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Abstract

Background: Mice with a deficiency in the HDL receptor SR-BI and low expression of a modified apolipoprotein E gene (SR-
BI KO/ApoeR61h/h) called ‘HypoE’ when fed an atherogenic, ‘Paigen’ diet develop occlusive, atherosclerotic coronary arterial
disease (CHD), myocardial infarctions (MI), and heart dysfunction and die prematurely (50% mortality ,40 days after
initiation of this diet). Because few murine models share with HypoE mice these cardinal, human-like, features of CHD,
HypoE mice represent a novel, small animal, diet-inducible and genetically tractable model for CHD. To better describe the
properties of this model, we have explored the effects of varying the composition and timing of administration of
atherogenic diets, as well as social isolation vs. group housing, on these animals.

Methodology/Principal Findings: HypoE mice were maintained on a standard lab chow diet (control) until two months of
age. Subsequently they received one of three atherogenic diets (Paigen, Paigen without cholate, Western) or control diet for
varying times and were housed in groups or singly, and we determined the plasma cholesterol levels, extent of
cardiomegaly and/or survival. The rate of disease progression could be reduced by lowering the severity of the atherogenic
diet and accelerated by social isolation. Disease could be induced by Paigen diets either containing or free of cholate. We
also established conditions under which CHD could be initiated by an atherogenic diet and then subsequently, by replacing
this diet with standard lab chow, hypercholesterolemia could be reduced and progression to early death prevented.

Conclusions/Significance: HypoE mice provide a powerful, surgery-free, diet-‘titratable’ small animal model that can be
used to study the onset of recovery from occlusive, atherosclerotic CHD and heart failure due to MI. HypoE mice can be
used for the analysis of the effects of environment (diet, social isolation) on a variety of features of cardiovascular disease.
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Introduction

Mice with homozygous null mutations in the gene encoding the

HDL receptor (scavenger receptor, class B, type I (SR-BI), SR-BI

KO) exhibit hypercholesterolemia with abnormally large, unes-

terified cholesterol-rich HDL particles [1,2,3]. When SR-BI KO

mice are crossed with mice having homozygous null mutations in

the apolipoprotein E (apoE) gene, the progeny SR-BI/apoE

double knockout (dKO) mice exhibit severe hypercholesterolemia,

dramatically enlarged and abnormal HDL particles and numerous

cardinal features of human coronary heart disease (CHD) [4,5].

SR-BI/apoE double knockout mice (dKO) fed a standard lab

chow diet spontaneously develop occlusive coronary atherosclero-

sis, develop myocardial infarctions (MI), severe heart dysfunction

and die young (mean age of 6 weeks). A variant of the dKO, the

‘HypoE’ mouse (SR-BI KO/ApoeR61h/h), is a model for diet-
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induced coronary heart disease [6]. This mouse has homozygous

null mutations in the SR-BI gene and a severe, but not absolute,

deficiency of apoE due to a modification of the apoE gene

(ApoeR61h/h). ApoeR61h/h mice developed by Raffai and

colleagues [7,8] express a mutant form of murine apoE,

Thr61RArg61, in place of wild-type (WT) apoE at substantially

lower plasma concentrations (2% to 5%) than apoE in control WT

mice [6]. Raffai and colleagues have shown that ApoeR61h/h mice

(wild-type SR-BI alleles) can develop hypercholesterolemia and

aortic atherosclerosis when fed an atherogenic diet and that

replacement of the diet with lab chow reduces the hypercholes-

terolemia and results in regression of the atherosclerosis [7]. We

have shown that feeding HypoE mice a relatively harsh,

atherogenic diet containing high fat, cholesterol and cholate

(Paigen diet: 15.8% fat, 1.25% cholesterol, 0.5% sodium cholate)

causes development of extensive atherosclerotic lesions in their

aortic sinus and occlusive coronary arterial atherosclerosis, and the

mice exhibit profound hypertrophy and cardiac dysfunction

secondary to multiple MIs, and die prematurely (,40 days after

initiation of Paigen-diet feeding) [6]. When fed a normal lab chow

diet for 3 months, these mice do not develop occlusive

atherosclerotic CHD. The HypoE mouse model of CHD has

the potential of providing insight into mechanisms of CHD

pathophysiology, markers of disease and methods for disease

prevention and treatment. If the HypoE mouse is to be a useful

tool for the research community, it is important that relevant

characteristics of the mouse, e.g., responses to varying diets and

husbandry conditions, be well-defined.

Here we have further characterized the HypoE model by

exploring the effects of varying the composition and timing of

administration of atherogenic diets, as well as social isolation vs.

group housing, on the plasma cholesterol levels, cardiomegaly

and/or survival. We found that the rate of disease progression

could be adjusted by modifying the severity of the atherogenic diet

and could be accelerated by social isolation. We also established

conditions under which CHD could be initiated by feeding

atherogenic diet and then reduction in hypercholesterolemia

achieved and progression to early death prevented by replacing

this diet with standard lab chow. This protocol may generate a

powerful murine model for the study of heart remodeling and

heart failure due to MI. Thus, HypoE mice appear to be an

attractive model for studying the effects of environment (diet,

social isolation) on a variety of features of cardiovascular disease.

Results

We examined the effects of atherogenic diets with differing

severities on the plasma lipids, heart-to-body weight ratios and

survival of HypoE mice. The animals were weaned onto a normal

chow diet (4.5% fat, 0.022% cholesterol) and at two months of age

we began continuous ad lib feeding for the indicated times with

one of the four following diets: normal chow, Western diet (21.2%

fat, 0.2% cholesterol), Paigen diet without cholate (Paigen NC,

15.8% fat, 1.25% cholesterol), or a standard Paigen diet (15.8%

fat, 1.25% cholesterol, 0.5% sodium cholate). Except where

indicated otherwise, animals were housed in groups of 4–5 per

cage at the beginning of the ad lib feeding of the indicated diets. As

indicated below, mortality reduced the population density in some

cages.

