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Abstract

This thesis presents SoundStrand, a novel tangible interface for composing music. A new

paradigm is also presented - one that allows for music composition with limited degrees of

freedom, and therefore is well suited for music creation through the use of tangible interfaces.

SoundStrand is comprised of a set of building blocks that represent pre-composed musical

segments. By sequentially connecting building blocks to one another, the user arranges these

segments into a musical theme; and by individually twisting, stretching and bending the blocks,

variations of the melodic, harmonic and rhythmic content are introduced. Software tools are

made available to program the musical segments and govern SoundStrand's behavior.

Additional work, namely the Coda system, is presented in order to put SoundStrand and the

described paradigm in a wider context as tools for music sharing and learning.
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1. Introduction

1.1. Constructing Music

The folk and children songs on which our popular music is based contain recurring short

elements of pitch-time relation, which we have learned to seek out and reconstruct as we listen

to music. We categorize some of them as phrases - sequences of musical events that have

temporal balance, a sense of wholeness, and often, exhibit transition to either tension or

stability, especially when following or preceding a phrase that exhibit the other [1].

Indeed, composers think in phrases. When composing lyrics, they will often match a musical

phrase to a lyrical one. When doing so, they will also draw recognized elements of pitch-time

relation from the pool of culturally shared norms and modify them in order to create work that

is original on one hand, but also culturally acceptable on the other.

In the eighteenth century, the idea that original music can be created through a process of

combining short, pre-existing pieces of music was formalized in the shape of Musikalisches

Wirfelspiel - musical dice games. The creators of these games composed a series of measures

that could be played sequentially when arranged in each of many different ways while

maintaining a musically plausible result. The player would create a piece by arranging the

measures according to a dice throw, following a set of rules dictated by the composer. Versions

of the Musikalisches Wirfelspiel were created by composers such as Haydn, Mozart and C. P. E.

Bach; however, the composer who is acknowledged to have created the first one was Johann

Philipp Kimberger (1721-1783) [2].

Other techniques for musical invention developed by Kirnberger demonstrate further

formulation of manipulating existing music as a source for inspiration and the derivation of

new musical material. For example, one of Kimberger's techniques suggested that a new sonata

can be composed by using a bass part from another sonata, then composing a melody on top of
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that bass and finally replacing the bass part with a new part composed to accompany the new

melody.

From observing these techniques it is possible to deduce that reuse and modification of

previously heard music in the shape of paraphrase and quotation is a common practice in music

composition, if not a key ingredient.

Nowadays, when turning to computers to help us automate complex musical procedures, we

want to formulate the manner in which paraphrases and quotations are manipulated and put

into context, and we aspire to communicate our wills to the computer as to how variations

should be made.

1.2. Music, Time and Space

"All art constantly aspires towards the condition of music", said the English writer Walter Pater,

referring to music being the only art in which the subject and the form are one and the same.

Music is an outstanding art form in other senses, as well; particularly in its relations with space

and time: space is not required for music, only time is. Music cannot exist without time, but it

can exist without space.

Time is more stubborn than space. We can move in space as we wish, but we cannot move

backwards and forwards in time; we can represent time with space - as we do with our clocks,

our graphs and our calendars, but we cannot represent space with time. It is highly possible that

the obscurity of music, an art form that resides completely in the reluctant domain of time, has

influenced thinkers such as Pater and Arthur Schopenhauer to crown music as the highest form

of art. Perhaps it is this very property that empowers music to tell a story that tells itself.

In his momentous paper "Music, Mind and Meaning", Marvin Minsky suggests that while toys

help children learn about spatial properties, music teaches us about temporal properties [3].

Once again, space lends itself to more possibilities - a child can make a fort with blocks, revisit

the design, make adjustments and use the contraption as a fort in an iterative process. The child

plays with the blocks. Is this form of playing ever translated to a child's engagement with
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music? What opportunities and means does a child have to assemble, disassemble and

reassemble music, and play with the music?

Music notation is a representation in space of art that resides in time. When we design tangible

music interfaces, we try to enhance notation from two dimensional drawings to three

dimensional objects. Through the addition of a spatial dimension we hope to gain control over

new musical dimensions, and furthermore - we want to touch time.

1.3. Tangible User Interfaces

Tangible user interfaces (TUI) have been in the center of a fast growing body of work for the

past two decades. They present an alternative to the conventional input and output devices

used with computers, namely the keyboard, mouse and screen presenting graphic user interface

(GUI). In contrast to the mouse and keyboard, TUIs are not immediately identified as

computers. Unlike conventional GUIs, they not only constitute representation of the relevant

information but also the means to control it, and by doing so, they offer more resemblance to

non-digital objects that surround us [4]. In addition, development of new TUIs appeal to

researchers of many fields as it offers fertile ground for innovation in technology, design and

human-computer interaction [5].

1.4. What is SoundStrand?

SoundStrand is a tangible user interface for music composition. It comprises a set of connectable

building blocks called cells. Each cell represents a motif- a short fragment of music, one measure

long. A motif comprises of a phrase - a monophonic melody, a chord and a bass. By connecting

cells to one another and creating a strand, the user concatenates their motifs. The cells

demonstrate three degrees of freedom; manipulating the cell in each one of them introduces

variations to the motif: bending a cell changes the melodic directionality of the phrase; twisting

it changes the harmonic tension; and stretching or compressing the cell changes the rhythmic

distribution of the phrase's notes.
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Like a Musikalisches Wtirfelspiel, with SoundStrand one composes by combining existing pieces

of music. It creates music from high level instructions. Like many non-musical TUIs,

SoundStrand allows the representations of both the content and how one can operate on it.

1.5. Outline

Chapter 2 will summarize the relevant work of the Opera of the Future group in the

Massachusetts Institute of Technology's (MIT) Media Lab as well as my own work in the lab.

SoundStrand will then be put in the context of these. It will introduce the reader to related work

in the field of tangible interfaces in the use of music - a review of selected samples from the very

large body of work done in the field will be presented; it will include those that present

similarities to SoundStrand and help demonstrate SoundStrand's contribution. Selected works

in the field of computer assisted composition will also be reviewed.

SoundStrand's mechanical, electrical and interaction design will be described in detail in

chapter 3 as well as the design of the accompanying software. Chapter 0 will examine the

implications of the musical paradigm that dictates SoundStrand's behavior. Particularly, it will

discuss the "Coda" system that focuses on music learning from personally meaningful music.

The last chapter will present a conclusion, including the evaluation of SoundStrand, and a

discussion on ways to further develop, enhance and build on top of this work.
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2. Background and Related Work

In this chapter, I shall review previous work done in the fields of musical TUIs and computer

assisted composition. In both domains, the body of previous work is immense; therefore I shall

try to examine only a few examples that are outstanding, reside in the same realm of

SoundStrand and cover as many of its key aspects. At the end of this chapter, I will note how

SoundStrand differs from the previous work reviewed and its unique contribution.

2.1. Opera of the Future Group

Over the years, the Opera of the Future group at the MIT Media Lab has explored innovative

uses for technology in music. These range from the effects of musical engagement on physical

and mental health to large scale robotic operas. One can surely see an evolutionary process

reflected in the projects described here, and to which SoundStrand is a natural perpetuation.

2.1.1. Hyperinstruments

The Opera of the Future group was created early on in the MIT Media Lab's existence with Tod

Machover as the principle investigator. It was initially called "Hyperinstruments", and its focus

was the creation of augmented instruments. Audio, MIDI (Musical Instruments Digital

Interface) and sensor data collected from these novel instruments were channeled to custom

software to explore shape and create musical pieces. Initially, these instruments were to be put

in the hands of virtuoso performers such as Yo-Yo Ma and Peter Gabriel [6]. Later on, the ideas

and methods developed in the group were applied to create hyperinstruments aimed to be used

by non-professionals. This path led to the inception of the Brain Opera.

2.1.2. The Brain Opera

The Brain Opera (1996) was an interactive, large scale music experience. It consisted of two

sections - in the first section, the audience experimented with a variety of hyperinstruments [7].
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Audio segments produced during this exploration were reordered in order to be used in the

second section, in which three trained musicians performed the piece using some additional

novel, electronic instruments, creating an experience which is unique every time the piece is

performed. Largely inspired by Marvin Minsky's book "The Society of Mind", the Brain Opera

utilized the audience as a collective of agents working together to create a musical piece as an

analogy to the fashion in which collectives of brain processes in the human mind collaborate to

form consciousness [8].

Figure 2-1: A performance of the Brain Opera [7]

The instruments featured in the Brain Opera included the Rhythm Tree, which allowed the

triggering of samples using touch-sensitive pads; the Gesture Wall, which produced music and

displayed animated graphics in response to audience members' physical movements; the

Singing Tree, which produced musical accompaniment to audience members' singing; and the

Digital Baton, which used measurements of an infrared LED placed at its tip, force-sensitive

resistor strips mounted along the performer's grip, and a set of accelerometers, to control

several musical parameters in various ways during the performance section.

2.1.3. Toy Symphony

The next big project of the Opera of the Future group was the Toy Symphony. Recognizing that

these technologies and ideas could be put in the hands of children, the group set out to bring
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children and professional musicians closer, as well as to redefine the relationship between the

performer and the audience [9]. The project became an endeavor to develop musical software,

designed to be used by children. It culminated in a series of concerts, in which the children

performed side by side with professional orchestras and soloists using both traditional

instruments and novel electronic ones [10]. Preceding each concert the children would engage

in a week-long workshop in which they were introduced to the instruments as well as to

musical thinking, composition and performance.

