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Cytotoxic lymphocytes (CTLs) traffic through tissues in search of antigen and
mount protective immune responses against viral infections and cancer. While molecular
mechanisms of CTL antiviral effector functions have been established in vitro, they have
been defined in the absence of physiological dynamics and migration. Furthermore, long-
term dynamics of single cells have been inaccessible in vivo, where brief imaging durations
have been achieved (-30-60 min). Presently, several key aspects of CTL dynamics and
function remain unknown: whether individual CTLs migrating within tissues kill multiple
targets, if CTLs exhibit spatiotemporal coordination of effector functions, or if migrating
CTLs effect these functions in different compartments. Thus, a mechanistic understanding
of multidimensional CTL function might directly inform therapeutic strategies.

In this thesis, we first developed an approach for long-term high-speed optical
imaging of cellular dynamics for continuous periods of 24 hours. HIV-specific CTLs were
visualized as they encountered CD4+ target cells within a three-dimensional extracellular
matrix tissue model supporting migration of both CTLs and targets. Using this approach,
we found that high-avidity CTLs engaged, arrested, and killed the first target encountered
with near-perfect efficiency. These CTLs remained in contact with dead targets for hours,
accumulating TCR signals and upregulating antiviral cytokine and chemokine secretion
for >12 hours, but were refractory to killing additional targets. By contrast, lower-avidity
CTLs exhibited poor efficiency and target migration directly impeded CTL killing. Thus,
high-avidity CTLs coordinate multiple antiviral functions in four dimensions (3D space
and time): effectively destroying the first detected infected cell during an initial
"commitment phase", but rapidly transitioning to a prolonged "secretory phase." In vivo,
coordination of lytic and non-lytic effector functions will direct the local inflammatory
milieu and recruit additional effectors to the tissue. We conclude that the efficiency of
antigen recognition by individual migrating CTLs is a critical, but previously undefined,
parameter of CTL function. Furthermore, TCR avidity and initial CTL efficiency are
prerequisites for sustained antiviral polyfunctionality; together these parameters define a
highly effective, multidimensional CTL response, which may inform the design of
increasingly effective vaccines.
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CHAPTER 1. INTRODUCTION AND BACKGROUND

1.1 INTRODUCTION AND SCOPE OF THESIS

Not only do cytotoxic T-lymphocytes (CTLs) play an important role in the adaptive

cellular immune response to viral infections and cancer, but they can also inflict substantial

autoimmune tissue damage and disease. CTLs possess a variety of lytic and non-lytic secretory

functions which have been well-studied at the molecular level, but CTL activity has largely been

defined in liquid suspension cultures in vitro, outside the relevant context of 3D tissue

extracellular matrix which supports physiological motility. Although numerous CTL functions

have been individually implicated in the control of infections and cancer (Almeida et al., 2009;

Betts et al., 2006; Freel et al., 2010; Genesca et al., 2008; Mellman et al., 2011; Migueles et al.,

2008; Uchida, 2011), the relationship between function and protection remains correlative. The

important question of how migrating CTLs coordinate this array of functions within the 3D

environment of tissue over time has remained unaddressed.

Effector CD8* cytotoxic T lymphocytes (CTLs) contribute to control of viral infections

and cancer via target cell killing (mediated by perforin, granzyme, or FasL)(Ando et al., 1997;

Asquith et al., 2005; Atkinson and Bleackley, 1995; Bangham and Osame, 2005; He et al., 2010;

Keefe et al., 2005; Kojima et al., 2002; Thiery et al., 2011), and indirectly through the secretion

of cytokines (such as interferon-y or TNF-a) and p-chemokines (such as CCL3/MIP-l a, CCL4/

MIP-1 , or CCL5/RANTES) (Cocchi et al., 1995; Cocchi et al., 2000; DeVico and Gallo, 2004;

Huse et al., 2008). These signaling molecules alter the inflammatory milieu of the infected tissue

microenvironment, both recruiting additional leukocytes (Castellino et al., 2006) and promoting

effector functions of nearby immune cells (Andrade, 2010; Guidotti and Chisari, 2001). In the
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setting of HIV infection, it is well appreciated that P-chemokines directly block CCR5

chemokine receptor-mediated entry of the virus into nearby host cells (Cocchi et al., 1995;

Scarlatti et al., 1997; Simmons et al., 2000; Yang et al., 1997), and high capacity for P-

chemokine production correlates inversely with viral load (Cocchi et al., 2000; Dolan et al.,

2007; Ferbas et al., 2000; Kulkarni et al., 2008). However, there have been no studies directly

examining the functional effect of P-chemokines produced by CTLs in vivo.

Given the importance of CTLs in the immune response to viruses and cancer, there is a

great need for quantitative in vitro assays of CTL function delivering predictive, rather than

correlative, measures of protective CTL function in vivo. To address this need, in this thesis we

developed a new approach for long-term high-speed dynamic optical imaging to visualize the

dynamic interactions of migrating human HIV-specific CTLs and target cells, with resolution at

the single-cell level. Importantly, CTL effector functions were visualized, measured, and perturb

ed within an extracellular matrix model of tissue, where both CTLs and target cells are highly

motile with dynamics resembling those observed in vivo. The interactions of CTLs and targets

have been tracked for up to 24 hrs continuously, permitting analysis of CTL-target engagement

dynamics (both short and long-term) and CTL functions (including those with rapid and delayed

kinetics). This approach allowed us to examine prolonged CTL-target interactions that cannot be

observed and manipulated with current methods in vivo. We also introduce an integrated model

of protective, multidimensional CTL function that could be used to guide the development of

cell-mediated vaccines for HIV, other viruses, or cancer.
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1.2 BACKGROUND

1.2.1 Mechanisms of CTL killing

There are at least several molecular mechanisms by which CTLs induce target cell death,

but their functional roles in vivo are just beginning to be understood (Janssen et al., 2010; Meiraz

et al., 2009). These mechanisms include FasL mediated apoptosis, perforin and granzyme

mediated apoptosis with transient membrane permeabilization, and complete, rapid perforin-

mediated lysis of the target cell membrane (He et al., 2010; Keefe et al., 2005; Lowin et al.,

1994; Thiery et al., 2011; Waterhouse et al., 2006). Each of these lethal hits induces

morphologically distinct changes in the dying target cell (Keefe et al., 2005; Waterhouse et al.,

2006) and each of these mechanisms are preferentially induced with unique thresholds of antigen

recognition, from most sensitive: FasL > perforin and granzyme > perforin-mediated lysis (Esser

et al., 1996; He et al., 2010; Keefe et al., 2005). Interestingly, CTLs may utilize these

mechanisms of killing in combination since it is reported that FasL is found within the same

secretory vesicles as granzymes (Zuccato et al., 2007).

9



1.2.2 Molecular mechanisms and kinetics of CTL effector function

CTL functions have been largely characterized outside the three-dimensional ECM context of

tissues in liquid suspensions where cells encounter each other as a result of convection. In this

setting, in the absence of physiological migration, CTL contact with a target cell is accompanied

by a prototypical series of events (Figure 1.1): TCR recognition of cognate peptide-MHC-I on

the target cell, calcium signaling coincident with a TCR-dependent stop signal (within seconds)

(Huse et al., 2007; Purbhoo et al., 2001; Stinchcombe et al., 2001), motility arrest, and

cytoskeletal polarization towards the target cell (seconds to minutes) (Dustin et al., 1997), signs

of target death including membrane blebbing (2-20 minutes) (Matter, 1979; Stinchcombe et al.,

2001), and target cell permeabilization (-3 hours) (Jenkins et al., 2009a). Secretion of non-lytic,

target killing

Perforin
Granzyme A/B

FasL

Antogn Early signaling MTOC reonientation
recognition n-losec -2mm

Huse et al. Nature Immunology (2008)

Lyti granule relas

3r-10 min

non-lytic
anti-viral
secretion

/

MIP-1a
RANTES

TNF
IFN-y
IL-2

IL-10

Cytokine secretion
-2 h

Figure 1.1: Schematic of molecular mechanisms of CTL function adapted from (Huse et al.,
2008)

anti-viral factors including cytokines (IFN-y, IL-2, TNF, IL-10) and chemokines (CCL3, CCL4,

CCL5) is TCR-dependent (Figure 1.2) (Catalfamo et al., 2004; Faroudi et al., 2003; Valitutti et

al., 2010; Valitutti et al., 1996). Interestingly, CTL function can be described in two phases with
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different requirements for activation: lethal hit delivery (the early phase) is highly sensitive to

antigen, while cytokine/chemokine secretion and proliferation (the later phase) requires much

stronger TCR signals supporting gene transcription. Thus, target killing and full effector function

are uncoupled in the absence of strong TCR signals (Faroudi et al., 2003; Porgador et al., 1997;

Valitutti et al., 1996; Wiedemann et al., 2006).

APC

p4WHC

ICAM-1 ao"I0O~"

Figure 1.2: Strong TCR signaling results in coordination of CTL functions with low and
high thresholds of antigen sensitivity (Valitutti et al., 2010).
Weak signaling results in uncoupling of CTL functions based on differing thresholds of antigen
sensitivity. CTL killing is an exquisitely sensitive response, while full effector function requires
strong TCR signals. CTL (T cell) engagement of the target cell (APC) occurs upon TCR
recognition of cognate peptide-MHC-I on the target. Cell-cell membrane apposition is
accomplished through receptor-ligand binding of various pairs of integrins and adhesion
molecules including LFA- 1 and ICAM- 1, respectively.
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Early, pioneering time-lapse microscopy studies that reported CTLs occasionally killed

multiple targets targets (Figure 1.3) (Cerottini and Brunner, 1974; Isaaz et al., 1995; Martz,

1976; Matter, 1979; Poenie et al., 1987; Rothstein et al., 1978; Zagury et al., 1975) and based on

small numbers of CTL killing events, led to the notion of CTL "serial killing". While this

mechanism has persisted conceptually for almost 40 years, serial CTL killing has yet to be

observed in the context of cell migration in vitro or in vivo, and the physiological relevance of

this mechanism remains unconfirmed. In addition, it remains unclear whether migrating CTLs

accumulate enough TCR signal for full effector function through one prolonged engagement or

short, serial engagements with targets (Figure 1.4).