Effects of Atherogenic Diets on Plasma Lipids and
Lipoproteins

After administration of one of the four experimental diets for

one month, we collected plasma samples and determined both

plasma total cholesterol (TC) and unesterified cholesterol (UC)

levels (Table 1) and, for the atherogenic diets, lipoprotein particle

size distributions (lipoprotein cholesterol profiles determined by

FPLC size exclusion chromatography) (Figure 1). Table 1 shows

that the TC and UC levels in HypoE mice fed a normal chow diet

were significantly higher than those in wild-type mice. Among

HypoE mice, the different atherogenic diets had significantly

different effects on plasma cholesterol. The differences in the

plasma levels of TC, UC or the UC/TC ratios for normal chow

and Western diet fed HypoE mice did not reach statistical

significance, presumably due in part to large animal-to-animal

variations on the Western diet and the multiple hypothesis testing

required with four different diets. In contrast, plasma levels of TC

and UC were significantly lower on the chow diet than on Paigen

NC and Paigen diets. Paigen diet feeding resulted in the highest

levels of plasma TC and UC. There were statistically significant

differences in these values when the three atherogenic diets were

compared as a group (Kruskal-Wallis testing). A statistically

significant, higher UC/TC ratio was found in Paigen NC or

Paigen diet-fed HypoE mice compared to that in normal chow fed

animals, although among the three atherogenic diets there were no

significant differences in the UC/TC ratios.

Figure 1A shows plasma total cholesterol lipoprotein profiles

averaged from multiple HypoE animals fed the Paigen (n = 3),

Paigen NC (n = 5) and Western (n = 3) diets. The indicated size

ranges for VLDL, ILD/LDL and HDL are for normal plasma

lipoproteins. The most striking qualitative patterns seen in the

profiles were: 1) in the non-HDL regions of the profiles (fraction

#3–22), the relative levels of cholesterol were Paigen.Paigen

NC.Western; 2) the VLDL-size peak was much larger for the

Paigen diet than the other two diets, and 3) there was a small

cholesterol peak in the HDL-size range for Western diet fed mice

(see insert, fraction #23–36) not seen in the Paigen NC and Paigen

diet fed mice. Figure 1B shows a quantitative analysis of the

average TC contents in the standard VLDL- (fractions 3–9), IDL/

LDL- (fractions 12–20), or HDL- (fractions 23–36) size ranges.

The overall quantitative pattern is consistent with the qualitative

analysis; however all of the differences noted did not reach

statistical significance. There were statistically significant differ-

ences in TC levels in the VLDL-, and IDL/LDL-size ranges

between Western and Paigen diets. In contrast, pairwise compar-

isons of TC levels in the HDL-size range did not show significant

differences. Nevertheless, the differences in plasma cholesterol

levels and lipoprotein size distributions raised the possibility that

the different diets might have different influences on heart disease

and survival.

Effect of Atherogenic Diets on Survival and Cardiac Size
Figure 2A shows dramatic differences in the Kaplan-Meier

survival curves for HypoE mice (4–5 animals/cage) fed with the

different atherogenic diets, beginning at 2 months of age, for up to

100 days. The median survival times after initiating Pagien NC

(dashed gray) and Paigen (solid gray) diets were 60 and 34 days,

respectively, with no animals surviving for 100 days. In contrast,

no animals fed the Western diet died within 100 days after

initiating feeding of the atherogenic diets. As previously described

for HypoE mice fed a Paigen diet [6], some of the Paigen NC diet

fed HypoE mice exhibited gross signs of abnormal heart function

prior to death (huddling, shivering/shaking, ruffled fur, and

reduced activity).

Because cardiomegaly (about twice the normal heart-to-body

weight ratio) is associated with abnormal heart function and MI/

premature death in Paigen-diet fed HypoE mice [6], we measured

the heart-to-body weight ratios at different times after initiation of

Environmental Modulation of CHD in HypoE Mice
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the atherogenic diets (Figure 2B). The heart-to-body weight ratio

of HypoE mice fed the Paigen diet for one month was twice that of

the chow-fed (three months) controls (10.262.4 (n = 14) vs

5.060.5 (n = 8) mg/g). Western diet feeding for one or three

months did not significantly change the heart-to-body weight ratio

relative to that for chow-diet fed mice (1 month: 5.561.2 mg/g

(n = 5); 3 months: 5.160.6 mg/g (n = 4)), suggesting that hearts of

the Western diet-fed mice, which exhibited no premature

mortality, were not dramatically altered. As was the case for

mortality (Figure 2A), it seems possible that cardiomegaly in

Paigen NC diet-fed HypoE developed more gradually than in

Paigen diet-fed animals. After one month of Paigen NC diet

feeding, the observed mean heart-to-body weight ratio,

7.862.3 mg/g (n = 6), was intermediate between the essentially

normal values for either the chow fed controls (3 months) or

Western diet-fed mice and the Paigen diet-fed mice (Figure 2B);

however there were no statistically significant differences for these

comparisons. After two months of Paigen NC diet feeding, by

which time half of the mice had died, the heart-to-body weight

ratio (10.062.7 mg/g (n = 4), gray bar) was significantly higher

Figure 1. Effects of atherogenic diets on lipoprotein cholesterol profiles of HypoE mice. HypoE mice housed in groups (including one or
more SRBI+/2ApoeR61h/h littermates per group, 4–5/cage) were fed Western (open/white symbols, n = 5), Paigen NC (gray symbols, n = 5) or Paigen
(black symbols, n = 3) diets for one month starting at two months of age and then plasma was harvested and subjected to FPLC size fractionation.
The data shown include only the HypoE mice. A. Averaged plasma lipoprotein total cholesterol (TC) profiles (mg/dL plasma). Brackets indicate the
approximate elution positions of VLDL, intermediate-density lipoproteins (IDL)/LDL, and HDL. (Inset) Expanded scale for the IDL/LDL and HDL
regions of the profiles. B. For each profile from individual mice, total cholesterol levels in the indicated pooled fractions corresponding to VLDL-, IDL/
LDL- or HDL-size particles were summed and averages were calculated. Data are represented as mean 6 SD. Statistically significant differences were
determined by Kruskal-Wallis tests followed by the Dunn’s multiple comparison post-test. *p,0.05.
doi:10.1371/journal.pone.0047965.g001
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than those of the chow-fed controls and virtually identical to that

of one month (approximate time of 50% survival, gray bar)

Paigen-diet fed mice. Thus, the extents of cardiomegaly and the

50% survival times for the different diets appear to correlate and

likely reflect different rates of progression of heart disease due to

differences in the differing stringencies of the atherogenic diets. As

a consequence, varying the atherogenic potency of the diet permits

experimental control of the rate of progression of disease in HypoE

mice.

Effect of Social Isolation on the Survival of HypoE Mice
Fed Atherogenic Diets

Social isolation increases CHD mortality and morbidity in the

general human population and can influence disease in animals as

well [9–15]. For example, atherosclerosis is higher in singly housed

female monkeys than their group housed counterparts [16–18]. In

our ongoing efforts to assess the value of HypoE mice as a model

system for human disease, we compared the effects of social

isolation (1 animal/cage) with those of group housing on their

survival when fed atherogenic diets.