Figure 2-2: Young performers playing Music Shapers alongside a symphonic
orchestra in a Toy Symphony [91

The instruments used in the Toy Symphony enabled children to control aspects of the musical

piece in an intuitive yet sophisticated way after extremely short training. The Beatbug is a hand-

held, bug-like instrument that allowed the player to tap a beat on its "back" and modify the

recorded beat's timbre, pitch and phrasing by spatially maneuvering the instrument and

manipulating its "tentacles". A network of Beatbugs could be formed and beats could be

transferred from one player's Beatbug to another's, where it can be further manipulated, [11].

Music Shapers were soft, squeezable instruments that contained pressure and capacity sensors

[12]. The data produced by the measurement of these sensors was formatted as MIDI messages

that were used to control the musical phrases' contour, timbre, density and structure.
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2.1.4. The Big Thing

Another instrument that was designed for the Toy Symphony was the Big Thing [13] . It was

intended to be a gigantic contraption that functions as both a composition environment and a

performance instrument. The Big Thing was never completed due to the restriction its physical

design imposed on its musical flexibility. Moreover, the dual nature of the instrument's

functionality was a source of confusion in the process of envisioning the instrument's

interaction model.

Figure 2-3: Five foot model of Big Thing [13]

2.1.5. Hyperscore

With the intention to implement the music composition ideas expressed in the Big Thing while

breaking free from the limitations exhibited by its physicality, Hyperscore was created.

Hyperscore is a music composition software developed by Mary Farbood and other members of

the Opera of the Future group [14]. Three types of editing windows are available: in the Melody

Window, the user creates short melodies, or motives, much in the style of a piano-roll editor

present in most digital audio workstations. The user can create many of these melodies and
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assign a color to each of them. The Percussion Window is very similar to the melody window.

However, it is designed to facilitate the creation and editing of short drum beats and percussion

rhythmic patterns. Finally, the Sketch Window allows the user to combine the motives and

drumbeats to a composition by painting lines with their corresponding colors. Different

attributes can be assigned to each line such as timbre and volume.

In addition, a Harmony Line is present in the Sketch Window, and it is used to describe harmonic

tension in the piece. Moderate slopes of the line yield transitions through suspense to relief

within the current key, while steep slopes result in a chord progression that leads to a key

change. The Sketch window offers three modes of harmonic interpretation to the music

material:

* "None": The harmony algorithm is inactive, and the Harmony Line has no influence.

"General": The motives' notes are altered to fit the current scale to reduce the level of

dissonance. The tonal center can be altered using the Harmony Line.

* "Classical": Adds a higher degree of harmonic control when manipulating the Harmony

Line.

Figure 2-4: Hyperscore project screenshot [15]
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2.2. Towards SoundStrand

My work has almost always revolved around music - whether as a professional musician, as a

music technology educator or as an engineer developing music information retrieval

algorithms. During the period in which I worked in the Opera of the Future group in the MIT

Media Lab, I had the opportunity to explore new forms of connections between music,

technology, education and physicality, a journey that resulted in the conception of

SoundStrand. This section presents projects that signify important milestones in my exploration.

2.2.1. Chroma District

Chroma District was an installation commissioned by MIT for the Festival of Arts, Science and

Technology (FAST), held to celebrate MIT's 150th anniversary [16]. Built in collaboration with

Akito Van Troyer, it was designed as an interactive experience for people walking from the MIT

subway stop towards the MIT campus. It was conceived from the realization that visitors to

MIT who arrive on the subway train station, known as "the T-stop", do not enter campus

through its main entrance, but rather through the medical center. The experience is quite

surprising - the scenery between the T-stop and the medical center is fairly urban and very

different from a typical campus, let alone the mental image newcomers have, which normally

includes the famous MIT dome or the main campus entrance. The sight of disoriented visitors

asking for directions to campus is not uncommon around the T-stop area.

The objective of the project was to set a guiding trajectory from the T-stop to the campus and

smooth the transition between the urban setting of the T-stop and the academic atmosphere of

the MIT campus by creating an ambiance crossfade.
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Figure 2-5: Chroma District

A set of some 30 lanterns were built, each equipped with the ability to project audio and high

luminance light, sense proximity using an ultrasonic sensor, read audio files from a memory

card and communicate over radio with neighboring lanterns. Memory cards containing a bank

of sounds were mounted in the built-in memory card reader. The sound files were 30 seconds

long, and each contained a mixture of digital sounds and processed sound samples recorded at

the subway, the subway station and the MIT campus. Each lantern was assigned with a unique

lighting pattern and a unique sound file.

The lanterns were to be hung between two rows of trees on the route from the T-stop to the

entrance of the MIT medical center. In their idle state, each lantern was to produce its own light

pattern and play its own sound file, however the light was to be dim and the sound was to be

soft. Once a visitor would approach a lantern to observe and listen more closely, the lantern

would reward her by increasing in brightness and playing the sound louder. Moreover, after a

few seconds, the entire installation would "celebrate" the interaction between the spectator and

the lantern by passing the light pattern and sound segment from one lantern to its neighbor,

propagating them towards campus, and by doing so, directing the spectator to MIT.

Unfortunately, only few weeks before installing Chroma District, the trees on which the

lanterns were to be hung were cut down, leaving no reasonable alternative in that area. As a last

27



resort, a small seating area near the David H. Koch Institute for Integrative Cancer Research

was selected as an alternative location. However, the narrative of the piece was drastically

compromised. Further anguish came from a last-minute electronic malfunction that left the

lanterns crippled, having their capabilities restricted to mostly lighting and detecting human

proximity - to some degree.

2.2.2. Cicadence

Cicadence, the product of a collaboration with architect Catherine Winfield, is an auditory

sculpture presented in FIGMENT Boston 2011, a festival for public art [17]. The motivation for

this project was to build a sound sculpture through a biomimetic process. The sound-making

organ of the cicada was used as inspiration to this project due to its interesting materiality and

mechanical behavior.

A loud, chirping noise is produced by the male cicada as part of the courting ritual. To produce

this noise, the cicada uses an organ called the tymbal. It is a hollow chamber located on both

sides of the cicada's abdomen. The exterior of the tymbal is the tymbal plate, which is a thin,

flexible membrane. Portions of hardened tissue, called ribs, are embedded in the membrane.

There are some 2500 species of cicadas, and the number of ribs varies from species to species. As

the cicada rapidly contracts and extends a muscle connected to the tymbal, the tymbal moves

back and forth, causing the ribs to buckle in and out. The buckling of the ribs that is the source

of the sound produced in the cicada's song. A pocket of air, contained between the tymbal and

the cicada's abdomens, serves as a resonance chamber [18].
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A

Figure 2-6: (a) Lateral view of a male okanagana vanduzeei cicada. (b) The
tymbal. [19]

Cicadence explored this mechanism from several perspectives - buckling of a material as a

sound production source; incorporation of a hard, buckling material in a soft flexible material;

and geometrical properties derived from the tymbal. The result was a sculpture that is divided

into four sections, separated by wooden ribs. Each area produced sound through a different

mechanism actuated by the spectator. The first section, the "Accordion", was a grid of

interwoven sheets of metal that could be expanded when the spectator pulled a rope connected

to it. As the sheets pulled each other in different directions, various sounds were produced as a

result of friction, collision and buckling. The second section, the "Maracas", was a grid of

rattlers, made of polyethylene terephthalate (PETG), and filled with small metal balls. The third

section, the "Sheet", was made of sheets of metal that were folded and cut in a repetitive

geometric pattern, producing sound by pushing and hitting the sheet, causing the sheet to

buckle and vibrate in various manners. Finally, the fourth segment, the "Clicker", was made of

a sheet of plastic in which small metal clickers, taken from commercially available dog clickers',

were embedded. As a spectator pushed against the plastic sheet, the clickers would buckle and

produce a clicking sound.

I Dog clickers are used for dog training. The clicking sound helps dogs identify desired behaviors.
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Figure 2-7: Cicadence

2.2.3. SoundStrand's conception

Arriving to the Media Lab, my vision was to build a physical synthesizer - a collection of

mechanical, computer control contraptions that act as modules of an analog synthesizer. When

working together - connected to each other, encapsulating one another or acting on one another

in space - they would become a configurable musical instrument. Chroma District, in this

context, was an abstract exploration of the connections between participant, sound, objects and

space. Cicadence was a more concrete effort towards the realization of a physical synthesizer.

It was a study of sound production from objects' materiality and formation.

SoundStrand itself started as an endeavor towards a physical synthesizer. In fact, it was an

attempt to define the conceptual interface of a digital simulation of that synthesizer. However,

ideas and inspiration from previous projects as well as from the Opera of the Future group's

legacy changed SoundStrand's designation: from Chroma District, I was motivated to think

about creating music with objects that represent musical fragments; building Cicadence and

observing spectators interact with it, I was inspired to think about how people can touch music;

Hyperscore showed me that given the right technology, one can, and often wants to, engage in

music creation and produce meaningful results even without musical training; finally, the Big
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Thing, or better yet, the lack of its realization, convinced me that music composition with

tangible interfaces is a worthwhile challenge.

