
Algorithms for Reconstruction of hidden 3D ARCHIVES
shapes using diffused reflections

by j

Otkrist Gupta

B.Tech. in Computer Science and Engineering, Indian Institute of
Technology Delhi, 2009

Submitted to the Program in Media Arts and Sciences,
School of Architecture and Planning

in partial fulfillment of the requirements for the degree of

Master of Science in Media Arts and Sciences

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2012

@ Massachusetts Institute of Technology 2012. All rights reserved.

Author ......... ....................................
Program in Media Arts and Sciences,
Sool of Architecture and Planning

May 07, 2012

Certified by...........................................
Ramesh Raskar

Associate Professor of Media Arts and Sciences,
Program in Media Arts and Sciences

Thesis Supervisor

Accepted by ......................... ......... ........
Mitchel Resnick

LEGO Papert Professor of Learning Research,
Academic Head,

Program in Media Arts and Sciences



2



Algorithms for Reconstruction of hidden 3D shapes using

diffused reflections

by

Otkrist Gupta

Submitted to the Program in Media Arts and Sciences,
School of Architecture and Planning

on May 07, 2012, in partial fulfillment of the
requirements for the degree of

Master of Science in Media Arts and Sciences

Abstract

This thesis aims at discovering algorithms to recover the geometry of hidden objects
from tertiary diffuse scattering, given time of flight information. We focus on using
ultra high speed capture of photons to accurately determine information about dis-
tance light travelled and using it to infer hidden geometry. We aim at investigating
issues such as the feasibility, uniqueness(in solution domain) and invertibility of this
problem. We also aim at formulating the forward and inverse theory of secondary
and tertiary diffuse scattering using ideas from tomography. We aim at developing
tomography based approaches and sparsity based methods to recover 3D shapes of
objects "around the corner". We analyze multi-bounce propagation of light in an
unknown hidden volume and demonstrate that the reflected light contains sufficient
information to recover the 3D structure of the hidden scene. We formulate the for-
ward and inverse theory of secondary and tertiary scattering reflection using ideas
from energy front propagation and tomography. We show that using careful choice of
approximations, such as Fresnel approximation, greatly simplifies this problem and
the inversion can be achieved via a backpropagation process. We provide a theoreti-
cal analysis of the invertibility, uniqueness and choices of space-time-angle dimensions
using synthetic examples. We show that a 2D streak camera can be used to discover
and reconstruct hidden geometry. Using a 1D high speed time of flight camera, we
show that our method can be used recover 3D shapes of objects "around the corner".
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Chapter 1

Introduction

Current computer graphics and vision involve study of light coming from various

points in visible in-line-of-sight world. Traditional imaging from cameras captures

a fraction of light from scene, focuses it and integrates it on a sensor. A very high

dimensional representation of scene involves parametrizing light intensity for each

wavelength, in every direction coming from every visible point in the world. Concepts

such as plenoptic function [4] can be used to describe response of an environment to

current lighting conditions.

When we capture an image, light from non line of sight objects can also be imaged

after reflections from visible objects. The effect of such light on our image is ignored

because of its considerably lower intensity. The contribution of these photons is

rendered insignificant by integration over much larger periods of time than time light

took to move around in a scene. Of course this strategy is ignorant and wasteful of

data. In this thesis we address the challenging problem of using these photons to

resolve geometry of hidden objects.

1.1 Motivation

Very recently some interesting research has been done in the area we explore. In

[32, 31], Raskar and Davis proposed inverse analysis using a 5D time-light transport

matrix to recover geometric and photometric scene parameters. By careful calibration
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of scene, camera and surrounding world, it is possible to image hidden aspects of scene

by switching lighting and cameras [35]. This approach can be used to get a faster

6D representation of scene as well. This approach requires a high resolution, highly

versatile light source like a projector focusing light at hidden object and therefore

is not of much use in problem we describe. Highly sophisticated techniques such as

LIDAR (LIght Detection and Ranging) [16] and two dimensional gated viewing [8] can

be used to obtain low/high scale 3D representation of objects. Stealth technologies

such as TADAR [7], infrared heat signatures can be used to look through diffused

occluders such as walls. But all these technologies ignore the multiple reflections as

noise and try to use filters to eliminate this information rather than use it for good.

Can we exploit the time taken by photons to arrive to infer hidden 3D shapes ? In

paper [17] an interesting technique is evolved which uses time of arrival of photons at

high resolution to infer trivial information about scene like two dark lines separated

by white line. Our work builds on some of this work and develops a full conceptual

model of sensing photons after multiple reflections. Then we use this model to develop

robust tools and infer shapes of 3D objects of varying complexity.

One may argue that TADAR is a good alternative to our strategies. In fact

hidden imaging has always been approached as a problem involving sensing light

transmitting through a diffuser which allows a few wavelengths which is a very strong

assumption. But our approach provides a workaround to this obvious flaw, and makes

no such assumption. Our final goal is to use photons which came after multiple

reflections and determine the hidden objects. We believe that such an invention

can revolutionize fields such as endoscopy, fast robot navigation, ultrafast reflectance

capture and ultrafast geometry acquisition without worrying about occlusions.

1.2 Problem Description

We aim at exploring the relationship between hidden 3D structure of objects and the

associated high dimensional light transport (in space and time). Our main emphasis

will be on rigorously formulating the problem and developing methods to invert tran-
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Figure 1-1: Plenoptic function parametrizes world pixels by location, wavelength and
orientation. (Source: Wikipedia)

sient light transport and recover hidden 3D shapes. In order to successfully invert the

problem we will model the propagation of light in the scene, and its capture by cam-

era. We will also focus at studying issues like existence and uniqueness of solution,

and stability of solution algorithm.

We will exploit hardware such as streak cameras to image light with picoseconds

level resolution in time. For determining accurate starting time of photons we will

illuminate real world scenes using femtosecond duration pulses. Using this we can

calculate distances travelled by photons with sub-millimeter level of accuracy.

While developing algorithms we aim at exploiting sparsity based methods to in-

crease robustness and generate reconstruction for challenging inputs. We will develop

models for various kinds of noises that might present in the process of capture, and

observe how that might affect the results from reconstruction algorithm. We will

validate the reconstruction algorithm using data collected in real world scenarios.
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Figure 1-2: Setup (Left). Forward model (Center) The laser illuminates the surface S
and each point s E S generates an energy front. The spherical energy front contributes
to a hyperbola in the space-time streak photo, IR. (Right) Spherical energy fronts
propagating from a point create a hyperbolic space-time curve in streak photo.

1.3 Related Work

Recent work in computer graphics and computer vision has shown surprising results

by inverting light transport. Our work is influenced by this pioneering work [34,

25, 35, 17, 21]. We also inspire from research in ultra fast imaging as discussed in

[24, 40, 45, 27, 31]. We will supplement the framework provided by these methods

by analysing and measuring the temporal evolution of light transport. Analysing the

energyfront propagation, we will exploit the added fine-scale time dimension to deal

with and recover the geometry of moderately complex hidden objects.

Comparison with Dual Photography and Transient Imaging: Light trans-

port acquisition, analysis and inversion is recently emerging to be a powerful tool to

extract intrinsic information about the scene even when the scene is hidden either

physically or because of global light transport effects. Sen et. al. exploited Helmholtz

reciprocity to recover view of a playing card visible to a light source but not to the

primal camera [35] at 66x87 pixel resolution. This does require a projector to be in

the line of sight. See figure 1-3.

Kirmani et. al. showed an intriguing idea of a time of flight camera to look

around corners. The results show how to read a mirror-based barcode beyond the

line of sight [17]. Given the challenging nature of the problem, they made strong
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assumptions about the hidden points: they lie on a plane, the correspondence between

time profiles of each point is recoverable and hidden points are not on a continuous

surface (i.e. patches are discretized in position with gaps between the patches). This

aids in marking contribution from each patch. This would be impractical in presence

of real world continuous objects with unknown depth. Solving the problem in the

absence of correspondences on three dimensional objects will be the key aspect of our

work.

Range estimation using time of flight : Many techniques have been estab-

lished for range estimation using time-of-flight measurements from active emission

in a wide variety of electromagnetic and pressure-wave domains including radio fre-

quency (RADAR), optical (LIDAR - see 1-5), and acoustic (SONAR - refer to 1-4)

[36, 15, 13]. However these techniques are limited by penetrability and the assump-

tion of single path and one-bounce reflections. Multibounce RADAR has also been

investigated, for example for motion detection [38]. Due to the longer wavelength of

of RADAR, bounces are always specular and reconstruction is trivial. The resolution

and capabilities are very limited.