Figure 1.3: Pioneering timelapse "microcinematography" of CTL killing in liquid
suspension (Rothstein et al., 1978).
Early microscopy studies observed CTLs killing targets in brightfield. Cell morphology was used
to distinguish CTLs from target cells and live cells from dead cells. (a) A series of images of an
individual mouse tumor-specific CTL (indicated by single arrows) interacting with target cells.
15 targets are contacted by the CTL over 410 minutes. 6 targets died during the course of
imaging (indicated with double arrows). One example of 4 individual CTL examined is shown.
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a

E

18

1 killed target
TCR signal accumulation
gene activation
effector secretion
proliferation

b 
.4mS

~~Pon

serially killed targets
TCR signal integration
gene activation
effector secretion
proliferation

1 killed target
weak/short TCR signal

Figure 1.4: Schematic of potential CTL-target encounter dynamics and their effects on
CTL effector function. Figure adapted from (Valitutti et al., 2010).
Migrating CTLs engage and kill targets in response to weak TCR signaling, but may continue to
acquire additional strong or weak TCR signals depending on the length of CTL-target
engagement. Strong TCR signals are required for full gene activation, effector function and
proliferation. (a) A CTL acquires strong, prolonged TCR signals upon killing one target. (b) If an
individual CTL serially kills multiple targets over time, it might successfully acquire and
integrate enough signal to achieve partial or full effector function. (c) Killing is uncoupled from
full effector function for an individual CTL killing a single target as the result of less total
integrated TCR signaling.
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1.2.3 CTL dynamics and function in vivo

Intravital and whole-organ ex vivo imaging studies in mice have revealed that T-cells

execute a random walk-like search for antigen (Figure 1.5) but undergo TCR-triggered motility

arrest upon engaging an antigen-bearing cell (Miller et al., 2002; Stoll et al., 2002). Visualization

of individual CTLs in vivo in mice has revealed rapid lethal hit delivery kinetics (Breart et al.,

2008; Mempel et al., 2006), and late periods of CTL arrest in the presence of antigen

(Boissonnas et al., 2007; Deguine et al., 2010; Mrass et al., 2006), associated with slow rates of

CTL killing (Breart et al., 2008; Coppieters et al., 2011). However, imaging durations achieved

in vivo (currently lasting ~30 minutes) have thus far precluded single-cell analysis of long-term

CTL motility dynamics, and observation of CTL killing and kinetics of target death in vivo is

restricted by the need for the fluorescence reporting of these events. Thus far, only three reports

have achieved in vivo visualization of CTL migration dynamics and the effects of CTL

engagement on target viability: these studies have relied on two-photon imaging and

sophisticated fluorescence strategies measuring ratiometric changes in the fluorescence of two

reporters (small molecule or genetic) to assess target death and a third fluorescence marker to

visualize CTLs (Breart et al., 2008; Coppieters et al., 2011; Mempel et al., 2006). Thus, current

limitations on in vivo imaging strategies preclude continuous single-cell visualization of all

phases of CTL effector response: initial TCR triggering, CTL arrest, and target death which

occur with rapid kinetics, and secretion of effector cytokines/chemokine which depend on the

slower processes of TCR signal integration and gene activation.
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Figure 1.5: T cell lymphocyte migration within lymph node explants
T cells are highly motile and exhibit a random-walk in search of antigen within tissue. (a) An
individual T cell exhibits migration. (b) Quantitative analysis of migration dynamics for T cells
(green) and B cells (red) indicating random-walk behavior (Miller et al., 2002).
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1.2.4 The role of HI V-specific CTLs in viral suppression in HI V-infected patients

It is estimated that 1 in 300 patients infected with HIV spontaneously control infection, and

these "elite controllers" or "non-progressors" maintain low or undetectable levels of virus in the

blood delaying progression to AIDS for years and sometimes decades (Baker et al., 2009). These

patients have been intensely studied with the hope that their immune systems hold the key to a

vaccine or cure for HIV. Although many immunological mechanisms have been found to

correlate with control of HIV in vivo, a mounting body of evidence supports a key role for HIV-

specific CTLs in HIV-infected patients who control the virus (Baker et al., 2009; Betts and

Harari, 2008; McMichael et al., 2010; Poropatich and Sullivan, 2011). CTLs purified from elite

controllers are capable of suppressing viral replication in liquid suspensions in vitro independent

of other immune cells or factors (Figure 1.6) (Fauce et al., 2007; Freel et al., 2010; Julg et al.,

2010; Saez-Cirion et al., 2007; Saez-Cirion et al., 2010). In vivo, CTL depletion results in

increased viral loads in non-human primate models (Friedrich et al., 2007; Schmitz et al., 2005;

Schmitz et al., 1999), and there are inverse correlations of viral load with metrics of CTL

function such as antigen sensitivity (Almeida et al., 2007; Almeida et al., 2009; Bennett et al.,

2007), CTL expression of P-chemokines (Cocchi et al., 2000; Dolan et al., 2007; Ferbas et al.,

2000), lytic capacity (Hersperger et al., 2010; Migueles et al., 2002; Migueles et al., 2008), Gag-

specific CTL responses (Julg et al., 2010; Kiepiela et al., 2007), CTL polyfunctionality (Almeida

et al., 2007; Almeida et al., 2009; Betts et al., 2006; Freel et al., 2010), and proliferation (Betts et

al., 2006; Migueles et al., 2002) in HIV+ individuals. Such findings have motivated the

development of vaccines aiming to elicit strong CD8+ T-cell responses, and recent studies have

shown in non-human primate models that robust CTL responses can lower setpoint viral load

(Barouch et al., 2010) or even control virus to undetectable levels over time (Hansen et al., 2011;
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Hansen et al., 2009; Liu et al., 2009; Tjernlund et al., 2010). Efforts to understand CTL-mediated

mechanisms of viral suppression indicate that both lytic activity and cytokine/chemokine

secretion can inhibit viral replication in CD4+ target cells in vitro (Fauce et al., 2007; Yang et al.,

1997). While the characteristics of CTLs that control HIV in vivo remain correlative, they

indicate that multiple dimensions of CTL activity are important in viral suppression. An

integrated understanding of these CTL activities would provide a stronger model of effective

CTL function. Such a model would likely inform the design of enhanced vaccine candidates.
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Chen et al. J. Wrology (2009)

Figure 1.6: Primary HIV-specific CTLs suppress replication of HIV in vitro (Chen et al.,
2009)
CTLs taken from elite controllers, patients who spontaneously control virus in vivo, exhibit anti-
viral activity in liquid co-culture with autologous CD4+ T cells infected with HIV.
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1.2.5 The role of lymphocyte motility in HIV infection

Cytotoxic T-lymphocytes (CTLs) circulate through blood and actively migrate through

three-dimensional tissue compartments in search of antigen in the periphery (Kawakami et al.,

2005) and lymph nodes (Mempel et al., 2006; Miller et al., 2004; Miller et al., 2002). Notably,

infected CD4+ cells are motile (Nobile et al., 2010) and these infected CD4+ cells contribute to

the dissemination of virus from the local site of initial infection to distal tissues in vivo (Haase,

2010; Li et al., 2009a; Zhang et al., 1999). Thus, CTLs must catch migrating infected targets

within various tissues including the lamina propria of the reproductive tract, gastrointestinal

tissues, and within lymphoid organs (Figure 1.7) (Hong et al., 2009; Li et al., 2009a; Li et al.,

2009b; Tjernlund et al., 2010). While HIV-specific CTLs exhibit markers of lytic and non-lytic

effector functions within the extracellular matrix (ECM) of sectioned tissue (Genesca et al.,

2008), it is not clear if they acquire sufficient TCR signals to drive non-lytic effector function

through serial or prolonged contact with targets.

Following vaccination CTLs are detected in mucosal tissues prior to viral challenge

(Belyakov et al., 2006; Hansen et al., 2011; Kaufman et al., 2009) and contribute to vaccine-

induced viral control in non-human primates (Freel et al., 2010; Genesca et al., 2008). In the

absence of prophylactic vaccination, CTL effectors typically arrive in the mucosal tissues too late

to contain nascent viral infection (Reynolds et al., 2005). Thus, vaccine-induced establishment of

resident HIV-specific CTLs in mucosal tissues likely contributes to the efficacy of these

vaccines.
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Figure 1.7: Lymphocyte motility plays an important role in the spread or containment of
HIV in vivo.
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1.3 AIMS AND SCOPE OF THESIS

In this thesis, we have applied quantitative analyses and a new high-speed strategy for

time-lapse fluorescence imaging to study cell migration and engagement dynamics over time. We

have specifically focused on the interactions between two populations of immune cells,

examining the function of cytotoxic lymphocytes as they engage and kill antigen-bearing CD4+

target cells. We have chosen a suitable reductionist extracellular matrix model of three-

dimensional tissue to support lymphocyte-intrinsic cellular migration dynamics. We have

focused specifically on HIV-specific CTL function, choosing to examine two human CTL clones

and primary CTLs from one healthy HIV+ person with a strong immune response to HIV. These

CTLs were co-cultured with primary human CD4+ T cells as model targets. We have chosen

synthetic peptides as model antigens for presentation by these targets, modulating the CTLs

sensitivity to antigen by varying either antigen density on the target or by varying peptide

sequence thus controlling CTL functional avidity. HIV-infected CD4+ T cells were included as

more physiologically relevant targets in support of the studies of peptide-pulsed model targets.

With this model system we have analyzed the single-cell dynamics of CTL-target engagement,

the efficiency of individual CTL killing, and the coordination of killing with development of full

effector secretory function over time.

Aim 1: Development of a video-microscopy assay for direct observation of motile CTL killing

We designed a strategy for the acquisition of internally-controlled video-microscopy data

sets. This strategy utilized a high-speed motorized stage to collect serial images from four

samples at a time, with at least one control sample in every imaging run. We identified a new

combination of commercially available fluorescence markers for the in situ differentiation of
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CTLs from CD4+ T-cells and live cells from dead cells during long-term time-lapse microscopy.

Cellular dynamics were visualized within a three-dimensional fibrillar collagen gel model of

peripheral tissue supporting lymphocyte migration mimicking the dynamics reported in vivo. We

evaluated and confirmed CTL lytic function within collagen gels using traditional 51Cr release

assays. Control experiments confirmed maintenance of cell viability during imaging and

detection of antigen-dependent target death. Motile CTLs and targets were imaged in the absence

of antigen and quantitative analyses of these antigen-independent engagement dynamics

established a solid framework from which we could begin to examine antigen-dependent CTL

engagements, killing and function in Aim 2.

Aim 2: Characterization of HIV-specific CTL function within a 3D extracellular matrix model
of peripheral tissue

Migrating HIV-specific CTLs were directly visualized as they encountered either peptide-

pulsed or HIV-infected primary human CD4+ target cells. We identified 4 characteristic types of

CTL-target engagements and established metrics to quantitatively describe the complex antigen-

dependent behaviors and outcomes. These metrics included dose-dependent changes in CTL-

target cell engagement frequencies, kinetics of TCR signaling and CTL arrest, engagement

durations, target death kinetics, efficiency of CTL target killing during the first target encounter

and all subsequent target encounters, the durability of CTL arrest over time, and the total number

of targets killed by or escaped from each individual CTL. This work revealed two diametric

perspectives on CTL-target engagement dynamics, of particular interest in the case of HIV where

the success or failure of each discrete engagement may contribute to either containment of

nascent infection by successful CTLs or systemic spread of virus by escaping targets. The CTL-
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centric view captured changes in CTL migration/arrest and CTL killing efficiency following an

initial kill; and indicated a correlation between TCR signaling strength/duration and CTL success

or failure. The target-centric view suggested that target motility contributes directly to target

escape from inefficient CTL engagements marked by weak TCR signaling. These correlations

inspired the perturbations included in Aim 3.

Aim 3: Probe the effects of CTL antigen-sensitivity and target motility on CTL killing
efficiency

Having developed a rich and multi-faceted picture of antigen-dependent CTL-target

engagement dynamics, CTL killing, and CTL arrest as functions of antigen dose and time, the

goal of Aim 3 was to perturb the system. First, we exploited a panel of peptide variants,

recognized by one CTL clone with varied functional avidity, to examine the effects of antigen-

sensitivity on the single-cell efficiency of CTLs. Next, we designed a strategy to immobilize

CD4* target probing the effect of target mobility/immobility on target susceptibility to killing.
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CHAPTER 2. MATERIALS, METHODS AND INSTRUMENTS

2.1 BASIC CELL CULTURE AND REAGENTS

2.1.1 Patient Samples

Peripheral blood mononuclear cells were obtained from healthy donors through Research Blood

Components, Cambridge, MA and from HIV-infected persons through the outpatient clinics at

Massachusetts General Hospital, Brigham and Women's Hospital, and Fenway Health in Boston,

MA. Studies were approved by the MGH and MIT institutional review boards, and all subjects

gave written, informed consent.

2.1.2 HIV-1 retrovirus

VSV-g pseudotyped virions HEK293T cells were transfected with pHDM-G vsv-g plasmid

(generously provided by Dr. Jeng-Shin Lee, Harvard Gene Therapy Initiative) and pNL4-3 (from

Dr. Malcolm Martin, (Cat #114) through the AIDS Research and Reference Reagent Program,

Division of AIDS, NIAID, NIH) or pBR43IeG-nef* (from Dr. Frank Kirchhoff, (Cat #11349)

through the AIDS Research and Reference Reagent Program, Division of AIDS, NIAID, NIH)

according to manufacturers' instructions. Viral supernatant was harvested after 48 hr and stored

in aliquots at -80*C.

