
Available on CMS information server CMS CR -2010/090

The Compact Muon Solenoid Experiment

Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland

Conference Report
22 June 2010

First operational experience with the CMS Run
Control System

Hannes Sakulin for the CMS Collaboration

Abstract

The Run Control System of the Compact Muon Solenoid (CMS) experiment at CERN’s new Large
Hadron Collider (LHC) controls the sub-detector and central data acquisition systems and the high-
level trigger farm of the experiment. It manages around 10000 applications that control custom hard-
ware or handle the event building and the high-level trigger processing. The CMS Run Control System
is a distributed Java system running on a set of Apache Tomcat servlet containers. Users interact with
the system through a web browser. The paper presents the architecture of the CMS Run Control Sys-
tem and deals with operational aspects during the first phase of operation with colliding beams. In
particular it focuses on performance, stability, integration with the CMS Detector Control System,
integration with LHC status information and tools to guide the shifter.

Presented at RT2010: 17th IEEE NPSS Real Time Conference

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@MIT

https://core.ac.uk/display/10128007?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

First Operational Experience with the CMS Run
Control System

Gerry Bauer, Barbara Beccati, Ulf Behrens, Kurt Biery, James Branson, Sebastian Bukowiec, Member, IEEE, Eric
Cano, Harry Cheung, Marek Ciganek, Sergio Cittolin, Jose Antonio Coarasa Perez, Christian Deldicque, Samim
Erhan, Dominique Gigi, Frank Glege, Robert Gomez-Reino, Michele Gulmini, Derek Hatton, Yi Ling Hwong,

Member, IEEE, Constantin Loizides, Frank Ma, Lorenzo Masetti, Frans Meijers, Emilio Meschi, Andreas Meyer,
Remigius K. Mommsen, Roland Moser, Vivian O’Dell, Alexander Oh, Luciano Orsini, Christoph Paus, Andrea

Petrucci, Marco Pieri, Attila Racz, Olivier Raginel, Hannes Sakulin, Member, IEEE, Matteo Sani, Philipp
Schieferdecker, Christoph Schwick, Dennis Shpakov, Michal Simon, Member, IEEE, Konstanty Sumorok and

Andre Sungho Yoon

 Abstract–The Run Control System of the Compact Muon
Solenoid (CMS) experiment at CERN's new Large Hadron
Collider (LHC) controls the sub-detector and central data
acquisition systems and the high-level trigger farm of the
experiment. It manages around 10,000 applications that control
custom hardware or handle the event building and the high-level
trigger processing. The CMS Run Control System is a distributed
Java system running on a set of Apache Tomcat servlet
containers. Users interact with the system through a web
browser. The paper presents the architecture of the CMS Run
Control System and deals with operational aspects during the
first phase of operation with colliding beams. In particular it
focuses on performance, stability, integration with the CMS
Detector Control System, integration with LHC status
information and tools to guide the shifter.

I. INTRODUCTION
HE Compact Muon Solenoid (CMS) experiment [1]-[2] at
CERN’s new Large Hadron Collider (LHC) is one of two

large general-purpose detectors aimed at studying a broad
range of physics at the TeV scale. Following an extensive
phase of commissioning with cosmic muons, CMS saw its
first proton-proton collisions in November 2009. Since then,

Manuscript received June 2, 2010. This work was supported in part by the

DOE and NSF (USA) and the Marie Curie Program.
U. Behrens, D. Hatton and A. Meyer are with DESY, Hamburg, Germany.
B. Beccati, S. Bukowiec, E. Cano, M. Ciganek, S. Cittolin, J. A. Coarasa

Perez, C. Deldicque, D. Gigi, F. Glege, R. Gomez-Reino, Y. L. Hwong, L.
Masetti, F. Meijers, E. Meschi, R. Moser, L. Orsini, A. Racz, H. Sakulin
(corresponding author. phone: +41 22 767 3506, fax: +41 22 767 8940, e-
mail: Hannes.Sakulin@cern.ch), C. Schwick, and M. Simon are with CERN,
Geneva, Switzerland. M. Gulmini, A. Oh, and P. Schieferdecker were with
CERN, Geneva, Switzerland. M. Gulmini is now with INFN - Laboratori
Nazionali di Legnaro, Legnaro, Italy. A. Oh is now with University of
Manchester, Manchester, UK. P. Schieferdecker is now with Universität
Karlsruhe, Karlsruhe, Germany.