Time of Flight and Scattering : In radio-location , geophysical surveys, syn-

thetic aperture radar and medical imaging, problems involve determining geometric

information from scattered emission, reflection or transmission [23, 10, 28, 30, 42, 44].

For example, in radio-location, one can conveniently query the active emitter while

in borehole tomography one can use one explosive source at a time to generate sig-

nals which are picked up by receivers at the surface and in boreholes. The inversion

is challenging because the emitters and receivers are sparse. Most problems also

involve nonhomogeneous medium with varying refractive index. Kirchhoff integral

techniques represent and solve the propagation with partial differential equations

[20, 18, 9, 37, 43]. The geometric solutions are relatively coarse and low resolution

and exploit transmission or one bounce reflection.

Apart from these the theory of inverse light transport [34] can be used to eliminate

inter-reflections from real scenes. The frequency domain properties of direct and

global components of scattered light can be exploited to recover image of objects
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Figure 1-3: Dual Photography: Helmholtz Reciprocity. (Please refer to [35])

behind a shower curtain [25].

1.4 Contribution

We will explore the relationship between hidden 3D structure of objects and the

associated high dimensional light transport (space and time). We show that using

multi-bounce energyfront propagation based analysis one can recover hidden 3D ge-

ometry. We rigorously formulate the problem, elicit the relationships between geom-

etry and acquired light transport and also develop a practical and robust framework

for inversion. The specific technical contributions of the thesis are
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Figure 1-4: TADAR : millimeter wavelength imaging. Source [2]

" An algorithm for backpropagating the acquired space-time light transport to

overcomes the lack of correspondences and recover 3D shapes

" Exploiting sparsity based methods to reconstruct hidden 3D shapes

" An analysis of the invertibility and dependence on resolution of space-time

dimensions

" Several synthetic and physical experiments to validate the concepts

We will show that using multi-bounce energy front propagation based analysis

one can recover hidden 3D geometry. We analyze the problem of recovering a 3D

shape from its tertiary diffuse reflections. If there was only a single hidden point, the

reflected energy front directly encodes the position of that point in 3D. We rigorously

formulate the problem, elicit the relationships between geometry and acquired light

transport and also develop a practical and robust framework for inversion. We show

that it can be cast as a very peculiar type of tomographic reconstruction problem.

We call the associated imaging process elliptic tomography. The inverse problem,

i.e., the recovery of the unknown scene from the measurements, is challenging. We

provide a fast algorithm, which is essentially the analogue of the filtered backprojec-
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tion algorithm in traditional tomography. We perform several synthetic and physical

experiments to validate the concepts.
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Chapter 2

Theoretical Foundations

2.1 Modelling Propagation of a Light Pulse for

Multiple Bounces

rcr.1 i,/c

Figure 2-1: Forward Model. (Left) The laser illuminates the surface S and each point
s E S generates a energy front. The spherical energy front contributes to a hyperbola
in the space-time streak photo, IR. (Right) Spherical energy fronts propagating from
a point create a hyperbolic space-time curve in streak photo.

Consider a scene, as shown in Figure 2-1, which contains a hidden object (whose

surface we are interested in estimating) in front of a visible surface or 'first surface'

(this can be a wall or the floor). For simplicity we will assume that the visible

surface (hereafter called wall) is planar and diffuse, but we will relax this assumption

later. A laser beam(B) pointed towards the first visible surface (wall) to form a laser
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spot L emits a very short (few picoseconds) light pulse. The light reflected by the

wall reaches the hidden surface, is reflected and returns back to the wall. A streak

camera pointed towards the wall records the time varying image on the wall at a

very high temporal resolution of around 2 picoseconds. Our goal is to understand the

relationship between the geometry of the hidden scene and the observed intensities

at each streak camera pixel and time bin. ( This work was done in collaboration

with Dr. Andreas Velten, Dr. Thomas Willwacher, Dr. Ashok Veeraraghavan, Dr.

Moungi G. Bawendi and Dr. Ramesh Raskar [41]. )

For each location of the laser spot L, a 3D image (2 spatial and 1 temporal

dimension) is recorded. The laser spot is moved to multiple locations on the wall

(2D) to record 5D light transport data. The pulse return time at each location on

the wall depends upon several known parameters such as the location of the laser

spot and the unknown surface profile. So one can use the observed 5D light transport

data to infer the hidden surface shape. In order to understand the basic intuition,

consider the hidden scene to be a single point, as shown in Figure 2-1. The reflected

spherical wavefront propagating from that scene point reaches the different pixels on

the wall surface at different times creating a streak image which is a hyperbolic curve.

There is a one-one invertible mapping between the parameters of the hyperbola and

the 3D location of the hidden scene point.

When the hidden scene contains a surface instead of individual scene points, the

space-time hyperbolas corresponding to the different surface points are added together

to produce the captured streak images and so we need to demultiplex or deconvolve

these signals. In general, we could use a captured 5D light transport data but in our

experiments, we are restricted to a 1D streak camera. While the information from a

1D streak camera is sufficient for 3D reconstruction the spatial resolution in the axis

perpendicular to the sensor axis is heavily compromised.

It is convenient to move to the coordinate system of the wall. For this we apply

a space-time transform. We need to consider four optical path segments: beam B to

laser spot L on first surface, spot L to a hidden surface points s E S, s to points on

the third surface r E R and finally r to the camera. We have folded first and third
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surfaces into a single 'wall' for compactness. With respect to the wall, the shape of

the objects can be recovered as a 2D height field. By shining a short pulse duration

laser and a recovering a full time profile of the returned signal, we capture a 5D light

transport, 2D for camera pixels, 2D for laser projector positions and time. Thus,

our inversion method needs to recover a 2D height map manifold from a 5D light

transport data. As we show later, recovering this hidden 2D manifold with a 4D

camera-projector light transport and without time-dimension is impractical due to

ill-conditioning of the multiplexing matrix.

2.1.1 Space-Time Warping for Bounce Reduction

Figure 2-2: A space time transform on a raw streak photo allows us to convert 4
segment problem into a sequence of 2 segment problems. The toy scene is a small
lcmx 1cm patch creating a prominent (blurred) hyperbola in warped photo. Back-
propagation creates low frequency residual but simple thresholding recovers the patch
geometry.

For the looking around corner setup light path can be divided into 4 straight

line segments with 3 bounces in between. The first segment involves collimated laser

beam travelling from laser source to wall. In the second segment the laser spot on

wall behaves as a point light source. The third segment(s) involve scattering from

hidden object. For the fourth segment light travels from wall to camera which has

wall in focus. The data received on camera Ic(p, t) has two degrees of freedom - space

and time. Since first and fourth segments are focused, we can apply transforms to

streak image to eliminate their effects. The effect of first segment can be removed

by shifting streak image in time which is constant for each location on wall. To re-

move effect of fourth segment we use the distances between wall pixels and camera

sensors (II C - w 1|). We assume that we know the geometry of R to calculate camera
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homography and correspondence between camera sensor and wall pixels. The fol-

lowing mathematical formulation is concise representation of this concept. Here H

is the projective transformation (homography) mapping coordinates on R to camera

coordinates. The time shift IC - wIl by the distance from camera to screen varies

hyperbolically with the pixel coordinate w. Note that we don't require to adjust for

cos(G) factor or 1/r 2 fall off because camera sensor integrates for more wall pixels if

they are farther away.

We can simplify the task of inference from four segment reflection paths to a

sequence of two segment paths. First and fourth paths are directional and focused

and do not involve scattering. The second segment can be treated as originating

from unfocussed sensors while the third segment can be treated as being recorded by

unfocused sensors. Our approach simplifies this three bounce problem to one bounce

problem, by introducing corresponding space and time warps due to first and fourth

paths. For the first path we calculate the time taken by laser to reach the wall and

offset everything to include this. For the fourth path we compute the homography

for streak camera imaging system and map the 1D image created on streak sensor

to the wall in front. Then the pixels are offset in time to include the variation in

time for light to reach the streak camera sensor. After discretization this situation

is analogous to an unfocussed array of emitters and an unfocussed array of receivers.

