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Abstract

Chromosomal translocations are frequent features of cancer genomes that contribute to disease progression. These
rearrangements result from formation and illegitimate repair of DNA double-strand breaks (DSBs), a process that requires
spatial colocalization of chromosomal breakpoints. The ‘‘contact first’’ hypothesis suggests that translocation partners
colocalize in the nuclei of normal cells, prior to rearrangement. It is unclear, however, the extent to which spatial
interactions based on three-dimensional genome architecture contribute to chromosomal rearrangements in human
disease. Here we intersect Hi-C maps of three-dimensional chromosome conformation with collections of 1,533
chromosomal translocations from cancer and germline genomes. We show that many translocation-prone pairs of regions
genome-wide, including the cancer translocation partners BCR-ABL and MYC-IGH, display elevated Hi-C contact frequencies
in normal human cells. Considering tissue specificity, we find that translocation breakpoints reported in human hematologic
malignancies have higher Hi-C contact frequencies in lymphoid cells than those reported in sarcomas and epithelial tumors.
However, translocations from multiple tissue types show significant correlation with Hi-C contact frequencies, suggesting
that both tissue-specific and universal features of chromatin structure contribute to chromosomal alterations. Our results
demonstrate that three-dimensional genome architecture shapes the landscape of rearrangements directly observed in
human disease and establish Hi-C as a key method for dissecting these effects.
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Introduction

Chromosomal translocations affect cellular function by chang-

ing gene copy number, creating fusion genes with aberrant

function, or repositioning regulatory elements. Classic examples of

recurrent genomic rearrangements in cancer are the BCR-ABL

translocation (observed in .90% of cases of chronic myeloid

leukemia) and the MYC-IGH fusion (observed in ,90% of cases of

Burkitt’s lymphoma) [1–4]. While these alterations play important

roles in driving tumorigenesis [5] and directing targeted therapy in

cancer patients [6], the factors that contribute to the formation of

the thousands of translocations observed in human disease are not

fully understood [7].

Repeated observation of specific translocations, as well as the

existence of rearrangement hotspots in cancer [8], suggests that

intrinsic cellular and genomic features predispose certain regions

to translocate. Since fusion of two DSBs requires spatial contact,

one attractive hypothesis is that higher-order genome organization

– that is, the physical proximity of chromosomes in the nucleus

prior to translocation – contributes to the occurrence of specific

translocations [9,10]. Indeed, work over the last decade has used

fluorescence in situ hybridization (FISH) to show that the genes

involved in several recurrent translocations are positioned

relatively close to one another in the nuclei of normal cells [9–

14]. However, current imaging methods lack the throughput

needed to determine whether this phenomenon is broadly

applicable, beyond anecdotal examples, to the thousands of

translocations observed in cancer. In addition, the size of genomic

regions involved in these interactions, as well as their tissue-

specificity, remains uncharacterized.

While answers to these questions on a genome scale were

previously unattainable, Dekker and colleagues recently developed

a next-generation sequencing-based method, Hi-C, to describe

contact probabilities across the entire human genome [15],

providing a powerful new tool to investigate the relationship

between 3D chromatin structure and translocation partner

preferences. The combination of Hi-C and high-throughput

translocation sequencing in a mouse pro-B cell line revealed that,

given a uniform distribution of DSBs induced by random

mutagenesis, frequencies of translocations between chromosomes
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are correlated with Hi-C contact probability prior to selection

[16]. This result provided the first genome-wide demonstration

that spatial proximity of loci influences patterns of translocations.

However, the contributions of genome architecture to transloca-

tions observed in primary disease, as opposed to translocations

induced experimentally, remains unclear.

To address this question, we leverage Hi-C to systematically test

the hypothesis that human disease translocations occur between

spatially proximal regions of the genome, integrating a total of

1,533 chromosomal rearrangements from both cytogenetic and

sequencing-derived datasets. We find that many translocation

partners are located in broad chromatin domains that are spatially

proximal in normal cells, thus predisposing them to chromosomal

rearrangements. Hi-C also identifies existing rearrangements in

malignant cells and enables fine-mapping of chromosomal break-

points. Our results support a broad role for three-dimensional

genome structure in translocation-partner selection and establish

Hi-C as a key method for dissecting the structural features of the

genome that contribute to human disease.

