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Abstract
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Hadron Collider (LHC) controls the sub-detector and central data acquisition systems and the high-
level trigger farm of the experiment. It manages around 10000 applications that control custom hard-
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 Abstract–The Run Control System of the Compact Muon 
Solenoid (CMS) experiment at CERN's new Large Hadron 
Collider (LHC) controls the sub-detector and central data 
acquisition systems and the high-level trigger farm of the 
experiment. It manages around 10,000 applications that control 
custom hardware or handle the event building and the high-level 
trigger processing. The CMS Run Control System is a distributed 
Java system running on a set of Apache Tomcat servlet 
containers. Users interact with the system through a web 
browser. The paper presents the architecture of the CMS Run 
Control System and deals with operational aspects during the 
first phase of operation with colliding beams. In particular it 
focuses on performance, stability, integration with the CMS 
Detector Control System, integration with LHC status 
information and tools to guide the shifter.  

I. INTRODUCTION 
HE Compact Muon Solenoid (CMS) experiment [1]-[2] at 
CERN’s new Large Hadron Collider (LHC) is one of two 

large general-purpose detectors aimed at studying a broad 
range of physics at the TeV scale. Following an extensive 
phase of commissioning with cosmic muons, CMS saw its 
first proton-proton collisions in November 2009. Since then, 
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routine operation with beams colliding at a center-of-mass 
energy of 7 TeV has been established. In this paper, we focus 
on the CMS Run Control System, which controls the sub-
detector and central data acquisition (DAQ) [3] systems that 
are responsible for the data transport from the experiment’s 55 
million readout channels all the way to a 6,000 CPU-core 
computing farm running the on-line event selection algorithms 
and on to the storage system. The Run Control system 
provides the hierarchical control structure needed to control 
around 10,000 applications that in turn control electronics or 
handle the event building and processing. The applications 
themselves are developed using the C++ based XDAQ [4] 
data acquisition framework, that provides hardware access, 
powerful data transport protocols and services. Online event 
selection is based on the CMSSW [5] framework, which is 
also used for off-line reconstruction in CMS. 

We first summarize the features and architecture of the 
CMS Run Control framework [6]-[7]. We then discuss the 
control hierarchy used in CMS and the top-level control node, 
the central entry point to CMS data taking operations, with a 
special emphasis on features that enable efficient operation of 
the experiment. In particular, we report on the recently 
achieved integration with the CMS Detector Control 
System (DCS) and with status information from the LHC. 

II. THE RUN CONTROL FRAMEWORK 
The CMS Run Control System is built using web 

technologies. The Run Control framework runs as a web 
application in an Apache Tomcat servlet container. It is 
written in Java and makes use of Java Servlets, Java Server 
Pages, Tag Libraries and Web Services. The user interface 
runs in a web browser using technologies including HTML, 
Cascaded Style Sheets (CSS), Java Script and 
AJAX (Asynchronous Java Script and XML). User code is 
encapsulated in so-called Function Managers (FMs), which 
are dynamically loaded into the web application. A Function 
Manager is a node in the control tree of the Run Control 
system. It controls a set of child resources and summarizes 
their state to the parent resource. Using the classes provided 
by the framework, Function Managers typically define a state 
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V. INTEGRATION WITH THE CMS DETECTOR CONTROL 
SYSTEM AND THE LHC 

During the commissioning of CMS operation with beams in 
the LHC, further requirements emerged. Some of the settings 
in the Detector Control System and Data Acquisition now 
depend on the state of the LHC. This especially concerns the 
domains of high voltages and clock stability. For collision data 
taking, the CMS clock needs to be synchronized to the LHC 
clock, which is guaranteed to be stable only in certain modes 
of operation of the LHC. Depending on the mode of operation 
of the LHC, CMS electronics may need to be re-configured or 
sensitive channels may need to be masked out. For reasons of 
detector safety, high voltages of some of the detectors may 
only be ramped up when the LHC is in a stable mode of 
operation. Criteria are more stringent for detectors close to the 
interaction point.  