Unfortunately each of the emitters has a different phase depending on its position

created due to its distance to laser spot and distance from the sensor. In addition

the intensities are also impacted by aforementioned distances. Our goal is to recover

from this multiplexed readings the location of each of transmitters.

2.1.2 Scattering of a pulse

Consider the impact of any scene point s E S on the recorded 5D light transport. The

laser illuminates a point L on the visible surface of the wall and this in turn creates a

virtual unfocused impulse light source. The light reflected from each scene point s is

recorded by unfocused virtual sensors w E R. We model the impulse wave propagation

from each scene point using the well-known Huygens-Fresnel principle.Phase changes
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hyperbolically and intensity changes as r2 across the planar section for the wavefront.

This hyperbolic streak, or 'streak' for short is captured by a streak camera.

Generating Streak Photos

Let's analyze the scattering of light in second and third segments. For simplicity

we model the hidden object as a collection of unfocussed emitters sending impulses

I, (s, T) at T times. We model the receiver as an array of unfocussed receivers which

capture photons at picosecond resolution. We can achieve this configuration experi-

mentally by using a picosecond resolution streak camera focused on wall pixels. To

simplify further we can assume accurately that speed of light is constant and ex-

press everything in distance units. The following mathematical equation represents

the data recorded by streak camera after making the mentioned assumptions. Note

that speed of light is set c=1 for simplicity. We also ignore the local changes in nor-

mals for sender surface and receiver surface. (Algorithm programming with Thomas

Willwacher and data collection with Andreas Velten, results in paper [41].)

IR(W, t) - j j 7 26(re - t + T)IS(s, T)d rd2 s (2.1)

where w E R, s E S, t,T E R and rc = 11w - s||. and IR(w,t) is the intensity

observed at w E R at time t. After removing the time shifts as described in previous

section and applying transforms from calculated homography we can further simplify

the equation and remove the 6 required to adjust for receiver camera distances. The

following equation provides the mathematical summary of this analysis. Note that

overall these equations we assume that receiver and senders are perfectly lambertian

and ignore the local superficial variation in Normal vectors. Equation (2.1) hence

becomes

IR 0 1 1 2 126(t -r, -ri)d2s(2)IR(W,t) i 2 crr -(2.2
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2.1.3 Hyperbolic Contribution

Hyperbolic Contribution

Lets analyze the relationship between time when a sender emits a pulse to time and

location of a receiver. For a fixed sender the response function is a hyperboloid

in space and time given by following mathematical equation. The parameters of the

hyperboloid depend on location of sender, a lateral displacement leads to shifts, while

a displacement in depth corresponds to flattening. Change in sender time equates to

a constant time shift for responses to any of receivers.

t-r = rc = V(zX -U)2 + (y - v)2+z(x,y)2 (2.3)

where u, v are the two coordinates of w in the receiver plane. Careful observation

shows that this equation is an ellipsoid in sender location if we fix the laser and receiver

location. Ellipse parameters depend on time when a receiver receives a impulse. The

laser and receiver lie on the two focii of this ellipse. The eccentricity depends on the

time when impulse is received.

2.2 Forward model: Elliptical Tomographic Pro-

jection

In this section we rephrase the above approximation to the forward light transport

using notions from tomography. In an idealized case, the inverse problem of recovering

the hidden shape can be solved explicitly. We use this explicit solution to inspire our

algorithm for real world scenarios. This work was done in collaboration with Dr.

Andreas Velten, Dr. Thomas Willwacher, Dr. Ashok Veeraraghavan, Dr. Moungi G.

Bawendi and Dr. Ramesh Raskar [41].
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2.2.1 Elliptical tomography problem description

Our problem has similarities to tomographic projection. Let us rewrite equation (2.2)

in the following form

IR(W,t, L) - I 2 6(t - re -ri)d2S = 2 6(t- r - ri)Is(x)daX
is 7rrwrri s 7rc rri

S 21
2 6(t - r - ri)W(x)d x

where the unknown world volume W(x) = I6s(x) is a delta function with support

on the surface S to be reconstructed. Apart from the 1/r 2 factors, which typically

vary slowly over the region of interest, we hence see that individual streak image pixels

measure elliptical projections of the world volume W(x). Due to its similarity with

traditional tomography, we call this problem elliptical tomography. Note however that

there are also key differences to traditional tomography: (i) The recorded projections

live in a higher dimensional (5D) space than the world (3D). (ii) The projections

are along (2D) ellipsoids instead of (ID) lines. This makes the analysis much more

complicated.

2.2.2 Challenges and missing cones

It is instructive to consider the above tomography problem in the limit when the

object is small compared to the distance to the diffuser wall. In this case the elliptic

tomography problem reduces to a planar tomography problem, see Figure 3-1. Each

pair of a camera point and a laser position on the diffuser wall (approximately)

measures intersections of the target object with planes whose normals agree with the

normals to the ellipsoids. By the standard Fourier slice theorem, each line of each

streak image will hence measure one line of the Fourier transform of the object, in

the direction of the normal. Unfortunately, in our situation these normals cover a

limited region of the unit sphere. Hence without additional priors it is not possible to

reconstruct the Fourier transform of the target object in the missing directions. This is

the missing cones problem well known from traditional tomography. Experimentally
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we get a very good resolution in the depth (orthogonal to the wall) direction, while

transverse (parallel to the wall) high frequency features tend to get lost.
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Figure 2-3: Reconstruction Algorithm An illustrative example of geometric re-
construction using streak images. (a) Data capture. The hidden object consists of a 2
cm x 2 cm square white patch. The captured streak images are displayed in the top
row. (b) Contributing voxels in Cartesian space. For recovery of hidden position the
possible locations in Cartesian space that could have contributed to the streak image
pixels p, q, r are ellipsoids in 3D. If there is a single world point contributing intensity
to all 3 pixels, the corresponding ellipses intersect. The white bar corresponds to 2
centimetres. (c) Backprojection and heatmap. We use a back-projection algorithm that
finds overlaid ellipses corresponding to all pixels.(d) Backprojection using all pixels
in a set of 59 streak images. (e) Filtering. After filtering with a second derivative, the
patch location and 2 centimeter lateral size are recovered. Joint work with Andreas
Velten, Thomas Willwacher, Ashok Veeraraghavan, Moungi G. Bawendi and Ramesh
Raskar [411. 41
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Chapter 3

Inversion Analysis

3.1 Inverse Algorithm: Filtered Back Projection

In this section we give a detailed description of our reconstruction algorithm. (Al-

gorithm programming with Thomas Willwacher, Andreas Velten and data collection

with Andreas Velten, in collaboration with Dr. Ashok Veeraraghavan, Dr. Moungi

G. Bawendi and Dr. Ramesh Raskar [41].)

3.1.1 Overview of the algorithm

The imaging and reconstruction process consists of 3 phases:

" Phase 1: Data Acquisition. We direct the laser to 60 different positions on

the diffuser wall and capture the corresponding streak images. For each of the

60 positions more than one images are taken and overlaid to reduce noise.

* Phase 2: Data Preprocessing. The streak images are loaded, intensity

corrected and shifted to adjust for spatiotemporal jitter.

" Phase 3: 3D Reconstruction. The clean streak images are used to recon-

struct the unknown shape using our backprojection-type algorithm.

The first of the three phases has been described in chapter 1 and 2. Let us focus

on Phases 2 and 3.
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Figure 3-1: The top left figure shows streak images being generated by near field
sources. On bottom left we see effect when this sources travel farther away, The
rightmost figure depicts how we can analytically predict single sources using multiple
sensor laser combinations. Notice how the accuracy is affected if lasers shift.

3.1.2 Phase 2: Data Preprocessing

1. Timing correction. To correct for drift in camera timing synchronization

(jitter) both in space and time we direct part of the laser directly to the diffuser

wall. This produces a sharp "calibration spot" in each streak image. The

calibration spot is detected in each image, and the image is subsequently shifted

in order to align the reference spot at the same pixel location in all streak

images. The severity of the jitter is monitored in order to detect outliers or

broken datasets. (Data collection with Andreas Velten, results in paper [41].)

2. Intensity correction. To remove a common bias in the streak images we

subtract a reference (background) image taken without the target object being

present in the setup.

3. Gain correction. We correct for non-uniform gain of the streak camera's CCD

sensor by dividing by a white light image taken beforehand.
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3.1.3 Phase 3: 3D Reconstruction

1. Voxel Grid Setup. We estimate an oriented bounding box for the working

volume to set up a voxel grid (see below).