JR-CSF Activated CD4+ T cells were infected with JR-CSF (1-2 ng of p24 per 106 CD4+ T cells)

and incubated for 3-6 days. Viral supernatants were stored in aliquots at -80*C.

2.1.3 Primary CD4+ T cell targets

CD8 cells were separated from PBMCs by positive selection (EasySep, StemCell Technologies)

and non-CD8 cells were activated with anti-CD3:8 (gift from Johnson T. Wong, Center for
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Prevention Research and the UCLA AIDS Institute, David Geffen School of Medicine at

UCLA), anti-CD28 (R&D Systems), and IL-2 for 5-7 days. Where indicated, CD4+ T cells were

pulsed with (SL9 (SLYNTVATL, or variants) for which 1 nM peptide is equivalent to 1 ng/mL;

KK1O (KRWIILGLNK) for which 1 nM peptide is equivalent to 1.25 ng/mL) for 1 hr at 370 C

and washed. Alternatively, CD4+ T cell targets were spinfected in R10/50 with polybrene (8 ptg/

mL) and HIV-1 (MOI of 0.001 to 0.1) at 370 C, 2400 RPM (1220 g) for 2 hr and washed. For

imaging studies, infected targets were used 3 days post-infection when -30% of the targets were

infected (p24+ by flow cytometry) as either sorted, GFP+ and GFP- populations, or unsorted. For

viral inhibition assays, infected cells were used immediately after spinfection.

2.1.4 CTL clones

The A02-SL9 (gag p17) specific clone, 161jxA14, and the B27-KK1O (gag p24) specific clone,

E501, are previously described (Chen et al., 2009; Collins et al., 1998). They were maintained in

culture with periodic restimulation (Chen et al., 2009; Collins et al., 1998), and used in assays

12-20 days post-restimulation. For imaging, CTLs were stained with 5 Rg/mL Alexa 647-CTXB

(Invitrogen) for 30 min at 370 C, 5% CO2, washed twice and resuspended in Ri0/50. For calcium

imaging, CTLs were simultaneously labeled with CTXB and Fura-2 AM (Invitrogen) at 20 pg/

mL for 20 min at 370C, 5% CO2 and imaged according to the manufacturer's instructions.

2.1.5 Primary polyclonal HIV-specific CD8+ T cells

Strength and breadth of the Gag-specific CTL response is correlated with viral suppression in

vivo (Barouch et al., 2010; Kiepiela et al., 2007). Thus, we chose to examine primary CTL from

individual 285873 (HLA type A0201/A0301, B5101/B5101, Cwl402/Cwl502) with low viral

loads (<75 virions/mL) in the absence of medication. This individual, classified as an elite
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controller, exhibited a notably strong CTL response compared to other HIV+ individuals in

traditional ELISPOT assays. CD8+ T lymphocyte epitope mapping indicated a particularly strong

A2-SL9 specific CTL response (3600 SFC/10 6 PBMCs). The CTL response was also notably

broad, recognizing overlapping 18-mer peptides from Gag (26 out of 48), Nef (9 out of 13), Tat

(5 out of 6), Pol (8 out of 24), Vpr (0 out of 4), Env (1 out of 14), Vif (0 out of 3). The response

to optimal peptides was measured and CTL recognition was broad [A2-SL9 (gag), A3-KK9

(gag), A3-RK9 (gag), A3-RY 10 (gag), Cw 14-LL8 (pl7), A2-VV9 (p24), A3-TK1O (gp120), A3-

RR11 (gp4l), A2-SAV1O (env), A3-QK1O (nef), B51-LI9 (int), B51-EI9, (vpr), B51-LI9

(gp160)]. CD8+ T cells were enriched from thawed PBMCs by negative selection (EasySep,

StemCell Technologies) and primed with HLA-matched CD4+ T cell targets pulsed with pools of

overlapping 18-mer peptides representing HIV- 1 proteins (Gag, Pol, Nef, Env). Cultures received

IL-2 (50 U/mL) on days 2, 5 and 12.

2.1.6 Antigen presenting beads as target cell mimetics

Streptavidin beads (10 pm in diameter, CPOiN, Bangs Labs) and biotinylated monomeric

peptide-MHCI complexes (KRWIILGLNK, HLA-B*2705: Dale Long, NIH Tetramer Core

Facility, Emory University) were rotated for 2 hr at 4'C, washed and used immediately. The

density of peptide-MHCI on the surface of beads was quantitated by staining with PE-HLA-ABC

(BD Biosciences) and comparing to Quantum Simply Cellular anti-Mouse IgG beads (Bangs

Labs, 815) according to the manufacturer's instructions and was 20 pMHC/ m 2.

2.1.7 Three-dimensionalfibrillar collagen gel model of peripheral tissue

Collagen mix was prepared on ice as follows: 180 pl of 0.1 M NaOH (sterile filtered) was

aliquotted into a 5 ml tube. Next, 1440 pl of PureCol Collagen (Advanced Biomatrix, 5005, -3.2

mg/mL) was added and vigorously pipetted, followed by 180 pl of lOx RPMI, 180 p1 of fetal
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calf serum, and 60 p1 sytox green (Invitrogen, 5 mM source stock diluted to 40 pM in RIO just

prior to use). The collagen mix was thoroughly pipetted, then rested at 4*C for >30 minutes prior

to addition of cells. 340 pl of cold collagen mix was added to 30 p1 of a target cell suspension,

gently mixed by pipet, then transferred to 30 pl of a CTL suspension. The 400 ptl samples (30

effector: 30 target: 340 collagen mix, v:v:v) were prepared and loaded into the center 4 wells of a

warm 8 chambered labtek slide (Nunc, 155411) within 10 minutes and centrifuged down (~300

g, 3 min) to a single plane for imaging. The samples were seated in the environmental chamber

on the motorized stage of the microscope and imaging was immediately initiated.

2.2 ASSAYS OF CTL EFFECTOR FUNCTIONS

2.2.1 51Chromium cytolysis assays

CD4+ T-cell targets were 51Cr labeled (250 pCi/mL) and peptide-pulsed for 1 hr at 370 C. Liquid

and 3D collagen assays were performed in triplicate in round-bottom 96 well plates at an E:T

ratio of 1:1 (1x 104 cells each) in a total volume of 200 p1. Co-cultures and controls (MaxR,

targets lysed with 3% Triton-X 100; SR, targets alone) were packed by centrifugation (3 min,

300g) and incubated at 370 C, 5% CO 2 for 4-6 hours prior to supernatant collection. 5 Cr was

measured on a Packard Topcount in counts per minute (CPM). 51Cr release data was analyzed by

nonlinear regression and EC5 os were calculated in Prism (Graphpad Software), % killed = (CPM-

mean SR)/(mean MaxR CPM- mean SR CPM)* 100.

2.2.2 Timelapse fluorescence microscopy assay for CTL killing

8-well chambered coverglasses (Labtek, Nalge Nunc) were coated with 100 Ig/ml fibronectin in

PBS for 18 hr at 4*C, and washed just prior to use. Neutral solutions of type I bovine collagen

(PurCol 5005, Advanced Biomatrix) containing sytox green (Invitrogen, 5 ptM in the final gel),

26



RPMI, 10% FCS were prepared following the manufacturer's instructions on ice. Cell

suspensions (40,000 effectors, 40,000 targets within 400 iL neutral collagen) were deposited in

pre-warmed (37'C) coverglasses, centrifuged at 300xg for 3 min, and imaging was immediately

initiated at 370 C, 5% CO 2. Collagen samples were loaded in an environmental chamber

maintaining 370 C, 5% CO2 on a Zeiss Axiovert 200 epifluorescence microscope. Three images

(sytox, CTXB, brightfield) were collected every 1 min at 20X or 40X for 4 adjacent stage

positions in 4 parallel samples per imaging run (total field of view 1340 x 1800 tm per sample).

2.2.3 Timelapse fluorescence microscopy assay for intracellular, antigen-dependent TCR
signaling

For calcium imaging, CTLs were simultaneously labeled with CTXB and Fura-2 AM

(Invitrogen) at 20 [tg/mL for 20 min at 370 C, 5% CO 2 and imaged according to the

manufacturer's instructions.

2.2.4 Effector cytokine/chemokine secretion assay

100,000 CTL effectors and 100,000 target cells were loaded into collagen with a final total

volume of 40 RL in a flat 96 well plate. Cells were centrifuged at 300g for 3 minutes. After 2, 4,

or 6 hours of incubation at 370 C, 5% CO2, 200 piL of RIO was floated on top of the collagen and

incubated at 370 C, 5% CO 2 for 15 minutes. 200 RL liquid supernatant was harvested and was

analyzed for cytokines and chemokines using human flex sets for MIP-la, MIP-1, RANTES,

IFN-y, and IL-2 (BD Biosciences) according to the manufacturers instructions.

2.3 VIDEOMICROSCOPY INSTRUMENTATION

2.3.1 Microscope and environmental controls

Imaging was performed on a Zeiss Axiovert 200 epifluorescence microscope equipped with a

high-speed motorized stage (permitting parallel acquisition of 4 adjacent fields in 4 sample wells
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in <50 seconds, Ludl, MAC5000), an environmental chamber (Zeiss Heating Insert P, CTI-

Controller 3700, and Tempcontrol 37-2 digital) for maintenance of physiological conditions

(37*C, 5% CO 2 ), and a cooled CCD digital camera with megapixel resolution (CoolSnap HQ,

Roper Scientific). Exposure of cells to excitation wavelengths was carefully tuned through short

exposure time (1 ms for sytox, ~400 ms for CtxB) and reduction of the excitation aperture

resulting in signal acquisition at the bottom limit of detection for the express purpose of

mitigating the phototoxic effects of more standard exposure schemes used in traditional static or

short-term timelapse imaging.

2.3.2 Image quality: Objectives, magnification, camera and pixel binning

Quantitative studies were performed using a 20x/0.8 Plan-APOCHROMAT objective (Zeiss) to

facilitate imaging compatible with fine (micron) and gross (centimeter) stage movements and

data was saved with 3x3 binning of pixels. Representative examples included in the

supplemental videos were generated using a 40x/1.3 Oil DIC Plan-NEOFLUAR objective and

lxi pixel binning.

2.3.3 Computer-assisted multi-parameter data acquisition

Acquisition of up to 70,000 images per experiment [3 wavelengths (sytox fluorescence, CtxB

fluorescence, brightfield) x 16 stage positions x 120-1440 timepoints] was computer-driven

(Metamorph software, Universal Imaging). Images were acquired at 1 min intervals for 2-24

hours.
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CHAPTER 3. DEVELOPMENT OF A VIDEO-MICROSCOPY ASSAY
FOR DIRECT OBSERVATION OF MOTILE CTL KILLING

3.1 IN SITU FLUORESCENCE REPORTERS FOR CONTINUOUS, NON-TOXIC IMAGING
OF CTL-TARGET ENGAGEMENT DYNAMICS AND CELL-MEDIATED DEATH

To directly observe the long-term dynamics and function of CTLs and to address the

impact of cellular motility on CTL effector functions, we developed a dual fluorescence

videomicroscopy strategy. This approach was implemented for cells within 3D type I collagen

gels known to support lymphocyte migration (Gunzer et al., 2004; Weigelin and Friedl, 2010;

Wolf et al., 2003). HIV-specific CTLs (clones and primary polyclonal cells) were obtained from

persons who spontaneously control HIV without the need for medication. Primary HLA-matched

CD4+ T-cells were chosen as targets based on their physiological relevance as the predominant,

HIV-infected population in vivo (Haase, 2005), and were either pulsed with cognate epitopes or

infected with HIV for use as targets in vitro. To distinguish CTLs from CD4+ T-cells, CD8+ cells

were labeled with a fluorophore-conjugated, nontoxic B subunit of Cholera toxin (CTXB),

shown for the representative HIV-specific clone 161jxA14, referred to as A14 (Figure 3.1a).