Results

Strategy
Although previous studies have demonstrated that genome

organization influences translocation partner selection, we won-

dered whether genome architecture contributes to rearrangements

observed in human disease. To address this question systematically

and on a genome-wide basis, we set out to test large human

translocation datasets for evidence of proximity-mediated contact

in genome-wide interaction maps for GM06990 lymphoblastoid

and K562 erythroleukemic cell lines (Figure 1) [15]. Previous

iterations of chromosome conformation capture technology have

succeeded in identifying proximities between genes and regulatory

elements [17,18] as well as between actively transcribed or

repressed genes [19,20]. It was unclear, however, whether Hi-C

could detect spatial proximities between translocation-prone loci

(henceforth translocation partners). Thus we began by analyzing Hi-C

data at translocation loci whose spatial relationships have been

previously established by FISH.

Validating Hi-C as a method for detecting proximity of
translocation partners

Generated through a combination of proximity-mediated

ligation and high-throughput sequencing, Hi-C interaction maps

provide two-dimensional matrices of contact scores between

megabase-sized regions on chromosome pairs. To verify that Hi-

C faithfully detects proximity of known translocation loci, we first

examined the canonical translocation partners BCR and ABL,

which form an unbalanced, often-amplified rearrangement in the

K562 human cancer cell line (Figure 2A) and have been shown by

FISH to colocalize in the nuclei of multiple normal hematopoietic

cell types prior to the translocation event [9,21]. In K562 cells,

where the BCR-ABL translocation has already occurred, Hi-C

detected strong signal (1,996 reads) in the 1-Mb bin containing

BCR-ABL (Figure 2B). We used Hi-C data to refine the likely

breakpoint interval to the 50-kb regions chr9:132,550,000–

132,600,000 and chr22:21,950,000–22,000,000, consistent with

prior breakpoint identification for the BCR-ABL translocation

[22]. Interestingly, the raw observed Hi-C counts showed a

characteristic pattern for an unbalanced translocation, with peak

signal at a corner decaying in a single direction along both

chromosomes (Text S1, Figure S1). This signature was also

present at two other genomic loci at which translocations have

been previously reported in cytogenetic studies of the K562 cell

line; Hi-C data enabled the fine-mapping of the likely breakpoint

regions for these potentially functional rearrangements for the first

time (Text S1, Figure S1, Figure S2, Table S1).

Having demonstrated that the Hi-C data provides robust

evidence for translocations that have already occurred, we asked

whether there would be evidence for spatial proximity of BCR and

ABL in cells prior to translocation. In immortalized, karyotypically

normal lymphoblastoid cells (GM06990) that do not harbor the

translocation (Figure 2A), the signal in the megabase-bin

containing BCR-ABL was markedly reduced (10 reads, Figure 2C)

as compared to the signal seen in K562 cells. We expected this

large difference in raw read counts between the two cell lines

because these regions of chromosomes 9 and 22 interact in cis in

K562 and trans in GM06990.

While the raw read data hinted at an enrichment of contact

frequency between the BCR and ABL loci (Figure 2C), the read

count observed in a 1-Mb bin in Hi-C is affected by confounding

factors such as GC content, abundance of restriction enzyme sites,

and sequence mappability [15,23]. To account for these biases in

Hi-C data, we applied the normalization scheme developed by

Yaffe and Tanay [23]. In the rest of this work, we represent

proximities using the Hi-C Score, defined as the log2 enrichment of

observed reads to expected reads using a probabilistic correction

model as described [23]. We note, however, that we obtained

similar results with the original approach to Hi-C normalization

described by Dekker and colleagues (data not shown) [15].

Using a normalized contact map of Hi-C scores, we again

examined BCR-ABL in GM06990 cells (Figure 2D). In the

karyotypically normal GM06990 cell line, the megabase bins

containing BCR and ABL displayed higher proximity compared to

other sites on the same chromosomes. Furthermore, the region of

high proximity extended to include much of 9q34 and 22q11.

Compared to random regions of the same size on chromosomes 9

and 22, the chromosomal bands containing BCR and ABL fell

above the 95th percentile of proximity scores in GM06990 cells.