2. Downsampling (optional). In order to improve speed the data may be down-

sampled by discarding a fraction of the cameras pixels for each streak image

and/or entire streak images. Experiments showed that every second camera

pixel may be discarded without losing much reconstruction accuracy. When

discarding entire streak images, is is important that the laser positions on the

diffuser wall corresponding to the remaining images still cover a large area.

3. Backprojection. For each voxel in the working volume and for each streak

image, we compute the streak image pixels that the voxel under consideration

might have contributed. Concretely, the voxel at location v can contributed to

a pixel corresponding to a point w on the wall at time t if

ct = |v - L| +Iv - w|+|w -- C|.

Here C is the camera's center of projection and L is the laser position as above.

Let us call the streak image pixels satisfying this condition the contributing

pixels. We compute a function on voxel space, the heatmap H. For the voxel v

under consideration we assign the value

H(v) = Z(|v - w||v - LI)"Ip.
P

Here the sum is over all contributing pixels p, and I, is the intensity measured

at that pixel. The prefactor corrects for the distance attenuation, with a being

some constant. We use a = 1.

4. Filtering. The heatmap H now is a function on our 3 dimensional voxel grid.

We assume that the axis of that grid are ordered such that the third axis faces

away from the diffuser wall. We compute the filtered heatmap Hf as the second
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derivative of the heatmap along that third axis of the voxel grid.

Hf (03)2H.

The filtered heatmap measures the confidence we have that at a specific voxel

location there is a surface patch of the hidden object.

5. Thresholding. We compute a sliding window maximum M1,c of the filtered

heatmap Hf. Typically we use a 20x20x20 voxel window. Our estimate of the

3D shape to be reconstructed consists of those voxels that satisfy the condition

H1 > A1ocM 1 + AglobMtlob

where Mglob = max(Hg) is the global maximum of the filtered heatmap and

Aloc, Agio are constants. Typically we use Ao = 0.45, Ag9 o1 = 0.15

6. Compressive Reconstruction

We use techniques like SPGL1, and CoSAMP as an alternative to back projec-

tion and filtering. We rely on the fact that the 3D voxel grid is sparsely filled,

containing surfaces which can occupy only one voxel in depth.

7. Rendering. The result of thresholding step is a 3D point cloud. We use the

Chimera rendering software to visualize this point cloud.

In order to set up the voxel grid in the first step we run a low resolution version of

the above algorithm with a conservative initial estimate of the region of interest. In

particular, we greatly down sample the input data. By this we obtain a low resolution

point cloud which is a coarse approximation to the object to be reconstructed. We

compute the center of mass and principal axis of this point cloud. The voxel grid is

then fit so as to align with these axis.
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3.2 Inversion using parameter estimation

Another good approach that we could use for reconstruction involves modeling cap-

tured data as collection of hyperbolic streaks with unknown parameters. We can

formulate this problem as optimization problem where we are trying to fit a conic

section (hyperboloid) to a streak, minimizing total number of hyperbolas fitted. As

discussed in next chapter this can be achieved by imposing a sparsity constraint on re-

constructed world. In a very simple model each active pixel corresponds to a unique

hyperboloid and we are trying to minimize number of active pixels while reducing

residual errors. We can describe the residual error by following equation:

J(X, t) - S, * 6(x2/a - t2/bi - 1)112 (3.1)
(x,t)eStreakImages i6ActivePixels

Here I(x, t) is the recorded streak image, ai and bi are paramters for streak cor-

responding to active pixel and Si is corresponding intensity. We can then include

the sum of all active voxels or number of active voxels as a regularization parameter

to complete the formulation. The main issue with this formulation is that actual

streaks have a lot of blur and noise, and it can lead to a lot of computation overhead

because of large parameters. Also because of systematic noise we cannot be sure that

hyperbolas will overlap exactly. To overcome this issue, instead of fitting the pixels

exactly we can minimize their from distance from the hyperbolas.

Their are two interesting observations to make about this technique. For scenes

with isolated patches, we could reduce our search space to a few parameters. For

scenes with continuous random surfaces, this search space grows infinite and needs to

be discretized. A robust way to estimate the active voxels can be to use hough trans-

form. Very simply, we can overlay the streak image due to each voxel and integrate to

get a likelihood estimate for that voxel being active. We can use appropriate threshold

to decide which voxels to choose. This technique is exactly same as backprojection

technique we discussed earlier.
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3.2.1 A remark about the filtering step

To motivate our choice of filter by taking the second derivative, let us consider again

the planar ("far field") approximation to the elliptical tomography problem as dis-

cussed in section 2.2.2. In this setting, at least for full and uniform coverage of the

sphere with plane directions, the theoretically correct filtering in the filtered back-

projection algorithm is a |k12 filter in Fourier space. In image space, this amounts

to taking a second derivative along each scanline. This motivates our choice of filter

above. We tested both filtering by the second derivative in image and world space

and found that taking the derivative approximately along the target surfaces normal

yielded the best results.

48



Chapter 4

Sparsity Based Reconstruction

In this chapter we show how we can use SPGL1 and other compressive sensing tech-

niques to reconstruct hidden volumes. Because we aim at reconstructing hidden

object's 2D manifold, we can consider the solution as a sparse set of points inside the

voxelized world volume. This approach has many advantages over the simple back-

projection based techniques. This approach actually inverts the system in front of us

instead of using a voting technique like backprojection or carving. This approach will

also minimize noise by choosing accurate parameters. Further as results show, this

technique can yield much better results than ad-hoc approaches like backprojection.

4.1 Linearizing The system

Consider a isolated voxel in world, and focus on response it produces in streak images.

The response changes orientation in time and space based on the laser location and

wall pixels being observed. The response observed at each pixel on wall is a linear

time invariant sum of time signals sent by all active world voxels. In essence to get any

streak image we can add streak images from all world voxels provided that occlusion

doesn't occur. We can construct a large matrix to represent this system, we denote the

corresponding linear transform by matrix A. Each column of this matrix represents

the streak image from corresponding world voxel. Each row in corresponding linear

transform matrix A identifies a unique pixel,laser-location pair. This matrix can be
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Figure 4-1: How each world voxel contributes to a streak inside data. The entire
streak image is composed by linear sum of all the streaks. If there is no occlusion we
can turn the forward model into a linear system and can generate a corresponding
matrix representation. Vectorized world voxels (denoted by c2) on multiplication with
linear transform matrix A yield streak image. The right hand is sum of streak images
Aj corresponding to each voxel.

used to quickly draw streak images and backproject. The matrix comes to roughly 1
billion entries, and can easily takes Gigabytes of space. The matrix is practical only
if the voxelized world is small in size or we are willing to sacrifice resolution. (please

refer to 4-1)

Since number of wall pixels and laser locations is considerably more than world

voxels, size of corresponding linear transform matrix A can be reduce by sub sampling
world voxels and selecting only a few lasers. This too leads to poorer reconstruction

(4-4) but the results are a lot better than slashing down resolution.

Once we have a matrix to represent our system, we can try to invert the system

by solving linear system Ax = B. However using least square or inverting the system
is a naive approach and can be computationally heavy. A easy solution is to reduce

number of columns of the linear system by multiplying by a well suited matrix M on

both sides (MAX = Mb). In our problems we used AT to conserve rank and create
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Figure 4-2: Our approach can handle steep angles, sharp corners, concave as well as
convex features.Reconstruction of (a) Wedge (b) S shape and a (c) Sphere using 8
streak images and COSaMP matching pursuit algorithm. Referenced from joint work
with Ashok Veeraraghvan in [41].

a system easier to solve. Figure 4-3 shows the reconstruction from this approach.

4.2 Methods

By orienting the world volume appropriately we can even put an upper bound on the

number of "active" points by counting number of voxels in a plane parallel to observed

wall. Alternatively this number can be set to number of voxels in a plane which cuts

through the world and maximizes this number. Once we have this number we can

use techniques like CoSAMP [26] to reconstruct the result. The figure 4-2 shows

simulated reconstruction on 3 different volumetric objects using CoSAMP.

Because it's not very accurate to guess world voxels, a better approach is to

guess the sum of intensity values of all voxels. We can get a fair estimate of sum

of all voxels by backprojecting and summing values above a certain threshold. We

use sparsity based methods to reconstruct the 3D object once this value is known.