J. Branson, M. Pieri and M. Sani are with University of California San
Diego, La Jolla, California, USA. A. Petrucci was with University of
California San Diego, La Jolla, California, USA. He is now with CERN,
Geneva, Switzerland.

S. Erhan is with University of California, Los Angeles, California, USA
and CERN, Geneva, Switzerland.

 K. Biery, H. Cheung, R. K. Mommsen, V. O’Dell and D. Shpakov are
with FNAL, Batavia, Illinois, USA.

 G. Bauer, C. Loizides, F. Ma, C. Paus, O. Raginel, K. Sumorok and A. S.
Yoon are with Massachusetts Institute of Technology, Cambridge,
Massachusetts, USA.

routine operation with beams colliding at a center-of-mass
energy of 7 TeV has been established. In this paper, we focus
on the CMS Run Control System, which controls the sub-
detector and central data acquisition (DAQ) [3] systems that
are responsible for the data transport from the experiment’s 55
million readout channels all the way to a 6,000 CPU-core
computing farm running the on-line event selection algorithms
and on to the storage system. The Run Control system
provides the hierarchical control structure needed to control
around 10,000 applications that in turn control electronics or
handle the event building and processing. The applications
themselves are developed using the C++ based XDAQ [4]
data acquisition framework, that provides hardware access,
powerful data transport protocols and services. Online event
selection is based on the CMSSW [5] framework, which is
also used for off-line reconstruction in CMS.

We first summarize the features and architecture of the
CMS Run Control framework [6]-[7]. We then discuss the
control hierarchy used in CMS and the top-level control node,
the central entry point to CMS data taking operations, with a
special emphasis on features that enable efficient operation of
the experiment. In particular, we report on the recently
achieved integration with the CMS Detector Control
System (DCS) and with status information from the LHC.

II. THE RUN CONTROL FRAMEWORK
The CMS Run Control System is built using web

technologies. The Run Control framework runs as a web
application in an Apache Tomcat servlet container. It is
written in Java and makes use of Java Servlets, Java Server
Pages, Tag Libraries and Web Services. The user interface
runs in a web browser using technologies including HTML,
Cascaded Style Sheets (CSS), Java Script and
AJAX (Asynchronous Java Script and XML). User code is
encapsulated in so-called Function Managers (FMs), which
are dynamically loaded into the web application. A Function
Manager is a node in the control tree of the Run Control
system. It controls a set of child resources and summarizes
their state to the parent resource. Using the classes provided
by the framework, Function Managers typically define a state

T

machine and a set of parameters that can b
parent (Fig. 1). User code mainly consists o
that handle state transitions, user input an
notifications from the child resources.
provides proxies to communicate with differe
resources. Child resources are usually
Managers themselves, or XDAQ application
managers are accessed through a web service
use of the Web Service Definition Langua
Simple Object Access Protocol (SOAP) and
library. Communication with XDAQ applicat
through the SOAP interface provided by XD
Function managers may also control or read t
machines and data points in the CMS Detecto
by using the PVSS1 SOAP eXchange (P
XDAQ.

Apart from the function manager infrast
Control System offers a number of services:

The Resource Service [8] handles the conf
the Run Control system and the XDAQ ap
system. Configurations are stored in an Ora
the Run Control System, the configuration
Function Managers to be loaded, their par
control structure in which they are arrang
applications, the configuration determines
loaded, applications to be instantiated, their
their connectivity to other applications. At th
taking session, function managers are dynam
configured according to the configuration
managers then start up XDAQ applications
Control service (itself a XDAQ application)
on all the nodes in the cluster. Through this
parameters and structure of the controlled D

1 PVSS (Prozessvisualisierungs und Steuerungssystem

Fig. 1. Function manager framework and services prov

e set/read by the
of event handlers
nd asynchronous
The framework

ent types of child
either Function

ns. Child function
interface making

age (WSDL), the
the Apache Axis

tions is performed
DAQ applications.

the status of state
or Control System
PSX) service of

tructure, the Run

figuration of both
pplications in the
acle database. For
n determines the
rameters and the
ged. For XDAQ

libraries to be
r parameters and
he start of a data-

mically loaded and
n. The function
by using the Job

) that is available
s mechanism, the

DAQ systems (i.e.

m), www.etm.at

which applications run on which ho
by switching to a different configura

Through the DAQ Structure Se
may query information about the ph
cabling, networks, etc.) of the DAQ
detector front-end drivers to be rea
Service determines the active s
resources.