2.3. Musical TUIs

Musical TUIs, like their non-musical counterparts, represent data and the means to manipulate

it. In the case of musical TUIs, the data is music. This observation is important when making the

distinction between musical TUIs and electronic musical controllers and instruments, which do

not represent the musical content by their physicality.'

The development, research and design of musical TUIs draw a large community of musicians,

engineers and designers, and the body of work in the field is vast. This section brings examples

of musical TUIs that have certain similarity to SoundStrand. These TUIs are toys, sequencers, a

set of similar, attachable objects or some combination of the above.

2.3.1. AudioCubes

AudioCubes uses a collection of cubical tangible objects as a representation of modular

synthesis building blocks [20]. Placing a cube on the table in different orientations changes its

state. A "drum loop" cube, for instance, selects one of four prerecorded drum loops. Cubes

communicate through infrared LEDs and sensors on two dedicated sides.

Figure 2-8: AudioCubes explored by a museum visitor [20]
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2.3.2. SoundBlocks

Developed in the Music, Mind and Machine group in the MIT Media Lab, SoundBlocks is a

tangible environment for digital sound generation and manipulation [21]. SoundBlocks is

comprised of a set of 14 blocks, each representing a basic function in digital sound production,

such as a microphone input, a delay and a sample player. Blocks can be connected to each other

using rods, to represent audio and data flow between the blocks. Each block has one output,

between 0 and 4 inputs and an RGB-LED (red, green and blue light emitting diode). Additional

control over the blocks is achieved by interacting with sensors such as buttons and knobs

embedded in some of the blocks. In a sense, SoundBlocks can be viewed as a transformation of

digital sound production systems such as Max/MSP or Pure Data into the tangible realm 2.

Figure 2-9: SoundBlocks [21]

2.3.3. Music Blocks

Music Blocks [22] is a music toy available commercially which consists of a base unit and a set

of cubical blocks representing musical phrases. The blocks can fit into five positions in the base

unit to create a sequence, as the blocks are being played from left to right. Variations on the

musical phrases, normally of timbre, are introduced when the orientation of the blocks is

changed. Various additional cartridges contain sets of phrases that are used to create simple

classical tunes.

2 Max/MSP [54] and Pure Data [55] are visual programming language for music and multimedia,

developed by Miller Puckette.
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Figure 2-10: Music Blocks (image from Amazon.com)

2.3.4. The Tangible Sequencer

The Tangible Sequencer is a set of cubical blocks, each containing a sound [23]. A triangular

button is located on top of the block, and when it is pressed, the sound is played. If the triangle

is pointing at another block that is placed in proximity, its sound will be played subsequently,

and so forth. Complementary computer software allows the user to "drag-and-drop" sound

files into the blocks.

Figure 2-11: The Tangible Sequencer [23]

2.3.5. The Music Table

The Music Table is an augmented reality music composition system [24]. The user arranges

cards on a table to create musical phrases. Each card represents a note, with the horizontal and

vertical position of the card representing the timing and pitch of the note, respectively. Tracking

the positions of the cards is achieved with an overhead camera connected to a computer. The

computer is also connected to a large monitor on which the visuals captured by the camera are

displayed. The computer software adds computer generated images to the captured image to

provide feedback to the user. These take the shape of animated creatures, whose features vary
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in relation to the different properties of the notes, such as length and loudness. Other cards

allow the user to copy an entire phrase into one card, edit the phrase and change instruments.

Figure 2-12: The Music Table [24]

2.3.6. The reacTable

The reacTable is a multi-user musical instrument with a tabletop TUI [25]. It is a translucent

table on which small objects are placed. A camera, located under the surface of the table and

connected to a computer, captures the location of the objects. The system utilizes an analog

synthesis paradigm, with the object representing common analog synthesis modules such as

oscillators, filters and envelopes. The orientation of the objects and their proximity to each other

determine various aspects of interaction between the objects, such as the amount of modulation,

cutoff frequency and so forth. A projector, also located underneath the surface of the table,

projects computer generated animation that visualizes the connections between the modules.

The technology that lies at the heart of the reacTable is called "reacTIVision"; it enables the

computer to analyze, through the image captured by the camera, the location and orientation of

every object on the table [26]. Although the reacTable is available as a commercial product,

reacTIVision is available as an open-source toolkit and has been used in numerous projects,

many of them musical in nature.
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Figure 2-13: The reacTable [27]

2.3.7. Sifteo Cubes

A Sifteo Cube is a 1.5" X 1.5" block that features a clickable liquid crystal display (LCD) screen,

radio communication hardware and a variety of motion detectors. Developed in the MIT Media

Lab under the name "Siftables", the Sifteo Cubes are described as a Sensor Network User

Interface (SNUI) - a collection of small physical manipulatives that have sensing, wireless

communication and user-directed output capabilities [28].

Figure 2-14: Sifteo Cubes [29]

Sifteo Cubes can be loaded with a variety of applications often offered by a third party. Some of

these applications are musical - "Plane of Tune", for example, turns every cube into a small

loop sequencer that is responsible for one part of the tune, while all the cubes play in sync.
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Notes are inserted into the loop by tiling and shaking the Cube. While most of the commercially

available applications, including the music oriented ones, are in fact games, early demo versions

of Siftables featured a more professional-looking music sequencer: some cubes acted as

sequences, capable of holding sequence information. These were aligned together to create a

musical timeline. Some cubes acted as voices, featuring four possible loops for each Cube that

could be inserted into a sequence block by bumping the voice cube against the sequence cube.

Other cubes acted as commands, changing the tempo, volume or applying effects.

2.4. Computer Aided Composition Software

Recognizing that the software engine that translates the user's interaction with SoundStrand

into music is, in fact, a computer aided composition software, this section brings selected works

from the field. It should be noted that the term "computer aided composition" is very general

and can include a wide variety of music software, such as digital audio workstations (DAWs),

music and audio-oriented programming languages and musical computer games. In selecting

the works that are the most closely related to SoundStrand, I searched for several different

environments that are directed towards composition, that are music education oriented or that

use the manipulation of pre-composed music as a significant tool.

2.4.1. Impromptu

Impromptu is an interactive teaching tool designed by Jean Bamberger. It also provides a fairly

conclusive view on Bamberger's work and is an important, early milestone in achieving her

vision of a musical LOGO3 programming language [30]

The graphical interface of Impromptu allows the user to create tunes through the assembly of

sequences of blocks. Three types of blocks are available: Tuneblocks are melodic segments, such

as phrases or motives, following Bamberger's concept of Simples [1]; Drumblocks are rhythmic

3 LOGO is a programming language developed by Seymour Papert for the purpose of teaching children
mathematics [39].
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patterns played on a single percussion timbre; and Harmonyblocks consist of chords that can be

played to accompany the melody. A sequence of blocks from a certain type can be combined

and encapsulated into a new Superblock.

Impromptu was designed to accompany Bamberger's book "Developing Musical Intuitions"

[31]. The book included activities that were aimed to introduce children and non-musicians to

music. However, while conventional music education normally starts with low level properties

such as pitches and durations, the activities offered in the book uses higher level music entities,

Simples, as the entry point to musical understanding. Learners were instructed to assemble

known tunes from carefully designed banks of Tuneblocks and explore notions such as

repetition, tension and balance.

trj. Imprompttc Harrnoization -AUSTitMN.H

PLAYROOM

g -l HI 9 l 1W0 1W0 ilR

0 o o 0 o o o o o 0 0 0 o o 0 0 00 0 0 0 0 0 000 0 0
0 0 Q 0 0 0 0 0 0 0 0 0 0 C,0 0

Figure 2-15: Impromptu screenshot

Impromptu also featured lower level functionality as it allowed users to create their own

Tuneblocks. This was done when the user entered two sequences of integers, with the number

of integers corresponding to the number of desired notes in the block - the first sequence

represented pitches and the second represented durations. Furthermore, the pitch numbers

entered by the user specified the pitch's place in order within a given scale, and the scale itself
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could be edited by the user. This is to show that although designed for beginners, Impromptu

featured relatively powerful tools for personal creation, tinkering, modifying the system's

behavior and applying more advanced knowledge.

2.4.2. OpenMusic

OpenMusic, developed at the Institut de Recherche et Coordination Acousique/Musique (IRCAM), is

an object-oriented visual programming interface for computer assisted composition. To a large

extent, it could be viewed as a manifestation of a musical LOGO language as envisioned by

Bamberger, even if this was not the designers' intention.

The fundamental building block of OpenMusic is the patch, in which the user graphically

controls data flow between various functions. These can be predefined mathematical operations,

manipulations of musical elements, interfaces with input and output devices and so forth, or

user-defined functions written in the LISP programming language. In addition, patches can

contain other patches. A special purpose patch is the maquette, which has a horizontal time

dimension and provides high level control over the arrangement of the patches in time [32].

I-N

Figure 2-16: Screenshot of an OpenMusic patch [33]

38



2.4.3. Musique Lab 2

Developed on top of OpenMusic, Musique Lab 2 (ML2) is an educational application designed

to empower teachers to develop new pedagogical approaches towards music education. One of

the three modules that constitute ML2 is "ML-Maquette", in which the user composes music

through high level manipulation of musical material [34]. Objects are musical entities such as

chords, note sequences and rhythmic sequences. These can be manipulated by a set of operators,

which perform transformations on objects to create new objects. Operators can perform

rhythmic quantification, create arpeggios, generate a melody with contrary movement, etc.