CTXB labeled primarily the extracellular surface and endocytic vesicles, without affecting CTL

function in a standard chromium release assay (Figure 3.1b). The collagen matrix was infused

with a membrane-impermeable sytox dye, which selectively fluoresces upon binding to DNA,

allowing in situ observation of dead cells as they acquired green fluorescence upon loss of

membrane integrity (Figure 3.1c). The CTXB and sytox tracers were chosen to avoid

fluorophore-mediated free radical generation in the cytosol of live CTLs or live target cells

during imaging. The fluorescence microscope was environmentally controlled (5% CO2, 37 'C,

>90% humidity) and maintained cell viability for at least 24 hrs during imaging (Figure 3.1d,
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and data not shown). Notably, CTXB is commercially available in a variety of colors and we

have found that this strategy of CTL labeling can be multiplexed to differentiate separate CTL

populations encountering unlabeled target cells within a single well (Figure 3.2).
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Figure 3.1. In situ reporters enabling faithful reporting of cell-mediated death and
continuous videomicroscopy of CTLs and primary CD4+ target cells in ECM.
(a) Confocal images of a CTL labeled with CTXB migrating through 3D fibrillar type I collagen
gel (left: brightfield/CTXB fluorescence overlay, right: reflectance image of collagen fibers).
Scale bar 20 pm. (b-d) A14 CTLs were co-cultured in ECM with HLA-matched CD4+ T-cell
targets pulsed with or without cognate peptide, as indicated. (b) CTXB labeling does not impair
A14 CTL function in a traditional 51Cr release assay. Shown is one representative of 2
independent experiments. (c) Image illustrating exclusion of sytox dye from live cells and in situ
sensing of target permeabilization (2 nM SL9). Scale bar 20 pm. (d) A14 CTLs were co-cultured
in ECM with targets (0 or 200 nM SL9) and samples were either imaged once at time 0 and once
after 10 hr (left) or timelapse imaged at 1 min intervals for 10 hr (right). Target cell
permeabilization was assessed by software-generated CTXB- sytox+ cell counts. Shown is one
representative of 4 independent experiments.
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Figure 3.2. CTXB-fluorophore conjugates in different colors can be multiplexed to
differentiate between three or more populations of cells.
E501 and A14 CTLs were labeled with Alexa-555 or Alexa-647 CTXB, respectively, and were
co-cultured in ECM with unlabeled HLA-matched BCL target cells pulsed with KK1O peptide
(cognate antigen for E501, but not A14 TCR) as indicated. (a) E501 CTLs (in red pseudocolor)
are engaged in target killing while A14 CTLs (in blue pseudocolor) fail to engage BCL bearing
irrelevant antigen. Three cell populations are indicated as follows: E501, red arrows and text;
A14, blue arrow, text and dotted line for path of migration; BCL pulsed with KK1O (20 ng/mL),
white text, white dotted line for path of migration, white arrows while live, black arrow while
blebbing, and a white circles for killed targets. Permeabilized target is visualized in green with
sytox. Scale bar 20 pm. Elapsed time indicated in hr:min. (b, c) E501 and A14 CTL migration
was assessed for a 1-hour period beginning 2 hours after initiation of coculture and (b) CTL
velocity and (c) arrest coefficients are shown.
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3.2 CELL MIGRATION AND TRANSIENT CTL-TARGET ENCOUNTER WITHIN THE 3D
ECM TISSUE MODEL

We next assessed the migration dynamics of HIV-specific CTLs and targets within this

ECM tissue model in the absence of antigen. The Gag-specific CTL clone A14, and primary

CD4+ T-cell targets polarized and migrated within the matrix with a persistent random walk and

mean velocities of 5-10 [tm/min (Figure 3.3a, Videos 1 and 2), as expected (Friedl and Brocker,

2004; Gunzer et al., 2004; Weigelin and Friedl, 2010). At cell densities of 200 cells/ptL gel and

E:T ratio 1:2, CTLs encountered targets with a mean hit rate of ~2 targets per hour (Figure

3.3b), but without antigen these contacts were transient (median time 7.2 min, Figure 3.3c) and

did not involve changes in CTL or target velocity.
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Figure 3.3. Cellular dynamics within extracellular matrix.
A14 CTLs were cocultured in ECM with HLA-matched CD4+ targets in the absence of cognate
peptide and imaged continuously for 20 hrs. (a) The mean velocity of individual CTLs and
targets for the indicated one-hour periods are shown. Bars indicate mean ± SEM. (b) Number of
targets encountered by individual CTL per hour. Bars indicate mean ± SEM. (c) Duration of
individual CTL-target engagements. Dotted line indicates the median.
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3.3 CTL LYTIC FUNCTION WITHIN THE 3D ECM TISSUE MODEL

We next confirmed the anti-viral activity of two HIV Gag-specific CTL clones within this

ECM tissue model. Since the ultimate goal is to define characteristics of effective CTL function,

we chose to examine two clones derived from elite controllers of HIV who spontaneously control

virus without medication (Chen et al., 2009; Collins et al., 1998). Clone 161jxA14 (hereafter,

A14) is restricted by HLA-A*0201, the most common Caucasian class I allele, and clone E501 is

restricted by HLA-B*2705, an allele associated with protection from HIV disease progression

(Kaslow et al., 1996). Both clones readily killed peptide-pulsed, HLA-matched CD4* T-cell

targets in 3D collagen matrices and in liquid culture, but differed substantially in peptide

sensitivity, with half-maximal killing by the A14 clone achieved at >20-fold lower doses of

antigen (Fig. 3.4a, b). Thus, CTLs readily demonstrated functional activity in this ECM model

where both CTLs and target cells exhibit rapid migration dynamics.
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Figure 3.4. Antigen-dependent CTL function is preserved within the 3D ECM tissue model
Gag-specific CTL clones A14 and E501 were co-cultured with 51Cr-labeled, HLA-matched
CD4+ T cell targets pulsed with indicated doses of cognate HIV Gag peptide (SL9 or KK1O,
respectively; E:T ratio 1:1) and SICr release was measured after 6 hrs (a) in collagen and (b) in
liquid suspension.
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3.4 A HIGH-SPEED MOTORIZED STAGE SUPPORTS AUTOMATED ACQUISITION OF

INTERNALLY CONTROLLED TIME-LAPSE MICROSCOPY DATA SETS

Traditional epifluorescence microscopy is conducted with an emphasis on generating high-

quality images at magnifications (40x to 100x) sufficient to resolve protein distributions on the

subcellular level. Images are frequently collected manually for multiple samples at a single

timepoint. The goal of this work was quite distinct and thus required a substantially different

approach. In order to characterize the antigen-dependent dynamics of migrating CTLs

encountering motile target cells, it was imperative that we generate internally controlled data sets

by acquiring data on experimental and control samples prepared in parallel. We chose to use a

20x air objective, knowingly sacrificing nanometer-scale resolution traditionally acquired with

higher magnification oil objectives, with the intent of supporting gross (centimeter scale) stage

movements. We employed multidimensional data acquisition software and a high-speed

motorized stage to facilitate rapid serial imaging of up to four samples, thus ensuring that all

experiments were internally controlled (Figure 3.5). Data was collected for each well at 4

adjacent stage positions to increase the number of encounters observed and to increase the field

of view.
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Figure 3.5. Rapid serial imaging of up to four samples produces internally controlled data
sets.
A high-speed motorized stage facilitated acquisition of 4 adjacent fields of view of 4 parallel
samples. Fluorescence (sytox, CTXB) and brightfield images were collected every 1 min at 20X
or 40X magnification for 2-24 hrs. Total field of view 1340 x 1800 pm per sample.
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3.5 CONCLUSIONS

We have developed an epifluorescence videomicroscopy approach for monitoring cell-mediated

death and differentiating between distinctly labeled populations of cells migrating in 3D ECM

coculture. Continuous videomicroscopy without evidence of phototoxicity was achieved with our

strategically chosen in situ reporters for periods ~25x longer than those achieved with intravital

imaging. Furthermore, to our knowledge, this approach is unique in its ability to support

continuous observation of primary CD4+ T cells which are more sensitive to phototoxicity (data

not shown) than the EBV-transformed B cell lines or tumor cell lines frequently used as targets in

bulk assays or other videomicroscopy assays of cell-mediated death (Keefe et al., 2005; Purbhoo

et al., 2004; Wiedemann et al., 2006; Yang et al., 2003).
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CHAPTER 4. HIv-SPECIFIC CTL FUNCTION WITHIN A 3D
EXTRACELLULAR MATRIX MODEL OF PERIPHERAL TISSUE

4.1 MIGRATING HIGH-AVIDITY CTLs SHOW HIGH EFFICIENCY IN TARGET
RECOGNITION AND KILLING AT THE SINGLE-CELL LEVEL

To directly observe antigen-dependent CTL dynamics and killing, A14 CTLs were co-cultured in

ECM with primary HLA-matched CD4+ targets pulsed with cognate SL9 peptide (SLYNTVATL,

p17 amino acids 77 to 85) or SL9 variants. The frequency of SL9-pulsed targets killed by A14

CTLs as detected by sytox fluorescence after 10 hr was antigen dose-dependent (Figure 4.1a).

While antigen dose- and functional avidity-dependent target death at the population level is

expected, the impact of these antigen recognition parameters on the response of CTLs at the

single-cell level is unknown. We identified a panel of SL9 peptide variants known to bind

equivalently to HLA-A2 (Iversen et al., 2006), for which A14 CTLs exhibited a broad range of

functional avidity as determined by a bulk chromium lysis assay in collagen; in addition, we

tested a second Gag-specific CTL clone E50 1, also obtained from an HIV elite controller (Figure

4.1b). We then quantified the efficiency with which individual CTLs recognized and killed the

first target cell contacted in the collagen matrix, exploiting the SL9 variants to modulate

functional avidity in the absence of inter-clonal differences. Strikingly, A14 CTLs exhibited first-

contact kill efficiencies of >90% in response to targets pulsed with low concentrations (1-10 nM)

of the SL9 peptides recognized with high avidity (single mutant or wild-type). However, these

same CTLs were remarkably inefficient during engagement of targets bearing lower avidity

peptides, requiring ~10- and ~1000-fold higher doses of double mutant or triple mutant peptides,

respectively, to achieve comparable engagement efficiencies (Figure 4.1c). E501 CTLs,

restricted by HLA-B*2705, had -65-fold lower avidity for their cognate peptide than Al 4 CTLs
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and required nearly 100-fold higher antigen doses to achieve >50% first-contact-kill efficiency

(Figure 4.1b, c). Thus, migrating CTLs require high avidity TCRs to efficiently recognize,

engage, and kill migrating target cells on first contact, particularly under conditions of limiting

antigen doses most relevant to physiological conditions.
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Figure 4.1. Videomicroscopy reveals the single-cell efficiency of CTL killing, highlighting a
new role for TCR avidity in capturing migrating targets.
CTL clones were co-cultured in ECM with HLA-matched CD4+ targets pulsed with the indicated
concentrations of cognate antigen (1:2 E:T ratio). (a) Sytox+ targets were enumerated after 10 hr
of co-culture with A14 CTLs and expressed as a % of live targets in view at time 0. (b) 5 1Cr
release from targets was measured for CTLs co-cultured with peptide pulsed targets after 6 hr
within ECM. EC50s indicate functional avidities. (c) The percentage of individual CTLs that
killed the first target cell encountered as determined by videomicroscopy.

