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Abstract

Air traffic controller cognitive processes are a limiting factor in providing safe and
efficient flow of traffic. Therefore, there has been work in understanding the factors
that drive controllers decision-making processes. Prior work has identified that the
airspace structure, defined by the reference elements, procedural elements and pattern
elements of the traffic, is important for abstraction and management of the traffic.
This work explores in more detail this relationship between airspace structure and air
traffic controller management techniques.

This work looks at the current National Airspace System (NAS) and identifies
different types of high altitude sectors, based on metrics that are likely to correlate
with tasks that controllers have to perform. Variations of structural patterns, such
as flows and critical points were also observed. These patterns were then related
to groupings by origins and destinations of the traffic. Deeper pilot-controller voice
communication analysis indicated that groupings by flight plan received consistent
and repeatable sequences of commands, which were identified as techniques. These
repeated modifications generated patterns in the traffic, which were naturally associ-
ated with the standard flight plan groupings and their techniques.

The identified relationship between flight plan groupings and management tech-
niques helps to validate the grouping structure-base abstraction introduced by Histon
and Hansman (2008). This motivates the adoption of a grouping-focused analysis of
traffic structures on the investigation of how new technologies, procedures and con-
cepts of operations will impact the way controllers manage the traffic. Consideration
of such mutual effects between structure and controllers’ cognitive processes should
provide a better foundation for training and for engineering decisions that include a
human-centered perspective.

Thesis Supervisor: R. John Hansman
Title: Professor of Aeronautics and Astronautics
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Chapter 1

Introduction

1.1 Motivation

Air traffic is forecast to grow dramatically in the following years and the current

system is already being pushed to the limits. In order to better accommodate this

increasing demand, the Federal Aviation Administration (FAA) plans several im-

provements to the current National Airspace System (NAS). These improvements fit

in a major program, the Next Generation Air Traffic Control (NextGen), that antic-

ipates the increase and addition of capabilities that are expected to allow a proper

response to the future needs of the United States Air Transportation System.

These modifications include improvements in communications, navigation and

surveillance systems. These changes, combined with new technologies and procedural

changes are likely to alter the structure of the Air Traffic Control (ATC) System.

For the purposes of this thesis, structure of ATC is defined as the framework

elements, procedural elements and pattern elements of the traffic. This definition

is based on observations conducted by Histon and Hansman (2008). The current

structure of ATC has been mentioned by many as a primary source of inefficien-

cies, its major drawbacks being narrow guidelines and rigid framework (Nolan, 2011;

Chatterji, Zheng, & Kopardekar, 2008; Zelinski & Jastrzebski, 2010; Kopardekar &

Magyarits, 2003; Howell, Bennett, Bonn, & Knorr, 2003). It is inevitable, however,

that the structure in ATC impacts the tasks, the dynamics of the air traffic situations

17



and the commands available to the controller (Histon & Hansman, 2008). Indeed,

structure ultimately affects the cognitive processes that controllers use, generating

factors that impact the mental models and abstractions.

Therefore, the transition to new concepts of operation or improvements in the

NAS will be better achieved with a well-grounded understanding of what aspects

of the ATC structure impact the cognitive processes of controllers. Consideration of

such impacts of structure should provide a better foundation for engineering decisions

that include a human-centered perspective.

1.2 Structure in the Air Traffic Control System

Histon and Hansman (2008) observed components of the ATC system and charac-

teristics of the airspace, thereby identifying three distinct levels of the structure of

ATC. These levels or layers of structure were then incorporated into a hierarchical

framework, as presented in Figure 1-1.

At the base of this hierarchy is the framework layer of the structure, which is

sub-divided in physical elements, reference elements and airspace boundaries. These

elements (illustrated in Figure 1-2) establish the foundation and context of an air

traffic situation (Histon & Hansman, 2008).

Built on the context of the framework layer is the procedure layer, which is sub-

divided in published procedures and ATC procedures. Published procedures are the

regulations that govern any air traffic activity. Other examples of published pro-

cedures are trajectory procedures for arrivals and departures and communication

protocols. The ATC procedures, including formal and informal operating proce-

dures. Formal procedures include the Standard Operating Procedures (SOPs) and

Letters of Agreement (LOAs) that dictate how the interface between sectors should

occur. During field studies, Histon and Hansman (2008) observed controllers follow-

ing undocumented, or informal, procedures that imposed structure in the air traffic

situation.

The elements within the framework and procedure layers are a core source of

18



Figure 1-1: Structure hierarchy (Histon & Hansman, 2008).

the top-most layer of the structure: the patterns within the structure (Histon &

Hansman, 2008). From focused interviews and visualizations and reconstruction of

traffic, Histon and Hansman (2008) identified three key traffic patterns: standard

flows, critical points, and groupings.

The ATC structure evolved over time in order to accommodate the increase in

air traffic. For instance, in order to assist an increasing body of air traffic con-

trollers, there was a continuous introduction of new procedures and automated sys-

tems. Hence, the current structure of the NAS is the result of engineering decisions

on the design of a human-centered separation assurance system (Nolan, 2011).

An example of characterization of structure is how responsibility over the airspace

is distributed. Due to the continental dimensions of the american airspace, FAA has

given the responsibility of separation to Air Route Traffic Control Centers (ARTCCs)

or “Centers”. The Centers, in turn, are further partitioned into sectors, taking in con-

sideration the resultant workload for managing the traffic flows. Moreover, several

19



elements of the framework of the structure become evident when looking to a car-

tographic chart of an airspace sector. Figure 1-2 presents such a chart describing

Brewton High sector, Jacksonville 11 (ZJX11). For instance, in this Figure, the fol-

lowing elements can be noticed:

• Minimum and maximum altitudes of the sector and its surrounding sectors;

• Lateral boundaries of the sector;

• Lateral boundaries of the Center that the sector pertains to;

• Jet routes;

• Navigational fixes; and

• Different sorts of airspaces (e.g. special use, military)

Figure 1-2: Example of structure: cartographic chart describing Brewton High sector,
Jacksonville 11 (ZJX11).
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1.3 Focus of Research

1.3.1 Focus: Patterns in the Structure

This thesis is primarily about how the patterns in the structure in the NAS are used

by the air traffic controllers. One can refer to patterns in the structure and in the

traffic in different ways. For the sake of coherence, the following convention is going

to be adopted throughout this thesis:

• Structural features correspond to the distinct elements or pieces of the overall

pattern, such as flows and critical points.

• Structural patterns consist on the overall pattern, the arrangement and combi-

nation of structural features.

1.3.2 Focus: High and Super High Altitude Airspace

As mentioned before, in the United States, the controlled airspace is typically divided

into areas of responsibility known as sectors. A three dimensional airspace sector can

be imagined as a complex union of arbitrarily shaped blocks. In this work, sectors

entirely above FL340 are considered Super High, sectors with floor below FL340 and

ceiling above FL240 are considered High and sectors with ceiling below FL240 are

considered Low (Figure 1-3).

There are many different sectors covering the continental US, as well as oceanic

airspace, from ground to 60,000 feet. Thus, the air traffic control services are pro-

vided in a wide range of operational environments, such as in different classes of

airspace, positive controlled versus controlled airspace, continental or oceanic and

ramp, ground, terminal and en route airspace (Belobaba, Odoni, & Barnhart, 2009).

The airspaces may also feature different characteristics or elements, such as special use

airspaces, prohibited areas, mix of traffic performance, local rules or procedures, ter-

rain obstacles and even susceptibility to weather interferences (some of these airspaces

can be seen in Figure 1-2). The types of decisions, working mental models, decision
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Figure 1-3: Adopted classification of airspace sectors by altitude. Sectors with floor
greater or equal to FL340 are considered Super High. Sectors with ceiling greater
or equal to FL240 and floor below FL340 are considered High. Sectors with ceiling
below FL240 are considered Low.

support systems and tasks related to each of these environments can also vary signif-

icantly.

Thus, in order to limit the scope for meaningful conclusions, this thesis only focuses

in a subset of these environments. Namely, the scope of the structural analyses in

this thesis is on radar surveillance of en route control of High and Super high altitude

airspace.

Airspace in the higher stratum of the NAS is also more amenable to implementa-

tion of new concepts of operation. The rationale for this greater opportunity is that

these sectors are less impacted by local operational constraints and characteristics.

1.4 Objective

The objective of this research is to investigate how distinct structural patterns are

used by controllers for managing the traffic.

Figure 1-4 presents a simplified model of the ATC process. In this model, the air

traffic controller perceives the states of the air traffic situations and recognizes the
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impact of structure on the tasks that must be performed. Based on the surveilled

states, on knowledge stored in the long-term memory and on the perception of tasks

from the structure, the controller generates commands that influence the evolution of

the air traffic situation.

As proposed by Histon and Hansman (2008) and illustrated in this simplified

model, structure is internalized into the long-term memory of the controller’s mental

model. This internalization process occurs mainly via training (academic studies and

on-the-job training) and experience (exercising the profession itself). The result of

learning is the development of abstractions and mental models. As an essential part of

the developed abstractions and mental models, the learned strategies and techniques

account for sector-specific dynamics and structural elements.

An important distinction has to be made, as techniques are commonly associated

with strategies. For the purposes of this work, both are distinguished as follows:

• Technique: Sequence of actions, way of manipulating the traffic for accomplish-

ing a given task or purpose;

• Strategy: Plan of how to use the acquired techniques to achieve safe and efficient

Figure 1-4: Simplified cognitive process model (adapted from Histon and Hansman
(2008)).
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throughput of traffic.

Thus, in order to accomplish the proposed objective, the approach can be sub-

divided into two types of analyses:

1. Identify structural patterns in the NAS;

2. Investigate what factors of the structural patterns impact the required tech-

niques.

1.5 Document Overview

Chapter 2 presents relevant literature review for this work. Chapter 3 identifies how

structure manifests in the NAS via the investigation of potential structural similar-

ities. It presents a NAS wide analysis of the dynamics of the traffic. This analysis

permitted the identification of different types of dynamics that can be found in the

NAS and how airspace sectors can be grouped in this matter.

In Chapter 4, the objective is to identify variations of structural features (flows

and critical points) and to generate hypotheses about how controllers manage the

traffic. Visualizations of the traffic are the main employed technique for this matter.

Chapter 5 aims to understand how techniques that controllers used are related to

each structural feature. The analysis is leveraged on insights obtained in Chapter 4.

Chapter 5 presents a detailed voice and traffic dynamics analysis for the investigation

of how controllers manage the traffic.

Chapter 6 summarizes the main steps that were taken in this work and presents

conclusions that are pertinent to the better understanding of use of structure.
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Chapter 2

Literature Review

This Chapter reviews pertinent material to the thesis. This review starts by discussing

about decision making in the broad context, subsequently moving to specific topics

in the ATC domain. These topics are: ATC Cognitive Models and how they relation

to the structure in ATC, complexity in ATC and identification of patterns in the

structure.

This text assumes that the reader is familiar with the ATC system. Some details

about the system can be found in Appendix A.

2.1 Decision Making

As presented in Chapter 1, this work is concerned with the required knowledge for

an air traffic controller to operate a given airspace. This work goes beyond proce-

dural knowledge (knowing how to do things) and declarative knowledge (knowing

about facts). More specifically, the concern is on identifying the library of techniques

(stored in long-term memory) of proficient controllers and understanding how this

same library is related to the structure of the airspace under control. It is inevitable

that, by eliciting this kind of knowledge, the decision process of proficient controllers

must be assessed.

In the context of decision making research, Naturalistic Decision Making (NDM)

is of particular importance for this research, because this line of research is concerned
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with proficient decision makers. NDM is defined by Lipshitz, Klein, Orasanu, and

Salas (2001) as an attempt to understand how people make decisions in real-world

contexts that are meaningful and familiar to them.

In order to better characterize NDM, however, it is useful to understand the

Classical Decision Making (CDM), which takes a normative or prescriptive approach

to decision making. Essentially, it tries to prescribe what choice a rational decision

maker should take according to criteria of optimality. Lipshitz et al. (2001) points

out major characterizes of CDM that can be found from different authors:

1. Making a choice – Decision making as selecting an optimal solution from an

identified set of alternatives (Hogarth, 1987).

2. Input-output orientation – given a set of preferences, there will be a best or a

set of best alternatives that the decision maker should choose (Funder, 1987).

3. Comprehensiveness – decision making is an analytical process that requires a

relatively thorough information search (Payne, Johnson, Bettman, & Coupey,

1990).

4. Formalism – abstract and context free models susceptible to quantitative testing

and experimentation (Coombs, Dawes, & Tversky, 1970).