Through the Run Info service, run
to a database.

The Log Collector service allo
messages from the Function Man
messages from the XDAQ applicati
then written to file, to database or
subscriber infrastructure.

The Run Control framework al
XDAQ services such as the XDAQ
Service (XMAS).

III. THE CMS RUN CONT

As illustrated in Fig. 2, the entir
Run Control System is controlled fr
Manger (Level-0 FM). During glo
node is controlled by the operator t
the next level, the Level-1 Functi
entry point to each of the sub-det
Trigger, and to the central DAQ
Level-1 Function Managers implem
and export a standard set of pa
Additional states exist for the T
systems. Further layers of Function
specific. Each of the sub-systems
Tomcat server running an instan

vided by the CMS Run Control System.

sts) may easily be changed
ation.
ervice, function managers
hysical structure (modules,
Q system. Given the set of
ad out, the DAQ Structure
sub-set of global DAQ

n conditions can be logged

ows collecting log4j log
nagers and log4cplus log
ions. The log messages are
are available in a publish-

lso provides interfaces to
 Monitoring and Alarming

TROL STRUCTURE
e control tree of the CMS
rom the top-level Function
obal data-taking, only this
through a web browser. At
ion Managers provide the
tectors, to the First-Level
system. The sub-detector

ment a common state model
arameters for monitoring.
Trigger and central DAQ
n Managers are sub-system

has a dedicated Apache
nce of the Run Control

framework. For the central DAQ system t
largest number of applications, five Apache
are used in order to optimize performance.

The state model defines the following m
starting a run: During Creation, the L
Managers are loaded into the Run Control
instantiated. During Initialization, all fu
Function Managers are created and all XDAQ
started. During Pre-Configuration the clo
periodic timing signals are set up. During C
sub-systems are configured. During Start
detectors and central DAQ and then the Fir
are started. At the time of writing, the averag
start of CMS (initialization, pre-configuratio
and start) is just over 4 minutes (Fig. 3). H
handling of large numbers of application
system), configuration times are currently
systems that configure a large number of fr
the Silicon-Strip Tracker. Pausing and re
operations involving only some of the su
starting and stopping are more complex and
operations involving all of the sub-systems.

Sub-system configurations are handled b
sub-system groups. Each sub-system has a s
Service (RS) database, which is filled by the
RS Manager tool or dedicated high-level t
DAQ Configurator [8] used for the centra
Through a mechanism called the Global Co
sub-systems may register one of their con
used for Global runs.

In order to operate a sub-detector or a
detectors independently, so-called Mini-DAQ
used. These setups have their own control tre
with a separate top-level Function Manage

Fig. 2. CMS Run Control structure. The Level-0 Func
top-level control node. It provides the interface to the o
Function Managers are the entry points to the CMS
(Trigger), Central Data Acquisition System (DAQ) and
Drift Tubes (DT), Resistive Plate Chambe
Tracker (Tracker), Electromagnetic Calorimeter (ECA
shown).

that controls the
e Tomcat servers

main steps when
Level-1 Function
l application and
urther levels of
Q applications are
ock source and
Configuration, all
t, first the sub-
rst-Level Trigger
ge time for a cold
on, configuration

Having optimized
ns (central DAQ
y dominated by
ront-ends such as
esuming are fast
ub-systems while
d time-consuming

by the respective
separate Resource
e general-purpose
tools such as the
al DAQ system.

onfiguration Map,
figurations to be

a group of sub-
Q setups may be
ee in Run Control
er and a separate

Global Configuration Map. Triggers
a Local Trigger Controller. Cen
provided by dedicated small-scale
events in the same way as the glob
much lower rate. These setups have
the commissioning phase of CMS. T
in order to test new features or to de

IV. THE TOP-LEVEL CO

The Level-0 FM is the central
taking operations. It defines a g
includes all the states of the sub-de
DAQ state machines. In the simple
just step the global state machine thr
the run start sequence in order to
detectors. The Level-0 FM takes car
sub-system configurations, bookin
booking a run number and storing r
the run to the Run Info database.