We next characterized the dynamics of CTL-target interactions during killing. Within a

single sample, successful CTL-target engagements for clone A14 encountering HLA-matched

targets fell into two characteristic categories (Figure 4.2a, b): During "direct hit kills", CTL

engagement with a motile target triggered immediate motility arrest of both the effector and

target cell, followed by rapid target cell death (Figure 4.2a, Video 3, first segment). In rarer

instances, CTL engagement of a target was marked by continued target cell migration away from

the arrested CTL, often pulling a long tail of target cytoplasm as it migrated, before the tethered

39

O ri tp SLFNTIAVL 400 ± 1.7

E501 * KKI0 KRWIILGLNK ~ 100



a

2 -. '.zation

Figure 4.2. Characteristic examples of CTL-target engagement dynamics within ECM.
A14 CTLs were co-cultured in ECM with HLA-matched CD4+ targets pulsed with cognate
antigen (2 nM SL9 peptide, 1:2 E:T ratio). Serial images from representative CTL killing events:
(a) direct hit kill, (b) successful tether. Scale bars 20 pm; elapsed time from initial engagement
(hr:min). Cells and paths of migration are marked with dotted lines and/or arrows in red (for
CTL) or white (for targets).

target eventually stopped forward motion, blebbed, and snapped back to the CTL as it was killed

("successful tethers," Figure 4.2b, Video 3, second segment). Successful tethers involved

prolonged struggles and delayed signs of target death, with a mean duration of 1.3 hr, whereas

direct hits typically progressed to target death in less than 20 min (Figure 4.3a). Imaging of A14

CTLs labeled with Fura-2 AM showed that calcium flux was rapid and coincident with CTL

migration arrest for both direct hit kills and successful tethers. Direct hits were accompanied by

stronger Ca++ signaling, characterized by Fura ratio changes of greater amplitude and duration,

which persisted post-target death (Figure 4.3b and Video 4). Once targets were engaged, CTL

killing in ECM followed kinetics similar to those measured in liquid cultures (Purbhoo et al.,

2001; Stinchcombe et al., 2001), with blebbing observed ~30 min after target engagement and

targets permeabilized after ~3 hr (Figure 4.3c). Similar CTL-target engagement dynamics and

killing kinetics were observed for the E501 CTL clone (data not shown). Thus, the majority of

successful kills were accompanied by immediate arrest of both the migrating CTL and target cell,

followed by blebbing in the target cell indicating delivery of a lethal hit in less than 1 hr.
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Figure 4.3. Migrating CD4+ T-cell targets are rapidly engaged and killed by CTLs.
A14 CTLs were co-cultured in ECM with HLA-matched CD4+ targets pulsed with the indicated
concentrations of cognate antigen. (a) Duration of CTL-target engagement until target death
depending on engagement type (20 nM SL9). (b) Ca2+ signaling was monitored in A14 CTLs
loaded with FURA-2 AM and traces are shown (red) for characteristic CTL killing events (2 nM
SL9). Velocity traces (CTL in black, target in green) and CTL engagement with live target (pink)
and killed target (gray) engagement are denoted on the time axis. (c) Duration from initial
engagements until blebbing, permeabilization for all killed targets (20 nM SL9). (a, c) One
representative of 3 independent experiments. Bars indicate mean ± SEM.

4.2 MOTILE TARGETS ESCAPE IN ECM, REDUCING THE KILLING EFFICIENCY OF
LOW-AVIDITY CTLs

Prompted by the poor single-cell efficiency of target killing elicited by low-avidity TCR-peptide

interactions (Figure 4.1c), we next asked whether target motility per se influences target

recognition. Under conditions of both low and high first-contact target killing efficiency, we also

observed a fraction of motile targets actively escaping CTLs (Figure 4.4). These failed

engagements fell into two characteristic categories: During "failed tethers" CTLs arrested and

tethered a target, but the CD4+ cell continued to migrate, pulling long tails of target cell

cytoplasm before escaping (Figure 4.5a, Video 5, first segment). "Brushes" were defined as

apparent contact between a motile antigen-bearing target and an A14 CTL, without CTL arrest or

reorientation of the CTL toward the target (Figure 4.5b, Video 5, second segment).
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Figure 4.4. Targets escape CTLs under conditions of both low and high first-contact target
killing efficiency.
CTL clone A14 was co-cultured with HLA-matched CD4+ targets pulsed with cognate SL9
peptide (1:2 E:T ratio) in collagen gels. Analysis of the first 10 minutes of videomicroscopy
revealed characteristic CTL-target engagements, direct hit kills, successful tethers, failed tethers,
and brushes with greater frequencies of target escape occurring under conditions of low (0.1 nM
SL9) first-contact efficiency relative to high (2 nM SL9) first-contact efficiency.
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Figure 4.5. A fraction of CTL-target encounters in ECM conclude with motile target
escape.
CTL clone A14 was co-cultured with HLA-matched CD4+ targets pulsed with the indicated
concentrations of SL9 peptide in collagen gels (1:2 E:T ratio). (a, b) Serial images from
representative examples of characteristic target escape events (target cells pulsed with 2-10 nM
SL9 peptide): (a) failed tether, (b) brush. Scale bars 20 pm; elapsed time shown in (hr:min).
Cells and paths of migration are marked with dotted lines and/or arrows in red (for CTLs) or
white (for targets).
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Figure 4.6. CTL migration arrest is tightly associated with target killing activity.
CTL clone A14 was co-cultured with HLA-matched CD4+ targets pulsed with the indicated
concentrations of SL9 peptide in collagen gels (1:2 E:T ratio). (a) The mean velocity of
individual CTLs from hours 1-2 of imaging is indicated for CTLs observed to encounter and kill
or fail to kill targets. (b) Arrest coefficients were calculated for the CTLs analyzed in (a). Arrest
coefficient is defined as the percentage of time that a CTL exhibits an instantaneous velocity of
<2 pm per one minute interval. Dotted lines on the y-axis mark the mean velocity/arrest
coefficient of CTLs in the presence of targets in the absence of cognate antigen. Data are from
one representative of 3 independent experiments. Bars indicate mean ± SEM.

Tracking of CTLs during hours 1-2 of imaging revealed that arrest of CTL migration is tightly

associated with TCR signaling and target killing activity since antigen dose-dependent decreases

in mean CTL velocity and increases in arrest coefficient were observed for CTL-target

engagements resulting in target cell death (Figure 4.6a, b). Direct examination of TCR

triggering kinetics and calcium flux in the context of these cellular dynamics revealed that failed

tethers were frequently marked by weak calcium signals and brief CTL migration arrest, which

terminated prior to target cell escape and a return of CTL motility; and signaling was largely
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absent during brushes (Figure 4.7a, Video 6). Although calcium signaling was consistently

present during engagements marked by lethal hit delivery, CTLs fluxed calcium during only

-70% of failed tethers and -10% of brushes (Figure 4.7b). Death progressed with similar

kinetics whether targets received a lethal hit following escape from multiple CTLs or from the

first CTL encountered, suggesting that failed CTL contacts did not inflict cumulative, sub-lethal

damage (Figure 4.7c).
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Figure 4.7. Failed CTL-target engagements are marked by weak or absent TCR signals and
motile target escape.
CTL clone A14 and HLA-matched CD4+ targets pulsed with the indicated concentrations of
cognate peptide were co-cultured in collagen gels (1:2 E:T ratio). (a, b) Calcium signaling was
monitored in A14 CTLs loaded with FURA-2 AM (2 nM SL9). (a) Calcium signaling (red) and
velocity traces (CTL in black, target in green) are shown for characteristic target escape events,
including failed tethers (left) and brushes (right). CTL-engagement with a live target is denoted
in pink on the time axis. (b) The percentage of CTL-target kills (left), failed tethers (middle
panel) and brushes (right) exhibiting calcium signaling. (c) Duration of CTL-target engagement
from initial contact until target blebbing for targets killed by the first or nth CTL encountered (20
nM SL9).
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To directly address whether target motility contributes to the poor efficiency of low-

avidity CTLs, we immobilized targets on the glass substrate at the base of collagen gels with

anti-CD4 antibodies (Figure 4.8a). Low-avidity E501 CTL clones lysed 2.6-fold more

immobilized target cells than freely motile target cells as measured by bulk sytox+ nuclei counts

after 10 hr (p<0.001, Figure 4.8b). Motile CD4+ cells that were eventually killed broke contact

and escaped a mean of 2.9 ± 0.4 CTLs prior to target death, but immobilized targets were

typically killed upon their first encounter with a CTL (mean = 1.5, Figure 4.8c, p=0.0021). Thus,

target cell migration affects the efficacy of CTLs, with weak target engagement by low-avidity

CTLs permitting escape of migrating targets prior to delivery of a lethal hit.
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Figure 4.8. Target cell motility directly impacts CTL killing and promotes target escape.

Lower avidity E501 CTLs and CD4+ T cell targets pulsed with the indicated concentrations of

cognate peptide (E:T ratio 1:2) were gently centrifuged through collagen precursor solutions onto

a glass substrate coated with anti-CD4 capture antibodies to immobilize targets prior to collagen

gelation and compared to controls lacking anti-CD4. (a) Wind-rose plots of individual target cell

migration paths were tracked over a period of 20 minutes. (b) Target cell death after 10 hr of

imaging was assessed by sytox fluorescence and (c) engagement histories were recorded for

motile or immobilized targets that were killed during the observation period.
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4.3 KILL-EXPERIENCED CTLS ARREST FOR HOURS AND FAIL TO KILL
SUBSEQUENT TARGETS

Exploiting our ability to record both initial target contact and long-term cellular dynamics

(Figure 4.9), we next characterized the kinetics of sequential CTL engagement with targets over

a 10 hr period. Notably, A14 CTLs exhibited prolonged engagements with the first CD4+ cell

killed. These dynamics were antigen dose-dependent, with target engagement lasting ~5 hr on

average at doses eliciting nearly 100% first-contact kill efficiencies (Figure 4.10a, b). Often, the

CTLs migration did not resume random walk migration for hours even after contact with a killed

target was broken, as indicated by arrest coefficients (% of time CTL velocity <2 pm/min)

(Figure 4.10b and Figure 4.9, Video 7, first segment).
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Figure 4.9. Continuous observation of an individual CTL for 20 hours reveals initial target
contact and long-term cellular dynamics.
E501 CTLs were imaged engaging HLA-matched targets pulsed with KK10 peptide (100 ng/mL)
in collagen matrices. Instantaneous velocities, calculated based on 1 min intervals, for an E501
CTL for the entire 20 hr time period and (inset) for the first hour. CTL-engagement with a live
target is denoted in pink on the time axis, and CTL engagement with dead target is denoted in
gray. The mean velocity for this CTL before encountering and killing its target is indicated with a
dotted line at 6.4±0.7 pm/min.
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Figure 4.10. CTLs exhibit prolonged engagement and migration arrest upon killing.
A14 CTLs engaging CD4+ T-cells pulsed with the indicated doses of SL9 peptide in collagen
were imaged for 10 hr (E:T ratio 1:2). (a) Total engagement time for CTL-target encounters
ending in target death or escape. (b) CTL arrest coefficients were calculated from 1 hr intervals
after 2, 4, or 9 hr of co-culture as a function of antigen dose. Data shown from 1 representative of
3 independent experiments. Bars indicate mean ± SEM.
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To determine whether TCR signaling alone is sufficient to elicit long-lived CTL arrest, we

displayed recombinant B*27-KKlO peptide-MHC complexes on cell-sized beads. E501 CTLs

exhibited arrest on beads bearing cognate antigen, but interacted only briefly with control beads

(Figure 4.11). Thus, CTLs kill their first target within minutes, but TCR signaling induces a

durable, CTL-intrinsic motility arrest and many hours of contact with dead targets.
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Figure 4.11. A CTL-intrinsic, TCR-dependent stop signal is sufficient to induce prolonged
CTL arrest.
Cell-sized beads presenting recombinant B27-KK1O peptide-MHC complexes at a density of 20
pMHC/m 2 and control beads lacking pMHC were prepared. The duration of E501 CTL
engagements with beads in collagen was examined using videomicroscopy. Data from 1
representative of 4 independent experiments. Bars indicate mean ± SEM.

Strikingly, once A14 or E501 CTLs engaged and killed an initial target, ~90% of all

contacts with subsequent targets over the following 8-10 hr were failures at all antigen doses,

even at supra-physiological (pM) concentrations of peptide (Figure 4.12 and data not shown).