This suggested that Hi-C detected significant contact frequencies

between the translocation-prone BCR and ABL loci in normal cells

t(12;19)(q13;p13)
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Figure 1. Schematic diagram of our approach.
doi:10.1371/journal.pone.0044196.g001
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above the background distribution of Hi-C scores between loci on

chromosomes 9 and 22.

As an additional validation that Hi-C could accurately detect

the spatial proximity of translocation-prone loci, we examined the

loci involved in the t(8;14)(q24;q32) translocation, a rearrangement

associated with Burkitt’s lymphoma that brings the oncogene MYC

under the control of activating enhancer elements at the IGH

locus. Osborne and colleagues demonstrated by FISH that

induction of B lymphocytes causes relocation of Myc and Igh to

common transcription factories, bringing these translocating

regions into close proximity [24]. In Hi-C data derived from

lymphoblastoid cells, the chromosomal bands including MYC and

IGH showed higher contact frequency than other regions of the

same size on the same chromosome pair, thus representing a local

hotspot of proximity between chromosomes 8 and 14 (Figure 2E).

In comparison, the proximity scores for the control loci MYC-

TGFBR2 and IGH-TGFBR2, which are not observed to translocate

in cancer, did not differ significantly from background. Notably,

these results exactly paralleled the FISH results obtained for the

same loci in a similar cell type [12]. We conclude that Hi-C can

specifically detect the proximity of translocation partners in

karyotypically normal cells.

Many translocation partners are spatially proximal in the
nucleus

Having found that Hi-C is suitable for examination of

proximity-mediated interactions between translocation-prone loci,

we then proceeded to test the main hypothesis of this study: that

spatial proximity influences the formation of many translocations

observed in human disease genome-wide. First, we gathered four

datasets totaling 1,533 human chromosomal rearrangements

(Table 1). Identified by cytogenetic and high-throughput sequenc-

ing modalities in cancer and germline genomes from multiple

tissues, these four genome-wide datasets broadly sampled the space

of chromosomal translocations observed in human disease

(Methods). Importantly, the Mitelman Database and multiple

myeloma datasets contained hundreds of inter-chromosomal

translocations from lymphoid-derived malignancies, matching

the cell lineage of our lymphoblastoid Hi-C data. For each human

disease translocation, we mapped the chromosomal bands

implicated (typically representing multi-megabase-sized regions)

to genomic coordinates, and then calculated average Hi-C contact

frequencies across each pair of partner regions. To statistically

evaluate sets of translocations for evidence of increased spatial

proximity, we devised a permutation-based approach that

corrected for potential biases including 1) systematic differences

in association between pairs of chromosomes, 2) regions of the

genome that have strong proximity signal with many other

regions, 3) sizes and positional biases of regions in our

translocation sets, and 4) broad chromatin features (Figure 1,

Methods).

In all four translocation sets tested (Mitelman recurrent cancer,

multiple myeloma, prostate cancer, and rare Mendelian translo-

cations), we found that translocation partners have higher Hi-C

contact frequencies than permuted regions with similar charac-

teristics (Table 1, Figure S3). This signal was present in Hi-C

contact maps from the karyotypically-normal GM06990 lympho-

blastoid cells, suggesting that spatial proximity of disease

translocation partners precedes the rearrangement. Although the

magnitude of the effect was incremental compared to the overall

distribution of trans Hi-C scores (Figure S4), the finding was

statistically significant (P,0.001, permutation test) in all four

datasets (Table 1; Figure 3A, C). A closer examination of the

distribution of proximity scores for true and permuted transloca-

Figure 2. Hi-C detects interaction between known translocation partners BCR-ABL and MYC-IGH. (A) Chromosomes 9 and 22 are physically
joined in K562 (left), but not in GM06990 (right). (B) Hi-C contact map of chromosomes 9 and 22 in K562 cells. Inset shows the chromosomal bands
containing BCR (22q11) and ABL (9q34). High read counts identify the site of the BCR-ABL translocation. (C) Hi-C contact maps of chromosomes 9 and
22 in GM06990 cells, which show a relatively low read count in the BCR-ABL megabase bin compared to K562. (D) Normalized Hi-C contact map for
chromosomes 9 and 22 in GM06990 shows elevated signal in the chromosomal bands containing BCR and ABL. (E) Centered interaction scores for the
chromosomal bands containing the translocation partners MYC-IGH as well as the control partners MYC-TGFBR2 and IGH-TGFBR2, compared to the
background distribution of scores on the same chromosome pairs. Error bars represent the 5th and 95th percentiles.
doi:10.1371/journal.pone.0044196.g002
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tions showed that this signal arose from the sum of small effects

across a broad range of translocations, rather than from large

effects from a smaller number of rearrangements (Figure 3B, D;

Figure S3). When we performed the same analysis using the Hi-C

contact map generated with a different restriction enzyme in the

same cell line, we observed nearly identical results (Table S2).