As in the experiments described above, HypoE mice were

weaned onto a normal chow diet until two months of age. At two

months of age the diets of the mice were switched from chow to an

atherogenic diet (Paigen or Paigen NC) and they were placed in

cages at population densities of either 1, 2–3, or 4–5 mice per cage

(all mice in any one cage were either male or female) with a

uniform HypoE genotype. Figure 3A shows Kaplan-Meier survival

curves for Paigen diet fed animals. There was no statistically

significant difference in the median survival times for animals

housed at densities of 4–5 or 2–3 per cage (26 days (n = 32

individuals) vs 22 days (n = 22), respectively). However, there was a

strikingly lower median survival time (19.5 days, n = 14) for the

singly housed animals compared to those housed at 4–5/cage

(p = 0.001). Population density clearly influenced survival kinetics

of HypoE mouse fed a Paigen diet.

A potentially confounding feature of the experiment in

Figure 3A was that the population density in the group housed

(uniform genotype) cages went down as the animals died. We

therefore examined the effects of insuring that there was at least

one companion mouse present at all times during an experiment

for all group-housed HypoE mice by including in each group-

housed cage at least 1 littermate whose genotype was SR-BI+/

2ApoeR61h/h (mixed genotypes). As expected, none of these

atherogenic diet-fed companion animals (SR-BI+/2ApoeR61h/h)

died during the experiments reported here. Figure 3B compares

the survival curves for uniform genotype group (4–5/cage, light

gray line) and singly (1/cage, black line) housed mice (same data as

in Figure 3A) with that of mixed genotype group housed mice (4–

5/cage, dark gray line). Median-survival time for the HypoE mice

in the mixed genotype group (27.0 days, n = 21) was not

significantly longer than for the uniform genotype group (26.0

days, p = 0.053), but was significantly longer than for the singly

housed animals (p,0.001), indicating that there was no clear

advantage to using the mixed genotype housing protocol with

Paigen diet feeding. In the experiments described below, the group

housed animals included either uniform or mixed genotypes, as

indicated in the Figure legends. For those cases in which mixed

genotype, group housing was used, results are reported only for the

HypoE mice (not the companion, SR-BI+/2ApoeR61h/h mice).

Figure 4 compares the population density effect on HypoE

survival for mice fed the Paigen diet (solid lines) with that for mice

fed the less severe Paigen NC diet (dashed lines). As was the case

with the Paigen diet, singly housed mice fed the Paigen NC diet

exhibited a shorter median survival time (44.0 days, n = 15) than

mixed genotype group housed HypoE mice (76.0 days, n = 17,

p,0.0001). Thus, the population density effect was not dependent

on the cholate present in the Paigen, but absent from the Paigen

NC, diet.

The data in Figures 3 and 4 were pooled from experiments

using both male and female mice. Table 2 shows median survival

data stratified by sex. For each sex and diet (Paigen, Paigen NC),

the median survival times were significantly lower (25–30%) for

single than the corresponding group housing. In the case of the

Paigen diet, there were no significant differences in median

survival between males and females. For Paigen NC-diet feeding,

the median survival time for both males and females was ,33%

shorter than for group housing. The absolute difference in survival

time between group housed, Paigen NC-diet fed males and

females (85 vs 63 days) was not statistically significant; however,

the difference between singly housed males and females (57.5 vs 42

days) was significant (p = 0.002). Overall, the effects of population

density and diet on survival of HypoE mice seen for the pooled

data were also observed when males and females were analyzed

independently.

To determine if more rapid onset of cardiomegaly was

associated with the shorter median survival times observed in

singly housed mice, we measured the heart-to-body weight ratios

of singly and group housed male and female HypoE mice fed the

Paigen diet for 19 days (median survival time for single housing).

Indeed, the heart-to-body weight ratios were higher in the singly

Table 1. Effects of atherogenic diets on plasma lipids.

Genotype Diet n TC (mg/dl) UC (mg/dl) UC/TC ratio

WT Normal chowb (4.5% fat, 0.022% cholesterol) 5 81±31 19±9 0.23±0.04

HypoEa Normal chowb (4.5% fat, 0.022% cholesterol) 9 282±25* 173±19* 0.61±0.06*

Western (21.2% fat, 0.2% cholesterol) 13 704±131** 496±144** 0.7±0.10

Paigen NC (15.8% fat, 1.25% cholesterol) 18 918±192 692±168 0.75±0.06

Paigen (15.8% fat, 1.25% cholesterol, 0.5%
sodium cholate)

6 1630±337 1284±274 0.79±0.05

aMice were housed in groups with mixed genotypes. HypoE mice were fed either a Western diet (n = 13), Paigen diet without cholate (Paigen NC) (n = 18), or Paigen diet
(n = 6) for one month beginning at two months of age. Data represent mean 6 SD. Statistically significant differences among normal chow and the three atherogenic
diets were determined by Kruskal-Wallis tests followed by the Dunn’s multiple comparison post-test.
*p,0.05 vs Paigen NC and Paigen,
**p,0.05 vs Paigen. WT; wild type, TC; total cholesterol, UC; unesterified cholesterol.
bThe data for group-housed, wild-type and HypoE mice fed a normal chow diet are from Zhang S, et al (2)-.
doi:10.1371/journal.pone.0047965.t001

Environmental Modulation of CHD in HypoE Mice

PLOS ONE | www.plosone.org 4 October 2012 | Volume 7 | Issue 10 | e47965



housed mice. The ratios (mg/g) for males were: group housing,

6.960.2 (n = 19); single housing, 11.060.5 (n = 16) (p,0.0001)

and for females: group housing, 8.360.4 (n = 24); single housing

11.260.5 (n = 13) (p,0.0001). Thus, it seems likely that more

rapid onset of CHD in the singly housed mice was responsible for

the shorter median survival times.