Finally, the maquette area is a sequencer for objects that not only allows the user to arrange the

objects in time, but also dictate a dynamic behavior that parametrically arranges the objects in

time.

Figure 2-17: Screenshot of Musique Lab 2 [34]

2.5. Contribution and Distinction from Related Work

Examining related work in the field of TUIs for music creation suggests that explicit

composition of music through the use of TUIs is a particularly hard task. Most of the previous

work with TUIs in the domain of musical composition is confined to sequencing of samples,

such as with Music Blocks and the Tangible Sequencer, or the creation and manipulation of a

soundscape, such as with AudioCubes and the reacTable. I assert that a conflict rises between

the great freedom and fine resolution that exist when one composes music and the coarse
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resolution and limited number of degrees of freedom that one is presented with when

interacting with a TUI. SoundStrand attempts to resolve that conflict by introducing a large

number of musical variations accessed by scanning very few degrees of freedom.

An exception to most existing musical TUIs is the Music Table, in which explicit composition is

indeed achieved. However, in contrast to the Music Table and, in fact, to all other TUIs

described above, a musical piece emerges in SoundStrand when objects representing musical

fragments are attached to each other, forming a new, singular and unique object that is a

physical representation of the piece. This aspect alone presents a new, intriguing perspective on

the objectification of music. Moreover, in the Music Table, manipulation of the musical material

is not done by physically manipulating the representing object, but rather by introducing a

dedicated mediating object. In my view, this misses the point of using a TUI, as it loosens the

mental coupling of the data with the interface. With SoundStrand, I introduce a musical

interface that by its physicality represents both the data and the ways in which it is

manipulated.

In addition to its physical conception, SoundStrand implements a unique musical approach that

strives to enable the use of TUIs for explicit music composition. The paradigm of composition

through phrase manipulation by a limited set of degrees of freedom is general enough to be

applicable for TUIs other than SoundStrand, as well as tools that feature software alone. A

notable gap exists between Impromptu's restricting behavior and ML2's complexity. The

musical paradigm that governs SoundStrand attempts to fill this gap with a set of simple and

immediately available operations that provide substantial musical freedom.

Finally, I would like to stress that composition with tangible interfaces can enable paradigm

shifts in collaborative composition, performance and music education.
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3. Designing SoundStrand

Figure 3-1: A SoundStrand with five cells

3.1. System Overview

The SoundStrand system is divided into three main parts - the SoundStrand interface; the

SoundStrand software running on a computer; and the content generation software tools. The

interface, shown in Figure 3-1, is a set of cells, which are cylindrical objects, roughly the size of a

soda can. The cell features a 3D-printed skeleton that allows the cell to be manipulated in three

degrees of freedom; electronic circuitry, that handles the measurement of the cell's

configuration and data exchange with the computer and the other cells; visual feedback in the

form of a light emitting diode (LED); and a skin that covers the cell and diffracts the light

emitted from within the cell. Cells connect to each other sequentially with connectors built into

their circular surface. Electronic connectors are also located on the circular surface to allow

communication between the cells.

The SoundStrand software designates musical material to each cell based on stored Extensible

Markup Language (XML) content files. It receives the data transmitted by the SoundStrand

interface and determines the strand's configuration. Based on that configuration, the software

applies a series of algorithms to the music material in order to modify the music in accordance

to the user's intentions.
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Finally, the content generation software tools are independent computer programs that assist

the user in creating content files to be read by the SoundStrand software and determine its

behavior.

3.2. Musical Behavior

Each SoundStrand cell carries an ID which defines its cell-type. Every cell-type is coupled with a

basic phrase from which variations are derived. This allows users to think about their music in a

structural, figural way, recognizing that repetition, structural symmetry and motif development

are central to our perception of music [1] [2] [3].

3.2.1. Mapping the Physical to the Musical

Assignment of the various degrees of freedom of the SoundStrand cell to the different types of

phrase variation attempts to be as intuitive as possible. As cells are connected sequentially to

one another, such assignment suggests that time moves along the trajectory connecting the cells,

i.e. along the cells' lengths. Therefore, the variation concerning the timing of the notes - their

rhythmic distribution - is mapped to physical changes along that axis, which is the cell's

elongation. Pitch is commonly referred to as the axis perpendicular to time; therefore, the cell's

bend is mapped to the phrase's melodic directionality. Finally, the mapping of the cell's twist to

harmonic tension seems natural as the act of twisting is often paired with physical tension, such

as springs or the lids of glass jars.

3.2.2. Harmony

The chord played in each SoundStrand motif is determined by the amount of its cell's twist. A

cell can be twisted to five different positions, and these loosely represent harmonic tension

degrees, inspired by David Cope's SPEAC system of music analysis [35]. The SPEAC system

provides a level of abstraction for describing the motions of notes, harmonies and motives.

These musical events are classified to one of five identifiers, to which "SPEAC" is an acronym:
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* Statement (S): typically occurring near the beginning of musical passages, is not result of

a pre-occurring event, but rather an independent event.

* Preparation (P): modifies the meaning of another event by standing ahead of it.

* Extension (E): serves to lengthen a previous event

* Antecedent (A): causes a significant implication and requires a resolution, typically

followed by a Consequent identifier.

* Consequent (C): appears as a resolution to an antecedent event, often the same chord

found in a Statement identifier.

Table 3-1: An example of a Harmonic

Transition Table (HTT)

Previous
S P E A C

function

I iii IV vi V I

ii vi IV ii V I

iii I IV ii V vi

IV I ii IV V vi

V iii ii IV V I

vi I IV vi V ii

SoundStrand's harmonic transitions system is only loosely based on the SPEAC system. In

SoundStrand, for example, there are no limitations as to which two identifiers can immediately

follow one another. This allows the users to implement their own high-level description of

musical tension when programming the harmonic behavior themselves. The implementation of

SoundStrand's harmonic behavior lays in a Harmonic Transition Table (HTT), which

determines which chord a motif will take based on its degree of tension, as expressed in the

cell's twist and on the chord of the motif preceding it. Every line in an HTT is called a rule and it

relates to a specific chord played by the previous motif. Every column corresponds to a certain

amount of cell twist.

Consider the set of rules in Table 3-1. The first thing to notice is that the naming of the tension

degrees is taken directly from the SPEAC system, but the connection to the actual chord
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progression is intentionally very loose. The built-in HTTs do attempt to maintain the following

principles:

e Intuitiveness: Statements and Conclusions are usually stable chords - the tonic or a

substitution of the tonic such as the third degree or the sixth degree. Antecedents are

usually the dominant chord.

* Broadness: the same chord does not usually appear in the same rule more than once to

allow as many options as possible.

However, these are merely guidelines. We shall see in 3.5.3 how new HTTs can be programmed

by users to accommodate their style and subjective perception of harmonic tension, test musical

ideas and apply newly gained theoretical knowledge.

3.2.3. Melody

The basic phrase associated with cell-type determines merely the intervals to be played, with

middle C being a point of reference. The final phrase to be played is affected by the ending note

of the preceding motif; the adjusted melodic directionality as conveyed by the cell's bend, the

harmony of the motif, and the chosen melodic interpolation algorithm. As I describe this

process in detail, I shall demonstrate each step using the basic phrase transcribed in Figure 3-2.

Figure 3-2: A basic phrase

First, the notes of the phrase are transposed in order to create a natural melodic flow from the

preceding motif to the current one. The interval between the last note of the preceding motif

and middle C is used as a base for this transposition. In our example, the basic phrase starts

with a middle C; therefore, the phrase will be transposed exactly to the note ending the

previous phrase. In Figure 3-3, the phrase was concatenated to a motif ending with an E and

therefore transposed to begin in that same note.
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C G

Figure 3-3: The phrase transposed to match the preceding motif which is

indicated by gray note heads.

The notes are then further transposed up or down, based on the direction to which the cell is

bent. Naturally, the more bend that is introduced to the cell, the more the notes are transposed.

Furthermore, the amount of transposition introduced to every note is a function of its onset time

in the phrase - notes that are further towards the end of the phrase are transposed more than

notes that are closer to its beginning. This reinforces the sense of an adjusted melodic

directionality. Figure 3-4 shows how the phrase in our example is modified by an upwards

bending of the cell.

C G

Figure 3-4: The phrase's notes transposed in response to the bending of the cell

Finally, the notes are shifted to match the harmony of the motif based on the melodic

interpolation algorithm: the Naive algorithm quantizes all notes to pitches that belong to the

scale of the motif's chord, and then shift the first and the last notes to the closest pitches that

belong to the motif's chord; the Diatonic algorithm acts in a similar manner, but instead of

quantizing to the motif's scale, the notes are quantized to the song's scale; the Chord Notes

algorithm quantizes all the notes of the phrase to the closest pitches that belong to the motif's

chord. In Figure 3-5, the notes of the phrase were quantized according to the diatonic algorithm

- all the notes of the phrase were transposed to the closest pitches that belong to the C-Major

scale. The first and last notes were further transposed to pitches that belong to the G-Major

chord.

C G

Figure 3-5: The notes of the phrase are quantized to the pitches of the scale and

the chord.
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3.2.4. Rhythm

Every basic phrase can appear in any number of rhythmic permutations. These are selected by

compressing or stretching a cell and can be programmed by using the content generation tools.