In addition to examining sets of translocations, we tested

individual translocation partners for increased spatial proximity by

generating permuted regions for each translocation. Consistent

with the observation that the significant group signal was due to a

sum of small effects, relatively few translocations showed

individually significant contact frequencies (Table S3). For those

translocations that were individually significant, spatial proximity

may play a particularly important role in their formation. Two of

the high-scoring translocations included 19p13, the site of the

TCF3 gene, which is frequently found translocated in acute

lymphoblastic leukemia (Figure 3E) [25]. One individually

significant translocation involved the chromosomal band contain-

ing the IGH locus: t(4;14)(p16;q32) is frequently found in multiple

myeloma patients, causing dysregulated expression of FGFR3 and/

or WHSC1 (Figure 3F) [26,27]. Our results suggest that for these

individual translocations, spatial proximity prior to translocation

may be especially important. These may be strong candidate

translocations for experimental investigation of this phenomenon.

Our analysis supports a model where translocation partners

reside in broad interacting domains that span multi-megabase

chromosomal regions (Figure 3E, F). These broad interactions,

occurring across an aggregate cell population, bring translocation

partners into close spatial proximity, increasing the likelihood of

rearrangement. Still, we wondered whether Hi-C might detect

significant smaller-scale proximities, on the scale of a megabase.

We mapped translocations from the whole-genome sequencing

studies to megabase-sized bins and reran our four permutation

tests on this dataset, comparing each translocation to other

megabase-sized pairs of regions. We found that the one-megabase-

bins containing translocation breakpoints were more spatially

proximal than expected by chance in both multiple myeloma and

prostate cancer (Figure S3). While suggestive, we cannot defini-

tively conclude that the 1-Mb bins containing the translocations

are more frequently in contact than the broader chromosomal

bands containing them due to the sparse read-density at this scale.

Tissue-specific effects
Multiple lines of evidence suggest that genome organization is

tissue-specific and context-dependent. Gene-level or chromosomal

contacts exhibit reproducible changes across tissue types, time

points [21,28,29], and perturbations [14,30]. We therefore

hypothesized that evidence for spatial proximity in Hi-C data

from a lymphoblastoid cell line would be highest for translocation

partners observed in hematologic malignancies. Indeed, we found

that recurrent translocations observed in blood cancers in the

Mitelman database displayed higher Hi-C contact frequencies

than translocations observed in non-blood tumors (P = 261023,

Wilcoxon rank-sum test). For example, the translocation partners

for t(12;15)(p13;q15), a rearrangement found in acute lympho-

blastic leukemia and lymphoblastic lymphoma, showed much

more significant proximity (P,0.05, permutation test) in

GM06990 cells than another pair of translocating loci on the

same chromosomes, t(12;15)(p13;q26), found in fibrosarcoma

(P = 0.28, permutation test). These results suggest that tissue-

specific changes in genome organization may predispose specific

regions to translocate in different malignancies. At the same time,

however, the significantly elevated Hi-C contact frequencies

between translocation partners in non-matching cell types implies
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the presence of universal features of spatial genome organization.

Additional Hi-C experiments in multiple matched cell types may

help to elucidate lineage-dependent variation in global chromo-

somal conformation and its contribution to translocation partner

selection.