Effect of Social Isolation on Plasma Cholesterol Levels of
HypoE Mice Fed Atherogenic Diets

The principle goal of the current studies was to describe the

characteristics of HypoE mice. However, we have begun to

explore potential mechanisms underlying the differences in the

rate of development of cardiomegaly and median survival times of

singly and group housed HypoE mice fed the Paigen diet. First, we

measured the cholesterol (TC and UC) concentrations determined

from plasma sampled at two times after initiation of the

atherogenic diet: 19 days (,median survival time of singly housed

HypoE mice) and 10 days (prior to any deaths or evidence of

reduction in weight gain or loss of weight associated with severe

CHD). Figure 5 shows that after 19 days on the Paigen diet there

were significantly higher plasma levels of TC (32–50%, panel A)

and UC (34–55%, panel B) in both male and female singly housed

Figure 2. Effects of atherogenic diets on survival (A) and heart-to-body weight ratios (B) of HypoE mice. Mice were housed in groups
with mixed genotypes (HypoE and one or more SRBI+/2ApoeR61h/h littermates per group, 4–5/cage) and, beginning at two months of age were
switched from a normal chow diet to the indicated atherogenic diets. The data shown include only the HypoE mice. A Kaplan-Meier survival curves.
Mice were fed either Paigen (gray solid line, n = 15), Paigen NC (gray dotted line, n = 14), or Western (black dashed line, n = 15) diets. B Heart-to-body
weight ratios. For the indicated times (1–3 months), mice were fed the Paigen (n = 14), chow (n = 8), Western (n = 5 (1 month), n = 4 (3 months)), or
Paigen NC (n = 6 (1 month), n = 4 (2 months)) diets. Gray and white bars represent those populations in which approximately 50% or 100% of the
animals survived after the indicated times of feeding. Data are means 6 SD. Statistically significant differences were determined by Kruskal-Wallis
tests followed by the Dunn’s multiple comparison post-test. *p,0.05.
doi:10.1371/journal.pone.0047965.g002
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mice compared to their group housed counterparts. There were no

significant differences in the UC/TC ratios (panel C) between the

different sexes or population densities.

The results were similar for male HypoE mice fed the Paigen

diet for only 10 days. Compared to group housed animals, singly

housed male mice exhibited 41% higher TC (1602689 vs

1133656 mg/dl; p = 0.002) and 39% higher UC (1036666 vs

743640; (p = 0.002), n = 6/set). There were no significant

differences in the UC/TC ratios (group: 0.6560.01, single:

0.6560.01 p = 0.59). Thus, the population density effect on

plasma cholesterol preceded any gross, outward signs of pathology

and may have contributed to the dependence of the rate of disease

progression on population density.

Exploration of Potential Sources of the Population
Dependent Differences in Plasma Cholesterol Levels

One potential explanation for the differences in plasma

cholesterol levels in Paigen-diet fed single versus group housed

mice is differences in food intake. We therefore measured apparent

daily food intake, defined as the difference in unconsumed food

Figure 3. Population density (A) and mixed genotype housing (B) effects on Paigen diet-fed HypoE mouse survival. Mice were housed
at the indicated population densities (1, 2–3 or 4–5 (group)/cage) with either uniform (HypoE) or mixed genotypes (HypoE and one or more SRBI+/

2ApoeR61h/h littermates per group). Beginning at two months of age the animals were switched from a normal chow diet to the standard Paigen
diet. The data shown include only the HypoE mice. A Kaplan-Meier survival curves for HypoE mice housed singly (1 mouse/cage, black line), or
uniform genotype (HypoE only) groups of 2–3 (light gray dashed line), or 4–5 (light gray solid line) mice per cage with the indicated median survival
times and number of animals per group (n). A notch in the 4–5 mice per cage line indicates a censored animal that was euthanized due to severe
ulcerative dermatitis at 35 days after initiating Paigen diet feeding. B Kaplan-Meier survival curves for HypoE mice housed singly (black line) or in
uniform genotype (HypoE only, light gray line) or mixed genotype (HypoE and SRBI+/2ApoeR61h/h E, gray line) group housing (4–5 mice/cage).
doi:10.1371/journal.pone.0047965.g003

Environmental Modulation of CHD in HypoE Mice
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weight in the food reservoirs of the cages between sequential days.

Female HypoE mice exhibited an unexpected eating behavior not

shared by their male counterparts or by females with other

genotypes that were examined (WT, SR-BI+/2ApoeR61h/h, or

SR-BI2/2 mice with wild-type apoE genes). They crumbled the

food pellets, generating substantial amounts of crumbs in the

bedding of the cage that were difficult to quantify reliably with our

experimental apparatus (see Figure S1). We do not know why

these mice exhibited this unexpected behavior. Because of it,

however, we limited our analysis to male mice.

Figure S2A shows that there were no obvious differences in the

apparent daily food intake per mouse from days 2 to 10 after

initiation of Paigen diet feeding for singly housed HypoE mice,

singly housed controls (WT and SR-BI+/2ApoeR61h/h, combined

data), or group housed mice with mixed genotype (HypoE and

SR-BI+/2ApoeR61h/h), even though there were differences in

plasma cholesterol levels at 10 days between singly and group

housed HypoE mice (see above). Figure S2B shows the mean daily

food intake averaged over days 2–10. There were no statistically

significant differences in the mean daily food intake values (g/day/

mouse, p = 0.70): Group/mixed genotype, 3.660.4 (n = 6 HypoE

mice,13 total mice ); Single/HypoE, 3.960.8 (n = 6); and Single/

control, 3.960.1 (n = 6). These observations suggest that there was

not a significant difference in atherogenic diet intake between

singly and group housed HypoE mice. This conclusion is

consistent with our observation that the body weights of the

group and singly housed HypoE mice determined 10 days after

initiation of the Paigen diet feeding were not significantly different

(26.264.0 g and 25.262.1, respectively; p = 0.31, n = 6/set). Thus

differences in the amounts of Paigen diet ingested are unlikely to

account for the differences in the plasma TC and UC levels in

singly compared with group housed HypoE mice.

Differences in the endocrine systems (e.g., stress) [19,20] is

another potential source of population density dependent differ-

ences in plasma cholesterol levels, the rates of development of

cardiomegaly and median survival times. In mice, social isolation

can decrease body weight gain and food consumption, increase

stereotypic and vertical movements, basal corticosterone levels and

aggressiveness relative to group-housed animals [21]. Therefore,

19 days after initiating Paigen-diet feeding, we determined plasma

levels of corticosterone and oxytocin in male and female HypoE

mice. Corticosterone is a well known stress marker and oxytocin

regulates social behavior [22] and was reported to influence the

cardiovascular system [23]. Figure 6A shows that there were no

statistically significant differences in plasma corticosterone levels

Figure 4. Effects of population density and atherogenic diets on the survival of Paigen diet-fed HypoE mice. HypoE mice were housed
singly (1/cage, black lines) or in mixed genotype groups (HypoE and one or more SRBI+/2ApoeR61h/h littermates per group, 4–5/cage, gray lines).
Beginning at two months of age the animals were switched from a normal chow diet to either the standard Paigen (solid lines) or Paigen NC (dashed
lines) diets. The Kaplan-Meier survival curves shown include only the HypoE mice. A notch in the singly housed HypoE mice fed the Paigen NC diet
indicates a censored animal, which was euthanized due to severe ulcerative dermatitis at 57 days after initiating Paigen NC diet feeding.
doi:10.1371/journal.pone.0047965.g004

Table 2. Effects of Atherogenic Diets, Population Density and
Sex on Survival.

