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Abstract

Optimization of multidisciplinary systems is critical as slight performance improvements
can provide significant benefits over the system’s life. However, optimization of multidisci-
plinary systems is often plagued by computationally expensive simulations and the need to
iteratively solve a complex coupling-relationship between subsystems. These challenges are
typically severe enough as to prohibit formal system optimization. A solution is to use multi-
fidelity optimization, where other lower-fidelity simulations may be used to approximate the
behavior of the higher-fidelity simulation. Low-fidelity simulations are common in practice,
for instance, simplifying the numerical simulations with additional physical assumptions or
coarser discretizations, or creating direct metamodels such as response surfaces or reduced
order models. This thesis offers solutions to two challenges in multidisciplinary system design
optimization: developing optimization methods that use the high-fidelity analysis as little as
possible but ensure convergence to a high-fidelity optimal design, and developing methods
that exploit multifidelity information in order to parallelize the optimization of the system
and reduce the time needed to find an optimal design.

To find high-fidelity optimal designs, Bayesian model calibration is used to improve low-
fidelity models and systematically reduce the use of high-fidelity simulation. The calibrated
low-fidelity models are optimized and using appropriate calibration schemes convergence to
a high-fidelity optimal design is established. These calibration schemes can exploit high-
fidelity gradient information if available, but when not, convergence is still demonstrated for
a gradient-free calibration scheme. The gradient-free calibration is novel in that it enables
rigorous optimization of high-fidelity simulations that are black-boxes, may fail to provide a
solution, contain some noise in the output, or are experimental. In addition, the Bayesian
approach enables us to combine multiple low-fidelity simulations to best estimate the high-
fidelity function without nesting. Example results show that for both aerodynamic and
structural design problems this approach leads to about an 80% reduction in the number of
high-fidelity evaluations compared with single-fidelity optimization methods.

To enable parallelized multidisciplinary system optimization, two approaches are devel-
oped. The first approach treats the system design problem as a bilevel programming problem
and enables each subsystem to be designed concurrently. The second approach optimizes
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surrogate models of each discipline that are all constructed in parallel. Both multidisci-
plinary approaches use multifidelity optimization and the gradient-free Bayesian model cal-
ibration technique, but will exploit gradients when they are available. The approaches are
demonstrated on an aircraft wing design problem, and enable optimization of the system in
reasonable time despite lack of sensitivity information and 19% of evaluations failing. For
cases when comparable algorithms are available, these approaches reduce the time needed
to find an optimal design by approximately 50%.

Thesis Supervisor: Karen Willcox
Title: Associate Professor of Aeronautics and Astronautics

Thesis Committee Member: Qiqi Wang
Title: Assistant Professor of Aeronautics and Astronautics

Thesis Committee Member: Jaime Peraire
Title: Professor of Aeronautics and Astronautics
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Chapter 1

Introduction

The ability to optimize complex systems using high-fidelity simulations can yield physical

systems with unprecedented performance. Complex systems span a broad range from air-

craft to nuclear reactors to transportation networks to nanoscale devices, and for all of these

systems sophisticated simulations play an important role in design and performance assess-

ment. However, the cost of these simulations is often too high for direct optimization to be

tractable. These systems are composed of many interacting and coupled subsystems, each

of which is modeled with an expensive simulation. Furthermore, the sensitivity of a sys-

tem’s performance to its design variables is often not available, and the system performance

estimates may be corrupted by poor convergence behavior of the simulations or inherent un-

certainty in the processes. Therefore, many expensive system or subsystem simulations will

be required to find a system design with good performance, let alone optimal performance.

Section 1.1 motivates multifidelity optimization and system decomposition as potential

ways of mitigating these system design challenges. Section 1.2 presents an introduction

to multifidelity optimization, and Section 1.3 provides an introduction to multidisciplinary

optimization, and synergisms between multifidelity and multidisciplinary optimization. Sec-

tion 1.4 formally outlines the research objectives of this thesis intended to address the issues

noted in multifidelity and multidisciplinary optimization. The chapter concludes by outlining

the remainder of the thesis in Section 1.5.
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1.1 Motivation

Typical early-stage or conceptual design of a complex system is done using basic physical

tools or empirical methods, but these tools may not capture important physics, especially

when new technologies are involved. We will use the term fidelity to describe how well a

model estimates reality or equivalently the expected quality of the model. Our goal is to

bring high-fidelity analyses earlier into the design process. Enabling conceptual design with

high-fidelity simulation will provide the opportunity for systems to take advantage of complex

phenomena not captured by lower-fidelity methods and will aid development of novel systems

with excellent performance. Moreover, the use of high-fidelity simulations helps to reduce

the need for costly redesigns due to a system not meeting performance targets or behaving

unexpectedly as the system characteristics are more accurately modeled.

The problem with using high-fidelity simulation in the conceptual design phase is the

time and expense. High-fidelity simulations can either be physical experiments or numerical

simulations, both of which are expensive and time consuming. In the early stages of design

it is important to rapidly evaluate a design so numerous configurations can be analyzed.

This rapid turn-around is usually only possible with low-fidelity analyses. A multifidelity

framework attempts to mitigate this challenge by using the lower-fidelity analyses to accel-

erate convergence towards the optimal high-fidelity design. In this thesis the requirements

placed upon a low-fidelity model are minimal, simply a low-fidelity model must estimate

the same metric of interest as the high-fidelity model and be a smooth function. There

are no requirements that the low-fidelity model be accurate or qualitatively similar to the

high-fidelity model. This means a low-fidelity model could be the same type of physical

simulation as the high-fidelity one, but with additional physical approximations, it could be

the same simulation as the high-fidelity but solved on a coarser discretization [5], it could be

an empirical code, a response surface [36, 105, 114], or a reduced order model [6]. However,

one would expect a multifidelity method to perform better when the lower-fidelity results

better resemble the high-fidelity output.

The challenge to implementing multifidelity design strategies is in developing formalized
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frameworks that can use the lower resource, low-fidelity methods to design complex systems

that are optimal with respect to the highest fidelity simulations available. This challenge

has two dominating aspects: first, developing methods to determine when recourse is needed

to the high-fidelity methods in order to calibrate the low-fidelity methods, and second, how

to best employ multifidelity strategies to system design when the multiple fidelity analysis

methods are available for system components or disciplines as opposed to the entire system,

i.e., when multiple high-fidelity simulations are coupled. Some other challenging aspects of

these two overarching issues are optimizing systems in which the sensitivity of the system

performance to the design variables is unknown, and how to best parallelize the system design

process. The following sections summarize the state-of-the-art in multifidelity optimization,

and present some state-of-the-art methods for designing multidisciplinary systems.

1.2 Multifidelity Optimization

Numerous heuristic techniques have been used to optimize a high-fidelity function using

lower-fidelity information. We consider heuristic multifidelity optimization (MFO) approaches

to be approaches that generally converge in practice to an optimum of the high-fidelity func-

tion, but in which there is no formal mathematical proof or guarantee. These methods

vary from problem specific necessities to rigorous methods that compute a probability of

finding an improved high-fidelity function value. Examples of problem specific multifidelity

approaches include adding global response surface corrections to low-fidelity models [9], us-

ing the low-fidelity function gradient as the optimization direction, but performing the line

search with the high-fidelity function values [10], creating a response surface using both high-

and low-fidelity analysis results [53], and running higher-fidelity models when two or more

lower-fidelity models disagree [22]. In contrast, we consider a non-heuristic method to be one

in which given a set of requirements for the initial design(s) and behavior of the high- and

low-fidelity functions, there is a mathematical guarantee that with enough time the multi-

fidelity method will find a high-fidelity optimum. Non-heuristic multifidelity methods may

converge slower than single-fidelity methods, but nonetheless they are guaranteed to work
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eventually. Our discussion of MFO methods focuses on both heuristic and non-heuristic

methods that are broadly applicable and likely to find a high-fidelity optimum for general

problems.

In MFO there has largely been two types of approaches, global and local. Global methods

search the entire feasible domain for the best design, whereas local methods attempt to find

the nearest design that has better performance than all other designs in that neighborhood.

Global methods have the benefit that they typically do not require estimates of the high-

fidelity function’s gradient. This is important because frequently a high-fidelity function’s

gradient is unavailable and cannot be estimated accurately. For example when the high-

fidelity function (i) is a simulation with a finite convergence tolerance, (ii) is a black-box,

(iii) contains random noise in the output, (iv) may occasionally fail to provide a solution, or

(v) is a physical experiment, then a high-fidelity gradient will not be available and estimations

of it may contain significant error. A detriment to using global optimization methods is that

they typically require considerably more high-fidelity evaluations than a local method. So,

there is clearly a need for both types. This section first presents global MFO methods and

then local MFO methods. The section highlights both when a method is guaranteed to find

a high-fidelity optimum and when the method requires high-fidelity gradient information.

1.2.1 Global MFO

Common gradient-free global optimization frameworks are based on interpolating the high-

fidelity objective function, for example by estimating the location of high-fidelity optima

using linear segments [51] or Gaussian process regression (equivalently Kriging) [52]. The

latter technique, known as Efficient Global Optimization (EGO), offers many advantages

such as an uncertainty estimate. The mean of the Gaussian process interpolates the value of

the high-fidelity function, while the mean square error of the Gaussian process models the

uncertainty in the high-fidelity function value. This error estimate is zero at all locations

where the value of the high-fidelity function is known and increases with distance away from

sample points. Optimization is then performed on the Gaussian process model, and the

high-fidelity function is sampled at locations likely to reduce to the value of the function
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over the current observed minimum. This technique works well in practice, can be made

globally convergent [50], and does not require a high-fidelity derivative estimate. However,

the method may be globally biased and attempt to explore the entire design space as opposed

to simply reducing the objective function. In addition, the method has been shown to be

sensitive to both the initial high-fidelity samples [50] and to the exact metric of selecting

points likely to improve the high-fidelity function value [101]. Other methods related to

EGO include multiobjective methods treating both improvement and risk as objectives when

looking for performance improving points [91, 92], and a provably convergent formulation

by Regis et al. that considers both the value of the Gaussian process and the distance to

previous interpolation points [94].

Kennedy and O’Hagan enabled EGO to be used with multiple-fidelity models by propos-

ing Gaussian process models as a way of calibrating lower-fidelity models to best predict the

output of high-fidelity models [55]. They also performed a complete Bayesian uncertainty

analysis of calibrating computer models to true physical processes, not just higher-fidelity

models, and determined where the uncertainties arise [56]. This work is significant in a mul-

tifidelity context because calibration-based approaches likely predict high-fidelity behavior

better than interpolation-based approaches. The rationale is that an interpolation-based

approach can be seen as calibrating a low-fidelity model that is zero everywhere, however,

by calibrating a low-fidelity model that captures some high-fidelity behavior only errant por-

tions of the design space need to be corrected. Further calibration-based work by Leary et al.

suggests that the error between the high- and low-fidelity models can be either additive as

posed by Kennedy and O’Hagan or multiplicative [62]. Moreover, Huang et al. proposed an

extension of these techniques that allows for heuristic combination of multiple lower-fidelity

models [48].

When the high-fidelity gradient is available, in lieu of Kriging/Gaussian process regres-

sion, Cokriging surrogate models are often used. Cokriging surrogates are similar to Kriging

models except they interpolate a function with both the correct function value and with

the correct gradient. For the same number of interpolation points, a Cokriging model will

typically capture the behavior of a function better than an ordinary Kriging model due to
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the additional information the gradient provides [23, 24]. The typical implementation of

Cokriging methods in optimization is to create a global surrogate model of the expensive

function. Iteratively updating these global Cokriging models during an optimization often

results in finding a high-fidelity optimum faster than with other calibration methods [63];

this was even found to be true when the number of Cokriging calibration points was lim-

ited to reduce computational cost [42]. However, with these global Cokriging techniques,

convergence to a high-fidelity optimum is not guaranteed. Moreover, without controlling

the location of calibration points and the optimization steps taken, local convergence of a

Cokriging-based optimization method is also not ensured.

The challenge with global optimization is that to prove an algorithm finds a global op-

timum within a domain requires demonstrating that the sequence of trial points of the

algorithm becomes dense, or that function has been evaluated in all arbitrarily small inter-

vals within the domain [112]. Unless there exists some known, or a priori, bound on the

smoothness of the objective function and the goal of the method is to only get “close” to

the optimal design, as in [50, 51], or [94], then this requires sampling infinitely many points.

With the limited exception of some cases where there are known bounds on smoothness,

global optimization is likely out of reach for optimizing high-fidelity simulations due to the

immense number of evaluations required. However, local optimization techniques can offer a

guarantee of providing the best design in the neighborhood of a staring point, often quickly

and with few evaluations. This is a common goal in engineering design, where an initial

concept or layout is available and the design that will be constructed will likely not deviate

significantly from that initial concept. In these cases, global exploration may be wasteful and

local optimization can provide a significant performance improvement. Another advantage

the local methods have is the handling of constraints. For global approaches, incorporating

general non-box constraints is a challenge that is often handled heuristically. Some heuristic

approaches based on EGO either estimate the probability that a point is both a minimum

and that it is feasible or add a smooth penalty to the surrogate model prior to using optimiza-

tion to select new high-fidelity sample locations [50, 91, 101]. In contrast, local optimization

methods can simply evaluate the constraint value at the current location and can use or
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approximate sensitivity information from the constraint and restrict movement to feasible

directions.

1.2.2 Local MFO

One choice for local multifidelity optimization is the use of trust regions. Trust regions

have a considerable history of use in optimization and are provably convergent. A thorough

discussion on trust region theory and implementation is available in the book by Conn et

al. [31]. A classic example of trust region-based optimization, which may be viewed as

multifidelity optimization, is to optimize a function using its gradient and Hessian at the

center of a trust region as a quadratic surrogate model of the function. The trust region

then determines the allowable step length that may be taken based on how well the function

can be represented by a quadratic surrogate. Figure 1-1 shows a few iterations of a trust-

region optimization on a simple analytical function with quadratic approximations based

at the center of the trust region. An important extension of trust regions to a general

multifidelity optimization setting, one where any continuous and smooth function can be used

as a low-fidelity model, is the development of trust region model management by Alexandrov

et al. [2, 3, 5]. They showed that general low-fidelity models can be adjusted to be a

surrogate model upon which optimization is performed in a manner provably convergent

to an optimum of a higher-fidelity function. The requirement for the surrogate is that

at the center of each trust region the surrogate model and the high-fidelity function must

have both equal value and equal gradient. We refer to this required condition of equal

value and equal gradient as first-order consistency. Alexandrov et al. proposed both a

multiplicative and an additive correction to adjust an arbitrary low-fidelity function so that

a lower-fidelity surrogate satisfying the first order consistency requirement can be created [2].

These surrogate models are rebuilt after every successful trust region iteration, which is

every time the trust region iteration succeeds in reducing the high-fidelity function value.

The techniques of Alexandrov et al. have been applied to a collection of low-fidelity models,

such as reduced order models, data-fits, and space-mapped low-fidelity functions [37, 95–

97]. Special attention should be brought to the first-order consistency requirement when
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used with these data-fits or interpolations of the high-fidelity function. It is shown when

using data-fits the first-order consistency requirement can be detrimental to the fit when

enforced after the fit is created [96, 97]. However, frameworks to ensure good fits that satisfy

first-order consistency are known [44].

Whenever a high-fidelity function’s gradient is unavailable and cannot be estimated ac-

curately, the first-order consistency criterion cannot be satisfied. As mentioned previously,

this occurs frequently in practice. When this occurs, methods such as pattern-searches have

been used for multifidelity optimization. For instance, Booker et al. [16] demonstrate that

additional search directions generated from a surrogate model of the high-fidelity function

can be added to the search lattice in a general pattern-search algorithm without violating

the convergence proof of the underlying pattern-search algorithm. Within this framework,

adding directions found by optimizing a surrogate model of the high-fidelity function to a

pattern-search lattice may speed convergence of the pattern-search algorithm, but there is

no formal proof that it will. An extension of this work is to augment the search lattice with a

direction generated by minimizing a surrogate model calibrated to the high-fidelity function

at the points used in the search lattice [20]. One calibration method, known as conformal

space mapping, maps the design space of a low-fidelity function to the design space of the

high-fidelity function by minimizing the square error between the mapped low-fidelity func-

tion and the high-fidelity function at each point in the search lattice. This technique enables

the generation of calibrated models using only the high-fidelity function evaluations that are

already required for provable convergence in the underlying pattern search.

Interpolation-based surrogate models are also a common choice for gradient-free opti-

mization. Examples include that by Conn et al. [31, 32], Marazzi et al. [70], or Powell [90],

and are typically based on polynomial interpolants and trust regions. These gradient-free

methods do not require first-order consistency, they ensure a quality model through geomet-

ric criteria on the interpolation set which are specific to the polynomials used. Polynomial

surrogates capture local function behavior sufficiently well to prove convergence; however,

a more general surrogate model may also capture some global function behavior to speed

convergence. Some generalizations to gradient-free surrogate-based optimization include a
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Figure 1-1: A sample of six trust-region iterations showing the current design (center of the
trust region), the domain of the trust-region subproblem, and the solution of the trust-region
subproblem.
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proof that a trust-region algorithm is convergent provided either the error between the gra-

dient of the function and the gradient of surrogate model is bounded by a constant times

the gradient of the function [19] or provided the accuracy of the surrogate can be improved

dynamically within the trust-region framework [31, Section 10.6]. Oeuvray showed that a

radial basis function interpolation satisfies these criteria, provided the interpolation points

satisfy certain conditions [84]. Further work by Conn et al. on interpolation sets [33], as

well as on derivative-free trust-region methods [27, 28] led to a derivative-free trust-region

method that also does not require first-order consistency. Wild et al. then used this work to

develop a derivative-free optimization algorithm that is provably convergent to a high-fidelity

optimum also using a radial basis function interpolant [116–118]. This method enables op-

timization on a surrogate model that can be calibrated in a region of the design space as

opposed to only locally and still be provably convergent to a high-fidelity optimum.

Conn et al. then showed that both the error between a function and a smooth interpola-

tion model as well as the error between the function’s derivative and the interpolation model’s

derivative can be bounded by appropriately selecting interpolation points[33]. Conn et al.

also proved that any interpolation model that can locally be made fully linear (defined in

the next section) can be used in a provably convergent derivative-free trust-region frame-

work [27]. Wild et al. then developed an algorithm to produce fully linear radial basis

function interpolation models and showed that his method could be used within Conn’s

provably convergent optimization framework [116–118].

The gradient-based local multifidelity methods can all handle constraints with typical

means: Newton methods, penalty functions, Lagrangians, etc. [5]. However, for the gradient-

free methods, constraint handling can be a significant challenge. Some approaches combine

either an augmented Lagrangian [58, 59, 64], exact penalty method [68], constraint filtering

[7], or barrier [8] with either a pattern-search or a simplex method. Other methods use linear

interpolation of both the objective function and the constraint [88, 89]. In the multifidelity

setting we have a smooth surrogate model for a high-fidelity function so we are able to

generate approximate sensitivity information for both the objective and the constraints to

speed convergence, this is potentially a significant advantage over using pattern-search and
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simplex methods.

1.2.3 Open Issues in Multifidelity Optimization

This thesis only considers local optimization and does not attempt to find the globally

optimal design due to the challenges addressed. For local multifidelity optimization four

major challenge themes have emerged, (i) how to rigorously and effectively combine multiple

low-fidelity models to best predict the high-fidelity function behavior, (ii) how to find a high-

fidelity optimum when gradient information is not available, (iii) how to find a high-fidelity

optimum in the presence of potentially computationally expensive constraints, and (iv) how

best to use gradient information such that surrogate models use as much information as is

known about the high-fidelity function. These challenges are also significant in multidisci-

plinary system design, as they may emerge within the design of each subsystem and at the

integrated-system level.

1.3 Multidisciplinary Optimization

Multidisciplinary Design Optimization (MDO) approaches are tasked with optimizing a com-

plex system that requires evaluating the interactions of multiple disciplines or equivalently

multiple subsystems. To explain some of the difficulties in MDO, Figure 1-2 presents a

design structure matrix (DSM) which demonstrates feed-forward and feedback between dis-

ciplines in a multidisciplinary system. All disciplines are placed on a diagonal, feed-forward

is represented as connections above the diagonal, and feedback is indicated by connections

below the diagonal. The feedback from Discipline 2 to Discipline 1 means that there must

be some iterative solution between Disciplines 1 and 2 to find the resulting output that

Discipline 3 requires, and this iterative solution must be done for each set of design vari-

ables tested during optimization. This can be further complicated when both Disciplines 1

and 2 have their own constraints that must be satisfied for their individual feasibility. The

seminal publication [34], Problem Formulation for Multidisciplinary Optimization, defined

multidisciplinary feasibility as when (1) all single disciplines are individual feasible and (2)
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the input to each discipline corresponds to the output of the other via the interdisciplinary

mapping. With respect to Figure 1-2, this means that all the constraints within Disciplines

1, 2 and 3 are satisfied, and that when an output of one discipline is an input to another

discipline, the value output and the value input must be equal. This corresponds to the

iteration between Discipline 1 and Discipline 2 having been solved. Solving for all of the

interacting variables between disciplines such that the system is multidisciplinary feasible is

a called a multidisciplinary analysis (MDA).

Figure 1-2: Block diagram for a sys-

tem with feed-forward from discipline

1 to 2 and 3, and feedback from disci-

pline 2 to 1. The system objective is

only a function of discipline 3.

The remainder of this section presents common

MDO formulations. The discussion highlights the

degree to which the formulations enable multifidelity

methods, are parallelizable, and whether or not the

methods have a mathematical proof of convergence

to an optimal system design. In terms of paralleliza-

tion of the system optimization there are three ways

in which an optimization method can be parallelized,

(i) by evaluating the function in parallel, e.g., eval-

uating each required function evaluation for a finite

difference calculation at the same time, (ii) perform-

ing the linear algebra and optimization calculations

in parallel, and (iii) decomposing the optimization

into smaller subproblems that can each be performed

in parallel [102]. This thesis will only consider parallelizability of the optimization itself and

not the linear algebra, i.e., only techniques (i) and (iii) are considered.

1.3.1 Fundamental MDO Methods

Another major contribution from the paper Problem Formulation for Multidisciplinary Op-

timization is to define three fundamental multidisciplinary optimization approaches which

allow for the use of nonlinear programming techniques to solve system optimization prob-

lems. The first formulation is called the Multidisciplinary Feasible (MDF) formulation, and
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in this formulation evaluating the system objective function value for any given set of de-

sign variables requires a full MDA. This formulation can be computationally intensive as

calculations of the objective function used for sensitivity information also require solving

a complete MDA. The second approach is called the All-At-Once (AAO) formulation, and

with this approach no feasibility is ensured until convergence. All of the analysis variables

and coupling variables are treated as additional design variables, and all of the analyses

and disciplinary couplings are treated as constraints. In this formulation the optimization

routine is required to solve the nonlinear systems of constraints in order to find a feasible

solution; however, the full MDA is not required in a large portion of the design space when

feasibility is impossible. The final approach presented is the Individual Discipline Feasible

(IDF) formulation. In the IDF approach individual discipline feasibility is ensured; however,

the multidisciplinary feasibility is left to the optimizer as a constraint. The IDF approach

is flexible and numerous formulations are posed [34].

Using the MDF approach, multifidelity optimization and parallelization are only possible

at the system level. Surrogate models of the system performance can be created from full

MDAs at many designs. In addition, each MDA may be carried out simultaneously, but the

iterative solution of finding feasible designs is only parallelizable if a system exhibits atypical

subsystem couplings. Convergence of an MDF optimization only relies on the capabilities of

the iterative technique used in the MDA and on the nonlinear programming (NLP) solver

used in the optimization, therefore this technique can typically be mathematically guaranteed

to find an optimal system given that the assumptions of the iterative solution method and

NLP solver are met. The essential drawback of this method is when each subsystem contains

a high-fidelity simulation; in this case, the iterative solve in the MDA can be prohibitively

expensive and preclude the use of the MDF formulation.

The IDF approach offers a potential benefit in that the subsystems only communicate

through the system-level optimization problem. This enables parallelizing the overall system-

level optimization problem into separately finding feasible subsystem designs, and also allows

the possibility to evaluate the full system performance in parallel. There is also the potential

to use multifidelity methods for the system-level and subsystem-level analyses. The conver-
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gence of this technique only relies on convergence properties of the NLP solver used for the

optimization, so in many cases the approach can be proven to converge.

The AAO approach, also known as Simultaneous Analysis and Design (SAND), has the

issue that all discipline analyses need to be converted to residual form, which is atypical

of customary disciplinary analyses. However, it is theoretically possible to evaluate all dis-

ciplines and the system objective in parallel and to use multifidelity methods to solve the

equality constrained optimization problem. The convergence of this method is only depen-

dent on the convergence properties of the NLP solver. In fact, Alexandrov et al. developed

provably convergent trust-region methods to solve the AAO formulation as a multilevel prob-

lem [4]. Their algorithm separates the constraints into blocks and finds solutions that are in

the null space of the constraint block Jacobians, and then updates the trust-region according

to a merit function that includes constraint violations. The advantage of the AAO formula-

tion is that the problem can be solved without using a constraint following algorithm which

given the large number of constraints in an MDO problem, should prove fruitful.

1.3.2 Open Issues in Multidisciplinary Optimization

Multidisciplinary system design optimization is a challenge due to the nonlinear couplings

between subsystems and the expense of estimating the performance of subsystems. These

challenges suggest that a parallelizable framework for MDO is a necessity, and that rigorous

multifidelity optimization techniques should be possible within that framework. Moreover,

it is common that the sensitivity of a subsystem’s performance to its design variables will

be available for some but not for all subsystems. Therefore MDO frameworks should also

allow for gradient-free optimization, but must be able to exploit gradient information when

it is available in order to rapidly find good system designs.

When considering the single-level MDO frameworks, MDF, IDF, and AAO, the under-

lying NLP solver can provide a guarantee of finding an optimal design. As NLP solvers

with a convergence guarantee are available for both gradient-free and gradient-exploiting

optimization problems, this guarantee applies in both cases. However, the ability to mix

gradient-free and gradient-exploiting handling for individual disciplines and the paralleliz-
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ability of these basic frameworks is limited. The multi-level MDO methods, Collaborative

Optimization [18, 60], Bilevel Integrated System Synthesis [107–109], Concurrent Subspace

Optimization [106, 119], and Analytical Target Cascading [78, 79, 113], are more paralleliz-

able, but fast convergence or even just convergence for the case of a non-convex optimization

problem is not guaranteed. One benefit of these multilevel methods is that the formulations

based on response surfaces offer a chance to use either gradient-free or gradient-exploiting

handling for the subsystems as appropriate. For example, BLISS [108] requires global sen-

sitivity information for each subproblem optimization, but BLISS2000 [109] approximates

this sensitivity information with quadratic response surfaces. Therefore novel MDO methods

that enable a mixture of gradient-free and gradient-exploiting optimization methods and are

parallelizable are a clear need. Multifidelity optimization techniques offer a possible solution

to this challenge. Surrogate-based multifidelity methods typically create smooth surrogate

models for each discipline’s performance with known bounds for the error in surrogate-based

sensitivity information. This surrogate sensitivity information can exploit high-fidelity gra-

dients when available, but does not require that information. In addition, these surrogate

models can be used to optimize the system and likely will save a significant number of

discipline- and system-level performance evaluations.

1.4 Research Objectives

As mentioned, the field of MDO will benefit from system design frameworks that exploit low-

resource low-fidelity simulations, are parallelizable, do not require sensitivity information,

but can exploit sensitivity information if it is available. Multifidelity optimization nested

within a system design framework offers these possibilities. Therefore the objectives of this

thesis are:

1. To propose and demonstrate a multifidelity optimization approach that does not require

high-fidelity derivative information and is applicable to nonlinear constrained design

optimization problems.

2. To propose and demonstrate a multifidelity optimization approach that can exploit
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high-fidelity derivative information when available.

3. To develop a framework for distributed optimization of a system with multiple fidelity

levels across multiple disciplines that does not require gradient information, but that

can exploit it when available.

4. To apply the multifidelity optimization approaches and decomposition framework to a

multidisciplinary aerostructural aircraft design problem.

1.5 Thesis Outline

To accomplish the research objectives, this thesis presents an unconstrained multifidelity

optimization algorithm that is provably convergent to a high-fidelity optimum and does not

require high-fidelity gradient estimates in Chapter 2. This chapter also addresses combining

multiple low-fidelity models into one best prediction of the high-fidelity function. Chapter 3

extends these multifidelity techniques to constrained optimization, and develops a gradient-

free constrained multifidelity optimization algorithm. Chapter 4 addresses how to best use

gradients in multifidelity optimization and presents a model calibration method, similar to

the gradient-free methods, but that exploits high-fidelity gradient information. Chapter 5

then presents two MDO methods that enable both multifidelity optimization and paralleliza-

tion of a system design problem. Chapter 6 then demonstrates the MDO methods on an

aerostructural multidisciplinary system design problem, and addresses optimization when

function evaluation failures are prevalent. Conclusions and recommendations for future re-

search are given in Chapter 7. A summary of all algorithms developed in this thesis is

presented as Table 1.1.
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Disciplines Algorithm Section Constraints Gradients Req’d Multifidelity Failures

One

2.1 Section 2.3 None None Obj. Yes
3.1 Section 3.1 Yes Constraint Obj. Yes
3.2 Section 3.2 Yes None Obj. & Con. Yes
4.1 Section 4.1 Yes All Obj. & Con. Yes∗

Multiple
5.1 Section 5.2 Yes None Obj. & Con. Yes
5.2 Section 5.3.2 Equality None Obj. & Con. Yes
5.3 Section 5.3.4 Equality All Obj. & Con. Yes∗

Table 1.1: A summary of the algorithms developed in this thesis and whether or not they are
multidisciplinary, constrained, gradient-based, multifidelity, or support function evaluation
failures. An asterisk indicates that the capability is not demonstrated in this thesis.
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Chapter 2

Unconstrained Gradient-free

Multifidelity Optimization

This chapter presents a provably convergent multifidelity optimization algorithm for uncon-

strained problems that does not require high-fidelity gradients. The techniques presented in

this chapter form the basis for Chapters 3 and 5. The method uses a radial basis function

interpolation to capture the error between a high-fidelity function and a low-fidelity function.

The error interpolation is added to the low-fidelity function to create a surrogate model of

the high-fidelity function in the neighborhood of a trust region. When appropriately dis-

tributed spatial calibration points are used, the low-fidelity function and radial basis function

interpolation generate a fully linear model. This condition is sufficient to prove convergence

in a trust-region framework. In the case when there are multiple lower-fidelity models, the

predictions of all calibrated lower-fidelity models can be combined with a maximum likeli-

hood estimator constructed using Kriging variance estimates from the radial basis function

models. This procedure allows for flexibility in sampling lower-fidelity functions, does not

alter the convergence proof of the optimization algorithm, and is shown to be robust to poor

low-fidelity information. The algorithm is compared with a single-fidelity quasi-Newton al-

gorithm and two first-order consistent multifidelity trust-region algorithms on an analytical

test problem and a more complex supersonic airfoil design problem.

This chapter first presents an overview of a derivative-free trust-region algorithm using
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fully linear models in Section 2.1. It then discusses an approach to build fully linear models

using radial basis functions (RBFs), and presents our extension to the case of multifidelity

model calibration in Section 2.2. Section 2.3 provides an overview of the computational

implementation of the method and suggests a way to incorporate the method of generating

fully linear models with flexible Bayesian model calibration techniques. Section 2.4 demon-

strates the multifidelity optimization algorithm on an analytical example and a supersonic

airfoil design problem. Section 2.5 then develops the extension of our approach to the case

when there are multiple lower-fidelity models. Finally, Section 2.6 summarizes the findings

and contributions in this chapter.

2.1 Trust-Region-Based Multifidelity Optimization

We consider a setting where we have two (or more) models that represent the physical system

of interest: a high-fidelity function that accurately estimates system metrics of interest but is

expensive to evaluate, and a low-fidelity function with lower accuracy but cheaper evaluation

cost. We define our high-fidelity function as fhigh(x) and our low-fidelity function as flow(x),

where x ∈ Rn is the vector of n design variables. Our goal is to solve the unconstrained

optimization problem

min
x∈Rn

fhigh(x), (2.1)

using information from evaluations of flow(x) to reduce the required number of evaluations

of fhigh(x).

We use the derivative-free trust-region algorithm of Conn et al. [27] to solve (2.1). From

an initial design vector x0, the trust-region method generates a sequence of design vectors

that each reduce the high-fidelity function value, where we denote xk to be this design vector

on the kth trust-region iteration. Following the general Bayesian calibration approach in [55],

we define ek(x) to be a model of the error between the high- and low-fidelity functions on
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the kth trust-region iteration, and we construct a surrogate model mk(x) for fhigh(x) as

mk(x) = flow(x) + ek(x) ≈ fhigh(x). (2.2)

We define the trust region at iteration k, Bk, to be the region centered at xk with size ∆k,

Bk = {x : ‖x− xk‖ ≤ ∆k}, (2.3)

where any norm can be used, provided there exist constants k1 and k2 such that ‖·‖2 ≤ k1‖·‖

and ‖ · ‖ ≤ k2‖ · ‖2. The trust-region is a portion of the design space where the surrogate

model is considered an accurate representation of the high-fidelity function. The accuracy is

ensured with a local calibration, in this case updating the error model, ek(x). To improve the

high-fidelity function value, the surrogate model is minimized, or approximately minimized,

within the trust region. The size of the trust region is updated dynamically based on the

quality of the surrogate model estimate of the high-fidelity function value; good estimates

cause the size of the trust region to increase and poor estimates cause the size of the trust

region to decrease. Therefore, the trust region serves as both a means to control the size

of the allowable optimization step and as a means to control the accuracy of the surrogate

model predictions. For a detailed discussion of trust-region algorithms see [31] or [83].

If the high-fidelity function fhigh(x) and the surrogate models mk(x) satisfy certain con-

ditions, this framework provides a guarantee of convergence to a stationary point of the

high-fidelity function fhigh(x). Specifically, the convergence proof requires that the high-

fidelity function fhigh(x) be (i) continuously differentiable, (ii) have a Lipschitz continuous

derivative, and (iii) be bounded from below within a region of a relaxed level-set, L(x0),

defined as

L(x0) = {x ∈ Rn : fhigh(x) ≤ fhigh(x0)} (2.4)

B(xk) = {x ∈ Rn : ‖x− xk‖ ≤ ∆max} (2.5)

L(x0) = L(x0)
⋃

xk∈L(x0)

B(xk), (2.6)
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where ∆max is the maximum allowable trust-region size. The relaxed level-set is required

because the trust-region algorithm may attempt to evaluate the high-fidelity function at

points outside of the level set at x0. The convergence proof further requires that the surrogate

models mk(x) are fully linear, where the following definition of a fully linear model is from

Conn et al. [27]:

Definition 2.1 Let a function fhigh(x) : Rn → R that satisfies the conditions (i)–(iii)

above, be given. A set of model functions M = {m : Rn → R,m ∈ C1} is called a fully

linear class of models if the following occur:

There exist positive constants κf , κg and κblg such that for any x ∈ L(x0) and ∆k ∈ (0,∆max]

there exists a model function mk(x) in M with Lipschitz continuous gradient and corre-

sponding Lipschitz constant bounded by kblg, and such that the error between the gradient of

the model and the gradient of the function satisfies

‖∇fhigh(x)−∇mk(x)‖ ≤ κg∆k ∀x ∈ Bk (2.7)

and the error between the model and the function satisfies

|fhigh(x)−mk(x)| ≤ κf∆
2
k ∀x ∈ Bk. (2.8)

Such a model mk(x) is called fully linear on Bk[27].

At iteration k, the trust-region algorithm solves the subproblem

min
sk

mk(xk + sk) (2.9)

s.t. ‖sk‖ ≤ ∆k

to determine the trust-region step sk. If the subproblem is not solved exactly, the minimum

requirement is that the steps found in the trust-region subproblem must satisfy a sufficient

decrease condition. At iteration k, we require that the modelmk(x) have a finite upper bound

on the norm of its Hessian matrix evaluated at xk: ‖Hk(xk)‖ ≤ κbhm < ∞. This bound on
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the Hessian may be viewed as a bound on the Lipschitz constant of the gradient of mk(xk)

[27]. The sufficient decrease condition requires the step to satisfy the fraction of Cauchy

decrease. As given in [27] and [116], this requires that for some constant, κFCD ∈ (0, 1), the

step sk satisfies

mk(xk)−mk(xk + sk) ≥
κFCD

2
‖∇mk(xk)‖min

[
‖∇mk(xk)‖

κbhm
,∆k

]
. (2.10)

The high-fidelity function fhigh is then evaluated at the new point, xk + sk. We compare

the actual improvement in the function value with the improvement predicted by the model

by defining

ρk =
fhigh(xk)− fhigh(xk + sk)

mk(xk)−mk(xk + sk)
. (2.11)

The trial point is accepted or rejected according to

xk+1 =

xk + sk if ρk > 0

xk otherwise.

(2.12)

If the step is accepted, then the trust region is updated to be centered on the new iterate

xk+1. The size of the trust region, ∆k, must now be updated based on the quality of the

surrogate model prediction. The size of the trust region is increased if the surrogate model

predicts the change in the function value well and the trust region is contracted if the model

predicts the function change poorly. Specifically, we update the trust region size using

∆k+1 =

min{γ1∆k,∆max} if ρk ≥ η

γ0∆k if ρk < η,

(2.13)

where 0 < η < 1, 0 < γ0 < 1, and γ1 > 1.

A new fully linear model, mk+1(x), is then built using the radial basis function interpo-

lation approach described in the next section. That surrogate model will be fully linear on
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a region Bk+1 having center xk+1 and size ∆k+1.

To check for algorithm termination, the gradient of the model is computed at xk+1. If

‖∇mk+1(xk+1)‖ > ε for a small ε, the trust-region algorithm will continue to iterate, solving

the next subproblem on the new trust region, Bk+1, with the updated model, mk+1(x).