Operational experience showed that the best way of 
ensuring that CMS is ready for data taking, is to keep data 
taking runs going at all times, irrespective of the state of the 
LHC. Manually starting new data acquisition runs in order to 
follow changes in detector and/or LHC conditions was found 
to be inefficient and error prone. It was therefore decided to 
make the Run Control System aware of the states of the LHC 
and the Detector Control System and to implement automatic 
actions in response to state changes that would avoid any 
manual operations at critical times. A DCS Function Manager 
was developed to have a communication channel from DCS to 
Run Control. Through the PSX resource proxy and the XDAQ 
PSX service, it subscribes for notifications about DCS and 
LHC status changes. It summarizes status information and 
passes it on to the Level-0 FM. The Level-0 FM passes the 
status information to the concerned sub-systems when a run is 

started or when a run is resumed after a pause. The sub-
detectors use this information in order to adapt their data 
acquisition setting to the LHC and DCS state, for example by 
masking out sensitive channels, by suppressing noisy data 
when high voltage is off or by re-programming thresholds in 
order to avoid high currents when high voltage is off. When 
the Level-0 receives a notification about a status change 
during an ongoing run, it briefly pauses the run and 
immediately resumes it with the new settings. Pausing and 
resuming was chosen over stopping and starting since it is 
faster (currently by a factor of 7) and more reliable as only 
some of the sub-systems need to be involved in the operation.  

Due to the automatic actions a run can now be started with 
all detectors included as soon as the LHC provides a stable 
clock. During periods of LHC clock variations, sensitive 
channels are automatically masked out. High voltages are 
successively ramped up under the control of the DCS system 
when beam conditions allow. The Run Control System 
automatically triggers the necessary configuration changes in 
the sub-detector data acquisition systems. Data taken with all 
high voltages on is automatically marked by setting a flag in 
the trigger’s data record.  

The Level-0 FM also uses the information about the mode 
of operation of the LHC in order to automatically select the 
LHC clock or a local clock as the clock source for CMS. In 
order to protect against data integrity problems, additional 
cross checks remind the operator to reconfigure CMS sub-
detectors whenever a clock source change or clock instability 
make it necessary.  

VI. OBSERVATIONS 
The CMS Run Control System is now routinely operated by 

operators recruited from the entire CMS collaboration. 
Average CMS data taking efficiency (integrated luminosity 

                  
 
Fig. 3. Time needed by the CMS sub-systems for the actions defined by the Level-1 state machine. The solid bars indicate average time. Error bars are RMS 
errors separately calculated for larger and smaller than average configuration times. Data were gathered over two weeks of operation. Gaps of arbitrary 
duration have been added for better readability. 



 

recorded by CMS with respect to integrated luminosity 
delivered by the LHC) has been at 95 % for all 2010 runs up 
to the time of writing (6 weeks in total). Streamlining of the 
procedure needed to start a run with colliding beams certainly 
has been an important ingredient in achieving this high 
efficiency. The tools built into the top-level control node 
aimed at optimizing operator efficiency and at minimizing 
time needed for error recovery also have been instrumental to 
achieving smooth operation.  

Building the Run-Control System based on web 
technologies has the advantage that experts may easily 
connect to the system from anywhere in order to watch 
operations or to aid the operator. The stability of the server 
side (Apache Tomcat and Run Control web application) has 
been excellent with servers running for many weeks without a 
restart. Instabilities observed in the past were always traced 
back to faulty user code. Stability of the GUIs has been more 
of a concern since it depends on a third party tool - the web 
browser. Depending on the exact version of the browser used, 
crashes may occur more or less frequently. Fortunately, this is 
not a major problem since the Run Control System keeps its 
state independent of the GUI and the GUI may simply be 
reconnected.  

In order to develop basic Function Managers, developers 
only need to know Java and need to learn how to use the 
classes provided by the Run Control framework. The 
framework provides a default web-based GUI through which 
the Function Manager’s state machine may be controlled and 
handles all of the web technologies listed earlier. Developing 
more sophisticated user interfaces such as the top-level control 
node can however be cumbersome, as almost the full list of 
technologies needs to be mastered. 

VII. SUMMARY AND OUTLOOK 
The CMS Run Control System is based on Java and web 

technologies. The entire system and especially the top-level 
control node have been optimized for efficient operation. The 
top-level control node allows the operator to quickly recover 
from problems by commanding individual sub-systems. Built-
in cross-checks ensure consistency of the over-all 
configuration and warn the operator about necessary actions. 
The procedure to start collision data taking has been 
streamlined by adding automatic actions based on the state of 
the Detector Control System and the LHC. Operators recruited 
from the entire CMS collaboration successfully use the system 
to control data taking operations of the CMS experiment 
which are currently proceeding with a data-taking efficiency 
of above 95 %.  

Future work will focus on enhanced fault tolerance, 
automatic recovery procedures and further automation of 
operator tasks. 
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