The gradual transition to NDM occurs as many of these characteristics are ques-

tioned as valid representations of the human decision making process. Features of the

rational choice mode are then replaced for more descriptive features. For instance,

processing the required information entailed by comprehensiveness is potentially ex-

haustive and futile, thereby leading to systematic deviations from the rational choice

(Simon, 1978).

By placing the bounded rational and proficient decision maker at its center of

interest, NDM replaces comprehensives by matching, choice and input-output ori-

entation by process orientation and formalism by context-bound informal modeling

(Lipshitz et al., 2001).
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The Recognition Primed Decision Making (RPD) can serve as the prototypical

NDM model (Klein, Orasanu, & Calderwood, 1993). The following section presents

the RPD model in the context of expert decision makers.

2.1.1 Recognition-Primed Decision Making

In a field research conducted by Klein, Calderwood, and MacGregor (1989) regarding

how firefighters could handle time pressure and uncertainty, data suggested that the

commanders were not comparing any options in their decision making process. There

was evidence that they were typically carrying out the first identified course of action.

The decision maker simply recognized the pattern in a problem from the available

cues. This pattern is used to categorize or fit the situation to a given template,

which allows the expert to realize what kind of problem is being faced. Also from

experience, the expert knows what kind of solution works from every typical situation.

Therefore, recognition of a situation leads to a minimization of analytical thinking

for understanding and search and choice of a course of action.

RPD works well on situations where there are multiple highly correlated cues,

which calls for what Hammond, Hamm, Grassia, and Pearson (1987) referred to as

intuitive form of information integration based on pattern recognition. Naturally, it

takes experience to know what are the relevant patterns of problems and what are

the associated solutions to them. Wickens and Hollands (1999), however, notes that

just because experts can make rapid decisions under time pressure and high stake

situations, it does not imply that these decisions are optimal or even good, nor that

experts will always employ RPD. Hammond et al. (1987) point out that there might

be situations that invite for a different, more analytical or even innovative approach

for decision making. This might happen when no time pressure exists or when the

situation does not fit to any internalized pattern.

On a second variation of RPD, Kaempf, Klein, Thordsen, and Wolf (1996) identi-

fied what happens when the situation is not clear. In this case, the decision maker will

often rely on simulation of the sequence of events that plausibly led to the current

situation, thereby allowing the construction of a mental model that explains what
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happened.

A third variation of RPD clarifies how decision makers cope with the constraints

and stressors found in the operational environment. The evaluation of a decision is

conducted by mentally simulating the course of action, in order to look for its ef-

fectiveness and for any unintended consequences. Patel and Groen (1986); Larkin,

McDermott, Simon, and Simon (1980) found that people with greater expertise are

more likely to use this forward-chained variation of RPD, whereas less experienced

decision makers rely more on backward-chained reasoning for understanding the sit-

uation. Klein (1998) identified that RPD strategies are most likely to hold when

the decision maker has reasonable experience and when the situation is characterized

by time pressure, uncertainty and/or ill-defined goals. Also, RPD is less likely to

hold with highly combinatorial problems, when justifications for actions are required,

and in cases where different stakeholders have to be taken in consideration. These

constitute some of the boundary conditions for the RPD model.

2.2 Air Traffic Control Cognitive Process Model

Pawlak et al. (1996) identified major ATC cognitive tasks that must be performed,

which can be extended to any type of procedure for ATC. Figure 2-1 illustrates these

four major controller activities, combined in one single diagram.

Regarding the controllers cognitive tasks, Pawlak et al. (1996) noticed that three

of these processes (namely planning, monitoring, and evaluating) combine to create

mental effort for the controller. From these four general tasks that controllers must

perform, only implementation can be observed, although Pawlak et al. (1996) observe

that some form of implementation can be done without observable action, such as

planned co-ordination.

The cognitive process model used in this work is the one developed by Histon and

Hansman (2008) and presented in Figure 2-2. This model is an explicit combination of

Endsley (1995) model of situation awareness and the decision making processes iden-

tified by Pawlak et al. (1996). It also includes the operational environment elements
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Figure 2-1: A model of the mental and physical processes required in ATC (after
Pawlak et al. (1996)).

of the plant or system being controlled. Most importantly, this model incorporates

structure as already presented before and its influences on the cognitive processes and

its many impacts on the operational environment, such as tasks, air traffic situation

and commands and communications.

Three stages or steps represent situation awareness in this model: perception,

comprehension and projection. Naturally, perception is related to the observation of

the states of the operational environment, mainly through automations, communi-

cation systems and tasks that have to be accomplished. Comprehension occurs in

the context of these same tasks, which then drives the projection process through

knowledge of the status and dynamics of the situation.

Awareness of traffic states and controllers internal states contribute to the decision

making process (Kallus, Barbarino, & Damme, 1997). The long-term memory directly

impacts the decision processes via the library of strategies and techniques. Long-

term memory also indirectly impacts the decision processes, as the working memory
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Figure 2-2: Cognitive Process Model (Histon & Hansman, 2008).

accesses information from the libraries of mental models and abstractions.

The library of mental models encompasses general knowledge of air traffic rules,

procedures, dynamics of aircraft and weather as well as specific knowledge about the

airspace the controller is responsible.

The knowledge requirements also depend on the type of airspace being controlled.

Kalbaugh and Levin (2009) identified 102 knowledge elements that were required for

controllers to manage and understand the traffic. These elements were then orga-

nized by altitude of the airspace, and later validated by subject matter experts. The

resulting graphical representation of required knowledge elements per altitude was

coined “Sector Knowledge Pyramid” (SKP), which is presented in Figure 2-3.

According to the findings presented in the SKP, approximately 64% less infor-

mation is required for Super High sectors than for sectors in the lower stratum of

the NAS. The difference from the Super High to High is of 36% less information

requirements (Kalbaugh & Levin, 2009).

The working memory holds operative information and is the one responsible for all

forms of active processing, such as pattern matching, mental arithmetic and support

for situation awareness (Cardosi & Murphy, 1995).
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Figure 2-3: Sector Knowledge Pyramid: Illustration of how the amount of information
a controller needs to know decreases as the sector altitude stratum increases.
102 identified sector knowledge items were organized by altitude: Ultra-low (below
10K) - 99/102; Low (10K to FL230) - 98/102; High (FL240 to FL340) - 55/02; and
Ultra-high (FL350 to FL600) - 35/102 (Kalbaugh & Levin, 2009).

2.2.1 Structure-Based Abstractions

Long-term memory plays a large role in decision making, as the current situation

has to be matched to stored patterns. This matching process triggers techniques

that are known to solve specific situations (Cardosi & Murphy, 1995). Histon and

Hansman (2008) identified structure-based abstractions (Figure 2-4) as “a controllers

internalization of the influences of that structure on the dynamics of an air traffic

situation, on available commands and the task.” Therefore, these abstractions are

simplifications of the controllers working mental model, thereby allowing the use of

mental models that are less cognitively demanding, but still remarkably effective

(Histon & Hansman, 2008).

Structure-based abstractions pre-solve certain tasks, by segregating parts of the

air traffic situation. The ultimate result is task decomposition, since certain indepen-

dent relationships and comparisons are not relevant. Also by removing unnecessary

comparisons, Histon and Hansman (2008) argued that the effective degrees-of-freedom

for projection of future air traffic behavior is reduced. By removing dimensions of the

search space, the required cognitive resources such as time and effort can be signifi-
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Figure 2-4: Structure-based ab-
stractions identified by Histon
and Hansman (2008):
• Standard Flows;
• Critical Points;
• Groupings; and
• Responsibility.
They represent the controller’s in-
ternalization of the patterns the
of structure into simplified and
less cognitively demanding mental
models.

cantly diminished, albeit a less accurate representation of the real world is used.

Another contribution of structure-based abstraction on the simplification of men-

tal models occurs on the processes of evaluating and (re)planning the situation. Via

pattern matching, such abstractions allow task decomposition into standard and non-

standard aircraft. This suppresses the need for detailed evaluation and facilitates

conformance monitoring to trajectories as complicated as those depicted in standard

procedures. Regarding (re)planning, Histon and Hansman (2008) point out that

“structure-based abstractions can also be used as the basis of the controllers current

plan, reflecting key decision points and implementation points for commands.”

Histon and Hansman (2008) also observed strategies and techniques by which

controllers took advantage of the structure and of the structure-based abstractions

to transform the task. Examples about the use of structure included exploiting es-

tablished procedures and directing aircraft to reference points to expedite the traffic

through airspace. Strategies and techniques related to structure-based abstractions

were mainly related to enforcing structure on the situation, as a basis for simplify-

ing abstractions. Examples included constant velocity (Davison & Hansman, 2003)

and conformance to patterns by denying shortcuts and forcing adherence to interface

procedures (Histon & Hansman, 2008).
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The types of structure-based abstractions identified by Histon and Hansman

(2008) were: standard flows, critical points, groupings and responsibility. Each of

these abstractions is briefly discussed below.

Standard Flow Abstractions

Histon and Hansman (2008) define standard flows as “recurring patterns of aircraft

sharing common lateral paths; typically in-trail of each other.” He also acknowledges

that a standard flow can be associated with a vertical behavior and it can also interact

with other flows, by splitting, merging or crossing. In the current NAS, standard flows

are very related to the ground-based navigation system, thereby coinciding most of

the times with existing jet routes. Standard flow abstractions correspond to the

internalization of these expected flow patterns within and near the sector (Histon &

Hansman, 2008).

Critical Point Abstractions

According to Histon and Hansman (2008), critical points are high priority regions

in the airspace. Therefore, a critical point can be a location characterized by any

recurring problem. Sabhnani et al. (2010) characterize a critical point as an explicit

intersection of standard flows. This intersection of flows could then be further char-

acterized as a merge or crossing of two or more flows.

Grouping Abstractions

Histon and Hansman (2008) introduced grouping abstraction as the result of a crite-

rion that collects together parts of the traffic situation. As such, a grouping abstrac-

tion can be composed of aircraft, weather objects or restricted airspace. Examples of

grouping criteria include aircraft flying the same flight levels, or aircraft that share

characteristics in a given time, such as heading, speed, altitude transition or are just

in proximity to each other.
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Responsibility Abstractions

As noted by Histon and Hansman (2008), responsibility abstractions are an inter-

natization of the delegation of portions of the task to other agents in the system.

They are based on elements of the framework (mainly due to airspace boundaries)

and the procedural (mainly through ways by which controllers offloads the tasks to

other controller and even pilots) layer of the structure.

2.2.2 Strategies and Techniques in ATC Domain

Seamster, Redding, Cannon, Ryder, and Others (1993) argue that, due to intrinsic

characteristics of the ATC job, there is a need not only for domain knowledge, but

also efficient problem-solving strategies within the time-critical limits of the task.

According to them, air traffic control strategies are heuristics that help controllers

execute procedures more efficiently. Therefore, strategies may or may not include

procedures and they are usually characterized by expertise.

A controller is dependent on these strategies in order to detect and prevent

conflicts, while maintaining efficient traffic throughput (Nunes & Mogford, 2003).

Sperandio (1978) postulated that strategies are used to moderate the levels of work-

load, by that means ensuring the picture of the situation. Hopkin (1995) defines the

picture as:

“The controllers picture consists of all that is perceived and is meaningful,

interpreted in the context of recalled events preceding the current situa-

tion, anticipated events predicted from the current situation, and the pro-

fessional knowledge and experience used to maintain control over the air

traffic through sanctioned rules, practices, procedures and instructions”

A number of studies have been conducted on ATC strategies. In a review of such

studies, Nunes and Mogford (2003) focus on strategies for conflict detection that

are used to maintain the picture. In their review, trajectory prediction or altitude

comparison could be used for conflict detection, depending on the unfolding situation,

experience, training and preference.
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In a study conducted by EUROCONTROL (2002), 45 controllers in 7 European

countries were interviewed to determine their conflict resolutions for various scenarios.

Strategies (also mentioned in the document as principles) were identified and catego-

rized in five categories: (1) generic and non-contextual, (2) generic and contextual,

(3) country based, (4) airspace based and (5) scenario based. Many of the strategies

were only cited once, by a single controller, suggesting either strategic individuality

or some degree of tacit knowledge.

In the EUROCONTROL (2002) study, controllers were also asked to elicit factors

impacting their resolution strategies. The first cited factor is a combination of highly

correlated features: aircraft type, aircraft performance and rate of climb. Noteworthy

is the fact that high workload was mentioned by a number of controllers as a driver for

simpler resolutions. Authors argue that alternate resolutions would be more optimal

for the individual aircraft, but would clearly over-complicate an already busy scenario.

Non-nominal aircraft were indicated as a complicating factor, as a source of secondary

conflicts that were not internalized or accounted for. Interestingly, aircraft destination

was the second most cited factor, incident that did not draw much of the authors

attention.

