances in Computational Mathemat-
ics, 19:231–253, 2003.

[84] Reiner Horst and Hoang Tuy. Global Optimization: Deterministic Approaches.
Springer, New York, third edition, 1996.

[85] Haitao Huang, C. S. Adjiman, and Nilay Shah. Quantitative framework for
reliable safety analysis. AIChE Journal, 48(1):78–96, 2002.

[86] Satoru Iwata and Mizuyo Takamatsu. Index minimization of differential-
algebraic equations in hybrid analysis for circuit simulation. Math, Program.,
Ser. A, 121:105–121, 2010.

[87] D.H. Jacobson, M.M. Lele, and J.L. Speyer. New necessary conditions of op-
timality for control problems with state-variable inequality constraints. AIAA
Journal, 6(8):1488–1491, 1968.

[88] L. Jaulin. Nonlinear bounded-error state estimation of continuous-time systems.
Automatica, 38:1079–1082, 2002.

[89] Tomasz Kapela and Piotr Zgliczynski. A Lohner-type algorithm for control
systems and ordinary differential inclusions. Discrete and Continuous Dynamic
Systems - Series B, 11(2):365–385, 2009.

[90] R.B. Kearfott. Rigorous Global Search: Continuous Problems. Kluwer Academic
Publishers, Dordrecht, The Netherlands, 1996.

[91] K. Hassan Khalil. Nonlinear Systems. Prentice Hall, Upper Saddle River, NJ,
third edition, 2002.

[92] K. A. Khan and P. I. Barton. Evaluating an element of the Clarke general-
ized Jacobian of a piecewise differentiable function. In Proc. 6th International
Conference on Automatic Differentiation, page In Press., 2012.

[93] M. Kieffer, E. Walter, and I. Simeonov. Guaranteed nonlinear parameter esti-
mation for continuous-time dynamical models. In Proc. 14th IFAC Symposium
on System Identification, 2006.

[94] K. U. Klatt and W. Marquardt. Perspectives for process systems engineer-
ing - personal views from academia and industry. Computers and Chemical
Engineering, 33(3):536–550, 2009.

453



[95] D. Ko, R. Siriwardane, and L. T. Biegler. Optimization of pressure-swing ad-
sorption process using zeolite 13X for CO2 sequestration. Ind. Eng. Chem. Res.,
42(2):339–348, 2003.

[96] Peter Kunkel and Volker Mehrmann. Differential-Algebraic Equations: Analysis
and Numerical Solution. European Mathematical Society, Zurich, Switzerland,
2006.

[97] Alexander B. Kurzhanski and Pravin Varaiya. Ellipsoidal techniques for reach-
ability analysis. In Hybrid Systems: Computation and Control, volume 1790 of
Lecture Notes in Computer Science, pages 202–214, 2000.

[98] Alexander B. Kurzhanski and Pravin Varaiya. Dynamic optimization for reach-
ability problems. J. Optim. Theory Appl., 108(2):227–251, 2001.

[99] Alexander B. Kurzhanski and Pravin Varaiya. On verification of controlled
hybrid dynamics through ellipsoidal techniques. In Proc. 44th IEEE Conference
on Decision and Control, pages 4682–4687, Seville, Spain, Dec. 2005.

[100] C. Lavor, L. Liberti, N. Maculan, and M. A. C. Nascimeto. Solving Hartree-Fock
systems with global optimization methods. Europhysics Letters, 77(5):50006,
2007.

[101] D.B. Leineweber, I. Bauer, and H.G. Bock. An efficient multiple shooting
based reduced SQP strategy for large-scale dynamic process optimization. Part
1: theoretical aspects. Comp. and Chem. Eng., 27(2):157–166, 2003.

[102] D. Limon, J. M. Bravo, T. Alamo, and E. F. Camacho. Robust MPC of con-
strained nonlinear systems based on interval arithmetic. IEEE Proc.-Control
Theory Appl., 152(3):325–332, 2005.