These post-first-kill failed engagements (brushes and failed tethers) were brief (-5-10 min) and

account for nearly all of the target escapes recorded at the 2 and 20 nM peptide doses in Figure

4.10a. Although high-avidity A14 CTLs exhibited near-perfect efficiency in killing the first

target encountered at 2 nM SL9, only -25% of the CD8+ cells killed any subsequently
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Figure 4.12. CTLs fail to engage or kill subsequent motile targets after efficiently killing
their first-encountered target.
A14 CTLs were co-cultured with CD4+ T-cells pulsed with the indicated doses of SL9 peptide in
collagen and were imaged for 10 hr (E:T ratio 1:2). Outcomes for each CTL engaging its first
target or subsequent targets are expressed as % of first CTL encounters or % of subsequent
encounters. Data shown from 1 representative of 3 independent experiments.
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encountered targets over 10 hrs (Figure 4.13a). This did not reflect a lack of contact with

additional targets, as numerous live CD4+ cells migrated over arrested CTLs, which were

typically still engaged with their first dead target (Figure 4.13b). These failed contacts were

observed as rapidly as 2 min following successful CTL engagement of the initial target (Figure

4.14, Video 7, second segment). Those CTLs that did successfully kill more than one target did

so by capturing subsequent passing CD4+ cells while still stopped and engaged with their first

dead target (Video 7, third segment). This is illustrated quantitatively in Figure 4.14 for the case

of 20 nM SL9-pulsed targets; the mean time between lethal hits for CTLs killing multiple targets

was 2.3 hr, while the mean total engagement with killed targets was -5 hr (Figure 4.10). Similar

results were obtained with the lower-avidity CTL clone E501 (data not shown). By contrast, a

target-centric analysis of the outcome for all targets visible at the initiation of imaging indicate

that while target deaths increase with antigen dose, the % of targets which never encounter a

CTL also correlates with antigen dose as a consequence of prolonged CTL engagements with

their initial killed target (Figure 4.15). Taken together, these data indicate that kill-experienced

CTLs fail to kill new targets for many hours, under conditions of high and low initial efficiency,

regardless of antigen density. Furthermore, since many targets to remain entirely unencountered

following commitment to an initial target, these unencountered targets are free to escape.
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Figure 4.13. CTLs are refractory to killing subsequent targets, despite numerous
subsequent target contacts.
A14 CTLs were co-cultured with CD4+ T-cells pulsed with the indicated doses of SL9 peptide in
collagen and were imaged for 10 hr (E:T ratio 1:2). (a) Enumeration of # of subsequent targets
killed by individual CTLs over 10 hr following a first kill. (b) CTLs that killed an initial target
were analyzed to enumerate the number of subsequent targets that contacted the CTL post-first-
kill without receiving a lethal hit. Data shown from 1 representative of 5 independent
experiments.
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Figure 4.14. CTL contact with subsequent targets occurs while CTLs are still engaged with
their initial target.
A14 CTLs were co-cultured with CD4+ T-cells pulsed with the indicated doses of SL9 peptide in
collagen and were imaged for 10 hr (E:T ratio 1:2). Elapsed time between initial target cell
killing and subsequent target contacts for individual CTLs (20 nM SL9). Data shown from 1
representative of 3 independent experiments. Bars indicate mean ± SEM.
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Figure 4.15. CTL killing and arrest correlates with an increased frequency of targets.
A14 CTLs engaging CD4+ T-cells pulsed with the indicated doses of SL9 peptide in collagen
were imaged for 10 hr (E:T ratio 1:2). Outcomes for each target in view upon initiation of CTL-
target imaging are expressed. Data shown from I representative of 5 independent experiments.
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4.4 PRIMARY HIV-SPECIFIC CTL DYNAMICS ARE QUALITATIVELY SIMILAR TO
CTL CLONES

Since it cannot be assumed that CTL clones retain all features of primary CD8+ T-cells, we also

assessed the dynamics of bulk primary CTLs derived from a patient who spontaneously

controlled HIV infection. As expected (Migueles et al., 2008; Saez-Cirion et al., 2007), CD8+ T-

cells had little lytic activity immediately ex vivo (data not shown), and thus were primed with a

Gag/Pol/Nef/Env peptide pool for a limited period of 12 days (Figure 4.16a) at which time

antigen-specific killing activity was detected by 51Cr release (Figure 4.16b). These primary

CTLs engaged and killed autologous CD4+ T-cell targets pulsed with pooled HIV peptides with

the same 4 characteristic engagement types observed with CTL clones (Figure 4.17).

Furthermore, in a manner similar to the clones, primary CTLs exhibited rapid arrest of CTL

migration and rapid target death kinetics followed by long-lived engagements with killed targets

(Figure 4.18a-c, Video 8). Thus, after a brief period of re-exposure to antigen, primary HIV-

specific CTLs share the same dynamic program of killing and sustained motility arrest observed

with the HIV-specific A14 and E501 CTL clones.
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Figure 4.16. Primary HIV-specific CTLs exhibit lytic activity ex vivo following a brief re-
exposure to antigen.
CD8+ T cells purified from elite controller PBMCs were activated for 12 days with HLA-
matched targets bearing gag, pol, env, and nef peptides. (a) Primary, activated HIV-specific
CTLs were stained with memory markers and analyzed by FACS. Scatter plots are gated on
CD8+ cells which represented ~90% of total cells. (b) CTLs were mixed with autologous targets
bearing SL9 peptide, pooled gag peptides, or pooled env, nef, pol peptides in a traditional 5 1Cr
release assay at an E:T ratio of 7:1. Shown is one representative of 3 independent experiments.
Bars indicate mean ± SEM.
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Figure 4.17. Primary HIV-specific CTLs exhibit characteristic dynamics qualitatively
similar to CTL clones.
Primary CTLs engaged and killed autologous targets pulsed with Gag/Pol/Nef/Env peptide pools
(20, 100, and 1000 ng/mL of each peptide) in collagen matrices during 90 minutes of imaging.
CTL-target engagement dynamics were observed and exhibited the four characteristic
engagement types at the indicated frequencies. For comparison, data is shown for clones A14 and
E501 in response to targets pulsed with the indicated concentrations of cognate antigen.
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Figure 4.18. Primary HIV-speciflc CTLs exhibit a dynamic program of killing and
sustained arrest similar to CTL clones.
CTLs engaged and killed autologous targets pulsed with Gag/Pol/Nef/Env peptide pools (20,
100, and 1000 ng/mL of each peptide) in collagen matrices during 10 hr of imaging. (a) Kinetics
of target death and total duration of CTL-target engagement. (b) Duration of individual CTL-
target engagements (leading to target death or target escape). (c) CTL arrest coefficients were
calculated from 1 hr intervals after 2, 4, or 9 hr of co-culture as they encountered targets pulsed
with the indicated peptide doses. Bars indicate mean ± SEM.
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4.4 PRIMARY HIV-INFECTED CD4+ T-CELLS ELICIT A CTL PROGRAM SIMILAR
TO PEPTIDE-PULSED TARGETS

Since HIV-driven mechanisms for evading CTLs are well established (Collins et al., 1998;

Schwartz et al., 1996), we next tested whether HIV-infected targets were recognized by CTLs

with similar dynamics as observed with peptide-pulsed target cells. HIV-infected primary CD4+

target cells were purified by flow sorting GFP+ cells following 3 days of infection with an

NL4-3-GFP virus expressing the E501 CTL target gag epitope. As previously reported (Nobile et

al., 2010), ~1/3 of infected cells retained migration speeds comparable to uninfected cells

(Figure 4.19). E501 CTLs engaged and killed motile HLA-matched GFP+ infected targets by
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Figure 4.19. Motility of HIV-infected CD4+ T cells.
CD4+ T cell targets were infected with NL4-3 IRES-GFP virus and a pure population of infected
cells was obtained by FACS sorting of GFP+ cells. The sorted GFP- cells, GFP+ infected cells,
and cells from a control uninfected culture were imaged in collagen matrix. Mean velocities for
individual CD4+ cells tracked for one hour are shown. Shown is one representative of 3
independent experiments. Bars indicate mean ± SEM.
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direct hits or successful tethers, but did not kill GFP- uninfected cells, and target killing was

associated with rapid motility arrest (Figure 4.20, Video 9, first and second segments). CTLs

killed targets with a mean time of only 15 min to blebbing and 92 min to permeabilization, but

engagement with targets was prolonged (Figure 4.21, mean of 3.0 ± 0.4 hrs), and motility arrest

persisted for >8 hours (Figure 4.22). Thus, HIV-infected cells presenting endogenously-

processed antigen elicit an immediate and prolonged CTL stop signal during killing, in

qualitative agreement with the findings for peptide-pulsed targets.
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Figure 4.20. HIV-infected target cells elicit CTL killing with similar dynamics to peptide-
pulsed targets.
E501 CTLs were imaged in collagen interacting with NL4-3 IRES-GFP HIV-infected CD4+
targets. (a) The infected cell population was sorted into GFP- and GFP* fractions, respectively,
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and imaged in collagen with E501 CTLs (E:T ratio 1:2). CTL arrest coefficients were determined

for engagements leading to target death or escape during hours 1-2 of imaging. (b, c) E501 CTLs
were imaged in collagen at an E:T of 1:2 on day 3 post-infection when 30% of targets were p24+

by flow cytometry. (b) Representative time-lapse sequences showing two typical CTLs killing
infected targets; elapsed times shown in hr:min. (c) Velocities of CTL and target over time for

examples shown in (b). Data shown from 1 representative of 3 independent experiments. Bars

indicate mean SEM.
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Figure 4.21. HIV-infected target cells elicit CTL killing with similar kinetics to peptide-
pulsed targets.
E501 CTLs were imaged in collagen interacting with NL4-3 IRES-GFP HIV-infected CD4+
targets. Kinetics of CTL-target engagements leading to target death were analyzed.
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Figure 4.22. Durable CTL migration arrest upon lysis of physiological targets.
E501 CTLs were imaged in collagen interacting with NL4-3 IRES-GFP HIV-infected CD4+

targets or uninfected control cells. CTL arrest coefficients were calculated from 1 hr intervals

after 1, 4, or 8 hr of co-culture. Bars indicate mean ±SEM.
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4.5 CTLS RAPIDLY TRANSITION TO SUSTAINED NON-LYTIC EFFECTOR SECRETION
DURING PROLONGED ARREST

The low frequency of serial killing following initial target lysis observed with peptide-pulsed

targets was unexpected, given that A14 CTLs effectively inhibited viral replication in co-cultures

with HIV-infected CD4+ T-cells in ECM (Figure 4.23a). Since viral suppression is an aggregate

measure of lytic and non-lytic CTL function, we hypothesized that prolonged CTL arrest on dead

targets with continued calcium signaling (Figure 4.3b) reflected TCR signal accumulation in

support of a transition from early lysis to sustained anti-viral factor secretion. To determine

whether effector secretion coincided temporally with CTL arrest and initiation of killing, we

measured the kinetics of cytokine/chemokine secretion in collagen. At an antigen dose (20 nM

SL9) where >95% of A14 CTLs engaged a target and arrested within 30 min of co-culture

(Figure 4.23b), cytokine and chemokine secretion was detected after 2 hr, as previously reported

for CTLs in liquid cultures (Purbhoo et al., 2001). However, secretion was strikingly sustained

for at least 12 hr while CTLs remained arrested (Figure 4.23c). Primary HIV-specific CTLs also

secreted cytokine and chemokine within 6 hr in response to peptide-pulsed, autologous targets in

liquid and in collagen (Figure 4.23d and data not shown).

Finally, we directly examined the role for TCR signal accumulation in supporting

sustained non-lytic secretory function. Under conditions of low avidity (but equivalent doses/

densities of antigen) A14 CTLs failed to achieve maximal upregulation of secreted factors

(Figure 4.24a). Furthermore, under conditions where A14 CTL killing was executed with near-

perfect efficiency and all CTLs were committed to targets within 1 hour, sustained secretion was

uncoupled from maximal killing by addition of dasatinib, an inhibitor of TCR signaling, after 1

or 5 hours of coculture (Figure 4.24b). Taken together, these data indicate that CTL clones

60



a 
40-

2 30-

S 20

.10
CL 0 1

0 2
days post-infect

-- infected CD4 .e infe

b
p< 0.001 100

0
r SL9 (nM)

_ 0 20 wt

t40 *2wt
0 20 -

0 -1I ii I
4 10 30

ion time elapsed (min)
ted CD4
4 clone d

0.08-

E 0.06-
CO
C 0.04-

0.02-

0.00. W

2 5 10 15
elapsed time

io is
(hours)

C

0.25-

0.20-

0.15

0.10.