This study also sheds light on techniques that controllers would NOT implement

on conflict resolution. These were mainly airspace and conflict scenario specific. There

was complete agreement that in one of the scenarios speed maneuver should not be

used. The results, however, largely indicate personality biases on control strategies.

Some controllers, for instance, would consider it unnecessarily risky to expedite the

climb in one of the scenarios, whereas others would indeed adopt such resolution.

In a FAA report, D’Arcy and Rocco (2001) found many trends regarding the

decision making and planning of specialists and novices, also differentiating Terminal

and ARTCC controllers. They found that more experienced controllers are more

likely to act immediately when a conflict is uncertain. Their results also suggest that

experienced controllers tend to use the first strategy that they think of. Moreover,

the statistical significance for these findings is stronger when looking only at Terminal

controllers instead of ARTCC controllers, due to the more time-critical nature of the
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job. In this study, careful attention was given to the formulation of backup plans, since

participants emphasized its importance. As noted by the authors, this aspect is not

explicitly found in previous ATC decision making studies that adopted a recognition-

primed decision making perspective (Hutton, Thordsen, & Mogford, 1997; Mogford,

Harwood, Murphy, & Roske-Hofstrand, 1994; Mogford, Murphy, Roske-Hofstrand,

Yastrop, & Guttman, 1994).

Taking stock of the role of expertise and broadening the spectrum of analyzed

strategies, Seamster et al. (1993) conducted a cognitive task analysis and found clear

differences between experts and novices. Namely, experts alternated the focus on

maintaining separation with managing deviations from standard operating proce-

dures. Experts also spent more effort on organizing the traffic and attending pilot

requests. The novices, however, spent most of the initial time focusing only on separa-

tion. Experts appeared to maintain a more comprehensive view and to be more global

in their analysis of problem solutions. Novices, however, had a sequential approach

to problem solving and dedicated almost all of the effort satisfying only separation

assurance.

In a broad cognitive task analysis research conducted by Redding et al. (1992),

three categories of ATC strategies were identified: display (involving the planning and

monitoring of the sector), control (involving the execution of control activities in the

sector) and workload reduction strategies (employed to reduce the controllers work-

load). They found that experts used relatively more workload reduction strategies.

Moreover, certain strategies were unique to the expert participants: letting speed

take effect, speed up to expedite, tighten separation, slow to intermediate speeds,

shortcutting and early pilot notification.

In contrast, some planning strategies were unique to novices. Redding et al. (1992)

found key differences in monitoring, planning and decision making, where novices

usually got detained on constant monitoring and evaluation, whereas experts tended

to adhere to a higher level plan to deal with the overall problem scenario.

The 22 cognitive strategies from Redding et al. (1992) were expanded to 40 strate-

gies by Seamster et al. (1993) and regrouped under planning, monitoring and work-
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load reduction management. A number of trends emerged from their study. Experts

tended to account for or include more aircraft in their strategies and, even though

they used strategies less frequently, they tended to use a greater variety of them.

Experts also tended to use workload management strategies more frequently.

The authors also suggested that experts might be using strategies at the event

level rather than at the individual aircraft level. By categorizing or grouping aircraft

in terms of important sector events, the expert can (a) work with more aircraft, (b)

better formulate a sector plan and (c) use fewer control and strategies (Seamster et

al., 1993).

From the cognitive process model of Figure 2-2, Histon and Hansman (2008)

observe the controllers ability to manipulate the presence of structure supporting

his/her own abstractions about the traffic. By analyzing the en route inefficiency

using Enhanced Traffic Management System (ETMS) data, Howell et al. (2003) ob-

served dynamic variability in the use of structure as a function of traffic volume.

Histon and Hansman (2008) also noticed variations in standard flows and identified

operating modes representing broad changes in strategies and practices in response to

the evolution of the air traffic situation. These operating modes, notionally shown in

Figure 2-5, constitute on a dynamic use of strategies and structure-based abstractions,

according to the cognitive demands.

Figure 2-5: Notional air traffic controller operating modes (adapted from Histon and
Hansman (2008)).

37



“Transitioning to a new mode changes the strategies, techniques, and working

mental models used by the controller, reducing the perceived complexity” (Histon &

Hansman, 2008). In the opportunity mode, difficulty and workload is likely to scale

with the number of aircraft, as there is enough free cognitive resources for the con-

troller to optimize each aircrafts trajectory. When in the route structure mode, most

aircraft remain in the pre-determined route, allowing the controllers to take advan-

tage of their structure-based abstractions. Resources are allocated to the abstractions

themselves, or to non-nominal aircraft, thereby permitting the controller to accom-

modate higher traffic without significant increase in cognitive demand. In congestion

mode, the capacity limits of flows and critical points are reached. This forces the con-

troller to remove some aircraft from the flows and to monitor the interaction between

aircraft conforming to the flow structure. Buffers such as path stretching and holding

patterns are activated, resulting in increasing inefficiencies. In certain situations of

outstanding demand or sudden change in the environment, the pre-existing structure

may become unusable or irrelevant, leading to the system shock mode. In this mode,

the controller is forced to quickly create contingency plans.

2.3 Complexity in Air Traffic Control

There is a clear consensus among the ATC research and operational communities

that complexity drives controller workload, which in turn is thought of ultimately

limiting airspace sector capacity (Christien, Benkouar, Chaboud, & Loubieres, 2003;

Majumdar & Ochieng, 2002). Histon and Hansman (2008) explain how complexity

ends up limiting the airspace capacity and efficiency:

“In order to protect controllers from situations that are too cognitively

complex and, as a result, threaten the safety of the ATC system, con-

straints are imposed on when and where aircraft can fly. While regu-

lating cognitive complexity, these constraints also limit the capacity and

efficiency of the ATC system.”
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Nevertheless, not all researchers are confident that it will ever be possible to ad-

equately and mathematically express the functional relationship between complexity

and perceived workload (Hilburn, 2004). Athènes, Averty, Puechmorel, Delahaye,

and Collet (2002) describe complexity as a way to characterize air situations and it

is in fact a source of workload, but they also note that the functional relationship

between these two is largely unknown. Mogford, Guttman, Morrow, and Kopardekar

(1995) define complexity as “a multidimensional concept that includes static sector

characteristics and dynamic traffic patterns.” (Meckiff, Chone, & Nicolaon, 1998) rec-

ognize that the operational procedures and practices as well as the “characteristics

and behavior of individual controllers” play a key role.

According to Warfield and Cardenas (1995), complexity is the combination of

two components defined by him: situational complexity and cognitive complexity.

Cognitive complexity is the dilemma presented to the human mind when it engages

with conceptualizations that are beyond its unaided powers. Situational complexity

represents those aspects of phenomena that are intercepted by the mind which induce

cognitive complexity (Loureiro, 2003). Histon and Hansman (2008) observe:

“it is not always clear whether complexity is being presumed to be an in-

trinsic property of the configuration of traffic (situation complexity), a sub-

jective experience of the controller (perceived complexity), or a property of

the processes being used to perform the ATC task (cognitive complexity).”

These distinctions made by Histon and Hansman (2008) for different constructs

involving complexity are those used in this work. They are illustrated in Figure 2-6.

Interest in defining and developing metrics of mental workload has grown dramat-

ically since the mid 1970s (Hilburn, 2004). Most attempts to define mental workload

have grown by way of analogy out of the concept of physical workload (Meshkati, Han-

cock, & Rahimi, 1989). The lack of a clear definition for complexity and workload is

reflected in the disagreement over appropriate metrics (Hilburn, 2004).

Workload can be interpreted as an interaction between task and operator; there-

fore it varies for different task-operator combinations (Leplat, 1978). In this sense,
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Figure 2-6: Simplified Model of the ATC process and uses of the term complexity
(Histon & Hansman, 2008).

many factors can influence the human cost of performing a given task, such as time

pressure, noise, stress, and distraction (Hancock, Chignell, & Kerr, 1988; Jorna, 1993).

Other factors more related to the controller have also been cited, such as aptitude,

skill, experience, operating behaviors, and personality (Bisseret, 1971; Sperandio,

1978). It can be concluded from these studies that the same given task might repre-

sent a different workload, depending on the controller (whether he/she is an experi-

enced operator, or a novice, for example). The distinction is generally made between

taskload (the objective demands of a task) and workload (the subjective demand

experienced in the performance of a task) (Hilburn, 2004).

2.3.1 Estimating Situation Complexity

Among all the complexity factors listed in the literature, traffic density is the most

cited and most associated with complexity. Because of its large use and the multiple

attempts to improve the complexity metrics upon this basic factor, traffic density

has been used with many different definitions and terminologies. Common associated

denominations are number of aircraft in a fixed airspace over some defined period

of time, number of aircraft per unit of airspace volume, average density encountered

by each flight, or simply the number of aircraft in the airspace (Hilburn, 2004). In

this work, traffic density, traffic load or traffic count are understood as the same
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complexity factor and they are going to be considered as the instantaneous number

of aircraft in the sector.

As noted by Hilburn (2004), the body of literature seems at the same time to

praise the concept of traffic density (as the best available indicator of complexity),

and to criticize it (mainly on the theoretical grounds that it does not capture the

richness of what controllers find complex (Kirwan, Scaife, & Kennedy, 2001; Mogford

et al., 1995; Athènes et al., 2002)). The critics about the effectiveness of traffic count,

as a complexity factor, agree with Edmonds (1999), who observes that, even though

the size or number of elements in a system may be a good indicator of complexity,

size by itself may not describe its full richness. Therefore, since the early stages of

ATC complexity research, significant effort has been placed on identifying drivers of

complexity. In a comprehensive literature review, Hilburn (2004) provides a list of

such complexity factors.

By aggregating different complexity metrics, researchers have come up with mod-

els of Dynamic Density (DD). The weights or contribution of each complexity metric

is based on subjective ratings from workload or complexity probes or based on phys-

ical activity data (Prandini, Piroddi, Puechmorel, & Brázdilová, 2011). This kind

of research has been applied for evaluating the contribution of different factors on

the traffic complexity (Chatterji & Sridhar, 2001; Kopardekar, Schwartz, Magyarits,

& Rhodes, 2007), as well as for forecasting the complexity for the next minutes

(Kopardekar et al., 2007). Complexity is also usually estimated in the context of

evaluation of a range of future Concepts of Operations, such as four-dimensional tra-

jectories (L. Li & Hansman, 2009), multisector planner (Flener, Pearson, & Agren,

2007; L. Li, Palacios, & Hansman, 2010) , dynamic airspace configuration (Yousefi

& Donohue, 2004; Yousefi, 2005; Masalonis, Callaham, & Wanke, 2003) and, more

recently, generic airspace concept (Simmons, 2010; Bloem, Grupta, & Lai, 2010).

DD is analogous to complexity or difficulty of an air traffic situation (Kopardekar

& Magyarits, 2003). Kopardekar and Magyarits (2003) considered DD as “the col-

lective effect of all factors, or variables, that contribute to the sector level air traffic

control complexity or difficulty at any given time.” RTCA Task Force 3 report (1995)
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defines DD as “the essential factors affecting conflict rate in both en route and termi-

nal airspace.” Laudeman, Shelden, and Branstrom (1998), on the other hand, starts

defining DD as a metric of air traffic controller workload. Nonetheless, Laudeman

et al. (1998) concurs with other definitions when clarifies that DD is based on air

traffic characteristics, what makes it special for the development of both air traffic

management automation and air traffic procedures.

Kopardekar and Magyarits (2003) describes in his paper a multi-year, multi-

organizational research initiative related to the measurement and prediction of sector

level complexity through the use of DD. This research focused on identifying com-

plexity factors and then applying regression equations for properly predicting instan-

taneous and look-ahead time complexity.

In the conclusion of this multi-organizational work, it was pointed out that DD

metrics have promise, most notably as a unified metric with contributing variables of

metrics from different parties. Laudeman et al. (1998) and Kopardekar and Magyarits

(2003) concluded that the DD metrics, as a combination of effects of traffic charac-

teristics, perform better than the simple aircraft count, which is the basis of the

standard complexity gauge. Nonetheless, the performance of the built DD predictor

with look-ahead time obtained by Kopardekar and Magyarits (2003) was marginally

better than the predicted aircraft count.

In the context of multisector planning, Flener et al. (2007) introduced a time-

smoothed version of DD, as an estimate of complexity. Their metric, Interval Com-

plexity (IC), is a 5-10 min average of a linear combination of number of aircraft,

number of aircraft on non-level segments and number of aircraft close to the airspace

boundary. The weights are sector dependent.

Many researchers recognized that non-linear approaches for DD could yield good

results (Kopardekar & Magyarits, 2003; Hilburn, 2004), thereby tentatively resem-

bling the non-linear combination of complexity factors that results on the overall

complexity. Chatterji and Sridhar (2001) employed a successful non-linear regres-

sion via neural networks, also including several interesting metrics as mathematical

representations of the situation complexity.