[103] Youdong Lin and Mark A. Stadtherr. Deterministic global optimization for
parameter estimation of dynamic systems. Ind. Eng. Chem. Res., 45:8438–
8448, 2006.

[104] Youdong Lin and Mark A. Stadtherr. Deterministic global optimization of
nonlinear dynamic systems. AIChE Journal, 53(4):866–875, 2007.

[105] Youdong Lin and Mark A. Stadtherr. Validated Solutions of initial value prob-
lems for parametric ODEs. Applied Numerical Mathematics, 57:1145–1162,
2007.

[106] Youdong Lin and Mark A. Stadtherr. Fault detection in nonlinear continuous-
time systems with uncertain parameters. AIChE Journal, 54(9):2335–2345,
2008.

[107] L. Luksan and J. Vlcek. Algorithm 811: NDA: algorithms for nondifferentiable
optimization. ACM Transactions on Mathematical Software, 27(2):193–213,
2001.

454



[108] R. Luus, J. Dittrich, and F.J. Keil. Multiplicity of solutions in the optimization
of a bifunctional catalyst blend in a tubular reactor. Canadian Journal of
Chemical Engineering, 70:780–785, 1992.

[109] Rein Luus. Iterative Dynamic Programming. Chapman and Hall /CRC, Boca
Raton, 2000.

[110] John Lygeros, Claire Tomlin, and Shankar Sastry. Controllers for reachability
specifications for hybrid systems. Automatica, 35:349–370, 1999.

[111] D. L. Ma, S. H. Chung, and R. D. Braatz. Worst-case performance analysis of
optimal batch control trajectories. AIChE Journal, 45(7):1496–1476, 1999.

[112] M. M. Makela. Survey of bundle methods for nonsmooth optimization. Opti-
mization Methods and Software, 17(1):1–29, 2002.

[113] K. Makino and M. Berz. Remainder differential algebras and their applications.
Computational Differentiation: Techniques, Applications, and Tools. SIAM,
Philidelphia, PA, 1996.

[114] T. Maly and L.R. Petzold. Numerical methods and software for sensitivity anal-
ysis of differential-algabraic systems. Applied Numerical Mathematics, 20:57–79,
1996.

[115] O. L. Mangasarian and T.-H. Shiau. Lipschitz continuity of solutions of linear
inequalities, programs and complementarity problems. SIAM J. Control Optim.,
25(3):583–595, 1987.

[116] R.B. Martin. Optimal control drug scheduling of cancer chemotherapy. Auto-
matica, 28(6):1113–1123, 1992.

[117] S. E. Mattsson. On modeling and differential algebraic systems. Simulation,
52(1):24–32, 1989.

[118] Garth P. McCormick. Computability of global solutions to factorable nonconvex
programs: Part I - convex underestimating problems. Math. Program., 10:147–
175, 1976.

[119] Nelson Merentes. On the Composition Operator in AC[a, b]. Collect. Math.,
42(3):237–243, 1991.

[120] Ian Mitchell, Alexandre M. Bayen, and Claire Tomlin. A time-dependent
Hamilton-Jacobi formulation of reachable sets for continuous dynamic games.
IEEE Trans. Automat. Contr., 50(7):947–957, July 2005.

[121] A. Mitsos, G. M. Bollas, and P. I. Barton. Bilevel optimization formulation for
parameter estimation in liquid-liquid phase equilibrium problems. Chem. Eng.
Sci., 64(3):548–559, 2009.

455



[122] Alexander Mitsos, Benoit Chachuat, and Paul I. Barton. McCormick-Based
Relaxations of Algorithms. SIAM J. on Optim., 20(2):573–601, 2009.

[123] Alexander Mitsos, Benoit Chachuat, and Paul I. Barton. Towards global bilevel
dynamic optimization. J. Glob. Optim., 45(1):63–93, 2009.

