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1 Center for Complex Network Research and Department of Physics,Northeastern University, Boston, Massachusetts, United States of America, 2 Center for Cancer

Systems Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America, 3 Nonlinear Systems Laboratory, Massachusetts Institute of Technology,

Cambridge, Massachusetts, United States of America, 4 Department of Mechanical Engineering and Department of Brain and Cognitive Sciences, Massachusetts Institute

of Technology, Cambridge, Massachusetts, United States of America, 5 Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston,

Massachusetts, United States of America

Abstract

We introduce the concept of control centrality to quantify the ability of a single node to control a directed weighted
network. We calculate the distribution of control centrality for several real networks and find that it is mainly determined by
the network’s degree distribution. We show that in a directed network without loops the control centrality of a node is
uniquely determined by its layer index or topological position in the underlying hierarchical structure of the network.
Inspired by the deep relation between control centrality and hierarchical structure in a general directed network, we design
an efficient attack strategy against the controllability of malicious networks.
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Introduction

Complex networks have been at the forefront of statistical

mechanics for more than a decade [1–4]. Studies of them impact

our understanding and control of a wide range of systems, from

Internet and the power-grid to cellular and ecological networks.

Despite the diversity of complex networks, several basic universal

principles have been uncovered that govern their topology and

evolution [3,4]. While these principles have significantly enriched

our understanding of many networks that affect our lives, our

ultimate goal is to develop the capability to control them [5–17].

According to control theory, a dynamical system is controllable

if, with a suitable choice of inputs, it can be driven from any initial

state to any desired final state in finite time [18–20]. By combining

tools from control theory and network science, we proposed an

efficient methodology to identify the minimum sets of driver

nodes, whose time-dependent control can guide the whole network

to any desired final state [12]. Yet, this minimum driver set (MDS)

is usually not unique, but one can often achieve multiple potential

control configurations with the same number of driver nodes.

Given that some nodes may appear in some MDSs but not in

other, a crucial question remains unanswered: what is the role of

each individual node in controlling a complex system? Therefore

the question that we address in this paper pertains to the

importance of a given node in maintaining a system’s controlla-

bility.

Historically, various types of centrality measures of a node in a

network have been introduced to determine the relative importance

of the node within the network in appropriate circumstances. For

example, the degree centrality, closeness centrality [21], between-

ness centrality [22], eigenvector centrality [23,24], PageRank [25],

hub centrality and authority centrality [26], routing centrality [27],

and so on. Here, we introduce control centrality to quantify the

ability of a single node in controlling the whole network.

Mathematically, control centrality of node i captures the dimension

of the controllable subspace or the size of the controllable subsystem

when we control node i only. This agrees well with our intuitive

notion about the ‘‘power’’ of a node in controlling the whole

network. We notice that control centrality is fundamentally different

from the concept of control range, which quantifies the ‘‘duty’’ or

‘‘responsibility’’ of a node i in controlling a network together with other

driver nodes [28].

Results

Control Centrality
Consider a complex system described by a directed weighted

network of N nodes whose time evolution follows the linear time-

invariant dynamics.

_xx(t)~Ax(t)zBu(t) ð1Þ

where x(t)~(x1(t), x2(t), � � � , xN (t))T [ RN captures the state of

each node at time t. A[RN|N is an N|N matrix describing the

weighted wiring diagram of the network. The matrix element aij [ R

gives the strength or weight that node j can affect node i. Positive (or

negative) value of aij means the link (j?i) is excitatory (or inhibitory).
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B [ RN|M is an N|M input matrix (MƒN ) identifying the nodes

that are controlled by the time dependent input vector u(t)~

(u1(t), u2(t), � � � , uM (t))T [ RM with M independent signals

imposed by an outside controller. The matrix element bij[R represents

the coupling strength between the input signal uj(t) and node i. The

system (1), also denoted as (A,B), is controllable if and only if its

controllability matrix C~(B, AB, � � � , AN{1B) [ RN|NM has full

rank, a criteria often called Kalman’s controllability rank condition

[18]. The rank of the controllability matrix C, denoted by rank(C),
provides the dimension of the controllable subspace of the system

(A,B) [18,19]. When we control node i only, B reduces to the vector

b(i) with a single non-zero entry, and we denote C with C(i). We can

therefore use rank(C(i)) as a natural measure of node i’s ability to

control the system: if rank(C(i))~N, then node i alone can control the

whole system, i.e. it can drive the system between any points in the N-

dimensional state space in finite time. Any value of rank(C(i)) less than

N provides the dimension of the subspace i can control. In particular if

rank(C(i))~1, then node i can only control itself.