0.05

0.00

E

1.5-

1.0-

0.5-

0.2

E 0.1

S0.10-

z . o.

0.00

e&b
gp4

+-CCL3 + TNF
.. CCL4 + IFN-y

CCL5

Figure 4.23. CTLs rapidly transition from killing to sustained non-lytic effector secretion
during prolonged arrest.
(a) CD4+ T cells infected with JR-CSF HIV-1 were cultured in collagen gels with or without
CTL clone A14 (E:T 1:1) in triplicate, and HIV replication was assessed by p24 ELISA. Data
from one representative of 3 independent experiments. Bars indicate mean ± SEM. (b) A14
CTLs were co-cultured with antigen-pulsed CD4+ T cell targets in collagen (E:T ratio 1:2) and
imaged. The percentage of CTLs engaged with a target was assessed at the indicated times. (c,
d) Concentrations of secreted cytokines/chemokines supernatants from co-cultures. (c) A14
CTLs and CD4+ target cells pulsed with 20 nM SL9 were cultured in collagen gels for 2, 4, 6, 8,
12 and 24 hrs. Data shown from 1 representative of 3 independent experiments. Bars indicate
mean ± SEM. (d) Primary HIV-specific CTLs were cultured with autologous targets pulsed with
gag/env/nef/pol peptide pools (each unique peptide at 20 ng/mL) in liquid for 6 hrs. Bars indicate
mean ± SEM.
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Figure 4.24. Sustained non-lytic effector secretion is dependent on strong, prolonged TCR
signals accumulated after target death.
A14 CTLs were co-cultured in collagen gels with HLA-matched CD4+ target cells pulsed with
the indicated peptides (20 nM). Secreted cytokines and chemokines were measured in
supernatants collected after 24 hrs of co-culture. Expressed as fold increase over secretion in
response to targets without cognate antigen. (a) Secretion under conditions of high (wt SL9) or
lower functional avidity (double, triple mutant SL9). (b) Secretion under conditions of high (20
nM wt SL9) functional avidity with or without addition of an inhibitor of TCR-proximal
signaling (50 pM dasatinib) after 1 or 5 hrs of co-culture.

capable of suppressing viral replication in vitro coordinate their lytic and non-lytic effector

functions spatiotemporally in ECM; high avidity CTLs transition from rapid migration and an

efficient initial kill to durable arrest on dead targets coincident with sustained upregulation of

anti-viral effector molecule secretion; prolonged TCR signal accumulation is required for

maximal upregulation of cytokines and chemokines; and low avidity CTL-target interactions fail

not only to support high killing efficiency but also fail to support maximal secretory function.

4.6 CONCLUSIONS

In this thesis we developed a new assay for monitoring cell migration dynamics and cell-

mediated killing over many hours. Much is known about CTL function: CTLs initiate TCR

signaling and undergo migration arrest in response to antigen-bearing targets, and these TCR

signals induce multiple functions including delivery of a lethal hit to targets and upregulation of

62



a variety of secreted anti-viral factors. However, this work has revealed several important

features of the CTL response by modulating TCR signal strength while simultaneously assessing

short-term and long-term CTL function and CTL migration dynamics within a model system.

First, target migration directly reduces the efficiency of CTL killing on the single-cell level.

Secondly, while it is well known that CTLs exhibit rapid delivery of a lethal hit upon target

encounter (Jenkins et al., 2009b; Stinchcombe et al., 2001; Wiedemann et al., 2006), and many

researchers have postulated that CTLs may rapidly kill many targets in a "serial killing" fashion

(Cerottini and Brunner, 1974; Isaaz et al., 1995; Poenie et al., 1987; Rothstein et al., 1978;

Zagury et al., 1975), we report that in the context of ECM (where T-cell migration is governed by

T-cell intrinsic stop and go signals) CTLs remain engaged with their initial killed target for many

additional hours and do not rapidly kill numerous targets. Third, CTL secretion of anti-viral

factors is dependent on sustained TCR signal accumulation during prolonged CTL engagement

an initial killed target. Fourth, the prolonged TCR stop signal revealed by our continuous

videomicroscopy approach indicates that lytic and non-lytic anti-viral effector functions are

spatially coordinated within the precise microenvironment where antigen has been sensed. Fifth,

high avidity antigen recognition is required for efficient CTL killing and CTL killing and arrest is

a necessary prerequisite for induction of non-lytic CTL secretory function. Thus, we arrive at a

more integrated model of CTL function that was previously understood in fractured facets.
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CHAPTER 5. CONCLUSIONS AND FUTURE WORK

5.1 SUMMARY OF RESULTS

Here we analyzed the kinetics of CTL killing within a 3D surrogate of peripheral tissue

extracellular matrix where both CTLs and target cells exhibited rapid random-walk migration.

HIV-specific CD8+ T-cells were subjected to continuous observation for periods of up to 24 hr,

permitting quantitative analysis of long-term dynamics presently inaccessible in vivo. This

approach revealed a new role for TCR avidity in regulating the function of CTLs: High-avidity

CTLs were capable of near-perfect efficacy in capturing and killing migrating targets on first

contact, while target cell motility facilitated escape from CTLs under conditions of weak antigen

recognition (low antigen dose or low-avidity TCR/peptide-MHC interactions). Second, we found

that CTLs coordinated effector functions in two phases: a rapid "commitment phase" (migrating,

engaging, and killing of initial targets), followed by a prolonged "secretory phase" (durable

migration arrest and TCR signaling without further killing, accompanied by sustained effector

molecule secretion).

Successful CTL engagement of motile target cells within ECM was accompanied by an

initial cascade of prototypical TCR-mediated events previously characterized in liquid

suspensions (Dustin et al., 1997; Purbhoo et al., 2001; Wiedemann et al., 2006): calcium

signaling (within seconds) and motility arrest (within minutes); followed by signatures of target

death, membrane blebbing (as early as 2 min) and permeabilization (as early as 5 min). However,

we found that in ECM where migration/arrest is CTL-intrinsic, CTLs did not immediately detach

from dead targets upon lethal hit delivery, instead remaining arrested (frequently >10 hr), largely

failing to engage and kill subsequent passing targets. These data are consistent with short-term in
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vivo studies where intravital imaging durations are limited (30-60 min), but which report slow

rates of killing (Breart et al., 2008; Coppieters et al., 2011) and direct observation of sustained

CTL-dead target engagement and CTL arrest (Boissonnas et al., 2007; Mempel et al., 2006;

Mrass et al., 2006). The present in vitro model allowed the temporal window of observation to be

extended by >10-fold, revealing a transition from rapid killing to prolonged CTL arrest, during

which CTLs continued to accumulate TCR signals, coincident with the induction of sustained

secretion of effector cytokines and chemokines (at least 12 hr). Thus, strong TCR stimulation

drives a program of spatially coordinated, multidimensional (i.e., combined lytic and secretory)

CTL function.

5.2 DISCUSSION

Multiple dimensions of CTL activity have been correlated with control of HIV in vivo:

these include high lytic capacity (Migueles et al., 2008), functional avidity (Almeida et al.,

2007), p-chemokine expression (Cocchi et al., 2000; Dolan et al., 2007), polyfunctionality (i.e.

lytic degranulation and non-lytic anti-viral effector molecule production) (Betts et al., 2006;

Genesca et al., 2008), and proliferative capacity (Almeida et al., 2007; Migueles et al., 2008).

CTL functions are induced according to a hierarchy of TCR signaling thresholds, with increasing

TCR signals driving increased polyfunctionality (Almeida et al., 2009; Valitutti et al., 1996). Net

TCR signals are integrated over time (Celli et al., 2005) and are dictated not only by the quantity

and quality of antigen presented by the target cell but also by the duration of T-cell contact with

the target. Notably, we found that the duration of CTL-target engagement is not pre-programmed

but rather controlled by TCR signal strength, and that TCR signal accumulation can continue

post-target-death. Thus, strong early TCR engagement initiates a positive feedback loop by

triggering prolonged arrest of the CTL in contact with antigen, leading to greater net TCR signal
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accumulation that in turn promotes greater CTL polyfunctionality. By contrast, while weak TCR

signaling may mediate target death, it results in poor effector function since TCR signal

accumulation is prematurely cut short by abandonment of the dead target.

These results must be interpreted within the limitations of our reductionist approach. This

model system of CTLs and target cells eliminates many variables present in vivo, and clearly

many additional immune cells and mechanisms contribute to the spread and/or control of virus in

vivo (McMichael et al., 2010). However, this methodology permitted detailed analysis of human

CTL killing dynamics presently inaccessible in vivo, under conditions where the phenotypic and

functional characteristics of targets and killer cells were well defined. Only two CTL clones and

freshly-primed CTLs from one patient were examined, but all gave concordant results. Other

tissue-resident cells or soluble factors could be present in tissues that could influence cell

motility and/or CTL function, but notably, addition of potent motility-driving chemokines such

as CCL21 did not alter the sustained stop signal behavior of CTLs here (data not shown).

Together, our findings lead us to propose a two-phase model for control of infection by

individual CTLs exhibiting cooperative behavior on the population level (Figure 5.1): On

detecting antigen, rather than attempting to control infection individually through serial lytic hits,

high-avidity CTLs efficiently engage and kill initial targets (commitment phase) followed by a

rapid transition to bathe the local microenvironment with inflammatory factors (secretory phase).

In this scenario, sustained secretion of p-chemokines may rapidly shift the local E:T ratio, by

blocking infection of new targets and recruiting additional "ready-to-kill" CTL effectors into the

tissue; sustained TCR signaling may also drive proliferation of CTLs post-kill. Conversely, low-

avidity CTLs will exhibit multifaceted failure: motile targets will escape inefficient engagement,
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triggering prolonged arrest of the CTL in contact with antigen, leading to greater net TCR signal

accumulation that in turn promotes greater CTL polyfunctionality. By contrast, while weak TCR

signaling may mediate target death, it results in poor effector function since TCR signal

accumulation is prematurely cut short by abandonment of the dead target.

These results must be interpreted within the limitations of our reductionist approach. This

model system of CTLs and target cells eliminates many variables present in vivo, and clearly

many additional immune cells and mechanisms contribute to the spread and/or control of virus in

vivo (McMichael et al., 2010). However, this methodology permitted detailed analysis of human

CTL killing dynamics presently inaccessible in vivo, under conditions where the phenotypic and

functional characteristics of targets and killer cells were well defined. Only two CTL clones and

freshly-primed CTLs from one patient were examined, but all gave concordant results. Other

tissue-resident cells or soluble factors could be present in tissues that could influence cell

motility and/or CTL function, but notably, addition of potent motility-driving chemokines such

as CCL21 did not alter the sustained stop signal behavior of CTLs here (data not shown).

Together, our findings lead us to propose a two-phase model for control of infection by

individual CTLs exhibiting cooperative behavior on the population level (Figure 5.1): On

detecting antigen, rather than attempting to control infection individually through serial lytic hits,

high-avidity CTLs efficiently engage and kill initial targets (commitment phase) followed by a

rapid transition to bathe the local microenvironment with inflammatory factors (secretory phase).