Dieta Housing Sex n
Median Survival
(Days)b p

Paigen Group Male 11 26.0# 0.99

Female 10 27.0*

Single Male 9 20.0# 0.14

Female 5 19.0*

Paigen NC Group Male 8 85.0## 0.46

Female 9 63.0**

Single Male 8 57.5## 0.002

Female 7 42.0**

aFrom two months of age HypoE mice of the indicated sexes were fed either
the Paigen or Paigen NC diets and housed either singly (one/cage) or in groups
of 4–5 mice per cage, with the groups containing HypoE and one or more
SRBI+/2ApoeR61h/h littermates. The values of median survival are for HypoE
mice only.
b*, **p,0.0001 #, # #p,0.02.
doi:10.1371/journal.pone.0047965.t002
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between singly and group housed males (n = 11 or 14, p = 0.08).

The absence of an effect of isolation on plasma corticosterone in

HypoE mice was not surprising in the light of the previous studies

of stress in male and female SR-BI KO mice showing their

markedly reduced corticosterone response to stress (fasting, LPS

and bacterial infection, ACTH, cold-water swimming) [24,25].

Thus, differences in corticosterone levels in males cannot account

for the striking population density differences in plasma cholesterol

and survival we have observed in males. We did note that the

corticosterone level in group housed females was higher than those

in either group housed males or singly housed females. We did not

observe any common trends in the relationships of plasma

corticosterone levels and heart-to-body weight ratios when we

compared separate analyses of male and female mice. The

mechanism underlying the sexual dimorphism seen here is

unclear, although sexual dimorphism in the murine hypothalam-

ic-pituitary-adrenal axis has been reported [26].

Plasma oxytocin levels (Figure 6B) in female HypoE mice fed

the Paigen diet for 19 days were significantly lower for single

versus group housing (group: 183662 pg/ml; single: 132630 pg/

ml; n = 12–11, p = 0.02). However a similar difference seen in

males (group: 172659; single: 132640; n = 8/group) did not

reach statistical significance (p = 0.14) (Figure 6B). Figure 6C

shows that there was a significant inverse relationship between

plasma oxytocin levels and heart-to-body weight ratios when all of

the data were pooled (n = 39; r = 20.37p = 0.02). It is not clear if

this inverse association reflects a causal relationship or indepen-

dent coincidence.

Effects of Withdrawing the Paigen Diet on the Survival of
HypoE Mice and their Plasma Cholesterol Levels

The ability to induce fatal CHD in HypoE mice by

administering an atherogenic diet (e.g., the Paigen diet) raised

the possibility that exposure to this diet for only a relatively brief

period followed by feeding a normal chow diet might be sufficient

to induce CHD (e.g., cardiomegaly) but not premature death.

Such conditions might permit the HypoE mice to be used as a

model for cardiac remodeling and recovery from atherosclerosis

associated heart damage. Therefore, we initiated Paigen diet

feeding of singly housed mice at two months of age as described

above, but subsequently replaced the Paigen diet with a normal

chow diet 10, 12 or 14 days later, or continued to feed the Paigen

diet for the remainder of the study (control).

Figure 7A shows Kaplan-Meier survival curves from this

experiment. As expected, all of the control mice continuously

fed the Paigen diet (black line) died by 30 days with a median

survival time of 19.5 days. The survival curves were not

dramatically altered if the Paigen diet was administered for only

12 (blue line) or 14 (orange line) days, although several animals

survived longer than 30 days. Remarkably, if Paigen diet feeding

was limited to only 10 days (red line), most of the animals (87%)

survived for at least an additional 60 days.

The heart-to-body weight ratio 10 days after initiation of the

Paigen diet feeding was 8.961.2 (n = 5), 1.8–times larger than for

chow diet fed animals (,5.0), indicating substantial cardiomegaly.

Cardiomegaly (heart-to-body weight ratio 8.261.4 (n = 13)) in 10

day transiently Paigen-diet fed mice also was observed after an

additional 60 days of chow feeding. Although substantial, these

heart-to-body weight ratios were significantly smaller than that

observed in mice continuously fed the Paigen diet for 19 days

(11.161.8 (n = 29), p,0.05), indicating that an upper limit of

cardiomegaly had not been reached. There was a very sharp

temporal threshold of approximately 10 days of Paigen diet

feeding, two days beyond which the progression to death could not

readily be prevented simply by withdrawal of the atherogenic diet.

Time-course analysis of plasma TC levels revealed that there were

no obvious differences between 10 and 12 days of Paigen diet

Figure 5. Effects of population density and sex on plasma
cholesterol levels of Paigen diet-fed HypoE mice. HypoE mice
were housed singly (1/cage, black bars; males, n = 16, females; n = 13) or
in mixed genotype groups (HypoE and one or more SRBI+/2ApoeR61h/h

littermates per group, 4–5/cage, gray bars; males, n = 19, females;
n = 24). Beginning at two months of age the animals were switched
from a normal chow diet to the Paigen diet. After 19 days of Paigen diet
feeding, plasma was harvested and total cholesterol (TC), unesterified
cholesterol (UC) and UC/TC ratios were determined from the HypoE
mice. Data are means 6 SD. Statistically significant differences were
determined by unpaired Student’s t or Mann-Whitney test.
doi:10.1371/journal.pone.0047965.g005
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feeding on the maximal plasma TC level attained nor in the shape

of the TC decay curves after withdrawal from the Paigen diet

(Figure 7B). It seems likely that the two additional days of exposure

to the diet were sufficient to tip the balance from primarily long

term survival to nearly inevitable death.

Discussion

In the current studies, we provide additional phenotypic

characterization of HypoE (SR-BI KO/ApoeR61h/h) mice that

represent a novel, diet-induced model of atherosclerotic CHD. We

have explored the effects of varying the composition and timing of

administration of atherogenic diets, as well as social isolation vs.

group housing, on the plasma cholesterol levels, cardiomegaly

and/or survival of HypoE mice. These mice do not express the

HDL receptor SR-BI and they express no endogenous apoE and

only very low levels of a human E4-like isoform of murine apoE

(Thr61RArg61). The Thr61RArg61 substitution was initially

designed to convert the murine apoE from a protein expected to

resemble the human E3 isoform of apoE to one more like that of

the human E4 isoform [7,8,27]. In vivo the replacement of wild-

type murine apoE with normal levels of the mutant

Thr61RArg61 protein does not significantly alter plasma total

cholesterol or triglyceride levels nor does it change the lipid

distribution of plasma lipoproteins; although as expected the

Thr61RArg61 protein exhibited a preference for association with

larger lipoproteins relative to the wild type murine apoE in Arg61/

wt heterozygotes [27].