The precise value of rank(C) is difficult to determine because in

reality the system parameters, i.e. the elements of A and B, are

often not known precisely except the zeros that mark the absence

of connections between components of the system [29]. Hence A
and B are often considered to be structured matrices, i.e. their

elements are either fixed zeros or independent free parameters

[29]. Apparently, rank(C) varies as a function of the free

parameters of A and B. However, it achieves the maximal value

for all but an exceptional set of values of the free parameters which

forms a proper variety with Lebesgue measure zero in the

parameter space [30,31]. This maximal value is called the generic

rank of the controllability matrix C, denoted as rankg(C), which

also represents the generic dimension of the controllable subspace.

When rankg(C)~N, the system (A,B) is structurally controllable, i.e.

controllable for almost all sets of values of the free parameters of A
and B except an exceptional set of values with zero measure

[29,30,32,33]. For a single node i, rankg(C(i)) captures the

‘‘power’’ of i in controlling the whole network, allowing us to

define the control centrality of node i as

Cc(i):rankg(C(i)): ð2Þ

The calculation of rankg(C) can be mapped into a combina-

torial optimization problem on a directed graph G(A,B)
constructed as follows [31]. Connect the M input nodes

fu1, � � � , uMg to the N state nodes fx1, � � � , xNg in the original

network according to the input matrix B, i.e. connect uj to xi if

bij=0, obtaining a directed graph G(A,B) with NzM nodes (see

Fig. 1a and b). A state node j is called accessible if there is at least

one directed path reaching from one of the input nodes to node j.

In Fig. 1b, all state nodes fx1, � � � , x7g are accessible from the

input node u1. A stem is a directed path starting from an input

node, so that no nodes appear more than once in it, e.g.

u1?x1?x5?x7 in Fig. 1b. Denote with Gs the stem-cycle disjoint

subgraph of G(A,B), such that Gs consists of stems and cycles only,

and the stems and cycles have no node in common (highlighted in

Fig. 1b). According to Hosoe’s theorem [31], the generic

dimension of the controllable subspace is given by

rankg(C)~ max
Gs[G

DE(Gs)D ð3Þ

with G the set of all stem-cycle disjoint subgraphs of the accessible

part of G(A,B) and DE(Gs)D the number of edges in the subgraph

Gs. For example, the subgraph highlighted in Fig. 1b, denoted as

Gmax
s , contains the largest number of edges among all possible

stem-cycle disjoint subgraphs. Thus, Cc(1)~rankg(C(1))~6,

which is the number of red links in Fig. 1b. Note that

rankg(C(1))~6vN~7, the whole system is therefore not

structurally controllable by controlling x1 only. Yet, the nodes

covered by the Gmax
s highlighted in Fig. 1b, e.g.

fx1, x2, x3, x4, x5, x7g, constitute a structurally controllable

subsystem [33]. In other words, by controlling node x1 with a

time dependent signal u1(t) we can drive the subsystem

fx1, x2, x3, x4, x5, x7g from any initial state to any final state

in finite time, for almost all sets of values of the free parameters of

A and B except an exceptional set of values with zero measure. In

general Gmax
s is not unique. For example, in Fig. 1b we can get the

same cycle x2?x3?x4?x2 together with a different stem

u1?x1?x5?x6, which yield a different Gmax
s and thus a different

structurally controllable subsystem fx1, x2, x3, x4, x5, x6g. Both

subsystems are of size six, which is exactly the generic dimension of

the controllable subspace. Note that we can fully control each

subsystem individually, yet we cannot fully control the whole

system.

The advantage of Eq.(3) is that maxGs[G DE(G)D can be

calculated via linear programming [34], providing us an efficient

numerical tool to determine the control centrality and the

structurally controllable subsystem of any node in an arbitrary

complex network (see Fig. S1).