However, if ‖∇mk+1(xk+1)‖ ≤ ε, we need to confirm that the algorithm has reached a

stationary point of fhigh(x). If gradients of the high-fidelity function are available, one

could evaluate if ‖∇fhigh(xk+1)‖ ≤ ε directly. In the general derivative-free case, we use the

condition in Eq. 2.7, and show that if ∆k+1 → 0 then ‖∇fhigh(xk+1)−∇mk+1(xk+1)‖ → 0. In

practice we achieve this by updating the model to be fully linear on a trust region with size

some fraction, 0 < α < 1, of ∆k+1. This process continues until either ‖∇mk+1(xk+1)‖ > ε,

in which case the trust-region algorithm will continue with the updated model and updated

∆k+1, or ∆k+1 ≤ ε2, for a small ε2, which terminates the algorithm. This process of checking

for convergence is referred to as the criticality check in Conn et al. [27].

2.2 Interpolation-Based Multifidelity Models

In this section we discuss a method of creating surrogate models that satisfy the conditions

for provable convergence presented in Section 2.1. This section first presents an overview

of the radial basis function (RBF) interpolation approach of Wild et al. [117], where the

interpolation points are chosen so that the resulting model is fully linear. Next, we present

an extension of this approach to the case of multifidelity models.

Define dj to be the jth point in the set of designs at which the high-fidelity and low-

fidelity functions have been sampled. Define yi to be the vector from the current iterate

(i.e., center of the current trust region), xk, to any sample point inside or within the vicinity

of the current trust region, di, that is selected to be an interpolation point. Also define Y to

be the set of the zero vector (i.e., y = 0 corresponds to xk) and all of the vectors yi. This

notation is shown graphically in Figure 2-1.

The RBF interpolation is defined so that by construction the surrogate model is equal

to the high-fidelity function at all interpolation points. That is, the error between the high-
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Figure 2-1: Graphical representation of the notation used to define points and vectors in and
around the trust region.

and low-fidelity functions is interpolated exactly for all points defined by the vectors within

Y ,

ek(xk + yi) = fhigh(xk + yi)− flow(xk + yi) ∀yi ∈ Y . (2.14)

The RBF interpolation has the form

ek(x) =

|Y|∑
i=1

ω(i)φ (‖x− xk − yi‖) +
n+1∑
i=1

ν(i)π(i)(x− xk), (2.15)

where φ is any positive definite, twice continuously differentiable RBF with φ′(0) = 0, and

the second term in (2.15) represents a linear tail, where πi denotes the ith component of

the vector Π(x − xk) = [1 (x − xk)]
>. The coefficients ω(i) and ν(i) represent the RBF

interpolation, and are found by the QR-factorization technique of Wild et al. [117]. In

order for the model to be fully linear, the RBF coefficients ω(i) and ν(i) must be bounded

in magnitude. This is achieved by using the interpolation point selection method in Wild et

al. [117]. The process can be summarized as follows. First, the existing high-fidelity sample

points, dj, in the vicinity of the trust region are tested to see if there are n + 1 affinely

independent vectors. (This test is carried out using the singular value decomposition of a
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matrix containing as columns the vectors yj and is computationally inexpensive compared

to the typical cost of a high-fidelity solve.) If fewer than n + 1 affinely independent points

are found, additional high-fidelity function evaluations are required to generate additional

interpolation points. Second, we test all other points dj at which the high-fidelity function

value is known, by measuring the impact of their addition as interpolation points on the RBF

coefficients ω(i) and ν(i). Those points that ensure the RBF coefficients remain bounded

are used as additional interpolation points to update the model. Wild proved that this

RBF interpolation model construction algorithm produces a fully linear model for a function

satisfying conditions (i) and (ii) above [116]. An illustration of the calibrated models resulting

from this process is presented as Figure 2-2.

Figure 2-2: An illustration of the surrogate model of a high-fidelity function created using
a radial basis function interpolation of the error between a high- and low-fidelity function.
The high-fidelity function is in blue, the low-fidelity function is in black, the fully linear
surrogate model is in red, the uncertainty estimate of the surrogate model is in pink, and
the calibration points are circled.

In order for Wild’s interpolation approach to be applicable in our Bayesian calibration

setting, we require that the error function defined by fhigh(x) − flow(x) satisfies conditions

(i) and (ii) above. Condition (i), that the function is continuously differentiable, is satisfied

if both fhigh(x) and flow(x) are continuously differentiable. To establish condition (ii), that
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the derivative of fhigh(x) − flow(x) is Lipschitz continuous, we require that both ∇fhigh(x)

and ∇flow(x) be Lipschitz continuous in the relaxed level set defined in Eq. (2.6). For the

high-fidelity function we require

‖∇fhigh(x1)−∇fhigh(x2)‖
‖x1 − x2‖

≤ κhigh ∀x1,x2 ∈ L(x0), (2.16)

and for the low-fidelity function,

‖∇flow(x1)−∇flow(x2)‖
‖x1 − x2‖

≤ κlow ∀x1,x2 ∈ L(x0), (2.17)

with Lipschitz constants κhigh and κlow, respectively. Therefore by the triangle inequality,

we obtain

‖[∇fhigh(x1)−∇flow(x1)]− [∇fhigh(x2)−∇flow(x2)]‖
‖x1 − x2‖

≤ κhigh + κlow (2.18)

∀x1,x2 ∈ L(x0),

where the Lipschitz constant of the difference is bounded by κhigh + κlow. Accordingly, the

convergence proof for the trust-region algorithm used in Conn et al. [27] holds.

2.3 Numerical Implementation of Algorithms

This section presents an overview of the numerical implementation of the multifidelity op-

timization algorithm and suggests a manner in which the method of Wild et al. [118] to

generate fully linear models can be used in a flexible Bayesian calibration setting. The first

subsection, Section 2.3.1, implements the the trust region based optimization algorithm pre-

sented in Section 2.1. Whenever creation of a new fully linear model is needed, the method

discussed in Section 2.2 is implemented using the algorithm presented in Section 2.3.2.
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2.3.1 Trust Region Implementation

Algorithm 2.1 provides an overview of the numerical implementation of the trust-region

optimization method presented in Section 2.1. For each trust-region iteration, the algorithm

guarantees that a step is found that satisfies the fraction of Cauchy decrease, Eq. 2.10. The

algorithm only samples the high-fidelity function when necessary for convergence, and it

stores all high-fidelity function evaluations in a database so that design points are never re-

evaluated. Whenever an updated surrogate model is needed, the model generation method

described in the following subsection creates a surrogate model using this database of high-

fidelity function evaluations together with new high-fidelity evaluations when necessary. The

parameters of the trust-region optimization algorithm were defined in Section 2.1, while

recommended values and sensitivity of results to those values will be presented in Section 2.4.

2.3.2 Fully Linear Bayesian Calibration Models

Algorithm 2.2 presents the numerical implementation of the method to generate fully linear

surrogate models, allowing for a Bayesian maximum likelihood estimate of the RBF cor-

relation length. The RBF models used in Bayesian model calibration have a length scale

parameter that provides flexibility. For instance, in the Gaussian RBF model, φ(r) = e−r
2/ξ2 ,

the parameter ξ is a variable length scale that can alter the shape of the correlation structure.

If the interpolation errors are assumed to have a Gaussian distribution, then a maximum like-

lihood estimate can be used to estimate the value of ξ that best represents the data [69, 93].

Therefore, our process to generate a fully linear surrogate model uses the method of Wild et

al. [117] on a set of candidate length scales, ξi ∈ {ξ1, . . . , ξn}. A fully linear model is con-

structed for each candidate length scale, and the likelihood of each length scale is computed.

The trust region algorithm then uses the surrogate model constructed with ξ∗, where ξ∗ is

chosen as the value of ξ corresponding to the maximum likelihood. This maximum likelihood

approach can improve the model calibration, and also provides flexibility in selecting sample

points in the extension to the case when there are multiple lower-fidelity models (as will be
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Algorithm 2.1: Trust-Region Algorithm for Iteration k
1: Compute a step, sk, that satisfies the fraction of Cauchy decrease requirement,

Eq. 2.10, for the trust-region subproblem, by solving

min
sk

mk(xk + sk)

s.t. ‖sk‖ ≤ ∆k.

2: If fhigh(xk + sk) has not been evaluated previously, evaluate the high-fidelity function
at that point.
2a: Store fhigh(xk + sk) in database.

3: Compute the ratio of actual improvement to predicted improvement,

ρk =
fhigh(xk)− fhigh(xk + sk)

mk(xk)−mk(xk + sk)
.

4: Accept or reject the trial point according to ρk,

xk+1 =

{
xk + sk if ρk > 0

xk otherwise.

5: Update the trust region size according to ρk,

∆k+1 =

{
min{γ1∆k,∆max} if ρk ≥ η

γ0∆k if ρk < η.

6: Create a new model mk+1(x) that is fully linear on {x : ‖x − xk+1‖ ≤ ∆k+1} using
Algorithm 2.2.

7: Check for convergence: if ‖∇mk+1(xk+1)‖ > ε, algorithm has not converged—go to
step 1. Otherwise,
7a: While ‖∇mk+1(xk+1)‖ ≤ ε and ∆k+1 > ε2,
7b: Reduce the trust region size, α∆k+1 → ∆k+1.
7c: Update model mk+1(x) to be fully linear on {x : ‖x− xk+1‖ ≤ ∆k+1} using

Algorithm 2.2.
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discussed in Section 2.5).

Algorithm 2.2: Create Fully Linear Models Allowing Maximum Likelihood Correlation Lengths
1: Compute the likelihood for all RBF correlation lengths, ξi ∈ {ξ1, . . . , ξn} with steps

2-5.
2: Generate a set of n+ 1 affinely independent points in the vicinity of the trust region:

2a: Set y1 = 0, and add y1 to the set of calibration vectors Y .
2b: Randomly select any high-fidelity sample point, d2, within the current trust

region and add the vector y2 = d2 − xk to Y .
2c: For all unused high-fidelity sample points within the current trust region, add

the vector y = dj − xk to Y if the projection of y onto the nullspace of the
span of the vectors in the current Y is greater than θ1∆k, 0 < θ1 < 1.

2d: If fewer than n+ 1 vectors are in the calibration set, repeat step 2c allowing a
larger search region of size θ3∆k, θ3 > 1.

2e: While fewer than n+ 1 vectors are in Y ,
2f: Evaluate the high-fidelity function at a point within the nullspace of the

span of the vectors in Y and add y = d− xk to Y .
2g: Store the results of all high-fidelity function evaluations in the database.

3: Consider the remaining unused high-fidelity sample points within a region centered
at the current iterate with size θ4∆k, θ4 > 1. Add points so that the total number
of interpolation points does not exceed pmax, the RBF coefficients remain bounded,
and the surrogate model is fully linear (using, for example, the AddPoints algorithm
of Wild et al. [118]).

4: Compute the RBF coefficients using the QR factorization technique of Wild et al.
[117].

5: If only n + 1 vectors are in the calibration set, Y , assign the likelihood of the cur-
rent correlation length, ξi, to −∞. Otherwise compute the likelihood of the RBF
interpolation using standard methods [69, 93].

6: Select the ξi with the maximum likelihood.
6a: If the maximum likelihood is −∞ choose the largest ξi. This model typically

occurs if exactly n + 1 points are in the neighborhood of the trust region and
corresponds to a linear regression of the high-fidelity function at the calibration
points included in Y , but it still satisfies conditions for convergence.

7: Return the set of calibration vectors Y , RBF coefficients, and updated database of
high-fidelity function evaluations.

2.4 Multifidelity Optimization Examples

This section demonstrates the multifidelity optimization scheme for two examples. The first

is an analytical example considering the Rosenbrock function and the second is a supersonic
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airfoil design problem.

2.4.1 Rosenbrock Function

The first example multifidelity optimization example is the Rosenbrock function,

min
x∈R2

fhigh(x) =
(
x2 − x2

1

)2
+ (1− x1)2 . (2.19)

The minimum of the Rosenbrock function is at x∗ = (1, 1) and f(x∗) = 0. For this sim-

ple analytical function with only two design variables, we do not expect the multifidelity

method to significantly outperform a quasi-Newton method, however, the example is useful

to illustrate the multifidelity approach and to demonstrate effects of algorithm parameters.

Table 2.1 presents the number of high-fidelity function evaluations required to optimize the

Rosenbrock function using a variety of low-fidelity functions. All of the low-fidelity functions

have a different minimum than the Rosenbrock function, with the exception of the case when

the low-fidelity function is set equal to the Rosenbrock function, corresponding to a perfect

low-fidelity function. For all of the examples in this section the optimization parameters

used are given in Table 2.2 and are discussed in the remainder of this subsection.

We use a Gaussian RBF, φ(r) = e−r
2/ξ2 , to build the RBF error interpolation and two

methods of selecting the spatial correlation length, ξ. The first method is to fix a value

of ξ, and the second approach is based on Kriging methods, which assume interpolation

errors are normally distributed and maximize the likelihood that the RBF surface predicts

the function [69, 93]. To save computation time, the maximum likelihood correlation length

is estimated by examining 10 correlation lengths between 0.1 and 5.1, and the correlation

length that has the maximum likelihood is chosen. If all correlation lengths have the same

likelihood, the maximum correlation length is used. The results in Table 2.1 show that the

correlation length has a moderate impact on the convergence rate of the method. For this

problem, using either ξ = 2 or ξ∗, the correlation length that maximizes the likelihood at

each trust-region iteration, leads to the best result.

Table 2.1 demonstrates that the quality of the low-fidelity function can significantly
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Gradient-Free (Calibration) Gradient-Based
Low-Fidelity Function ξ = 1 ξ = 2 ξ = 3 ξ = 5 ξ∗ EGO Add-Corr. Mult.-Corr.
flow(x) = 0 148 107 177 223 178 27 503 289†

flow(x) = x2
1 + x2

2 129 77 106 203 76 28 401 312
flow(x) = x4

1 + x2
2 74 74 73 87 65 27 289 171

flow(x) = fhigh(x) 5 5 5 5 7 fail 6 7
flow(x) = −x2

1 − x2
2 195 130 132 250 100 27 fail 352

Table 2.1: Table of average number of function evaluations required to minimize the Rosen-
brock function, Eq. 2.19, from a random initial point on x1, x2 ∈ [−5, 5]. Results for a
selection of Gaussian radial bases function spatial parameters, ξ, are shown. ξ∗ corresponds
to optimizing the spatial parameter according to a maximum likelihood criteria [69]. Also
included are the number of function evaluations required using Efficient Global Optimization
(EGO) and first-order consistent trust region methods with a multiplicative correction and
an additive correction. The gradient-free calibration uses only additive corrections. For a
standard quasi-Newton method the average number of function evaluations is 69 and us-
ing DIRECT requires 565 function evaluations. The solutions of all methods have similar
accuracy; the errors in the optimal objective function values are all O(10−6). †indicates
flow(x) = 1 had to be used.

impact the number of required high-fidelity function evaluations. As a baseline, the average

number of function calls for a quasi-Newton method [76] directly optimizing the Rosenbrock

function is 69 and for the global optimization method, DIRECT [51], is 565. The Bayesian

calibration approach uses between 5 and 250 high-fidelity function evaluations depending on

the quality of the low-fidelity model. The worst case, 250 high-fidelity function evaluations,

corresponds to having a poor low-fidelity model, one with opposite trends in most of the

design space. The best case, 5 high-fidelity evaluations, corresponds to the case when the

low-fidelity function exactly models the high-fidelity function. With a rather good low-

fidelity function, for example a 4th degree polynomial, the multifidelity method performs

similarly to the quasi-Newton method. Clearly the performance of this method compared to

conventional optimization methods depends considerably on the quality of the low-fidelity

function used. Results for two first-order consistent multifidelity trust-region methods and

multifidelity EGO are presented in Table 2.1 along with the results of the Bayesian calibration

method. The multifidelity EGO method creates a Kriging model of the error between the

high- and low-fidelity functions and maximizes the expected improvement [52] of the low-

fidelity function plus the Kriging model to select additional high-fidelity evaluations and
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to update the Kriging model. The Kriging model is initialized using a Latin hypercube

sampling of the design space with four function evaluations. The first of the gradient-

based multifidelity methods creates a trust-region surrogate by multiplying the low-fidelity

function by a correction such that the surrogate matches both the high-fidelity function value

and gradient at the current iterate [5]. The second creates the trust-region surrogate by

adding a linear function with the error between the high- and low-fidelity function value and

gradient at the current iterate to the low-fidelity function. Though an analytical gradient

is available for this simple case, when comparing gradient-based multifidelity methods to

gradient-free multifidelity methods, we estimate the high-fidelity gradient at each xk using

a finite difference approximation (requiring n additional high-fidelity function evaluations).

This gradient estimate is inexact; however, it is necessary when using a gradient-based

optimization method for a function that does not have an available derivative. The general

result for this test problem is that the Bayesian calibration approach uses fewer high-fidelity

function evaluations than the first-order consistent trust-region approaches of Alexandrov et

al.[5] but more than multifidelity EGO.

For this simple high-fidelity function, the first-order consistent trust-region methods and

the quasi-Newton method require less than half the wall-clock time that the Bayesian cal-

ibration method requires (EGO takes roughly twice as long as the Bayesian calibration

method). Building the RBF models requires multiple matrix inversions, each of which re-

quires O(pmax(pmax + n + 1)3) operations, where n is the number of design variables and

pmax is the user-set maximum number of calibration points allowed in a model. Accordingly,

the Bayesian calibration method is only recommended for high-fidelity functions that are

expensive compared to the cost of repeatedly solving for RBF coefficients, which is the case

of interest in this chapter.

As with any optimization algorithm, tuning parameters can affect performance signifi-

cantly; however, the best choices for these tuning parameters can be highly problem depen-

dent. A sensitivity study measured the impact of algorithm parameters on the number of

high-fidelity function evaluations for the Rosenbrock example using flow(x) = x2
1 + x2

2 as the

low-fidelity function. For all of these tests, one parameter is varied and the remainder are
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all set to the values in Table 2.2. The conclusions drawn are based on the average of at

least ten runs with random initial conditions on the interval x1, x2 ∈ [−5, 5]. While these

conclusions may provide general useful guidance for setting algorithm parameters, similar

sensitivity studies are recommended for application to other problems.

Parameter Description value

φ(r) RBF Correlation e−r
2/ξ2

ξ RBF spatial correlation length See Table 2.1
∆0 Initial trust region size max[10, ‖x0‖∞]
∆max Maximum trust region size 103∆0

ε, ε2 Termination tolerances 5× 10−4

γ0 Trust region contraction ratio 0.5
γ1 Trust region expansion ratio 2
η Trust region expansion criterion 0.2
α Trust region contraction ratio used in convergence check 0.9
κFCD Fraction of Cauchy decrease requirement 10−4

pmax Maximum number of calibration points 50
θ1 Minimum projection into nullspace of calibration vectors 10−3

θ2 RBF coefficient conditioning parameter 10−4

θ3 Expanded trust-region size to find basis, θ3∆k 10
θ4 Maximum calibration region size, θ4∆k 10
δx Finite difference step size 10−6

Table 2.2: Optimization parameters used in the Rosenbrock function demonstration.

The parameter η is the trust region expansion criterion, where the trust region expands

if ρk ≥ η and contracts otherwise. The sensitivity results show that lower values of η have

the fewest high-fidelity function calls, and any value 0 ≤ η ≤ 0.2 performs well. For the

trust region expansion ratio, γ1, the best results are at γ1 ≈ 2, and high-fidelity function

evaluations increase substantially for other values. Similarly, for the contraction ratio, γ0,

the best results are observed at γ0 ≈ 0.5, with a large increase in high-fidelity function

evaluations otherwise. For the fraction of Cauchy decrease, κFCD, the results show the

number of high-fidelity evaluations is fairly insensitive to any value 0 < κFCD < 10−2.

Similarly, for the trust-region contraction ratio used in the algorithm convergence check, α,

the number of high-fidelity function evaluations is insensitive to any value 0.5 < α < 0.95.

The method of Wild et al. to generate fully linear models requires four tuning parameters,

θ1, θ2, θ3, and θ4 [117, 118]. The parameter θ1 (0 < θ1 < 1) determines the acceptable points
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when finding the affinely independent basis in the vicinity of the trust region in Algorithm

2.2. As θ1 increases, the calibration points added to the basis must have a larger projection

onto the nullspace of the current basis, and therefore fewer points are admitted to the

basis. We find for the Rosenbrock example that the fewest function evaluations occurs

with θ1 ≈ 10−3; however, for any value of θ1 within two orders of magnitude of this value,

the number of function evaluations increases by less than 50%. The second parameter, θ2

(0 < θ2 < 1), is used in the AddPoints algorithm of Wild et al. [118] to ensure that the

RBF coefficients remain bounded when adding additional calibration points. The number

of allowable calibration points increases as θ2 decreases to zero; however, the matrix used to

compute the RBF coefficients also becomes more ill-conditioned. For our problem, we find

that θ2 ≈ 10−4 enables a large number of calibration points while providing acceptable matrix

conditioning. The two other parameters, θ3 and θ4, used in the calibration point selection

algorithm, are significant to the algorithm’s performance. The parameter θ3 (θ3 > 1) is

used if n + 1 affinely independent previous high-fidelity sample points do not exist within

the current trust region. If fewer than n + 1 points are found, the calibration algorithm

allows a search region of increased size {x : ‖x− xk‖ ≤ θ3∆k} in order to find n+ 1 affinely

independent points prior to evaluating the high-fidelity function in additional locations. The

results show that the number of function calls is insensitive to θ3 for 1 < θ3 ≤ 10, with

θ3 ≈ 3 yielding the best results. The parameter θ4 (θ4 > 1) represents the balance between

global and local model calibration, as it determines how far points can be from the current

iterate, xk, and still be included in the RBF interpolation. Points that lie within a region

{x : ‖x − xk‖ ≤ θ4∆k} are all candidates to be added to the interpolation. Calibration

points outside of the trust region will affect the shape of the model within the trust region,

but the solution to the subproblem must lie within the current trust region. The results of

our analysis show that θ4 ≈ 10 offers the best performance, with the number of high-fidelity

function calls increasing substantially if θ4 < 5 or θ4 > 15. We also note that the parameter

values suggested in this section are similar to the values recommended by Wild et al. [117].
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2.4.2 Supersonic Airfoil Optimization

As an engineering example, a supersonic airfoil is optimized for minimum drag at Mach

1.5. Three analysis tools are available: a supersonic linear panel method, a shock-expansion

theory panel method, and a computational fluid dynamics model Cart3D [1]. The linear

panel method and shock-expansion theory method only compute flow quantities on the sur-

face of the airfoil. The panel method assumes that all changes in geometry are small, so

that the local surface pressure varies linearly with the slope changes in the airfoil surface.

Shock-expansion theory computes the change in the local surface pressure by solving non-

linear equations associated with compression and expansion waves related to the surface

slope changes. Cart3D uses a finite-volume method to approximate the Euler equations and

solve for the flow field in a domain around the airfoil. Cart3D uses an adjoint-based mesh

refinement approach. The refinement is managed so that the error in the flow solution due to

spatial approximation on the computational mesh is less than a set tolerance. (The smallest

tolerance we were able to consistently achieve was about O(10−5) for Drag.)

Figure 2-3 shows the approximate level of detail used in the models, and Table 2.3

compares the lift and drag estimates from each of the models for a 5% thick biconvex airfoil at

Mach 1.5 and 2◦ angle of attack. For this particular test case shock-expansion theory is exact,

but in general Cart3D is more broadly applicable (including mixed subsonic/supersonic flows

and 3D problems) so it is treated as the highest fidelity. The linear panel method and shock-

expansion theory both require sharp leading and trailing edges on the airfoil, so the airfoils

(a) Panel method. (b) Shock-expansion method. (c) Cart3D.

Figure 2-3: Supersonic airfoil model comparisons at Mach 1.5 and 2◦ angle of attack.
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are parameterized by a set of spline points on the upper and lower surfaces and the angle of

attack. The leading and trailing edge points of both surfaces are constrained to be coincident

to maintain the sharp leading and trailing edges. Accordingly, an airfoil with eleven variables

is parameterized by the angle of attack, and has seven spline points on the upper and lower

surfaces, but only five points on each surface can be varied.

Panel Shock-Expansion Cart3D

Time 0.001s 0.5s 3-5m

CL 0.1244 0.1278 0.1250

CD 0.0164 0.0167 0.01666

Table 2.3: 5% thick biconvex airfoil results

comparison at Mach 1.5 and 2◦ angle of attack.

These results are typical for “well-designed”

airfoils, however, in other parts of the feasi-

ble design space much larger discrepancies are

observed.

To demonstrate the RBF calibration ap-

proach to optimization, the linear supersonic

panel method is used as the low-fidelity func-

tion and shock-expansion theory is used as

the high-fidelity function. For supersonic

flow, a zero thickness airfoil will have the

minimum drag, so the airfoil must be con-

strained to have a thickness to chord ra-

tio greater than 5%. This is accomplished

by adding a penalty function, so that if the

maximum thickness of the airfoil is less than

5%, the penalty term 1000(t/c − 0.05)2 is

added to the drag. A similar penalty is added if the thickness anywhere on the airfoil is

less than zero.

The optimization parameters used by this method are the same as in Table 2.2, with the

exception that the RBF correlation length is either ξ = 2 or optimized at each iteration. A

consecutive step size of less than 5× 10−6 is an additional termination criteria for all of the

multifidelity methods compared. The number of high-fidelity function evaluations required

to optimize the airfoil for each of the methods using a different number of design variables is

presented in Figure 2-4. The airfoil optimization shows that both the first-order consistent

methods and the RBF calibration method perform significantly better than the quasi-Newton

method. This is largely because the multifidelity methods have a significant advantage

over the single-fidelity methods in that the physics-based low-fidelity model is a reasonable

representation of the high-fidelity model. However, the RBF calibration approach uses less
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than half the number of function evaluations as the multiplicative-correction approach. In

addition, the additive correction outperforms the multiplicative correction for this problem,

but the RBF calibration outperformed both. The method of maximizing the likelihood of

the RBF calibration performs slightly better than just using a fixed correlation length. The

results in Figure 2-4 are also better than two global optimization methods, DIRECT [51] and

a multifidelity formulation of EGO [52]. DIRECT requires significantly more high-fidelity

evaluations than the quasi-Newton method and all of the trust-region approaches. For

example to get within 1% of the optimal function value with 11 design variables, DIRECT

requires over 13,000 evaluations. We are unable to get the multifidelity formulation of EGO

to find an airfoil design having a drag coefficient within 20% of the optimal value for a

variety of low-fidelity functions and a budget of 1,500 high-fidelity evaluations. Many EGO

implementations have been attempted, including initializing the Kriging model with a Latin

hypercube sample using 3n, 4n, and 5n high-fidelity evaluations and maximizing the expected

improvement using DIRECT and a genetic algorithm.

Figure 2-4: Number of shock-expansion theory evaluations required to minimize the drag
of a supersonic airfoil verse the number of parameters. The low-fidelity model is the super-
sonic panel method. The errors in the optimal objective function values are O(10−6) for all
methods.

62



As a second test case, the panel method was used as a low-fidelity function to minimize

the drag of an airfoil with Cart3D as the high-fidelity function. Cart3D has an adjoint-

based mesh refinement, which ensures the error caused by the discretization is less than a

tolerance. Accordingly, the drag computed by Cart3D is only to within a tolerance. The

drag is therefore not Lipschitz continuous due to the finite precision. In the execution of

our multifidelity optimization algorithm, the gradient of the surrogate model does not go

to zero. However, no progress is made and the trust region radius converges to zero. This

forces the algorithm to take small steps and the combination of a small step size and small

trust region is a supplemental termination criteria. On average, the airfoil parameterized

with 11 variables requires 88 high-fidelity (Cart3D) function evaluations. A comparison of

the minimum drag airfoils from the panel method, shock-expansion theory, and Cart3D is

presented in Figure 2-5. The airfoils all resemble the expected diamond shape.

Figure 2-5: Minimum drag airfoils from each of the three analysis models. The panel method
airfoil is generated by solving a single-fidelity optimization problem with a quasi-Newton
method. The shock-expansion method and Cart3D airfoils are generated with this multifi-
delity approach and spatial correlation length ξ = 2 with the panel method as a low-fidelity
model.

To compare this gradient-free approach on a problem with multiple local minima, we

change the objective to find an airfoil with a lift coefficient of 0.3 and a drag coefficient of

less than 0.05, minimizing (CL − 0.3)2 + max{CD − 0.05, 0}2, and retain the same penalty

function to ensure positive thickness and at least 5% thickness to chord ratio. There are
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numerous airfoil designs in the design space that have the optimal function value, zero

(approximately, due to the penalty function). Considering shock-expansion theory as the

high-fidelity analysis and the panel method as the low-fidelity analysis, Table 2.4 compares

the average number of high-fidelity evaluations from random initial airfoils parametrized by

the angle of attack and ten surface spline points. Two low-fidelity functions are used, (CL−

0.3)2+max{CD−0.05, 0}2, which is the same as the objective function except computed with

the panel method instead of shock-expansion theory, and (CL−0.4)2+max{CD−0.05, 0}2 also

computed by the panel method. Both of these low-fidelity objectives are augmented with the

penalty function. The first-low fidelity objective has minima near the high-fidelity minima;

however, the second low-fidelity objective has multiple local minima that are all separate

from the high-fidelity minima. For comparison, from random initial airfoil designs a quasi-

Newton method [76] requires 643 shock-expansion evaluations, and the global optimization

method, DIRECT, requires over 1,000 evaluations to find an objective value of 1 × 10−5,

and over 8,000 evaluations for 1 × 10−8. The results show that on average with a “good”

low-fidelity model the RBF calibration approach uses the fewest high-fidelity evaluations to

find a locally optimal solution. For this problem, with a “poor” low-fidelity model the RBF

calibration approach finished second to the first-order consistent trust-region approach using

an additive correction. We also observe that the RBF calibration approach is not significantly

affected by either choosing a correlation length, ξ = 2, or by using the maximum likelihood

correlation length, ξ = ξ∗. For the EGO implementation, 4n high-fidelity evaluations are

used for the initial Latin hypercube sample and a genetic algorithm is used to maximize the

expected improvement.

2.5 Combining Multiple Fidelity Levels

This section addresses how the radial basis function interpolation technique can be extended

to optimize a function when there are multiple lower-fidelity functions. For instance, consider

the case when our goal is to find the x∗ that minimizes fhigh(x), and there exists two or more

lower-fidelity functions, an intermediate-fidelity, fmed(x), and a low-fidelity, flow(x).

64



Gradient-Free (Calibration) Gradient-Based
Low-Fidelity Function ξ = 2 ξ = ξ∗ EGO Add-Corr. Mult.-Corr.
(CL − 0.3)2 + max{CD − 0.05, 0}2 78 54 118 80 123†

(CL − 0.4)2 + max{CD − 0.05, 0}2 152 147 285 83 642†

Table 2.4: Average number of shock-expansion theory evaluations required to find an airfoil
(angle of attack and ten surface spline points, 11 design parameters) with a target lift
coefficient of 0.3 and maximum drag coefficient of 0.05. The low-fidelity analysis is the panel
method, and two low-fidelity objective functions are used to demonstrate the influence of
low-fidelity model quality. For comparison, a quasi-Newton method requires 643 evaluations
and the global optimization method, DIRECT, requires 1,031 evaluations to get within
1×10−5 of the optimal objective, and 8,215 evaluations to get within 1×10−8 of the optimal
objective. The errors in the optimal objective function values are O(10−8) for all methods
except DIRECT. †indicates 1× 10−4 was added to the low-fidelity objective function.

The typical approach to solve this problem is to nest the lower-fidelity function; that is, to

use the intermediate-fidelity function as the low-fidelity model of the high-fidelity function,

and to use the lowest-fidelity function as the low-fidelity model of the intermediate-fidelity

function. To do this, two calibration models are needed,

fhigh(x) ≈ fmed(x) + emed(x) (2.20)

fmed(x) ≈ flow(x) + elow(x). (2.21)

In the nested approach, the high-fidelity optimization is performed on the approximate

high-fidelity function, which is the medium-fidelity function plus the calibration model emed.

However, to determine the steps in that optimization, another optimization is performed on

a lower-fidelity model. This low-fidelity optimization is performed on the model

m(x) ≈ flow(x) + elow(x) + emed(x), (2.22)

but only the low-fidelity calibration model elow is adjusted. The nested approach can quickly

become computationally inefficient. In order to take one step in the high-fidelity space,

an optimization is required on the medium-fidelity function. However, for each step in

medium-fidelity space, an optimization is required on the lower-fidelity function. Even if the

medium and low-fidelity models are cheap to evaluate compared to the high-fidelity model,
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the potential exponential scaling in the number of lower-fidelity function evaluations required

between fidelity levels can counter computational gains.

An alternative to nesting multiple lower-fidelity functions is to use a maximum likelihood

estimator to estimate the high-fidelity function. Since the multifidelity optimization method

proposed in this chapter uses radial basis function interpolants, a variance estimate of the

interpolation error can be created using standard Gaussian process techniques [69, 93]. This

variance estimate reflects the overall level of variability in the observed data (roughly the

average error between models) and the observed correlations (how smoothly the error changes

in the design space). It is therefore zero at all sampled points and grows with distance away

from sampled points [52]. Figure 2-2 presents an illustration of this. In the case of multiple

fidelity levels, the lower fidelity estimates of fhigh(x), for example flow(x)+ek(x), are assumed

to have uncertainty that is normally distributed with zero mean and variance σ2
k(x), denoted

N (0, σ2
k(x)). In the two-fidelity optimization, only the value of the surrogate model is used,

but in the following, both the value of the surrogate model and the uncertainty estimate are

used.

For two lower-fidelity models, the estimates of the high-fidelity function are

fhigh(x) ≈ fmed(x) + emed,k(x) +N
(
0, σ2

med,k(x)
)

(2.23)

fhigh(x) ≈ flow(x) + elow,k(x) +N
(
0, σ2

low,k(x)
)
. (2.24)

From these two or more models, a maximum likelihood estimate of the high-fidelity function

weights each prediction according to a function of the variance estimates. The high-fidelity

maximum likelihood estimate has a mean fest,k, given by

fest,k(x) = (fmed(x) + emed,k(x))

[
σ2

low,k(x)

σ2
low,k(x) + σ2

med,k(x)

]

+ (flow(x) + elow,k(x))

[
σ2

med,k(x)

σ2
low,k(x) + σ2

med,k(x)

]
. (2.25)

The estimate of the high-fidelity function also has a variance, σ2
est,k, which is less than either

66



of the variances of the lower-fidelity models since

1

σ2
est,k(x)

=
1

σ2
low,k(x)

+
1

σ2
med,k(x)

. (2.26)

A thorough discussion of using a maximum likelihood estimator to combine two or more

estimates with normally distributed uncertainties is available in [77, Chapter 1]. We note

that naming the two lower-fidelity estimates flow(x) and fmed(x) may be misleading, since

the maximum likelihood estimator makes no hierarchical distinction between models. In

fact, our approach applies naturally to the case where different models have varying relative

levels of fidelity over different regions of the design space.

We present a schematic of the behavior of this maximum likelihood estimator in Figure 2-

6. In the first case with two similar models, the combined estimate has a similar mean with

a reduced variance. In the second case with two dissimilar estimates, the combined estimate

has the average mean of the two models again with lower variance. In the third case when

one model has a considerably smaller variance than the other model, the combined estimate

has a similar mean and slightly reduced variance than the model with the lower variance.

Accordingly, the maximum likelihood estimate is the best probabilistic guess of the high-

fidelity function at a non-calibrated point.

Figure 2-6: Behavior of the combined maximum likelihood estimate given the behavior of
the individual estimates.
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This method provides flexibility while still being provably convergent to a high-fidelity

optimum using our multifidelity optimization approach. The requirements for convergence

are that the surrogate model upon which the optimization is performed be smooth and

exactly interpolate the function at the necessary calibration points. Using this maximum

likelihood estimator, only one of the lower-fidelity functions needs to be sampled at the

calibration points because at a calibration point an individual Gaussian process model has

zero variance. Accordingly, at that calibration point the model is known to be correct and

the other lower-fidelity information is not used. Therefore, the user has flexibility in selecting

which of the lower-fidelity models are calibrated at a calibration point. For example, the

calibration procedure could choose a ratio, such as one intermediate-fidelity update for every

three low-fidelity updates, or simply update both the intermediate-fidelity and low-fidelity

models each time a new calibration point is needed.

The changes to Algorithm 2.1 necessary to use multiple low-fidelity models are minimal.

In steps 1, 3, and 7, fest,k(x) should be used in lieu of mk(x), and in step 6 at least one of

the error models, emed,k(x) or elow,k(x), needs to be updated using Algorithm 2.2 to make

fest,k+1(x) fully linear on the updated trust region.

Optimization results show that the nesting approach suffers from poor scaling between

fidelity levels and that the maximum likelihood approach speeds convergence of our multifi-

delity optimization method even if the lowest-fidelity function is a poor representation of the

high-fidelity function. In all examples presented, the calibration strategy employed for the

maximum likelihood method is to update all lower-fidelity models whenever the optimization

method requires a new calibration point.

The first example is an optimization of the Rosenbrock function with two parabolic

lower-fidelity functions. The number of required function evaluations for each fidelity level

is presented in Table 2.5. Using the maximum likelihood approach, the number of high-

fidelity function evaluations has been reduced by 34%, and the number of combined lower-

fidelity evaluations has been reduced by 27%. However, combining the multiple lower-fidelity

functions through nesting leads to a large increase in the number of function evaluations at

each level.
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Method (x2 − x2
1)2 + (1− x1)2 (x1 − 1)2 + x2

2 x2
1 + x2

2

Two-Fidelities 87 0 6975
Max. Likelihood 57 2533 2533
Nested 137 4880 50455

Table 2.5: Number of function calls required to optimize the Rosenbrock function using
multiple lower-fidelity functions. The maximum likelihood approach requires the least high-
fidelity function evaluations to converge and the nested approach the most.

The second example is to optimize a supersonic airfoil for minimum drag with respect to

an Euler code, Cart3D. Two lower-fidelity methods are used: shock-expansion theory and a

panel method. These results, presented in Table 2.6, also show that the maximum likelihood

approach converges faster and with fewer calibration points than the original multifidelity

method using only the panel method. The nesting approach failed to converge as the step

size required in the intermediate-fidelity optimization became too small. The likely cause of

this is that the adjoint-based mesh refinement used in Cart3D allows numerical oscillations in

the output functional at a level that is still significant in the optimization, and this makes the

necessary calibration surface non-smooth. The lack of smoothness violates the convergence

criteria of this method.