The diets used here included a control, normal chow diet (4.5%

fat, 0.022% cholesterol) and atherogenic diets of increasing

severity: Western diet (21.2% fat, 0.2% cholesterol), Paigen diet

without cholate (Paigen NC, 15.8% fat, 1.25% cholesterol), and a

standard Paigen diet (15.8% fat, 1.25% cholesterol, 0.5% sodium

cholate). The most sever atherogentic diet (Paigen) caused the

greatest increase in plasma cholesterol carried in large (VLDL-

and IDL-size) lipoprotein particles, most rapid development of

cardiomegaly, and shortest survival times (medial survival on the

diet of 34 days). The intermediate severity diet (Paigen NC)

induced a less dramatic increase in large lipoproteins, a more

gradual onset of cardiomegaly and somewhat longer survival times

(median survival of 60 days). Thus, as in previous studies (6,32),

the current study shows that the extent of cardiomegaly is

correlated with the median age of death. The results using the

Paigen NC diet show that disease development in HypoE mice did

not require cholate, whose inclusion in atherogenic diets is

associated with hepatic fibrosis/inflammation [28] formation of

macrophage-derived,multinucleated giant cells in atherosclerotic

plaque [29]. Getz and Reardon have reviewed the use of varying

atherogenic diets, including the influence of cholate, in studies of

murine atherosclerosis [30]. When HypoE mice were fed the

relatively mild Western diet, they exhibited no significant

cardiomegaly after 3 months of feeding nor impaired survival

(observed for 100 days) compared to control, chow fed animals. It

is possible that the significantly higher levels of dietary cholesterol

in the Paigen and Paigen NC diets (1.25%) than in the Western

diet (0.2%) may have dramatically influenced cardiac disease

development in HypoE mice. Additional studies will be required to

precisely delineate the mechanisms underlying the diet-dependent

differences in cardiac disease development. The results described

Figure 6. Population density and sex effects on plasma
corticosterone and oxytocin in Paigen diet-fed HypoE mice.
HypoE mice were housed in mixed genotype groups (HypoE and one or
more SRBI+/2ApoeR61h/h littermates per group, 4–5/cage, gray bars) or
singly (1/cage, black bars). Beginning at two months of age the animals
were switched from a normal chow diet to the Paigen diet. After 19
days of Paigen diet feeding, the mice were weighed, plasma and hearts
were harvested, heart weights measured and plasma levels of
corticosterone and oxytocin were determined. The values presented
are from the HypoE mice only; they do not include the companion
(group housing) SR-BI+/2ApoeR61h/h mice. A Plasma corticosterone
levels: group housed males, n = 11; singly housed males, n = 14; group
housed females, n = 16; singly housed females, n = 12. B Plasma
oxytocin levels: group housed males, n = 8; singly housed males, n = 8;
group housed females, n = 12; singly housed females, n = 11. Data are
means 6 SD. Statistically significant differences were determined by
unpaired t-test. C Correlation of oxytocin levels and heart-to-body
weight ratios for all HypoE mice (n = 39). Gray and black circles indicate

group and single housing, respectively. Statistics were evaluated using
Spearman’s rank correlation.
doi:10.1371/journal.pone.0047965.g006
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Figure 7. Effects of shifting from Paigen to chow diet on survival (A) and plasma cholesterol (B). HypoE mice were fed a normal chow
diet) from weaning to 2 months of age (39 days). Beginning at two months of age the mice were housed singly (1/cage, both males and females were
included) and some of the animals were continued to be fed the chow diet (panel B, white circles) whereas all of the others where switched from a
normal chow diet to the Paigen diet (initiation of Paigen diet). The animals were maintained continuously throughout the rest of the experiment on
the Paigen diet (‘‘Cont.’’, black lines) or after the indicated periods of Paigen diet feeding (10 days, red; 12 days, blue; 14 days, green) the mice were
returned to a chow diet for the remainder of the experiment (colored arrows), as indicated in the schematic inset in panel A. A Kaplan-Meier survival
curves. Log-rank test was performed to compare survival curves. B Time course of changes in plasma total cholesterol levels. Blood samples were
taken serially at the indicated times (see Methods) from subgroups of animals different from those used for the survival curves in panel A (Cont.;n = 9,
10 days; n = 6, 12 days; n = 9, No Paigen(chow); n = 6). The data are presented as mean values of TC in each subgroup at the indicated times. In those
cases in which animals died during the period of serial sampling, the data obtained from those mice while alive were incorporated into the
calculation of the mean values.
doi:10.1371/journal.pone.0047965.g007
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here establish that the severity of disease in HypoE mice can be

controlled by varying the severity of the atherogenic diet.

The rapid onset and progression of atherosclerosis, CHD, and

early death in hypercholesterolemic SR-BI/apoE dKO mice fed a

normal chow diet [4,5] and HypoE mice fed a standard Paigen [6]

or Paigen NC (this study) diet can be advantageous for a variety of

studies of atherosclerotic CHD. For example, these models of

CHD are distinguished by the short duration of experiments,

ability to sensitively detect genetic or pharmacologic changes in

disease onset and progression in relatively small numbers of

animals because of the very steep survival curves and absence of

reliance on surgical interventions [2,4,31–33]. However, in some

cases the highly rapid onset and progression of the aggressive

occlusive atherosclerosis may limit the usefulness of dKO and

Paigen-diet fed HypoE mice in studying important features of

CHD and potential therapies. These models may not be ideal for

studying collateral vessel formation (therapeutic angiogenesis), the

effects of slowly developing cardiac remodeling due to MI and

consequent heart failure, preconditioning, and certain dietary,

genetic, and pharmacological therapies that may be insufficiently

potent to arrest or reverse the highly aggressive disease, but may

be effective in milder disease that may better model some features

of typical human CHD. We have previously shown that we can

slow the kinetics of fatality in SR-BI/apoE dKO mice by varying

the timing of administration and/or withdrawal of probucol, a

hypolipidemic and antioxidant drug that dramatically slows the

onset and progression of CHD in these mice [2]. However, the

effectiveness of probucol may be limited by uncertainty about the

mechanism underlying probucol’s dramatic effects, potential

limitations in controlling these effects (probucol is a relatively

hydrophobic drug that has the potential of accumulating in

adipose tissue) and our observation that extended treatment with

probucol can result in unexpected cardiac phenotypes in SR-BI/

apoE dKO mice (in preparation). Therefore, the ability to ‘tune’

disease progression in HypoE animals by dietary manipulation as

established in the current studies may prove useful for studies of

CHD in which highly rapid onset and aggressive occlusive

atherosclerosis with early death is not desirable.