Sparse approximation algorithms have been studied in detail and applied in fields of

image reconstruction, signal processing and statistics. Techniques like Ills are being

applied successfully in areas of MRI and seismic imaging. We intend to exploit these
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techniques in our problem by posing it as a tomographic image reconstruction.

4.2.1 Sparse Formulation

In precious section we showed that after fixing few parameters, our forward model

is a linear time-invariant system. We also showed how to construct a matrix repre-

sentation of this linear system. In following section we describe a few formulations

which impose sparseness on solution. We can achieve that by solving Ax = b while

imposing IlxII in an under constrained system. Greedy strategies and matching pur-

suit algorithms like OMP [39] and StOMP [22] can be used to solve this problem

but they don't ensure convergence. We can also pose this as a pure signal processing

and recovering problem. The following equation shows the problem formulation for

noiseless cases.

minimize |xii| subject to Ax = b (4.1)

4.2.2 Matching Pursuit Algorithms

We can use algorithm CoSAMP [26] to invert the problem in presence of noise. We

can regard streak images as projections of unknown signal x into a high dimensional

space using operator A that we developed in earlier sections. The operator A can be

used to generate a proxy for hidden volume x using 2 = ATAx. We cannot invert

this system directly because of extremely large size of A. After we have an initial

support we can apply the same operator to residual signal to get more support points

and merge them with the existing support points. The following equation concisely

describes this concept.

= As' * b where Sn, = {Ai|(AT * (b - Ax))i >= nhmax(AT (b - Ax))} (4.2)

This is same as back-projecting the streak image residuals without applying the fil-

ter (t = ATb). Once we have a proxy for signal, we can identify the larger components
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and invert linear system Ax = b just for the support vectors of larger components,

to get better estimates of x. Since number of support points is usually much smaller

than dimension of x this problem becomes computationally feasible. Pseudocode for

CoSAMP is given below:

Algorithm 1 CoSAMP(A,b,n)

i +- 0
zo +- O
r +- b
repeat

i i +1
y <- AT * r
b <- supp(y 2n)

Xtot = As' b
xi <- xtot

r +- b - A * xi
until l|r|| >= E

4.2.3 Fixed Point Methods

This approach discussed previously is idealistic but fails because of systematic noise,

and because linear transform matrix A may not have restricted isometry constant

6, < 1. A better approach will be to formulate it as one norm regularized problem

discussed in [11]. In following equation we show how both residual error and one

norm of x can be minimized with a single parameter A to control the sparseness.

arg min ||Ax - bl 1|+ A||xI|1 (4.3)

We can solve this problem using fixed point methods. Hale, Yin and Zhang in

[11] come up with an algorithmic framework to solve this problem using fixed point

iterative procedure. Let T(x) = Aal|x||1 and T 2 (x) = Vf(x), the following composite

operator can be used to generate better approximations of x

Xk+1 (1 + T T)1 0 (1 - TT2)(Xk) (4.4)
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where T is any scalar. We can derive the following result (Refer to [11]):

so = (1+ TTI)- 1, h = (1 - -rT 2) (4.5)

Please refer to [11] for detailed description and analysis. The downside of this

approach 2 is that it makes a lot of convexity related assumptions on the function.

Because of large size of matrix A, the operator generation can become computationally

infeasible. The next section discusses a better approach which can provably yield same

results.

Algorithm 2 Fixed Point Continuation Algorithm, FPC(A,b,xii)

Select 0 < ul < U2 < .... <uL =. Set x=x0

for U= U1, u 2, ... , ULdo
while "not converged" do

Select r and set v =T/u

x +- s o h(x)
end while

end for

4.2.4 Projective Gradient with Lasso

A very similar formulation is called basis pursuit denoise and involves minimizing one

norm with a restriction on observed noise. The equation below summarizes how this

can be done.

arg min |xi11 subject to ||Ax - b||2 <= o- (4.6)

The parameter o is related to A as shown by Berg and Friedlander in [6]. While

these formulation enforce sparseness as a primary constraint, we found that a more

practical strategy was to minimize the residual error while enforcing one norm of x

below a certain threshold T. We adopted the Lasso formulation by Chen discussed

[33].

arg min|JAx - b|I| subject to ||x||1 <= T (4.7)
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The parameters T, o- and A are interconnected, and can lead to same solutions[6]. A

is connected with Lagrange multiplier of constraint in lasso formulation [6]. Identifying

the parameters is really the key to getting to right solution. Since backprojection gives

us a robust estimate of T we can use the third formulation given below with ease.

Once we know the formulation we can pose basis pursuit as a linear program and use

packages like CVX and CPLEX to solve the problem. Unfortunately this approach is

computationally intensive and impractical in dealing with large amounts of data that

we encounter.

In [6], Berg and Friedlander show how a spectral projected gradient algorithm can

be used for lasso LS, formulation of our problem. We can re-cast the Lasso problem

as a trade off between one norm of solution and two norm of residual (refer to 4-6,

4-7). The pareto curve between these two is described by following equation[6]. It

can be shown that this curve is convex, strictly decreasing and differentiable for all

points of interest [6] - this is an important property.

#(T) = min ||r|12 subject to Ax + r = b, ||x|11 <= T (4.8)

Because of convex properties of aforementioned function we can use newton's

method to solve for roots of #(r) = o-.

The figure 4-13 shows some exciting reconstructions using SPGL.
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Figure 4-3: Reconstruction of a spade using plain linear inversion techniques. The
matrix A was generated using methods described in section 4.1. We multiplied both
sides with AT to make problem computationally feasible. We used pseudo inverse
implementation in MATLAB to find the solution.

Figure 4-4: This figure shows how the reconstruction quality deteriorates by down
sampling world voxels. (Left) Zero down-sampling (Middle) one third down-sampling
(Right) One fifth down-sampling.
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Figure 4-5: Above figure shows how spade evolves with every few iteration of SPGL.
Notice that the interior points get picked first. The last image is result from 30
iterations.
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Figure 4-6: Methods like SPGL requiring only single parameter have an optimal
parameter value which results in correct reconstruction. The above figure shows the
variation in error with variation in tau. This is in fact the pareto curve described in
[6] between one norm of solution and two norm of residual.
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Figure 4-7: This figure shows how spade reconstruction changes with increasing tau.
For lesser values of tau only interior points get selected and rest of shape remains
unknown. As tau is increased the solution converges to a spade.
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Figure 4-8: . Anaysis of reconstruction if random noise is added to parameters. The
reconstruction is pretty robust to random salt and pepper noise in laser locations.
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Figure 4-9: Random Salt and pepper noise in homography and its effect on recon-
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Figure 4-10: Effect on reconstruction with systemic noise.
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Figure 4-13: (Above) Hidden MIT around the corner (Below) Reconstruction using
SPGL
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Chapter 5

Experiments and Results

5.1 Hardware assembly

High quality time of flight cameras are now widely available [19, 1], but unfortunately

a programmable capture experiment is still extremely challenging, very expensive

and cumbersome. Below we describe our ambitious effort but also emphasize that

commercial Lidar's can be repurposed for the same goal. For example, aerial Lidar

systems use sub-nanonsecond pulses and use clever time-wavelength filtering to image

over several kilometers. Unfortunately, it is difficult to program and get time profile

out of them because they are geared for recording only the first bounce. Our streak

camera is a Hamamatsu C5680, with an internal time resolution of 2 picoseconds.

We use a mode-locked Ti:Sapphire laser to generate pulses at 795 nm wavelength

with about 50 femtosecond pulse duration at a repetition rate of 75 MHz. The laser's

average output power is about 500 mW. The streak camera has a one dimensional

field of view, imaging a line in the scene. It provides a two dimensional image in

which one dimension corresponds to space and the other to time [14]. (Joint work

with Dr. Andreas Velten, Dr. Thomas Willwacher, Dr. Ashok Veeraraghavan, Dr.

Moungi G. Bawendi and Dr. Ramesh Raskar [41].)

We use a Faro Gauge measurement arm to calibrate the laser and camera. We

treat the camera and laser as a rigid pair with known intrinsic and extrinsic parameter

[12]. The visible parts of the geometry could be measured with the laser directly using
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time of flight with micrometer precision. Methods like LiDAR and OCT can achieve

this and are well understood. In the interest of focusing on the novel components of

our system we instead measure the visible parts of our scene with the Faro Gauge.

We also collect ground truth data to validate our reconstructions.