Method Cart3D Shock-expansion Panel Method
Two-Fidelities 88 0 47679
Max. Likelihood 66 23297 23297
Nested 66* 7920* 167644*

Table 2.6: Number of function calls required to optimize an airfoil for minimum drag using
the Euler equations (Cart3D) with multiple lower-fidelity models. An asterisk indicates that
solution was not converged due to numerical limitations.

The final example demonstrates that the maximum likelihood approach can still benefit

from a poor low-fidelity model. The results in Table 2.7 are for minimizing the drag of a

supersonic airfoil using shock-expansion theory, with the panel method as an intermediate-

fidelity function; however, unlike the preceding example, the lowest-fidelity model is quite

poor and uses the panel method only on the camberline of the airfoil. Using this method, any

symmetric airfoil at zero angle of attack has no drag and many of the predicted trends are

incorrect compared to the panel method or shock-expansion theory. The optimization results
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show an important benefit of this maximum likelihood approach: even adding this additional

bad information, the number of high-fidelity function calls has been reduced by 33%, and

the number of intermediate-fidelity function calls has decreased by 31%. An additional point

of note is the magnitude to which the nested approach suffers by adding poor low-fidelity

information. In most test problems, the nested optimization was terminated due to an

exceptionally large number of function evaluations. The results presented are the minimum

number of function evaluations the nested approach required to converge.

Method Shock-expansion Panel Method Camberline
Two-Fidelities 126 43665 0
Max. Likelihood 84 30057 30057
Nested 212* 59217* 342916*

Table 2.7: Number of function calls required to optimize an airfoil for minimum drag using
shock-expansion theory with multiple lower-fidelity models. An asterisk indicates a minimum
number of function evaluations as opposed to an average value from random starting points.

From this observed behavior, we recommend the use of the two-fidelity optimization ap-

proach demonstrated in Section 2.4 for the optimization of any computationally expensive

function for which accurate gradient information is not available. When considering the

addition of a third or fourth fidelity level, we note there are diminishing returns for each

additional fidelity level. In the three-fidelity examples presented, the third fidelity level re-

duced the number of high-fidelity evaluations in the two-fidelity case by about 30%, which

is about an 8% additional reduction over a single-fidelity method. We therefore expect the

greatest multifidelity benefit when going from a single fidelity level to two fidelity levels,

and diminishing benefit for each additional level. However, if high-fidelity function eval-

uations are extremely costly (e.g., requiring hours or days on a supercomputer), then the

additional reduction may certainly be worthwhile. Since the reduction in high-fidelity evalu-

ations using gradient-free methods is similar to what has been observed using gradient-based

multifidelity optimization methods [5], we expect similar returns for additional fidelity levels

in the gradient-based case.
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2.6 Summary

This chapter has presented a provably convergent multifidelity optimization method that

does not require computation of derivatives of the high-fidelity function. The optimization

results show that this method reduces the number of high-fidelity function calls required

to find a local minimum compared with other state-of-the-art methods. The method cre-

ates surrogate models that retain accurate local behavior while also capturing some global

behavior of the high-fidelity function. However, some downfalls of the method are that

its performance is sensitive to the quality of the low-fidelity model and that its overhead

increases dramatically with the number of design variables and the number of calibration

points used to build the radial basis function model. Accordingly, this approach is only

recommended for high-fidelity functions that require a considerable wall-clock time. Fur-

thermore, in this unconstrained optimization algorithm engineering design constraints are

handled with a penalty method, but using surrogate models for the constraints and objective

may be desirable. While trust-region methods exist for constrained optimization problems,

incorporating multifidelity models in both the objective function and the constraints presents

several challenges which will be discussed in Chapters 3 and 5.

This chapter has also shown that a multifidelity optimization method based on a maxi-

mum likelihood estimator is an effective way of combining many fidelity levels to optimize a

high-fidelity function. The maximum likelihood estimator permits flexible sampling strate-

gies among the low-fidelity models and is robust with respect to poor low-fidelity estimates.

In addition, the estimator offers a natural and automated way of selecting among differ-

ent models that are known to be accurate in different parts of the design space, which is

frequently the case in engineering design.

71





Chapter 3

Constrained Gradient-Free

Multifidelity Optimization

This chapter extends the Bayesian model calibration technique and unconstrained multifi-

delity optimization method presented in Chapter 2 to constrained optimization problems.

The algorithm minimizes a high-fidelity objective function subject to a high-fidelity con-

straint and other simple constraints. The algorithm never computes the gradient of a high-

fidelity function; however, it achieves first-order optimality using sensitivity information

from the calibrated low-fidelity models, which are constructed to have negligible error in a

neighborhood around the solution. The method is demonstrated for aerodynamic shape op-

timization and is compared with other single-fidelity derivative-free and sequential quadratic

programming methods.

Section 3.1 of this chapter presents the derivative-free method to optimize a high-fidelity

objective function subject to constraints with available derivatives. Fully linear surrogate

models of the objective function are minimized within a trust-region setting until no fur-

ther progress is possible or when convergence to a high-fidelity optimum is achieved. Sec-

tion 3.2 presents a technique for minimizing a high-fidelity objective function subject to

both constraints with available derivatives and computationally expensive constraints with

unavailable derivatives. The constraints without available derivatives are approximated with

multifidelity methods, whereas the other constraints are handled either implicitly with a
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penalty method or explicitly. Section 3.3 presents an aerodynamic shape optimization prob-

lem to demonstrate the proposed multifidelity optimization techniques and compares the

results with other single-fidelity methods and approximation model management using finite

difference gradient estimates. Finally, Section 3.4 summarizes the chapter and discusses ex-

tensions of the method to the case when constraints are hard (when the objective function

fails to exist if the constraints are violated).

3.1 Constrained Optimization of a Multifidelity Objec-

tive Function

This section considers the constrained optimization of a high-fidelity function, fhigh(x), that

accurately estimates system metrics of interest but for which accurate gradient estimates are

unavailable. We first present a formalized problem statement and some qualifying assump-

tions. We then present a trust-region framework, the surrogate-based optimization problems

performed within the trust region, and the trust region updating scheme. We follow this

with an algorithmic implementation of the method, and with a brief discussion of algorithmic

limitations and theoretical considerations needed for robustness.

3.1.1 Problem Setup and Assumptions

We seek the vector x ∈ Rn of n design variables that minimizes the value of the high-fidelity

objective function subject to equality constraints, h(x), and inequality constraints g(x),

min
x∈Rn

fhigh(x) (3.1)

s.t. h(x) = 0

g(x) ≤ 0,

where we assume gradients of h(x) and g(x) with respect to x are available or can be

estimated accurately. To reduce the number of evaluations of fhigh(x) we use a low-fidelity

74



function, flow(x), that estimates the same metric as fhigh(x) but with cheaper evaluation

cost and lower accuracy. We seek to find the solution to (3.1) without estimating gradients

of fhigh(x), by calibrating flow(x) to fhigh(x) and using sensitivity information from the

calibrated surrogate model. The calibration strategy employed may break down should

either fhigh(x) or flow(x) not be twice continuously differentiable or not have a Lipschitz

continuous first derivative, although in many such cases the algorithm may still perform

well.

3.1.2 Trust-region Model Management

From an initial design vector x0, the trust-region method generates a sequence of design

vectors that each reduce a merit function consisting of the high-fidelity function value and

penalized constraint violation, where we denote xk to be this design vector on the kth trust-

region iteration. We follow the general Bayesian calibration approach in [55], and construct

a surrogate model mk(x) for fhigh(x), defined in (2.2), within the trust region, Bk, defined

in (2.3).

To solve the constrained optimization problem presented in (3.1) we define a merit func-

tion, Υ(xk, µk), where µk is a parameter that must go to infinity as the iteration number

k goes to infinity and serves to increase the penalty placed on the constraint violation. To

prevent divergence of this algorithm, we need the penalty function to satisfy some basic

properties. First, the merit function with the initial penalty, µ0, must be bounded from

below within a relaxed level-set, L(x0, µ0), defined as

L(x0, µ0) = {x ∈ Rn : Υ(x, µ0) ≤ Υ(x0, µ0)} (3.2)

B(xk) = {x ∈ Rn : ‖x− xk‖ ≤ ∆max} (3.3)

L(x0, µ0) = L(x0, µ0)
⋃

xk∈L(x0,µ0)

B(xk), (3.4)

where ∆max is the maximum allowable trust-region size and the relaxed level-set is required

because the trust-region algorithm may attempt to evaluate the high-fidelity function at

points outside of the level set at x0. Second, the level sets of Υ(xk, µk > µ0) must be
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contained within L(x0, µ0), and third, L(x0, µ0) must be a compact set. These properties

ensure that all design iterates, xk, remain within L(x0, µ0).

Although other merit functions, such as augmented Lagrangians, are possible, we restrict

our attention to merit functions based on quadratic penalty functions because it is trivial

to show that they are bounded from below if the objective function obtains a finite global

minimum and there is no need to consider arbitrarily bad Lagrange multiplier estimates.

The merit function used in this method is the objective function plus the scaled sum-squares

of the constraint violation, where g+(x) denotes the values of the nonnegative inequality

constraints,

Υ(x, µk) = fhigh(x) +
µk
2

h(x)>h(x) +
µk
2

g+(x)>g+(x). (3.5)

The parameter µk is a penalty weight, which must go to +∞ as the iteration k goes to

+∞. Note that when using a quadratic penalty function for constrained optimization, under

suitable hypotheses on the optimization algorithm and penalty function, the sequence of

iterates generated, {xk}, can either terminate at a feasible regular point at which the Karush-

Kuhn-Tucker (KKT) conditions are satisfied, or at a point that minimizes the squared norm

of the constraint violation, h(x)>h(x) + g+(x)>g+(x) [13, 83].

We now define a surrogate merit function, Υ̂(x, µk), which replaces fhigh(x) with its

surrogate model mk(x),

Υ̂(x, µk) = mk(x) +
µk
2

h(x)>h(x) +
µk
2

g+(x)>g+(x). (3.6)

Optimization is performed on this function, and updates to the trust-region are based on

how changes in this surrogate merit function compare with changes in the original merit

function, Υ(x, µk).

Our calibration strategy is to make the surrogate models mk(x) fully linear, Definition 2.1

but with the level-set L(x0, µ0) as opposed to L(x0).
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3.1.3 Trust-region Subproblem

At each trust-region iteration a point likely to decrease the merit function is found by solving

one of two minimization problems on the fully linear model for a step sk, on a trust region

of size ∆k:

min
sk∈Rn

mk(xk + sk) (3.7)

s.t. h(xk + sk) = 0

g(xk + sk) ≤ 0

‖sk‖ ≤ ∆k,

or

min
sk∈Rn

Υ̂k(xk + sk, µk) (3.8)

s.t. ‖sk‖ ≤ ∆k.

The subproblem in (3.8) is used initially to reduce constraint infeasibility. However, there

is a limitation with this subproblem that the norm of the objective function Hessian grows

without bound due to the penalty parameter increasing to infinity. Therefore to both speed

convergence and prevent Hessian conditioning issues, the subproblem in (3.7) with explicit

constraint handling is used as soon as a point that satisfies h(x) = 0 and g(x) ≤ 0 exists

within the current trust region. This is estimated by a linear approximation to the con-

straints, however, if the linearized estimate falsely suggests (3.7) has a feasible solution then

we take recourse to (3.8).1

For both trust-region subproblems, (3.7) and (3.8), the subproblem must be solved such

that the 2-norm of the first-order optimality conditions is less than a constant τk. This

requirement is stated as ‖∇xLk‖ ≤ τk, where Lk is the Lagrangian for the trust-region

1Note that an initial feasible point, x0 could be found directly using the gradients of h(x) and g(x);
however, since the penalty method includes the descent direction of the objective function it may better
guide the optimization process in the case of multiple feasible regions. Should the initial iterate be feasible,
the deficiencies of a quadratic penalty function are not an issue.
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subproblem used. There are two requirements for τk. First τk < ε, where ε is the desired

termination tolerance for the optimization problem in (3.1). Second, τk must decrease to

zero as the number of iterations goes to infinity. Accordingly, we define

τk = min [βε, α∆k] , (3.9)

with a constant β ∈ (0, 1) to satisfy the overall tolerance criteria, and a constant α ∈ (a, 1)

multiplying ∆k to ensure that τk goes to zero. The constant a will be defined as part of a

sufficient decrease condition that forces the size of the trust-region to decrease to zero in the

next subsection.

3.1.4 Trust-region Updating

Without using the high-fidelity function gradient, the trust-region update scheme must en-

sure the size of the trust-region decreases to zero to establish convergence. To do this, a

requirement similar to the fraction of Cauchy decrease requirement in an the unconstrained

trust-region formulation is used (see, for example, [27]). We require that the improvement

in our merit function is at least a small constant a ∈ (0, ε], multiplying ∆k,

Υ̂(xk, µk)− Υ̂(xk + sk, µk) ≥ a∆k. (3.10)

The sufficient decrease condition is enforced through the trust region update parameter,

ρk. The update parameter is the ratio of the actual reduction in the merit function to the

predicted reduction in the merit function unless the sufficient decrease condition is not met,

ρk =

0 Υ̂(xk, µk)− Υ̂(xk + sk, µk) < a∆k

Υ(xk,µk)−Υ(xk+sk,µk)

Υ̂(xk,µk)−Υ̂(xk+sk,µk)
otherwise.

(3.11)

The size of the trust region, ∆k, must now be updated based on the quality of the surrogate

model prediction. The size of the trust region is increased if the surrogate model predicts

the change in the function value well, kept constant if the prediction is fair, and the trust
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region is contracted if the model predicts the change poorly. Specifically, we update the trust

region size using

∆k+1 =


min{γ1∆k,∆max} if η1 ≤ ρk ≤ η2,

γ0∆k if ρk ≤ η0,

∆k otherwise,

(3.12)

where 0 < η0 < η1 < 1 < η2, 0 < γ0 < 1, and γ1 > 1. Regardless of whether or not a

sufficient decrease has been found, the trust-region center will be updated if the trial point

has decreased the value of the merit function,

xk+1 =

xk + sk if Υ(xk, µk) > Υ(xk + sk, µk)

xk otherwise.

(3.13)

A new surrogate model, mk+1(x), is then built such that it is fully linear on a region Bk+1

having center xk+1 and size ∆k+1. The new fully linear model is constructed using Algorithm

2.2.

3.1.5 Termination

For termination, we must establish that the approximate first-order KKT conditions,

‖∇fhigh(xk) + A(xk)
>λ(xk)‖ ≤ ε, (3.14)

‖
[
h(xk)

>,g+(xk)
>] ‖ ≤ ε (3.15)

are satisfied at xk, where A(xk) is defined to be the Jacobian of all active or violated con-

straints at xk,

A(xk) =
[
∇h(xk)

>,∇g+(xk)
>
]>
, (3.16)
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and λ(xk) are Lagrange multipliers. The additional complementarity and sign conditions are

assumed to be satisfied from the solution of (3.7). The constraint violation criteria, (3.15),

can be evaluated directly. However, the first-order condition, (3.14), cannot be verified

directly in the derivative-free case because the gradient, ∇fhigh(xk), is unknown. Therefore,

for first-order optimality we require two conditions: first-order optimality with the surrogate

model, and a sufficiently small trust-region. The first-order optimality condition using the

surrogate model is

‖∇mk(xk) + A(xk)
>λ̂(xk)‖ ≤ max [βε, α∆k, a] ≤ ε, (3.17)

where λ̂ are the Lagrange multipliers computed using the surrogate model and active con-

straint set estimated from the surrogate model instead of the high-fidelity function. This ap-

proximate stationarity condition is similar to what would be obtained using a finite-difference

gradient estimate with a fixed step size where the truncation error in the approximate deriva-

tive eventually dominates the stationarity measure, but in our case the sufficient decrease

modification of the update parameter eventually dominates the stationarity measure [15]. For

∆k → 0, we have from (2.7) that ‖∇fhigh(x)−∇mk(x)‖ → 0, and also ‖λ̂(xk)−λ(xk)‖ → 0.

Therefore, we have first-order optimality as given in (3.14). In practice, the algorithm is ter-

minated when the constraint violation is small, (3.15), first-order optimality is satisfied on

the model, (3.17), and the trust region is small, say ∆k < ε2 for a small ε2.

3.1.6 Implementation

The numerical implementation of the multifidelity optimization algorithm, which does not

compute the gradient of the high-fidelity objective function, is presented as Algorithm 3.1.

A set of possible parameters that may be used in this algorithm is listed in Table 3.1 in

Section 3.3. A key element of this algorithm is the logic to switch from the penalty function

trust-region subproblem, (3.8), to the subproblem that uses the constraints explicitly, (3.7).

Handling the constraints explicitly will generally lead to faster convergence and fewer func-

tion evaluations; however, a feasible solution to this subproblem likely does not exist at early
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iterations. If either the constraint violation is sufficiently small, ‖
[
h(xk)

>, g+(xk)
>] ‖ ≤ ε,

or the linearized steps, δh, satisfying h(x) + ∇h(x)>δh = 0 for all equality and inequal-

ity constraints are all smaller than the size of the trust region, then the subproblem with

the explicit constraints is attempted. If the optimization fails, then the penalty function

subproblem is solved.

This method may be accelerated with the use of multiple lower-fidelity models. The

multifidelity filtering technique presented in Chapter 2 to combine estimates from multiple

low-fidelity functions into a single maximum likelihood estimate of the high-fidelity function

value will work unmodified within this multifidelity optimization framework.
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Algorithm 3.1: Multifidelity Objective Trust-Region Algorithm
0: Set initial parameters, a, α, β, ε, ε2, η0, η1, η2, γ0, γ1, ∆0, ∆max, and µ0. (Recommended

values are given in Table 3.1.) Choose initial starting point x0, and build initial surrogate
model m0(x) fully linear on {x : ‖x− x0‖ ≤ ∆0}. Set k = 0.

1: Update tolerance, τk = min [βε, α∆k].
2: Choose and solve a trust-region subproblem:

2a: If the constraint violation is small, ‖
[
h(xk)

> g+(xk)
>] ‖ ≤ ε, or the maximum lin-

earized step to constraint feasibility for all active and violated constraints is smaller
than the current trust region size, ∆k, then solve:

min
sk∈Rn

mk(xk + sk)

s.t. h(xk + sk) = 0

g(xk + sk) ≤ 0

‖sk‖ ≤ ∆k,

to convergence tolerance τk.
2b: If 2a is not used or fails to converge to the required tolerance, solve the trust-region

subproblem:

min
sk∈Rn

Υ̂k(xk + sk, µk)

s.t. ‖sk‖ ≤ ∆k.

to convergence tolerance τk.
3: If fhigh(xk + sk) has not been evaluated previously, evaluate the high-fidelity function at

that point.
3a: Store fhigh(xk + sk) in database.

4: Compute the merit function Υ(xk, µk),Υ(xk + sk, µk), and the surrogate merit function,

Υ̂(xk + sk, µk).
5: Compute the ratio of actual improvement to predicted improvement,

ρk =

{
0 Υ̂(xk, µk)− Υ̂(xk + sk, µk) < a∆k
Υ(xk,µk)−Υ(xk+sk,µk)

Υ̂(xk,µk)−Υ̂(xk+sk,µk)
otherwise.

6: Update the trust region size according to ρk,

∆k+1 =


min{γ1∆k,∆max} if η1 ≤ ρk ≤ η2

γ0∆k if ρk ≤ η0,

∆k otherwise,

7: Accept or reject the trial point according to improvement in the merit function,

xk+1 =

{
xk + sk Υ(xk, µk)−Υ(xk + sk, µk) > 0

xk otherwise.

8: Create new model mk+1(x) fully linear on {x : ‖x− xk+1‖ ≤ ∆k+1}.
9: Increment the penalty, µk+1 = max

[
ek+1/10, 1/∆1.1

k+1

]
. Increment k.

10: Check for convergence: if ‖∇mk(xk) + A(xk)
>λ̂‖ ≤ ε, ‖

[
h(xk)

>,g+(xk)
>] ‖ ≤ ε, and

∆k ≤ ε2 the algorithm is converged, otherwise go to step 1.
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3.1.7 Theoretical Considerations

This subsection discusses some performance limitations of the proposed algorithm as well as

theoretical considerations needed for robustness.

This chapter has not presented a formal convergence theory; at best, such a theory

will apply only under many restrictive assumptions. In addition, we can at best guarantee

convergence to a near-optimal solution (i.e., optimality to an a priori tolerance level and not

to stationarity). Forcing the trust region size to decrease every time the sufficient decrease

condition is not satisfied means that if the projection of the gradient onto the feasible domain

is less than the parameter a, then the algorithm can fail to make progress. This limitation

is presented in (3.17); however, it is not seen as severe because a can be set at any value

arbitrarily close to (but strictly greater than) zero.

A second limitation is that the model calibration strategy, generating a fully linear model,

is theoretically only guaranteed to be possible for functions that are twice continuously

differentiable and have Lipschitz-continuous first derivatives. Though this assumption may

seem to limit some desired opportunities for derivative-free optimization of functions with

noise, noise with certain characteristics like that discussed in [28, Section 9.3], or the case

of models with dynamic accuracy as in [31, Section 10.6] can be accommodated in this

framework. Approaches such as those in [80] may be used to characterize the noise in a

specific problem. However, our algorithm applies even in the case of general noise, where

no guarantees can be made on the quality of the surrogate models. As will be shown in the

test problem in Section 3.3, in such a case our approach exhibits robustness and significant

advantages over gradient-based methods that are susceptible to poor gradient estimates.

Algorithm 3.1 is more complicated than conventional gradient-based trust-region algo-

rithms using quadratic penalty functions, such as the algorithm in [31, Algorithm 14.3.1].

There are three sources of added complexity. First, our algorithm increases the penalty

parameter after each trust-region subproblem as opposed to after a completed minimization

of the penalty function. This aspect can significantly reduce the number of required high-

fidelity evaluations, but adds complexity to the algorithm. Second, our algorithm switches

between two trust region subproblems to avoid numerical issues associated with the condi-
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tioning of the quadratic penalty function Hessian. The third reason for added complexity

is that in derivative-free optimization the size of the trust-region must decrease to zero in

order to demonstrate optimality. This aspect serves to add unwanted coupling between the

penalty parameter and the size of the trust region, which must be handled appropriately.

We now discuss how these two aspects of the algorithm place important constraints on the

penalty parameter µk.

The requirements for the penalty parameter, µk, are that (i) limk→∞ µk∆k = ∞, (ii)

limk→∞ µk∆
2
k = 0, and (iii)

∑∞
k=0 1/µk is finite. The lower bound for the growth of µk, that

(i) limk→∞ µk∆k = ∞, comes from the properties of the minima of quadratic penalty func-

tions presented in [31, Theorem 14.3.1], properties of a fully linear model, and (3.9). If xk

is at an approximate minimizer of the surrogate quadratic penalty function, (3.6), then a

bound on the constraint violation is

‖
[
h(xk)

> g+(xk)
>] ‖ ≤ (3.18)

κ1(max{α∆k, a}+ κg∆k) + ‖λ(x∗)‖+ κ2‖xk − x∗‖
µk

,

where x∗ is a KKT point of 3.1, and κ1, κ2 are finite positive constants. If {µk∆k} diverges

then an iteration exists where both the bound, (3.18), holds (the trust region size must

be large enough that a feasible point exists in the interior) and the constraint violation is

less than the given tolerance ε. This enables the switching between the two trust region

subproblems, (3.8) and (3.7). The upper bound for the growth of µk, that

(ii) limk→∞ µk∆
2
k = 0, comes from the smoothness of the quadratic penalty function. To

establish an upper bound for the Hessian 2-norm for the subproblem in (3.8) we compare the

value of the merit function at a point Υ(xk + p, µk) with its linearized prediction based on

Υ(xk, µk), Υ̃(xk + p, µk). If κfg is the Lipschitz constant for ∇fhigh(x), κcm is the maximum

Lipschitz constant for the constraints, and κcgm is the maximum Lipschitz constant for a
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constraint gradient, we can show that

‖Υ(xk + p, µk)− Υ̃(xk + p, µk)‖ ≤ (3.19)[
κfg + µk

(
κcm‖

[
h(xk)

> g+(xk)
>] ‖+ κcgm‖A(xk)‖‖p‖+ κcmκcgm‖p‖2

)]
‖p‖2.

We have a similar result for Υ̂(x, µk) by replacing κfg with the sum κfg + κg, using the

definition of a fully linear model, and by bounding ‖p‖ by ∆k. Therefore, we may show the

error in a linearized prediction of the surrogate model will go to zero and that Lipschitz-type

smoothness is ensured provided that the sequence {µk∆2
k} converges to zero regardless of

the constraint violation.

The final requirement, that (iii)
∑∞

k=0 1/µk is finite, comes from the need for the size of the

trust region to go to zero in gradient-free optimization. The sufficient decrease condition, that

ρk = 0 unless Υ̂(xk, µk)− Υ̂(xk + sk, µk) ≥ a∆k ensures that the trust region size decreases

unless the change in the merit function Υ(xk, µk) − Υ(xk + sk, µk) ≥ η0a∆k. This provides

an upper bound on the total number of times in which the size of the trust region is kept

constant or increased. We have assumed that the merit function is bounded from below and

also that the trust-region iterates remain within a level-set L(x0, µ0) as defined by (3.2). We

now consider the merit function written in an alternate form,

Υ(xk, µk) = fhigh(xk) +
µk
2
‖
[
h(xk)

>,g+(xk)
>] ‖2. (3.20)

From (3.18), if µk is large enough such that the bound on the constraint violation is less than

unity, we may use the bound on the constraint violation in (3.18) to show that an upper

bound on the total remaining change in the merit function is

fhigh(xk)− min
x∈L(x0,µ0)

fhigh(x)+ (3.21)

[κ1(max{α∆k, a}+ κg∆k) + ‖λ(x∗)‖+ κ2‖xk − x∗‖]2

µk
.

Each term in the numerator is bounded from above because ∆k is always bounded from
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above by ∆max, ‖λ(x∗)‖ is bounded from above because x∗ is a regular point, and ‖xk − x∗‖ is

bounded from above because L(x0, µ0) is a compact set. Therefore, if the series {1/µk} has a

finite sum, then the total remaining improvement in the merit function is finite. Accordingly,

the sum of the series {∆k} must be finite, and ∆k → 0 as k →∞. The prescribed sequence

for {µk} in our algorithm satisfies these requirements for a broad range of problems.

3.2 Multifidelity Objective and Constraint Optimiza-

tion

This section considers a more general constrained optimization problem with a computation-

ally expensive objective function and computationally expensive constraints. The specific

problem considered is where the gradients for both the expensive objective and expensive

constraints are either unavailable, unreliable or expensive to estimate. Accordingly, the

multifidelity optimization problem in (3.1) is augmented with the high-fidelity constraint,

chigh(x) ≤ 0. In addition, we have a low-fidelity estimate of this constraint function, clow(x),

which estimates the same metric as chigh(x), but with unknown error. Therefore, our goal

is to find the vector x ∈ Rn of n design variables that solves the nonlinear constrained

optimization problem,

min
x∈Rn

fhigh(x) (3.22)

s.t. h(x) = 0

g(x) ≤ 0

chigh(x) ≤ 0,

where h(x) and g(x) represent vectors of inexpensive equality and inequality constraints with

derivatives that are either known or may be estimated cheaply. The same assumptions for

the expensive objective function formulation given in Section 3.1.1 are made for the functions

presented in this formulation. It is also necessary to make an assumption similar to that

in Section 3.1.2, that a quadratic penalty function with the new high-fidelity constraint is
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bounded from below within an initial expanded level-set. A point of note is that multiple

high-fidelity constraints can be used if an initial point x0 is given that is feasible with respect

to all constraints; however, due to the effort required to construct approximations of the

multiple high-fidelity constraints, it is recommended that all of the high-fidelity constraints

be combined into a single high-fidelity constraint through, as an example, a discriminant

function [85, 98].

The optimization problem in (3.22) is solved in two phases. First, the multifidelity

optimization method presented in Section 3.1 is used to find a feasible point, and then an

interior point formulation is used to find a minimum of the optimization problem in (3.22).

The interior point formulation is presented in Section 3.2.2 and the numerical implementation

is presented in Section 3.2.3.

3.2.1 Finding a Feasible Point

This algorithm begins by finding a point that is feasible with respect to all of the constraints

by applying Algorithm 1 to the optimization problem

min
x∈Rn

chigh(x) (3.23)

s.t. h(x) = 0

g(x) ≤ 0,

until a point that is feasible with respect to the constraints in (3.22) is found. If this

optimization problem is unconstrained (i.e., there are no constraints h(x) and g(x)) then

the trust-region algorithm of [27] is used with the multifidelity calibration method of [71].

The optimization problem in (3.23) may violate one of the assumptions for Algorithm 3.1 in

that chigh(x) may not be bounded from below. This issue will be addressed in the numerical

implementation of the method in Section 3.2.3.
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3.2.2 Interior Point Trust-region Method

Once a feasible point is found we minimize the high-fidelity objective function ensuring that

we never again violate the constraints, that is we solve (3.22). This is accomplished in two

steps, first by solving trust region subproblems that use fully linear surrogate models for both

the high-fidelity objective function and the high-fidelity constraint. Second, the trust region

step is evaluated for feasibility and any infeasible step is rejected. The surrogate model for

the objective function is mk(x) as defined in (2.2). For the constraint, the surrogate model,

m̄k(x), is defined as

m̄k(x) = clow(x) + ēk(x). (3.24)

From the definition of a fully linear model, (2.7) and (2.8), m̄k(x) satisfies

‖∇chigh(x)−∇m̄k(x)‖ ≤ κcg∆k ∀x ∈ Bk, (3.25)

|chigh(x)− m̄k(x)| ≤ κc∆
2
k ∀x ∈ Bk. (3.26)

In addition, we require that our procedure to construct fully linear models ensures that at

the current design iterate, the fully linear models exactly interpolate the function they are

modeling,

mk(xk) = fhigh(xk), (3.27)

m̄k(xk) = chigh(xk). (3.28)

This is required so that every trust-region subproblem is feasible at its initial point xk.
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The trust-region subproblem is

min
sk∈Rn

mk(xk + sk) (3.29)

s.t. h(xk + sk) =0

g(xk + sk) ≤0

m̄k(xk + sk) ≤max{chigh(xk),−v∆k}

‖sk‖ ≤∆k.

The surrogate model constraint does not have zero as a right hand side to account for the

fact the algorithm is looking for interior points. The right hand side, max{chigh(xk),−v∆k},

ensures that the constraint is initially feasible and that protection of constraint violation

decreases to zero as the number of iterations increase to infinity. The constant v must be

greater than α, which is defined as part of the termination tolerance τk in (3.9). The trust-

region subproblem is solved to the same termination tolerance as the multifidelity objective

function formulation, ‖∇xLk‖ ≤ τk, where Lk is the Lagrangian of (3.29).

The center of the trust region is updated if a decrease in the objective function is found

at a feasible point,

xk+1 =


xk + sk if fhigh(xk) > fhigh(xk + sk)

and chigh(xk + sk) ≤ 0

xk otherwise,

(3.30)

with h(xk + sk) = 0 and g(xk + sk) ≤ 0 already satisfied in (3.29). The trust-region size

update must ensure that the predictions of the surrogate models are accurate and that the

size of the trust region goes to zero in the limit as the number of iterations goes to infinity.

Therefore, we again impose a sufficient decrease condition, that the change in the objective
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function is at least a constant, a, multiplying ∆k,

∆k+1 =


min{γ1∆k,∆max} if fhigh(xk + sk)− fhigh(xk) ≥ a∆k

and chigh(xk + sk) ≤ 0

γ0∆k otherwise.

(3.31)

New surrogate models, mk+1(x) and m̄k+1(x), are then built such that they are fully linear on

a region Bk+1 having center xk+1 and size ∆k+1. The new fully linear models are constructed

using the procedure of [117] with the calibration technique of [71].

3.2.3 Multifidelity Objective and Constraint Implementation

The numerical implementation of this multifidelity optimization algorithm is presented as

Algorithm 3.2. A set of possible parameters that may be used in this algorithm is listed in

Table 3.1 in Section 3.3. An important implementation issue with this algorithm is finding

the initial feasible point. Algorithm 3.1 is used to minimize the high-fidelity constraint value

subject to the constraints with available derivatives in order to find a point that is feasible.

However, Algorithm 3.1 uses a quadratic penalty function to handle the constraints with

available derivatives if the constraints are violated. The convergence of a penalty function

requires that the objective function is bounded from below, therefore a more general problem

than (3.23) to find an initial feasible point is to use,

min
x∈Rn

[max{chigh(x) + d, 0}]2 (3.32)

s.t. h(x) = 0

g(x) ≤ 0.

The maximization in the objective prevents the need for the high-fidelity constraint to be

bounded from below, and the constraint violation is squared to ensure the gradient of the

objective is continuous. The constant d is used to account for the fact that the surrogate

model will have some error in its prediction of chigh(x), so looking for a slightly negative
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value of the constraint may save iterations as compared to seeking a value that is exactly

zero. For example, if d ≥ κc∆
2
k and m̄k(x) + d = 0 then (3.26) guarantees that chigh(x) ≤ 0.

There is a similar consideration in the solution of (3.29), where a slightly negative value

of the surrogate constraint is desired. If this subproblem is solved with an interior point

algorithm this should be satisfied automatically; however, if a sequential quadratic program-

ming method is used the constraint violation will have a numerical tolerance that is either

slightly negative or slightly positive. It may be necessary to bias the subproblem to look

for a value of the constraint that is more negative than the optimizer constraint violation

tolerance to ensure the solution is an interior point. This feature avoids difficulties with the

convergence of the trust-region iterates.

A final implementation note is that if a high-fidelity constraint has numerical noise or

steep gradients it may be wise to shrink the trust region at a slower rate, increasing γ0. This

will help to ensure that the trust-region does not decrease to zero at a suboptimal point.

3.3 Supersonic Airfoil Design Test Problem

This section presents results of the two multifidelity optimization algorithms on a supersonic

airfoil design problem.

3.3.1 Problem Setup

The supersonic airfoil design problem has 11 parameters: the angle of attack, 5 spline points

on the upper surface and 5 spline points on the lower surface. However, there is an actual

total of 7 spline points on both the upper and lower surfaces because the leading and trailing

edges must be sharp for the low-fidelity methods used. The airfoils are constrained such

that the minimum thickness-to-chord ratio is 0.05 and that the thickness everywhere on the

airfoil must be positive. In addition, there are lower and upper bounds for all spline points.

As presented in Chapter 2, three supersonic airfoil analysis models are available: a lin-

earized panel method, a nonlinear shock-expansion theory method, and Cart3D, an Euler

CFD solver [1]. Note, that Cart3D has a finite convergence tolerance so there is some nu-
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Algorithm 3.2: Multifidelity Objective and Constraint Trust-Region Algorithm
-1: Find a feasible design vector using Algorithm 3.1 to iterate on:

min
x∈Rn

[max{chigh(x) + d, 0}]2

s.t. h(x) = 0

g(x) ≤ 0,

-1a: Store all evaluations of chigh(x).
0: Set initial parameters, a, α, β, d, v, ε, ε2, γ0, γ1, ∆0, ∆max, and µ0. (Recommended

values are given in Table 3.1.) Build initial surrogate models m0(x), m̄0(x) fully
linear on {x : ‖x− x0‖ ≤ ∆0}, where x0 is the terminal point of step -1. Set k = 0.

1: Update tolerance, τk = min [βε, α∆k].
2: Solve the trust-region subproblem:

min
sk∈Rn

mk(xk + sk)

s.t. h(xk + sk) = 0

g(xk + sk) ≤ 0

m̄k(xk + sk) ≤ min{chigh(xk),−υ∆k}
‖sk‖ ≤ ∆k.

3: If fhigh(xk + sk) or chigh(xk + sk) have not been evaluated previously, evaluate the
high-fidelity functions at that point.
3a: Store fhigh(xk + sk) and chigh(xk + sk) in a database.

4: Accept or reject the trial point according to:

xk+1 =

{
xk + sk if fhigh(xk) > fhigh(xk + sk) and chigh(xk + sk) ≤ 0

xk otherwise.

5: Update the trust region size according to:

∆k+1 =

{
min{γ1∆k,∆max} if fhigh(xk + sk)− fhigh(xk) ≥ a∆k and chigh(xk + sk) ≤ 0

γ0∆k otherwise.

6: Create new models mk+1(x) and m̄k+1(x) fully linear on {x : ‖x − xk+1‖ ≤ ∆k+1}.
Increment k.

7: Check for convergence, if the trust region constraint is inactive,
‖∇m(xk)+A(xk)

>λ̂(xk)+∇m̄(xk)λm̄‖ ≤ ε, and ∆k ≤ ε2, the algorithm is converged,
otherwise go to step 1.
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merical noise in the lift and drag predictions. In addition, because random airfoils are used

as initial conditions, Cart3D may fail to converge, in which case the results of the panel

method are used. Figure 2-3 shows computed pressure distributions for each of the models

for a 5% thick biconvex airfoil at Mach 1.5 and 2◦ angle of attack. Table 2.3 provides the

estimated lift and drag coefficients for the same airfoil and indicates the approximate level

of accuracy of the codes with respect to each other.

We first present single-fidelity results using state-of-the-art derivative-free methods. Then

the following sections present results for three optimization examples each using this airfoil

problem to demonstrate the capabilities of the optimization algorithms presented. In the first

example, Section 3.3.3, the airfoil drag is minimized using the constrained multifidelity objec-

tive function formulation presented in Section 3.1 with only the simple geometric constraints.

In the second example, Section 3.3.4, the airfoil lift-to-drag ratio is maximized subject to a

constraint that the drag coefficient is less than 0.01, where the constraint is handled with

the multifidelity framework presented in Section 3.2. In the final example, Section 3.3.5, the

airfoil lift-to-drag ratio is maximized subject to the constrained drag coefficient and both

the objective function and the constraints are handled with the multifidelity framework pre-

sented in Section 3.2. The initial airfoils for all problems are randomly generated and likely

will not satisfy the constraints.

The three multifidelity airfoil problems are solved with four alternative optimization

algorithms: Sequential Quadratic Programming (SQP) [76]; a first-order consistent multifi-

delity trust-region algorithm that uses a SQP formulation and an additive correction [5]; the

high-fidelity-gradient-free approach presented in this chapter using a Gaussian radial basis

function and a fixed spatial correlation parameter, ξ = 2; and the approach presented in this

chapter using a maximum likelihood estimate to find an improved correlation length, ξ = ξ∗.