Genomic features of translocation breakpoints
One explanation for the observed spatial proximity between

translocation partners is that these regions have preferentially high

gene content, or lie in the open chromatin compartment,

rendering them easily accessible and mutable. We tested this

and found that translocation breakpoints were significantly

enriched for gene-rich, euchromatic regions in all four datasets

(Figure 4A, B), consistent with the biased occurrence of DSBs in

transcriptionally active chromatin [31,32]. To determine whether

translocations partners have higher contact frequencies compared

to other regions of similar chromatin state, we repeated our

permutation tests controlling for chromatin compartment (open

versus closed, see Methods). We found that translocation partners

still are more spatially proximal than expected by chance,

although the significance of this finding was reduced across all

datasets (Table S4). Translocations whose partners resided in the

open chromatin compartment were more significantly spatially

proximal than translocations with one or both partners in the

closed compartment (Figure 4C). The increased contact frequen-

cies and DSB occurrences in transcriptionally active chromatin

may contribute to the observation that tissue-matched transloca-

tions correlate more closely with Hi-C signal.

Discussion

In this work, we provide evidence that many translocation

breakpoints observed in human diseases have high Hi-C contact

frequencies in normal cells, suggesting a broad role for 3D

chromatin organization in determining the frequency of translo-

cations between partner loci. Previous data about this phenom-

enon is derived primarily from FISH [9,12–14,33], a technique

that, although revealing, can investigate only a limited number of

loci simultaneously. Chromosome conformation capture with Hi-

C, in contrast, allows genome-wide, unbiased investigation of

proximity-mediated interactions between translocation partners

[16]. Since Hi-C measures contact frequencies rather than average

nuclear distances, this approach provides a test for the ‘‘contact

first’’ model of genomic rearrangements.

We find that Hi-C detects frequent proximity of hundreds of

translocation-prone loci, including 1) translocations recurrently

observed by cytogenetics in primary cancers from multiple tissues,

2) unbiased collections of rearrangements detected in tumors by

next-generation sequencing, and 3) translocations associated with

rare Mendelian disorders. In all cases, we detect a subtle but

significant enrichment for translocation-partner contacts when

compared to a null distribution. Recurrent translocations from a

matched cell lineage (hematopoietic malignancies) show a stronger

Hi-C contact signal than translocations from tumors derived from

other lineages, suggesting that tissue-specific chromosome confor-

mation may contribute to rearrangement partner selection. We

also identify several individual translocations that show particu-

larly strong Hi-C contact frequencies, including t(12;19)(p13;p13)

and t(4;14)(p16.3;q32.33), which are both recurrently found in

multiple hematopoietic tumor types. We thus predict that these
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(Permutation Method 1, see Methods). Red arrow indicates the mean of the proximity scores for n real translocations. Cumulative distribution plots (B
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Heatmaps show Hi-C contact maps in GM06990 cells for two significant individual translocations: t(12;19)(q13;p13) (E) in the Mitelman Database and
t(4;14)(p16.3;q32.33) (F) in the multiple myeloma dataset. Black boxes indicate the chromosomal bands containing the translocation breakpoints.
doi:10.1371/journal.pone.0044196.g003
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individual translocations, particularly those that do not involve the

IGH locus (see below), have a particularly high probability of

rearrangement due to their increased frequency of contact.

Although translocations often occur in areas of high Hi-C

contact frequency, many translocations occur in areas of low or

average Hi-C contact frequency. This may occur for several

reasons. First, it is possible that even though the ‘‘contact first’’

model is responsible for the occurrence of some translocations, this

signal cannot be detected in Hi-C data from a population of cells.

Spatial genome organization may be unique to individual cells or

sub-populations of cells, and thus aggregate Hi-C signal may fail to

capture spatial interaction occurring in only a few cells (and it may

be these cells that go on to form translocations under strong

positive selection in the cancer).

Second, translocations that do not show an elevated Hi-C signal

in our analysis may have occurred for reasons entirely unrelated to

spatial co-localization. While we directly test the ‘‘contact first’’

model, spatial proximity is certainly not a sufficient condition for

observing a translocation in disease genomes [7]. Some translo-

cations may occur under a ‘‘breakage-first’’ model, whereby

cellular mechanisms exist to co-localize DSB ends following

breakage [34]. The frequency of observed translocation is also

affected by multiple other factors, potentially including DSB

susceptibility [16], DSB mobility [34], spatial heterogeneity among

cells, positive selection, and ascertainment bias. To dissect the

contributions of other cellular processes to translocation partner

selection, investigators will need to examine concurrent genome-

wide profiles of these phenomena in the same cellular system.