[124] C. G. Moles, P. Mendes, and J. R. Banga. Parameter estimation in biochemical
pathways: A comparison of global optimization methods. Genome Research,
13(11):2467–2474, 2003.

[125] R. E. Moore. Methods and Applications of Interval Analysis. SIAM, Philadel-
phia, PA, 1979.

[126] Max Muller. Uber das Fundamentaltheorem in der Theorie der gewohnlichen
Differentialgleichungen. Math. Zeit., 26:619–645, 1926.

[127] James R. Munkres. Analysis on Manifolds. Westview Press, Cambridge, MA,
1991.

[128] N. S. Nedialkov. Some recent advances in validated methods for IVPs for ODEs.
Applied Numerical Mathematics, 42:269–284, 2002.

[129] N. S. Nedialkov, K. R. Jackson, and G. F. Corliss. Validated solutions of
initial value problems for ordinary differential equations. Appl. Math. Comput.,
105:21–68, 1999.

[130] M. Neher, K. R. Jackson, and N. S. Nedialkov. On Taylor Model Based Inte-
gration of ODEs. SIAM J. on Numer. Anal., 45(1):236–262, 2007.

[131] A. Neumaier. Interval Methods for Systems of Equations. Cambridge University
Press, Cambridge, 1990.

[132] Meeko Oishi, Ian Mitchell, Claire Tomlin, and Patrick Saint-Pierre. Computing
viable sets and reachable sets to design feedback linearizing control laws under
saturation. In Proc. 45th IEEE Conference on Decision and Control, pages
3801–3807, San Diego, CA, Dec. 2006.

[133] A. I. Panasyuk. Equations of attainable set dynamics, part 1: Integral funnel
equations. J. Optim. Theory Appl., 64(2):349–366, 1990.

[134] C.C. Pantelides, D. Gritsis, K. R. Morison, and R. W. H. Sargent. The math-
ematical modelling of transient systems using differential-algebraic equations.
Comp. and Chem. Eng., 12(5):449–454, 1988.

[135] I. Papamichail and C. S. Adjiman. A rigorous global optimization algorithm
for problems with ordinary differential equations. J. Glob. Optim., 24(1):1–33,
2002.

[136] T. Park and P.I. Barton. State event location in differential-algebraic models.
ACM Transactions on Modeling and Computer Simulation, 6(2):137–165, 1996.

456



[137] B. T. Polyak. Convexity of the reachable sets of nonlinear systems under L2

bounded controls. Dynamics of Continuous, Discrete and Impulsive Systems
Series A: Mathematical Analysis, 11:255–267, 2004.

[138] T. Raissi, N. Ramdani, and Y. Candau. Set membership state and parameter
estimation for systems described by nonlinear differential equations. Automat-
ica, 40:1771–1777, 2004.

[139] S. V. Rakovic, A.R. Teel, D. Q. Mayne, and A. Astolfi. Simple robust control
invariant tubes for some classes of nonlinear discrete time systems. Proceedings
of the 45th IEEE Conference on Descision and Control, pages 6397–6402, 2006.

[140] N. Ramdani, N. Meslem, and Y. Candau. A hybrid bounding method for
computing an over-approximation for the reachable set of uncertain nonlinear
systems. IEEE Trans. Automat. Contr., 54(10):2352–2364, 2009.

[141] A. Rapaport and D. Dochain. Interval observers for biochemical processes with
uncertain kinetics and inputs. Mathematical Biosciences, 193:235–253, 2005.

[142] Andreas Rauh, Michael Brill, and Clemens Gunther. A novel interval arithmetic
approach for solving differential-algebraic equations with Valencia-IVP. Int. J.
Appl. Math. Comput. Sci., 19(3):381–397, 2009.

[143] G. Reissig. Convexity of reachable sets of nonlinear ordinary differential equa-
tions. Automation and Remote Control, 68(9):64–78, 2007.