42



Ideally, a complexity metric should apply independent of such factors as equipment

sophistication, traffic density, or size of the controlled airspace (Chaboud, Hunter,

Hustache, Mahlich, & Tullet, 2000). But there seems to be more and more agreement

in the literature that complexity is far from being context-free. This is based in a

critical aspect of human cognition, namely, that what is complex in one context is

not necessarily complex in another (Hilburn, 2004).

Kirwan et al. (2001) have noted that what works well in one setting might not

work well in another site, or even at another time of the day. As a parallel to the

interactions and connectedness of the elements in complex systems (Hitchins, 2000;

Christien et al., 2003; Koros, Rocco, Panjwani, Ingurgio, & D’Arcy, 2003) noted that

the interactions between the complexity factors (as a way of determining what is

complex) might vary depending on the context.

2.4 Identifying Patterns in the Structure

Before deepening on mathematical representations of the traffic, it is worth mention-

ing the work of Chatterji et al. (2008). They looked at characteristics of the airspace

sectors. In their analysis, traffic and geometric metrics are taken into consideration.

As noted in their paper, “design of sectors has evolved over a long period of time

based on incremental addition of new technologies and procedures for air traffic con-

trol.” Their traffic metrics included seven traffic-count metrics, five separation metrics

and three flow metrics, extracted from references such as Pawlak, Goel, Rothenberg,

and Brinton (1998); Christien et al. (2003); Yousefi and Donohue (2004). The geomet-

ric metrics were three geographical location metrics, four sector dimension metrics,

three shape attribute metrics, five route attribute metrics and three neighborhood

attribute metrics. Some of the traffic metrics had to be calculated, especially those

involving conflicts, since conflicts or near-conflicts are rare in the real operational

data.

Chatterji et al. (2008) considered 364 sectors. Some of their traffic findings include:

most sectors in the current airspace have fewer than 20 aircraft at any given time and
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most sectors have less than five aircraft in climb phase, fifteen in cruise phase and

five in descent phase.

Among geometric findings, a wide variation was found in sector volume, area,

height and length. Most sectors showed to be aligned with the main traffic flows. A

maximum of 17 airways was found in any given sector and 328 sectors had ten or

fewer airway intersections. Notably, only 29 sectors were farther than 200 nautical

miles from what they considered to be the 74 major U. S. airports.

2.4.1 Identifying Structural Patterns

This section reviews what has been done on identification of features on the pattern

layer of the structure (flows and critical points) presented in Figure 1-1

In general, the methods for identification of structural features can be either

bottom-up (first critical points then flows are identified) or top-down (first flows and

then critical points are identified). Moreover, they can be either grid based (extract-

ing traffic information through two- or three- dimensional partitions of the airspace)

or trajectory based (overall trajectory is considered in the analysis). There are also

other methods reliant on visualization of traffic density. This text presents some of

relevant works done under each methodological approach.

Trajectory clustering has been analyzed in a number of domains, such as video

surveillance (Piciarelli, Foresti, & Snidaro, 2005), coastal surveillance (Dahlbom &

Niklasson, 2007) and even for hurricane and animal movement data (J.-G. Lee, Han, &

Whang, 2007). An interesting review covering different kinds of trajectory clustering

problems can be found at (http://movementpatterns.pbworks.com/Patterns-of

-Movement).

J. Lee and Han (2007) presented a methodology based on partitioning trajectories

into segment lines, which are then regrouped based on perpendicular, parallel and

angular distances. Other methods are based on longest common subsequences, such

as the one presented by Vlachos, Kollios, and Gunopulos (2002). Evaluating benefits

from performance-based navigation, Eckstein (2009) presents an automated flight

track taxonomy. Trajectories are resampled, and then clustered using k-means.
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Combining characteristics of these methods, Gariel, Srivastava, and Feron (2010)

propose two separate and successful trajectory clustering algorithms for airspace mon-

itoring. One of these methods is called “waypoint-based clustering”, as turning points

are first identified and then clustered in order to generate waypoints. Trajectories are

then represented as a sequence of these waypoints, which in turn are clustered in

order to generate meaningful flows within the traffic.

In the second and most promising method, Gariel et al. (2010) propose improve-

ments over the method introduced by Eckstein (2009). The algorithm is called

“trajectory-based clustering”. They include an intermediate step where the data

is augmented by calculating several statistics from the radar track data, such as an-

gular position, distance to the center, heading, among others. The augmented data is

then reduced via a principal component analysis and the final vectors for each flight

are clustered via a density based clustering algorithm.

Most of the recent work on air traffic pattern identification has been in the context

of dynamic airspace configuration (Martinez, Chatterji, Sun, & Bayen, 2007; Zelinski

& Field, 2008; J. Li, Wang, Savai, & Hwang, 2009; Sabhnani, 2009; Xue, 2010; Zelinski

& Jastrzebski, 2010). Some of these tried to capture information about the traffic

through two-dimensional grid cells. For instance, Xue (2010) determined if a two-

dimensional grid cell was either a member of a major traffic flow or an intersection

point based on the heading variance of flights. Martinez et al. (2007) used light

occupancy counts within each grid cells to create abstract network flow graph of the

traffic.

Other methods spent effort on characterizing structure as connections between

flows and critical points (Zelinski & Field, 2008; Sabhnani et al., 2010; Zelinski &

Jastrzebski, 2010). Sabhnani et al. (2010) proposed different trajectory based greedy

algorithms, as well as a grid based method that is less dependent on the variability

of individual tracks. These methods output standard flows, from which intersections

are identified and, once clustered, critical points are obtained. Tackling the pattern

identification from a different perspective, Zelinski and Field (2008) first identified

critical points from flight tracks. The method first finds intersection points that are
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then differentiated into merging and crossing points. Intersection points are then

clustered into critical points, in a process that showed that the number of crossing

critical points was far higher than the number of merging critical points. Most of

these critical points could be paired with airway intersections, revealing the relevance

of the Structure in the current system.

Zelinski and Jastrzebski (2010) extended the methodology of Zelinski and Field

(2008) by adding an altitude component and linking the critical points to form the

flows. The dynamic change of these structural patterns was analyzed over the course

of a day and under the influence of weather. They showed that more and more

unpublished links began to appear as airways started to saturate with increasing

traffic. The influence of structure was evident when great circle routes presented

much more intersecting links than the flight plan routes.

Another class of research on identification of structural features relies on visual-

ization of traffic densities. Histon and Hansman (2008) presented several examples of

flows and critical points based on such visualizations. Naturally, such visualizations

are still dependent on the airspace grids or transparency levels for the radar tracks.

Such methodologies tend to be subjective and to rely on the analysts understanding

of traffic behavior, existing procedures and the airspace structure itself. In this pro-

cess, the identification of critical points, flows, holding patterns and path-shortening

features occur concomitantly, which makes the differentiation between top-down and

bottom-up approaches less important. The finding of these features usually comes

with insights about possible traffic bottlenecks and controllers tasks. Evaluating the

opportunity of generic airspace, Cho and Histon (2010) apply this methodology on

high altitude sectors with ceiling above FL350, thereby identifying several patterns

across the NAS

2.5 Summary

This Chapter started by reviewing the role of expertise on decision making and then

how controllers abstract and manage the traffic. Human Factors in ATC was reviewed
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by presenting some of the cognitive process models in the literature, giving more

attention to the cognitive process model introduced by Histon and Hansman (2008),

whereupon this work is leveraged. From Histon and Hansman (2008), it is known

that complexity is an intrinsic property of the controllers working mental model,

which is also related to the use of structure-based abstractions. Such abstractions

are internalizations of the patterns of the traffic in the controller’s long-term memory,

which, in turn, is a genuine fruit of training and expertise.

Moreover, there has been work on identification of strategies and techniques that

controllers use in order to manage the traffic. To the knowledge of the authors of

this work, these studies have mainly focused on specific de-conflicting tasks or overall

differences between experts and novices. The role of structural patterns in strategies

and techniques was identified by Histon and Hansman (2008), but not evaluated in

great detail.

Many strategies have been associated with “workload management” and mental

models used by controllers were characterized by the complexity of these models. As

such, in the ATC domain, the evaluation of the nature of a problem can hardly be

disassociated from the notion of cognitive complexity and workload, which was also

briefly reviewed. These studies indicated several metrics that probe the dynamics of

the traffic and are likely to correlate with the tasks that controllers must perform.

Literature on identification of structural patterns was then surveyed, due to ev-

idence these that structural patterns are intrinsically related to how experts make

decisions. It was found that many algorithmic studies on identification of flows and

critical points have been done. However, little effort has been focused on evaluating

in more detail the relevance of these patterns on how controllers manage the traffic.

Moreover, these studies usually force a model to which the traffic has to fit, ignoring

possible variations of patterns.

This thesis fits in the broader literature by examining alternative approaches for

structural pattern identification, as well as by exploring how these patterns are man-

aged by the controller.
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Chapter 3

Analysis of NAS-wide Traffic

Patterns

As presented in Chapter 2, literature on decision making has found that experts

internalize the patterns in their workspace and often have techniques that respond

to these patterns. Based on this literature review, the objective of this Chapter is

to identify different types of sectors, which may be an indicative of different mental

models.

The types of sectors were identified by evaluating and comparing their traffic

structure. This evaluation was conducted by considering metrics for the dynamics of

the traffic. In order to identify appropriate metrics for traffic dynamics, the approach

was to look metrics that had been used in prior studies to determine complexity

and workload for air traffic controllers. The assumption is that these factors are

important for the tasks that controllers must perform (Chatterji & Sridhar, 2001;

Hilburn, 2004; Kopardekar et al., 2007) and, therefore, would be relevant for traffic

pattern identification (Christien et al., 2003).

Four groups or classes of such traffic metrics were selected and calculated for

each high altitude sector (aircraft count, altitude transition, concentration of traffic

between origins and destinations and directional variability). Based on these metrics,

this Chapter investigates whether there are high altitude sectors in the NAS with

similar traffic dynamics.
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3.1 Methodology

Figure 3-1 illustrates the overall methodology for identification of traffic patterns.

The approach started by parsing data sources in order to identify flights that passed

through High and Super High altitude sectors (Section 3.1.1). The selected metrics,

presented in Section 3.1.2, were then calculated. Clustering, a data mining technique,

was employed in order to identify groups of sectors with similar characteristics (Sec-

tion 3.1.3. Observations from the calculated metrics and results of the clustering

analysis are presented in Section 3.2.

Figure 3-1: Analysis Methodology.

3.1.1 Evaluation Data

Enhanced traffic management system (ETMS) collects information from aircraft fly-

ing in the US airspace. The aircraft situation data describes the state of the airborne

flights at a given moment, including the 3D trajectory (latitude, longitude, elevation

and timestamp), flight plans, flight plan amendments, arrivals, departures, ARTCC

boundary crossings, cancelations, among others (Volpe, 1995).

The ETMS data in possession1 included only origin airport, destination airport

and radar track data for the continental US from 07/13/2009 to 07/19/2009 and

1ETMS and structural framework data obtained from personal communication with FAA

50



09/21/2009 to 09/27/2009. However, because of data recording issues, unphysical

changes on the radar track data were often observed. Therefore, a smoothing algo-

rithm developed at MIT by Palacios and Hansman (2010) was used to remove noise

in the data.

The available sector boundary data is from 08/27/09. SUAs, MOAs and Warning

Airspace were not available in this data. As mentioned in Section 1.3.2, this analysis

focuses in High and Super High sectors located in the 20 Centers in the continental

US. According to the definition adopted in this work, both High and Super High

sectors have ceiling above FL240 (see Figure 1-3). After correcting and cleaning the

data, the final number of analyzed sectors was 452. The final range of traffic volume

was from 400 to 5073 in two weeks of data. Assuming that most of the traffic occurs

for 16 hours of the day (between 6:00 AM and 10:00 PM), this range is between 2

and 23 flights per hour.

3.1.2 Selected traffic metrics

Based on the literature review of traffic metrics, four groups of metrics were chosen

for analysis of similarity in the NAS (Table 3.1). Traffic count was defined in terms

of the total number of aircraft (NAC) that was observed for the entire span of data.

A detailed description of the other types of metrics is provided below.