Distribution of Control Centrality
We first consider the distribution of control centrality. Shown

in Fig. 2 is the distribution of the normalized control centrality

(cc(i):Cc(i)=N ) for several real networks. We find that for the

intra-organization network, P(cc) has a sharp peak at cc~1,

suggesting that a high fraction of nodes can individually exert

full control over the whole system (Fig. 2a). In contrast, for

company-ownership network, P(cc) follows an approximately

exponential distribution or a very short power-law distribution

(Fig. 2d), indicating that most nodes display low control

centrality. Even the most powerful node, with cc*0:01, can

control only one percent of the total dimension of the system’s

full state space. For other networks P(cc) displays a mixed

behavior, indicating the coexistence of a few powerful nodes

with a large number of nodes that have little control over the

system’s dynamics (Fig. 2b,c). Note that under full randomiza-

tion, turning a network into a directed Erdös-Rényi (ER)

random network [35,36] with number of nodes (N) and number

of edges (L) unchanged, the cc distribution changes dramatical-

ly. In contrast, under degree-preserving randomization [37,38],

which keeps the in-degree (kin) and out-degree (kout) of each

node unchanged, the cc distribution does not change signifi-

cantly. This result suggests that P(cc) is mainly determined by

the underlying network’s degree distribution P(kin, kout). (Note

that similar results were also observed for the minimum number

of driver nodes [12] and the distribution of control range [28].)

This result is very useful in the following sense: P(kin, kout) is

easy to calculate for any complex network, while the calculation

of P(cc) requires much more computational efforts (both CPU

time and memory space). Studying P(cc) for model networks of

prescribed P(kin, kout) will give us qualitative understanding of

how P(cc) changes as we vary network parameters, e.g. mean

degree SkT. See Fig. S7 for more details.

Control Centrality and Hierarchical Structure
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Control Centrality and Topological Features
To understand which topological features determine the control

centrality itself, we compared the control centrality for each node

in the real networks and their randomized counterparts (denoted

as rand-ER and rand-Degree). The lack of correlations indicates

that both randomization procedures eliminate the topological

feature that determines the control centrality of a given node (see

Fig. S2). Since accessibility plays an important role in maintaining

structural controllability [29], we conjecture that the control

centrality of node i is correlated with the number of nodes Nr(i)
that can be reached from it. To test this conjecture, we calculated

Nr(i) and Cc(i) for the real networks shown in Fig. 2, observing

only a weak correlation between the two quantities (see Fig. S3).

This lack of correlation between Nr(i) and Cc(i) is obvious in a

directed star, in which a central hub (x1) points to N{1 leaf nodes

(x2, � � � , xN ) (Fig. 1c). As the central hub can reach all nodes,

Nr(1)~N , suggesting that it should have high control centrality.

Yet, one can easily check that the central hub has control

centrality Cc(1)~2 for any N§2 and there are N{1 structurally

controllable subsystems, i.e. fx1, x2g, � � � ,fx1, xN{1g. In other

words, by controlling the central hub we can fully control each leaf

node individually, but we cannot control them collectively.

Note that in a directed star each node can be labeled with a

unique layer index: the leaf nodes are in the first layer (bottom layer)

and the central hub is in the second layer (top layer). In this case

the control centrality of the central hub equals its layer index (see

Fig. 1c). This is not by coincidence: we can prove that for a

directed network containing no cycles, often called a directed

acyclic graph (DAG), the control centrality of any node equals its

layer index.

Cc(i)~li: ð4Þ

Indeed, lacking cycles, a DAG has a unique hierarchical structure,

which means that each node can be labeled with a unique layer

Figure 1. Control centrality. (a) A simple network of N~7 nodes. (b) The controlled network is represented by a directed graph G(A,B) with an
input node u1 connecting to a state node x1 . The stem-cycle disjoint subgraph Gs (shown in red) contains six edges, which is the largest number of
edges among all possible stem-cycle disjoint subgraphs of the directed graph G(A,B) and corresponds to the generic dimension of controllable
subspace by controlling node x1 . The control centrality of node 1 is thus Cc(1)~6. (c) The control centrality of the central hub in a directed star is
always 2 for any network size N§2. (d) The control centrality of a node in a directed acyclic graph (DAG) equals its layer index. In applying Hosoe’s
theorem, if not all state nodes are accessible, we just need to consider the accessible part (highlighted in green) of the input node(s).
doi:10.1371/journal.pone.0044459.g001
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index (li), calculated using a recursive labeling algorithm [39]: (1)

Nodes that have no outgoing links (kout~0) are labeled with layer

index 1 (bottom layer). (2) Remove all nodes in layer 1. For the

remaining graph identify again all nodes with kout~0 and label

them with layer index 2. (3) Repeat step (2) until all nodes are

labeled. As the DAG lacks cycles, each subgraph in the set G of the

directed graph G(A,b(i)) consists of a stem only, which starts from

the input node pointing to the state node i and ends at a state node

in the bottom layer, e.g. u1?x1?x2?x4 in Fig. 1d. The number

of edges in this stem is equal to the layer index of node i, so

rankg(C(i))~Cc(i)~li. Therefore in DAG the higher a node is in

the hierarchy, the higher is its ability to control the system.