Synchronization of camera and laser time is challenging as it needs to be accurate

to about 2 ps (~~0.6 mm path length). The camera shows drift, time scaling, time jitter

and intensity variation intra and inter exposure time of the camera. This time-noise

(location and intensity uncertainty along time dimension in streak photo) affects the

point spread function and is difficult to represent in our forward model. We address

this using a delayed reference beam and recording the first bounce on the wall (see

Figure 5-11). We weaken this reference beam significantly via polarizers and neutral

density filters as the camera dynamic range is chosen suitable for third bounces and

the reference beam will easily saturate. The streak camera's photocathode tube,

much like an oscilloscope, has time decayed burn out and local gain variations. We

use a reference background photo to divide and compensate. Furthermore free space

lasers have relatively poor pointing stability. Whenever the direction of the laser

beam jumps, we have to recalibrate the system. (Data collection in collaboration

with Andreas Velten, results in paper [41].)

Improving SNR: The laser emits a pulse every 13.3 nanoseconds (75 MHz) and

consequently the reflected signal repeats at the same rate. We average 7.5 million such

13.3 nanosecond windows in a 100 ms exposure time on our streak camera readout

camera. We add 50 to 200 such images to minimize noise from the readout camera.

The light returned from a single hidden patch is attenuated only in the second and

third path segment. In our setups this attenuation factor is about 10- corresponding

to about 10 transmitted photons per pulse. The quantum efficiency of our camera is

about 3 %. Like many LIDAR systems our camera thus receives less than 1 photon

per pulse.

Limiting Intensity: Higher output power generally increases the intensity of the

light striking the scene and can cause safety issues and in extreme cases damage the

scene material. The intensity can be lowered by increasing the laser beam diameter. A
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Figure 5-1: The experimental setup. (B). The laser pulses strike the wall at a point
I and some of the scattered light light strikes the hidden object (e. g. at s), returns
to the wall (w) and is collected by the camera (c). Both the galvo scanner and the
camera are controlled by a computer. Done in collaboration with Andreas Velten,
Thomas Willwacher, Ashok Veeraraghavan, Moungi 0. Bawendi and Ramesh Raskar
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Figure 5-2: Resolution in depth. Left: Distance estimation. Time here is measured
in mm of traveled distance at the speed of light 1 mm,-O.3 ps. Middle: Error is less
than 1 mm. Right: Plot of intensity as a small patch is moved perpendicular to the
first surface.

m0 00M 004 000 000 01 0.12 014 010

Figure 5-3: Resolution in lateral dimension measured with a chirp pattern. (Left)
Setup with chirp pattern (occluder removed in this photo) (Middle) Raw streak photo
from streak camera (Right) The blue curve shows reconstruction of the geometry and
indicates that we can recover features with 0.5 cm in lateral dimensions in the given
scenario. The curve shows the confidence in the backprojected values.

large diameter however limits the time resolution of our technique. Using techniques

in computational photography such as coded illumination, one can project a sequence

of basis coded pattern that has reduced energy per unit area and yet sufficient SNR

for received photo.

Effect of time jitter: One of the major challenges we face in capturing real

datasets is temporal jitter and synchronization across different streak images. Recall

that for each location of the laser spot, we record an independent streak image and

the all the captured streak images are used together during reconstruction. Unfortu-

nately, obtaining exact time synchronization (of the order of picoseconds) is extremely

challenging in real dada capture. Even with very careful calibration and synchro-

nization, there was about 3-4 voxels (few nanoseconds) of temporal jitter across the
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Figure 5-4: Performance degradation due to temporal jitter.

captured streak images. This temporal jitter implies that the captured streak im-

ages are not consistent with the scene geometry and each of the streak images have

performed a different warping of the true underlying geometry. This significantly

degrades performance of reconstruction and leads to severe artifacts and distortions

in the reconstructions. This is the primary challenge in obtaining real-world results.

Shown in Figure 5-4 are examples of a reconstruction of a wedge with and without

jitter. Notice that while intensity noise does not affect performance significantly, even

a small amount of temporal jitter causes significant performance degradation.

Limitation of 1D streak camera: Our experimental prototype system uses

a 1D streak camera and the camera pixels are aligned with the x-axis of the world

coordinate system. This effectively means that our resolution in the y-axis is severely

compromised. As shown in Figure 5-7, the y resolution of a 1D streak camera is much

lower than the x and z resolutions. This limitation manifests itself in the form of low

y resolution in our real world reconstructions.

Validation: We validated the robustness of our approach for different linear dis-

tortions such as blurring, time jitter, saturation and partial occlusion. In synthetic

experiments, we noticed that when SNR reduces below 10dB the reconstruction per-

formance suffers.

5.1.1 Results

We recorded series of streak images for several simple 3D scenes, comprised of white

Lambertian objects. We used 30-60 laser positions, spread over a 20 x 40 cm wall.

The reconstructed surfaces are displayed in Figures 5-5, 5-9, 5-10. To produce the
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Figure 5-5: Reconstruction of a scene consisting of a big disk, a triangle and a square
at different depth. (Left) Ground truth. (Middle) Reconstruction, front view. (Right)
Reconstruction, side view. Note that the disk is only partially reconstructed, and the
square is rounded of, while the triangle is recovered very well. This illustrates the
diminishing resolution in directions parallel to the receiver plane towards the borders
of the field of view. The blue planes indicate the ground truth. The gray ground
planes and shadows have been added to help visualization. Referenced from joint
work with Dr. Andreas Velten, Dr. Thomas Willwacher, Dr. Ashok Veeraraghavan,
Dr. Moungi G. Bawendi and Dr. Ramesh Raskar [41].

3D pictures from the volumetric data, we use the Chimera visualization software [29]

for thresholding and rendering. (Joint work with Dr. Andreas Velten, Dr. Thomas

Willwacher, Dr. Ashok Veeraraghavan, Dr. Moungi G. Bawendi and Dr. Ramesh

Raskar [41].)

5.1.2 Performance Evaluation

We conducted several experiments to test the performance of our experimental setup.

This includes verifying the spatial and temporal resolution of the camera and the res-

olution obtained in a simple hidden scene (Fig. 5-3). (Data collection in collaboration

with Andreas Velten, results in paper [41].)
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Figure 5-6: Challenges in imaging around the corner with a conventional, low tem-
poral resolution laser and camera. (a) A setup with hidden mannequin but using a
red continuous laser and a Canon 5D camera. (b) An image of the wall recorded
with the Canon 5D camera with the room lights turned off and no hidden object
present. (The recorded light is due to the reflections from walls behind the laser and
camera.) (c) An image recorded with the hidden mannequin present. The increased
light level on the wall is marginal, is low spatial frequency and shows no noticeable
high frequency structure. (d) An image of the wall with the hidden mannequin moved
away from the wall by 10 cm. The reduction in light level on the wall has no visible
structure. (e) The difference between image in (b) and (c) using a false color map.
(f) The difference between (b) and (d). (g) The difference between (c) and (d). (h)
The plot of intensities along the centered horizontal scanline of each of the images
(b=red, c=black, d=blue). 69
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Figure 5-7: Limitations of heatmap after the backprojection algorithm. (Left) Prop-
agation of a single point and its backpropagation for a flatland case. Reconstruction
using backpropagation shows that one can recover a sharp peak, but it is surrounded
by a low frequency residual. Y and Z sections are shown. The resolution in Y is lower
than the resolution in Z. (Right) Cross Correlation of the streak images correspond-
ing to nearby voxels (3D case with 1D streak image). Notice that the Y-resolution
is worse because the sensor is ID along the x-axis. Results from joint work with
Andreas Velten in [41].

Figure 5-8: Reconstruction of a planar object in an unknown plane in 3D. (Left)
The object. (Middle Left) 2D Projection of the filtered heatmap. (Middle Right) A
3D visualization of the filtered heatmap. (Right) Reconstruction using sparsity based
methods. The gray ground plane has been added to aid visualization. Referenced
from joint work with Dr. Andreas Velten, Dr. Thomas Willwacher, Dr. Ashok
Veeraraghavan, Dr. Moungi G. Bawendi and Dr. Ramesh Raskar [41].