Through the Level-0 FM, t
parameterize the configuration in
each sub-system, a Run Key may
defined set of keys indicating for e
suppression. Furthermore the clock
keys for the First-Level and High-L
be selected. Entire sub-systems,
individual Front-End-Drivers of a
removed from the global run in case
or problems. In case of the cen
corresponding to 1/8 of the system’
out in order to cope with computer o

Through the Level-0 FM, su
controlled individually. This featu
shorten run startup time, as it allow
sub-system errors at any stage of
parameters and masks set in the L
into account when controlling sub-
therefore possible to quickly mask
the readout without going through a

 However, many dependencies
account when operating sub-sy
configuration of one sub-system
configuration of another one becom
some parameters like the First L
included sub-detectors imply that m
to be reconfigured. In order to inc
cross-checks have been added to t
track of all sub-system operations a
indicates to the operator what sub
configured or re-initialized. Thanks
non-expert operators are able to rec
parameterize an already configure
necessary steps.

ction Manager is the
operator. The Level-1
 First Level Trigger

d to the sub-detectors:
ers (RPC), Si-Strip
AL) and others (not

s are typically provided by
ntral Data Acquisition is

DAQ setups, which build
bal DAQ system, but at a

e been indispensible during
They are now mostly used
bug problems.

ONTROL NODE
entry point to CMS data-

global state machine that
etector, Trigger and central
est case, the operator will
rough the various stages of

start a run with all sub-
re of picking up the correct
ng a data taking session,
relevant information about

the operator may also
many different ways. For

y be selected from a pre-
example the level of zero-
k source and configuration
Level Trigger Systems may

sub-system partitions or
sub-system may easily be
e of needed local activities

ntral DAQ system, slices
s capacity may be masked

or network problems.
ub-systems may also be
ure helped to significantly
ws for rapid recovery from
the start-up sequence. All

Level-0 FM are also taken
-systems individually. It is
or unmask components of
full reconfiguration.
need to be taken into

ystems individually. Re-
m may imply that re-
mes necessary. Changes of
Level-Trigger key or the
multiple sub-systems need
crease operator efficiency,
the Level-0 FM, that keep
and parameter changes and
b-systems need to be re-
s to the cross-checks even
cover from errors or to re-
ed system with the least

V. INTEGRATION WITH THE CMS DETECTOR CONTROL
SYSTEM AND THE LHC

During the commissioning of CMS operation with beams in
the LHC, further requirements emerged. Some of the settings
in the Detector Control System and Data Acquisition now
depend on the state of the LHC. This especially concerns the
domains of high voltages and clock stability. For collision data
taking, the CMS clock needs to be synchronized to the LHC
clock, which is guaranteed to be stable only in certain modes
of operation of the LHC. Depending on the mode of operation
of the LHC, CMS electronics may need to be re-configured or
sensitive channels may need to be masked out. For reasons of
detector safety, high voltages of some of the detectors may
only be ramped up when the LHC is in a stable mode of
operation. Criteria are more stringent for detectors close to the
interaction point.

Operational experience showed that the best way of
ensuring that CMS is ready for data taking, is to keep data
taking runs going at all times, irrespective of the state of the
LHC. Manually starting new data acquisition runs in order to
follow changes in detector and/or LHC conditions was found
to be inefficient and error prone. It was therefore decided to
make the Run Control System aware of the states of the LHC
and the Detector Control System and to implement automatic
actions in response to state changes that would avoid any
manual operations at critical times. A DCS Function Manager
was developed to have a communication channel from DCS to
Run Control. Through the PSX resource proxy and the XDAQ
PSX service, it subscribes for notifications about DCS and
LHC status changes. It summarizes status information and
passes it on to the Level-0 FM. The Level-0 FM passes the
status information to the concerned sub-systems when a run is

started or when a run is resumed after a pause. The sub-
detectors use this information in order to adapt their data
acquisition setting to the LHC and DCS state, for example by
masking out sensitive channels, by suppressing noisy data
when high voltage is off or by re-programming thresholds in
order to avoid high currents when high voltage is off. When
the Level-0 receives a notification about a status change
during an ongoing run, it briefly pauses the run and
immediately resumes it with the new settings. Pausing and
resuming was chosen over stopping and starting since it is
faster (currently by a factor of 7) and more reliable as only
some of the sub-systems need to be involved in the operation.