For the sense of consistency and as a guideline, the built-in content files implement a principle

named "rhythmical center of mass".

Let us consider one measure and annotate its timeline as starting at time 0 and ending at time

L = 4. The measure has n notes, with onset time ti for every note i. The center of rhythmical

mass R is:

n

R i=

By compressing a cell, the user decreases the phrase's center of rhythmical mass, i.e. shifts the

notes towards the beginning of the measure. By stretching a cell, the notes of the phrase are

shifted towards the end of the measure. Table 3-2 shows a phrase in three versions, each time

with a different center of rhythmical mass.

Table 3-2: Three versions of a phrase with
modified center of rhythmical mass

phrase Center of rhythmical mass

Z - (0 + 0.5 + 1 + 2) = 0.21875
4 4

4.(0+ 1+ 2 +3) = 0.375

4 (~1 + 2+ 2.5 +3) =.3125
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3.3. Hardware

3.3.1. Skeleton

The skeleton of a SoundStrand cell is fabricated by 3D-printing. It enables the cell to be bent,

twisted and elongated, and to be connected to a neighboring cell.

The centerpiece of the skeleton is the frame. It has a groove in which slides the rack. The rack can

be moved back and forth to change the elongation. The frame has a niche to which the pinion

fits. When the rack slides back and forth, the pinion turns, and by measuring a potentiometer

attached to the pinion, the amount of elongation can be determined.

frame

t
brace

arm

pinion

pin

Figure 3-6: A disassembled cell skeleton

The arm serves as the bending mechanism of the cell. It extends from the frame, to which it is

connected with the pin, allowing it to turn around the pin's axis. The pin itself has an extrusion

that fits into a niche in the arm, forcing them to move together. A potentiometer attached to the

pin is used to measure the angle between the arm and the frame, determining the cell's bend.

Finally, the twisting mechanism consists of the plate rotating against the rack's end. Two braces

locked into each other and to the plate encapsulate the rack's end and hold the plate in contact
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with it. A potentiometer attached to the plate measures the amount of rotation between the

plate and the rack's end in order to determine the cell's twist [36].

3.3.2. Skin

The cells are covered with an elastic fabric skin shown in Figure 3-7. The skin is sewed into a

cylinder, and it keeps its shape with three plastic rings fastened to its interior. Two rubber rings

are sewed to the ends of the skin and fitted to grooves on the edge of both the skeleton's ends.

Figure 3-7: A cell's skin (left) and the skin presented inside-out

3.3.3. Connectors

Three cross-shaped extrusions are located on the face of the plate. These fit into corresponding

holes in the connected cell's arm's face. In addition, the electrical connectors, which are a 2x2,

2.54mm pitch header-connector pair, not only provide power and communication but also

support the mechanical connection between cells.

3.3.4. Electronics

In the center of every SoundStrand cell is an Atmel ATmega168 microcontroller. It measures the

value of three potentiometers fixed to the cell's skeletal structure to determine the cell's

elongation, bend and rotation. The electronic circuit is shown in Figure 3-8.

Cells connect to each other with a four-pin male-female connector pair. The first cell in a strand

is connected to the computer with a USB FTDI cable. This connection allows the computer to
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provide 5V power and ground lines for the entire strand and receive the strand's configuration,

encoded as described in 3.3.5. Two of the pins are used as a shared 5V power supply. A third

pin is used to transfer data over a serial bus from a cell to the one preceding it. The fourth pin is

reserved for future use.

The circuit features an RGB-LED that serves to indicate that the cell is working properly as its

color is determined by the state of the potentiometers. The light is clearly visible to the user as it

is diffracted by the cell's skin.

Figure 3-8: A cell's electronic circuit exposed

3.3.5. Communication

By design, data can flow between the cells in only one direction, from the end of the strand

towards the computer. The last cell in the strand periodically initiates the data transfer with a

packet that contains the cell's type and potentiometer values, followed by an "End of

Transmission" (ETX) byte. The packet is passed to the preceding cell which adds its own type

and potentiometer values to the beginning of the packet before passing it on. This process is

illustrated in Figure 3-9. Working in tail mode, a cell assumes it is the last on in the strand

unless receiving a packet in its input port. While operating in this mode it will initiate a data

transfer every 250ms. Once a packet is received, the cell will no longer consider itself last and

will enter body mode. Under this mode of operation, packets received will be promptly

modified and passed on. If no packet is received for a period of 500ms, the cell will assume that
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its subsequent cells have been removed and return to tail mode. The 500ms interval assures cells

do not leave body mode prematurely.

CellA

a. te PotI Pot2 Pot3 ETX

Cell B Cell A

b.

type PotI Pot2 Pot3 type PotI Pot2 Pot3 ETX

Figure 3-9: Packet formation. a) Cell A, the last in the strand, initiates a packet. b)
Cell B adds its data to the packet

3.4. Software Design

3.4.1. Programming Language

The software used to translate the strand's configuration to a musical theme is written in Java.

Leading arguments for choosing Java were its object-oriented approach; its environment being

platform-independent; its relatively easy interfacing with peripherals such as the serial port;

and the low effort required to create GUIs.

Most popular computer operating systems, including Microsoft's Windows 7 and Apple's OS X,

include a built-in, general MIDI software synthesizer as well as a built-in MIDI sequencer. The

SoundStrand software utilizes the sequencer and synthesizer for its sound production and real-

time sequencing needs. Interfacing the synthesizer and sequencer proved to be extremely easy

when using Java, a fact that considerably reduced the effort needed to provide SoundStrand

with sound production and sequencing capabilities.

3.4.2. System overview

Figure 3-10 shows a block diagram of the SoundStrand software. Two input methods are

available in the system - manipulating a SoundStrand tangible interface, in which case the serial
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port adapter decodes the data received from the serial port; and using the GUI, in which case the

GUI simulator replaces the role of the serial port adapter. The strand manager is a module that

manages a set of motif modules and sets their parameters based on the data received by one of

the input modules. A motif module is aware of its cell's configuration and holds all the musical

material associated with its cell.

SoundStrand HTT file Cell
C7content 7file

Serial port Harmony Melody Rhythm

adapter updater updater updater

GUI Strand Motifs OS sequencer

simulator manager adapter

Figure 3-10: SoundStrand software system diagram

Melody, harmony and rhythm updaters, discussed in depth in 3.4.3, act on the motifs whenever

the configuration of the strand changes. They use the physical configuration and musical data

stored in the motifs to create the MIDI data of the theme and store it back into the motifs. Cell

content files are loaded into the cells upon the user's request to replace the phrase and rhythmic

permutation of the cells, and HTT files are loaded to alter the strand's harmonic behavior.

Finally, the OS (operating system) sequencer adapter manages the transfer of the MIDI data stored

in the cells to the operation system's built-in sequencer.

3.4.3. Updaters

The software mechanisms that interpret SoundStrand's temporal physical configuration into

variations of musical motifs are called updaters. There are three types of updaters: melody,

harmony and rhythm. However, as explained in 3.2, there are different ways to interpret

operations, such as a shift of the rhythmic center of mass or an alteration in the melodic

direction. Therefore, each type of updater can be implemented as a family of updaters.
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It was required that different updaters would be interchangeable at runtime, allowing the user

to decide, for example, whether the melody should be quantized in Diatonic mode or in Naive

mode by selecting the appropriate melody updater. The importance of this requirement comes

from three different standpoints: from a program developer's standpoint, updaters should be

easily tested, compared and configured; from a composer's point of view, different updaters

present different aesthetic options and different levels of musical complexity; finally, from a

learner's point of view, different updaters present different constraints on the musical

permutations that arise from manipulating SoundStrand's cells, therefore allowing interaction

with graduated levels of musical skill.

The manner in which the updaters were implemented is known in the software engineering

jargon as the Visitor design pattern [37]. It allows the motif object to interact with a certain type

of updater, while being aware of the exact implementation of the updater only in runtime. It

also allows the updater to maintain its inner state as it sequentially operates on different motifs.

3.4.4. Content files

HTT files and cell content files are stored as XML documents. This allows:

e Use of existing libraries to read and write content files

e Readability of the files and ease of editing in any text editor

e Ease of creating tools for content generation.

The XML tree structures for the HTT files and the cell content files are depicted in Figure 3-11

and Figure 3-12 respectively.
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Figure 3-11: XML tree for HTT files

Figure 3-12: XML tree for cell content files

3.4.5. User interaction

The SoundStrand software's GUI, shown in Figure 3-13, allows the users to load cell content

files and HTT files, and choose between the various melodic, harmonic and rhythmic updaters.
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Figure 3-13: A screenshot of the SoundStrand software

The software also features a transport bar that allows playing, stopping and looping the entire

strand or a particular cell, as well as a piano-roll style visual representation of the theme.

Finally, the software allows the user to enter a simulation mode, in which connection to a

physical interface is not necessary, and cells are added, deleted and manipulated virtually

through various controls in the GUI.

3.5. Content Generation Tools

To achieve even greater flexibility using SoundStrand, advanced users can generate new

content using two content generation tools. These define the melodic content, the rhythmic

permutations and the harmonic behavior of SoundStrand.