The Gaussian correlation functions used in these results are all isotropic. An anisotropic cor-

relation function (i.e., choosing a correlation length for each direction in the design space)

may speed convergence of this algorithm and reduce sensitivity to Hessian conditioning. The

parameters used for the optimization algorithm are presented in Table 3.1. The fully linear

models are constructed using Algorithm 2.2 and the parameters stated Table 2.2.
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Constant Description Value
a Sufficient decrease constant 1× 10−4

α Convergence tolerance multiplier 1× 10−2

β Convergence tolerance multiplier 1× 10−2

d Artificial lower bound for constraint value 1
v Constraint violation conservatism factor 0.1
ε, ε2 Termination Tolerance 5× 10−4

γ0 Trust region contraction ratio 0.5
γ1 Trust region expansion ratio 2
η0 Trust region contraction criterion 0.25
η1, η2 Trust region expansion criterion 0.75, 2.0
∆0 Initial trust region radius 1
∆max Maximum trust region size 20
µk Penalty parameter max

[
ek/10, 1/∆1.1

k

]
δx Finite difference step 1× 10−5

Table 3.1: List of constants used in the algorithm. All parameters used in constructing the
radial basis function error model are listed in Table 2.2. These parameter values are based on
recommendations for unconstrained trust-region algorithms and through numerical testing
appear to have good performance for an assortment of problems.

3.3.2 Single-fidelity Derivative-free Optimization

For benchmark purposes, we first solve the airfoil optimization problem using three single-

fidelity gradient-free optimization methods: the Nelder-Mead simplex algorithm [81], the

global optimization method DIRECT [51], and the constrained gradient-free optimizer,

COBYLA [88, 89]. The test case is to minimize the drag of supersonic airfoil estimated

with a panel method, subject to the airfoil having positive thickness everywhere and at

least 5% thickness to chord ratio. This test case is a lower-fidelity version of the example

in Section 3.3.3. Nelder-Mead simplex and DIRECT are unconstrained optimizers that use

a quadratic penalty function known to perform well on this problem [71], while COBYLA

handles the constraints explicitly. On this problem, starting from ten random initial airfoils

the best observed results were 5,170 function evaluations for the Nelder-Mead simplex algo-

rithm, over 11,000 evaluations for DIRECT, and 6,284 evaluations for COBYLA. Such high

numbers of function evaluations mean that these single-fidelity gradient-free algorithms are

too expensive for use with an expensive forward solver, such as Cart3D.
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3.3.3 Multifidelity Objective Function Results

This section presents optimization results in terms of the number of high-fidelity function

evaluations required to find the minimum drag for a supersonic airfoil at Mach 1.5 with

only geometric constraints on the design. Two cases are tested: the first uses the shock-

expansion method as the high-fidelity function and the panel method as the low-fidelity

function; the second uses Cart3D as the high-fidelity function and the panel method as

the low-fidelity function. These problems are solved using the multifidelity optimization

algorithm for a computationally expensive objective function and constraints with available

derivatives presented in Section 3.1.

The average numbers of high-fidelity function evaluations required to find a locally op-

timal design starting from random initial airfoils are presented in Table 3.2. The results

show that our approach uses approximately 78% fewer high-fidelity function evaluations

than SQP and approximately 30% fewer function evaluations than the first-order consis-

tent trust-region method using finite difference gradient estimates. In addition, Figure 3-1

compares the objective function and constraint violation histories verse the number of high-

fidelity evaluations for these methods as well as DIRECT and Nelder-Mead simplex from

a representative random initial airfoil for the case with the shock-expansion method as the

high-fidelity function. For the single-fidelity optimization using Cart3D, the convergence re-

sults were highly sensitive to the finite difference step length. The step size required tuning,

and the step with the highest success rate was used. A reason for this is that the initial

airfoils were randomly generated, and the convergence tolerance of Cart3D for airfoils with

sharp peaks and negative thickness was large compared with the airfoils near the optimal

design. This sensitivity of gradient-based optimizers to the finite difference step length high-

lights the benefit of gradient-free approaches, especially when constraint gradient estimates

become poor.
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High-Fidelity Low-Fidelity SQP First-Order TR RBF, ξ = 2 RBF, ξ = ξ∗

Shock-Expansion Panel Method 314 (-) 110 (-65%) 73 (-77%) 68 (-78%)
Cart3D Panel Method 359∗(-) 109 (-70%) 80 (-78%) 79 (-78%)

Table 3.2: The average number of high-fidelity function evaluations to minimize the drag
of a supersonic airfoil with only geometric constraints. The asterisk for the Cart3D results
means a significant fraction of the optimizations failed and the average is taken over fewer
samples. The numbers in parentheses indicate the percentage reduction in high-fidelity
function evaluations relative to SQP.

Figure 3-1: Convergence history for minimizing the drag of an airfoil using the shock-
expansion theory method as the high-fidelity function subject to only geometric constraints.
The methods presented are our calibration approach, a first-order consistent multifidelity
trust-region algorithm, sequential quadratic programming, DIRECT, and Nelder-Mead sim-
plex. Both DIRECT and Nelder-Mead simplex use a fixed penalty function to handle the
constraints, so only an objective function value is shown. COBYLA and BOBYQA were
attempted, but failed to find the known solution to this problem. On the constraint viola-
tion plot, missing points denote a feasible iterate, and the sudden decrease in the constraint
violation for the RBF calibration approach at 37 high-fidelity evaluations (13th iteration,
µk = 9.13× 105) is when the algorithm switches from solving (3.8) to solving (3.7).
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High-Fidelity Low-Fidelity SQP First-Order TR RBF, ξ = 2 RBF, ξ = ξ∗

Shock-Expansion Panel Method 827 (-) 104 (-87%) 104 (-87%) 115 (-86%)
Cart3D Panel Method 909∗(-) 100 (-89%) 103 (-89%) 105 (-88%)

Table 3.3: The average number of high-fidelity constraint evaluations required to maximize
the lift-to-drag ratio of a supersonic airfoil estimated with a panel method subject to a
multifidelity constraint. The asterisk for the Cart3D results means a significant fraction
of the optimizations failed and the average is taken over fewer samples. The numbers in
parentheses indicate the percentage reduction in high-fidelity function evaluations relative
to SQP.

3.3.4 Multifidelity Constraint Results

This section presents optimization results in terms of the number of function evaluations

required to find the maximum lift-to-drag ratio for a supersonic airfoil at Mach 1.5 subject

to both geometric constraints and the requirement that the drag coefficient is less than 0.01.

The lift-to-drag ratio is computed with the panel method; however, the drag coefficient

constraint is handled using the multifidelity technique presented in Section 3.2. Two cases are

examined: in the first the shock-expansion method models the high-fidelity constraint and the

panel method models the low-fidelity constraint; in the second case, Cart3D models the high-

fidelity constraint and the panel method models the low-fidelity constraint. Table 3.3 presents

the average number of high-fidelity constraint evaluations required to find the optimal design

using SQP, a first-order consistent trust-region algorithm and the multifidelity techniques

developed in this chapter. A significant decrease (almost 90%) in the number of high-fidelity

function evaluations is observed when compared with SQP. Performance is almost the same

as the first-order consistent trust-region algorithm.

3.3.5 Multifidelity Objective Function and Constraint Results

This section presents optimization results in terms of the number of function evaluations

required to find the maximum lift-to-drag ratio for a supersonic airfoil at Mach 1.5 subject

to geometric constraints and the requirement that the drag coefficient is less than 0.01. In

this case, both the lift-to-drag ratio and the drag coefficient constraint are handled using

the multifidelity technique presented in Section 3.2. In the first case, the shock-expansion
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High-Fidelity Low-Fidelity SQP First-Order TR RBF, ξ = 2 RBF, ξ = ξ∗

Objective: Shock-Expansion Panel Method 773 (-) 132 (-83%) 93 (-88%) 90 (-88%)
Constraint: Shock-Expansion Panel Method 773 (-) 132 (-83%) 97 (-87%) 96 (-88%)

High-Fidelity Low-Fidelity SQP First-Order TR RBF, ξ = 2 RBF, ξ = ξ∗

Objective: Cart3D Panel Method 1168∗(-) 97 (-92%) 104 (-91%) 112 (-90%)
Constraint: Cart3D Panel Method 2335∗(-) 97 (-96%) 115 (-95%) 128 (-94%)

Table 3.4: The average number of high-fidelity objective function and high-fidelity constraint
evaluations to optimize a supersonic airfoil for a maximum lift-to-drag ratio subject to a
maximum drag constraint. The asterisk for the Cart3D results means a significant fraction
of the optimizations failed and the average is taken over fewer samples. The numbers in
parentheses indicate the percentage reduction in high-fidelity function evaluations relative
to SQP.

method is the high-fidelity analysis used to estimate both metrics of interest and the panel

method is the low-fidelity analysis. In the second case, Cart3D is the high-fidelity analysis

and the panel method is the low-fidelity analysis. The optimal airfoils are shown in Figure 3-

2. Table 3.4 presents the number of high-fidelity function evaluations required to find the

optimal design using SQP, a first-order consistent trust-region algorithm and the techniques

developed in this chapter. Again a significant reduction (about 90%) in the number of high-

fidelity function evaluations, both in terms of the constraint and the objective, are observed

compared with SQP, and a similar number of high-fidelity function evaluations are observed

when compared with the first-order consistent trust region approach using finite differences.

3.4 Summary

This chapter has presented two algorithms for multifidelity constrained optimization of com-

putationally expensive functions when their derivatives are not available. The first method

minimizes a high-fidelity objective function without using its derivative while satisfying con-

straints with available derivatives. The second method minimizes a high-fidelity objective

without using its derivative while satisfying both constraints with available derivatives and

an additional high-fidelity constraint without an available derivative. Both of these methods

support multiple lower-fidelity models through the use of a multifidelity filtering technique

without any modifications to the methods. For the supersonic airfoil design example consid-
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(a) Initial airfoil. (b) Optimal shock-expansion theory
airfoil.

(c) Optimal Cart3D flow solution.

Figure 3-2: Initial airfoil and supersonic airfoil with the maximum lift-to-drag ratio having
drag less than 0.01 and 5% thickness at Mach 1.5.

ered here, the multifidelity methods resulted in approximately 90% reduction in the number

of high-fidelity function evaluations compared to solution with a single-fidelity sequential

quadratic programming method. In addition, the multifidelity methods performed similarly

to a first-order consistent trust-region algorithm with gradients estimated using finite differ-

ence approximations. This shows that derivative-free multifidelity methods provide signifi-

cant opportunity for optimization of computationally expensive functions without available

gradients.

The behavior of the gradient-free algorithms presented is slightly atypical of nonlinear

programming methods. For example, the convergence rate of these gradient-free algorithms

is rapid initially and then slows when close to an optimal solution. In contrast, convergence

for a gradient-based method is often initially slow and then accelerates when close to an

optimal solution (e.g., as approximate Hessian information becomes more accurate in a

quasi-Newton approach). Also, gradient-based optimizers typically find the local optimal

solution nearest the initial design. Although by virtue of the physics involved, the presented

examples have unique optimal solutions, in a general problem the local optimum to which

these gradient-free algorithms converge may not be the one in the immediate vicinity of the

initial iterate. An example of this behavior is the case when the initial iterate is itself a
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local optimum, the surrogate model may not capture this fact and the iterate may move to

a different point in the design space with a lower function value.

In the case of hard constraints, or when the objective function fails to exist if the con-

straints are violated, it is still possible to use Algorithm 2.2. After the initial feasible point is

found, no design iterate will be accepted if the high-fidelity constraint is violated. Therefore

the overall flow of the algorithm is unchanged. What must be changed is the technique to

build fully linear models. In order to build a fully linear model, the objective function must

be evaluated at a set of n + 1 points that span Rn. When the objective function can be

evaluated outside the feasible region, the constraints do not influence the construction of the

surrogate model. However, when the objective function does not exist where the constraints

are violated, then the points used to construct the surrogate model must all be feasible and

this restricts the shape of the feasible region. Specifically, this requirement prohibits equality

constraints and means that strict linear independent constraint qualification must be satis-

fied everywhere in the design space (preventing two inequality constraints from mimicking

an equality constraint). If these two additional conditions hold, then it will be possible to

construct fully linear models everywhere in the feasible design space and use this algorithm

to optimize computationally expensive functions with hard constraints.

Lastly, we comment on the applicability of the proposed multifidelity approach. Though

this chapter presents no formal convergence theory, and at best that theory will only apply

if many restrictive assumptions hold (for example, assumptions on smoothness, constraint

qualification, and always using a fully linear surrogate) our numerical experiments indicate

the robustness of the approach in application to a broader class of problems. For example,

the Cart3D CFD model employed in our case studies does not satisfy the Lipschitz continuity

requirements, due to finite convergence tolerances in determining the CFD solution; how-

ever, with the aid of the smooth calibrated surrogates combined with the trust-region model

management, our multifidelity method is successful in finding locally optimal solutions. An-

other example is a high-fidelity optimal solution for which constraint qualification conditions

are not satisfied. In the algorithms presented, the design vector iterate will approach a local

minimum and the sufficient decrease test for the change in the objective function value will
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fail. This causes the size of the trust region to decay to zero around the local minimum even

though the KKT conditions may not be satisfied.

In summary, this chapter has presented a multifidelity optimization algorithm that does

not require estimating gradients of high-fidelity functions, enables the use of multiple low-

fidelity models, enables optimization of functions with hard constraints, and exhibits robust-

ness over a broad class of optimization problems, even when non-smoothness is present in the

objective function and/or constraints. For airfoil design problems, this approach has been

shown to perform similarly in terms of the number of function evaluations to finite-difference-

based multifidelity optimization methods. This suggests that the multifidelity derivative-free

approach is a promising alternative for the wide range of problems where finite-difference

gradient approximations are unreliable.
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Chapter 4

Gradient-Exploiting Multifidelity

Optimization

Chapters 2 and 3 presented multifidelity optimization methods for the case when no high-

fidelity sensitivity information is available. There are however many cases in which the

gradients of expensive functions are available, for instance, analytically, through automatic

differentiation, adjoint methods, or finite-differences. This chapter develops a multifidelity

optimization algorithm based on an existing gradient-based multifidelity optimization frame-

work, but which includes a strategy for Bayesian model calibration that uses both the func-

tion value and the gradient of the high-fidelity function. The calibration is accomplished by

interpolating the high-fidelity function at points where the function value and gradient are

known within the vicinity of a trust-region, this enables the surrogate to be well-calibrated

to the high-fidelity function in a region of the design space and to construct the surrogate

model with little cost. The technique is compared with a single-fidelity sequential quadratic

programming method and a conventional first-order trust-region method on both a two-

dimensional structural optimization and an airfoil design problem. In both problems adjoint

formulations are used to provide inexpensive sensitivity information.

Section 4.1 of this chapter provides an overview of the trust-region algorithm, the fun-

damental ideas of Bayesian model calibration, and the technique developed to construct the

Cokriging surrogate. Section 4.2 demonstrates this algorithm on a 26-dimensional structural
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design problem and Section 4.3 demonstrates this method on an 11-dimensional airfoil design

problem.

4.1 Optimization Method

In this chapter we consider optimization problems where the high-fidelity function comes

from the solution of a partial differential equation or includes state variables. For example,

we may have a problem with a high-fidelity objective, Jhigh(x,u), with a vector u of l state

variables set by l residual or state equations Rhigh(x,u) = 0. In problems of this form we

write the optimization formulation as,

min
x∈Rn,u∈Rl

Jhigh(x,u) (4.1)

s.t. Rhigh(x,u) = 0

h(x) = 0

g(x) ≤ 0.

When considering problems of the form of Eq. 4.1 we can eliminate the state variables by

solving the residual equations. Thus, these systems can be written in the form of Eq. 3.1,

however, we now are now a setting in where inexpensive gradient estimates for fhigh(x),

h(x), and g(x) are available. In the following presentation of the multifidelity optimization

method the more general form of Eq. 3.1 is used.

4.1.1 Trust Region Method

To solve Eq. 3.1 when gradient information is available we may use any of the multifidelity

trust-region algorithms by Alexandrov [3, 5]. This chapter uses a modified form of sequen-

tial quadratic programming (SQP) approximation model management, which generates a

sequence of design iterates xk that converge to an optimum of the high-fidelity problem

Eq. 3.1. At each trust-region iteration we minimize a surrogate model mk(x) of the high-

fidelity function. We define the surrogate model using the additive error model presented in
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Eq. 2.2. The requirements for convergence of this algorithm are that, (i) at each trust-region

iteration the surrogate model satisfies first-order consistency requirements,

mk(xk) = fhigh(xk) (4.2)

∇mk(xk) = ∇fhigh(xk) (4.3)

and (ii) that there exists a constant κbhm <∞ that is an upper bound for the 2-norm of the

surrogate model Hessian [2, 31].

The trust-region algorithm uses the l1 penalty function,

Υ(x, µk) = fhigh(x) + µk‖h(x)‖1 + µk‖g+(x)‖1, (4.4)

where g+(x) is the inequality constraint violation and µk is a penalty parameter. In addition,

a surrogate penalty function, Υ̂(x, µk), which replaces the high-fidelity function value with

the surrogate model value, is needed for trust region updating,

Υ̂(x, µk) = mk(x) + µk‖h(x)‖1 + µk‖g+(x)‖1. (4.5)

The penalty parameter, µk, must be larger than the smallest Lagrange multiplier associated

with the optimality conditions for Eq. 3.1 which can only be estimated at the beginning of

the optimization [5].

From an initial design vector x0, trust-region size ∆0, and penalty µ0, the trust-region

iterates are generated by finding a step, sk, that minimizes the surrogate model subject to

linearized design constraints and trust-region constraint,

min
sk∈Rn

mk(xk + sk) (4.6)

s.t. ∇h(xk)
>sk + h(xk) = 0

∇g(xk)
>sk + g(xk) ≤ 0

‖sk‖∞ ≤ ∆k,
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or subject to the full design constraints and trust-region constraint,

min
sk∈Rn

mk(xk + sk) (4.7)

s.t. h(xk + sk) = 0

g(xk + sk) ≤ 0

‖sk‖∞ ≤ ∆k.

Eq. 4.6 is the general subproblem which allows for the current iterate to be infeasible and

for first-order consistent surrogate models of the constraints to be used. However, if the

constraints are inexpensive compared to the high-fidelity objective function and the current

iterate is feasible, Eq. 4.7 can speed finding the optimal high-fidelity design since the con-

straints are included explicitly in the trust region subproblem. After either subproblem has

been solved, the performance of the surrogate model is estimated with the parameter ρk,

which is the ratio of the actual improvement in the high-fidelity penalty function with the

improvement estimated by the surrogate penalty function,

ρk =
Υ(xk, µk)−Υ(xk + sk, µk)

Υ(xk, µk)− Υ̂(xk + sk, µk)
. (4.8)

The size of the trust region is updated based on the performance of the surrogate model. If

the surrogate model predicted the high-fidelity behavior well, the trust region is expanded, if

the prediction is poor the trust region is contracted. Specifically, we update the trust region

size according to,

∆k+1 =


min{γ1∆k,∆max} if ρk ≥ η1

γ0‖sk‖ if ρk ≤ η2

∆k otherwise,

(4.9)

where 0 < η2 < η1 < 1, γ0 < 1 and γ1 > 1. In addition we move the trust region if the step
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results in a decrease in the penalty function,

xk+1 =

xk + sk if Υ(xk + sk, µk) < Υ(xk, µk)

xk otherwise.

(4.10)

We then create a new surrogate model mk+1(x) on the new trust region {x : ‖x−xk+1‖∞ ≤

∆k+1}. If the optimality conditions are not sufficiently satisfied we repeat the algorithm.

In addition, if the size of the trust region becomes sufficiently small we also terminate the

algorithm. The trust-region algorithm is summarized as Algorithm 4.1.

4.1.2 Bayesian Model Calibration

In conventional trust-region algorithms the surrogate model for optimization is created by

correcting the low-fidelity model such that at the center of the trust-region the first-order

consistency requirements, Eqs. 4.2 and 4.3, are satisfied. Using the additive correction model,

Eq. 2.2, this would correspond to

ek(x) = fhigh(xk)− flow(xk) + [∇fhigh(xk)−∇flow(xk)]
> (x− xk) . (4.11)

In the trust-region framework presented in Section 4.1.1, this calibration approach is provably

convergent to a high-fidelity optimum. There are two possible drawbacks with this calibration

technique. The first drawback is that the calibration may only be first-order, which means

in the worst case the convergence rate could be linear and extremely slow, although we

note that quasi-second-order trust region calibration approaches have been proposed in the

literature [36]. The second drawback is that both the function value and gradient are known

at all previous design iterates encountered by the trust region algorithm and this information

is typically only used to approximate the Hessian, if at all.

The idea of Bayesian model calibration is to use all available information to estimate

unknown high-fidelity information. In the multifidelity setting, this translates to using all

previous information about the error between the high- and low-fidelity models to calibrate
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Algorithm 4.1: Iteration k of a Trust-Region Algorithm
0: Choose initial design vector x0, initial trust region size ∆0, initial penalty µ0, and

initial surrogate model m0(x) that satisfies Eqs. 4.2 and 4.3 at x0 (Algorithm 4.2 can
be used to create m0(x)).

1: Solve the trust-region subproblem using nonlinear programming techniques to find
the step, sk, that solves,

min
sk∈Rn

mk(xk + sk)

s.t. ∇h(xk)
>sk + h(xk) = 0

∇g(xk)
>sk + g(xk) ≤ 0

‖sk‖∞ ≤ ∆k.

or

min
sk∈Rn

mk(xk + sk)

s.t. h(xk + sk) = 0

g(xk + sk) ≤ 0

‖sk‖∞ ≤ ∆k.

2: Evaluate penalty functions Υ(xk + sk, µk) and Υ̂(xk + sk, µk).
3: Compute the ratio of actual improvement to predicted improvement,

ρk =
Υ(xk, µk)−Υ(xk + sk, µk)

Υ(xk, µk)− Υ̂(xk + sk, µk)
.

4: Update the trust region size according to ρk,

∆k+1 =


min{γ1∆k,∆max} if ρk ≥ η1

γ0‖sk‖ if ρk ≤ η2

∆k otherwise.

5: Accept or reject the trial point,

xk+1 =

{
xk + sk if Υ(xk + sk, µk) < Υ(xk, µk)

xk otherwise.

6: Create a new surrogate model mk+1(x) that satisfies Eqs. 4.2 and 4.3 using Algorithm
4.2 on the trust-region {x : ‖x− xk+1‖∞ ≤ ∆k+1} .

7: Check for convergence. If the solution is not optimal and the trust-region size is
sufficient, return to step 1.
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Algorithm 4.2: Procedure to generate a Cokriging model
0: Select initial calibration point at xk and initial correlation vector ξ.
1: Randomly order all high-fidelity sample points within ‖x− xk‖ ≤ θ1∆k.
2: Maximize the likelihood function of the Cokriging model using an optimization al-

gorithm that is robust to non-smoothness, such as a pattern-search or simulated
annealing.
2a: For a given ξ, test each high-fidelity sample point in the order chosen in step 1

to see if after adding that point to the Cokriging model the eigenvalues of RC

with smallest absolute value and the largest absolute value satisfy, |Λ1| ≥ θ2

and |Λq(n+1)| ≤ θ3|Λ1|. If the conditions are satisfied, add that calibration
point (up to user set maximum, qmax calibration points), if the conditions are
not satisfied reject that calibration point.

2b: Compute the likelihood of the Cokriging model, Θ, using Eq. 4.19.
3: If more than one calibration point is in the Cokriging model, compute R−1

C and
ψC using the maximum likelihood correlation vector, ξ. Otherwise use the additive
correction given in Eq. 4.11.

the low-fidelity model. The calibrated model provides an estimate of the new design that

has the largest high-fidelity improvement. However, the amount of high-fidelity information

collected during an optimization is likely too much to use when creating a surrogate model

that will only be used for one trust-region iteration. Therefore, the next section addresses

how high-fidelity information is selected for a calibration procedure that guarantees conver-

gence to a high-fidelity optimum and limits the computational effort required to construct a

surrogate model.

4.1.3 Cokriging

The Cokriging Bayesian model calibration technique is demonstrated in Figure 4-1. The

figure shows that at all calibration points the surrogate model exactly interpolates the high-

fidelity function and it has the same gradient as the high-fidelity function. The Cokriging

model also estimates the uncertainty in its prediction using a maximum likelihood variance

estimate. It can be observed that the uncertainty in the Cokriging estimates are zero at all

calibration points and increase with distance away from the calibration points. There are two

Cokriging formulations, direct [24, 42], and indirect [61, 67]. The former augments a Kriging

model with analytical gradients and the latter adds additional sample points to a Kriging fit
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such that the Cokriging model interpolates points replicating a Taylor series. This chapter

uses the direct Cokriging formulation. We first summarize the Cokriging method, then we

present the requirements for convergence in a trust-region framework, and we finally present

our method to construct Cokriging models that satisfies both the convergence requirements

of a trust-region algorithm and limits the computational effort required to construct the

surrogate models.

Figure 4-1: Demonstration of a Cokriging surrogate model for the simple univariate function
fhigh(x) = x2.

Kriging methods come from the field of Geostatistics and have the underlying assumption

that function values from nearby samples are correlated [75]. The correlation function we

use is an anisotropic Gaussian,

φ(xi,xj) = exp

[
−

n∑
p=1

ξ(p)
(
x

(p)
i − x

(p)
j

)2
]
, (4.12)

where the correlation between points xi and xj, φ(xi,xj), has n spatial tuning parameters,

ξ(p) for each design variable x(p). The tuning parameters are estimated using a Bayesian
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maximum likelihood estimator.

A Cokriging model uses q calibration points in Rn to generate a correlation vector with

length q(1 + n),

Φ(x) =
[
φ(x,x1), . . . , φ(x,xq),∇φ(x,x1)>, . . . ,∇φ(x,xq)

>
]>
, (4.13)

where all derivatives of φ(x,xj) are with respect to x. In addition, we need to define the

Cokriging correlation matrix that describes the influence of each calibration point on the

other calibration points,

RC =



q︷ ︸︸ ︷
φ(x1,x1). . .φ(x1,xq)

...
. . .

...

φ(xq,x1). . .φ(xq,xq)

∣∣∣∣∣∣∣∣∣∣∣∣

n× q︷ ︸︸ ︷
∇φ(x1,x1)>. . .∇φ(x1,xq)

>

...
. . .

...

∇φ(xq,x1)>. . .∇φ(xq,xq)
>

 q

∇φ(x1,x1). . .∇φ(x1,xq)
...

. . .
...

∇φ(xq,x1). . .∇φ(xq,xq)

∣∣∣∣∣∣∣∣∣∣∣∣
∇2φ(x1,x1). . .∇2φ(x1,xq)

...
. . .

...

∇2φ(xq,x1). . .∇2φ(xq,xq)


n

×

q



(4.14)

where all first and second derivatives of φ(·, ·) are with respect to the first variable. Using

the correlation vector and correlation matrix we can interpolate the values in the vector,

yC = [fhigh(x1)− flow(x1), . . . , fhigh(xq)− flow(xq), (4.15)

∇fhigh(x1)−∇flow(x1), . . . ,∇fhigh(xq)−∇flow(xq)]
>

by defining the vector of ones and zeros,

zC =
[
1q,0q·n

]>
(4.16)
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and a generalized least-squares constant term,

ψC =
(
z>CR−1

C zC
)−1

z>CR−1
C yC . (4.17)

This leads to a final Cokriging error model that has the form,

ek(x) = ψC + Φ(x)>R−1
C (yC − zCψC) . (4.18)

To estimate the spatial correlation parameters ξ we maximize the likelihood function,

Θ, which is the probability of observing these data if these data had been generated by a

Gaussian process [24, 93]. The likelihood is only a function of the observed data and the

correlation parameters ξ. Ignoring the contribution of the gradient to the likelihood, the

partial likelihood only depends on the Kriging portion of the Cokriging model, so R
(1:q×1:q)
c

indicates that only the first q terms of the Cokriging vectors are used,

Θ = −
q ln σ̂2 + ln

∣∣∣R(1:q×1:q)
c

∣∣∣
2

. (4.19)

Where σ̂2 maximizes the Kriging portion of the likelihood function, Eq. 4.19, [100]

σ̂2 =

(
y

(1:q)
C − 1qψ

)> (
R

(1:q×1:q)
c

)−1 (
y

(1:q)
C − 1qψ

)
q

, (4.20)

and

ψ =
(

[1q]>
(
R(1:q×1:q)
c

)−1
1q
)−1

[1q]>
(
R(1:q×1:q)
c

)−1
y

(1:q)
C . (4.21)

To use a Cokriging model within a trust-region algorithm we must ensure the first-order

consistency requirements, Eqs. 4.2 and 4.3, are satisfied, and that the norm of the Cokriging

Hessian is bounded. The first-order consistency requirements are satisfied provided the

current trust-region iterate, xk, is a calibration point and that RC is not ill-conditioned. To

satisfy the requirement that the Hessian of the surrogate model has bounded norm, we first

assume that both the high- and low-fidelity functions have bounded Hessian norms for all x.
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What must follow is that the Hessian of ek(x) has bounded norm, or equivalently the Hessian

of Φ(x)>R−1
C (yC − zCψC) has bounded norm. The vector (yC − zCψC) has bounded norm

by virtue of assumptions on the high- and low-fidelity function. Furthermore, it can be

shown by differentiating the correlation function in Eq. 4.12 four times that the maximum

absolute value of any second derivative term for the first q components of Φ(x)> is less than

maxp 2ξ(p), and the maximum absolute value of any second derivative term for the remaining

qn components is less than maxp 3.904
(
ξ(p)
)3/2

. Therefore, using properties of the 2-norm

and ∞-norm, we can establish that the 2-norm of the Hessian of Φ(x)>1 is bounded by

[q(1 + n)]3/2 max
{

maxp 2ξ(p),maxp 3.904
(
ξ(p)
)3/2
}

. Now, provided ‖R−1
C ‖2 is bounded, we

have ensured that the 2-norm of the Cokriging model Hessian is bounded. We address both

this criterion and the conditioning of RC during the construction of the Cokriging model.

To construct the Cokriging model, we want to limit the number of calibration points

so the size of RC remains tractable to invert repeatedly. Therefore, we set a maximum

number of calibration points that we may use, qmax. In addition, because the trust-region

algorithm only requires accuracy within the trust-region we only want to include points in the

calibration that will affect the shape of the surrogate model within the trust region. So we

allow a user-set distance parameter, θ1, that controls the extent to which the Cokriging model

calibrates locally as opposed to globally. Specifically, any point at which the high-fidelity

function value and gradient are known that is located within ‖x − xk‖ ≤ θ1∆k, θ1 > 0 is a

candidate calibration point. The first-step in constructing the Cokriging model is to select

an initial vector of correlation parameters ξ0 and to select xk as the initial calibration point.

We then randomly order all candidate calibration points.

To find the Cokriging model with the maximum likelihood correlation parameters and

that satisfies all trust-region requirements, we use a greedy approach. We add any candidate

calibration point to the Cokriging model provided that we remain able to bound the condition

number of RC and to bound ‖R−1
C ‖2. These two criteria are satisfied if the eigenvalue of RC

with the smallest absolute value, |Λ1|, is greater than a constant, θ2 > 0, and the eigenvalue

with the greatest absolute value, Λq(n+1), is less than or equal to θ3|Λ1|, for a constant

θ3 > 1. This means the parameter θ3 represents the maximum allowable condition number
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for the correlation matrix. The upper limit for θ3 depends on the numerical precision and

inversion algorithm used. After all the candidate points have been tested or qmax points

have been selected, the likelihood of the Cokriging model, Θ is computed. A pattern-search

algorithm is used to find the correlation vector, ξ, giving the Cokriging model with the

maximum likelihood. An optimization algorithm that is not highly sensitive to non-smooth

functions must be used because for each correlation vector considered the calibration points

used may vary. This means that the likelihood function will likely have non-smooth features.

A summary of the procedure to generate Cokriging models is presented as Algorithm 4.2.

Table 4.1 lists the parameter values used for the sample problems presented in the next two

sections.

Parameter Description value
qmax Maximum calibration points 10
∆0 Initial trust region size max{5, ‖x0‖∞}
∆max Maximum trust region size 20
∆min Minimum trust region size 10−6

γ0 Trust region contraction ratio 0.5
γ1 Trust region expansion ratio 2
ε Termination tolerances 1× 10−4

η1 Trust-region expansion criteria 0.75
η2 Trust-region contraction criteria 0.25
θ1 Trust-region neighborhood size 103

θ2 Min. eigenvalue 10−9

θ3 Max. condition number 108

Max. pattern-search iterations 10n

Table 4.1: Values of the optimization parameters used.

4.2 Structural Design Problem

Typical structural design problems have deflection or stress requirements with low-weight as

an objective or additional constraint. As an example problem we minimize the deflection of

a two-dimensional hook subjected to a bearing load and maximum weight constraint. This

objective function is linear in the state variables, however, a nonlinear objective will not

change the derivation. In the finite element formulation used, the state variables are nodal
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displacements, u, and our objective function can be written as

Jhigh(x,u) = C(x)u, (4.22)

where C(x) is an output matrix that only depends on the twenty-six design variables rep-

resenting the geometry of the hook, x, and not the state variables. In lieu of computing

displacements the output matrix could easily be modified to compute element stresses using

Hooke’s Law. The equations of state are obtained using a Ritz finite element formulation to

minimize the potential energy of the system, and in discretized form are

Rhigh(x,u) = K(x)u− f = 0, (4.23)

where K(x) is the stiffness matrix and f is the vector of applied nodal forces. The formal

structural optimization problem to minimize the deflection of the hook subjected to a bearing

load is,

min
x∈R26,u∈Rl

C(x)u (4.24)

s.t. K(x)u− f = 0

w(x)− wmax ≤ 0

g(x) ≤ 0,

where w(x) is the weight of the structure, wmax is the maximum allowable weight, and

g(x) ≤ 0 represents 31 constraints ensuring geometric feasibility of the hook — positive

thickness and clearance to apply the bearing load.

To use our multifidelity optimization method, we combine our objective function Jhigh(x,u)

and state equations Rhigh(x,u) = 0 into a single function of the design variables fhigh(x)

that is the value of our objective function after the state equations have been satisfied. To

compute the gradient of fhigh(x), we solve the adjoint equation,

∂Jhigh

∂u
= Ψ>

∂Rhigh

∂u
, (4.25)
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for the adjoint variables, Ψ. For this structural optimization problem the adjoint equation

is,

K>(x)Ψ(x) = C>(x). (4.26)

The gradient of our objective function with respect to the design variables can be written

as,

dJhigh

dx
=
∂Jhigh

∂x
+
∂Jhigh

∂u

∂u

∂x
(4.27)

and similarly, the gradient of the equations of state with respect to the design variables can

be written,

dRhigh

dx
=
∂Rhigh

∂x
+
∂Rhigh

∂u

∂u

∂x
= 0. (4.28)

Substituting Eqs. 4.25 and 4.28 into Eq. 4.27, we obtain the gradient of our objective function

with the state equations satisfied as

dfhigh

dx
=
∂Jhigh

∂x
−Ψ>

∂Rhigh

∂x
, (4.29)

or for this structural optimization problem,

dfhigh

dx
=

(
∂C(x)

∂x
−Ψ>(x)

∂K(x)

∂x

)
u(x). (4.30)

The objective function being linear in u(x) is a simplification, and a typical problem will

likely be to minimize the maximum stress in the material. Although maximum stress is a

non-smooth objective, Kreisselmeier−Steinhauser functions could be used to lump element

stresses into a single smooth maximum stress objective [72, 73, 87], or a high-norm, such as

‖·‖8, could be used to smoothly approximate the maximum stress [115]. Using these functions

as objectives does not alter the derivation of the gradient, provided the chain rule is used

in computing the derivatives. In the general case, this adjoint-based gradient calculation
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requires only two forward solves, or one inversion, of the stiffness matrix to compute the

gradient of the objective, regardless of the number of design variables. By comparison, the

method of direct sensitivities requires evaluation of the term ∂K−1(x)
∂x

, and finite difference

approximations require at least n + 1, where n is the number of design variables, function

evaluations.

To find the optimal hook design, we use both high- and low-fidelity finite element models

of the hook. The two models are shown in Figure 4-2, the high-fidelity model has a state

vector with 1770 degrees of freedom (dof) and the low-fidelity model has a state vector with

276 dof. For the optimal hook design, the coarse discretization of the low-fidelity model

Figure 4-2: Comparison of the high- and low-fidelity structural models. Both models have
the same 26 design variables.

leads to a 31.6% lower deflection estimate than the high-fidelity model. In addition, for

this hook design, Figure 4-3 shows that the two models predict significantly different stress

distributions.

Table 4.2 shows that using this coarsely discretized low-fidelity model, the conventional
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SQP First-Order TR Calibration
Mean 232 (-) 40 (-83%) 27.5 (-88%)
Std. Dev. 171 12.7 10.2

Table 4.2: The average number of high-fidelity function evaluations to minimize the deflection
of a hook subjected to a bearing load from random initial geometries. The numbers in
parentheses indicate the percentage reduction in high-fidelity function evaluations relative
to SQP.

first-order consistent trust-region and our Bayesian calibration approach are able to signifi-

cantly reduce the number of high-fidelity function calls compared with a single-fidelity SQP

method. In addition, the Bayesian model calibration approach reduces the number of high-

fidelity function calls by 31% compared with the conventional first-order consistent trust

region method. We note that when the geometry of the hook is physically infeasible, it is

possible that the stiffness matrix is nearly singular and in these cases the gradient computed

using the adjoint approach is inaccurate. Accordingly, our strategy is to not use the gradient

for calibration at previously visited designs sites where the geometry was infeasible.