Social Isolation Shortened the Lifespan of HypoE Fed
with Paigen and Paigen NC Diets

The deleterious effects on health of stress and social isolation

have been recognized for decades [34–36]. Social isolation

increases CHD mortality and morbidity in the general human

population and can influence disease in animals as well [9–14].

For example, atherosclerosis is higher in singly housed female

monkeys than their group housed counterparts [15–17]. In mice,

social isolation (1 animal per cage) can decrease body weight gain

and food consumption, increase stereotypic and vertical move-

ments, basal corticosterone levels and aggressiveness relative to

group-housed animals [21]. Bemberg et al. have reported that

social isolation of apoE KO mice increases their plasma lipids and

atherosclerosis in their innominante arteries [20]. In contrast, Lin

et al have reported that increased population density results in

increased plasma lipids and increased atherosclerosis lesion

severity in wild-type C57/BL6 mice [37].

Although we have seen no differences in the survival of SR-BI/

apoE dKO mice housed singly or in groups, we observed a

profound reduction in longevity in singly housed HypoE mice

when fed either a Paigen- (by 7 days) or Paigen NC- (by 32 days)

diet. Strikingly, although social isolation did not appear to affect

food intake or body weight, it resulted in significantly higher

plasma TC and UC levels during a 10-day course of Paigen diet

feeding. It seems likely that the increased exposure to higher

plasma cholesterol levels could promote more rapid atherosclerosis

development and thus shorter survival. We have observed that the

qualitative nature of the occlusive atheroscleorosis and MI at the

median age of death for singly housed HypoE mice are similar to

those seen at the median age of death for the group housed mice

(unpublished), indicating that occlusive coronary arterial athero-

sclerosis is the likely pathophysiological mechanism responsible for

the premature death.

To explore the potential relationship of alterations in the

endocrine system with the effects of social isolation, we measured

plasma levels of two hormones: corticosterone and oxytocin.

Corticosterone is an adrenocortical steroid whose plasma levels are

often used as a quantitative measure of stress, although SR-BI KO

mice exhibit defective plasma corticosterone responses to stress

[24,25]. Thus, plasma corticosterone levels cannot be used as a

reliable indication of stress in SR-BI KO mice. We observed no

difference in plasma corticosterone levels in group and singly

housed male HypoE mice. Nor did we observe a consistent

correlation between plasma corticosterone levels and heart-to-

body weight ratios when males and females were analyzed

separately. Thus, differences in corticosterone levels, elevations

in which were seen in group housed females, are unlikely to

account for the effects of social isolation on plasma cholesterol and

survival.

Oxytocin, a hypothalamic neuropeptide produced in the

posterior pituitary gland and other tissues (including the heart),

can regulate behavioral responses to stressors and the reactivity of

the hypothalamic-pituitary-adrenal (HPA) axis [38,39].There are

reports of oxytocin-mediated regulation of cardiovasucular activity

[23,40]. There is also a report of sexual dimorphism in plasma

oxytocin response (elevation in females, but not males) to social

isolation in prairie voles [41]. Thus, oxytocin may link social

isolation and cardiovascular disease. Plasma oxytocin levels in

socially isolated HypoE mice was lower than in group housed

controls, but the difference only reached significance in females

when males and females were analyzed separately. Strikingly,

there was a significant, inverse correlation between plasma

oxytocin level and heart-to-body weight ratio (an indicator of

heart disease) when all HypoE mice (male, female, group and

singly housed) were included in the analysis. These findings are

consistent with the report of Ondrejcakova et al. that oxytocin can

be cardioprotective in a rat model of ischemia-reperfusion-induced

myocardial injury [42]. We found no correlation between plasma

corticosterone and oxytocin levels in Paigen diet-fed HypoE mice

(r = 0.27, p = 0.14; Figure S3). This may be a consequence of the

inability of SR-BI KO mice to respond to stress by increasing

corticosterone output [24,25]. Additional analysis of the mecha-

nisms underlying the effects of social isolation on disease

progression in atherogenic diet-fed HypoE mice, which are likely

to be complex and multifaceted, may help clarify some of the

mechanisms responsible for the well-established psychosocial

influences on health in general and cardiovascular disease in

particular.

Paigen Diet Withdrawal Extended HypoE Mice Survival
A particularly intriguing feature of the HypoE mouse is the

potential of initiating the development of CHD by feeding an

atherogenic diet and then replacing that diet with a normal chow

diet to stop additional atherosclerosis progression. Indeed, we

found that the hypercholesterolemia in HypoE mice that reaches a

steady state after five days of Paigen diet feeding can be

substantially reversed after returning the mice to a chow diet for

four days. When HypoE mice were fed the Paigen diet for 10 days,

which causes profound cardiomegaly (and presumably cardiac

Environmental Modulation of CHD in HypoE Mice
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damage due to MI) and then returned thereafter to a chow diet,

most of the animals (87%) were able to survive for at least 60 days.

At that time, the mice exhibited cardiomegaly and preliminary

histology studies raise the possibility that their hearts may have

undergone remodeling during the 60 day post-atherogenic diet

period. Thus, HypoE mice might be a promising novel model for

the study of heart remodeling, reversion of occlusive coronary

arterial atherosclerosis (also see 3), and the pathophysiology of

heart failure without the need for complicating surgical procedures

such as coronary ligation.

Materials and Methods

Animals and Diets
All mice were on mixed C57BL/6x129 backgrounds (50/

50:WT, SR-BI KO, and HypoE) [6] and were maintained under

standard light (12 hr, on at 7 am)/dark (12 hr) conditions in the

animal facilities at the Massachusetts Institute of Technology.

Genotypes were determined by polymerase chain reaction. As

anticipated from previous studies of SR-BI KO mice, female, but

not male, HypoE (SR-BI KO/ApoeR61h/h) mice are infertile

[5,6]. Thus, female ApoeR61h/h mice with heterozygous null

mutations in SR-BI were mated to generate the HypoE mice.