3.5.1. Motivation

The ability to create one's own content files is a key feature in the SoundStrand system. In the

most simplistic perspective, it allows one to create new possibilities whenever the system is
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limited. For example, if a user is trying to produce a specific phrase and is unable to do so, he

can program a new cell-type using the cell editor. In that sense, user-generated cells reflect the

user's personal style. The user's skills are also reflected in his cell-types and HTTs. More

complex cell-types and bold harmonic transitions are an expression of knowledge, confidence

and a sense of self-critique.

For a musician experimenting with musical concepts such as motifs and variations, harmonic

progressions and figural structure, whether it is for learning or for creating, SoundStrand acts as

"an object to think with" [38]: it embodies ideas, supports strong connections between the user

and her ideas and evokes creativity and learning through their objectification and exploration

through use of the object.

From a learner's point of view, moving from using SoundStrand with pre-made content to

creating personalized content is the step from concrete, combinatorial thinking about one's

music to formal, self-referential thinking about music. On the other hand, applying newly

programmed content to musical pieces with SoundStrand serves as a mechanism to concretize

formal music knowledge. In this sense, SoundStrand is an example of digital systems' ability to

support dialogue between the formal and the concrete, as well as dialogue between the general

and the personal as a means for the internalization of knowledge [39].

The observation between a learner and a composer is done here in a very artificial manner and

only to stress different uses and benefits of a content generation toolkit. In practice, composers

never cease to be learners, and allowing learners to be composers is at the very heart of the

SoundStrand project.

It is intended that the content files themselves become a meaningful creation, signifying the

user's musical knowledge, style and skill; a creation to take pride in and share, in hopes that it

will be used by peers in the community for their processes of creation and learning.
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3.5.2. Cell Editor

The Cell Editor allows the user to program cell-specific properties. The user can create new cell-

types, edit them and save a collection of cells-types as a set. Saved sets can be loaded for further

editing.

Once a cell-type is selected or created, the user modifies its properties in two areas of the

window. The pitch area defines the number of notes present in the cell-type and their pitches at

stable state. This area is a piano-roll-like editor, and although the timing of the events is also

expressed in this editor, it is merely for reference and for the initial setting of a new rhythmic

pattern. The actual timing is specified in the rhythm area.

Figure 3-14: A screenshot of the Cell Editor, showing the pitch area on the top
and the rhythm area on the bottom. The red patterns are illegal as they have an

incorrect number of events.

The rhythm area allows the user to create the various rhythmic patterns accessible through

modifying the elongation property. The pattern editing interface is a row of boxes representing

the 1/16th note intervals in the measure. The user edits a pattern by marking the desired onset
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times. When a pattern has the same number of onsets as the number of events in the pitch area,

the pattern is considered legal and it is painted green. Otherwise, it is painted red and the user

will not be able to save the collection.

The user can add, delete and change the order of the patterns. This will be very significant when

later using these cell-types with SoundStrand - when changing the cell's elongation property

from fully compressed to fully stretched, this is the order in which patterns will be selected.

3.5.3. Harmony Transition Table Editor

The HTT Editor is a software tool that allows the user to create a set of rules that determine

SoundStrand's harmonic behavior. A rule, as a software entity, has two fields: state, which is a

string expressing the harmonic function of the preceding cell; and transitions, which is an

array of strings, each expressing the next function based on the degree of tensions as conveyed

by the cell's twist. All strings are Roman numeral representations of the harmonic function.

Fe Rule

Previous Statement Preperation Extension Antecedent Consequence
F I IV Vi V V1
IV I_____ ii Dt____ V_____
V _ Vi IV ___ ii _ V____I __

Vi I_____ IV Vi V ii
ii I_____ IV I=i VV

Figure 3-15: A screenshot of the HTT Editor

When the user begins creating a new HTT, she starts with an empty table. When adding a new

rule, the software prompts the user to determine the state of that rule. The User can choose

any degree on the scale, i.e. I to VII, and has a choice between major or minor chord, expressed

in upper and lower case respectively. The user can then determine the different transitions

of that rule. However, these can be only harmonic functions that already exist as states of a

defined rule. This scheme preempts SoundStrand from reaching a harmonic function from

which harmonic transitions are not defined.
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Naturally, the HIT Editor supports deleting of rules, saving the HTT and loading existing ones

for further editing.

3.6. Example of a SoundStrand session

Let us describe a typical, yet short, SoundStrand session. We start by programming three cell-

types in the Cell Editor. These are shown in Figure 3-16. We shall also program a simple HTT in

the HTT editor, as shown in Figure 3-17.

cell A cell B
Figure 3-16: Three cell-types programmed in the cell editor

cell C

Lg HTT Editor

Fde Rule

Prevtous Statement Preperation Extension Antecedent Consequence
I~ iIVvi vI

IV Ivi IV VA
V i v v v

Figure 3-17: A simple HTT, programmed in the HTT editor

Cell A is intended to be used as a "question", cell B will serve as an "answer" and cell C will

serve as a closure to the theme. First, we select the diatonic mode. We continue by assembling

four cells, in the order {A, B, A, C}, starting with the cells at their original state. This means that

for every cell, the rhythmic pattern is the one closest to the middle of the permutations list, the

melodic directionality is unaltered and the SPEAC identifier the Statement. The outcome is

shown in Figure 3-18.
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A C Am C Am

Figure 3-18: The theme created by a strand of four cells in their original state

Let us continue by adjusting the desired harmonic tension. We twist the second cell to the

Antecedent position, the third cell to the Preparation and the last cell to the Consequence position.

The result is shown in Figure 3-19.

C G Am F

Figure 3-19: The theme after adjusting the harmony

Now, we shall make some rhythmic variation. As we completely compress the first cell and

fully stretch the second one, we select the first rhythmic pattern of cell-type A for the first cell

and the third rhythmic pattern of cell-type B for the second cell. The outcome is shown in

Figure 3-20.

A C G, Am F

Figure 3-20: The theme after modifying rhythmic patterns

Finally, let us shape the melodic contour. We shall bend the second cell upwards and the third

cell downwards. After experimenting with different amounts of bending, we reach a plausible

result which will be our final theme, as shown in Figure 3-21.

C G Am F

Figure 3-21: The theme after modifying the melodic contour
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4. Beyond SoundStrand

4.1. Introducing Coda

Coda is a web service prototype developed by Stephen Bresnick and myself [40]. It is a

collaborative musical encyclopedia, very much in the spirit of Wikipedia [41]. In Coda,

however, the articles are accessed by selecting graphic entities in a musical score. Coda is meant

to serve as the center for a community of learners who share music theory knowledge and

musical ideas through musical pieces that bear personal meaning.

4.2. Learning Online

The internet redefined the meaning of a community and created opportunities for the formation

of online communities of learners. A few notable examples for online learning communities are:

e MOOSE Crossing - A text-based world, or MUD - multi-user dungeon, that is aimed to

teach object-oriented computer programming and creative writing to children between

the ages of 8 to 13. Members of the community not only experience and interact with the

MOOSE Crossing world with through a text console - they create it [42]. With a specially

designed programming language called MOOSE, members of the community create

objects and locations and define their behavior. Since the inhabitants of the world are

both those who experience it and those who create it, community members are

constantly surrounded by inspiring elements. These take the shape of projects made by

their peers from which they can learn; more experienced peers who can assist with

technical and moral support; and role models, specifically experienced members who

enjoy computer programming in spite of gender or socio-economic stereotypes [43].

e FIRST - an organization that strives to spread passion for science and technology among

children between the ages of 6 to 18 through robotics competitions. Every competing

team is a small community of learners on its own that involves students, mentors,
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parents and sponsors working closely and mostly in person. Moreover, the entire FIRST

community acts as an online community of learners with a system of forums that

supports knowledge exchange between mentors and students from all around the

world. Exchange of knowledge is strongly encouraged by different means, following the

principles of "gracious professionalism" [44]

e Scratch - Developed at the Lifelong Kindergarten group at the MIT Media Lab, Scratch

was designed to teach children computer programming through storytelling and game

design [45]. Users can create graphical, interactive environments by assembling blocks

that correspond to common, simple software design mechanism such as loops,

statements, input and output modules and conditional constructs. Scratch allows users

to share their creations online, a feature which gave birth to a vibrant community in

which users teach each other not only programming but also artistic skills. It is not

uncommon to find Scratch projects created by members of the community that are, in

fact, tutorials for creating projects in Scratch 4 [46].

e The Knowledge Forum software - a general knowledge building environment for

communities [47]. Members of the community share information, ideas and theories in

notes that contain different kinds of media - text, graphics, movies etc. - and place them

in views which are organized backgrounds for notes. Views can take the shape of

concept maps, diagrams and so forth. From any of these entities, users can create yet

higher levels, such as views of views, or lower levels, such as sub-notes within notes.

The Knowledge Forum software pays particular attention to the discourse taking place

in knowledge building communities, and provides tools to shape it [48].

4.3. System Description

Coda is built around the NoteFlight website. NoteFlight is an online music writing application

that allows users to create, view, hear and share music notation [49]. It also supports an API that

4 Most fascinating are the Scratch projects demonstrating how to hack Scratch.
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allows the embedding of NoteFlight scores and retrieval of information about the score and the

user's interaction with the embedded score object.

Coda lets a user view a score from the NoteFlight database and select any sort of musical

material - a set of notes, a collection of bars, etc. Once a selection is made, a data structure

containing the score's content and information about the user's selection is transferred to the

Coda server. The main back-end program, written in Python and utilizing the "mingus" music

package [50], passes, in turn, the score and selection data to a bank of analyzers. These are

algorithms that perform various kinds of musical analysis and produce text strings to be used as

entries, which serve as keys to articles. Users are encouraged to write articles for entries that do

not yet have one. Users can also edit existing articles. The analyzers repository itself is open-

source and users are encouraged to add analyzers to the repository.