It is also worth nothing that while we detect a significant

enrichment of spatial proximity between observed translocation

partners, the datasets analyzed here were not sufficient to directly

test whether the formation frequencies of these translocations are

correlated with the contact frequencies between genomic partners,

as has been shown experimentally for induced translocations [16].

This is because the true frequency with which translocations form is

quite different from the frequency with which they have been

observed in clinical databases. Observed frequencies are biased by

factors including positive selection during neoplastic progression,

the limited sensitivity of current methods to detect rare

rearrangements in clinical samples, and ascertainment biases

intrinsic to non-whole genome testing and clinical sample

collection. While we do, despite these factors, observe significant

correlation between the number of reports of a translocation in the

Mitelman database and the Hi-C interaction score (Figure S5), we

do not detect significant correlation (T-test p-value = 0.532)

between the number of observations of a translocation and the Hi-

C interaction permutation p-value (the more robust measure of

spatial proximity).

In lymphoid malignancies, the spectrum of observed transloca-

tions is drastically altered by the presence of the DSB-inducing

enzyme AID, which contributes to the formation of rearrange-

ments involving loci throughout the genome, particularly the Ig

locus [31,32]. The formation of DSBs in these regions may then be

a dominant force in determining which loci rearrange. Our results

suggest that proximity plays a role in the formation of

translocations in other tumor types as well. Indeed, given the

absence of AID in non-lymphoid tissues, proximity might play a

relatively larger role in determining the landscape of observed

rearrangements in non-lymphoid cancers. Thus we suggest that

future investigations of spatial proximity in cancer will benefit

from examination of chromatin architecture in non-lymphoid

tissues.

In an important methodological demonstration, we show the

utility of Hi-C data in the discovery and fine-mapping of existing

translocations in malignant cells genome-wide (Figure 2B, Fig-

ure S1), in accord with previous work using the targeted 4C

method [35]. This finding has two key implications for future

genome-wide analyses of chromatin structure in cancer cells. First,

Hi-C data is able to accurately detect translocation breakpoints,

allowing genome-wide analysis of structural rearrangements.

Indeed, Hi-C data may be able to reconstruct the complete

karyotype of a cancer cell, including deletions, amplifications,

inversions, and other chromosomal alterations. Second, this

analysis will be critical in filtering out the effects of chromosomal

translocations that might interfere with the study of other trans

proximity-mediated interactions in future Hi-C studies.

Given the role of spatial proximity in translocation partner

selection demonstrated in this study, the molecular mechanisms

that govern three-dimensional genomic architecture in normal and

cancerous cells may prove important in our understanding of

cancer etiology. Work to characterize the interactions between

chromosome conformation and triggers for rearrangements will

help to untangle the molecular processes of damage and aberrant

repair that contribute to oncogenic transformation.
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Methods

Hi-C chromosomal conformation capture
We used public Hi-C data (GEO accession GSE18199)

generated to interrogate the long-range genomic interactions in

the GM06990 lymphoblastoid and K562 erythroleukemic cell

lines [15]. For raw count data, we used the mapped reads and the

one-megabase binning scheme for the data generated using

HindIII as described [15]. To control for differences in coverage,

location of restriction enzyme recognition sites, mappability, and

other features unique to each one-megabase bin, we obtained the

normalized contact maps generated by Yaffe and Tanay [23].

Briefly, this normalization method learns a probabilistic correction

model based on uniquely-mapped reads in each Hi-C dataset,

then applies a linear smoothing filter to calculate the number of

reads expected in each 1-Mb bin. When compared to previous

normalization approaches, this method significantly improves the

correlation of the 1-Mb genome-wide contact maps generated

with different restriction enzymes. We call the log ratio of observed

to expected read counts under this model the Hi-C Score. We

applied the log variance-stabilizing transformation to reduce the

contributions of strong outliers when calculating summary

statistics over a region.

Translocation datasets
We collected four large inter-chromosomal translocation

datasets, derived both from karyotyping and high-throughput

sequencing studies. First, we collected a set of recurrent trans-

chromosomal cancer translocations that have been observed in

multiple patient cases [36]. The Mitelman Database describes

translocations using chromosomal bands; precise breakpoints were

not available. The average size of defined chromosomal translo-

cation bands in this database was large (,10 Mb). While positive

selection modifies the frequency of cancer translocations, partic-

ularly driver rearrangements, we expected that many of these

recurrent translocations were predisposed to recur due to factors

such as genome organization.