Though this result agrees with our intuition to some extent, it is

surprising at the first glance because it indicates that in a DAG the

control centrality of node i is only determined by its topological

position in the hierarchical structure, rather than any other

importance measures, e.g. degree or betweenness centrality. This

result also partially explains why driver nodes tend to avoid hubs

[12]. (Note that similar phenomena about have been observed in

other problems, e.g. networked transportation [40], synchroniza-

tion [41] and epidemic spreading [42]).

Despite the simplicity of Eq. (4), we cannot apply it directly to

real networks, because most of them are not DAGs. Yet, we note

that any directed network has a underlying DAG structure based

on the strongly connected component (SCC) decomposition (see

Fig. S4). A subgraph of a directed network is strongly connected if

there is a directed path from each node in the subgraph to every

other node. The SCCs of a directed network G are its maximal

strongly connected subgraphs. If we contract each SCC to a single

supernode, the resulting graph , called the condensation of G, is a

DAG [43]. Since a DAG has a unique hierarchical structure, a

directed network can then be assigned an underlying hierarchical

structure. The layer index of node i can be defined to be the layer

index of the corresponding supernode (i.e. the SCC that node i
belongs to) in . With this definition of li, it is easy to show that

Cc(i)§li for general directed networks (see Fig. S6 for more

details). Furthermore, for an edge (i?j) in a general directed

Figure 2. Distribution of normalized control centrality of several real-world networks (blue) and their randomized counterparts:
rand-ER (red), rand-Degree (green), plotted in log-log scale. (a) Intra-organizational network of a manufacturing company [49]. (b) Hyperlinks
between weblogs on US politics [50]. (c) Email network in a university [51]. (d) Ownership network of US corporations [52]. In- and out-degree
distributions for each network are shown in the insets. See Table 1 for other network characteristics.
doi:10.1371/journal.pone.0044459.g002

Table 1. Real networks analyzed in the paper.

name N L SkT r c

ION-Manufacturing [49] 77 2,228 57.9 20.017 0.244

Political blogs [50] 1,224 19,025 31.1 20.196 0.174

Email network [51] 3,188 39,256 24.6 20.240 0.128

Ownership-USCorp [52] 7,253 6,726 1.9 20.181 0.004

For each network, we show its name and reference; number of nodes (N) and
edges (L); mean degree (SkT); degree correlation (r) [4]; and clustering
coefficient (c) [53], respectively.
doi:10.1371/journal.pone.0044459.t001
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network, if node i is topologically ‘‘higher’’ than node j (i.e. liwlj ),

then Cc(i)wCc(j). Since Cc(i) has to be calculated via linear

programming which is computationally more challenging than the

calculation of li, the above results suggest an efficient way to

calculate the lower bound of Cc(i) and to compare the control

centralities of two neighboring nodes. Note that if liwlj and there

is no directed edge (i?j) in the network, then in general one

cannot conclude that Cc(i)wCc(j) (see Fig. S5 for more details).

Attack Strategy
Our finding on the relation between control centrality and

hierarchical structure inspires us to design an efficient attack

strategy against malicious networks, aiming to affect their

controllability. The most efficient way to damage the controlla-

bility of a network is to remove all input nodes fu1, u2, � � � , uMg,
rendering the system completely uncontrollable. But this requires a

detailed knowledge of the control configuration, i.e. the wiring

diagram of G(A,B), which we often lack. If the network structure

(A) is known, one can attempt a targeted attack, i.e. rank the nodes

according to some centrality measure, like degree or control

centrality, and remove the nodes with highest centralities [44,45].