[144] D.W.T. Rippin. Simulation of single and multiproduct batch chemical plants
for optimal design and operation. Computers and Chemical Engineering, 7:137–
156, 1983.

[145] Walter Rudin. Principles of Mathematical Analysis. McGraw-Hill, New York,
third edition, 1964.

[146] H.S. Ryoo and N.V. Sahinidis. Global optimization of nonconvex NLPs and
MINLPs with application in process design. Computers and Chemical Engi-
neering, 19(5):551–566, 1995.

[147] H.S. Ryoo and N.V. Sahinidis. A branch-and-reduce approach to global opti-
mization. J Glob Optim, 2:107–139, 1996.

[148] N.V. Sahinidis and Mohit Tawarmalani. Accelerating branch-and-bound
through a modeling language construct for relaxation-specific constraints. J.
Glob. Optim., 32(2):259–280, 2005.

[149] N.V. Sahinidis and Mohit Tawarmalani. A polyhedral branch-and-cut approach
to global optimization. Math. Program., 130(2):225–249, 2005.

[150] Ali M. Sahlodin and Benoit Chachuat. Convex/concave relaxations of paramet-
ric ODEs using Taylor models. Comp. and Chem. Eng., 35:844–857, 2011.

457



[151] Ali M. Sahlodin and Benoit Chachuat. Discretize-then-relax approach for con-
vex/concave relaxations of the solutions of parametric ODEs. Applied Numerical
Mathematics, 61:803–820, 2011.

[152] J. Schaber, W. Liebermeister, and E. Klipp. Nested uncertainties in biochemical
models. IET Syst. Biol., 3(1):1–9, 2009.

[153] S. Scholtes. Introduction to piecewise differentiable equations, 1994. Habil-
itation Thesis, Institut für Statistik und Mathematische Wirtschaftstheorie,
University of Karlsruhe.

[154] Karl Schugerl. Progress in monitoring, modeling and control of bioprocesses
during the last 20 years. J. Biotech., 85:149–173, 2001.

[155] D. A. Schwer, J. E. Tolsma, W. H. Green, and P. I. Barton. On upgrading the
numerical in combustion chemistry codes. Combustion and Flame, 128(3):270–
291, 2002.

[156] Joseph K. Scott and Paul I. Barton. Tight, efficient bounds on the solutions of
chemical kinetics models. Computers and Chemical Engineering, 34:717–731,
2010.

[157] Joseph K. Scott, Benoit Chachuat, and Paul I. Barton. Nonlinear convex and
concave relaxations for the solutions of parametric ODEs. In Press: Optimal
Control Applications and Methods, 2012.

[158] Joseph K. Scott, Matthew D. Stuber, and Paul I. Barton. Generalized Mc-
Cormick relaxations. J. Glob. Optim., 51:569–606, 2011.

[159] Atle Seierstad and Knut Sydstaeter. Sufficient conditions in optimal control
theory. International Economic Review, 18(2):367–391, 1977.

[160] Ajay Selot, Loi Kwong Kuok, Mark Robinson, Thomas Mason, and Paul I.
Barton. A short-term operational planning model for natural gas production
systems. AIChE Journal, 54(2):495–515, 2007.

[161] Adam B. Singer and Paul I. Barton. Global solution of optimization problems
with parameter-embedded linear dynamic systems. J. Optim. Theory Appl.,
121:613–646, 2004.

[162] Adam B. Singer and Paul I. Barton. Bounding the solutions of parameter
dependent nonlinear ordinary differential equations. SIAM J. Sci. Comput.,
27:2167–2182, 2006.

[163] Adam B. Singer and Paul I. Barton. Global dynamic optimization for parameter
estimation in chemical kinetics. J. Phys. Chem. A, 110(3):971–976, 2006.

[164] Adam B. Singer and Paul I. Barton. Global optimization with nonlinear ordi-
nary differential equations. J. Glob. Optim., 34:159–190, 2006.