Figure 4-3: Comparison of the stress estimated by the high- and low-fidelity structural
models shown on the deformed hook, the deformation is scaled by a factor of 123.5. The
deflection at the midpoint of the bearing load application estimated by the two models differs
by 31.6%.
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To analyze the total computational effort required to solve this structural design problem

using a multifidelity method in lieu of a single-fidelity scheme, we consider the total effort

of the optimization. As a reference, a general purpose structural finite element solver, Nas-

tran, uses a conjugate gradient method with an incomplete Cholesky factorization precondi-

tioner to solve the linear finite-element system. So the effort for a forward solve scales with

O(dof2) [110]. Using this scaling, the forward solution for the high-fidelity structural model

is about 41 times as costly as the forward solution for the low-fidelity structural model. In

addition, a conservative estimate on the number of low-fidelity function calls used to find the

optimal high-fidelity hook design is approximately 3, 200. The computational effort for these

low-fidelity solves is equivalent to about 80 high-fidelity forward solves. Therefore the total

effort of the multifidelity approach is equivalent to approximately 110 high-fidelity forward

solves, and for comparison the single-fidelity SQP optimization required 232 high-fidelity

evaluations. Therefore, excluding the cost of constructing the surrogate models the multi-

fidelity approaches correspond to about a 50% decrease in computational effort compared

with a single-fidelity approach.

4.3 Aerodynamic Design Problem

Aerodynamic design is a computationally expensive process because high-fidelity compu-

tational fluid dynamics (CFD) must repeatedly solve nonlinear governing equations for a

large number of degrees of freedom. This section presents an adjoint-based formulation for

an aerodynamic design problem described by a CFD model and then presents results of a

multifidelity supersonic airfoil design problem.

To minimize the drag of a supersonic airfoil we formulate an optimization problem in

the form given in Eq. 4.1. Jhigh(x,u) is the surface integral of pressure acting in the flow

direction, Rhigh(x,u) = 0 represents the discretized Euler equations, and g(x) ≤ 0 comprises

two constraints on the airfoil geometry. The state variables u are the primal flow variables

for all of the control volumes in a finite volume discretization of the governing equations.

In order to use the multifidelity optimization technique presented, we need to compute the
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gradient of Jhigh(x,u) with respect to the design variables x given that Rhigh(x,u) = 0. We

start by writing the gradient of Jhigh(x,u),

dJhigh

dx
=
∂Jhigh

∂x
+
∂Jhigh

∂M

∂M

∂x
+
∂Jhigh

∂u

∂u

∂x
, (4.31)

where M(x) represents the dependence of each nodal vertex in the volume mesh on the

design vector. For this analysis, a meshing tool was developed that created a volume mesh

around the airfoil with an analytical derivative. Accordingly, for any airfoil that could be

generated with the parameterization used, the volume mesh and mesh derivative were known

a priori.

Since the flow residual must always be zero for a converged solution we know that,

dRhigh

dx
=
∂Rhigh

∂x
+
∂Rhigh

∂M

∂M

∂x
+
∂Rhigh

∂u

∂u

∂x
= 0. (4.32)

Therefore, combing Eqs. 4.31 and 4.32 with the adjoint equation, Eq. 4.25, we may write

the gradient of an objective function with the state equations satisfied as

dfhigh

dx
=
∂Jhigh

∂x
+
∂Jhigh

∂M

∂M

∂x
−Ψ>

(
∂Rhigh

∂x
+
∂Rhigh

∂M

∂M

∂x

)
. (4.33)

This reformulation shows how to convert the constrained objective function into an objective

function from which the state variables have been eliminated through the solution of the

residual equations. Accordingly, the gradient
dfhigh
dx

represents the gradient of drag with

respect to the design variables given that the discretized Euler equations are satisfied. For

further discussion see Jameson [49] or Nemec et al. [82]. The computational effort required to

compute this gradient requires one flow solution, one adjoint solution, one flow iteration per

design variable (about 1/500 the effort of a flow solution), and the matrix multiplications

shown above. Therefore, the gradient of the objective with respect to all of the design

variables requires the computational effort of about 2 flow solutions plus n/500 flow solutions,

where n is the number of design variables. For comparison, a finite difference gradient

estimate requires at least n+1 flow solutions, so this is a considerable savings and shows the
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cost of the gradient estimate using an adjoint solution is almost independent of the number

of design variables.

In addition to the Euler equations as the high-fidelity method, we use a panel method

as a low-fidelity analysis. A supersonic panel method can be derived from supersonic small-

disturbance theory, and is only a function of the airfoil geometry, the freestream Mach

number, M∞, and the gas specific heat ratio. In small disturbance theory, the change in the

pressure coefficient, δCp is proportional, to the flow turning angle δϑ,

δCp =
−2δϑ√
M2
∞ − 1

, (4.34)

and by integrating the pressure coefficient around the airfoil surface the wave drag can be

easily estimated [66]. Since the drag coefficient is only a function of the freestream Mach

number and airfoil geometry, the analytical derivative of drag coefficient with respect to the

airfoil shape design parameters is easy to compute.

The airfoil optimization problem is to minimize the drag of an airfoil at M∞ = 1.5,

by changing the angle of attack, five upper surface spline points, and five lower surface

spline points. The airfoil is required to have positive thickness everywhere, and to have a

maximum thickness to chord ratio that is at least five percent. Figure 4-4 shows the optimal

airfoil and spline control points for the panel method. Figure 4-5 shows the optimal airfoil

pressure contours and adjoint solution for the streamwise momentum from the Euler method

solutions.

Table 4.3 presents the number of high-fidelity function calls to find the minimum drag

airfoil with respect to the Euler code. The results show that the conventional first-order

consistent trust-region and the Bayesian model calibration approach reduce the number of

high-fidelity function calls by nearly the same amount, about 80%. In addition, because the

low-fidelity model is computationally very inexpensive, and the dimension of the parameter

space is small, this is nearly a 70% reduction in wall-clock time. However, it should be noted

that the conventional trust-region approach does use on average fewer high-fidelity function

calls than the Bayesian calibration method for the ten random initial airfoils.

121



Figure 4-4: Minimum drag airfoil computed with the supersonic panel method showing the
spline control points.

SQP First-Order TR Calibration
Mean 81.5 (-) 12.9 (-84%) 14.7 (-82%)
Std. Dev. 14.0 2.86 4.19

Table 4.3: The average number of high-fidelity function evaluations to minimize the drag of
a supersonic airfoil with respect to an Euler solution using a panel method as a low-fidelity
estimate. The numbers in parentheses indicate the percentage reduction in high-fidelity
function evaluations relative to SQP.

The same optimization problem is solved using the same methods, but without any low-

fidelity information. The results of this optimization using flow(x) = 0 as the low-fidelity

function are presented in Table 4.4. In this case the Bayesian model calibration approach

performed noticeably better than the conventional trust-region method. The results suggest

that when using a “good” low-fidelity model, the Bayesian calibration approach is not neces-

sary and the computational effort of constructing the Cokriging surrogates is not worthwhile.

However, when the low-fidelity function is poor, or when the error between the high- and

low-fidelity function behaves in a highly non-linear fashion, then the Bayesian calibration

approach may provide a computational savings for low-dimensional optimization problems.

A possible performance issue that affects Bayesian calibration approach significantly more

than the conventional trust-region approach is when high-fidelity gradients are computed in-
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SQP First-Order TR Calibration
Mean 81.5 (-) 91.1 (+12%) 64.2 (-21%)
Std. Dev. 14.0 61.2 21.8

Table 4.4: The average number of high-fidelity function evaluations to minimize the drag
of a supersonic airfoil with respect to an Euler solution. No low-fidelity information is
used. The numbers in parentheses indicate the percentage reduction in high-fidelity function
evaluations relative to SQP.

accurately. The calibration approach reuses high-fidelity gradient information, so incorrect

gradient information will propagate into the surrogate models generated at future trust-

region iterations. In contrast, the conventional approach only uses the high-fidelity gradient

to create a single surrogate model so the approach is likely less affected by inaccurate gradient

information.

(a) Optimal airfoil pressure solution. (b) Optimal airfoil adjoint solution.

Figure 4-5: Minimum drag supersonic airfoil parameterized by 5 upper surface spline points,
5 lower surface spline points, and angle of attack.

4.4 Summary

This chapter has presented a multifidelity optimization algorithm using Cokriging-based

Bayesian model calibration that is provably convergent to an optimum of the original high-

fidelity optimization problem. Inexpensive derivative information was obtained through
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adjoint solutions for both structural design and aerodynamic shape optimization problems.

The derivative estimates and function values from previously visited design sites are used

to calibrate the low-fidelity model to the high-fidelity function. Using this strategy, the op-

timization algorithm is likely to quickly find an optimum of the high-fidelity function. The

sample results show that for poor low-fidelity models the Bayesian calibration exceeds perfor-

mance of conventional trust-region algorithms; however, for cases with good low-fidelity mod-

els the performance of the two algorithms is similar. However, the multifidelity approaches

still significantly outperform single-fidelity sequential quadratic programming methods. The

calibration technique developed is recommended for low-dimensional optimization problems

where the quality of the low-fidelity model is unknown or known to be poor in certain

portions of the design space.

This algorithm complements the work in Chapters 2 and 3, in that although a first-

order consistent calibration strategy satisfies the requirement for a fully linear calibration,

an optimization algorithm based on a fully linear calibration does not take advantage of

gradient information. The algorithm in this chapter attempts to truly exploit gradient

information to find the optimal design as quickly as possible by efficiently using available

gradient information. This strategy still supports the use of multiple lower-fidelity models

through the filtering technique presented in Section 2.5, and both fully linear and first-order

consistent surrogates can be combined with that technique.
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Chapter 5

Multidisciplinary and Multifidelity

Optimization

Chapters 2, 3, and 4 presented techniques for multifidelity optimization and demonstrated

how to accelerate finding optimal designs using computationally expensive simulations. This

chapter considers the case of designing a system with multiple interacting disciplines or sub-

systems, and focuses on the case where each is modeled with an expensive high-fidelity

simulation. The challenge of optimizing multidisciplinary systems is two-fold. First, it is

necessary to resolve the coupling between all disciplines in order to find a feasible design, one

where the inputs and outputs from communicating disciplines match, and second, it is nec-

essary to analyze the trade-offs among all disciplines in order to find an optimal design. For

systems where each discipline analysis is a high-fidelity simulation, multifidelity optimization

alone may be insufficient to make designing an optimal system tractable. Therefore, this

chapter develops multidisciplinary optimization methods that enable multifidelity optimiza-

tion at the discipline level and that enable the design and analysis of each subsystem to be

conducted in parallel.

This chapter will first formulate a multidisciplinary optimization problem in Section 5.1.

It then presents two multidisciplinary and multifidelity optimization methods. The first

method uses an Individual Discipline Feasible (IDF) approach, which decomposes the system

optimization problem into a collection of smaller discipline-level optimization problems that
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may be conducted in parallel. The IDF approach is presented in Section 5.2. The second

MDO optimization method is based on an All-At-Once (AAO) formulation, though it is in

actuality just a gradient-free method for solving equality constrained optimization problems.

The AAO approach is presented in Section 5.3. The two approaches are compared with some

baseline methods on two analytical test problems in Section 5.4. This chapter concludes with

Section 5.5 which contains a discussion about these methods, their applications, and possible

extensions.

5.1 Problem Formulation

We consider a system design problem comprising m disciplines or subystems. Each discipline

produces a response that is a function of both the system design and the output of the other

disciplines. The response of a discipline may be thought of as the coupling between the

disciplines. For example, the ith discipline has a response, ri = ri(x, r1,...,m\i,ui(x, r1,...,m\i)),

that is a function of the n-dimensional system design vector, x, the responses of all other

disciplines, r1,...,m\i, and the discipline state variables, ui(x, r1,...,m\i). The vector r without

superscript is the vector of all ri, r = [(r1)>, (r2)>, . . . , (rm)>]>, and has length v. To find

a multidisciplinary feasible design, an iterative solution scheme is typically required to find

the set of state variables and discipline responses that enable a feasible coupling among all

disciplines. This iterative solve is typically called a multidisciplinary analysis (MDA).

When optimizing a multidisciplinary system using a multidisciplinary feasible (MDF)

formulation, the first step in evaluating the performance of a given design vector, x, is

the MDA, to calculate the state and coupling variables that satisfy the multidisciplinary

feasibility [34, 111]. In this case, we may write an MDF optimization problem as

min
x∈Rn

F(x, r(x)) (5.1a)

s.t. G(x, r(x)) ≤ 0 (5.1b)

H(x, r(x)) = 0, (5.1c)
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(a) Block diagram for an MDF framework.

(b) Block diagram for a decoupled framework like IDF.

Figure 5-1: Block diagram for a system with, (a), and without, (b), interdisciplinary com-
munication.

where we are minimizing a scalar objective function, F(x, r(x)), subject to inequality con-

straints, G(x, r(x)) ≤ 0, and equality constraints, H(x, r(x)) = 0. In the MDF formula-

tion we have omitted the dependence of the discipline responses on the state variables and

other discipline responses since they are satisfied by construction (i.e., each discipline per-

forms an internal iteration to satisfy its state constraints, Ri(x, r1,...,m\i,ui(x, r1,...,m\i)) = 0).

This formulation is presented schematically as Figure 5-1(a). Each time the system per-

formance, F(x, r(x)), is evaluated an iterative solution process amongst the disciplines has

been undertaken to satisfy feasibility. Some challenges with a MDF framework are that if

finite-differences are necessary to generate sensitivity information, then an iterative solve

is necessary for each perturbed component of x. In addition, an MDF formulation only

supports multifidelity optimization and parallelization at the system level, evaluating per-

formance of multiple complete system designs at the same time. To parallelize the system

optimization we develop two alternative formulations of (5.1). The first decomposes the large

system optimization problem into a collection of smaller subsystem optimization problems,
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as shown in Figure 5-2(a). This framework is presented in Section 5.2. The other evalu-

ates all computationally expensive functions in parallel, as shown in Figure 5-2(b). This

framework is presented in Section 5.3.

(a) Parallel discipline optimizations.

(b) Parallel discipline evaluations.

Figure 5-2: Block diagram for optimizing a system with parallel discipline optimizations,
(a), and with parallel discipline evaluations, (b). It may also be possible in both frame-
works to evaluate multiple design sites of the same discipline in parallel during the discipline
optimizations or during the discipline surrogate creation.
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5.2 Parallel Discipline Optimizations

This section presents a method to solve a large system optimization problem by decomposing

it into a collection of smaller optimization problems that can be solved in parallel. The

framework develops a novel IDF formulation for (5.1), which is different from the formulations

proposed by Cramer et al. [34] in that it is a bilevel programming problem. Standard

bilevel programming solution methods, for example see [11, 25, 26, 29, 35], can be used to

solve the optimization problem. However, solving bilevel programming problems is typically

quite difficult, so although the discipline-level optimizations are fully parallelizable, finding

solutions in the general case maybe nearly impossible. See [11, 35] for discussion, but some

key difficulties in the general nonconvex case are that each subproblem may have multiple

solutions, adding inactive constraints may change the solutions, and inequality constraints

make finding solutions a combinatorial problem. Therefore, we develop an approach based on

the Alternating Direction Method of Multipliers (ADMM) which can be viewed as a Gauss-

Seidel iteration over the design variables, see [14, 17, 43, 46]. The bilevel IDF formulation

is presented in Section 5.2.1, the ADMM method to solve the IDF formulation is presented

in Section 5.2.2, and supporting theory for the method is presented in Section 5.2.3. A

summary of the algorithm is presented as Algorithm 5.1.

5.2.1 Parallel Individual Discipline Feasible Formulation

To solve (5.1) using parallel discipline optimizations we relax the requirement that the sys-

tem is multidisciplinary feasible. This means the input/output mapping between disci-

plines/subsystems does not have to be satisfied until termination of the optimization. This

is now an IDF formulation. The formulation is achieved by creating a vector of discipline

targets, t = [(t1)>, (t2)>, . . . , (tm)>]>, where ti has the same dimension as ri, and making

the discipline responses a function of the design variables and targets as opposed to the

other discipline responses. In an IDF formulation, the discipline state equations and all

other constraints that are contained within a discipline are satisfied locally by solving the

discipline state equations. Only the coupling between the disciplines is relaxed during the
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optimization. An IDF formulation is shown schematically in Figure 5-1(b). The advantage

of the IDF formulation over the MDF formulation is the elimination of the iterative solve to

resolve coupling among disciplines.

In this thesis, we develop a new IDF formulation to enable parallelized design. We

introduce m vectors, x̃i, i = 1, . . . ,m, which are discipline-level copies of the system design

vector, x. We define each discipline response, ri(x̃i, t1,...,m\i), to be only a function of its

own copy of the system design vector and target variables for the other disciplines (we have

again omitted the dependence of the discipline responses on the state variables as they are

satisfied by construction). Thus, the discipline responses may be optimized independently

of all the other disciplines. The form of the IDF problem used in this thesis is,

min
x∈Rn,t∈Rv

F(x, t) (5.2a)

s.t. G(x, t) ≤ 0 (5.2b)

H(x, t) = 0 (5.2c)

ri(x̃i, t1,...,m\i) = ti, i = 1, . . . ,m (5.2d)

x = x̃i, i = 1, . . . ,m (5.2e)

where

x̃i = arg min
x̃∈Rn

1

2
‖ri(x̃, t1,...,m\i)− ti‖2

2, i = 1, . . . ,m, (5.2f)

which is different from conventional IDF formulations [34] in that it is a bilevel programming

problem. The subsystem optimizations over x̃i, (5.2f), occur in parallel, and the constraints

that the discipline outputs equal their targets, (5.2d), and that all of the design vector

copies are equal to the system design vector, (5.2e), are at the system level. The system-

level constraints are likely difficult to satisfy, so Section 5.2.2 offers a highly parallelizable

solution technique for (5.2) based on the ADMM, shown in Figure 5-2(a).
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The scheme uses an augmented Lagrangian defined as,

L(x, t, x̃,ν,λ,µ, µ̃) = F(x, t)+ (5.3)
m∑
i

[
(λi)>

(
ri(x̃i, t)− ti

)
+
µ(i)

2

∥∥ri(x̃i, t)− ti
∥∥2

+ (νi)>
(
x− x̃i

)
+
µ̃(i)

2
‖x− x̃i‖2

2

]
,

where λ, ν are Lagrange multipliers and µ, µ̃ ∈ Rm are penalty parameters. The vector,

λ = [(λ1)>, (λ2)>, . . . , (λm)>]>, where each λi has one element for each response of dis-

cipline i. The vector, ν = [(ν1)>, (ν2)>, . . . , (νm)>]>, where each νi has length n. The

constraints, G(x, t) ≤ 0 and H(x, t) = 0, are not included in the augmented Lagrangian as

they are handled explicitly in the formulation. The ADMM updates the design variables in

alternating directions, i.e., it updates x, then x̃i, then t. After all the updates have been

computed the Lagrange multiplier estimates and penalty parameters are updated. This pro-

cedure is iterated until the variables become stationary, when a solution to Eq. 5.2 is found.

The algorithm is presented in Section 5.2.2, and a theoretical foundation is presented in

Section 5.2.3.

5.2.2 IDF Algorithm

At an iteration k with given variables xk, tk, x̃
i
k, Lagrange multiplier estimates λk,νk, and

penalty parameters, µk, µ̃k, we first minimize the augmented Lagrangian over the design

variables, x. This optimization does not include any subsystem performance estimates; all

communication between the subsystem analyses comes through the target variables, design

variable copies, and Lagrange multipliers. The optimization problem is,

xk+1 = argmin
x∈Rn
F(x, tk) +

m∑
i

[
(νik)

> (x− x̃ik
)

+
µ̃

(i)
k

2
‖x− x̃ik‖2

2

]
(5.4)

s.t. G(x, tk) ≤ 0

H(x, tk) = 0,
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where the system level constraints, G(x, tk) ≤ 0,H(x, tk) = 0, are enforced during this

minimization. The second step is to update the copies of the design vector x that are used

within the disciplines, x̃i. This is accomplished by minimizing the augmented Lagrangian

with the updated values of the design variables, xk+1, incorporated,

x̃ik+1 = arg min
x̃i∈Rn

(λik)
> (ri(x̃i, tk)− tik

)
+
µ

(i)
k

2

∥∥ri(x̃i, tk)− tik
∥∥2

+

(νik)
> (xk+1 − x̃i

)
+
µ̃

(i)
k

2
‖xk+1 − x̃i‖2

2. (5.5)

The minimization for each x̃i can be solved concurrently. Each discipline is completely

decoupled from the other disciplines; the discipline objective is a weighted combination of

how close the discipline-level performance is to the target and how close the discipline-level

design is to the system-level design. Upon completion of the local design variable updates,

the subsystem responses, ri(x̃ik+1, tk), are evaluated.

With updated system and subsystem designs, the discipline-level performance targets are

all updated. This is again accomplished by minimizing the augmented Lagrangian with the

updated system-level design and updated subsystem-level designs subject to the system-level

constraints,

tk+1 = argmin
t∈Rv
F(xk+1, t) +

m∑
i

[
(λik)

> (ri(x̃ik+1, t)− ti
)

+
µ

(i)
k

2

∥∥ri(x̃ik+1, t)− ti
∥∥2

]
(5.6)

s.t. G(xk+1, t) ≤ 0

H(xk+1, t) = 0.

An important point is that the subsystem response, though a function of the targets, is not

updated during this optimization. The Lagrange multiplier estimates are then updated with

the standard first-order scheme,

λik+1 = λik + µ
(i)
k

(
ri(x̃ik+1, tk)− tik+1

)
, (5.7)

νik+1 = νik + µ̃
(i)
k (xk+1 − x̃ik+1). (5.8)

132



To update the penalty parameters, a strategy discussed in [12] is used. The target-response

penalty parameters are updated by,

µ
(i)
k+1 =

γµ
(i)
k if‖ri(x̃ik+1, tk)− tik+1‖ > η‖ri(x̃ik, tk−1)− tik‖

µ
(i)
k otherwise

(5.9)

and the system-subsystem design penalty parameters are updated by,

µ̃
(i)
k+1 =

γµ̃
(i)
k if‖xk+1 − x̃ik+1‖ > η‖xk − x̃ik‖

µ̃
(i)
k otherwise,

(5.10)

where η ∈ (0, 1), γ > 1 are parameters with suggested values η = 0.75, γ = 5. An imple-

mentation of the algorithm is presented as Algorithm 5.1.

This bilevel programming formulation offers an advantage over many other multidisci-

plinary optimization methods, since each discipline can be optimized using any appropriate

optimization technique. This enables exploitation of aspects of the individual disciplines that

may speed the discipline-level optimizations, for example, the ability to use gradient-based

optimization, gradient-free optimization or multifidelity optimization.

5.2.3 Parallel Discipline Optimizations Supporting Theory

In practice Algorithm 5.1 has been observed to converge reasonably quickly to an optimal

multidisciplinary system design. This section provides theory to support the observed be-

havior of the algorithm. It also discusses the restrictive assumptions necessary to analyze

the convergence behavior and application of Algorithm 5.1 to a broader class of optimization

problems where the assumptions do not hold. There are two mechanisms by which Algorithm

5.1 solves optimization problems, (1) asymptotically exact minimization in the method of

multipliers, and (2) the quadratic penalty function. The reason for the two mechanisms is

the penalty updating scheme, which ensures either (a) the constraint violation goes to zero

and the penalty parameters remain finite or (b) the penalty parameter grows without bound.
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Algorithm 5.1: Parallel Individual Discipline Feasible Algorithm
0: Choose, x0, t0, x̃

i
0, and Lagrange multiplier estimates λ0,ν0. Choose initial penalty

parameters, µ, µ̃ ∈ Rm > 0, penalty update criterion, η ∈ (0, 1), and penalty growth
factor, γ > 1. (Recommended values are given in Table 5.1.)

1: Update the system-level design variables by solving,

xk+1 = argmin
x∈Rn
F(x, tk) +

m∑
i

[
(νik)

> (x− x̃ik
)

+
µ̃

(i)
k

2
‖x− x̃ik‖2

2

]
s.t. G(x, tk) ≤ 0

H(x, tk) = 0.

2: Update the discipline-level design variables copies by solving,

x̃ik+1 = arg min
x̃i∈Rn

(λik)
> (ri(x̃i, tk)− tik

)
+
µ

(i)
k

2

∥∥ri(x̃i, tk)− tik
∥∥2

+

(νik)
> (xk+1 − x̃i

)
+
µ̃

(i)
k

2
‖xk+1 − x̃i‖2

2.

2a: Evaluate ri(x̃ik+1, tk).
3: Update the system-level discipline targets by solving,

tk+1 = argmin
t∈Rv
F(xk+1, t) +

m∑
i

[
(λik)

> (ri(x̃ik+1, t)− ti
)

+
µ

(i)
k

2

∥∥ri(x̃ik+1, t)− ti
∥∥2

]
s.t. G(xk+1, t) ≤ 0

H(xk+1, t) = 0.

4: Update the Lagrange multiplier estimates by evaluating,

λik+1 = λik + µ
(i)
k

(
ri(x̃ik+1, tk)− tik+1

)
,

νik+1 = νik + µ̃
(i)
k (xk+1 − x̃ik+1).

5: Update the target-response penalty parameters,

µ
(i)
k+1 =

{
γµ

(i)
k if‖ri(x̃ik+1, tk)− tik+1‖ > η‖ri(x̃ik, tk−1)− tik‖

µ
(i)
k otherwise.

6: Update the system design penalty parameters,

µ̃
(i)
k+1 =

{
γµ̃

(i)
k if‖xk+1 − x̃ik+1‖ > η‖xk − x̃ik‖

µ̃
(i)
k otherwise.

7: Check for convergence, if all of the controllable variables are station-
ary, ‖xk − xk+1‖ ≤ ε, ‖x̃ik+1 − x̃ik‖ ≤ ε, ‖tk+1 − tk‖ ≤ ε, ‖λk+1 − λk+1‖ ≤ ε and
‖νk+1 − νk‖ ≤ ε, then the method has converged. Otherwise, increment k and go
to step 1.
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The former case, (a), corresponds to asymptotically exact minimization in the method of

multipliers, and the latter case, (b), corresponds to a quadratic penalty function.

To simplify the analysis we treat the target and response for each discipline as a scalar

and use a single scalar penalty parameter, µ. The scalar penalty parameter update is,

µk+1 =

γµk if‖qk+1‖2 ≥ η‖qk‖2

µk otherwise,

(5.11)

where the feasibility measure

qk =
[
(r(x̃k, tk−1)− tk)

> , ‖xk − x̃1
k‖, . . . , ‖xk − x̃mk ‖

]>
. (5.12)

In addition, we use z> = [x>, t>], and z̄> = [x>, t>, x̃>], where x̃ without a discipline index

denotes a column vector of all the x̃i’s, x̃ = [(x̃1)>, (x̃2)>, . . . , (x̃m)>]>. The assumptions

used in this section are:

IDF1. All functions in Eq. 5.2 are twice continuously differentiable and have finite upper

bounds for the 2-norm of their gradients and Hessians. (This condition implies that

the functions have Lipschitz continuous first derivatives.)

IDF2. The algorithm starts sufficiently close to an optimal design, z̄∗. This includes the

initial Lagrange multipliers, the initial design vector, and the initial subsystem de-

signs. Further, this optimum is a regular point at which the second order optimality

conditions hold strictly, and the initial penalty value is sufficiently large such that

the augmented Lagrangian is convex.1

IDF3. Subproblem optimizations are solved exactly.

IDF4. The Lagrange multiplier estimates remain bounded for all k.

IDF5. ∇x̃ix̃iL(xk+1, tk, x̃
i,νk,λk, µk) is positive definite for all k. (We will discuss the

implications of this assumption.)

1The second order optimality condition is sufficient to ensure existence of such a penalty value [83,
Theorem 17.5].
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Asymptotically Exact Minimization in the Method of Multipliers

Following [12, Section 2.2], there exists a sufficiently large value of µ, say µ̂, and an open

sphere around all strict local optima of Eq. 5.2 which are regular points and satisfy the second

order sufficient conditions for optimality, in which the augmented Lagrangian, Eq. 5.3, is

convex [83, Theorem 17.5]. The convergence proof of asymptotically exact minimization

in the method of multipliers states when started in the convex region of the augmented

Lagrangian near an optimal solution, z̄∗, if the augmented Lagrangian remains convex and

at each iteration the design variables are updated such that ‖∇z̄L(z̄k+1,νk,λk, µk)‖ ≤ τk,

where limk→∞ τk = 0, then limk→∞ z̄k = z̄∗ [12, Section 2.5].

The essential reason the convergence proof of the asymptotically exact method of multi-

pliers does not apply directly to our IDF algorithm is that the IDF algorithm updates the

design variables along alternating directions. After each iteration of Algorithm 5.1, we have

that,

∇xL(xk+1, tk, x̃
i
k,νk,λk, µk) = 0

∇x̃iL(xk+1, tk, x̃
i
k+1,νk,λk, µk) = 0

∇tL(xk+1, tk+1, x̃
i
k+1,νk,λk, µk) = 0,

but we desire,

∇xL(xk+1, tk+1, x̃
i
k+1,νk,λk, µk) = 0

∇x̃iL(xk+1, tk+1, x̃
i
k+1,νk,λk, µk) = 0

∇tL(xk+1, tk+1, x̃
i
k+1,νk,λk, µk) = 0.

However, in case (a) where limk→∞ ‖qk‖ = 0 and limk→∞ µk ∈ (0,∞), the mean value theo-

rem and IDF1 tell us there exist positive constants, κx̃ and κt, such that ‖∇z̄L(z̄k+1,νk,λk, µk)‖ ≤

κx̃‖x̃k+1 − x̃k‖µk + κt‖tk+1 − tk‖µk = τk, where limk→∞ τk = 0. Therefore, we now address

the convexity hypothesis.

To show the objective functions used to compute the updates in Algorithm 5.1 are convex,
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we show that the Hessians are positive definite. The Hessian for the t update, Eq. 5.6, is

∇ttL(xk+1, t, x̃
i
k+1,νk,λk, µk) = ∇ttF(xk+1, t) + µkI, (5.13)

which is positive definite for all tk sufficiently close to t∗ and all k if it is positive definite

for k = 0.2 In addition, the Hessian for the x update, Eq. 5.4, is

∇xxL(x, tk, x̃
i
k,νk,λk, µk) = ∇xxF(x, tk) +

m∑
i=1

µkI, (5.16)

which like the Hessian for the t update is positive definite for all xk sufficiently close to x∗

and for all k if it is positive definite for k = 0.

The convexity issues arise in the Hessians for the x̃i updates, Eq. 5.5,

∇x̃ix̃iL(xk+1, tk, x̃
i,νk,λk, µk) =

[
λik + µk(r

i(x̃i, tk)− tik)
]
∇x̃ix̃iri(x̃i, tk)+ (5.17)

µk
∂ri(x̃i, tk)

∂x̃i
∂ri(x̃i, tk)

∂x̃i

>

+ µkI.

The convexity of this update, IDF5, can breakdown in practice, and we will discuss ways to

mitigate this concern in Section 5.2.3.

2Note because ri(x̃i
k+1, tk) is fixed in Eq. 5.6, the gradient with respect to t is

∇tL(xk+1, tk+1, x̃
i
k+1,νk,λk, µk) =

∂F(xk+1, tk+1)

∂t
− (5.14)

m∑
i=1

[
λike

i + µk(ri(x̃i
k+1, tk)− tik+1)ei

]
.

However, in the actual system problem ri(x̃i
k+1, t) changes and the actual system gradient with respect to t

should be

∇tL(xk+1, tk+1, x̃
i
k+1,νk,λk, µk) =

∂F(xk+1, tk+1)

∂t
+ (5.15)

m∑
i=1

[
λik
∂ri(x̃i

k+1, tk+1)

∂t
− λikei + µk(ri(x̃i

k+1, tk+1)− tik+1)

(
∂ri(x̃i

k+1, tk+1)

∂t
− ei

)]
.

Fixing t at the system level makes the system-level optimization problem more convex, however, it causes
the terminal value of λ∗ to be different from the true Lagrange multipliers for Eq. 5.2.
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Quadratic Penalty Function Driven Convergence

In case (b), where we have that limk→∞ µk = ∞, convergence of our IDF algorithm is

caused by the quadratic penalty function. Under IDF1, the sequence of iterates generated

by minimizing a quadratic penalty function terminates at a point minimizing the 2-norm

of the constraint violation or if the constraints are linearly independent at the terminal

point then the iterates terminate at a KKT point [83, Theorem 17.2]. This means that the

IDF algorithm will converge to a locally optimal solution, z̄∗, if the constraints are linearly

independent everywhere in the domain or if like asymptotically exact minimization in the

method of multipliers the algorithm starts sufficiently close to locally optimal solution and

always finds the optimal solution within the interior of the level set at z̄k.

Consider the optimality conditions achieved in Algorithm 5.1, for the t update, Eq. 5.6,

0 = ∇tL(xk+1, tk+1, x̃
i
k+1,νk,λk, µk) =

∂F(xk+1, tk+1)

∂t
− (5.18)

m∑
i=1

[
λike

i + µk(r
i(x̃ik+1, tk)− tik+1)ei

]
,

for the x̃i updates, Eq. 5.5,

0 = ∇x̃iL(xk+1, tk, x̃
i
k+1,νk,λk, µk) =

[
λik + µk(r

i(x̃ik+1, tk)− tik)
] ∂ri(x̃ik+1, tk)

∂x̃i
(5.19)

−νik − µk(xk+1 − x̃ik+1),

and for the x update, Eq. 5.4,

0 = ∇xL(xk+1, tk, x̃
i
k,νk,λk, µk) =

∂F(xk+1, tk)

∂x
+

m∑
i=1

[
νik + µk(xk+1 − x̃ik)

]
. (5.20)
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When these optimality conditions are written with all of the penalized terms on one side,

1

µk

[
∂F(xk+1, tk+1)

∂t
−

m∑
i=1

λike
i

]
=

m∑
i=1

(ri(x̃ik+1, tk)− tik+1)ei

1

µk

[
λik
∂ri(x̃ik+1, tk)

∂x̃i
− νik

]
= −(ri(x̃ik+1, tk)− tik)

∂ri(x̃ik+1, tk)

∂x̃i
+ (xk+1 − x̃ik+1)

1

µk

[
∂F(xk+1, tk)

∂x
+

m∑
i=1

νik

]
= −

m∑
i=1

(xk+1 − x̃ik),

we see that with bounded Lagrange multiplier estimates, IDF4, and linearly independent

constraint qualification, that z̄∗ is feasible, i.e. that limk→∞ ‖qk‖ = 0. In addition, combining

the optimality conditions Eqs. 5.18, 5.19 and 5.20 with the Lagrange multiplier updates, Eqs.

5.7 and 5.8, we see that when ‖qk‖ → 0,

∂F(xk+1, tk+1)

∂ti
= λik+1[

λik+1 + µk(t
i
k+1 − tik)

] ∂ri(x̃ik+1, tk)

∂x̃i
= νik+1

∂F(xk+1, tk)

∂x
= −

m∑
i=1

[
νik+1 + µk(x̃

i
k+1 − x̃ik)

]
,

that the Lagrange multiplier estimates converge. Therefore, under a set of restrictive as-

sumptions, this section has provided theory to support the observed convergence behavior

of Algorithm 5.1.

Discussion of Assumptions

We now assess the practical limitations of the assumptions that (i) the Lagrange multiplier

estimates remain bounded and (ii) the augmented Lagrangian is convex in x̃i for all iterations.

In practice (ii) should enforce (i), but a proof of that is intricate. With µk > µ̂ the terms in

∇x̃ix̃iL(xk+1, tk, x̃
i,νk,λk, µk), Eq. 5.17, are all guaranteed to be positive definite except for

[
λik + µk(r

i(x̃i, tk)− tik)
]
∇x̃ix̃iri(x̃i, tk). (5.21)
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So the convexity requirement implies that this term needs to either be positive definite or

small compared to the other terms in Eq. 5.17. The convexity requirement is certain if

ri(x̃i, tk) is linear, or when x̃ik, tk and λik are sufficiently close to the optimal solutions. A

practical limitation is that increasing µk too quickly or large updates in λik can violate the

convexity requirement. It is informative to consider this term written as

[
λik+1 + µk(t

i
k − tik+1)

]
∇x̃ix̃iri(x̃i, tk). (5.22)

So, if ∇x̃ix̃iri(x̃i, tk) is not positive definite (or if it is positive definite but the coefficient in

front is negative) and µk →∞ faster than ‖tk − tk+1‖ → 0 the convexity requirement may

be violated. A first solution is to perform cycles of Eqs. 5.6, 5.5, and 5.4 without updating

the Lagrange multipliers or penalty parameter. If at each iteration a stationary point of

the augmented Lagrangian is found, the stricter convergence result of [12, Proposition 2.4],

will hold. Another potential solution to maintain the convexity requirement is to use a slow

growth rate for µk, which unfortunately is unknown a priori. So, if convergence difficulties

occur, it should be assumed the discipline performance metrics have large curvature and the

growth rate of µk, γ, should be lowered or additional cycles of Eqs. 5.6, 5.5, and 5.4 should

be used without changing either the penalty parameter or Lagrange multiplier estimates.

5.3 Parallel Function Evaluations

The method developed in this section is a parallelized method for solving multidisciplinary

system design optimization problems that enables multiple fidelity levels and does not require

high-fidelity gradient-information. The optimization problem solved is an objective function

subject to a vector of equality constraints, so this algorithm is applicable to general equality

constrained optimization problems in addition to system design problems.

The concept behind this optimization method (as shown in Figure 5-2(b)) is to create

surrogate models of all expensive functions in an optimization problem in parallel, and to

solve inexpensive surrogate-based optimization problems. The surrogate models used are at

least fully linear, satisfying Eqs. 2.7 and 2.8. This means that first-order consistent surro-
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gates and inexpensive original functions can be included in the surrogate-based optimization

if that is desired to speed finding an optimal solution. The fully linear models are all con-

structed in parallel, and the design sites used to create the surrogates may also be evaluated

in parallel. The surrogate-based optimization strategy is a composite-step trust-region al-

gorithm based on the Celis-Dennis-Tapia (CDT) trust-region algorithm [21] and the filter

method of Fletcher and Leyffer [40]. Section 5.3.1 presents an alternative formulation of

the system design problem, (5.1), that can be solved by evaluating expensive functions in

parallel. Section 5.3.2 presents the trust-region algorithm to solve the design problem in

parallel, and Section 5.3.3 presents theory supporting the method. Additional details of the

theory are left to Appendix A. An implementation of the algorithm is presented as Algo-

rithm 5.2. Section 5.3.4 presents the changes to Algorithm 5.2 necessary when all surrogate

models are first-order consistent or better, and an overview of the gradient-exploiting version

of Algorithm 5.2 is presented as Algorithm 5.3.