Though we still lack systematic studies on the effect of a targeted

attack on a network’s controllability, one naively expects that this

should be the most efficient strategy. But we often lack the

knowledge of the network structure, which makes this approach

unfeasible anyway. In this case a simple strategy would be random

attack, i.e. remove a randomly chosen P fraction of nodes, which

naturally serves as a benchmark for any other strategy. Here we

propose instead a random upstream attack strategy: randomly choose a

P fraction of nodes, and for each node remove one of its incoming

or upstream neighbors if it has one, otherwise remove the node

itself. A random downstream attack can be defined similarly, removing

the node to which the chosen node points to. In undirected

networks, a similar strategy has been proposed for efficient

immunization [45] and the early detection of contagious outbreaks

[46], relying on the statistical trend that randomly selected

neighbors have more links than the node itself [47,48]. In directed

networks we can prove that randomly selected upstream (or

downstream) neighbors have more outgoing (or incoming) links

than the node itself. Thus a random upstream (or downstream)

attack will remove more hubs and more links than the random

attack does. But the real reason why we expect a random upstream

attack to be efficient in a directed network is because Cc(i)§Cc(j)
for most edges (i?j), i.e. the control centrality of the starting node

Figure 3. The impact of different attack strategies on network controllability with respective to the random attack.

d:½rankStrategy{j
g (C0){rankRandom

g (C0)�=N with rankStrategy{j
g (C0) represents the generic dimension of controllable subspace after removing a P

fraction of nodes using strategy-j. The nodes are removed according to six different strategies. (Strategy-0) Random attack: randomly remove P
fraction of nodes. (Strategy-1 or 2) Random upstream (or downstream) attack: randomly choose P fraction of nodes, randomly remove one of their
upstream neighbors (or downstream neighbors). The results are averaged over 10 random choices of P fraction of nodes with error bars defined as
s.e.m. Lines are only a guide to the eye. (Strategy-3,4, or 5) Targeted attacks: remove the top P fraction of nodes according to their control centralities
(or in-degrees or out-degrees).
doi:10.1371/journal.pone.0044459.g003
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is usually no less than the ending node of a directed edge (see Fig.

S8). In DAGs, for any edge (i?j), we have strictly Cc(i)wCc(j).
Thus, the upstream neighbor of a node is expected to play a more

important or equal role in control than the node itself, a result

deeply rooted in the nature of the control problem, rather than the

hub status of the upstream nodes.

To show the efficiency of the random upstream attack we

compare its impact on fully controlled networks with several other

strategies. We start from a network that is fully controlled

(rankg(C)~N) via a minimum set of ND driver nodes. After the

attack a P faction of nodes are removed, denoting with rankg(C0)
the dimension of the controllable subspace of the damaged

network. We calculate rankg(C0) as a function of P, with P tuned

from 0 up to 1. Since the random attack serves as a natural

benchmark, we calculate the difference of rankg(C0) between a

given strategy and the random attack, denoted as

d~½rankStrategy{j
g (C0){rankRandom

g (C0)�=N. Obviously, the more

negative is d, the more efficient is the strategy compared to a fully

random attack. We find that for most networks random upstream

attack results in dv0 for 0vPv1, i.e. it causes more damage to

the network’s controllability than random attack (see Fig. 3b,c,d).

Moreover, random upstream attack typically is more efficient than

random downstream attack, even though in both cases we remove

more hubs and more links than in the random attack. This is due

to the fact that the upstream (or downstream) neighbors are

usually more (or less) ‘‘powerful’’ than the node itself.

The efficiency of the random upstream attack is even

comparable to targeted attacks (see Fig. 3). Since the former

requires only the knowledge of the network’s local structure rather

than any knowledge of the nodes’ centrality measures or any other

global information (i.e. the structure of the A matrix) while the

latter rely heavily on them, this finding indicates the advantage of

the random upstream attack. The fact that those targeted attacks

do not always show significant superiority over the random attacks

is intriguing and would be explored in future work. Notice that for

the intra-organization network all attack strategies fail in the sense

that d is either positive or very close to zero (Fig. 3a). This is due to

the fact this network is so dense (with mean degree SkT&58) that

we have Cc(i)~Cc(j)~N for almost all the edges (i?j).
Consequently, both random upstream and downstream attacks

are not efficient and the Cc-targeted attack shows almost the same

impact as the random attack. This result suggests that when the

network becomes very dense its controllability becomes extremely

robust against all kinds of attacks, consistent with our previous

result on the core percolation and the control robustness against

link removal [12]. We also tested those attack strategies on model

networks (see Fig. S9, S10 and S11). The results are qualitatively

consistent with what we observed in real networks.

Discussion

In sum, we study the control centrality of single node in complex

networks and find that it is related to the underlying hierarchical

structure of networks. The presented results help us better

understand the controllability of complex networks and design an

efficient attack strategy against network control. Due to the duality of

controllability and observability [18,19], a similar centrality measure

can be defined to quantify the ability of a single node in observing

the whole system, i.e. inferring the state of the whole system.