In this scenario, sustained secretion of p-chemokines may rapidly shift the local E:T ratio, by

blocking infection of new targets and recruiting additional "ready-to-kill" CTL effectors into the

tissue; sustained TCR signaling may also drive proliferation of CTLs post-kill. Conversely, low-
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avidity CTLs will exhibit multifaceted failure: motile targets will escape inefficient engagement,

permitting viral replication and spread, while upon killing a target, weak TCR signaling and

secretion of low quantities of p-chemokines insufficient for blocking new infections might

recruit additional CD4+ cells to the tissue, thereby inadvertently promoting rapid viral replication

(Li et al., 2009). This mechanism for spatiotemporal coordination of anti-viral effector functions

is dependent on CTL killing efficiency and highlights a new role for TCR avidity in tissue where

CTLs and targets are motile. Thus, a successful HIV vaccine employing CD8+ T-cells will need

to induce high-avidity CTLs, which can mount a cooperative and multidimensional response for

efficient elimination of migrating infected cells prior to overwhelming virus

dissemination.

5.3 CONCLUSIONS AND MODEL

Together, our findings lead us to propose a two-phase model for cooperative control of

infection by CTL populations (Figure 5.1): On detecting antigen, rather than attempting to

control infection individually through serial lytic hits, high-avidity CTLs efficiently engage and

kill initial targets (commitment phase) followed by a rapid transition to bathe the local

microenvironment with inflammatory factors (secretory phase). In this scenario, sustained

secretion of P-chemokines may rapidly shift the local E:T ratio, by blocking infection of new

targets and recruiting additional "ready-to-kill" CTL effectors into the tissue; sustained TCR

signaling may also drive proliferation of CTLs post-kill. Conversely, low-avidity CTLs will

exhibit multifaceted failure: motile targets will escape inefficient engagement, permitting viral

replication and spread, while upon killing a target, weak TCR signaling and secretion of low

quantities of P-chemokines might recruit additional CD4+ cells to the tissue without reaching
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Figure 5.1. A model of effective anti-viral CTL function in a 3D environment.
High avidity CTLs efficiently kill motile targets and rapidly transition to a polyfunctional
secretory phase which is driven by prolonged CTL-dead target engagements and TCR signal
accumulation.
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levels sufficient to block new infections, thereby inadvertently promoting rapid viral replication

(Li et al., 2009a). CTL killing efficiency is a new parameter of single-cell CTL function in the

context of ECM and rapid cellular migration. We highlight a new role for TCR avidity and

killing efficiency in the development and spatiotemporal coordination of multidimensional anti-

viral effector function. These results suggest that a successful HIV vaccine employing CD8+ T-

cells will need to induce high-avidity CTL in substantial numbers, which can coordinately

eliminate migrating infected cells prior to overwhelming virus dissemination.

5.4 FUTURE WORK

This work has laid a strong foundation for the understanding of CTL dynamics and

function, but has also prompted several additional questions. We hypothesize that the program of

CTL dynamics and function described here is a general, CTL-intrinsic program and is likely

utilized by CTLs specific for other disease related antigens. Thus it would be of great interest to

examine the dynamics of CTLs taken from HIV+ patients during the acute phase of HIV

infection, or specific for rapidly resolved diseases such as flu or chicken-pox; chronic diseases

such as CMV, hepatitis, and cancer; or autoimmune diseases such as diabetes. In light of our

findings, it would be of interest to examine the effects of immunosuppressive receptors such as

PD-1 and CTLA-4 on the dynamics of CTL-target engagement. These molecules not only play

important roles in the induction of anergy in the context of HIV and cancer, but they are also

reported to override TCR stop signals (Fife et al., 2009; Schneider et al., 2006) and might thus

decrease the efficiency of CTL killing.

The CCR5 chemokine receptor is expressed on effector CD8+ and CD4+ T cells and

directs their traffic into inflamed peripheral and mucosal tissues in response to the p-chemokines
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CCL3, CCL4, CCL5 (Mora and von Andrian, 2006; Weninger et al., 2002). It also guides naive

CD8+ T cells to join T-DC couples during T-cell priming in lymph nodes (Castellino et al., 2006),

enhances early T cell contacts with antigen presenting cells (Friedman et al., 2006), and

generates costimulatory signals which contribute to TCR-dependent T cell activation (Hugues et

al., 2007; Molon et al., 2005). Thus, it is intriguing that while CTLs can kill targets in 5-20

minutes (Stinchcombe et al., 2001), CTLs secrete an initial burst of preformed stores of (-

chemokines with similarly rapid kinetics (Catalfamo et al., 2004; Purbhoo et al., 2001; Wagner et

al., 1998). The primary and cloned HIV-specific CTLs examined here secrete p-chemokines

within 20 minutes (data not shown) and exhibit upregulated secretion within 2 hours. The assay

system developed here could be utilized to examine what role these early bursts of p-chemokines

play in CTL-target engagement efficiency. In one of our very first experiments we examined if

the E501 CTL response affected the antigen-independent dynamics of the A14 CTLs and we

found no significant effects on A14 velocities or arrest coefficient (Figure 3.2b, c). However,

given the integrated model of CTL dynamics and function (Figure 5.1), and given our ability to

monitor multiple populations of CTLs labeled with unique fluorophore-CTXB tracers (Figure

3.2a) it would be very interesting to examine the efficiency of low avidity E501 CTL killing in

the presence of the high avidity A14 CTL response. One might predict that E501 CTL killing

efficiency would be enhanced.

Finally, specific molecular mechanisms of CTL killing were outside the scope of this

thesis, but the videomicroscopy data revealed target deaths of at least three seemingly distinct

morphologies, consistent with reports of FasL mediated apoptosis (blebbing with delayed or

absent permeabilization), perforin and granzyme mediated apoptosis (blebbing followed by
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partial permeabilization indicated by only dim nuclear staining that gets brighter over time), and

complete and rapid target lysis mediated by high doses of perforin (target membrane expands

rapidly like a balloon coincident with immediate, bright DNA staining) (Keefe et al., 2005;

Thiery et al., 2011; Waterhouse et al., 2006). Given recent reports on unique roles for distinct

mechanisms of CTL killing in vivo (Janssen et al., 2010; Meiraz et al., 2009; Shanker et al.,

2009), it might be desirable to use the videomicroscopy approach developed here to probe these

mechanisms in vitro.
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SUPPLEMENTARY VIDEOS

Supplementary Video 1. Target cell motility within collagen gels vs convection within
traditional liquid culture.
CD4+ T cells were imaged within 3D ECM (left panel) and in liquid culture (right panel).
Elapsed time shown in min:sec; scale bar 20 jtm.

Supplementary Video 2. CTL and target cells migrate within 3D ECM and CTL killing is
not observed in the absence of cognate antigen.
A control culture containing primary HIV-specific CTL from an HIV+ patient and autologous
CD4+ T cells (not pulsed with any peptides) was imaged within 3D ECM. CTL were stained with
CTXB (red) and targets were unlabeled. Dead cells are visualized with sytox green. Elapsed time
shown in hr:min; scale bar 20 tm.

Supplementary Video 3. Recognition, engagement and killing of target cells in ECM.
A14 CTLs were co-cultured in ECM with HLA-matched CD4+ T cell targets pulsed with SL9
peptide (2 nM). (video segment 1) A successful CTL-target engagement characteristic of a
"direct hit kill," and (video segment 2) a dramatic example of a "successful tether" followed by
target death indicated by "ballooning" of the target cell membrane. The following cues are
included: CTL, red arrow; target, white arrow; elapsed time shown in hr:min; scale bar 20 pm.
Target permeabilization is visualized in situ with sytox green.

Supplementary Video 4. CTL exhibits prolonged TCR signaling following a direct hit kill.
A14 CTLs were double labeled with CTXB and the ratiometric calcium-sensing dye,
FURA-2AM prior to loading in ECM. An A14 CTL engages and kills an HLA-matched CD4+ T
cell target pulsed with SL9 peptide (2 nM). The top video panel is a brightfield/CTXB
fluorescence overlay of CTL-target engagement dynamics. TCR-dependent calcium signaling is
represented in pseudocolor video (bottom video panel) and is quantitatively expressed over time
as a normalized Fura ratio (right panel). On the x-axis CTL engagement with the live target is
indicated in pink, prolonged CTL engagement with the killed target is indicated in gray. The
following video cues are included: CTL, red arrow; target, white arrow; elapsed time shown in
min; scale bar 20 pm.

Supplementary Video 5. Failed CTL encounter with migrating target in ECM leads to
target escape.
A14 CTLs were co-cultured in ECM with HLA-matched CD4+ T cell targets pulsed with SL9
peptide (2 nM). Shown are characteristic examples of targets escaping CTLs following a "failed
tether" (video segment 1) and a "brush" (video segment 2). The following cues are included:
CTL, red arrow; target, white arrow; scale bar 20 pm, elapsed time shown in min and hr:min,
respectively.

Supplementary Video 6. CTL exhibits weak TCR signaling during a failed tether.
A14 CTLs were double labeled with CTXB and the ratiometric calcium-sensing dye,
FURA-2AM prior to loading in ECM. An A14 CTL engages but fails to kill an HLA-matched
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CD4+ T cell target pulsed with SL9 peptide (2 nM). The left video panel is a brightfield/CTXB
fluorescence overlay of CTL-target engagement dynamics. TCR-dependent calcium signaling is
represented in pseudocolor video (right panel) and is quantitatively expressed over time as a
normalized Fura ratio (bottom panel). On the x-axis CTL engagement with the live target is
indicated in pink. The following video cues are included: CTL, red arrow; target, white arrow;
elapsed time shown in min; scale bar 20 Vm.

Supplementary Video 7. Kill-experienced CTLs arrest for hours and fail to kill subsequent
targets.
A14 CTLs were co-cultured in ECM with HLA-matched CD4+ T cell targets pulsed with the
indicated concentrations of cognate peptide. (video segment 1) An A14 CTL was observed to
kill a target (20 nM SL9) followed by prolonged engagement with the killed target and durable
migration arrest after CTL disengagement. The permeabilized target is marked with sytox green.
(video segment 2). An efficient first kill is quickly followed by inefficient recognition and
engagement of subsequent targets (2 nM SL9). (video segment 3) An A14 CTL engages, kills
and permeabilizes an initial target (2 nM SL9). While still arrested and engaged with the initial
killed target, the CTL catches and kills a subsequent target. After "serially killing" two targets,
this CTL remained arrested and engaged with the killed targets, permitting escape of three
additional targets observed to run over the CTL. Target permeabilization is visualized with sytox
green. The following cues are included: CTL, red arrow; target, white arrow; elapsed time shown
in hr:min; scale bar 20 rim.

Supplementary Video 8. Primary CTL engage targets with dynamics similar to those
observed for clones.
Primary, polyclonal HIV-specific CTLs from elite controller 285873 were primed with targets
bearing overlapping 18-mer peptide pools covering the full sequences of Gag, Pol, Nef, and Env.
On day 14 the polyclonal CTLs were labeled with CTXB and seeded in 3D ECM with
autologous CD4+ T cell targets pulsed with the same peptide pools (100 ng/mL). (video segment
1) A primary CTL commits a direct hit kill. Target permeabilization is visualized with sytox
green. (video segment 2) A primary CTL exhibits a failed tether, followed by target escape. The
following cues are included: CTL, red arrow; target, white arrow; scale bar 20 [tm. Elapsed time
shown in hr:min.

Supplementary Video 9. Primary HIV-infected CD4+ T-cells elicit a CTL program similar
to peptide-pulsed targets.
E501 CTLs were co-cultured with HLA-matched CD4+ T cell targets infected with NL4-3 HIV
virus. CTLs recognize physiologic antigen densities, engaging and killing HIV-infected targets.
(video segment 1) CTL-target engagement is followed by target death indicated by "blebbing"
of the target cell membrane and prolonged CTL arrest and contact with killed target. (video
segment 2) A successful tether is followed by target death indicated by "blebbing" of the target
cell membrane. The following cues are included: CTL, red arrow; target, white arrow; elapsed
time shown in hr:min; scale bar 20 tm.
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dependent stop signal", manuscript in preparation (2012).

5.5.2 Conference Presentations

[1] Hottelet Foley M, Forcier T, McAndrew E, Juelg B, Walker BD, and Irvine DJ, "Time-lapse
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