Let us summarize the terminology we use to describe Coda:

e Article: text describing a musical concept

e Title: a short, meaningful name given to an article by its author

* Entry: a text string that is used by the software to identify and direct to an article,

whether written or not

e Analyzer: an algorithm that generates an entry from a selection of music notation

symbols

4.4. Examples

Let us assume that the user selects the entire bar depicted in Figure 4-1. Here are some examples

of how different analyzers might process the selection:

* The Intervals analyzer will ignore the bass staff, since it has polyphonic events. However,

observing that the treble staff has only two notes, it will calculate the interval they form

and will output the entry "interval:majorsecond".

* The Duration analyzer will observe that all of the notes have the same duration and

output the entry "duration: hal f_note".
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* The Harmonic Progression analyzer will observe that the treble clef contains a

monophonic phrase and therefore ignore it. In the bass staff, it will find the two chords -

an F-major followed by a C-Major. Noticing that piece is in a C-Major key, it will

produce the entry "progres sion : IV_I".

e The Parallel Voices analyzer will observe that the segment qualifies as a four part-

harmony and will detect the presence of parallel octaves. It will therefore produce the

entry "parallelvoices:octave".

Figure 4-1: An example of a music segment analyzed by the Coda system

Let us continue through the example and examine a user's interaction with these results, and for

the sake of clarity, assume that they are read by the user in the same order described above. The

first entry in the results list is "Major Second". It seems another user has already wrote an

article for this tag and also added a title that is a more readable string than the entry

"interval:majorsecond". Our user might read in this article that a major second is an

interval of two semitones, and it is the first interval in the major scale.

Our user sees that the second result is "duration: halfnote". An article for this entry has

not yet been written. Our user might choose to write this article, stating that a half note is twice

the duration of a quarter note, half the duration of a whole note and in Italy is called "Minima".

The user might also give the article a cleaner title and call it "Half Note".

The third result is called "Plagal Cadence". The author of this article gave this title to the entry

"progression: IVI", giving it a more profound meaning rather than stating the chord

progression itself.

Finally, the user sees the entry "Parallel Octaves", finding the article, written by another user, a

refreshing reminder of the rules of four-part harmony writing.
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4.5. Philosophy of Coda

Coda is designed to harness the internet's advantages in supporting effective learning and

apply this to the learning of music theory [43]. Constructionist learning, in which learners

construct their knowledge by sharing knowledge and building on community members' ideas

[51], is achieved when users discover musical principals, if not in their own pieces then in a

peer's , and learn about it from yet a third user. The context in which knowledge is acquired is

always personally meaningful. It is accessed from engagement with musical pieces that are

meaningful to the users. There are no lessons or tutorials - instead, musical concepts and

principals are demonstrated through musical pieces that were uploaded by users and their

peers.

Pluralism of participation is achieved since users are not required to upload pieces, write

articles or contribute code. They participate by engaging in any combination of these activities

with any level of musical expertise [39].

In a knowledge building community, the knowledge exists in the discourse of the community

[48]. This is expressed in Coda in the collaborative wiki article system. In addition, built on top

of, and being envisioned as a social network, Coda supports a personal, open discussion

between users.

4.6. SoundStrand and Coda

SoundStrand, being an example of an interface for composition that does not require theoretical

knowledge, provides an entry point to music theory learning through the Coda system. By

creating a piece with SoundStrand and uploading it to Coda, users can explore theoretical

principles and concepts demonstrated in their own piece, thus learning in a personally

meaningful context. It is important to understand how different this approach is from

traditional music education, in which theoretical principals must be learned first from pieces

created by others before learners can implement them in their own creation. With the approach

presented here, a learner first "plays" with the interface to create a piece and only then engages
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a learning experience, or rather a theoretical discussion, which revolves around the piece. This

is not to underrate, of course, the importance of analyzing and learning from pieces written by

professional musicians, as they demonstrate good practices, interesting technique and, in the

case of great composers, dictate the aesthetics in which we listen, evaluate and create.

Using the tools provided by SoundStrand and Coda, we can expect a learning process, much in

the spirit of the natural learning experience in kindergarten as described by Mitchel Resnick

[52]. According to Resnick, kindergarten learning is an iterative process, with every cycle going

through the steps of imagining, playing, sharing and reflecting. Projecting SoundStrand and

Coda's tools on this process, imagining takes place as the user first turns to SoundStrand to

create a piece. She selects cell content files and HTT files based on the piece she "hears" in her

head, whether it is a melody or a desired genre. She then creates the piece using the

SoundStrand interface. As the user plays with the toy, an iterative process occurs of testing the

piece and refining it to satisfy the user's artistic taste. Once the piece is finished, it is shared

through Coda. This is an opportunity to receive feedback from a community, but also a step

towards the user's ability to reflect on her creation. Once in the Coda system, the piece can now

be reviewed by the user in theoretical terms. She can find musical entities such as harmonic

progressions, rhythmical patterns or melodic tensions that she finds interesting and retrieve

theoretical information regarding them. She will also be pointed to common examples in which

these principals are used, which will broaden her music understanding and taste, and direct her

imagination in new directions.
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Figure 4-2: The kindergarten approach to learning [521

This approach is not limited to beginners. Even more musically educated composers can benefit

from a similar learning process. As SoundStrand content files that implement various styles and

levels of musical complexity will be made available on the web by a community, advanced

learners will first retrieve SoundStrand content files that implement those styles or principles

they wish to learn, and so their first activities with these skills are imagining and creating. Once a

personally meaningful context has been created, they are now ready to learn from their own

doing.

An important aspect in both SoundStrand's and Coda's design is their capacity to enable users

to affect the system's behavior through programming - content files in SoundStrand, analyzers

in Coda. This is not merely a mechanism for producing more content; it is a tool for articulating

formal knowledge. By programming, the user "teaches" the system meanings of different

musical terms and therefore needs to think about them in a higher level of abstraction [39]. The

concept of a system that has a "high ceiling" is applied here for both the programmers' peers

who have access to new concepts that have been embedded in the system's intelligence and also

to the programmers themselves, pushing the boundaries of the way in which they think about

music.

In conclusion, from the standpoint of music learning, SoundStrand and Coda complement each

other. Although they are both designed as self-contained systems, working in conjunction they
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form a system for music learning that addresses learners from their very early stages but can

accompany them in their advanced stages as they learn, formalize and create with deeper and

more advanced musical concepts.
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5. Conclusion and Future Work

5.1. Evaluation

5.1.1. Method

Over the course of six months, SoundStrand was demonstrated and put in the hands of many

users from diverse backgrounds, receiving generally positive responses.

During the semi-annual member meeting in the Media Lab that took place between April 23rd

and April 25*1, 2012, Media Lab students and guests of the meeting were asked to spend some

time interacting with SoundStrand and answering a short survey. The survey comprised of five

statements, to which the participants were asked to rate their agreement on a scale of 1 to 5.

Participants were also encouraged to write comments and suggestions (for the full survey,

see Appendix A). Due to the fast paced nature of the event, only 12 participants chose to

complete the survey. The results are presented in Table 5-1.

5.1.1. Analysis

To the statement "The interaction is intuitive", participants responded positively with low

variance. This suggests that almost all of the users felt immediately that they understand how

SoundStrand should be operated.

Table 5-1: Evaluation survey results

Statement Average Variance

The interaction is intuitive 4.00 0.33

I understand how my actions are translated to music 4.08 1.25

The interface is responsive 4.29 0.94

I can easily get the musical result that I want 3.21 1.10

This method for composition is musically versatile 4.08 0.58
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While participants also agreed with the statement that they understand how their actions are

translated to music, the variance of the results was quite high. A possible factor to this is the

difference in participants' musical background. Those who are musically trained might better

articulate what they hear in musical terms and therefore correlate their actions to the results.

From reviewing the comments, it appears that users are often able to better internalize the

mapping of bending to pitch and elongation to rhythm than twisting to harmony ("I don't

understand what happens if I twist the SoundStrand"). I postulate there are several factors causing

this. Again, for participants with no musical background, harmony is often a vague concept.

Second, the HTT normally used in demonstrations and the survey (see Table 3-1) was one that

was clear to me as its designer, but perhaps a simpler one should have been chosen for new

users. Finally, the mapping of the SPEAC identifiers themselves to the different twist positions

could have had a negative impact on the intuitiveness of the harmony control. Instead of

scrolling through the identifiers by order (Statement, Preparation, Extension, Antecedent,

Conclusion), perhaps a different order should have been used, with the Statement identifier in

the middle, for instance. Another alternative will be to abandon the SPEAC model as a source of

inspiration and think of chord changes directly as a function of tension as expressed through

the cell's twist.

The statement "The interface is responsive" was rated with an exceptionally positive response.

This suggests that most users are able to detect changes in the music in response to their action.

The variance, although somewhat high, still suggests a positive response, considering the high

average.