Due to the automatic actions a run can now be started with
all detectors included as soon as the LHC provides a stable
clock. During periods of LHC clock variations, sensitive
channels are automatically masked out. High voltages are
successively ramped up under the control of the DCS system
when beam conditions allow. The Run Control System
automatically triggers the necessary configuration changes in
the sub-detector data acquisition systems. Data taken with all
high voltages on is automatically marked by setting a flag in
the trigger’s data record.

The Level-0 FM also uses the information about the mode
of operation of the LHC in order to automatically select the
LHC clock or a local clock as the clock source for CMS. In
order to protect against data integrity problems, additional
cross checks remind the operator to reconfigure CMS sub-
detectors whenever a clock source change or clock instability
make it necessary.

VI. OBSERVATIONS
The CMS Run Control System is now routinely operated by

operators recruited from the entire CMS collaboration.
Average CMS data taking efficiency (integrated luminosity

Fig. 3. Time needed by the CMS sub-systems for the actions defined by the Level-1 state machine. The solid bars indicate average time. Error bars are RMS
errors separately calculated for larger and smaller than average configuration times. Data were gathered over two weeks of operation. Gaps of arbitrary
duration have been added for better readability.

recorded by CMS with respect to integrated luminosity
delivered by the LHC) has been at 95 % for all 2010 runs up
to the time of writing (6 weeks in total). Streamlining of the
procedure needed to start a run with colliding beams certainly
has been an important ingredient in achieving this high
efficiency. The tools built into the top-level control node
aimed at optimizing operator efficiency and at minimizing
time needed for error recovery also have been instrumental to
achieving smooth operation.

Building the Run-Control System based on web
technologies has the advantage that experts may easily
connect to the system from anywhere in order to watch
operations or to aid the operator. The stability of the server
side (Apache Tomcat and Run Control web application) has
been excellent with servers running for many weeks without a
restart. Instabilities observed in the past were always traced
back to faulty user code. Stability of the GUIs has been more
of a concern since it depends on a third party tool - the web
browser. Depending on the exact version of the browser used,
crashes may occur more or less frequently. Fortunately, this is
not a major problem since the Run Control System keeps its
state independent of the GUI and the GUI may simply be
reconnected.

In order to develop basic Function Managers, developers
only need to know Java and need to learn how to use the
classes provided by the Run Control framework. The
framework provides a default web-based GUI through which
the Function Manager’s state machine may be controlled and
handles all of the web technologies listed earlier. Developing
more sophisticated user interfaces such as the top-level control
node can however be cumbersome, as almost the full list of
technologies needs to be mastered.

VII. SUMMARY AND OUTLOOK
The CMS Run Control System is based on Java and web

technologies. The entire system and especially the top-level
control node have been optimized for efficient operation. The
top-level control node allows the operator to quickly recover
from problems by commanding individual sub-systems. Built-
in cross-checks ensure consistency of the over-all
configuration and warn the operator about necessary actions.
The procedure to start collision data taking has been
streamlined by adding automatic actions based on the state of
the Detector Control System and the LHC. Operators recruited
from the entire CMS collaboration successfully use the system
to control data taking operations of the CMS experiment
which are currently proceeding with a data-taking efficiency
of above 95 %.

Future work will focus on enhanced fault tolerance,
automatic recovery procedures and further automation of
operator tasks.

REFERENCES
[1] The CMS Collaboration, CMS Technical Proposal, CERN LHCC 94-38,

1994.
[2] The CMS Collaboration (R. Adolphi et al.), “The CMS Experiment at

CERN LHC”, JINST 3 S08004 p. 361, 2008
[3] The CMS Collaboration, CMS, The TriDAS Project, Technical Design

Report, Volume 2: Data Acquisition and High-Level Trigger,
CERN/LHCC 2002-26, 2002.

[4] G. Bauer et al., “The CMS data acquisition system software”, J. Phys.:
Conf. Ser. 219 022011, 2010

[5] C. D. Jones et al., “The new CMS data model and framework”,
CHEP’06 Conference Proceedings, 2007

[6] M. Bellato et al., “Run control and monitor system for the CMS
experiment,” presented at Computing in High Energy and Nuclear
Physics, La Jolla CA, March 24-28, 2003

[7] G.Bauer et al., “The run control and monitoring system of the CMS
experiment,” PoS(ACAT) 026, 2007

[8] G. Bauer et al., “Dynamic configuration of the CMS data acquisition
system”, J. Phys.: Conf. Ser. 219 022003, 2010