Altitude Transition Metrics

A flight is characterized as transitioning if the altitude difference from entrance to exit

of the sector is equal or greater than 1000ft. The metrics consist on the percentage of

climbing, descending and level traffic, compared to the total traffic (NAC). Measures

of altitude transition have been incorporated in several studies to account for the

dynamics of the traffic (Hilburn, 2004; Christien et al., 2003; Kopardekar et al., 2007;

Chatterji & Sridhar, 2001; Laudeman et al., 1998).
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Table 3.1: Summary of selected traffic metrics

Type of Metrics Description Variable

Aircraft Total number NAC
Count of aircraft

Percentage of Climb
climbing traffic

Altitude Percentage of Desc
Transition descending traffic

Percentage of Level
level traffic

Entropy of distribution of Origentropy
traffic from Origin airports

Origin-Destination Entropy of distribution of Destentropy
Dispersion traffic to Destination airports

Entropy of distribution ODentropy

of traffic to OD pairs

Entropy of directions Direntropy
Directional of the traffic
Dispersion Deviation from DMT

the main traffic

Origin-Destination Dispersion Metrics

It was assumed that flights that go to (or come from) specific airports are likely

to present similar flight plans and, consequently, similar dynamics inside the sector

(that is, similar lateral and vertical trajectories). For instance, if the sector has

a high percentage of its traffic associated to the same airport, then the air traffic

controller is likely to expect the same behavior and requests from these flights and to

exercise similar set of actions to manage this traffic. This assumption is consistent

with the grouping abstraction introduced by Histon and Hansman (2008), whereby

the controller collects together similar parts of the situation, typically aircraft, within

the working mental model. Thus, it was considered that metrics to evaluate the

distribution of origin and destination would be relevant for probing the dynamics of

the traffic in a sector.

In order to probe the existence of prominent origins or destinations, the percentage
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of traffic that is related to specific airports was analyzed. When evaluating the dis-

tribution of origins and destination of the traffic, it soon became evident that certain

sectors had very concentrated traffic in a few origins or destinations and some others

appeared to have a very scattered distribution. Figure 3-2 presents the traffic and

distribution of percentage of traffic to specific destinations for Los Angels 26 (ZLA

26) and Kansas City 07 (ZKC07). As such, it appeared that a good characterization

of such distributions would be a measure of how disperse these distributions were.

The chosen metric for this purpose was entropy of the distribution.

Equation 3.1 presents the formula for the statistical entropy. Let pdesti be the

proportion of traffic associated with the ith destination and n
(l)
dest the number of unique

destinations for the observed traffic in sector l. Then the entropy of the distribution

(a) Traffic in ZLA26 (b) Distribution of Destinations in ZLA26

(c) Traffic in ZKC07 (d) Distribution of Destinations in ZKC07

Figure 3-2: Traffic and distribution of percentage of traffic to specific destinations for
Los Angeles 26 (ZLA26) and Kansas City 07 (ZKC07)
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of destinations is calculated with the following equation:

Dest
(l)
entropy = −

n
(l)
dest∑
i=1

pdesti ln pdesti (3.1)

The uniform distribution is known to be the maximum entropy distribution.

That is, for a set with n elements, the maximum entropy occurs when each ele-

ment is equally likely, with probability 1/n. Moreover, this maximum entropy is

−n
(
1
n
ln( 1

n
)
)

= ln(n). For instance, if the traffic in a sector had 200 unique des-

tinations, then the maximum entropy for this distribution would be ln(200) = 5.3.

The opposite extreme case would be if a sector had all of its traffic going to a single

destination, then the destination entropy would be −1ln(1) = 0.

If porigi is the proportion of traffic associated with the ith origin and n
(l)
orig is the

number of observed unique origins for sector l, then the origin entropy is calculated

by:

Orig
(l)
entropy = −

n
(l)
orig∑
i=1

porigi ln porigi (3.2)

Similarly, if podi is the proportion of traffic associated with the ith origin-destination

pair and n
(l)
od is the number of possible origin-destination pairs for sector l, then the

OD entropy is calculated by:

OD
(l)
entropy = −

n
(l)
od∑

i=1

podi ln podi (3.3)

Directional Dispersion Metrics

The directionality metrics in this work try to capture how disperse the traffic is in

the sector. Intuitively, traffic concentrated around specific directions is likely to be

correlated to major flows in the sector. Conversely, if a high directional dispersion is

found, then the sector may contain less predominant flows or more background traffic.

Christien et al. (2003) also included a measure of disorganization of the traffic, named

flow entropy.
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The heading is calculated from the point of entrance to the exit of the sector.

Figure 3-3 compares Los Angeles 25 (ZLA25) and Denver 32 (ZDV32) in terms of

the heading distribution and the integrated image of the traffic. Figures 3-3(b) and

3-3(d) present the percentage of traffic that follows each direction (directions were

rounded to the nearest integer). Notice how ZLA25 has a major traffic direction at

315 ◦ degrees with a secondary peaks at 120 ◦ and 150 ◦ degrees. Therefore, this sector

presents traffic bidirectionally. For ZDV32, however, it can be seen, from Figure 3-

3(c), that the traffic has several directions, which is reflected in Figure 3-3(d) in terms

of a more scattered distribution of directions. Two measurements are extracted from

directional distributions such as those presented in Figures 3-3(b) and 3-3(d). The

first measure of dispersion is the directional entropy:

(a) Traffic in ZLA25 (b) Directions in ZLA25

(c) Traffic in ZDV32 (d) Directions ZDV32

Figure 3-3: Traffic and distribution of directions for Los Angeles 25 (ZLA25) and
Denver 32 (ZDV32)
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Dir
(l)
entropy = −

360∑
j=1

p
(l)
j ln p

(l)
j , (3.4)

where p
(l)
j is the proportion of aircraft that follow the jth direction from 1 ◦ to 360 ◦

degrees and Nl is the total traffic in sector l. Therefore, the higher the directional

dispersion , the higher the measurement of directional entropy will be. Conversely,

low entropy is an indication that the distribution is more peaked or concentrated

around certain values. One can see that, indeed, the resultant directional entropy is

lower for ZLA25 than for ZDV32. In fact, it can be proven that, for a set with n

elements, the entropy is maximum when each element is equally likely (or uniformly

distributed). Moreover, this maximum entropy is −n
(
1
n
ln( 1

n
)
)

= ln(n). Thus, for

this case where directions are discretized in 360 bins (to the nearest integer), the

maximum entropy is ln(360) = 5.9.

The other directionality metric is a variation of WASP (Kopardekar & Magyarits,

2003), defined as “the square difference between the heading of each aircraft in a

sector and the direction of the major axis of the sector, weighted by the sector aspect

ratio.” In this work, the main axis of the sector is replaced by the main direction

of the traffic, extracted from radar data, and the aspect ratio of the sector is not

included in the calculation. As such, the name of the metric is changed to deviation

from the main traffic (DMT). Notice that this definition differs from the variance

definition, since dispersion is being calculated around the main axis, not around the

mean of the headings.

The main direction of the traffic is determined from the mode or the most frequent

direction in the directions distribution chart (such as those presented in Figures 3-3(b)

and 3-3(d)). Let Hl be this mode, or the main traffic heading. Let αi be the angle of

the arc that spans from the main traffic heading to the ith aircraft heading, thereby

assuming values between 0 ◦ and 180 ◦ degrees. The equation for the deviation from

the main traffic for sector l, or DMT l, is then:
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DMT l =

√√√√ 1

Nl

Nl∑
i=1

(αi)
2 (3.5)

where Nl is total traffic for sector l and. The division by Nl aims at reducing distor-

tions of higher DMT simply due to higher traffic (without this correction, high DMT

could be obtained for high volume, unidirectional traffic).

Notice that Equation 3.5 tends to assume high values as the amount of traffic

not following the main traffic increases. This is particularly true for aircraft flying in

opposite (or close to opposite) direction of the main traffic, since each of these aircraft

contribute with approximately 1802 to the summation inside the square root. This

constitutes in the main contrast between DMT and directional entropy and the reason

why DMT was included in the analysis. Entropy is independent of the ordering of

the distribution, whereas DMT is dependent both on the magnitude and ordering of

the headings of each aircraft.

Therefore, if the traffic is concentrated around, say, two flows, the entropy is likely

to be very low (−0.5ln(0.5) − 0.5ln(0.5) = ln(2) = 0.69). If the traffic is perfectly

divided in two flows, then DMT will assume higher values as the angular difference

be zero if these two flows coincide and increase dramatically as the directional offset

approaches 180 ◦. Both metrics, however, achieve maximum values under a uniform

distribution of headings.

3.1.3 Clustering Method

Each sector was treated as an observation that was characterized by traffic metrics.

In order to identify sectors with similar traffic characteristics, a clustering analysis of

the metrics for each high altitude sector was conducted. This Section presents the

concept of clustering and some details about the chosen clustering method, K-means.

Consider a collection of objects that can be described by a set of measurements.

In general, all types of cluster analyses relate to grouping or segmenting this collection

of objects into subsets or “clusters”. These clusters are formed in such a way that

each cluster member is more closely related to one another than to objects assigned
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to different clusters. For means of this research, the objects would be high altitude

sectors and the measurements would be traffic metrics presented in Section 3.1.2.

Thus, clusters of sectors would be groups of sectors with similar traffic dynamics.

Therefore, to objective of different cluster analyses is to create many-to-one map-

pings where the ith object, i ∈ {1, . . . , N}, is labeled as belonging to the kth cluster,

k ∈ {1, . . . , K}, where K < N . One approach for such method is to define a loss

function to be minimized for each cluster. Let C be a many-to-one mapping that gives

a cluster assignment to each object, that is C(i) = k. Then a natural within-cluster

dissimilarity can be expressed as:

W (C) =
1

2

K∑
k=1

∑
C(i)=k

∑
C(i′)=k

d (xi, xi′) , (3.6)

which is calculated with a dissimilarity function dii′ = d (xi, xi′) (Hastie, Tibshirani,

& Friedman, 2009). Notice that, based on this dissimilarity or distance function, the

total scatter of all objects:

T =
1

2

N∑
i=1

N∑
i′=1

dii′ (3.7)

is independent of the cluster assignment. In other words, given the data, the total

scatter is a constant. If there is a cluster assignment, then the invariant total scatter

can be broken down into:

T =
K∑
k=1

∑
C(i)=k

 ∑
C(i′)=k

dii′ +
∑

C(i′)6=k

dii′

 (3.8)

or T = W (C) + B(C), that is, the sum of within- and between-cluster dissimilari-

ties. Hence, the clustering method can be formulated either as minimizing W (C) or

maximizing B(C).

It should be apparent by now that central to any cluster analysis is the dissimilarity

function dii′ , or the measure of distance between objects (Hastie et al., 2009). In this

work, all the traffic metrics were standardized to have mean 0 and variance 1. Then,

the dissimilarity or distance between pairwise sectors was calculated from the squared
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Euclidean distance based on the standardized values of traffic metrics. Therefore, the

dissimilarities can be expressed as:

dii′ = d (xi, xi′) =

p∑
j=1

(xij − xi′j)2 = ||xi − xi′||2 , (3.9)

where p is the number of properties or metrics used to describe each object and xij

is the standardized value of property j for object i. Thereby, Equation 3.6 can be

rewritten as:

W (C) =
1

2

K∑
k=1

∑
C(i)=k

∑
C(i′)=k

||xi − xi′||2 , (3.10)

This research used the popularK-means method for solving the clustering problem

of minimizing Equation 3.10 for all clusters. By this method, an initial assignment

of cluster centroids is randomly selected from the available data. Then, K-means

alternates the two following steps until convergence:

1. Identify the closest cluster centroid (Euclidean distance in Equation 3.10) for

each object and reassign the cluster membership of each object accordingly

2. Each cluster centroid is replaced by the coordinate-wise average of all objects

that are assigned to the respective cluster

Steps 1 and 2 are iterated until the assignments do not change. Each iteration

reduces the value of Equation 3.10. However, local minimums can be reached, de-

pending on the initial random assignments of centroids. Therefore, the algorithm was

replicated 100 times and the best assignment according to Equation 3.10 was taken

as the final clustering.

The choice of K, the number of clusters to be searched for, is a critical input for

the K-means algorithm. This is the major shortcoming of applying this method in

a research where the final “natural number of clusters” is an important information

to be extracted. As a possible (and popular ) solution, one could compute and plot

the value from Equation 3.10 as a function of K. In such method, typically one
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looks for a “kink” in the sum of squares curve when locating for the optimal number

of clusters. Unfortunately, there is no widely-accepted mathematical method for

determining the optimum number of clusters. Therefore, cluster interpretability and

subject matter expert input can play a major role on the choice of K. In this work,

cluster interpretability is the criterion for the number of clusters.

3.2 Results

This Section starts by exploring some of the interrelationships between the traffic

metrics described in Section 3.1.2. Then, results of the clustering algorithm are

presented. These results should be interpreted as a snapshot of the current NAS and

limited to the set of traffic metrics that were chosen.

Figure 3-4(a) below presents the scatter plot of Origin Entropy (an extension of

Equation 3.1 for origin airports) versus the percentage of climbing traffic. Each circle

corresponds to a high altitude sector, or an observation.