458



[165] Hal L. Smith. Monotone Dynamical Systems: An Introduction to the Theory of
Competitive and Cooperative Systems, volume 41 of Mathematical Surveys and
Monographs. American Mathematical Society, Providence, RI, 1995.

[166] A. Sorribas, C. Pozo, E. Vilaprinyo, and G. Guillen-Gosalbez. Optimization and
evolution in metabolic pathways: Global optimization techniques in generalized
mass action models. J. Biotech., 149:141–153, 2010.

[167] B. Srinivasan, S. Palanki, and D. Bonvin. Dynamic optimization of batch pro-
cesses - I. characterization of the nominal solution. Comp. and Chem. Eng.,
27(1):1–26, 2003.

[168] Gilbert Strang. Linear Algebra and its Applications. Thomson Brooks/Cole,
Belmont, CA, 4 edition, 2006.

[169] M. D. Stuber, J. K. Scott, and P. I. Barton. Global optimization of implicit
functions. Submitted, 2011.

[170] Jacek Szarski. Differential Inequalities. Polish Scientific Publishers, Warszawa,
Poland, 1965.

[171] Mohit Tawarmalani and Nikolaos V. Sahinidis. Convexification and Global Op-
timization in Continuous and Mixed-Integer Nonlinear Programming. Kluwer
Academic Publishers, 2002.

[172] J. W. Taylor, G. Ehlker, H.-H. Carstensen, L. Ruslen, R. W. Field, and W. H.
Green. Direct measurement of the fast, reversible addition of oxygen to cy-
clohexadienyl radicals in nonpolar solvents. J. Phys. Chem. A, 108:7193–7203,
2004.

[173] K. L. Teo, G. Goh, and K. Wong. A Unified Computational Approach to Optimal
Control Problems. John Wiley and Sons, Inc., New York, 1991.

[174] Jared Toettcher, Anya Catillo, Bruce Tidor, and Jacob White. Biochemical
oscillator sensitivity analysis in the presence of conservation constraints. In
Proc. 48th ACM/IEEE/EDAC Design Automation Conference, 2011.

[175] J.E. Tolsma and P.I. Barton. DAEPACK an open modeling environment for
legacy models. Industrial and Engineering Chemistry Research, 39(6):1826–
1839, 2000.

[176] Claire Tomlin, Ian Mitchell, Alexandre M. Bayen, and Meeko Oishi. Compu-
tational techniques for the verification of hybrid systems. Proceedings of the
IEEE, 91(7):986–1001, 2003.

[177] John L. Troutman. Variational Calculus and Optimal Control: Optimzation
with Elementary Convexity. Springer-Verlag, New York, second edition, 1996.

459



[178] T.H. Tsang, D.M. Himmelblau, and T.F. Edgar. Optimal control via colloca-
tion and nonlinear programming. International Journal of Control, 21:763–768,
1975.

[179] Pravin P. Varaiya, Felix F. Wu, and Janusz W. Bialek. Smart operation of
smart grid: Risk limiting dispatch. Proc. of the IEEE, 99(1):40–57, 2011.

[180] Dale E. Varberg. On absolutely continuous functions. Amer. Math. Monthly,
72:831–941, 1965.

[181] Kurt V. Waller and Pertti M. Makila. Chemical reaction invariants and variants
and their use in reactor modeling, simulation, and control. Ind. Eng. Chem.
Proc. Des. Dev., 20:1–11, 1981.

[182] W. Walter. Differential and Integral Inequalities. Springer-Verlag, New York,
1970.

[183] J. Warga. Optimal Control of Differential and Functional Equations. Academic
Press, Inc., New York, 1972.

[184] H. Yazarel and G. J. Pappas. Geometric programming relaxations for linear
system reachability. In Proc. American Control Conference (2004), volume 1,
pages 553–559, Boston, MA, July 2004.

[185] Mehmet Yunt. Nonsmooth Dynamic Optimization of Systems with Varying
Structure. PhD thesis, MIT, 2011.

460