5.3.1 Parallel All-At-Once Formulation

To solve (5.1) using parallel function evaluations we relax both the multidisciplinary fea-

sibility and also the discipline-level feasibility. This formulation is often referred to as an

All-At-Once (AAO) formulation because the optimizer handles all of the constraints. In Fig-

ure 5-1(b) this corresponds to allowing the constraints within disciplines, i.e., discipline-level

state equations, Ri(x, t1,...,m\i,ui(x, r1,...,m\i)) = 0, to be violated during the optimization in

addition to the interdisciplinary coupling relaxations in the IDF formulation. The All-At-

Once (AAO) formulation used in this thesis is an equality constrained optimization problem,

min
x∈Rn,t∈Rv ,u∈Rl,p∈Rq

F(x, t) (5.23)

s.t. G(x, t) + p2 = 0

H(x, t) = 0

ri(x, t1,...,m\i,ui(x, r1,...,m\i))− ti = 0, ∀i = 1, . . . ,m

Ri(x, t1,...,m\i,ui(x, r1,...,m\i)) = 0, ∀i = 1, . . . ,m

141



where p is a vector of slack variables and p2 denotes squaring each element of p. To solve

this optimization problem in parallel we create surrogate models of all expensive functions by

evaluating them at many locations concurrently. This corresponds to Schnabel’s first method

of parallelizing an optimization, evaluating the functions at many locations simultaneously

[102], and is shown in Figure 5-2(b). The method to solve (5.23) by parallel construction of

gradient-free surrogate models is presented in Section 5.3.2.

5.3.2 AAO Trust-Region Algorithm

To present this algorithm we consider the generic equality constrained optimization problem,

min
x
F(x) (5.24)

s.t. H(x) = 0.

The AAO optimization problem, (5.23), can easily be written in this standard form, with x

now representing the composite vector of design variables, targets, state variables, and slack

variables, and F(x) and H(x) being defined appropriately.

The AAO trust-region algorithm decouples the constrained optimization into two parts,

first a normal step, s⊥k , that decreases the constraint violation, and second, a tangential

step, s
‖
k, that decreases the objective function value while maintaining some of the constraint

violation reduction from the normal step.3 The trust-region update step is accordingly the

sum of the normal and tangential steps, sk = s⊥k + s
‖
k. The trust region step is accepted if

the pair (F(xk + sk), ‖H(xk + sk)‖) is Pareto dominant compared with all previous iterates

xk, and rejected otherwise. We will refer to the fully linear surrogate model at an iteration

k for F(x) as F̄k(x), and the fully linear surrogates for H(x) as H̄k(x).

The first step of the algorithm is to find a normal step that reduces the constraint

violation. To do this we compute a step minimizing the 2-norm of the constraint violation

3The terms normal and tangential do not imply that the steps are orthogonal [31, Page 658].
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using the surrogate models,

min
s⊥k

1

2
‖H̄k(xk + s⊥k )‖2

2 (5.25)

s.t. ‖s⊥k ‖ ≤ ∆k.

We require that the normal step satisfies a condition slightly stricter than the fraction of

Cauchy decrease condition, therefore the solution to Eq. 5.25 must satisfy,

‖H̄k(xk)‖2
2 − ‖H̄k(xk + s⊥k )‖2

2 ≥ κamm−H
[
‖H̄k(xk)‖2

2 − ‖H̄k(xk + s⊥∗k )‖2
2

]
(5.26)

for a constant κamm−H ∈ (0, 1], where s⊥∗k is the exact solution to Eq. 5.25. An immediate

consequence of Eq. 5.26 is the fraction of Cauchy decrease condition,

‖H̄k(xk)‖2
2 − ‖H̄k(xk + s⊥k )‖2

2 ≥ (5.27)

2κfcd‖∇H̄(xk)
>H̄(xk)‖min

{
∆k,

‖∇H̄(xk)>H̄(xk)‖
‖∇H̄(xk)>∇H̄(xk)+

∑m
i=1 h̄

i
k(xk)∇2h̄ik(xk)‖

}
,

where h̄ik(x) is the ith fully linear surrogate model of H̄k(x) and κfcd ∈ (0, 1), [31, Theorem

6.3.5].

After computing the normal step to reduce the constraint violation we seek a tangential

step that reduces the objective function value without giving up all of the progress achieved

towards feasibility. To find the tangential step, s
‖
k, we solve a trust-region problem that

is based on the Celis-Dennis-Tapia trust-region algorithm [21]. We require at the complete

step, normal plus tangential, that the fraction of Cauchy decrease condition for the constraint

violation is still satisfied. Therefore, we define an additional constant, η ∈ (0, 1), in order to

require ‖H̄k(xk + s⊥k + s
‖
k)‖2

2 ≤ ‖H̄k(xk)‖2
2− η

(
‖H̄k(xk)‖2

2 − ‖H̄k(xk + s⊥k )‖2
2

)
. The constant,

η, can be considered the weighting placed on whether the optimizer focuses on maintaining

the constraint violation reduction, η ∼ 1, or reducing the objective function, η ∼ 0; however,

regardless of the value chosen, the algorithm will converge to a feasible point that minimizes
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the objective function. This tangential step trust-region subproblem is now,

min
s
‖
k

F̄k(xk + s⊥k + s
‖
k) (5.28)

s.t. ‖H̄k(xk + s⊥k + s
‖
k)‖

2
2 ≤ ‖H̄k(xk)‖2

2 − η
(
‖H̄k(xk)‖2

2 − ‖H̄k(xk + s⊥k )‖2
2

)
‖s⊥k + s

‖
k‖ ≤ ∆k.

An alternative tangential step trust region subproblem, which is easier to compute, is

based on the Gauss-Newton approximation. The Gauss-Newton normal step using the sur-

rogate models of the constraints, s̃⊥k , is computed as

min
s̃⊥k

1

2
‖∇H̄k(xk)s̃

⊥
k + H̄k(xk)‖2

2 (5.29)

s.t. ‖s̃⊥k ‖ ≤ ∆k.

The value of the Gauss-Newton step is that the fraction of Cauchy decrease is the same for

it as for (5.25) when the trust region is small. The fraction of Cauchy decrease requirement

for (5.29) is

bk(0)− bk(s̃⊥k ) ≥ κfcd‖∇H̄(xk)
>H̄(xk)‖min

{
∆k,

‖∇H̄(xk)>H̄(xk)‖
‖∇H̄(xk)>∇H̄(xk)‖

}
, (5.30)

where the merit function is

bk(s
⊥) =

1

2
‖∇H̄k(xk)s

⊥ + H̄k(xk)‖2
2 (5.31)

=
1

2
H̄k(xk)

>H̄k(xk) +
(
s⊥
)>∇H̄k(xk)

>H̄k(xk) +
1

2

(
s⊥
)>∇H̄k(xk)

>∇H̄k(xk)s
⊥.

This slightly weaker fraction of Cauchy decrease condition is significantly less computation-

ally expensive than the fraction of Cauchy decrease requirement in Eq. 5.27. The alternative
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tangential step calculation is,

min
s
‖
k

F̄k(xk + s⊥k + s
‖
k) (5.32)

s.t. bk(s
⊥
k + s

‖
k) ≤ bk(0)− η[bk(0)− bk(s⊥k )]

‖s⊥k + s
‖
k‖ ≤ ∆k.

For whichever tangential step trust region problem is used, we require that the tangential

step optimization be solved such that,

F̄k(xk + s⊥k )− F̄k(xk + s⊥k + s
‖
k) ≥ κamm−F

[
F̄k(xk + s⊥k )− F̄k(xk + s⊥k + s

‖∗
k )
]
, (5.33)

where s
‖∗
k is the exact solution to either Eq. 5.32 or Eq. 5.28, and κamm−F is a constant in

(2/(2 +
√

1− η2), 1).

The step acceptance and trust-region update criterion for this algorithm are a filter

based on [40], and enhancements from [39, 41]. The filter uses ideas from multiobjective

optimization and considers reducing the objective F(x) and constraint violation ‖H(x)‖ as

two goals of the optimization. The filter stores the Pareto front of pairs (F(xk), ‖H(xk)‖),

and a trust-region step xk + sk is acceptable to the filter if it is not dominated by a previous

iterate, i.e., it will appear on the filter Pareto front. The filter algorithm also requires a

sufficient decrease condition so filter points cannot be arbitrarily close. Therefore a point

xk + sk is non-dominated and acceptable for the filter if for all xk visited (xk̂, k̂ = 0, . . . , k),

F(xk + sk) ≤ F(xk̂)− β∆̂2
k or ‖H(xk + sk)‖ ≤ ‖H(xk̂)‖ − β∆̂2

k‖H(xk̂)‖, (5.34)

∀k̂ ≤ k,

for a constant β ∈ (0, 1
2
) and where ∆̂k = min{∆k, 1}. We typically initiate the filter with the

point (−∞, ‖H(x0)‖) in lieu of (F(x0), ‖H(x0)‖) to ensure the constraint violation remains

bounded. The points acceptable to the filter are shown graphically in Figure 5-3. If a point

is acceptable to the filter, it is added to the filter and any previous points in the filter that
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are then dominated are removed.

Figure 5-3: Graphic of points acceptable to the filter.

The trust region updates are all based on the whether or not a trial point is acceptable to

the filter. If the trial point xk+sk is acceptable to the filter, then the design vector is updated,

xk+1 = xk + sk, but if it is not acceptable the step, sk, is rejected. Similarly, if the step is

accepted the size of the trust region is increased so that ∆k+1 = min{γ1∆k,∆max} and if the

step is rejected the size of the trust region is decreased so that ∆k+1 = γ0∆k with γ1 > 1 and

γ0 ∈ (0, 1). F̄(x) and H̄(x) are then updated to be fully linear on ‖x− xk+1‖ ≤ ∆k+1. We

require that the surrogate models have the correct value at xk+1, i.e. H(xk+1) = H̄(xk+1) and

F(xk+1) = F̄k+1(xk+1). The surrogate models for each constraint are all created concurrently.

Moreover, if no designs have been evaluated in the vicinity of the current trust region, then

construction of a fully linear model requires n + 1 designs to be evaluated. All of these

designs may also be evaluated concurrently.

To establish optimality of xk and terminate the algorithm, it is necessary to verify that

both the constraint violation and the projection of the objective function gradient onto the

nullspace of the constraint Jacobian are sufficiently small. In the general gradient-free case,

the second condition cannot be verified directly. Therefore, we require three criteria to

terminate the algorithm, (1) ‖H(xk)‖ ≤ ε, (2) ‖P̄k∇F̄k(xk)‖ ≤ ε, and (3) ∆k ≤ ε, where

P̄k = I −∇H̄k(xk)
> (∇H̄k(xk)∇H̄k(xk)

>)−1∇H̄k(xk). (5.35)

Using fully linear surrogate models, conditions (2) and (3) are equivalent to the projection of
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the objective function gradient onto the nullspace of the constraint Jacobian being sufficiently

small [38]. The complete trust-region algorithm is summarized as Algorithm 5.2.

5.3.3 AAO Trust-Region Algorithm Supporting Theory

In practice we observe that Algorithm 5.2 is able to find optimal solutions to (5.24) without

using gradients of either the objective function or constraints. This section develops some

theory to support the observed behavior of Algorithm 5.2. The explanation is separated into

four parts, we first discuss (i) the constraint violation reduction obtained at each iteration,

and then discuss (ii) the interaction between the constraint violation and the trust region size

caused by the filter. We then switch to the objective function and discuss (iii) the reduction

in the objective function obtained at each iteration when the constraint violation is small,

and conclude by showing (iv) that the filter acceptance criteria ensures that Algorithm 5.2

will asymptotically approach an optimal solution to (5.24). Details of the analysis are left to

Appendix A. We also use four assumptions in this section and for shorthand refer to them

by number.

Assumptions:

AAO1. All functions in Eq. 5.24 are twice continuously differentiable and have finite upper

bounds for the 2-norm of their gradients and Hessians. (This condition implies that

the functions have Lipschitz continuous first derivatives.)

AAO2. The sequence of iterates {xk} lies in a compact convex domain Ω.

AAO3. F(x) is bounded within Ω.

AAO4. ∇H(xk) has full row rank for all k. Specifically, there exists κτ > 0 such that

for any p 6= 0, min ‖∇H(xk)
>p‖/‖p‖ > κτ . Therefore, if ‖H(xk)‖ > 0, then

‖∇H(xk)
>H(xk)‖ = %(xk) > κτ‖H(xk)‖.
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Algorithm 5.2: Gradient-free AAO Trust-Region Algorithm
0: Choose, x0,∆0,∆max, η, β, and tolerance ε. (Recommended values are given in Ta-

ble 5.2.) Set the initial filter to {(−∞, ‖H(x0)‖)}. Create F̄0(x) and H̄0(x) to be
fully linear models of F(x) and H(x) on ‖x−x0‖ ≤ ∆0, and ensure H(x0) = H̄0(x0),
F(x0) = F̄0(x0).

1: Compute the normal step, s⊥k , to reduce the constraint violation by solving,

min
s⊥k

1

2
‖H̄k(xk + s⊥k )‖2

2

s.t. ‖s⊥k ‖ ≤ ∆k.

2: Compute the tangential step, s
‖
k, to reduce the objective function while maintaining

sufficient decrease in the constraint violation by solving,

min
s
‖
k

F̄k(xk + s⊥k + s
‖
k)

s.t. ‖H̄k(xk + s⊥k + s
‖
k)‖

2
2 ≤ ‖H̄k(xk)‖2

2 − η
(
‖H̄k(xk)‖2

2 − ‖H̄k(xk + s⊥k )‖2
2

)
‖s⊥k + s

‖
k‖ ≤ ∆k.

3: Where sk = s⊥k + s
‖
k, evaluate F(xk + sk) and H(xk + sk).

4: Check if the pair (F(xk+sk), ‖H(xk+sk)‖), is non-dominated and therefore acceptable
to the filter, i.e. if

F(xk + sk) ≤ F(xk̂)− β∆̂2
k or ‖H(xk + sk)‖ ≤ ‖H(xk̂)‖ − β∆̂2

k‖H(xk̂)‖, k̂ = 0, . . . , k.

5: Update the trust region based on whether or not xk + sk is acceptable,

(xk+1,∆k+1) =

{
xk + sk, min{2∆k,∆max} if acceptable

xk, γ0∆k otherwise.

5a: If xk + sk is accepted, add (F(xk + sk), ‖H(xk + sk)‖) to the filter and remove
all dominated entries.

5b: Create F̄k+1(x) and H̄k+1(x) fully linear on ‖x − xk+1‖ ≤ ∆k+1, and ensure
H(xk+1) = H̄k+1(xk+1), F(xk+1) = F̄k+1(xk+1) .

6: If ‖H(xk+1)‖ ≤ ε, P̄k+1∇F̄k+1(xk+1) ≤ ε and ∆k ≤ ε the algorithm has converged,
otherwise go to step 1.
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Constraint Violation Decrease

In this section we demonstrate that the squared constraint violation decreases proportionally

to the trust region size for each iteration of Algorithm 5.2 when the trust region is sufficiently

small. From AAO1 and AAO4, if the constraint violation is non-zero there exists a positive

constant, %(xk), such that ‖∇H(xk)
>H(xk)‖ = %(xk) > 0. This fact enables us to bound

the error between the surrogate quantity used in Eqs. 5.27 and 5.30, ‖∇H̄k(xk)
>H(xk)‖,

and the high-fidelity counterpart, ∇H(xk)
>H(xk). (Note: H̄(xk) = H(xk) by construction.)

Accordingly, by the definition of a fully linear model, for each ∆k sufficiently small, say

∆k ∈ (0, δ2(xk)), δ2(xk) > 0, the steps computed by Algorithm 5.2 ensure

‖H(xk)‖2 − ‖H(xk + sk)‖2 ≥ ηκfcd∆k%(xk). (5.36)

This means that the steps generated by Algorithm 5.2 decrease the squared constraint viola-

tion proportionally to the size of the trust region when the trust region size is small enough.

For details of this analysis see Appendix A.1. We now demonstrate this decrease must also

be accepted by the filter for small ∆k.

Constraint Violation and Filter

Figure 5-4 shows a schematic of a filter with four accepted iterates with four areas labeled,

each representing the minimal possible additional area that must be enclosed by the filter

if an iterate is accepted in that interval. As an example, area 2 represents the minimal

additional area the filter will gain if an iterate is accepted between (F(x1), ‖H(x1)‖) and

(F(x2), ‖H(x2)‖). The dimension of this minimal additional area is β∆2
k×β∆2

k‖H(x1)‖. This

holds for all intervals except for the final, between (F(x3), ‖H(x3)‖) and (F(xmax), 0)—area

4. On this interval the reduction in the constraint violation must be at least β∆2
k‖H(x3)‖.

The fact that the area enclosed by the filter increases every time an iterate is accepted, but

the total area the filter may enclose is bounded by properties of (5.24) establishes that

lim
k→∞
‖H(xk)‖∆k = 0. (5.37)
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Figure 5-4: Minimum size of possible areas that will be dominated due to acceptance of
another iterate by the filter.

Accordingly, if an infinite number of iterates are accepted by the filter then either the con-

straint violation or trust region size must go to zero. Details of this analysis are presented

in Appendix A.2.

Using this property of the filter acceptance criteria, we now demonstrate that for each

xk ∈ Ω there is a minimum size of the trust region for which the filter accepts a nearby point

with lower constraint violation. The filter accepts any step provided that

‖H(xk + sk)‖ ≤ (1− β∆̂2
k)‖H(xk)‖. Meanwhile, Eq. 5.36 demonstrated that for each ∆k ∈

(0, δ2(xk)),

‖H(xk + sk)‖ ≤ ‖H(xk)‖

√
1− ηκfcd∆k%(xk)

‖H(xk)‖2
. (5.38)

Therefore, if
√

1− ηκfcd∆k%(xk)

‖H(xk)‖2 ≤ 1−β∆̂2
k, then xk + sk is acceptable to the filter, xk+1 6= xk

and ∆k+1 > ∆k. As both the left and right sides of the inequality are less than one, we

can establish that xk + sk is accepted by the filter when
ηκfcd%(xk)

‖H(xk)‖2 ≥ 2β∆k − β2∆3
k. As the

positive real root(s) of

∆k

(
1− β

2
∆2
k

)
=

ηκfcdκτ
2β‖H(xk)‖

are between
√

2 and +∞, each ∆k ∈ (0,min{δ2(xk),
√

2}) ensures xk + sk is acceptable to
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the filter and that ∆k+1 > ∆k. The result is that the constraint violation of the sequence of

iterates generated by Algorithm 5.2 goes to zero.

Objective Function Decrease

We now demonstrate that when the constraint violation and the trust region size are small,

then each step of Algorithm 5.2 decreases the objective function value proportionally to the

size of the trust region. To demonstrate this we consider sk projected in the range-space and

nullspace of the surrogate constraint Jacobian. In Appendix A.3, we demonstrate that there

exists an ε such that when ‖H(xk)‖ < ε and ∆k is sufficiently small, then

F̄k(xk)− F̄k(xk + sk) ≥ κfcd2‖P̄k∇F̄k(xk)‖∆k. (5.39)

We define the projection onto the nullspace of the constraint Jacobian as,

Pk = I −∇H(xk)
> (∇H(xk)∇H(xk)

>)−1∇H(xk). (5.40)

By bounding the error ‖Pk∇F(xk) − P̄k∇F̄(xk)‖, we are able to show that for small ∆k,

Eq. 5.39 ensures that

F(xk)−F(xk + sk) ≥
κfcd2

2
‖Pk∇F(xk)‖∆k. (5.41)

This shows that for ‖H(xk)‖ < ε, then each ∆k sufficiently small decreases the objective

function proportionally to the projection of the objective gradient onto the nullspace of the

constraint Jacobian and the trust region size. Complete details of this analysis are presented

in Appendix A.3.

Objective Function and Filter

We now show that the objective function decrease established in (5.41) ensures that if

‖H(xk)‖ < ε, then if ‖Pk∇F(xk)‖ > 0 there exists δmin(xk) > 0 which is a lower bound for

∆k at which Algorithm 5.2 must generate a step acceptable to the filter that improves the ob-
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jective function value. Since the current xk is always on the current filter, we need to consider

two cases, (i) the constraint violation of the current iterate is arbitrarily small but greater

than zero, i.e. ‖H(xk)‖ ∈ (0, ε4) for some ε4 > 0 and (ii) the iterate exactly satisfies the con-

straints. When ∆k is small enough that (5.41) holds, then each ∆k < κfcd‖Pk∇F(xk)‖/2β

ensures the objective function reduction requirement of the filter is met. However, to show

that xk + sk is non-dominated, we also must show the constraint violation does not in-

crease significantly, i.e., it is still less than 1 − β∆2
k times the constraint violation of the

point on the filter with the next highest constraint violation. Any ∆k ∈ (0, δ2(xk)) ensures

‖H(xk + sk)‖ < ‖H(xk−1)‖, so case (i) is complete. In case (ii) we require that the increase

in the constraint violation from zero caused by the surrogate modeling and Gauss-Newton

inaccuracies in Algorithm 5.2 be less than 1−β∆2
k times the constraint violation of the point

on the filter with the second lowest constraint violation. As demonstrated in Appendix A.4,

a positive ∆k ensures this. Therefore, any ∆k > δmin(xk) ensures the size of the trust region

is bounded from below unless ‖Pk∇F(xk)‖ = 0.

To demonstrate that all stationary points of Algorithm 5.2 have ‖Pk∇F(xk)‖ = 0 and

‖H(xk)‖ = 0 we assume, for purpose of contradiction, that limk→∞ ‖Pk∇F(xk)‖ = ε3 > 0.

If ‖Pk∇F(xk)‖ > 0 then there exists δmin(xk) > 0 and let ∆min be the minimum of δmin(xk)

for xk ∈ Ω. Then for each k sufficiently large, F(xk) − F(xk + sk) ≥ 1
2
κfcd2ε3∆min. This

is a necessary contradiction since the filter acceptance criteria contains a sufficient decrease

condition that requires for xk+1 6= xk then either the constraint violation or the objective

function value has been reduced by β∆2
k. As ‖H(x)‖ = 0 at all cluster points, then either

{∆k} → 0 or {F(xk)} is a decreasing sequence. However, F(xk) is bounded from below on

Ω. Therefore we must also have that limk→∞ |F(xk)−F(xk+1)| = 0. Therefore at any limit

point of the sequence of iterates generated by Algorithm 5.2 must have both ‖H(x∗)‖ = 0

and ‖P (x∗)∇F(x∗)‖ = 0, i.e., that they satisfy the constraints and are first-order optimal.

Therefore, the sequence of iterates generated by Algorithm 5.2 asymptotically approaches an

optimal solution to (5.24). Complete details of this analysis are presented in Appendix A.4.
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5.3.4 Gradient-Based AAO Trust-Region Algorithm

If all of the surrogate models used to approximate the functions in (5.24) are first-order

consistent then small changes to Algorithm 5.3 are required. The cause of the changes is

that in the gradient-free setting it is necessary for the size of the trust region to go to zero

in order to demonstrate that the surrogate models are accurate. However, in the gradient-

exploiting case we are ensured that the surrogates are locally accurate. Therefore, if all

surrogates are first-order consistent, then the trust region size will be bounded away from

zero and the gradient-free termination criteria will never be met. To terminate the algorithm

in the gradient-based case we only require that the constraint violation is small and that the

projection of the objective function gradient onto the constraint Jacobian nullspace is small.

The other change we recommend is to modify the trust region update. In the gradient-free

case we increase or decrease the size of the trust-region by a constant multiple because the

trust-region step can be highly inaccurate. However, in the gradient-exploiting case we know

that the decreasing direction of the surrogate must be the same as for the original functions.

Therefore we modify the update in Algorithm 5.2 to be similar to that in [5], where the

trust-region is allowed to decrease faster than by a given constant fraction. The modified

gradient-free algorithm designed for purely gradient-exploiting optimization is presented as

Algorithm 5.3.

5.4 Test Problems

This section presents results for the two gradient-free methods developed in this chapter,

the parallel IDF formulation and the parallel AAO formulation, on two analytical test prob-

lems. The first problem, presented in Section 5.4.1, is a simple analytical problem from the

literature that is nonlinear and nonconvex. The second problem, presented in Section 5.4.2,

is for the design of a gearbox. Except where otherwise noted, the parameters used for the

IDF algorithm are listed in Table 5.1 and the parameters used in the AAO algorithm are

listed in Table 5.2. When the IDF algorithm is used in conjunction with the gradient-free

algorithms of Chapters 2 and 3, the fully linear models are fit to the variables [x̃, t], however,
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Algorithm 5.3: Gradient-based AAO Trust-Region Algorithm
0: Choose, x0,∆0,∆max, η, β, and tolerance ε. (Recommended values are given in Ta-

ble 5.2, except β = 0.25 is recommended when gradients are available.) Set the initial
filter to {(−∞, ‖H(x0)‖)}. Create F̄0(x) and H̄0(x) to be fully linear models of F(x)
and H(x) on ‖x− x0‖ ≤ ∆0, and ensure H(x0) = H̄0(x0), F(x0) = F̄0(x0).

1: Compute the normal step, s⊥k , to reduce the constraint violation by solving,

min
s⊥k

1

2
‖H̄k(xk + s⊥k )‖2

2

s.t. ‖s⊥k ‖ ≤ ∆k.

2: Compute the tangential step, s
‖
k, to reduce the objective function while maintaining

sufficient decrease in the constraint violation by solving,

min
s
‖
k

F̄k(xk + s⊥k + s
‖
k)

s.t. ‖H̄k(xk + s⊥k + s
‖
k)‖

2
2 ≤ ‖H̄k(xk)‖2

2 − η
(
‖H̄k(xk)‖2

2 − ‖H̄k(xk + s⊥k )‖2
2

)
‖s⊥k + s

‖
k‖ ≤ ∆k.

3: Where sk = s⊥k + s
‖
k, evaluate F(xk + sk) and H(xk + sk).

4: Check if the pair (F(xk+sk), ‖H(xk+sk)‖), is non-dominated and therefore acceptable
to the filter, i.e. if

F(xk + sk) ≤ F(xk̂)− β∆̂2
k or ‖H(xk + sk)‖ ≤ ‖H(xk̂)‖ − β∆̂2

k‖H(xk̂)‖, k̂ = 0, . . . , k.

5: Update the trust region based on whether or not xk + sk is acceptable,

(xk+1,∆k+1) =

{
xk + sk, min{2∆k,∆max} if acceptable

xk, min{γ0‖sk‖, γ0∆k} otherwise.

5a: If xk + sk is accepted, add (F(xk + sk), ‖H(xk + sk)‖) to the filter and remove
all dominated entries.

5b: Create F̄k+1(x) and H̄k+1(x) first-order consistent at xk+1.
6: If ‖H(xk+1)‖ ≤ ε and Pk∇F(xk+1) ≤ ε the algorithm has converged, otherwise go to

step 1.
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Constant Description Value
x̃i0 Initial subsystem designs x0

λ0,ν
i
0 Initial Lagrange multiplier estimates 0

t0 Initial discipline targets 0
ε Termination tolerance 5× 10−5

γ Penalty parameter growth ratio 5
η Constraint decrease criterion 0.75
µ0 Initial penalty parameter 0.01

Table 5.1: List of parameters used in the parallel IDF algorithm.

Constant Description Value
β Filter acceptance criteria 1× 10−4

∆0 Initial trust region radius max{1, ‖x0‖∞}
∆max Maximum trust region size 100∆0

ε Termination Tolerance 1× 10−4

γ0 Trust region contraction ratio 0.5
γ1 Trust region expansion ratio 2
η Constraint decrease requirement 0.995

Table 5.2: List of parameters used in the gradient-free AAO algorithm. The parameters
used in constructing the radial basis function error models are given in Table 2.2.

the optimizations are only performed over x̃. All results in this section are single-fidelity,

i.e., flow(x) = 0.

5.4.1 Analytical Test Problem

This test problem is a nonlinear, nonconvex system design problem from the literature. The

problem is originally from Sellar et al. [104], however, it was also used as an example in
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[111],

min
x∈R3,t∈R2

F(x, t) = (x(1))2 + x(2) + t(1) + e−t
(2)

(5.42)

s.t. G1(x, t) = 1− t(1)

3.16
≤ 0

G2(x, t) =
t(2)

24
− 1 ≤ 0

G3(x, t) = −t(1) ≤ 0

0 ≤ x(1) ≤ 10

0 ≤ x(2) ≤ 10

−10 ≤ x(3) ≤ 10

r1(x, t) = x(1) + x(2) + (x(3))2 − 0.2t(2)

r2(x, t) = x(2) + x(3) +
√
t(1)

r = t.

This problem is solved with four multidisciplinary optimization methods: a standard MDF

approach with finite-difference gradient estimates, the IDF approach in Section 5.2 using a

gradient-based optimizer to solve the discipline-level optimizations, the IDF approach in Sec-

tion 5.2 using the gradient-free method of Chaper 3 to solve the discipline-level optimizations,

and the parallel AAO approach in Section 5.3. Table 5.3 presents the number of iterations,

discipline evaluations, and percentage of time the global minimum was found, starting from

random initial points. For this problem and with randomly generated starting points within

the given bounds, our IDF method always converges to a locally optimal solution. The IDF

approach uses approximately twice the number of discipline-level evaluations as the MDF

and AAO approaches. Compared with other decoupled approaches, this is an encouraging

result as CO and CSSO require up to four times number of discipline-level evaluations as

the MDF approach [111]. The AAO approach uses the fewest function evaluations to find

the optimal design.

Figure 5-5 presents the number of discipline-level evaluations for the parallel IDF ap-
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Approach r1(x, t) Evals. r2(x, t) Evals. %-True Optimum
MDF 236 236 47%
Parallel IDF 578 592 50%
Parallel IDF, gradient-free 432 443 38%
Parallel AAO 230 230 64%

Table 5.3: Results of the Sellar’s test problem from 50 random initial starting points drawn
uniformly from the bounds given in (5.42). The bounds are enforced on all subproblem
solutions. The results presented are the number of top-level iterations of the algorithm, the
number of discipline level evaluations, and the percent of starting points that converged to
the global optimum, x∗ = [0, 0, 1.9776]> with F(x, t) = 3.1834.

proach using a gradient-based optimizer, the parallel IDF approach using the gradient-free

optimizer of Chapter 3, and the MDF approach. The decoupled IDF approach clearly uses

more function evaluations than the MDF approach. However, all of the discipline-level eval-

uations for the MDF approach must be conducted in serial, whereas, the cost for an iteration

of the IDF approach is the cost of the most expensive discipline-level optimization, since both

optimizations are performed in parallel. The right side of the figure considers the scenario

where evaluations of a discipline are conducted in serial, but evaluations of different disci-

plines can be conducted in parallel. In this scenario, where the parallelization of Algorithm

5.1 is taken into account, the combination of Algorithm 5.1 and the gradient-free optimiza-

tion of Chapter 3 requires the time equivalent to approximately 10% more discipline-level

evaluations than the MDF approach.
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Figure 5-5: Left, function evaluations versus iteration for the parallel IDF algorithm on
Sellar’s test problem starting from x0 = [5, 2, 1]>. Right, the parallelized scaling of the IDF
algorithm starting from x0 = [5, 2, 1]>. The results show that when the parallelizability of the
IDF algorithm is compared with the MDF approach, which evaluates the disciplines in serial,
the IDF algorithm requires only the equivalent of approximately 10% more discipline-level
evaluations.
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5.4.2 Gearbox Design

This section presents optimization results for the design of a gearbox, commonly known as

Golinski’s speed reducer [47]. The AAO formulation considered here is,4

min
x∈R7,p∈R11

F(x) = 0.7854x(1)(x(2))2(3.3333(x(3))2 + 14.9334x(3) − 43.0934) (5.43)

−1.5709x(1)((x(6))2 + (x(7))2) + 7.477((x(6))3 + (x(7))3)

+0.7854(x(4)(x(6))2 + x(5)(x(7))2)

s.t. H1(x) = 27(x(1))−1(x(2))−2(x(3))−1 − 1 + p(1) = 0

H2(x,p) = 397.5(x(1))−1(x(2))−2(x(3))−2 − 1 + p(2) = 0

H3(x,p) = 1.93(x(2))−1(x(3))−1(x(4))3(x(6))−4 − 1 + p(3) = 0

H4(x,p) = 1.93(x(2))−1(x(3))−1(x(5))3(x(7))−4 − 1 + p(4) = 0

H5(x,p) =
[(

745x(4)(x(2))−1(x(3))−1
)2

+ 16.9× 106
] 1

2
/
[
110.0(x(6))3

]
− 1 + p(5) = 0

H6(x,p) =
[(

745x(5)(x(2))−1(x(3))−1
)2

+ 157.5× 106
] 1

2
/
[
85.0(x(7))3

]
− 1 + p(6) = 0

H7(x,p) = x(2)x(3)/40− 1 + p(7) = 0

H8(x,p) = 5x(2)/x(1) − 1 + p(8) = 0

H9(x,p) = x(1)/12x(2) − 1 + p(9) = 0

H10(x,p) =
(
1.5x(6) + 1.9

)
(x(4))−1 − 1 + p(10) = 0

H11(x,p) =
(
1.1x(7) + 1.9

)
(x(5))−1 − 1 + p(11) = 0

H12(x,p) = x(3) − bx(3) + .5c)2 = 0

[2.6, 0.7, 17, 7.3, 2.9, 5.0]> ≤ x> ≤ [3.6, 0.8, 28, 8.3, 3.9, 5.5]>

0 ≤ p.

4The constraint that x(3) is an integer in [47] is replaced with the constraint (x(3) − bx(3) + .5c)2 = 0.
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Following [65], in multidisciplinary form the system-level optimization problem is,

min
x∈R7,t∈R3

F(t) = 1000(t(1) + t(2) + t(3)) (5.44)

s.t. G1(x) = x(2)x(3) − 40 ≤ 0

[0.7, 17, 7.3, 7.3]> ≤ [x(2), x(3), x(4), x(5)]> ≤ [0.8, 28, 8.3, 8.3]>

t = r

x = x̃i, i = 1, 2, 3.

The first discipline problem is,

r1(x̃) = min
x̃∈R7

1

1000

[
0.7854x̃(1)(x̃(2))2

(
3.3333(x̃(3))2 + 14.9334x̃(3) − 43.0934

)]
(5.45)

s.t. 27(x̃(2))−2(x̃(3))−1 − x̃(1) ≤ 0

397.5(x̃(2))−2(x̃(3))−2 − x̃(1) ≤ 0

5x̃(2) − x̃(1) ≤ 0

x̃(1) − 12x̃(2) ≤ 0

2.6 ≤ x̃(1) ≤ 3.6.

The second discipline problem is,

r2(x̃) = min
x̃∈R7

1

1000

[
−1.508x̃(1)(x̃(6))2 + 7.477(x̃(6))3 + 0.7854x̃(4)(x̃(6))2

]
(5.46)

s.t.

(
1

110

[(
745x(4)(x(2))−1(x(3))−1

)2
+ 16.9× 106

] 1
2

)1/3

− x̃(6) ≤ 0(
1.93(x̃(2))−1(x̃(3))−1(x̃(4))3

)0.25 − x̃(6) ≤ 0

x̃(6) − (x̃(4) − 1.9)/1.5 ≤ 0

2.9 ≤ x̃(6) ≤ 3.9.
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The third discipline problem is,

r3(x̃) = min
x̃∈R7

1

1000

[
−1.508x̃(1)(x̃(7))2 + 7.477(x̃(7))3 + 0.7854x̃(5)(x̃(7))2

]
(5.47)

s.t.

(
1

85

[(
745x(5)(x(2))−1(x(3))−1

)2
+ 157.5× 106

] 1
2

)1/3

− x̃(7) ≤ 0(
1.93(x̃(2))−1(x̃(3))−1(x̃(5))3

)0.25 − x̃(7) ≤ 0

x̃(7) − (x̃(5) − 1.9)/1.1 ≤ 0

5.0 ≤ x̃(7) ≤ 5.5.

Table 5.4 presents the number of discipline evaluations and the percentage of time the

global minimum was found starting from random initial points. Results are included for

SQP [76] using finite-difference gradient estimates and the parallel AAO approach in Sec-

tion 5.3 which both solve the problem in (5.43). In addition, results are included for a

standard MDF approach, the parallel IDF approach in Section 5.2 using a gradient-based

optimizer to solve the discipline-level optimizations, the parallel IDF approach in Section 5.2

using the gradient-free method of Chapter 3 to solve the discipline-level optimizations, and

the parallel IDF approach in Section 5.2 with unscaled discipline objectives, which all use

the decoupled problem in (5.44)–(5.47). The unscaled discipline objectives correspond to

removing the factor of 1,000 from the system and discipline-level problems and is included

to demonstrate the effect of having a multiple order of magnitude difference in scaling be-

tween the discipline responses and design variables. The results show that the parallel AAO

approach uses the fewest function evaluations of all the methods tested. In addition, com-

pared with SQP, the parallel AAO approach finds the global minimum more frequently.

This problem has multiple local solutions, many of which are caused by the constraint

x(3) − bx(3) + .5c)2 = 0. The gradient-free method uses response surfaces which are less

sensitive to local sensitivity information than the more local gradient-based methods. The

parallel IDF approach uses more function evaluations than the other methods, and is clearly

sensitive to the scaling, since the unscaled version of the problem requires about 50% more

evaluations. We observe that the reuse of previous discipline evaluations associated with the
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gradient-free method of Chapter 3 reduces the number of discipline evaluations by approx-

imately 60%. If discipline were conducted in parallel than the combination of the parallel

IDF approach and the gradient-free method of Chapter 3 would require less wall-clock time

then the MDF method.

Approach r1(x, t) Evals. r2(x, t) Evals. r3(x, t) Evals. %-True Optimum
SQP 337 337 337 2%
Parallel AAO 294 294 294 60%
MDF 416 416 416 96%
Parallel IDF 2,092 2,550 2,056 100%
Parallel IDF, gradient-free 810 969 953 100%
Parallel IDF, unscaled 3,488 3,306 3,241 94%

Table 5.4: Results of optimizing Golinski’s speed reducer from 50 random initial starting
points drawn uniformly from the given bounds. The results presented are the number of
discipline level evaluations and the percent of starting points that converged to the global
optimum, x∗ = [3.5, 0.7, 17, 7.3, 7.71532, 3.3502, 5.2867]> with F(x, t) = 2994.35. The un-
scaled solution corresponds to removing the factor of 1,000 in the discipline responses.