Figure 5-9: Reconstruction of a wooden man, painted white. Center - reconstruction
using simple back projection based methods. Right - reconstruction using sparse
reconstruction methods. Results from joint work with Andreas Velten in [41].
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Figure 5-10: Depiction of our reconstruction algorithm for a scene consisting of two
birds in different planes. (a) Photographs of the input models. (b) 9 out of 33
streak images used for reconstruction. (c) The raw (unfiltered) backprojection. (d)
The filtered backprojection, after taking a second derivative.(e,f) 3D renderings in
Chimera.
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Figure 5-11: The laser beam (red) is split to provide a syncronization signal for the
camera (dotted red) and an attenuated reference pulse (orange) to compensate for
synchronization drifts and laser intensity fluctuations. The main laser beam is di-
rected to a wall with a steering mirror and the returned third bounce is captured by
the streak camera. An Occluder inserted at the indicated position does not signifi-
cantly change the collected image. Referenced from joint work with Andreas Velten
in [41].
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Figure 5-12: Smooth Object Reconstruction Reconstruction of two sinosoids
using SPGL1. (a) Photo of the object. The sinusoid is approximately 1.5 cm tall
with total length of 5 cm. (b) Nine of the 60 raw streak images. (c) Side View.
Visualization of one cross sections from reconstruction. (d) 3D cross-sections. Chosen
cross sections along depth (z) projected on the x-y plane reveals the hidden shape
contour. (e) Top View. (f) Confidence map. A rendered point cloud of reconstruction
values after soft threshold.
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Figure 5-13: Complex Object Reconstruction in multiple poses. (a) Photo of the
object. The mannequin is approximately 20 cm tall and is placed about 25 cm from
the diffuser wall. (b) Nine of the 60 raw streak images. (c) Heatmap. Visualization
of the heatmap after backprojection. The hidden shape is barely discernible. (d)
Filtering. The second derivative of the heatmap along depth (z) projected on the
x-y plane reveals the hidden shape contour. (e) Depth map. Color encoded depth
shows the left leg and right arm closer in depth compared to the torso and other
leg and arm. (f) Confidence map. A rendered point cloud of confidence values after
soft threshold. (i) The stop-motion animation frames from multiple poses to demon-
strate reproducibility. Shadows and the ground plane in images (f-i) have been added
to aid visualization. Joint work with Andreas Velten, Thomas Willwacher, Ashok
Veeraraghavan, Moungi G. Bawendi and Ramesh Raskar [41].
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Figure 5-14: Reconstruction of a hidden wood mannequin using sparse reconstruction
techniques
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Figure 5-15: Demonstration of the depth and lateral resolution. (a) The hidden
object to be recovered are three letters, I, T, I at varying depths. The "I" is 1.5 cm
in wide and all letters are 8.2 cm high. (b) 9 of 60 images collected by the streak
camera. (c) Projection of the heatmap on the x-y plane created by the back projection
algorithm. (d) Filtering after computing second derivative along depth (z). The color
in these images represents the confidence of finding an object at the pixel position.
(e) A rendering of the reconstructed 3D shape. Depth is color coded and semi-
transparent planes are inserted to indicate the ground truth. The depth axis is scaled
to aid visualization of the depth resolution. Referenced from joint work with Dr.
Andreas Velten, Dr. Thomas Willwacher, Dr. Ashok Veeraraghavan, Dr. Moungi G.
Bawendi and Dr. Ramesh Raskar 41].
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Figure 5-16: Reconstruction of hidden ITI(MIT) using sparse reconstruction tech-
niques such as SPGL. Note that this result is from a technique entirely different from
5-15. (a) The hidden MIT. (b) Selected streak images. (c) Reconstructed volume
with all sections merged into one image. (d) Volumetric slices of reconstructed hid-
den object. (e) The final result rendered in 3D (side view). Notice how accurately
depth gets recovered. (f) Rendered MIT from front.
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Figure 5-17: Results of a multi-pose stop motion animation dataset after filtered
backprojection and soft-thresholding. A hidden model of a man with a ball is captured
in various poses. The rendering shows the sequence of reconstructions created by
our filtered backprojection algorithm and demonstrates the ability to remove low-
frequency artifacts of backprojection. The mislabeled voxels remain consistent across
different poses indicating stability of our capture and inversion process. Shadows are
introduced to aid visualization. Results from joint work with Andreas Velten in [41].

Figure 5-18: Results from reconstruction of two cards using simple backprojection
techniques for real world data. (Left) The actual object. (Right) Reconstructed
object.

78



Figure 5-19: Results from reconstruction of a wedge using simple
techniques, and carving in real world data. (Left) The actual object.
structed object.

backprojection
(Right) Recon-

Figure 5-20: Results from reconstruction of a man using CoSAMP in simulation.
(Left) The actual object. (Right) Reconstructed object.

Figure 5-21: Results from reconstruction of a man using COSAMP in simulation.
(Left) The actual object. (Right) Reconstructed object.
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Chapter 6

Future Directions

We have shown that the goal of recovering hidden shapes is only as challenging as

the current hardware. The computational approaches show great promise. But, on

the hardware front, emerging integrated solid state lasers, new sensors and non-linear

optics will provide practical and portable imaging devices. Our formulation is also

valid for shorter wavelengths (e.g., x-rays) or for ultrasound and sonar frequencies in

large scenes where diffraction can be neglected. Beyond geometry, one maybe able to

recover full light transport and bidirectional reflectance distribution function (BRDF)

from a single viewpoint to eliminate encircling instrumentation. Our current method

assumes friendly reflectances, i.e., a non-zero diffuse component towards the wall.

Non-lambertian reflectance and partial occlusions will create non-uniform angular

radiance. But one can improve the carving to model the non-uniformity and exploit

the specular peaks which will actually have a higher SNR. The visible wall need not

be planar and one can update the r, and rc distances from a known model of the

visible parts. Supporting refraction involves multiple or continuous change in path

vector. Atcheson et. al. have shown a refraction tomography approach [5] which

could be extended.

In the future, emerging integrated solid state lasers, new sensors and non-linear

optics should provide practical and more sensitive imaging devices. Beyond 3D shape,

new techniques should allow us to recover reflectance, refraction and scattering prop-

erties and achieve wavelength resolved spectroscopy beyond the line of sight. The
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formulation could also be extended to shorter wavelengths (e.g., x-rays) or to ultra-

sound and sonar frequencies. The new goal of hidden 3D shape recovery may inspire

new research in the design of future ultrafast imaging systems and novel algorithms

for hidden scene reconstruction.

Initial applications may be in controlled settings like endoscopy, scientific imag-

ing and industrial vision. This will require addressing more complex transport for

volumetric scattering (e.g. for tissue) or refracting elements (e.g. for fluids). A very

promising theoretical direction is in inference and inversion techniques that exploit

scene priors, sparsity, rank, meaningful transforms and achieve bounded approxima-

tions. Adaptive sampling can decide the next-best laser direction based on current

estimate of the carved hull. Future analysis will include coded sampling using com-

pressive techniques and noise models for SNR and effective bandwidth.

We used the COSAMP [26] matching pursuit algorithm which allows us to explore

the sparsity of the solution. We tested both the backprojection and linear equation

based methods on both artificially generated and real data. It turned out that for

artificial data the COSAMP based reconstruction algorithm was generally superior the

backprojection algorithm. The backprojection algorithm can recover objects front-to

parallel to the wall quite well, but fails for highly sloped surfaces. However, for real

data the linear equation based methods were very sensitive to calibration errors, i.e.,

errors in the matrix A above. One can obtain results for very good datasets, after

changing A slightly to account for intricacies of our imaging system like vignetting

and gain correction. On the other hand the backprojection algorithm turned out

to be quite robust to calibration errors, though they can deteriorate the obtained

resolution. Since we typically have to deal with some calibration error (see section

5.1), we used the backprojection algorithm to obtain the real data reconstruction

results of this paper.
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6.1 Conclusion

The ability to infer shapes of objects beyond the line of sight is an ambitious goal

but it may transform recoding of visual information and will require a new set of

algorithms for scene understanding, rendering and visualization. We have presented a

new shape-from-x approach that goes beyond the abilities of today's model acquisition

and scanning methods. Light transport with a time component presents a unique

challenge due to the lack of correspondence but also provides a new opportunity. The

emphasis in this paper is to present a forward model and novel inversion process. The

nonlinear component due to jitter and system point spread function makes the ultra-

fast imaging equipment difficult to use. So the physical results can only be treated

as a proof-of-concept.

One may wonder when ultrafast lasers and cameras will be broadly available to

researchers in computer graphics and computational photography. Many lasers have

transformed from their unsafe, bulky form factors to use in portable consumer devices.