Translocations from multiple myeloma and prostate cancer

were identified from whole-genome or exome sequences using the

dRanger algorithm [37,38]. We used translocations with at least

three supporting reads in our analysis. Compared to the Mitelman

Database, we expected catalogs of translocations in primary

tumors to contain a higher frequency of passenger rearrange-

ments, as well as a higher proportion of private mutations that

occurred stochastically rather than systematically due to predis-

posing factors.

Finally, we collected all two-partner inter-chromosomal trans-

locations (n = 947) associated with Mendelian syndromes from the

Disease Associated Chromosomal Rearrangement Database

(https://www1.hgu.mrc.ac.uk/Softdata/Translocation/). Again,

precise breakpoints were not available for this dataset. Because

these translocations can cause severe phenotypes, many of these

mutations are not transmitted through generations: these diseases,

though rare, are caused by recurrent de novo translocations. In

addition, these genomic rearrangements do not experience the

same positive selective pressures as the cancer translocations,

complementing the previous datasets.

For the first Mitelman and Mendelian translocation databases,

we mapped the cytogenetic bands (e.g. t(9;22)(p13;q13)) to human

genome coordinates using the UCSC Genome Browser Build

hg18. We considered 3-way translocations as 3 distinct two-way

translocations, and excluded all translocations involving more than

3 partners. We also excluded translocations involving entire

chromosomal arms, and did not include any intra-chromosomal

rearrangements (e.g., duplications or inversions).

Chromatin compartment and gene content
We assigned regions to chromatin compartments using principal

component analysis on the Tanay-normalized contact map as

described [15]. Positive and negative scores indicate open and

closed chromatin compartments, respectively, and correlate with

other genomic features such as gene content, histone modification,

and DNase I hypersensitivity. For each translocation region, we

calculated a compartment score as the mean of the principal

component values for all overlapping megabase bins. We

represented gene content as the percentage of bases covered by

RefSeq genes, including both exons and introns.

Permutation testing
We employed a permutation strategy to search Hi-C data for

evidence of proximity between translocation breakpoints. We

calculated the proximity score for each translocation region as the

mean normalized Hi-C score of all 1-Mb bins overlapping the

chromosomal band involved in the translocation. When calculat-

ing these summary statistics, we did not include bins that 1)

overlapped centromeres or 2) had no coverage across the entire

dataset. To assess the significance of individual translocations, we

generated a null distribution by considering 1,000 random pairs of

regions with one of four permutation methods:

1) We selected regions of identical size from the same

chromosome pair. This within-chromosome permutation

scheme controlled for the systematic differences in associ-

ation between pairs of chromosomes: smaller, gene-rich

chromosomes, for instance, tend to group together [15].

2) We fixed one region, and selected as a partner a random

region of identical size on the same chromosome. This

controlled for features of the translocation partners that

might predispose them to interact with many other regions

on the same chromosome.

3) We fixed one region, and selected as a partner a random

region of identical size on any other chromosome. This

controlled for features of the translocation partners that

might predispose them to interact with many other regions

across the genome.

4) We fixed one region, and selected as a partner a random

region from the entire set of translocations partners that did

not fall on the same chromosome as the fixed partner.

We observed similar results for all four permutation methods

(Table S4); we present results from Permutation Method 1 in the

main text. In all cases where we selected random regions, we

required that less than 50% of the bins in the random region

overlapped with centromeric regions or bins with no coverage

across the entire dataset.

For each individual translocation, we calculated the p-value for

each translocation as the fraction of permuted locations that

exceeded its proximity score, and corrected for multiple hypothesis

testing using the Benjamini-Hochberg method. We assessed the

significance of each translocation dataset as a group using a similar

approach. For each of our four datasets, we generated 1,000

randomized datasets that preserved the overall properties of the

group of translocations: the chromosome pairings and region sizes

matched the original set. We calculated a summary score for each

of these randomized datasets that represented the mean interac-

tion score across all translocations, and calculated a p-value by

comparing these statistics to the null distributions. We also assessed
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the differences between the proximity scores of the true and

randomized data distributions using the two-sided Student’s t test

and Wilcoxon rank sum test to monitor the degree to which

outliers drove the result in the permutation scheme.