5.5 Discussion

This chapter has presented two methods for multidisciplinary optimization that enable multi-

fidelity optimization and parallelization without the need to compute a high-fidelity gradient.

However, if gradients are available, both methods are also able to exploit that information

to speed finding an optimal design. The IDF approach has been shown to have good par-

allel scaling in terms of discipline-level function evaluations when coupled with multifidelity

optimization and reuse of previous design evaluation information. However, the method is

sensitive to the scaling between the design variables and discipline coupling variables. There

are three solutions to addressing this sensitivity: appropriately scaling all variables, which is

possibly quite difficult a priori, increasing the penalty parameter slowly (γ ∼ 1), and using

a more robust IDF formulation. Developing a more robust framework is an avenue for fu-

ture research, perhaps by coupling an augmented Lagrangian trust region framework [30, 31]

with the parallelized structure of the method presented in this chapter a method with global

convergence properties could be obtained.
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The gradient-free AAO optimization method developed in this chapter performs com-

parably with SQP for many problems, even without the addition of a low-fidelity model.

The flexibility and observed performance of this method suggest many potential benefits

for the multidisciplinary design optimization community. Table 5.5 provides a summary of

the advantages and disadvantages of the algorithms developed in this chapter to optimize a

multidisciplinary system. The metrics included are: whether or not the algorithm requires

sensitivity information, the robustness of the algorithm to disciplines failing to return a re-

sult, the robustness of the algorithm to the initial design, the multifidelity and parallelization

capabilities, the flexibly of the algorithms to effectively utilize all available processors, the

computational overhead of the methods, the expected number of function calls with and

without available sensitivity information, the ability of the algorithms to optimize systems

with both a large and small number of discipline-coupling variables, and the difficulty to

implement the algorithms on new problems.

SQP/MDF IDF Formulation Parallel Evaluations
Sensitivity information Required Not required Not required
Robustness (evaluation failure) Middle Worst Best
Robustness (initial design) Best Worst Best
Multifidelity capabilities System level only All levels All levels
Parallelization System level only All levels All levels
Processor utilization Flexible Flexible Most flexible
Method overhead Low Low Surrogate models
Function calls (gradients) Least Most Middle
Function calls (no gradients) N/A Most Least
High-bandwidth coupling Fastest Slowest Fast or slow
Low-bandwidth coupling Fast Fast Fast
Implementation Difficulty Easy Moderate Easy

Table 5.5: A comparison of using sequential quadratic programming and an MDF formulation
with the MDO methods developed in this chapter to optimize a multidisciplinary system.
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Chapter 6

Case Studies in Aerostructural

Optimization

This chapter demonstrates the multidisciplinary and multifidelity optimization methods de-

veloped in Chapters 2, 3, 4 and 5 on two aerostructural optimization problems. Aerostruc-

tural optimization is an especially difficult problem for multidisciplinary optimization strate-

gies because of the high degree of coupling between the aerodynamics and structural disci-

plines. In classical aircraft design, an aerodynamics group designs the shape of the aerody-

namic surfaces and a structures group designs the internal support structure in an attempt

to support the aerodynamic forces and keep the weight low. The challenge in decoupling

these two disciplines and optimizing the aerodynamic shape and structure separately is that

the coupling is a pressure field and a displacement field. These are continuous fields which

are represented by discrete approximations. However, these approximations are still high

dimensional. For instance in a computational design framework, the exchange between the

disciplines is the pressure at every aerodynamic node on the surface and the deflection and

rotations at every structural node on the surface.

With these challenges in mind, we present two case studies in aerostructural optimization.

The first case study represents the conventional approach taken in industry. The aerody-

namic analysis method, Panair, and the structural analysis method, Nastran, are represen-
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tative industrial tools. These tools offer numerous optimization difficulties, single-precision1,

frequent failures to return a solution, and issues finding a coupled aerostructural solution.

The single-precision and frequent failure to return a solution suggest that gradient-based

optimization may not work for this optimization problem and that a gradient-free strat-

egy may be needed for robustness. The second case study uses multifidelity optimization

on state-of-the-art aerostructural analysis software. The analysis routines solve a coupled

aerostructural system using a tailored parallel solution scheme and provide an adjoint-based

gradient estimate for use in optimization.

6.1 Gradient-free Aerostructural Optimization

This wing design problem is to find an optimal wing typical of a small unmanned aerial

vehicle designed for long range. The objective is to find the wing with the best range factor,

minimum weight divided by the lift-to-drag ratio. The requirements are that at the design

point, the maximum stress in the wing structure is less than the material yield stress and the

wing geometry is sensible, i.e. positive thickness and stringers do not penetrate skin panels.

There are 26 design variables for the wing. The aerodynamic design variables are the wing

angle of attack and three parameters representing NACA 4-series airfoils, the maximum

camber of the airfoil, the location of the maximum camber, and the maximum thickness

to chord ratio. These variables are all treated as continuous variables, but the airfoils are

constructed in the same way as the NACA 4-series. For example, an airfoil with design

variables 0,0,12 is the same as a NACA 0012 airfoil, however, we allow for an airfoil that is

12.25% thick. There are 22 structural design variables, the skin thickness, spanwise material

thickness taper ratio, the chordwise location of two spars, the material thickness of the spars,

the spanwise location of four ribs, the material thickness of the ribs, the chordwise location

of eight stringers (upper and lower surface total), and four variables describing the shape of

the stringers. The material thickness is constant between each of the ribs, however, for each

spanwise section the material thickness is reduced according to the material thickness taper

1it is possible to use Nastran in double-precision mode
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ratio. So the thickness of the skin panels, spars and ribs all decrease approximately linearly

spanwise. The stringers are hat sections, with the material thickness, flange, width, and

height for design variables. A schematic of the wing cross-section is shown in Figure 6-1, the

figure shows the skin, spars, and stringers, the ribs fill the entire cross-sectional area inside

of the skin and are considered welded to the spars along rib-spar intersections.

Figure 6-1: Wing cross-section showing the constant thickness skin, the two spars, and the
four hat stringers. The ribs are not shown, but they fill the entire cross-section of the wing
inside of the skin panels.

The high-fidelity aerodynamic analysis tools are Panair [99] and Friction [74]. Panair

computes the flow field around the wing assuming the flow is inviscid. Friction computes

the skin friction drag on the wing by estimating the skin friction coefficient and form factor.

The structural model in Nastran [110] applies the calculated pressures from Panair to the

skin panel elements and the skin friction drag force from Friction to the trailing edge nodes.

The two optimization frameworks presented in Chapter 5 are demonstrated on this problem.

First the parallel IDF approach of Section 5.2, and second, the parallel filter approach of

Section 5.3 is used to solve a MDF formulation of the aerostructural problem.

6.1.1 IDF Framework

Aerostructural optimization is a challenging problem with which to use an IDF formula-

tion because of the high-dimensionality of the coupling between the disciplines. To perform
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structural optimization and minimize the wing weight, the structural analysis requires the

pressure field around the wing. Similarly, to perform aerodynamic optimization and maxi-

mize the lift-to-drag ratio the aerodynamic analysis requires the deformed shape of the wing.

Even in discretized form this coupling is likely too high-dimensional for optimization to be

tractable, so the first step of the aerostructural optimization using an IDF formulation is to

develop a reduced-dimensional coupling. In the following we formulate a low-dimensional

Cp distribution representation, then a low-dimensional deflection distribution representation,

and finally formulate this aerostructural optimization in an IDF framework.

Low-dimensional Cp Distribution

To represent the pressure field around the wing, the Cp distribution is approximated by

splines. The wing root Cp distribution is approximated with two piecewise cubic Hermite

interpolating polynomials, one for the upper surface and another for the lower surface. The

splines each have 8 control points, but the trailing edge control point is made a stagnation

point, Cp = 1. The spanwise variation in the Cp distribution is approximated with a smooth-

ing cubic spline. The locations of the root chord control points, with the exception of the

trailing edge, are scaled according to the spline. The spanwise scaling spline has 4 control

points, but the root control point is fixed at 1 so only 3 are parameters. The complete

Cp distribution around the wing is represented with 17 parameters. The root-mean-square

error of the of the actual Cp value on the wing and this reduced parameterization is about

0.02 for an assortment of airfoils and twist distributions. Figure 6-2 compares the actual

Cp distribution for a typical wing with the approximate Cp distribution generated by this

parameterization.

Low-dimensional Deflection Distribution

To represent the deformed shape of the wing, the deflections of the leading and trailing edges

are approximated by cubic splines. This parameterization assumes the wing contains enough

ribs such that the cross-sectional shape of the wing does not deform significantly. The splines

each have 4 control points, though the root control points are fixed to have zero deflection.
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Figure 6-2: Comparison of the actual and low-dimensional approximation of the Cp distri-
bution for a typical wing. The approximate Cp distribution does not accurately capture the
wingtip effects.

Therefore the wing deflection is parameterized by a total of 18 parameters, 3 control points

for three spatial dimensions for the leading and trailing edges. The root-mean-square error

between the actual deflection of the wing and the reduced dimensional approximation is less

than 0.5% of the span. Figure 6-3 compares the actual deformed shape of a typical wing with

the approximately deformed wing generated with this reduced-dimension approximation.

Figure 6-3: Comparison of the actual and low-dimensional approximation of the deflection
for a typical wing.
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Aerostructural IDF Optimization Problem

The aerostructural optimization written as an IDF optimization problem using the reduced

dimensional coupling is

min
x∈R26,t∈R35

w(x)/LD(x, t) (6.1a)

s.t. max{σvonMises(x, t)− σyield, 0} = 0 (6.1b)

rCp(x̃1, tDef ) = tCp (6.1c)

rDef (x̃2, tCp) = tDef (6.1d)

x = x̃1 = x̃2 (6.1e)

where

x̃1 = arg min
x̃∈R26

1

2
‖rCp(x̃, tDef )− tCp‖2

2 (6.1f)

x̃2 = arg min
x̃∈R26

1

2
‖rDef (x̃, tCp)− tDef‖2

2. (6.1g)

The objective is to find the wing with the minimum weight divided by lift-to-drag ratio,

LD(x, t), where the maximum von Mises stress in the wing, σvonMises(x, t), is less than

the material yield stress, σyield. The aerodynamics discipline, (6.1f), uses Panair for an

inverse design problem: given a fixed deflection, minimize the deviation of the actual Cp

distribution over the wing, rCp(x̃1, tDef ), from the target distribution, tCp . Similarly, the

structural discipline, (6.1g), minimizes the deviation of the actual deflection of the wing,

rDef (x̃
2, tCp), from the target deflection distribution, tDef , at a fixed Cp distribution. Since

the stress within the wing is only computed in Nastran and not at the system level we enforce

the maximum stress constraint with a quadratic penalty function at the discipline level in

(6.1g) (the penalty multiplier used is unity).

The aerostructural IDF optimization problem, (6.1), is solved using Algorithm 5.1 with

the parameters listed in Table 5.1. The system-level optimization problems are solved with

sequential quadratic programming [76]. The discipline-level optimization problems are solved

using the gradient-free method presented in Algorithm 2.1 (with a minor change in the con-
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struction of fully linear models discussed in the following section). A gradient-free optimizer

is needed because the poor behaviors of the discipline-level simulations cause inaccuracies in

finite-difference gradient estimates. The system-level optimization problems are both smooth

and well-behaved because the weight is computed analytically and the lift-to-drag ratio as a

function of the target Cp distribution is also computed analytically.

6.1.2 MDF Framework

The MDF framework for this problem is setup so that all expensive computations and

numerical challenges are in the constraints. The optimization problem is

min
x∈R26,tLD∈R,tw∈R

tw/tLD (6.2)

s.t. tw − w(x) = 0

tLD − LD(x) = 0

max{σyield, σvonMises(x)} − σyield = 0

h(x) = 0,

where the objective is to minimize a target weight, tw, divided by a target lift-to-drag ratio,

tLD, subject to constraints that the structural weight is equal to the target weight, the lift-

to-drag ratio is equal to the target lift-to-drag ratio, the maximum stress in the structure is

less than the yield stress, and some simple geometric constraints, represented as h(x) = 0,

are satisfied. Each constraint evaluation requires an iterative solve between Panair and

Nastran to find the lift-to-drag ratio of the deformed wing and the maximum von Mises

stress. The constraint evaluation only returns a value approximately 81% of the time due to

(1) Nastran failures, (2) Panair failures, and (3) aerostructural solver convergence failures.

The aerostructural solver is a Gauss-Seidel iteration with a successive over-relaxation factor

of 0.9. Moreover, the output of Panair only has six decimal places and the input file for

Nastran has five decimal places so the value of the constraints and objectives are highly

non-smooth. For example, Figure 6-4 shows finite-difference estimates of the directional
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derivative, [f(x0 + δxp/‖p‖)− f(x0)] /δx, for various step sizes, δx, in random directions,

p, from four random initial designs, x0. We observe that the directional derivative for

Figure 6-4: Projected gradient in random direction for four random initial wing designs for
weight divided by the lift-to-drag ratio. Missing points on the plot are caused by evaluation
failures. The flat portion of the projected gradient are when changes in the lift-to-drag ratio
are below the precision of Panair and only the weight of the wing is changing.

weight divided by the lift-to-drag ratio varies by over four orders of magnitude for typical

finite-difference step sizes. The derivative estimate becomes flat when the change in the lift-

to-drag ratio is below the precision of Panair and only the weight, computed analytically,

is changing. The poor behavior of the constraints mean that a gradient-based optimization

method cannot be used. Therefore, we will solve this aerostructural optimization problem

using Algorithm 5.2, which enables gradient-free optimization. However, due to the high

failure rate of the evaluations, we need some small changes to the method of building fully

linear models, Algorithm 2.2, and to the filter and trust region updates in Algorithm 5.2.

We first discuss the modifications required to build fully linear models in the presence of

evaluation failures, and then we discuss the modifications to the update steps in Algorithm

5.2.
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Fully Linear Model Construction with Failures

The algorithm used to create fully linear models in the previous chapters, Algorithm 2.2,

assumed that the function being approximated returns a result every time. The flexibility

in only using a fully linear calibration scheme enables a calibrated surrogate model to be

created even if the function occasionally fails to return a result, because the calibration points

can be relocated. The only modifications required to Algorithm 2.2 are in step 2f where the

function is evaluated at locations in the nullspace of the span of vectors in Y . This step needs

to accommodate potential evaluation failures. When we encounter an evaluation failure we

select a basis for the nullspace of the span of vectors in Y . For each basis vector we then

draw a random number, t ∈ [0.25, 0.75] and evaluate the function at the points,

xk + (−1)l−1tdl/2e−1∆kp̂, l = 1, 2, 3, . . . (6.3)

where p̂ are the unit directions in the nullspace, until a successful evaluation is found. This

operation starts at the edge of the trust region and progressively searches closer to the current

iterate (which must have been successful) on the right and left sides until another successful

calibration point is found. For example, if t = 1
2
, the sequence (−1)l−1tdl/2e−1 evaluates to

1,−1, 1
2
,−1

2
, 1

4
, . . ..

Trust Region Updating with Failures

Three challenges with Algorithm 5.2 are apparent in the presence of evaluation failures,

(1) we need the filter acceptance criteria to verify that xk + sk returned a valid result, (2) it

is significantly cheaper to attempt evaluating the function at a few new points as opposed to

simply rejecting sk and constructing a new fully linear model, and (3) the assumption that

the constraint Jacobian has full rank, is no longer valid and robustness should be addressed.

To mitigate challenges (1) and (2) we assume the step sk is an improving direction and

evaluate the high-fidelity functions at locations along sk up to a set number of times. Our

algorithm draws a random number t ∈ [0.5, 1) and evaluates F(xk+tl−1sk) andH(xk+tl−1sk)

for l = 1, 2, 3, . . . until either lmax is reached or a successful evaluation is found. However, if
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the functions are evaluated lmax times without success, then sk is rejected.

To address the faulty assumption that the constraint Jacobian has full rank we limit

the number of iterates contained on the filter. Without this assumption it is possible for

Algorithm 5.2 to terminate at a point that has nonzero constraint violation. To ensure

the constraint violation is generally decreasing, we impose a decreasing upper limit for the

constraint violation. We define k̂max to be a user-set parameter for the maximum number

of points on the filter, and establish an upper limit by treating the k̂thmax point on the filter

as the initial iterate, i.e., by removing all iterates on the filter with constraint violation

higher than the k̂thmax point and adding (−∞, ‖H(xk̂max
)‖) to the filter. (The presence of

(−∞, ‖H(xk̂max
)‖) on the filter prevents the filter from accepting any iterates with constraint

violation larger than ‖H(xk̂max
)‖.) We only truncate the filter if the constraint violation at

xk is less than the constraint violation at xk̂max
, otherwise the filter acceptance criteria will

block desirable future iterates. This decreasing upper bound for the constraint violation

helps to drive Algorithm 5.2 towards feasibility even when the surrogate Jacobian does not

have full rank throughout the design space. The parameter values used in Algorithm 5.2 are

presented in Table 5.2. We also use lmax = 2 and k̂max = 3.

6.1.3 Results

Both multidisicplinary optimization methods successfully optimized the wing despite the

numerous numerical challenges. In contrast, none of the constrained optimization solvers

in [76] (interior point, SQP, or active-set) were able to solve this problem. No global opti-

mization methods were attempted due to the number of design variables and computational

expense of the simulations, Panair and Nastran evaluations take on average approximately

30 seconds and 25 seconds to solve, respectively. Many locally optimal designs were found,

which is expected given the design space has islands of feasibility. The results presented

below are the average number of simulations and MDAs for Algorithms 5.1 and 5.2 from

random initial designs. Algorithm 5.1 is started from a multidisciplinary feasible design,

though feasibility is lost during the first iteration of the algorithm and regained prior to

termination. As presented in Table 6.1, Algorithm 5.1 took on average 9,100 structural anal-
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yses and 7,700 aerodynamic analyses to find an optimal wing. Since both the aerodynamic

and structural analyses are conducted in parallel, the solution time scales with the num-

ber of aerodynamic analyses conducted. Figure 6-5(a) shows a representative convergence

history of Algorithm 5.1, and Figure 6-5(b) shows a representative plot of the number of

discipline-level evaluations needed. No low-fidelity analyses were used for this test case.

Case Algorithm Low-Fidelity Model MDAs Nastran Evals. Panair Evals.
0 Parallel IDF None 1 9,073 7,688
i Gradient–free MDF None 692 7,425 7,425
ii Gradient–free MDF AVL/Beam Surrogate 997 5,412 5,412
iii Gradient–free MDF Kriging Surrogate 431 3,232 3,232

Table 6.1: Results of the number of simulations required during the optimization to find an
optimal wing design. The number of evaluations does not include the offline cost of creating
surrogate models. The number of MDAs refers to the number of designs for which iterative
aerostructural solves were completed successfully. The IDF method chooses initial targets
from an MDA of the initial design.

(a) Parallel IDF method convergence plot. (b) Parallel IDF method discipline evaluations

Figure 6-5: Sample results for the parallel IDF method.

Three low-fidelity models were used to solve the MDF formulation with Algorithm 5.2,

(i) No low-fidelity model, (ii) a Kriging surrogate made from 2,000 MDAs of the wing using a

two-dimensional vortex lattice method, Athena Vortex Lattice (AVL), and a one-dimensional

beam model in Nastran (95% of the analyses were successful), and (iii) a Kriging surrogate
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made from 500 MDAs of the wing using the high-fidelity methods (81% of the analyses

were successful). An MDA refers to solving for a set of discipline responses that satisfy the

coupling relationship between disciplines, but the system level-constraints, (5.1b) and (5.1c),

are not necessarily satisfied. Parallelization was not implemented with this method because

of the number of Nastran licenses available. Table 6.1 lists the average numbers of successful

MDAs, structural analyses, and aerodynamic analyses required to optimize the wing from

random initial designs. Figure 6-6 shows a representative convergence history of Algorithm

5.2 using the Kriging surrogate of the high-fidelity MDAs.

Figure 6-6: Representative convergence history of Algorithm 5.2 on the aerostructural de-
sign problem. The low-fidelity model is a Kriging surrogate built from 500 high-fidelity
evaluations, of which 81% were successful.

The results presented in Table 6.1 show that with no low-fidelity analysis the parallel

IDF method required 22% more structural evaluations and 3% more aerodynamic evalua-

tions than the MDF method with no low-fidelity simulation, case (i). Compared with other

decoupled multidisciplinary methods this is an exciting result because methods like CSSO

and CO typically require at least twice as many evaluations as single-level methods [111].

Moreover, when examining the multifidelity results obtained with Algorithm 5.2 we observe

that compared with using no low-fidelity model, using a mediocre low-fidelity model, case
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(ii), the number of high-fidelity evaluations decreases by approximately 27%, and with a

good low-fidelity model, case (iii), by approximately 66%. (The decrease in case (iii) is ap-

proximately 50% if you include the offline cost of the results used to create the surrogate

model.) It is illustrative to consider the solution times of these algorithms in a scenario where

only one analysis per discipline can be conducted at a time, a situation akin to engineers

designing a multidisciplinary system. The wall-clock solution times in days for the test cases

presented in Table 6.1 for this scenario are (0) 2.67, (i) 4.73, (ii) 3.45, and (iii) 2.06.2 In this

scenario, we have clearly established a benefit for system decomposition, a 44% reduction in

time, and multifidelity optimization, a 56% reduction in time. A locally optimal wing design

is shown in Figure 6-7, the aerodynamic results are in Figure 6-7(a), and structural results

are shown in Figure 6-7(b).

6.2 Adjoint-based Coupled Aerostructural Optimiza-

tion

This wing design problem is based on the Bombardier Q400 turboprop airplane, and is

from Kennedy et al. [54]. The optimization problem is to find the minimum drag wing that

supports the weight of the Q400 flying at 1g cruise. Any weight savings in the wing structure

is subtracted from the weight of the airplane. The parameters describing the aircraft and

cruise condition are presented in Table 6.2.

The design problem has 104 design variables and 77 constraints. The design variables are

the angle of attack, eight twist angles for the free-form deformation (FFD) control volume

[57], and 19 variables for each of the upper surface skin thicknesses, lower surface skin

thicknesses, forward spar thicknesses, aft spar thicknesses, and rib thicknesses. The 19

material thickness variables represent one constant thickness panel of metal between and for

each rib. Each variable has appropriate upper and lower bounds that account for minimum

gauge constraints. The nonlinear constraints are that the lift of the airplane is equal to the

2Using 2 cores for a Windows 7 virtual machine running on a 3.40GHz Intel i7-2600 system in Ubuntu
11.04.
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(a) High-Fidelity Cp distribution on deformed wing.

(b) High-Fidelity structural model results. Deflection is amplified by a factor of 32.5.

Figure 6-7: High-fidelity aerostructural wing design shown in 1g flight condition and Mach
0.25.
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Parameter value
Maximum takeoff weight 64,500 lbm
Cruise Mach number 0.6
Cruise Altitude 22,000 ft
Cruise weight fraction 0.8
Load case 1g
Wingspan 93.2 ft
Planform area 737 ft2

Aspect ratio 11.78
Initial airfoil stack NACA 2412
Wing trapezoidal break [% semi-span] 40%
Taper ratio 0.54
Spars [% chord] 15%, 50%
Ribs [#] 20
Ribs [% chord] 15%-75%
Structural material Aluminum 7075
Elastic modulus 10,150 ksi
Poisson’s ratio 0.33
Yield stress 46.4 ksi

Table 6.2: Q400-type airplane properties and flight condition.

weight, four Kreisselmeier–Steinhauser (KS) stress lumping functions, one for the ribs, one for

the spars, one for the upper surface skin panels, and one for the lower-surface skin panels, and

72 relative thickness constraints. The relative thickness constraints ensure that the change

in thickness between adjacent panels is small enough to prevent stress concentrations.

In the following subsections we discuss the multifidelity setup and the creation of high-

and low-fidelity aerostructural models. We then discuss the optimization methods used, and

finally the results.

6.2.1 Multifidelity Setup

To demonstrate the use of multifidelity optimization on a multidisciplinary system we use

two-fidelity levels for each the aerodynamics and structural disciplines. However, we only

use a multidisciplinary feasible (MDF) strategy, which means that for every wing design

evaluated the coupled aerostructural system is solved iteratively. In this framework, we only

interface low-fidelity aerodynamics with low-fidelity structures and high-fidelity aerodynam-
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ics with high-fidelity structures. The high-fidelity methods are a panel method for aerody-

namics and a 2nd order finite-element model including all of the ribs, spars, and skins as shell

elements. The low-fidelity methods are the same methods but using significantly coarsened

discretizations; in the aerodynamics case, barely enough panels are used to smoothly repre-

sent the geometry. Table 6.3 compares the complexity of the high- and low-fidelity models.

In addition, Figure 6-8 shows a picture of the high- and low-fidelity aerodynamic models in

the FFD control volume.

Low-Fidelity High-Fidelity

Aerodynamic Panels

chordwise 30 70
spanwise 20 80

wake 20 60
total 1,000 10,400

Structural Elements

chordwise 5 16
spanwise 30 190
thickness 4 12

total (dof) 5,624 57,152
Time (cpu × s) 16 4,800-9,600

Table 6.3: Comparison of the number of degrees of freedom for the high- and low-fidelity
models. Run-time includes one function and one gradient evaluation.

6.2.2 Optimization Strategy

To optimize the high-fidelity wing design two approaches are taken. The first is to optimize

the wing using a sequential quadratic programming method [45, 86]. The second approach

is to use the gradient-based parallel function evaluation algorithm, Algorithm 5.3, with two

fidelity levels. To convert this design problem into an equality constrained optimization

problem for Algorithm 5.3, the 72 relative thickness constraints and 4 KS function stress

constraints are converted to equality constraints through the addition of 76 slack variables.

The modified optimization problem has 180 design variables and 77 constraints. Since only

the first 5 constraints, lift equals weight and the 4 KS functions, are the results of analysis

and the other 72 constraints are geometric, only the 5 expensive constraints are treated with

multifidelity methods. The geometric constraints are not approximated. Where D(x) is
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(a) Low-Fidelity panel mesh and FFD Control
Points.

(b) High-Fidelity panel mesh and FFD Control
Points.

Figure 6-8: Free-form deformation control points for the high- and low-fidelity Q400 wings
and aerodynamic panels used.

drag, L(x) is lift, KS(x) are the KS functions, and g(x) ≤ 0 are the geometric constraints,

the optimization problem is

min
x∈R104,p̄∈R4,p∈R72

D(x) (6.4)

s.t. L(x)− w(x) = 0

KS(x) + p̄2 = 0

g(x) + p2 = 0.

The aerostructural analysis solver provides an adjoint solution, so inexpensive gradient

estimates are available for both the objective function and the constraints. To success-

fully exploit the available gradient information the error models used to calibrate the low-

fidelity simulation results to the high-fidelity need to be first-order consistent. The Cokriging

method, Algorithm 4.2, would be used for this except the dimensionality of this problem is

too high. The cost of constructing and repeatedly evaluating a Cokriging error model with

180 design variables would approach the cost of the high-fidelity simulation in this case. So
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the error model is constructed using Algorithm 4.2, but only the derivative at the current

iterate, xk, is added to RC . The derivative of the error at all other calibration points is not

used, so the error model is first-order consistent at xk and zeroth-order consistent at all other

calibration locations. This is similar to the technique used in [44], however, with additional

precautions to ensure the error model is accurate. We also fix the correlation lengths, ξ = 2,

instead of optimizing them, due to the computational expense of that optimization problem.

6.2.3 Results

Table 6.4 presents the number of high-fidelity evaluations required to optimize the wing using

SQP and the number of high- and low-fidelity evaluations required to optimize the wing using

Algorithm 5.3 from the same initial wing. For the single-fidelity SQP optimization, SNOPT

[45] (wrapped with pyOpt [86]) successfully found the optimal design with default settings.

As shown in Table 6.4, Algorithm 5.3 successfully reduced the time needed for optimization

by over 40% compared with SNOPT. The convergence history of Algorithm 5.3 on this wing

design problem is presented as Figure 6-9. It is evident from the convergence history that

even though Algorithm 5.3 required 36 high-fidelity evaluations to find the optimal design, it

in actuality converged to a nearly optimal feasible design quite rapidly, in approximately 16

iterations or 17 high-fidelity evaluations. So, had Algorithm 5.3 been terminated in half the

time, a feasible design that was nearly optimal would have already been found. However,

two types of difficulties were encountered with Algorithm 5.3. First, when the initial trust

region was too large, the high-fidelity evaluation failed to converge. This is easily remedied

by using a smaller initial trust region. Second, the trust-region subproblems in Algorithm 5.3

are solved using SNOPT, and SNOPT frequently fails to maintain feasibility when calculating

the tangential step. This issue required tuning parameters of SNOPT. The parameter values

used in Algorithm 5.3 and to tune SNOPT are presented in Table 6.5.

Figure 6-10 shows the initial and final FFD control volumes with the optimal unloaded

wing inside. Most of the geometric changes to the wing are outboard. The more substantial

changes to the wing are in the material thicknesses, since the stresses in the initial design are

above the material yield stress. Figure 6-11(a) shows the von Mises stress distribution for
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Low-Fidelity High-Fidelity Time (cpu × day)
SQP (SNOPT) – 137 12.0
Multifidelity (Algorithm 5.3) 16,431 36 6.4

Table 6.4: Comparison of the required number of high- and low-fidelity evaluations to find
the optimal wing design. The optimal design from SQP was slightly more accurate than
that from the multifidelity method, the objective function value was 1.12 × 10−1 compared
with 1.16× 10−1, and the constraint violation was 1.8× 10−5 compared with 8.9× 10−5.

Figure 6-9: Convergence history of Algorithm 5.3 on the gradient-based optimization of a
wing.

the low-fidelity analysis of the optimal wing design, and Figure 6-11(b) shows the von Mises

stress distribution for the high-fidelity analysis of the optimal wing design. The maximum

stress in the wing is approximately half of the material yield stress, so the optimal design is

feasible. In addition, Figure 6-12(a) shows the Cp distribution from the low-fidelity analysis of

the optimal wing, and Figure 6-12(b) shows the Cp distribution for the high-fidelity analysis

of the optimal wing design.
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Constant Description Value
β Filter acceptance criteria 0.25
∆0 Initial trust region radius 0.25
∆max Maximum trust region size 100∆0

ε Termination Tolerance 1× 10−4

γ0 Trust region contraction ratio 0.5
γ1 Trust region expansion ratio 2
η Constraint decrease requirement 0.995
ξ Radial basis function correlation length 2

Maximum SNOPT iterations, normal step 800
Maximum SNOPT iterations, tangential step 800

SNOPT objective value tolerance 1×10−2ε
(k+1)3

SNOPT constraint violation tolerance 1×10−4ε
(k+1)3

SNOPT initial penalty, tangential step (k+1)3

ε

Table 6.5: List of parameters used in the gradient-based AAO algorithm. The parameters
used in constructing the radial basis function error models are given in Table 2.2.

6.3 Summary

This chapter has demonstrated that the multifidelity framework for multidisciplinary opti-

mization developed in this thesis is capable of optimizing complex, highly-coupled, systems

with computationally expensive analyses. The results showed that the framework does not

require gradient information to find an optimal design, though it is capable of exploiting gra-

dient information when available to speed optimization. Modifications to the gradient-free

algorithm to handle evaluation failures were shown to result in a robust optimization frame-

work that yielded optimal designs when many conventional approaches failed. In addition,

the parallelized IDF framework meets or exceeds the performance of serial system design

methods, and the MDF framework successfully reduced the time to optimize an aerostruc-

tural system by approximately half.
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Figure 6-10: Comparison of initial (blue squares) and final (red circles) FFD control point
locations and the unloaded final wing configuration.

(a) Low-Fidelity von-Mises stress normalized by
aluminum 7075 yield stress.

(b) High-Fidelity von-Mises stress normalized by
aluminum 7075 yield stress.

Figure 6-11: Von-Mises stress contour plot on the deformed and undeformed Q400 wingbox.
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(a) Low-Fidelity Cp distribution. (b) High-Fidelity Cp distribution.

Figure 6-12: Cp distribution contour plot on the deformed Q400 wing.
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Chapter 7

Conclusions and Future Work

The objective of this thesis is to develop methods to aid the design and optimization of

multidisciplinary systems that are analyzed with expensive simulations. The challenges ad-

dressed are a lack of design sensitivity information, the need to best exploit design sensitivity

information when available, and the ability to parallelize the design process. A summary of

the work done to meet each objective is given in the following section, which is followed by a

specific list of the contributions made, the general conclusions that can be drawn from this

research, and finally a discussion of future research that should be considered.

7.1 Thesis Summary

This thesis developed multifidelity methods to speed optimization problems containing costly

analyses. Chapter 2 presented a multifidelity optimization method for expensive optimiza-

tion problems in which sensitivity information is unavailable. In addition, Chapter 2 also

presented a method to combine information from multiple fidelity levels to best predict a

high-fidelity analysis result. Chapter 3 presented multifidelity optimization methods appli-

cable to non-linearly constrained optimization problems for which sensitivity information

is unavailable. Chapter 4 presented a multifidelity optimization method to best exploit

high-fidelity sensitivity information when it is available. These multifidelity optimization

methods then served as a framework for the multidisciplinary optimization methods devel-
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oped in Chapter 5. The two multidisciplinary methods developed speed the optimization of

a system comprising multiple interacting subsystems through both multifidelity optimization

and parallelization. The multifidelity and multidisciplinary optimization framework devel-

oped in Chapters 2 through 5 were demonstrated on two multifidelity and multidisciplinary

aerostructural design problems in Chapter 6.

7.2 Contributions

This thesis contains the following contributions:

1. Created a Bayesian model calibration framework that synthesizes multiple sources of

lower-fidelity information to accurately estimate high-fidelity performance.

2. Developed a multifidelity optimization methodology that does not require high-fidelity

gradient information, is broadly applicable, and sufficiently robust for industry-level

design problems.

3. Proposed a parallelized multidisciplinary optimization framework that handles mul-

tiple disciplines with multiple fidelity levels, enabling a flexible and efficient system

optimization process.

4. Successfully optimized a tightly coupled aerostructural aircraft design problem where

other optimization methods failed due to unavailable gradient information, non-smoothness

and evaluation failures.

7.3 Conclusions

This thesis has presented a multifidelity framework for optimization of multidisciplinary

systems that does not require estimating gradients of high-fidelity functions, enables the use

of multiple low-fidelity models, enables optimization of functions with hard constraints, and

exhibits robustness over a broad class of optimization problems, even when non-smoothness

is present in the objective function and/or constraints. In addition, this thesis developed
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two methods to parallelize the design of multidisciplinary systems, a method to optimize

individual disciplines in parallel, and a method to evaluate candidate designs in parallel.

The complete framework is applicable to a broad class of optimization problems, and for

all test cases in this thesis, the presented methods met or exceeded the performance of

comparable methods.

Three single-discipline gradient-free multifidelity methods were developed in this thesis,

one unconstrained method, and two constrained methods. The unconstrained method is

proven to converge to a locally optimal high-fidelity solution, and a theoretical analysis of

the two constrained formulations is presented in order to discuss performance limitations

and robustness. For airfoil design problems, these approaches have been shown to perform

similarly in terms of the number of function evaluations to finite-difference-based multifidelity

optimization methods. Moreover, when compared with single-fidelity optimization methods,

the single-discipline gradient-free methods provide a 70 to 90% reduction in high-fidelity

evaluations. The methods are demonstrated to be robust in the presence of computational

noise, and in theory should also be able to solve a broad class of optimization problems such

as optimizing analysis results that often fail, are non-smooth, or are experimental. This

suggests that the multifidelity derivative-free approaches are a promising alternative for the

wide range of problems where finite-difference gradient approximations are unreliable.

This thesis has also shown that a multifidelity optimization method based on a maximum

likelihood estimator is an effective way of combining many fidelity levels to optimize a high-

fidelity function. The maximum likelihood estimator permits flexible sampling strategies

among the low-fidelity models and is robust with respect to poor low-fidelity estimates. In

addition, the estimator offers a natural and automated way of selecting among different mod-

els that are known to be accurate in different parts of the design space, which is frequently

the case in engineering design.

This thesis extended the maximum likelihood estimation multifidelity optimization ap-

proach to gradient-exploiting optimization. This method attempts to best use high-fidelity

gradient information by constructing gradient-exploiting surrogate models of high-fidelity

analyses. The results showed that for both structural design and airfoil shape optimization
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the gradient-exploiting multifidelity formulation reduced the number of high-fidelity evalu-

ations compared with single-fidelity methods. In addition, the method met or exceeded the

performance of other gradient-based multifidelity methods. However, it was determined that

the computational cost of constructing the gradient-exploiting surrogates scales poorly with

dimension and the reuse of inaccurate gradient information is detrimental to performance.

Therefore, this technique only seems practical for optimization when simulations are quite

expensive and the dimension of the design space is small.

The single-disciplinary multifidelity optimization methods developed in this thesis serve

as a foundation for two multidisciplinary system design strategies. The methods are novel in

that they enable parallelized optimization of systems for which design sensitivity information

is not available. For the example problems presented, the parallel IDF formulation is compet-

itive with single-level multidisciplinary optimization formulations with two-disciplines and

occasionally exceeds performance of single-level formulations with three disciplines. This is

an encouraging result as bilevel multidisciplinary optimization methods typically perform

slower than their single-level counterparts. An important attribute of the parallel IDF for-

mulation is that it enables exploitation of aspects of the individual disciplines that may speed

the discipline-level optimizations, for example, the ability to use gradient-based optimiza-

tion, gradient-free optimization, or multifidelity optimization. The parallel AAO approach

is applicable to general equality constrained optimization problems. The method does not

require gradient information, though it can exploit it when available. For the example prob-

lems presented, the performance of the method is competitive with gradient-based methods

even when no low-fidelity model is used. In addition, it is demonstrated by optimizing a

three-dimensional wing, that these multidisciplinary optimization methods are even capable

of optimizing systems with high-bandwidth coupling. Both methods successfully found op-

timal aerostructural designs. The performance of these methods on all test problems in this

thesis suggest they offer a significant opportunity to design multidisciplinary systems.
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7.4 Future Work

Many avenues for further research relating to these methods are apparent. The first is to

test the multidisciplinary methods on other systems with more than two disciplines. It is

an open question if the performance observed on the simple three-discipline test cases and

the aerostructural design problem extend to real-world systems with multiple disciplines.