Notice that the origin entropy decreases as the amount of climbing traffic in the

sector increases. Recall that lower entropies indicate a concentration of the distri-

bution at few peaks, 0 being the lower bound of entropy for a pure set. Therefore,

(a) (b)

Figure 3-4: Relationship between altitude transition metrics and entropy of the dis-
tribution of origin and destination airports
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the information conveyed in Figure 3-4(a) is that sectors with higher percentage of

climbing traffic tend to have traffic coming from a concentrated set of airports. These

sectors are found mainly nearby major airports, as presented later in this Section.

Following the same trend, Figure 3-4(b) shows that sectors with high percentage of

descending traffic tend to have traffic going to a concentrated set of airports. These

sectors sectors are also found to be located nearby major airports. Note, however,

that a significant portion of the observed sectors are on the top left corner of both

charts.

Figure 3-5 analyzes the percentages of climbing and descending traffic for all the

sectors. Again, each high altitude sector is plotted as a circle in the scatter plot. This

Figure 3-5: Climbing versus Descending traffic per sector. Dashed lines represent
same percentage of level traffic. For instance, any sector over the 30% dashed line
has 30% of level traffic.

61



(a) Origin entropy versus Directional entropy (b) Origin, Destination and OD entropies

(c) Deviation from the main traffic (DMT) versus
directional entropy

(d) Total traffic versus deviation from the main
(DMT)

Figure 3-6: Relationship between other metrics

chart also presents lines with same percentage of level traffic, in 10% increments.

Noticeably, a number of the High and Super High sectors are on the bottom left

corner of this chart, indicating they have a high proportion of the traffic in level

phase of flight.

Figure 3-6 presents the relationship between other variables for each sector. Figure

3-6(a) shows that most of the sectors have high entropies both with respect to origins

and destinations and few have traffic concentrated with respect either to origins or

destinations. Figure 3-6(b) is a 3-dimensional version of Figure 3-6(a), including

OD entropy in the z-axis. One can see that OD entropy increases as the traffic is

more scattered in terms of either origins or destinations. Figure 3-6(c) indicates that
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both directional metrics are mildly correlated (correlation of 0.68). Deviations from

perfect correlation between both metrics are due to the fact that DMT is sensitive

to the differences of direction in the traffic. That is, for a given entropy, DMT will

vary depending on the distribution of the rest of the traffic relative to the main traffic

direction.

Moreover, as presented on the scatter plot of Figure 3-6(d), DMT and total traffic

are fairly unrelated (correlation of 0.22). This is due the normalization by Nl in

Equation 3.5, in order to avoid bias of higher DMT simply due to more traffic volume.

Clustering Results

The clustering method was used by considering each high and super high altitude

sector as an object, and each calculated traffic metric as a property (using the ter-

minology of Section 3.1.3). The final number of clusters was based on the distinct

characteristics of each group. The clustering algorithm found five “natural clusters”,

based primarily on the total traffic volume, altitude transitions and directional vari-

ability.

Figure 3-7 presents the characteristics of each cluster, according to the percentage

of traffic that had altitude transition, total traffic and deviation from the main traffic

direction. Two polygons of same color are drawn for each cluster: the inner (and

darker) polygon accounts for 50% of the cluster members, whereas the outer (and

lighter) polygon accounts for 90% of the cluster members. One can see that clusters 1

(light blue) and 2 (red wine) were mainly differentiated according to the percentages

of climbing and descending traffic, respectively (Figure 3-7(a)). Group 5 (light green)

presents a combination of both climbing and descending traffic, resulting in similar

percentages of level traffic of clusters 1 and 2. Also in Figure 3-7(a), note that

clusters 3 (orange) and 4 (dark blue) overlapped in terms of altitude transitions.

These clusters were differentiated (Figure 3-7(b)) as two major regions based on the

combined values of total traffic and deviation from main traffic. In Figure 3-7(b), one

can see that cluster 5 tended to have medium values of traffic volume and deviation

from the main traffic.

63



(a) Clusters 1, 2 and 5 distinguished by the percentage of altitude
transitions.

(b) Clusters 3, 4 and 5 distinguished by the combined values of total traffic
and deviation from main traffic.

Figure 3-7: Scatter plots for all clusters. Inner (dark) and outer (light) boundaries
account for 50% and 90% of the cluster members, respectively.
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More details about the distribution of each traffic metric are presented in Figure

3-8. This Figure presents boxplots to convey the statistics for the five clusters iden-

tified among the high and super high sectors in the NAS. The standardized value

for each metric is presented in the y axis, thereby removing problems of scale in the

presentation.

The boxplot for each variable is composed of a box and whiskers. On each box,

the central red mark is the median for that group of sectors, the bottom and top

edges of the box are the 25th and 75th percentiles. The interquartile range (IQR) is

defined as the height of the box, or the distance from the 25th to the 75th percentiles.

In the presented charts, the whiskers extend to 1.5 IQR from the edge of the box.

Everything beyond the whiskers is considered an outlier and plotted individually as

a red cross. Since these charts present the standardized values of the variables, the

0 line presents the mean for the entire population. In addition to these standard

elements of a boxplot, the median of each of the variables for the entire population is

presented as a dark circle, allowing for a comparison of the distribution of a certain

variable in a cluster against the median of all analyzed sectors.

Figure 3-8(a) presents what can be identified as a cluster with mainly climbing

traffic (the entire boxplot for percentage of climbing traffic is above the mean and

the median for the entire population). The directionality metrics for this cluster

(low directional entropy and deviation from main traffic) suggest that these sectors

have organized traffic along a main direction. Low entropy of the origin distribution

also suggests that the traffic comes from a concentrated set of airports. Conversely,

Figure 3-8(b) presents a group of sectors with mainly descending traffic. The traffic

for these sectors also appears to be organized with respect to a main direction and a

concentrated set of destinations (the values of these respective variables are low). The

traffic volume (NAC column) both for climbing and descending sectors also appears

to be slightly lower, in average, than the median for the entire population of high

altitude sectors.

Figure 3-8(c) presents statistics for sectors in Cluster 3. These sectors have a total

number of aircraft, deviation from main traffic and percentage of level traffic higher
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(a) Cluster 1, climbing (b) Cluster 2, descending

(c) Cluster 3, level with high complexity (d) Cluster 4, level with moderate complexity

(e) Cluster 5, mixed transitions and low traffic

Figure 3-8: Boxplots for each cluster identified among the High and Super High
Altitude Sectors
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than average. Moreover, the traffic is scattered across more origins and destinations

than the average and median of the entire population, as it can be evidenced by the

Orig and Dest columns in Figure 3-8(c). Members of cluster 3 appear to present the

highest complexity that one can observe amongst sectors with level traffic.

Cluster 4 was found to have low level of traffic (see Figure 3-8(d)). Sectors in this

cluster appear to have a higher quantity of level traffic than the median for the entire

NAS. Moreover, they present average values of directional and OD dispersion. This

observation suggests that these sectors have moderate complexity when compared to

the rest of the NAS.

Sectors in cluster 5 (see Figure 3-8(e)) have slightly less aircraft than the average.

However, they have percentages of both climbing and descending traffic that is higher

than average. This cluster presents the highest directional entropies of all identified

clusters. Dispersion of directions may exist in order to accommodate both climbing

and descending traffic. Medium DMT and high directional entropy might be a conse-

quence of a strong main direction for the traffic, but still with some dispersion around

this main direction.

Figure 3-9 presents the distribution of each cluster in the NAS. The respective

sectors for each cluster were plotted with a semi-transparent red face. Thus, a darker

red comes out when two sectors overlap in the altitude dimension. Same geographical

regions may have different overlapping sectors categorized in different clusters. This

suggests how traffic dynamics changes with respect to altitude.

Notice that sectors classified in clusters 1 and 2 are located around major airports.

Moreover, they also appear to be thinner, with higher aspect ratio (this is just an

observation, no quantitative analysis was done on this matter). Conversely, sectors

classified in clusters 3 and 4 tend to be located farther from major airports. Sectors

of clusters 3 and 4 that appear close to larger cities (namely Chicago and Dallas Fort

Worth) were found to be at higher altitudes, thereby presenting less concentration of

traffic with respect to specific airport and higher percentage of level traffic. Members

of group 5 appear to be either close to major airports or between climbing/descending

and level sectors.
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(a) Cluster 1, climbing (b) Cluster 2, descending

(c) Cluster 3, level with high complexity (d) Cluster 4, level with moderate complexity

(e) Cluster 5, mixed transitions and low traffic

Figure 3-9: Clusters identified for High and Super High Altitude Sectors
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Table 3.2: Summary of clusters for High and Super High sectors

Table 3.2 consolidates the result of the cluster analysis, including the number of

sectors in each group. In summary, three groups with significant altitude transitions

were found: climbing (cluster 1), descending (cluster 2) and mixed transitions (cluster

5). Among groups with level traffic, cluster 3 appeared to have higher complexity

than cluster 4, evidenced by higher averages of traffic volume, directional entropy,

OD entropies, and deviation from the main traffic (DMT).

3.3 Summary

This Chapter presented the selected traffic metrics that were identified as relevant for

capturing the dynamics of high altitude sectors in the NAS. Natural interrelationships

between these variables were found, such as:

• Sectors with high percentage of climbing traffic tend to have their traffic coming

from concentrated set of airports (origin concentration, measured by low Origin

Entropy).

• Sectors with high percentage of descending traffic tend to have their traffic

going to concentrated set of airports (destination concentration, measured by

low Destination Entropy).

Results of the clustering algorithm were then presented. The identified clusters

highlighted different types of dynamics that could be found in the NAS. It is known
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that the current structure of the sectors is a consequence of incremental traffic, pro-

cedures and technology (Chatterji et al., 2008). Sectors evolved in order to accom-

modate the nature of the traffic that had to be monitored and controlled, but in such

a way to maintain a certain workload for the controllers (Nolan, 2011). One can see

from the devised clusters some of the different combinations of traffic metrics. These

phenomena emerge as a wide range of situations to which controllers are exposed.

The analysis presented in this Chapter led to a typology of the sectors in the NAS.

This typology should be treated as a snapshot of the current dynamics of the NAS,

limited by the selection of traffic metrics and radar track data span. It should be

noted that similar dynamics are likely to be associated with common volume, types

and sequence of tasks to be performed.

The following Chapters use the identified types of sectors to investigate how com-

mon structural patterns and traffic dynamics impact the techniques used by con-

trollers. More specifically, the next Chapter attempts to generate hypotheses about

how traffic characteristics can be linked to controller techniques.
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Chapter 4

Analysis of Structural Patterns

The previous Chapter looked at overall traffic characteristics in the NAS. This Chap-

ter shifts from this mathematical approach to a more careful observation of structural

patterns and how they relate to different aspects of the structure. The objective of

this analysis is to generate hypotheses about how controllers manage the traffic.

4.1 Methodology

From Histon and Hansman (2008), two of the identified structure based-abstractions

had a high topological implication on the physical setup of the traffic, namely flows

and critical points. This Chapter analyzes flows and critical points and what are

their variations in the NAS. Some consideration is also given to the intensity and

dispersion of the background traffic.

Initial work attempted to derive flows from a density-based analysis, by partition-

ing the sector’s geographical location into a grid, and then counting the traffic volume

through each grid cell. From this method, it is usually straightforward to determine

the densest trajectories in a sector. However, as the density drops down from the

centerline of the flow, it becomes more and more ambiguous to determine whether an

aircraft belongs to that flow, to the background traffic or even to another flow. That

is, it is difficult to define the threshold for a flow.

As presented in Chapter 2, some researchers focused on the development of math-
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ematical models for identification of flows and critical points. The ambiguity of what

belongs to flows or not was usually solved in those methods by setting parameters

to be met: a maximum ”background traffic” (Gariel et al., 2010), or a minimum

”coverage threshold” (Sabhnani et al., 2010), or minimum length and width of flows

(Simmons, 2010).

In order to conduct a preliminary analysis, this Chapter presents a subjective eval-

uation of what are the major elements within the system. Thereby, flows and critical

points were analyzed via visualizations of the traffic. This subjective investigation

looked not only at geometrical or topological similarities of the traffic, but also at

what are the variations of such patterns.

Each sector was printed out in one page, including a zoomed in and a zoomed out

view. Both views consisted of an integrated, two-dimensional view of all the traffic

(from the available data) that went through the sector. The zoomed in view presented

only the sector boundary in addition to the overall traffic. The zoomed out view

presented the traffic extended 200 nautical miles away from the sector boundary, since

most sectors are located within this exact distance from a major US airport (Chatterji

et al., 2008). The zoomed out view also included the boundaries of surrounding sectors

and nearby airports.

Figure 4-1 illustrates one of those printouts for sector Fort Worth 89 (ZFW89).