Supporting Information

Figure S1 Calculation of control centrality (or the
generic dimension of the controllable subspace). (a) The

original controlled system is represented by a digraph G(A,B). (b)

The modified digraph G’(A,B) used in solving the linear

programming. Dotted and solid lines are assigned with weight

wij~0 and 1, respectively. The maximum-weight cycle partition is

shown in red, which has weight 3, corresponding to the generic

dimension of controllable subspace by controlling node x1 or

equivalently the control centrality of node x1.

(TIF)

Figure S2 Control centrality of nodes in several real-
world networks and their randomized counterparts:
rand-ER (red), rand-Degree (green). (a) Intra-organizational

network of a manufacturing company. (b) Hyperlinks between

weblogs on US politics. (c) Email network in a university. (d)

Ownership network of US corporations.

(TIF)

Figure S3 Control centrality vs. the number of reach-
able nodes. The real networks are the same as used in Fig. S2.

(TIF)

Figure S4 Any directed network has a underlying
hierarchical structure. (a) A directed network of 50 nodes.

There are seven SCCs highlighted in different colors. The nodes

are colored according to their control centrality. The edge (i?j) is

colored in green, red, or blue if Cc(i) is larger than, smaller than,

or equal to Cc(j), respectively. For all edges with liwlj , we have

Cc(i)wCc(j). But this is not true for general node pairs fi, jg. (b)

The condensation of the network in (a) is a DAG with three layers.

Each node in the DAG represents a SCC in the original network.

(TIF)

Figure S5 Even if a lower node is accessible from a
higher node, it is still possible that the control centrality
of the higher node is smaller than or equal to the lower
one.

(TIF)

Figure S6 Control centrality as a function of layer index
in several real-world networks. The real networks are the

same as used in Fig. S2. Symbol (‘z’) represents the average value

of Cc with error bar defined as the Cc range, i.e. ½Cmin
c ,Cmax

c �, for

all the nodes in the same layer of the largest connected component

of the network. Dotted lines represents Cc(i)~li.

(TIF)

Figure S7 Variation of the hierarchical structure and its
impact on the distribution of control centrality. (a)

Number of layers (NL). (b) Size of the giant SCC. Both ER and

SF networks are generated from the Chung-Lu model with

N~104 and the results are averaged over 100 realizations with

error bars defined as s.e.m. Dotted lines are only a guide to the

eye. (c,d,e) Distribution of control centrality for ER networks at

different SkT values (SkT~1,2,8).

(TIF)

Figure S8 Fraction of edges (i?j) which satisfy
Cc(i)wCc(j). Fractions of edges (i?j) with Cc(i)wCc(j),
Cc(i)vCc(j), and Cc(i)~Cc(j), are denoted as fw, fv, and f~,

respectively. Both ER and SF networks are generated from the

Chung-Lu model with N~103 and the results are averaged over

100 realizations with error bars defined as s.e.m. Dotted lines are

only a guide to the eye. (a) ER network. (b) SF network with

c~2:5. (c) SF network with c~2:1.

(TIF)

Figure S9 Impact of different attack strategies on
network controllability. rankStrategy{j

g (C0) represents the

Control Centrality and Hierarchical Structure
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generic dimension of controllable subspace after removing a P fraction

of nodes using strategy-j. The nodes are removed according to 10

different strategies (see text). Both ER and SF networks are generated

from the Chung-Lu model with N~103 and the results are averaged

over 10 random choices of P fraction of nodes with error bars defined

as s.e.m. Lines are only a guide to the eye.

(TIF)

Figure S10 Impact of different attack strategies on
network controllability with respect to random attack.

d:½rankStrategy{j
g (C0){rankStrategy{0

g (C0)�=N denotes the gener-

ic dimension difference of the controllable subspace after removing

a P fraction of nodes using strategy-j and random attack. The

more negative is d, the more efficient is the strategy compared to a

random attack. Symbols are the same as used in Fig. S9.

(TIF)

Figure S11 Impact of different attack strategies on
network connectivity. nlc represents the normalized size of

the largest connected component of the network after removing a

P fraction of nodes. The nodes are removed according to 10

different strategies (see text). Both ER and SF networks are

generated from the Chung-Lu model with N~103 and the results

are averaged over 10 random choices of P fraction of nodes with

error bars defined as s.e.m. Lines are only a guide to the eye.

(TIF)
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