Participants were generally neutral in regards to the ease in which they can produce desired

musical themes. It seems users find it hard to control SoundStrand, even when reporting that the

interface's response to their actions is coherent to them. Participants were only able to play with

SoundStrand once, so it would be interesting to see whether this notion changes as users

practice and gain experience with the interface over the course of multiple sessions. It is also

important to remember that users were offered with a limited set of cell-types (4 cells, 2 of them

of the same cell-type) and did not use the content generation toolkit.
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Finally, there was a positive response to the statement "this method for composition is

musically versatile". The high average and low variance suggest that participants can feel the

versatility of the musical paradigm even when operating SoundStrand for a short time and with

a limited selection of cells.

While observing users interact with SoundStrand, a few important insights were gained. As

these are reviewed, participants' comments which support these insights are quoted:

e New users who received cells one at a time had a better understanding of the interface:

this is not trivial, as most users interact with SoundStrand after viewing a demo and

attempt to continue with that same, assembled strand. When encouraged to "start over",

users generally have a better understanding of the different cells, recognize the coupling

between the cell and its corresponding motif and better internalize the mapping of their

physical actions to the musical results.

e The lack of temporal, built-in visual feedback is crucial ("some sort of visual feedback would

be helpful to know where you are in the segment - like segmented lights, etc."). Some users

look to the screen for feedback, although once aware of their screen dependence, they

usually attempt to look away, having the impression that by looking to the screen they

are "cheating" ("I find myself using the visual interface to interpret the results of the tactile

manipulation - not sure if that's desired behavior").

* Many users tend to continuously twist, stretch and bend the cells, without waiting to

hear the result. This is probably due to the lack of visual feedback, but also the form

factor. The cells are compelling for users to hold in their hands rather than placing them

on the table as intended ("it really feels like something you can hold on to and 'play"'). While

holding it, the users are often more occupied with physical play than listening.

e Users who also received a demonstration of the Coda system demonstrated greater

understanding of the motivation behind tools, such as SoundStrand, that empower

musically non-educated people to engage in musical composition.
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Generally, most users reported the SoundStrand as being a "fun interface" and wished they

had more time to experiment with SoundStrand and develop the intuitions that will allow

them to act on the interface with intent.

5.2. Improving SoundStrand

There is wealth of possibilities to adjust, change and improve SoundStrand in its existing form.

The notion of being able to physically hold a representation of a musical piece in one's hands

inspires many directions for continued work. Most exciting is the possibility to perform or

conduct the finished piece by handling "it" in space. For that purpose, SoundStrand should be

enhanced with location, movement and pressure sensors and appropriate methods for mapping

should also be devised.

Other possible improvements for the SoundStrand interface may include:

e Materiality: the materials used to construct SoundStrand's skeleton, skin and electrical

connections were selected due to their availability in the Media Lab. This compromises

SoundStrand's robustness. A thorough research for more adequate materials and

components will surely benefit the performance of the interface.

* Mechanical design: although performing very well in its current design, the skeleton can

benefit from some improvements. These should mostly address the ease in which the

user can adjust the elongation property while the cell is considerably bent and the

skeleton's capacity to maintain its shape under the weight of connected cells.

* Visual feedback: as expressed by many users, this is a crucial element that is missing in

SoundStrand's current design. An improved visual feedback system might illuminate

the currently playing cell or even the current playing position within the cell.

e Transport and meta-data control: in the current design, in order to play or stop

SoundStrand's playing, audition a cell, change timbres or change tempo, the user must

turn to the computer. Ideally, the interaction with the computer would be minimal;

therefore, additional sensing capabilities, such as pressure or proximity, may be

introduced to the cells to change cell-specific operation and transport functions. Meta-
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data cells may also be introduced to control global parameters such as tempo and

timbre.

* Zooming out: in order to allow longer pieces to be composed, a zooming out option can

be offered, where themes composed by the user are represented by cells rather than the

shorter, pre-programmed motifs. The strand then becomes the structure of the song, and

the physical manipulations of the cells can represent variations in the dynamics, length

or arrangement of the structural elements.

* Zooming in: further using the idea of working with the same interface in a different

scope of the musical piece, the SoundStrand interface might also be used to program the

phrases rather than using the content generation toolkit, with the physical manipulation

of the cell changing the notes' pitch and duration.

5.3. Composing with Limited Degrees of Freedom

5.3.1. Improving the Paradigm

The implementation of the musical paradigm governing SoundStrand is far from allowing fully

explicit composition, and making such an attempt is beyond the scope of this project. Trying to

maintain a reasonable scope resulted in the selection of the constraints that still provide a sense

of musical flexibility. The main tradeoff as a result of these choices was between automated

versus manually controlled variations of the musical material.

Further developments of the composition with limited degrees of freedom paradigm may

remove some of the constraints forced on the paradigm's implementation and allow:

* Support for multiple harmonic transitions within a single measure

* Variable length motifs

e "Soft" motif borders - the ability for a phrase to bleed into another motif's bar.

* Automatic generation of rhythmic permutations
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e Individual parametric control over note transposition in response to changes in the

melodic directionality - the ability to have individual notes more (or less) responsive to

cell bending

e Automated harmonic transitions

5.3.2. Multitude of Interfaces

The design of SoundStrand's physicality was largely dictated by the desired mapping of

physical manipulations to musical variations. As explained in 3.2.1, this mapping was devised

with the intention to be as intuitive as possible to the user. SoundStrand is, of course, only one

of an infinite number of possible tangible interfaces that can use any sort of mapping. Naturally,

different form factors and scale suggest different usages and exhibit various advantages and

disadvantages, as well as new possibilities altogether.

5.3.3. Collaborative Composition

Revisiting the various components of a piece composed with SoundStrand, we observe the

following layers:

e Motivic - the pitch properties of the events and the possible rhythmic permutations of

every phrase

e Harmonic - the harmonic transitions table

e Contextual - the specific collection of musical phrases and how they are assigned to cell-

types

* Structural - the ordering of the different cell-types and their manipulations along the

three degrees of freedom

These layers describe the piece along orthogonal axes. They operate on different scopes of the

piece, and they require different levels of musical skill to engage. This suggests that a musical

composition may be the product of the effort of a group of people, each operating on the piece

at a different layer and in a different scope. Collaborative composition using limited degrees of

freedom can take many forms, such as a set of large-scale objects, filling the function of
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SoundStrand's cells, manipulated simultaneously by participants in a public space. Another

example is an online project in which users contribute to any of the layers, either while relating

to musical material already contributed by other collaborators or independently of their work.

5.4. Reflections

In my view, more than being a tool for composition, SoundStrand is a tool to demonstrate ideas.

On the surface level, it shows that tangible musical composition is a feasible idea, and it

demonstrates a method to achieve it. On a deeper level, it is a tool that helps explain new ideals

of music engagement, such as creating, collaborating and mostly - learning. It is my deepest

hope that the work I have shown here will impact the design of new interfaces for music

composition, whether they are physical or virtual, and the way people learn, share and create

music.
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Appendix A: Evaluation Survey

Thank you for taking the time to help us evaluate SoundStrand. After you have played with

SoundStrand for a while, please ring the response that you think is most appropriate to each

statement:

The interaction is intuitive

Disagree

2

Neutral

3

Iunderstand how my actionsam translated to music

Disagree Neutral

2

12

2

3

3

3

Agree Strongly Agree

4

Agree

4

5

Strongly Agree

5

4

4

5

5

This method for cmposition is musically versatile
Stmony Disagree Neutral

1 2 3

Agree Strongly Agree

4 5

77

Strongly
disagree

I

1

1

Please use this space for anya comments you might have:
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Appendix B : Recruitment Text

"Thank you for playing with SoundStrand. To help us evaluate and improve

SoundStrand, we would be thankful if you took the time to fill a short survey. The

survey is completely anonymous (we will here present the subject with the survey). We

might quote comments in various publications. Please feel free not to write comments if

this makes you uncomfortable".
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Appendix C: Consent to Participate Form

CONSENT TO PARTICIPATE IN INTERVIEW

SoundStrand: a Tangible Interface for Composing Music with Limited Degrees of Freedom

You have been asked to participate in a research study conducted by Eyal Shahar from the Media Lab at the
Massachusetts Institute of Technology (M.I.T.). The purpose of the study the use of tangible interfaces for music
composition. The results of this study will be included in Eyal Shahar's Masters thesis. You should read the
information below, and ask questions about anything you do not understand, before deciding whether or not to
participate.

- This interview is voluntary. You have the right not to answer any question, and to stop the interview at any time or for
any reason. We expect that the interview will take about 5 minutes.

- You will not be compensated for this interview.

- Unless you give us permission to use your name, title, and / or quote you in any publications that may result from this
research, the information you tell us will be confidential.

This project will be completed by 4/25/2012. All survey forms will be stored in a secure work space until I week after
that date. The forms will then be destroyed.

I understand the procedures described above. My questions have been answered to my satisfaction, and I agree to
participate in this study. I have been given a copy of this form.

[] I give permission to use direct quotes from this survey in publications resulting from this study

Name of Subject

Signature of Subject Date

Signature of Investigator -- Date

Please contact Eyal Shahar with any questions or concerns:
Email: persones@mit.edu
Phone: 617-386-3368

If you feel you have been treated unfairly, or you have questions regarding your rights as a research subject, you may
contact the Chairman of the Committee on the Use of Humans as Experimental Subjects, M.I.T., Room E25-143b, 77
Massachusetts Ave, Cambridge, MA 02139, phone 1-617-253-6787.
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