Notice that by clipping the radar track from entrance to exit of the sector, vertical

handoffs within the sector lateral boundaries can be visualized in the zoomed in

view. The subjective identification of flows and critical points also allowed to observe

a typology of such patterns.

Since all the the available traffic was collapsed in a top view two-dimensional plot,

important aspects of the structure were lost, such as altitude transitions, directionality

and time variations. Mindful of such oversimplifications of the traffic, these printouts

were only used as a first screening for structural variations.

Additional details of the traffic were analyzed in case studies, which are presented

in this Chapter. In these case studies, the identified variations of structural features

were correlated to origins and destinations (OD) in the traffic. Traffic directionality
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Figure 4-1: Fort Worth 89 (ZFW89)
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and altitude transitions were also investigated in the context of the OD analysis,

since these factors are correlated with the origin and destination of the aircraft. This

correlation is evidenced by (1) noting that an origin and destination specify a vector or

direction for the aircraft; and (2) altitude transitions are correlated with concentration

of traffic to specific airports (Figure 3-4 in Chapter 3).

4.1.1 Evaluation Data

In oder to conduct the aforementioned analyses, the same ETMS data described in

Chapter 3 was used (only position, time and origin and destination was available

in this data). Two weeks fo data were considered, the days from 07/13/2009 to

07/19/2009 and from 09/21/2009 to 09/27/2009. The analysis focused on 452 High

and Super High sectors with ceiling above FL240. The range of traffic volume was

between 400 and 5073 aircraft in the two weeks.

Other information used in this analysis was sector binders for Jacksonville ARTCC

(ZJX). These sector binders provided charts depicting the main routes and reference

points, as well as procedural restrictions. Moreover, location and type of 43,680

airports (balloon port, seaplane base, heliport, closed, small, medium, large) around

the world were obtained from a web source: http://www.ourairports.com/.

4.2 Observed Variations of Structural Features

From Histon and Hansman (2008), the use of structure-based abstractions appeared

to be connected to the physical setup of the traffic (or the structural topology). Thus,

this analysis is based on simple and key geometrical elements that could be captured

from observation of several sectors..

The goal is to identify variations of two of the structure-based abstractions iden-

tified by Histon and Hansman (2008), namely flows and critical points. The method

for subjective identification of these patterns consists in overlaying semi-transparent

radar track lines for each flight in the sector. As a result, the darker a certain re-

gion is, the stronger the evidence of overlapping trajectories. In this method, flows
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are identified from darker paths. Critical points are identified from darker spots or,

equivalently, from intersections of flows. Due to the subjective attribute of this first

screening, definitive thresholds for characterizing flows in terms of width, amount

of traffic and length were not devised. Notwithstanding, certain patterns and their

variations were evident

Two main types of flows were identified: dense flows and converging/diverging

(C/D) flows. Also, two types of critical points were observed: crosses and merges/splits

(M/S). It was found that the topology of the traffic could be described as a combi-

nation of these basic elements or patterns.

Flows

Figure 4-2 highlights key dense flows subjectively identified in two different sectors.

More consistent tracks along a path line were mostly observed in elongated sectors,

which were found to be aligned with the traffic directions going from or to nearby

airports. Due to local operational constraints, some of these sectors also presented

holding patterns associated with the dense flows. Such procedures work as a buffer,

thereby increasing the airspace capacity.

Other observed variation of flows is when several tracks converge to or diverge from

a single point, most of them not following the same path. This pattern is referred

to as a converging or diverging (C/D) flow. An important distinction: when dense

flows converging to or diverging from a point can be identified, they are considered

as a combination of dense flows, not a C/D pattern. This does not exclude the case

where converging or diverging dense flows occur concomitantly with a C/D pattern

at the same point.

The C/D flow can be further categorized in terms of the location of its focal

point, that is, if it is either internal or external to the sector, as illustrated in Figure

4-3. From a cognitive standpoint, however, the differentiation of a C/D flow as part

of the primary structure or as just background traffic demands a deeper analysis of

how the controller manages and abstracts this pattern. For instance, if the C/D

flow converges to a merging point descending to a destination airport, then most
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Figure 4-2: Examples of dense flows (highlighted in red)

Figure 4-3: Examples of converging/diverging (C/D) flows

likely the controller has to monitor and implement altitude transition, speed and/or

longitudinal separation. In this case, the converging flow and the resultant dense flow
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may be part of the primary structure.

Critical Points

In this review of traffic patterns, critical points were analyzed as points with repet-

itive intersections of traffic, and, as a result, representing points of potential loss of

separation. As such, critical points were identified as the intersection of dense flows

or the focal point of a C/D flow. Areas of potential conflict (or critical areas) were

not explicitly analyzed. Note, however, that a critical point might be located inside

a given sector, but it might be critical to a group of other controllers, even in other

facilities. One or more upstream controllers might be responsible to deliver aircraft in

a given altitude, speed or longitudinal spacing, thereby allowing a feasible workload

for the controller that actually oversees the critical point.

Figure 4-4 illustrates an example of crossing of flows as a variation of critical

points. Another variation of critical points is merges or splits (M/S) of traffic. Natu-

rally, the focal point of a C/D flow is always a M/S critical point (examples in Figure

4-3). The cases presented in Figure 4-5 are examples of merges or splits involving

dense flows.

Many instances of critical points found in the NAS were not related only to two

flows, but to many of them. These critical points were generally called stars, as they

have more than four segments of traffic going out of them (Figure 4-6). Each star

appeared to have its own particularities, featuring combinations of merge, split and

crossing traffic behavior across different altitudes. A deeper directionality analysis

of dense flows associated to a given star would be required to determine which of

Figure 4-4: Critical Points: crossing
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Figure 4-5: Critical Points: merge / split

them are crossing, merging or splitting. Moreover, stars were usually associated with

some nearby disperse traffic, as a faded background traffic. It is not straightforward

to ascertain if this surrounding traffic is background traffic. For example, as noted

by Histon and Hansman (2008) and reviewed in Figure 2-5, controllers operate in

different modes according to the number of aircraft. In less busy situations, an

opportunity mode allows for shortcuts that might yield the background-like effect on

the traffic plots.

Figure 4-6: Critical Points: Stars
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4.3 Analysis of Origins and Destinations

This Section starts presenting the overall linkage between internal and external struc-

ture and how this linkage can improve the understanding of the patterns in the traffic.

Motivated by this linkage, groupings by origins and destinations (OD) in four OD

case studies are identified and investigated in more detail. The objective is to use

these groupings to identify the dynamics of the traffic that pertains to certain flows

and critical points. These dynamics may provide an indication of the tasks that must

be performed, and, therefore, how the traffic is managed.

By looking at the zoomed in or sector’s view alone, much of the interrelationships

(and, therefore, mutual constraints) of the structural features are not obvious. These

interrelationships can be assessed from the analysis of the overall picture of the traffic.

The use of the zoomed out view for better understanding of the sector’s structural

patterns is first exemplified with Oakland 33 (ZOA33) in Figure 4-7.

From this Figure, one can se that the east-west traffic is associated with the San

Francisco area (airports OAK, SFO and SJC). More specifically, the upper flow goes

to OAK, the mid flow and its associated merging patterns flies to SFO and the bottom

flow goes to SJC. There is also a converging flow that goes to OAK and presents a

focal point outside the sector. Traffic to SFO is also associated with a converging

pattern that starts on upstream sectors and has a focal point at critical point CP1.

Moreover, traffic to SFO also presents shortcuts that avoid the CP1 and extend to

downstream sectors.

From Figure 4-7, one can also see a northwest-southeast traffic associated with Las

Vegas. This traffic flies through two critical points close to the southeast border of

ZOA33. One critical point (CP2), composed of traffic to LAS, is associated with a set

of internal and external patterns. The third critical point (CP3), composed of traffic

from LAS, also presents a set of other associated patterns, both inside and outside the

sector. three weaker flows that cross ZOA33 and one stronger flow, outside ZOA33,

that is related to LAS. The other critical point is related to two other flows outside

ZOA33 that then present a C/D pattern inside ZOA33.
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(a) Zoomed out view of ZOA33

(b) Zoomed in view of ZOA33

Figure 4-7: External structure analysis of ZOA33. Illustration of the connection
between internal structure and origins and destinations of the traffic.
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This brief analysis of ZOA33 presents how the internal structure is connected to

external features, such as airports and other flows.

Analysis of the external structure also allows the understanding of deviation of the

traffic from the route structure, or the structural framework of the sector (composed of

routes and reference points). Figure 4-8 below illustrates the zoomed in view and the

structural framework for Moultrie sector, Jacksonville 49 (ZJX49). Visual inspection

indicates that some routes depicted in the sector binder chart can be related to traffic

patterns. But there are other flows and even critical points revealed from ETMS data

that could not be mapped to published routes. Moreover, the conformance to those

routes is not tight, that is, flows are usually associated with some traffic dispersion.

Figure 4-9 presents the zoomed out view of ZJX49. By looking at the external

structure, the non-conformance to the structural framework can be seen as a result of

(1) shortcuts to avoid a critical point and (2) directs connecting two reference points

outside the sector boundaries. Therefore, there is a linkage between the internal

structural pattern and the structural features that are external to the sector.

The observed connections between the internal structure and nearby airports im-

Figure 4-8: Zoomed in view and route structure for ZJX49
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Figure 4-9: Zoomed out view of ZJX49

pose additional constraints on how to manage the traffic. As an example, from the

sector binder of ZJX49: “The Moultrie Sector shall ensure that all aircraft landing

within the Tampa Complex traffic cross the Moultrie/Lawtey boundary at or below

FL380”.

In fact, the correlation between origins and destinations with structural features

in the sector is consistent with how controllers describe the flows inside the sector.

For instance, a controller describing the low altitude sector ZBW22:
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“The primary flows are EWR (Newark) area arrivals southbound over

ALB. . . ”1

Thinking in terms of groupings by origin and destination (OD) is consistent with

the grouping structure-based abstraction introduced by Histon and Hansman (2008),

whereby the controller distinguishes different parts of the air traffic situation that are

expected to present same dynamics and require same actions. This Section analyzes

origins and destinations by correlating these groupings with the structural features

presented in Section 4.2 and the dynamics of the traffic. The objective is to investigate

how OD groupings can possibly decompose the tasks in simpler and separate parts

and to generate hypothesis about how controllers manage the traffic.

The correlation between OD groupings and the observed structural features is

performed by highlighting the major origins and destinations in the traffic and eval-

uating how these segregate parts are linked to the major flows and critical points.

The correlation between OD groupings and the dynamics of the traffic is conducted

by considering lateral and vertical characteristics of the trajectories.

Four OD case studies were analyzed: Cleveland 59 (ZOB59), Boston 38 (ZBW38),

Fort Worth 90 (ZFW90) and Albuquerque 98 (ZAB98). These sectors were selected

based on the results of the previous Chapter. The motivation to analyze sectors

with different characteristics was to consider a wider range of phenomena and how

these phenomena were related to groupings by origins and destinations. ZOB59 was

classified as a level sector with average complexity traffic; ZBW38 was classified as

mixed altitude with low traffic; ZFW90 was classified in the climbing traffic group;

and ZAB98 was classified as a level sector with high complexity. Figures 4-10(a) and

4-10(b) illustrate the membership of each of these sectors to the identified clusters in

Chapter 3.

1Source: http://nas-confusion.blogspot.com/2010/12/differently-similar.html
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(a) Membership of sectors to clusters with respect to percentage
of altitude transitions

(b) Membership of sectors to clusters with respect to total traffic and deviation
from main traffic

Figure 4-10: Illustration of cluster membership of analyzed clusters.
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4.3.1 OD Analysis: Cleveland 59 (ZOB59)

The plot in Figure 4-11 suggests three flows that are highly salient and connected

to airports in New York and Philadelphia. Other patterns in this sector are a C/D

flow and holding patterns associated with one of the dense flows. The analysis of

this case study aims to investigate how each of these distinct and salient patterns are

related to origins and destinations and if any other secondary structural feature can

be identified by highlighting traffic to or from specific airports.

ZOB59 also provides a case study of a member of the moderate complexity cluster

(level traffic with some dispersion and medium traffic density - Figure 4-10), presented

in Section 3.2. The sector spans the flight levels 330 and above. From the radar track

data, 69% of flights were in level flight, 16% were climbing and 15% were descending2.

Figure 4-12 presents a 3D histogram with the percentage of traffic traveling from

the top 15 origins to the top 15 destinations. Figure 4-13 presents the traffic for the

top 15 origins and destinations, but separately. Both figures indicate that the traffic

is mainly between New York, Philadelphia and Chicago. As an exception, there is a

minor pattern from BOS to CVG with approximately 1% of the total traffic (Figure

2In this Chapter, the definition of altitude transition is the same as in Chapter 3, that is, based
on total transition from entrance to exit greater or equal to 1000ft.