To further the research in this field by the community, we will make image datasets

and matlab code freely available online.

The utility of ultrafast imagers like the streak camera has been limited to analysis

of bio-chemical processes making them difficult to use for free space light transport.

We hope our work will spur more applications of these imagers in computational

photography and in turn the graphics research will influence the design and cost of

future streak cameras.

83



84



Bibliography

[1] Sick laser scanner: http://www.sick.com/gus/products/new/s300/en.html.

[2] Tadar in action. http://www.physorg.com/news7210.html, October 2005.

[3] Lidar overview. http://forsys.cfr.washington.edu/JFSP06/lidar-technology.htm,

2006.

[4] E.H. Adelson and J.R. Bergen. The plenoptic function and the elements of early

vision. Computational Models of Visual Processing, MIT Press, pages 3-20, 1991.

[5] B. Atcheson, I. Ilhrke, W. Heidrich, A. Tevs, D. Bradley, M. Magnor, and H.P.

Seidel. Time-resolved 3d capture of non-stationary gas flows. ACM Transactions

on Graphics (TOG), 27(5):1-9, 2008.

[6] Ewout Van Den Berg and Michael P. Friedlander. Probing the pareto frontier

for basis pursuit solutions. SIAM Journal of Scientific Computing, 2008.

[7] M. Bertero and P. Boccacci. Institute of Physics Publishing Ltd., 1998.

[8] J. Busck and H. Heiselberg. Gated viewing and high-accuracy three-dimensional

laser radar. Applied Optics, 43(24):4705-4710, 2004.

[9] D. Colton and A. Kirsch. A simple method for solving inverse scattering problems

in the resonance region. Inverse problems, 12:383, 1996.

[10] D.L. Colton and R. Kress. Inverse acoustic and electromagnetic scattering theory.

Springer Verlag, 1998.

85



[11] Wotao Yin Elaine T. Hale and Yin Zhang. A fixed-point continuation method

for li-regularized minimization with applications to compressed sensing. CAAM

Technical Report TR07-07, 2007.

[12] D. Forsyth and J. Ponce. Computer Vision, A Modern Approach. Prentice Hall,

2002.

[13] Dr Takashi Fujii and Tetsuo Fukuchi. Laser remote sensing. page 888, Jan 2005.

[14] Hamamatsu. Hamamatsu Streak Camera, 2012.

[15] Richard P. Hodges. Underwater acoustics: Analysis, design and performance of

sonar. page 366, Jan 2010.

[16] G. W. Kamerman. Laser Radar [M]. Chapter 1 of Active Electro-Optical System,

Vol. 6, The Infrared and Electro-Optical System Handbook, 1993.

[17] A. Kirmani, T. Hutchison, J. Davis, and R. Raskar. Looking around the corner

using transient imaging. In ICC, 2009.

[18] A. Kirsch. Characterization of the shape of a scattering obstacle using the spec-

tral data of the far field operator. Inverse problems, 14:1489, 1998.

[19] A. Kolb, E. Barth, R. Koch, and R. Larsen. Time-of-flight sensors in computer

graphics. Eurographics State of the Art Reports, pages 119-134, 2009.

[20] R. Kress and L. Paivarinta. On the far field in obstacle scattering. SIAM Journal

on Applied Mathematics, 59(4):1413-1426, 1999.

[21] S. Liu, T.T. Ng, and Y. Matsushita. Shape from Second-Bounce of Light Trans-

port. ECCV 2010, pages 280-293, 2010.

[22] Santos J.M. M. Lustig, D. Donoho and J. Pauly. Compressed sensing mri. IEEE

Signal Processing MRI, 2008.

[23] R Mailloux. Phased array antenna handbook. Boston, Jan 1994.

86



[24] Nikhil Naik, Shuang Zhao, Andreas Velten, Ramesh Raskar, and Kavita Bala.

Single view reflectance capture using multiplexed scattering and time-of-flight

imaging. ACM Trans. Graph., 30(6):171:1-171:10, December 2011.

[25] Shree K. Nayar, Gurunandan Krishnan, Michael D. Grossberg, and Ramesh

Raskar. Fast separation of direct and global components of a scene using high

frequency illumination. ACM Trans. Graph., 25(3):935-944, July 2006.

[26] D. Needell and J.A. Tropp. CoSaMP: Iterative signal recovery from incom-

plete and inaccurate samples. Applied and Computational Harmonic Analysis,

26(3):301-321, 2009.

[27] R. Pandharkar, A. Velten, A. Bardagjy, E. Lawson, M. Bawendi, and R. Raskar.

Estimating motion and size of moving non-line-of-sight objects in cluttered en-

vironments. In Computer Vision and Pattern Recognition (CVPR), 2011 IEEE

Conference on, pages 265 -272, june 2011.

[28] YC Pati, R. Rezaiifar, and PS Krishnaprasad. Orthogonal matching pursuit:

Recursive function approximation with applications to wavelet decomposition.

In Signals, Systems and Computers, pages 40-44. IEEE, 2002.

[29] E.F. Pettersen, T.D. Goddard, C.C. Huang, G.S. Couch, D.M. Greenblatt, E.C.

Meng, and T.E. Ferrin. UCSF Chimera-a visualization system for exploratory

research and analysis. Journal of computational chemistry, 25(13):1605-1612,

2004.

[30] R. Potthast. A fast new method to solve inverse scattering problems. Inverse

Problems, 12:731, 1996.

[31] Ramesh Raskar. Looking around corners: New opportunities in femto-

photography. ICCP Conference at CMU, Invited Talk, April 2011.

[32] Ramesh Raskar and James Davis. 5d time-light transport matrix: What can we

reason about scene properties? MIT Technical Report, 2008.

87



[33] D. L. Donoho S. S. Chen and M. A. Saunders. Atomic decomposition by basis

pursuit. SIAM Journal of Scientific Computing, 1998.

[34] S. M. Seitz, Y. Matsushita, and K. N. Kutulakos. A theory of inverse light

transport. In Proc. Tenth IEEE International Conference on Computer Vision

ICCV 2005, volume 2, pages 1440-1447, 17-21 Oct. 2005.

[35] P. Sen, B. Chen, G. Garg, S. R. Marschner, M. Horowitz, M. Levoy, and H. P. A.

Lensch. Dual photography. In SIGGRAPH '05: ACM SIGGRAPH 2005 Papers,

pages 745-755, New York, NY, USA, 2005. ACM.

[36] Merrill I. Skolnik. Introduction to radar systems. page 772, Jan 2002.

[37] R.H. Stolt. A prestack residual time migration operator. Geophysics, 61:605,

1996.

[38] A. Sume, M. Gustafsson, A. Jnis, S. Nilsson, J. Rahm, and A. rbom. Radar

detection of moving objects around corners. In Proc. of SPIE, 2009.

[39] J.A. Tropp and A.C. Gilbert. Signal recovery from random measurements via

orthogonal matching pursuit. IEEE Transactions on Information Theory, 2007.

[40] Andreas Velten, Everett Lawson, Andrew Bardagjy, Moungi Bawendi, and

Ramesh Raskar. Slow art with a trillion frames per second camera. In ACM

SIGGRAPH 2011 Posters, SIGGRAPH '11, pages 13:1-13:1, New York, NY,

USA, 2011. ACM.

[41] Andreas Velten, Thomas Willwacher, Otkrist Gupta, Ashok Veeraraghavan,

Moungi G. Bawendi, and Ramesh Raskar. Recovering Three-Dimensional Shape

around a Corner using Ultra-Fast Time-of-Flight Imaging. Nature Comminuca-

tions, 2012.

[42] Juefu Wang, Xishuo Wang, and Mike Perz. Structure preserving regulariza-

tion for sparse deconvolution. SEG Technical Program Expanded Abstracts,

25(1):2072-2076, 2006.

88



[43] L. Wang and G.K. Beare. Breaking the Optical Diffusion Limit: Photoacoustic

Tomography. In Frontiers in Optics. Optical Society of America, 2010.

[44] Wikipedia. Geophysical migration http://en.wikipedia.org/wiki/geophysicalmigration,

2010.

[45] D. Wu, M. O'Toole, A. Velten, Agrawal A., and R. Raskar. Decomposing global

light transport using time of flight imaging. In Computer Vision and Pattern

Recognition, 2012. CVPR 2012. IEEE Conference on, pages 1-8. Ieee, 2012.

89