Permutations within chromatin compartment
We also evaluated the significance of our results by controlling

for chromatin compartment in Permutation Methods 1–3. To

accomplish this, we allowed swapping only within compartments.

For each translocation partner, we calculated the chromatin score

and chosen randomly from similarly-sized regions whose chroma-

tin scores had the same sign.

Fine mapping
To identify likely chromosomal breakpoints responsible for

previously reported translocations, we first identified the

1 Mb61 Mb bin across the chromosome pair with the highest

total normalized read count. We then selected all reads mapping

to a 3 Mb63 Mb window around this bin. We then counted the

number of observed reads mapping to 50 Kb650 Kb bins, and

looked for a pattern characteristic of unbalanced translocation. We

then selected the corner-most 50 Kb bin, and counted reads

mapping to 1 Kb61 Kb regions within this larger bin. In some

cases, the read count was sufficient to allow breakpoint identifi-

cation at this fine scale, but in other cases read coverage was too

sparse to further localize the breakpoint. In all cases, resolution is

limited by the density of HindIII restriction sites.

Supporting Information

Figure S1 Fine mapping of previously-reported inter-chromo-

some translocations in K562. Heatmaps showing the observed

number of reads mapping to 50 kb650 kb bins at the BCR-ABL

locus (A), the CDC25A-GRID1 locus (B), the NUP214-XKR3 locus

(C), three sites of previously reported inter-chromosomal translo-

cations in the K562 cell line.

(EPS)

Figure S2 Fine mapping of previously reported translocations in

the K562 cell line. Heatmaps showing the observed number of

reads mapping to 50 Kb bins at selected regions of (A) BCR-ABL

and (B) the novel t(3;10) CDC25A-GRID1 translocation. (C) Gene

expression for dysregulated translocation partners (1), normally-

regulated translocation partners (2), and constitutively-expressed

myeloid genes (3) in MV4-11 (AML) and K562 (CML) cell lines.

Expression values for each gene are normalized to the median

expression for all genes. Note that XKR3, the translocation partner

of NUP214, is not assayed on this microarray platform. (D) CML-

to-AML log2 fold-change for all assayed genes, sorted in increasing

order. Red lines indicate the fold-change for labeled genes. The

dysregulated translocation partners CDC25A, NUP214, and ABL1

are highly upregulated in CML, all falling in the upper quartile of

genes in terms of fold-change. (E) ENCODE ChIP-seq data for

transcription factors and H3K4me1 near the predicted GRID1

breakpoint [39]. Color for H3K4me1 corresponds to cell type.

Color for transcription factor data is proportional to the ChIP-seq

signal. Data was viewed with the UCSC Genome Browser,

genome build hg18.

(EPS)

Figure S3 Permutation test results for all databases. Histograms

(gray) represent the mean proximity scores within each of 1,000

permuted sets of translocations (Permutation Method 1) that

preserve the characteristics of the true set. Red line denotes the

mean proximity score of the true translocation set. Cumulative

frequency plots compare the score distributions for observed and

permuted translocations.

(TIFF)

Figure S4 Distribution of Hi-C Scores for all trans bins.

Histogram of Hi-C scores (log2 observed/expected read counts)

for all one-megabase trans-chromosomal bins in GM06990.

Expected read counts are calculated on a per-bin basis to control

for differences in coverage, mappability, and HindIII restriction

sites (see Methods).

(TIFF)

Figure S5 Correlation between translocation frequency and

contact frequency for Mitelman translocations. Boxplots of (A)

permutation p-values and (B) normalized Hi-C scores for

translocations binned by number of occurrences in the Mitelman

database.

(EPS)

Text S1 Hi-C fine-mapping of translocations in the K562 cell

line.

(PDF)

Table S1 Fine-mapping known K562 translocations.

(PDF)

Table S2 Individual translocation-prone loci that significantly

colocalize in normal nuclei.

(PDF)

Table S3 Permutation results for NcoI Hi-C data.

(PDF)

Table S4 Permutation results after controlling for chromatin

compartment (HindIII).

(PDF)
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