Similarly, it is an open question what the most effective processor load balancing is for

multidisciplinary systems. The two multidisciplinary methods are parallelizable, but simply

distributing smaller optimization problems or function evaluations to available processors

may not be the most effect use of the processors. When disciplines include parallelized

simulations or when it is possible to both optimize disciplines and evaluate simulations in

parallel, it is unknown what the best uses of the computational resources are.

The parallel IDF method developed in this thesis occasionally converged slower than

the other multidisciplinary methods tested. Perhaps it is possible to combine an augmented

Lagrangian trust region framework [30, 31] with the parallelized structure of the IDF method

presented. Since the trust-region augmented Lagrangian method is globally convergent this

could add robustness to the IDF method developed. In addition, if it were possible to

combine the optimization over the targets and the system design variables, the IDF method

may be able to converge faster. It was mentioned that this decreased stability, however, if

the stability of this approach is improved, either through a trust-region method or otherwise,

then reducing the number of directions being alternated may speed convergence of the IDF

method.

In addition, the aerostructural optimization problem demonstrated a reduced-dimensional

coupling to speed the system optimization. Current multidisciplinary optimization methods

only consider multiple fidelity levels within a discipline or for the entire system model, they

do not address multifidelity system couplings. Perhaps there is an opportunity to speed

system design using multifidelity couplings or using reduced order models to reduce the di-

mensionality of the system couplings adaptively. This idea offers a chance to reduce the

cost of the discipline-level optimization problems, and the ability to reduce work needed to
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satisfy multidisciplinary constraints. Similarly, a design space of increasing fidelity may also

speed system design. For example, starting with a simple parameterization of a system is

it possible to both optimize the system and add design resolution at the same time? It is

simpler to optimize low-dimensional problems, and by starting with few design parameters

the initial optimal system designs can be found quickly. Then through an adjoint or other

approach detect where more design parameters are necessary and evolve both the design and

design space simultaneously.
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Appendix A

Details of AAO Trust-Region

Algorithm Theory

This appendix presents details of the theory to support the observed convergence behavior

of the AAO Trust-Region Algorithm presented in Section 5.3.3. The appendix is separated

into four sections, it first demonstrates (i) the constraint violation reduction obtained at

each iteration in Section A.1, and then discusses (ii) the interaction between the constraint

violation and the trust region size caused by the filter in Section A.2. It then discusses

the objective function and (iii) the reduction obtained at each iteration when the constraint

violation is small in Section A.3, and concludes by showing (iv) that the filter acceptance

criteria ensures that all limit points of Algorithm 5.2 are optimal solutions to (5.24) in

Section A.4.

To simplify the notation in this section, we consider x to have dimension n and H(x) to

have dimension m, and define κ∇H =
√
mnmaxi=1,...,m{κig}, where κg is from the definition

of a fully linear model Eq. 2.7. From the properties of norms, this enables us to write a fully

linear condition for the Jacobian of the surrogate models, ‖∇H(x) − ∇H̄(x)‖ ≤ κ∇H∆k.

Similarly, we define κH =
√
mmaxi=1,...,m{κif} in order to write ‖H(x) − H̄(x)‖ ≤ κH∆2

k.
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All norms in this section should be interpreted as the 2-norm unless otherwise stated.1,2

A.1 Constraint Violation Decrease Demonstration

In this section we show that for any trust region sufficiently small and under assumptions

AAO1 and AAO4 then the fraction of Cauchy decrease conditions in Eqs. 5.27 and 5.30

ensure a decrease in the constraint violation, ‖H(xk + sk)‖ < ‖H(xk)‖. As the constraint

Jacobian has full row rank (Assumption AAO4), then if the constraint violation is non-

zero there exists a positive constant, %(xk), such that ‖∇H(xk)
>H(xk)‖ = %(xk) > 0.

This fact enables us to bound the error between the surrogate quantity used in Eqs. 5.27

and 5.30, ‖∇H̄k(xk)
>H(xk)‖, and the high-fidelity counterpart, ∇H(xk)

>H(xk). (Note:

H̄(xk) = H(xk) by construction.) Using assumptions AAO1, AAO4, and the definition of a

fully linear model,

∇H(xk)
>H(xk)−∇H̄k(xk)

>H(xk) =
[
∇H(xk)−∇H̄k(xk)

]>H(xk)

‖∇H(xk)
>H(xk)−∇H̄k(xk)

>H(xk)‖ = ‖
[
∇H(xk)−∇H̄k(xk)

]>H(xk)‖

≤ ‖∇H(xk)
> −∇H̄k(xk)

>‖‖H(xk)‖

≤ κ∇H∆k‖H(xk)‖,

therefore,

‖∇H̄k(xk)
>H(xk)‖ ≥ %(xk)− κ∇H∆k‖H(xk)‖. (A.1)

1A commonly used identity in this section is that ‖a− b‖ ≤ c =⇒ ‖a‖ ≥ ‖b‖ − c. A proof of this is,

b = b− a + a

‖b‖ = ‖b− a + a‖
≤ ‖b− a‖+ ‖a‖
≤ c+ ‖a‖

2Another commonly used identity is that for any finite positive constants a and b and positive sequence
{∆k} with limk→∞∆k = 0, there exists a ∆k such that a∆k − b∆2

k >
a
2∆k.
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We may now use this bound to show that for small ∆k, the decrease conditions in Eqs. 5.27

and 5.30 ensure

‖Hk(xk)‖2
2 − ‖H̄k(xk + s⊥k )‖2

2 ≥ 2κfcd%(xk)∆k − 2κfcdκ∇H‖H(xk)‖∆2
k. (A.2)

We have so far shown for Eq. 5.27,

‖H̄k(xk)‖2
2 − ‖H̄k(xk + s⊥k )‖2

2 ≥ (A.3)

2κfcd (%(xk)− κ∇H∆k‖H(xk)‖) min
{

∆k,
%(xk)−κ∇H∆k‖H(xk)‖

‖∇H̄(xk)>∇H̄(xk)+
∑m

i=1 h̄
i
k(xk)∇2h̄ik(xk)‖

}
,

and similarly for Eq. 5.30 that,

‖H̄k(xk)‖2
2 − ‖H̄k(xk + s⊥k )‖2

2 ≥ (A.4)

2κfcd (%(xk)− κ∇H∆k‖H(xk)‖) min
{

∆k,
%(xk)−κ∇H∆k‖H(xk)‖
‖∇H̄(xk)>∇H̄(xk)‖

}
.

For ∆k sufficiently small, Eq. A.3 is equivalent to Eq. A.4, because in both cases the min

operator returns ∆k. It can be shown the alternative to the trust region size in the min

operator is bounded from below when the constraint violation is nonzero,

‖∇H̄(xk)
>H̄(xk)‖

‖∇H̄(xk)>∇H̄(xk)‖+m‖H̄(xk)‖κm
≥ (A.5)

%(xk)− κ∇H∆k‖H(xk)‖
‖∇H(xk)‖2 + 2κ∇H‖∇H(xk)‖∆k + κ2

∇H∆2
k +m‖H(xk)‖κm

= δ1(xk),

where, κm is the maximum Lipschitz constant for any constraint gradient in ∇H̄(x). We can

establish that δ1(xk) > 0 by examining this bound for small ∆k (noting, κ∇H∆k‖H(xk)‖ →

0), and the definition of κτ is from AAO4),

δ1(xk) >
%(xk)

4‖∇H(xk)‖2 +m‖H(xk)‖κm
>

κτ‖H(xk)‖
4κ2

d +mκm‖H(xk)‖
. (A.6)

Accordingly, for all ∆k sufficiently small we have shown that Eq. A.2 holds.

Algorithm 5.2 enables switching from minimizing the 2-norm of the constraint violation
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to the Gauss-Newton step when computing the tangential step. A bound for the maximum

error between the surrogate model constraint violation, 1
2
‖H̄(xk + s⊥k )‖2

2, and the quadratic

approximation, bk(s
⊥
k ) in Eq. 5.31, within a trust region is κm‖H̄(xk)‖∆2

k + 1
4
κ2
m∆4

k [83,

Pages 294-5]. Combining Eq. A.2, the additional error possible when switching to the Gauss-

Newton step from the 2-norm step, and the constraint relaxation in the calculation of the

tangential step, bk(0)− bk(sk) ≥ η
[
bk(0)− bk(s⊥k )

]
, we have that

bk(0)− bk(sk) ≥ η

[
κfcd%(xk)∆k − κfcdκ∇H∆k‖H(xk)‖∆2

k − κm‖H̄(xk)‖∆2
k −

1

4
κ2
m∆4

k

]
.(A.7)

Now each iteration of Algorithm 5.2 with ∆k sufficiently small ensures

1

2
‖H(xk)‖2 − 1

2
‖H̄(xk + sk)‖2 ≥ (A.8)

η

[
κfcd%(xk)∆k − κfcdκ∇H∆2

k‖H(xk)‖ − 2

(
κm‖H(xk)‖∆2

k +
1

4
κ2
m∆4

k

)]
.

In addition, from the definition of a fully linear model, we have that ‖H(x)−H̄(x)‖ ≤ κH∆2
k,

from which we can establish at any x in the trust region,

‖H(x)‖ ≤ ‖H̄(x)‖+ κH∆2
k

‖H(x)‖2 ≤ ‖H̄(x)‖2 + 2κH‖H̄(x)‖∆2
k + κ2

H∆4
k.

Combining these results with the result in Eq. A.8, a necessary conclusion is

‖H(xk)‖2 − ‖H(xk + sk)‖2 ≥ (A.9)

2η

[
κfcd%(xk)∆k − κfcdκ∇H∆2

k‖H(xk)‖ − 2

(
κm‖H(xk)‖∆2

k +
1

4
κ2
m∆4

k

)]
−2κH‖H̄(xk + sk)‖∆2

k − κ2
H∆4

k.

Therefore, there must exist a δ2(xk) > 0 such that for each ∆k ∈ (0, δ2(xk)) steps computed

by Algorithm 5.2 ensure (5.36),

‖H(xk)‖2 − ‖H(xk + sk)‖2 ≥ ηκfcd∆k%(xk).
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Which means that the steps generated by Algorithm 5.2 decrease the squared constraint

violation proportionally to the size of the trust region size as the trust region gets small. We

now demonstrate this decrease must be acceptable by the filter for small ∆k.

A.2 Constraint Violation and Filter Interaction

In this section we demonstrate two important properties of the filter, first, that the filter

acceptance criteria ensures that either the trust region size decreases to zero or the constraint

violation decreases to zero, and second, that when the trust region is small, the decrease

established in Eq. 5.36 is acceptable to the filter.

To demonstrate that the iterates acceptable by the filter guarantee that either the

trust region size decreases to zero or the constraint violation decreases to zero, (5.37),

limk→∞ ‖H(xk)‖∆k = 0, we need assumptions AAO2 and AAO3 and to consider two cases,

(i) the number of iterates accepted by the filter is finite and (ii) the number of iterates ac-

cepted by the filter is infinite. In the first case, if a finite number of iterates are accepted

by the filter, then after a final iterate is accepted, there remains an infinity of iterates that

will be rejected by the filter and ∆k → 0. In addition, ‖H(xk)‖ ≤ ‖H(x0)‖ < ∞, so this

case is complete. In the second case, if an infinite number of iterates are accepted by the

filter then the sufficient decrease condition ensures that at least ∆k or ‖H(xk)‖ must go to

zero. Consider the area enclosed by the Pareto front of constraint violation and objective

function values, the upper bound on constraint violation, ‖H(x0)‖, and the upper bound for

the objective function on the domain Ω, F(xmax),

G = {(F(x), ‖H(x)‖)|∀x ∈ Ω,F(x) ≤ F(xmax) and ‖H(x)‖ ≤ ‖H(x0)‖} .

(G is shown graphically in Figure A-1, left.) The filter dominates an area,

F =
{

(F(x), ‖H(x)‖)|∀x ∈ Ω, ∃k̂ ∈ [1, . . . , k] : F(xk̂) ≤ F(x) and ‖H(xk̂)‖ ≤ ‖H(x)‖,

and F(x) ≤ F(xmax), and ‖H(x)‖ ≤ ‖H(x0)‖} ,

197



that must be a subset of the Pareto area, F ⊆ G. (F is shown graphically in Figure A-1,

center.) In addition, there is a restricted area in front of the filter which is imposed by the

sufficient decrease condition in the filter acceptance criteria,

{
(F(x), ‖H(x)‖)|k̂ ∈ [1, . . . , k] : F(xk̂)− β∆̂2

k ≤ F(x) and (A.10)

(1− β∆̂2
k)‖H(xk̂)‖ ≤ ‖H(x)‖, (F(x), ‖H(x)‖) /∈ F

}
,

in which no points are considered acceptable to the filter. (The restricted area is shown

graphically in Figure A-1, right.)

Figure A-1: Graphic function Pareto area, filtered area, and unacceptable but not filtered
area.

The size of the area enclosed by the filter, F , increases with every iterate accepted by the

filter. Ordering points on the filter by decreasing constraint violation (as on Figure 5-4) the

area that must be added to F by accepting a point on the filter between two adjacent points

i and i + 1 is β∆2
k × β∆2

k‖H(xi)‖. This holds for all intervals except for the final, between

(F(xl), ‖H(xl)‖) and (F(xmax), 0), where l is the number of points accepted by the filter.

So, for every iterate accepted to the filter with ‖H(xk)‖ ≥ ‖H(xl)‖ the filter area increases

by at least β2∆4
k‖H(xl−1)‖. However, because the area enclosed by the filter is contained

by the area enclosed by the Pareto front, F ⊆ G, the sum of the areas added to the filter

must be finite. Therefore if an infinite number of iterates are accepted to the filter with

‖H(xk)‖ ≥ ‖H(xl)‖, then the conclusion in (5.37) holds. Similarly, if an infinite number

of iterates are accepted to the filter with ‖H(xk)‖ < ‖H(xl)‖ then for xk to be accepted

by the filter the constraint violation at xk must sufficiently reduce the constraint violation
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at xl, i.e. ‖H(xk)‖ ≤ (1 − β∆2
k)‖H(xl)‖. So, the sum over the points added to the filter

with ‖H(xk)‖ < ‖H(xl)‖,
∑∞

l=1 β∆2
l ‖H(xl−1)‖ ≤ ‖H(x0)‖, is bounded and the conclusion

of (5.37) holds. Therefore, if an infinite number of points are accepted by the filter then

limk→∞ ‖H(xk)‖∆k = 0 and case (ii) is complete.

We now demonstrate that for each xk ∈ Ω there is a minimum size of the trust region for

which the filter accepts a nearby point with lower constraint violation. The filter accepts any

step provided that ‖H(xk + sk)‖ ≤ (1− β∆̂2
k)‖H(xk)‖. Meanwhile, Eq. 5.36 demonstrated

that for each ∆k ∈ (0, δ2(xk)),

‖H(xk + sk)‖ ≤ ‖H(xk)‖

√
1− ηκfcd∆k%(xk)

‖H(xk)‖2
.

Therefore, if
√

1− ηκfcd∆k%(xk)

‖H(xk)‖2 ≤ 1−β∆̂2
k, then xk + sk is acceptable to the filter, xk+1 6= xk

and ∆k+1 > ∆k. As both the left and right sides of the inequality are less than one, we

can establish that xk + sk is accepted by the filter when
ηκfcd%(xk)

‖H(xk)‖2 ≥ 2β∆k − β2∆3
k. As the

positive real root(s) of

∆k

(
1− β

2
∆2
k

)
=

ηκfcdκτ
2β‖H(xk)‖

are between
√

2 and +∞, each ∆k ∈ (0,min{δ2(xk),
√

2}) ensures xk + sk is acceptable to

the filter and that ∆k+1 > ∆k. The result is that the constraint violation of the sequence of

iterates generated by Algorithm 5.2 goes to zero.

A.3 Objective Function Improvement

To demonstrate that Algorithm 5.2 can find an optimal solution it is necessary to demonstrate

that Algorithm 5.2 decreases the value of the objective function if the current iterate is not

optimal. The challenge is that the normal step can cause the value of the objective function

to increase. We therefore must show that the increase in the objective function caused by

the normal step must become sufficiently small such that the tangential step can decrease
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the value of the objective function. We demonstrate this by considering the trust region

step, sk, projected into two directions, that in the surrogate Jacobian range-space and that

in the nullspace. We begin by showing that assumption AAO4, ensures that for each ∆k in

(0, κτ/κ∇H) the surrogate constraint Jacobian, ∇H̄(xk), has full row rank. For all p 6= 0,

‖∇H(xk)
>p‖ =

∥∥∥[∇H(xk) +∇H̄(xk)−∇H̄(xk)
]>

p
∥∥∥

≤
∥∥∥[∇H(xk)−∇H̄(xk)

]>
p
∥∥∥+ ‖∇H̄(xk)

>p‖

≤ κ∇H∆k‖p‖+ ‖∇H̄(xk)
>p‖,

therefore, min{‖∇H̄(xk)
>p‖/‖p‖} > κτ − κ∇H∆k, and for each ∆k in (0, κτ/κ∇H) the sur-

rogate constraint Jacobian has full rank.

From here, we show that when the constraint violation is small the component of the

normal step in the range-space of the constraint Jacobian is in the strict interior of the

trust region. Specifically, let Q̄k ∈ Rn×n be an orthogonal projection onto the range-space

of ∇H̄(xk), then for a small ε and 0 ≤ ‖H̄(xk)‖ < ε we have ‖Q̄ks
⊥
k ‖ < ∆k. Consider

a quadratic approximation to the squared constraint violation objective function in (5.25).

When ∆k is small we may use the exact solution to the quadratic approximation of (5.25)

and the sufficient decrease condition in Eq. 5.26 to establish bounds for Q̄ks
⊥
k . We then show

that as the constraint violation approaches zero the component of s⊥k in the range-space of

the constraint Jacobian is in the interior of the trust region, i.e. ‖Q̄ks
⊥
k ‖ < ∆k.

The quadratic approximation of objective function in (5.25) is

1

2
‖H̄k(xk + s⊥)‖2

2 ≈ (A.11)

1

2

(
s⊥
)> [∇H̄k(xk)

>∇H̄k(xk) +
m∑
i=1

h̄ik(xk)∇2h̄ik(xk)

]
s⊥

+
(
s⊥
)>∇H̄k(xk)

>H̄k(xk) +
1

2
H̄k(xk)

>H̄k(xk),

and for simplicity we denote the Hessian with the matrix, Āk = ∇H̄k(xk)
>∇H̄k(xk) +
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∑m
i=1 h̄

i
k(xk)∇2h̄ik(xk), and the gradient at s⊥ = 0 as, B̄k = ∇H̄k(xk)

>H̄k(xk),

1

2
‖H̄k(xk + s⊥)‖2

2 ≈
1

2

(
s⊥
)>
Āks

⊥ + s⊥T B̄k +
1

2
H̄k(xk)

>H̄k(xk). (A.12)

Let s̃⊥∗k be such that ‖H̄k(xk + s̃⊥∗k )‖2
2 = 0. As yk = xk + s̃⊥∗k is a local minimum, then there

exists a region with ‖H̄(yk)‖ < ε1 where Āk is positive semi-definite. When Āk is positive

semi-definite, the minimal norm exact minimizer of this quadratic is s̃⊥∗k = −Ā†kB̄k, where

(·)† denotes the Moore-Penrose pseudo-inverse. (Note: even if the normal step problem

were solved exactly the trust region constraint enforces ‖s⊥∗k ‖ ≤ ‖s̃⊥∗k ‖.) For this quadratic

approximation, at the exact solution we have ‖H̄k(xk)‖2
2 − ‖H̄k(xk + s̃⊥∗k )‖2

2 =
[
Ā†kB̄k

]>
B̄k.

We now consider s̃⊥∗k in only the m-dimensional range-space of ∇H̄k(xk). We use the

truncated left singular vectors of ∇H̄k(xk) as a basis for the range-space. Let

∇H̄k(xk) = Ūk︸︷︷︸
m×n

Σ̄k︸︷︷︸
n×n

V̄ >k︸︷︷︸
n×n

, (A.13)

then we can represent the component of s⊥k in the range-space of ∇H̄k(xk) as the m-

dimensional vector šk. We then substitute s⊥k = Ū>k šk into Eq. A.12,

‖H̄k(xk + Ū>k š)‖2
2 ≈ š>ŪkĀkŪ

>
k š + 2š>ŪkB̄k + H̄k(xk)

>H̄k(xk). (A.14)

Furthermore, there exists an ε2 ≤ ε1 such that ‖H(yk)‖ < ε2 ensures that ŪkĀkŪk is positive

definite. Let the Cholesky Decomposition of ŪkĀkŪ
>
k = Γ̄>k Γ̄k. Now substituting šk = Γ̄−1

k s

into the quadratic approximation, Eq. A.14,

‖H̄k(xk + Ū>k L̄
−1
k s)‖2

2 ≈ s>s + 2s>
(
L̄−1
k

)>
ŪkB̄k + H̄k(xk)

>H̄k(xk). (A.15)

From the sufficient decrease condition for the normal step, Eq. 5.26, we know the solution

to Eq. 5.25 satisfies,

‖H̄k(xk)‖2
2 − ‖H̄k(xk + Ū>k L̄

−1
k s)‖2

2 ≥ κamm−H

[
Ā†kB̄k

]>
B̄k. (A.16)
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By completing the square in Eq. A.15 we see that the set of solutions that provide the

sufficient decrease in (A.16) satisfy

[
s +

(
L̄−1
k

)>
ŪkB̄k

]> [
s +

(
L̄−1
k

)>
ŪkB̄k

]
≤ (A.17)

B̄>k Ū
>
k L̄
−1
k

(
L̄−1
k

)>
ŪkB̄k − κamm−H

[
Ā†kB̄k

]>
B̄k.

It follows that s has bounded norm,

‖s‖2 ≤ ‖
(
L̄−1
k

)>
ŪkB̄k‖2 +

√
B̄>k

[
Ū>k L̄

−1
k

(
L̄−1
k

)>
Ūk − κamm−H

(
Ā†k

)>]
B̄k, (A.18)

and because B̄k is proportional to the constraint violation, we have established that for

each ∆k in (0, κτ/κ∇H) and ‖H(xk)‖ sufficiently small then ‖Q̄ks
⊥
k ‖ ≤ κconstraint‖H(xk)‖

for a positive constant, κconstraint. Accordingly, for ‖H(xk)‖ sufficiently small we have that

‖Q̄ks
⊥
k ‖ < ∆k, where we recall that Q̄k ∈ Rn×n is the orthogonal projection onto the range-

space of ∇H̄(xk).

We now demonstrate that, where P̄k, as given in (5.35), is an orthonormal projection

matrix into the nullspace of ∇H̄(xk) there exists an ε such that if ‖H(xk)‖ < ε and ∆k is

sufficiently small, then (5.39),

F̄k(xk)− F̄k(xk + sk) ≥ κfcd2‖P̄k∇F̄k(xk)‖∆k

holds. We demonstrate the decrease in (5.39) in two parts, first, we develop a simple opti-

mization problem that will enable us to place an upper bound on the value of the exact solu-

tion to the tangential step optimization problem, (5.32). We then combine this upper bound

with the sufficient decrease requirement in Eq. 5.33, which enables us to enforce an upper

bound for the value of the surrogate objective at sk. We then show the decrease in (5.39) is

ensured for ‖H(xk)‖ < ε and ∆k is sufficiently small. We also note that if in lieu of the Gauss-

Newton constraint we use ‖H(xk + sk)‖2 ≤ ‖H(xk)‖2 − η
[
‖H(xk)‖2 − ‖H(xk + s⊥k )‖2

]
, (5.28),

then this set is also convex for ‖H(xk)‖ < ε and this analysis will hold, though with different
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constants.

Let this convex constraint set in (5.32) be denoted E. It is contained between the

hyperplane in the nullspace of ∇H̄(xk) located at ηQ̄ks
⊥
k and the trust region,

E =
{
s|Q̄ks > ηQ̄ks

⊥
k and ‖s‖ ≤ ∆k

}
(A.19)

(see Figure A-2). Because E is convex, from any starting point in E it is possible to reach

the minimum of F̄(s) for all s ∈ E.

Figure A-2: Schematic of vectors and constraint Jacobian nullspace within a trust region.
Also highlighted (in light green) is the convex set formed by the constraints in Eq. 5.32 using
the Gauss-Newton constraint (left) and the quadratic approximation to the 2-norm of the
constraint violation (right).

Therefore we consider minimizing the surrogate objective function within the nullspace

of the surrogate constraint Jacobian and the trust region. This can be written as an opti-

mization problem to find the step sNk minimizing the surrogate objective function at a point
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located in the nullspace of ∇H̄(xk) and with length less than
√

1− η2∆k,

min
sNk

F̄k(xk + ηQ̄ks
⊥
k + sNk ) (A.20)

s.t. ‖P̄ksNk ‖ ≤
√

1− η2∆k

‖Q̄ks
N
k ‖ = 0.

The constraint set in this optimization problem is a subset of E, so the minimum of this

optimization problem provides an upper bound for the minimal value of F̄(s) for all s ∈ E.

Moreover, from [31, Lemma 15.4.2], the exact solution to (A.20) satisfies

F̄k(xk + ηQ̄ks
⊥
k )− F̄k(xk + ηQ̄ks

⊥
k + sNk ) ≥ (A.21)

1

2
‖P̄k∇F̄k(xk + ηQ̄ks

⊥
k )‖min

{√
1− η2∆k

‖P̄k‖
,
‖P̄k∇F̄k(xk + ηQ̄ks

⊥
k )‖

βT

}
,

where βT is an upper bound for the Hessian of F̄(x) projected into the nullspace of ∇H̄(xk)

within the trust region. We may now use F̄k(xk + ηQ̄ks
⊥
k + sNk ) as an upper bound for

F̄k(xk + ηQ̄ks
⊥
k + s

‖∗
k ) which is the exact solution to Eq. 5.32.

When ∆k is sufficiently small that the min operator in (A.21) returns ∆k and ‖H(xk)‖ <

ε, then the exact solution to Eq. 5.32, s
‖∗
k satisfies,

F̄k(xk)− F̄k(xk + s⊥k + s
‖∗
k ) = F̄k(xk)− F̄k(xk + ηQ̄ks

⊥
k ) + F̄k(xk + ηQ̄ks

⊥
k )− F̄k(xk + s⊥k + s

‖∗
k )

≥ F̄k(xk + ηQ̄ks
⊥
k )− F̄k(xk + s⊥k + s

‖∗
k )− ‖F̄k(xk)− F̄k(xk + ηQ̄ks

⊥
k )‖

≥ 1

2
‖P̄k∇F̄k(xk + ηQ̄ks

⊥
k )‖∆k − ηκconstraint‖H(xk)‖

≥ 1

2
‖P̄k

[
∇F̄k(xk + ηQ̄ks

⊥
k )−∇F̄k(xk) +∇F̄k(xk)

]
‖∆k

−ηκconstraint‖H(xk)‖

≥
√

1− η2

2
‖P̄k∇F̄k(xk)‖∆k − κf∆2

k − ηκconstraint‖H(xk)‖.

In addition, a bound for the maximum increase in the surrogate objective between xk and
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xk + s⊥k is

|F̄(xk + s⊥k )− F̄(xk)| = |∇F̄(xk)
>s⊥k +

1

2
s⊥Tk ∇2F̄(xk + ts⊥k )s⊥k |

≤ |∇F̄(xk)
>s⊥k |+ (κg + κfg)‖s⊥k ‖2

≤ |Q̄k∇F̄(xk)
>(Q̄ks

⊥
k )|+ |P̄k∇F̄(xk)

>(P̄ks
⊥
k )|+ (κg + κfg)∆

2
k

≤ ‖Q̄k∇F̄(xk)‖‖Q̄ks
⊥
k ‖+ ‖P̄k∇F̄(xk)‖∆k + (κg + κfg)∆

2
k

≤ ‖Q̄k∇F̄(xk)‖κconstraint‖H(xk)‖+ ‖P̄k∇F̄(xk)‖∆k + (κg + κfg)∆
2
k.

For large k, ‖H(xk)‖ becomes arbitrarily small, and similarly for small ∆k, ∆2
k becomes

small compared with ∆k. Therefore for large k and small ∆k there exists an arbitrarily

small positive constant, κ1, such that,

‖Q̄k∇F̄(xk)‖κconstraint‖H(xk)‖+ (κg + κfg)∆
2
k ≤ κ1‖P̄k∇F̄(xk)‖∆k. (A.22)

We have now shown that for large k and small ∆k that there exists a s
‖∗
k which reduces the

surrogate objective at least F̄k(xk) − F̄k(xk + s⊥k + s
‖∗
k ) ≥

(√
1−η2
2
− κ1

)
‖P̄k∇F̄k(xk)‖∆k.

We have also shown that the largest increase in the surrogate objective function caused by

the normal step is at most |F̄(xk + s⊥k ) − F̄(xk)| ≤ (1 + κ1) ‖P̄k∇F̄(xk)‖∆k. Therefore,

if κamm−F in the sufficient decrease requirement, Eq. 5.33, is greater than 2+κ1

2+
√

1−η2
then

the surrogate objective function is decreased at least proportionally to the projection of the

surrogate objective gradient into the surrogate constraint Jacobian, i.e. such that F̄k(xk)−

F̄k(xk + sk) ≥ κfcd2‖P̄k∇F̄k(xk)‖∆k, where κfcd2 ∈ (0, 1).

We now establish that for each trust region sufficiently small, there must be a decrease

in the objective function proportional to the actual optimality condition, ‖Pk∇F(xk)‖. By

bounding the error ‖Pk∇F(xk)−P̄k∇F̄(xk)‖, we are able to show that for small ∆k, Eq. 5.39

ensures (5.41), that

F(xk)−F(xk + sk) ≥
κfcd2

2
‖Pk∇F(xk)‖∆k.
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We begin with the identity,

Pk∇F(xk)− P̄k∇F̄(xk) =
[
Pk − P̄k

]
∇F(xk)− P̄k

[
∇F̄(xk)−∇F(xk)

]
.

Since ∇H̄k(xk) has full rank for each ∆k ∈ (0, 1
2
κτ/κ∇H), assumption AAO1 tells us that

‖P̄k‖2 is bounded, and by the definition of a fully linear model,

‖Pk∇F(xk)− P̄k∇F̄(xk)‖ ≤
[
Pk − P̄k

]
∇F(xk) + κ1(xk)∆k.

We now develop a bound for ‖Pk − P̄k‖,

Pk − P̄k =

∇H(xk)
> (∇H(xk)∇H(xk)

>)−1∇H(xk)−∇H̄k(xk)
> (∇H̄k(xk)∇H̄k(xk)

>)−1∇H̄k(xk)

=
[
∇H(xk)−∇H̄k(xk)

]> (∇H̄k(xk)∇H̄k(xk)
>)−1∇H̄k(xk)

+∇H(xk)
>
[(
∇H(xk)∇H(xk)

>)−1 −
(
∇H̄k(xk)∇H̄k(xk)

>)−1
]
∇H̄k(xk)

+∇H(xk)
> (∇H(xk)∇H(xk)

>)−1 [∇H(xk)−∇H̄k(xk)
]
.

Using the definition of a fully linear model, the bounds in assumption AAO1, and the full

rank assumption for ∇H(xk) then

‖Pk − P̄k‖ ≤

κ2(xk)∆k + κ3(xk)
[(
∇H(xk)∇H(xk)

>)−1 −
(
∇H̄k(xk)∇H̄k(xk)

>)−1
]

+ κ4(xk)∆k.

We use the identity, A−1 +B−1 = A−1(A+B)B−1 [103], in order to establish the bound,

‖
(
∇H(xk)∇H(xk)

>)−1 −
(
∇H̄k(xk)∇H̄k(xk)

>)−1 ‖

≤ 1

(κτ − κ∇H∆k)2
‖∇H(xk)∇H(xk)

> −∇H̄k(xk)∇H̄k(xk)
>‖ 1

κ2
τ

≤ κ5(xk)∆k.

As, ‖Pk − P̄k‖ ≤ κ6(xk)∆k, and ‖F(xk)‖ is bounded, we have established that for ∆k <
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1
2
κτ/κ∇H,

‖Pk∇F(xk)− P̄k∇F̄(xk)‖ ≤ κ7(xk)∆k,

Furthermore, let the maximum of κ7(xk) ∈ Ω be κ8, κ8 > 0. Then from Eq. 5.39 and the

definition of a fully linear model, Eq. 2.8, we obtain that

F(xk)−F(xk + sk) ≥ κfcd2‖Pk∇F(xk)‖∆k − κF∆2
k − κ8∆2

k. (A.23)

Accordingly for all ∆k such that (κF + κ8) ∆2
k <

κfcd2
2
‖Pk∇F(xk)‖∆k, we have established

the decrease condition in (5.41).

A.4 Objective Function and Filter Interaction

We have so far shown that the sequence of iterates generated by Algorithm 5.2 decrease the

constraint violation to zero, and that when both the constraint violation and trust region are

small, then the objective function value decreases proportionally to the trust region size and

a measure of optimality. We now consider the case when the constraint violation is small,

‖H(xk)‖ < ε, but xk is not optimal, i.e. ‖Pk∇F(xk)‖ > 0.

To demonstrate first-order optimality, we will assume for the purpose of contradiction

that limk→∞ ‖Pk∇F(xk)‖ 6= 0, or, equivalently, that there exists an ε3 > 0 such that

limk→∞ ‖Pk∇F(xk)‖ = ε3. We now show that this leads to a lower bound for the size

of the trust region, ∆k > ∆min > 0, and a necessary contradiction ensues.

As the current xk is always on the current filter, we need to consider two cases, (i)

the constraint violation of the current iterate is arbitrarily small but greater than zero, i.e.

‖H(xk)‖ ∈ (0, ε4) and (ii) the iterate exactly satisfies the constraints. (Figure A-3 shows

these two potential configurations of the filter, and the index l notes the number of the point

on the filter in order of decreasing constraint violation.) To demonstrate ∆k is bounded

from below, we need to show that if xk is not first-order optimal then a step computed by

Algorithm 5.2, xk + sk, must be accepted by the filter with F(xk + sk) < F(xl), where F(xl)
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is the value of the objective function of the iterate on the filter with the lowest constraint

violation.

Figure A-3: Possible filter configurations as the constraint violation of xk approaches zero.

The filter acceptance criteria requires that any new point is non-dominated, so for both

cases (i) and (ii) the acceptance criteria is,

F(xk + sk) ≤ F(xl)− β∆2
k or ‖H(xk + sk)‖ ≤ (1− β∆2

k)‖H(xl−1)‖. (A.24)

Which means in case (i) the accepted point must dominate xl, both the function value and

constraint violation, if only the constraint violation is lower and not also the function value

this only shows that the constraint violation at x∗ is zero and not that x∗ is first-order

optimal. However, in case (ii) the accepted point must lie on the filter between xl−1 and xl

or it may dominate xl.

We have shown for all ∆k sufficiently small, the objective function decreases proportion-

ally to the optimality metric, ‖Pk∇F(xk)‖, (5.41). Accordingly if ∆k is small enough that

(5.41) holds, then each ∆k < κfcd‖Pk∇F(xk)‖/2β ensures the objective function reduction

requirement of the filter is met. However, to show that xk + sk is non-dominated, we also

must show that ‖H(xk + sk)‖ < (1− β∆2
k)‖H(xl−1)‖.

In case (i), ‖H(xk)‖ = ‖H(x1)‖ > 0, then by (5.36) any ∆k ∈ (0, δ2(xk) ensures ‖H(xk +

sk)‖ is also acceptable to the filter and that xk + sk is non-dominated. Accordingly, there

exists a minimal trust region size for each xk in Ω below which the step computed by

208



Algorithm 5.2 must be non-dominated and acceptable to the filter. Therefore, case (i) is

complete.

In case (ii) if ‖H(xk)‖ = ‖H(xl)‖ = 0, then for xk + sk to be accepted the filter requires

‖H(xk + sk)‖ ≤ (1 − β∆2
k)‖H(xl−1)‖. The use of the Gauss-Newton approximation in

the tangential step calculation enables the surrogate model constraint violation to be as

large as, ‖H̄(xk + sk)‖ ≤ 2
(
κm‖H(xk)‖∆2

k + 1
4
κ2
m∆4

k

)
. By the definition of a fully linear

model, Eq. 2.8, ‖H(xk + sk)‖ ≤ 2
(
κm‖H(xk)‖∆2

k + 1
4
κ2
m∆4

k

)
+ κH∆2

k. The filter guarantees

that ‖H(xl−1)‖ > 0, therefore a positive ∆k ensures 2
(
κm‖H(xk)‖∆2

k + 1
4
κ2
m∆4

k

)
+ κH∆2

k ≤

(1− β∆2
k)‖H(xl−1)‖. Accordingly, there exists a minimal trust region size for each xk in Ω

below which the step computed by Algorithm 5.2 must be non-dominated and acceptable to

the filter. Therefore, case (ii) is complete.

Assuming ‖Pk∇F(xk)‖ > 0, we have now shown that for each xk in Ω there exists a

minimum trust size, and let ∆min be the smallest size of this trust region in Ω. Therefore, for

all k sufficiently large, F(xk)−F(xk + sk) ≥ 1
2
κfcd2ε3∆min. This is a necessary contradiction

as the filter acceptance criteria contains a sufficient decrease condition that requires for

xk+1 6= xk then either the constraint violation or the objective function value has been

reduced by β∆2
k. As ‖H(x)‖ = 0 at all cluster points, then either {∆k} → 0 or {F(xk)} is a

decreasing sequence. However, F(xk) is bounded from below on Ω. Therefore we must also

have that limk→∞ |F(xk) − F(xk+1)| = 0. Therefore at any limit point of the sequence of

iterates generated by Algorithm 5.2 must have both ‖H(x∗)‖ = 0 and ‖P (x∗)∇F(x∗)‖ = 0,

i.e., that they satisfy the constraints and are first-order optimal. Therefore, the sequence of

iterates generated by Algorithm 5.2 asymptotically approaches an optimal solution to (5.24).
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