Mice were fed a normal chow (low fat) diet (4.5% fat, 0.022%

cholesterol, Prolab3000, PMI Feeds) from weaning to 2 months of

age. Then they were fed either Western (21.2% fat, 0.2%

cholesterol, TD 88137, Harlan-Teklad, Madison, WI), Paigen

without cholate (Paigen NC) (15.8% fat, 1.25% cholesterol,

TD94059, Harlan-Teklad, WI), or Paigen (15.8% fat, 1.25%

cholesterol, 0.5% sodium cholate, TD 88051, Harlan-Teklad, WI)

diets for the indicated periods. In some cases animals fed the

Paigen diet were switched back to a standard chow diet, as

indicated. After weaning (3 weeks of age) mice were housed with

the same sex littermates until 2 months of age. Animals from

multiple, independent litters were distributed among the different

experimental groups. Number of animals used in each experiment

are indicated (‘n’).
Ethics statement. All experiments using animals described

here were performed in strict accordance with NIH and

Massachusetts Institute of Technology guidelines and approval

of the Committee on Animal Care at the Massachusetts Institute

of Technology (approved protocol numbers 0209-015 and 0212-

015).

Gravimetry
Mice were anesthetized by intraperitoneal injection of 1.25%

Avertin, weighed, and perfused with heparinized PBS and intact

hearts were dissected and weighed.

Determination of Plasma Lipids and Lipoprotein
Cholesterol Content

Levels of plasma total cholesterol (TC) and unesterified

cholesterol (UC) were determined using standard assay kits from

Wako Chemicals (Richmond, VA), according to the vendor’s

instructions. FPLC plasma fractionation was performed as

previously described [2].

Population Density and Mixed Genotype Housing
The experimental housing conditions from 2 months of age

were as follows: (a) ‘‘group housing’’: mice with the same genotype

(e.g., HypoE) and sex were housed in groups of 2 to 5 per cage, (b)

‘‘group housing with mixed genotype’’: mice of the same sex but

different genotypes (HypoE and SRBI+/2ApoeR61h/h) were

housed in groups of 4 to 5 per cage, and (c) ‘‘isolated’’ or ‘‘single’’

housing: mice were individually housed in cages. All of the cages

were equal in size.

Determination of Food intake
Apparent daily food intake (defined as the difference in

unconsumed food weight between sequential days) was recorded

daily from day 2 to day10 after initiation of Paigen diet feeding of

singly housed mice (HypoE, WT or SR-BI+/2ApoeR61h/h) and

group housed mice with mixed genotypes (HypoE with SRBI+/

2ApoeR61h/h). For group housed mice, the intake per mouse is

the total divided by the number of mice in the cage (n = 4 or 5) and

thus represents an average contributed to by mice with both

genotypes.

Determination of Plasma Hormone Levels
Plasma was isolated from blood drawn between 10:00 am and

12:00 pm and samples were stored at 280uC. Plasma oxytocin

and corticosterone levels were determined in thawed samples using

a commercially available enzyme immunoassay (Assay Designs,

Ann Arbor, MI). The genotypes of mice used for plasma hormone

measurements were all HypoE, and group housed SR-BI+/

2ApoeR61h/h mice were not included in the group housed cages

for these measurements.

Paigen Diet Withdrawal Study
Singly housed HypoE mice were fed the Paigen diet for 10, 12,

or 14 days from the age of 2 months, then were fed a normal chow

diet thereafter. For some animals, small amounts of blood were

drawn serially from the retro-orbital plexus with heparinized

capillary tubes for determination of plasma TC after 0, 5, 10, 12,

14, 16, 21 or 28 days after initiating feeding the Paigen diet, as

indicated. Controls included mice fed only a chow diet throughout

the experiment or those fed a Paigen diet without changing back to

a chow diet.

Statistical Analysis
Data are shown as the means 6 S.D. Statistically significant

differences were determined by Kruskal-Wallis tests followed by

the Dunn’s multiple comparison post-test for comparison of three

or more groups, two-tailed, unpaired Student’s t or Mann-

Whitney test for comparison of two samples, and log-rank test to

compare survival curves. Correlation between heart-to-body

weight ratio and plasma hormone levels was evaluated by

Pearson’s correlation or Spearman’s rank correlation. A value of

p,0.05 was considered significant.

Supporting Information

Figure S1 Effects of population density on apparent
daily food intake of Paigen diet-fed HypoE female mice.
Female mice were housed in mixed genotype groups (4 mice/cage,

2 HypoE and 2 SRBI+/2ApoeR61h/h littermates per group, 3

cages, gray symbols, n = 6 for HypoE mice) or singly (1/cage,

black symbols; genotypes: HypoE, solid line, n = 5; wild-type (WT)

or SRBI+/2ApoeR61h/h mice, dashed line, n = 4). Beginning at

two months of age the animals were switched from a normal chow

diet to the Paigen diet and then the food reservoir was weighed

daily for each cage. The estimated food intake per day per mouse

was calculated as the difference between reservoir weights on

sequential days. The per mouse values for the group housed,

mixed genotypes are averages from all of the animals in each cage.

(TIF)
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Figure S2 Effects of population density on apparent
daily food intake of Paigen diet-fed HypoE male mice.
Male mice were housed in mixed genotype groups (HypoE and

one or more SRBI+/2ApoeR61h/h littermates per group, 3 cages,

4–5 mice/cage, 1–3 HypoE mice/cage, gray symbols, n = 6 for

HypoE mice) or singly (1/cage, black symbols; genotypes: HypoE,

solid line, n = 6; wild-type (WT) or SRBI+/2ApoeR61h/h mice,

square symbols) dashed line, n = 6). Beginning at two months of

age the animals were switched from a normal chow diet to the

Paigen diet and then the food reservoir was weighed daily for each

cage. A The apparent food intake per day per mouse was

calculated as the difference between reservoir weights on

sequential days. The per mouse values for the group housed,

mixed genotypes are averages from all of the animals in each cage.

B The apparent average food intake was determined over the 2–

10 day period for each condition. There were no statistically

significant differences.

(TIF)

Figure S3 Relationships between plasma levels of
oxytocin and corticosterone. HypoE mice were housed in

mixed genotype groups (HypoE and one or more SRBI+/

2ApoeR61h/h littermates per group, 4–5/cage, gray symbols,

n = 15HypoE mice?) or singly (1/cage, black symbols, n = 17)

Beginning at two months of age the animals were switched from a

normal chow diet to the Paigen diet. After 19 days of Paigen diet

feeding, the mice were weighed, plasma samples were harvested,

and subsequently plasma levels of corticosterone and oxytocin

were determined. Statistics were evaluated using Spearman’s rank

correlation. The genotypes of mice were all HypoE, and group

housed SR-BI+/2ApoeR61h/h were not included in the analysis.

(TIF)
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