Figure 4-11: ZOB59: Zoomed out view
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Figure 4-12: ZOB59: 3D histogram containing top 15 Origin and Destinations

4-12). The top destination of the traffic is LGA, whereas the top origin is PHL, even

though there is no traffic between these cities.

In Figure 4-14, for sake of brevity when illustrating the method, only the top 3

destination airports are highlighted. Notice how certain structural features can be

mapped to specific airports. For instance, the traffic to LGA is associated with a

dense flow, a C/D flow and holding patterns, together accounting for 34% of ZOB59

traffic. Flights from ORD, MDW and DTW were observed to follow the dense flow.

Figure 4-13: ZOB59: Histograms of top 15 Origins and Destinations
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(a) (b)

Figure 4-14: Correlating traffic with top destinations

It was also found that the C/D flow is associated with many scattered origins, each

accounting for less than 5% of the total traffic to LGA. The holding pattern also has

a mix of origins.

The traffic to MDW is associated with a dense flow and lighter parallel flows,

accounting for 10.2% of the traffic. The major origins are LGA, PHL and TEB.

Traffic to ORD takes only a dense flow in the southern most part of the sector,

accounting for 6.1% of the traffic. Approximately 85% of this traffic comes from

PHL.

The traffic from the top 3 airports is highlighted in Figure 4-15. Traffic from PHL

(16.5%) is scattered across the dense and light flows in the southern most part of the

sector. The major destinations for these flows are ORD, MSP, MDW and DEN. The

(a) (b)

Figure 4-15: Correlating traffic with top Origins
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second top origin is ORD (9%), with almost all of it going to LGA (98%). The next

top origin is JFK (8.5%), also taking some of the southern flow patterns. This traffic

is mainly going to further destinations, such as LAX, LAS, SFO, PHX and SAN.

Figure 4-16 presents a summary of the traffic decomposition of Figure 4-14 and

Figure 4-15. This plot correlates the major origins and destinations associated to

each one of the densest flows.

Figure 4-17 presents altitude changes for the traffic of ZOB59. Every minute of

the radar track data for each flight was evaluated in terms of altitude transitions and

colored accordingly. Green color indicates a climb rate greater or equal to 1000ft/min,

red indicates a descend rate greater or equal to 1000ft/min and blue indicates an

absolute altitude change smaller than 1000ft/min. Note how the C/D flow crosses

the entire sector and starts descending to New York on the following sector. Traffic

from DTW reaches top of climb right before entering the official boundary of ZOB59

and joining the flow to LGA. The traffic from New York and PHL also reach top of

climb right before entering ZOB59. Furthermore, the top of descent of traffic to LGA

occurs as soon as entering ZNY ARTCC.

Figure 4-17 also presents a minor pattern that crosses the sector in the southwest

direction and starts descending to CVG in the vicinities of PIT. This pattern includes

New York traffic, as well as BOS traffic already identified in Figure 4-12. It is clear

Figure 4-16: ZOB59: Structural features correlated with top Origins and Destinations
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Figure 4-17: ZOB59: Zoomed out view and altitude changes. Green color indicates
a climb rate greater or equal to 1000ft/min, red indicates a descend rate greater
or equal to 1000ft/min and blue indicates an absolute altitude change smaller than
1000ft/min.

from Figure 4-17 that flights from BOS merge to this pattern around UNV, shortly

before entering ZOB59 area of responsibility.

Summary for ZOB59

OD groupings could identify the rationale of different flows and their directions. The

converging pattern to LGA was associated with several origin airports. Moreover,

it also presented some holding patterns. Traffic from NY area and PHL was found

to be generally segregated in different flows, depending on the destination (ORD or

MDW).

It was found that not only one, but few flows could be identified when filtering

for a specific destination or origin. This might be an indication of user preferred

routes and weather effects. Conversely, several origins or destinations were found to

be associated with the same flows.

A secondary crossing flow from BOS to CVG could also be identified. This traffic

appears as an isolated spike in the origin - destinations pairs histogram (Figure 4-12).
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4.3.2 OD Analysis: Boston 38 (ZBW38)

The OD case study of ZOB59 had several origins and destinations related to alti-

tude transitions. But these transitions were mainly outside the sector and the flows

appeared not to interact much with each other. ZBW38 is analyzed in order to

investigate how origins and destinations can be correlated with structural features

in a sector that has mixed altitude transitions: both departing and arriving traffic.

Furthermore, ZBW38 also allows the analysis of a star critical point in the south-

east portion of the sector, originated from the intersection of traffic associated with

Boston and Providence (Figure 4-18). As in ZOB59, this sector also presents a C/D

flow with focal point inside the sector, more specifically in the vicinities of ALB.

The altitude transitions for ZBW38 were 52% descending, 33% climbing and 15%

in level flight. The sector had low traffic volume and low directional variability. In the

analysis of Section 3.2, ZBW38 was classified as a member of the low traffic, mixed

operations cluster (low traffic density, low deviation of traffic, medium directional

entropy and mixed altitude transitions - Figure 4-10) . The sectors spans from FL240

and above.

Figure 4-19 and Figure 4-20 present counts of traffic to OD pairs, origins and

destinations. One can see that the traffic has one main destination (BOS) and two

Figure 4-18: ZBW38: Zoomed out view
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Figure 4-19: ZBW38: 3D histogram containing top 15 Origin and Destinations

top origins (PVD and BOS). 48% of the traffic goes to BOS, coming from several

places, such as ORD , CYYZ, SFO, LAX, MKE and DTW. The top origin of the

traffic is PVD (16.6%), going mainly to MDW, DTW, ORD and CLE. The second

top origin is BOS (13.8%), going mainly to PIT, CMH and CVG. Interestingly, as an

isolated peak in Figure 4-19 and ranked as the 15th busiest OD pair (27 flights or 2%

of total), is the traffic from MHT to PHL.

Figure 4-20: ZBW38: Histograms of top 15 Origins and Destinations
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Figure 4-21: ZBW38: Structural features correlated with top Origins and Destina-
tions

Figure 4-21 correlates the major origins and destinations with the subjectively

identified structural features. Figure 4-22 presents altitude changes in ZBW38. BOS

and PVD departures were found to have a combination of crossing and merging

interaction. At the critical point, the traffic from PVD fanned out to its destinations,

most notably into two secondary flows, one going to Detroit and the other to Chicago

and beyond. Flights in these flows kept climbing almost halfway through the sector,

whereas crossing traffic from BOS reached top of climb before the critical point. Some

PVD departures also merged with BOS departures If going to CVG or even further

Figure 4-22: ZBW38:
Zoomed out view and
altitude changes. Green
color indicates a climb
rate greater or equal to
1000ft/min, red indicates
a descend rate greater or
equal to 1000ft/min and
blue indicates an absolute
altitude change smaller
than 1000ft/min.

92



destinations like LAX or PHX. The arrivals to BOS started descending very close to

the sector boundary, especially past ALB.

A deeper analysis shows that some of the departures from BOS and PVD actually

reach top of climb before entering the official boundary of the sector.Moreover, the

background traffic (traffic belonging to less dominant ODs) was found to be mainly

in level flight throughout the sector.

Figure 4-23 presents the traffic from MHT to PHL alone. The radar tracks are

plotted with greater opacity, so they can be better visualized. This Figure illustrates

how a weaker pattern can still be laterally and vertically consistent across different

days.

Figure 4-23: ZBW38: Zoomed out
view and altitude changes for MHT –
PHL traffic (transparency level set to
10%)

Summary for ZBW38

This OD case study presented a high altitude sector with altitude transitions within

its lateral boundaries. This sector is a combined case of strong climbing traffic from

few origins to scattered destinations and strong descending traffic from varied origins

to few destinations. This can be seen as a “L” shape on the distribution of origin -

destination pairs in Figure 4-19. The observation that the major task is of managing

altitude transitions is further evidenced by the fact that level flights in ZBW38 is

mainly amongst the background traffic (traffic outside the “L” pattern).

Both top origins of ZBW38 were correlated with the dynamics at the critical point.
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Namely, at this point, most of the traffic from PVD is still climbing and fans out to its

destinations, apparently unaffected by the crossing traffic from BOS that had already

reached top of climb. Furthermore, the top destination, traffic to BOS, accounts for

almost half of the traffic. This traffic was associated with a C/D flow combined with

a dense flow, as in ZOB59. These arrivals start descending very close to the sector

boundary, especially past ALB.

An isolated origin-destination pair (MHT-PHL) could also be identified. This

constitutes in a crossing traffic (Figure 4-23), that was not initially visible in Figure

4-18 due to the transparency settings of the radar tracks.

4.3.3 OD Analysis: Fort Worth 90 (ZFW90)

The objective of the origin and destination analysis of ZFW90 is to identify the

rationale for separate flows with traffic departing from the same origin. Figure 4-24

below presents the lateral boundaries of the sector, as well as altitude changes and the

traffic extension to the surroundings. There is indication of two major dense flows

and a crossing flow on the east-west direction. There is also a background traffic

taking most of the airspace between the two major flows, probably as a result of

operational variations. Noticeably, the traffic is mainly related to the Dallas and Fort

Worth region.

Figure 4-24: ZFW90: Zoomed out view
and altitude changes. Green color in-
dicates a climb rate greater or equal to
1000ft/min, red indicates a descend rate
greater or equal to 1000ft/min and blue in-
dicates an absolute altitude change smaller
than 1000ft/min.
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The altitude transitions for ZFW90 were 83% climbing, 2% descending and 15%

in level flight. As presented in Figure 4-24, top of climb occurs almost two-thirds past

the length of the sector. Traffic to LIT starts descending on the following sector, due

to the proximity of this airport. ZFW90 had intermediate traffic volume, very low

directional variability and high traffic origin concentration. As such, the sector was

classified in the climbing cluster (Figure 4-10), in the analysis of Section 3.2. The

sector is from FL240 to FL360.

Figure 4-25 and Figure 4-26 confirm this by showing that most of the traffic is from

DFW (77%) and DAL (8%). Destinations of the traffic, however, are quite scattered,

the major destinations being LIT (9.5%), then DCA (6.3%) and PHL (5.8%). More

specifically, half of the traffic from DAL goes to LIT, in contrast with the traffic from

DFW that goes to various destinations in the north and east parts of the country.

A similar analysis as the one conducted for ZOB59 indicates that both dense flows

and the background traffic are associated with DFW. The dense flow situated in the

north is also associated with DAL and the lighter crossing flow goes from ATL to

Figure 4-25: ZFW90: 3D histogram containing top 15 Origin and Destinations
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Figure 4-26: ZFW90: Histograms of top 15 Origins and Destinations

western destinations. Figure 4-27 presents a summary of the traffic decomposition.

This plot correlates the major origins and destinations associated with each one of

the most salient flows.

Figure 4-27: ZFW90: Structural features correlated with top Origins and Destinations

Summary for ZFW90

Groupings by origin and destinations indicated that the separation in two different

flows for ZFW90 is mainly based on the destination airports of the traffic. Traffic from

DAL constitutes a small percentage of the total traffic and it only took the northern

flow, suggesting that most of the DAL traffic takes different routes. However, the

route from DAL to LIT is more logical if going through ZFW90, which is reflected in

the fact that most of the DAL traffic goes to this specific airport.
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4.3.4 OD Analysis: Albuquerque 98 (ZAB98)

This OD case study aims to analyze how different origins and destinations correlate

with a structure that is clearly more diffuse. The zoomed in view of ZAB98 suggests a

star critical and a large portion of background traffic. When looked externally (Figure

4-28), the northwest-southeast traffic is mainly related to C/D flows with focal points

outside the sector. There is also indication of a scattered east-west traffic that is not

related to any specific airport nearby ZAB98 and takes most of the sector’s area.

The altitude transitions for ZAB98 were 7% climbing, 3% descending and 90%

level. The sector had high traffic volume and high directional variability, thereby

falling in the cluster of high traffic and high directional variability (Figure 4-10) in

Section 3.2. The sector includes all the flight levels above FL360.

Figure 4-29 illustrates that the traffic is highly distributed in several origins and

destinations. Even the top OD pair accounts for only 3.3% of the total traffic. But

there is still some concentration when looking to origins or destinations alone, as

shown in Figure 4-30. The major destinations are DFW (8.7%), ATL (8.1%), IAH

(7.8%), PHX (6.9%), LAX (6.9%), LAS (5.2%) and DEN (5.2%). As shown in Figure

Figure 4-28: ZAB98: Zoomed out view
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Figure 4-29: ZAB98: 3D histogram containing top 15 Origin and Destinations

Figure 4-30: ZAB98: Histograms of top 15 Origins and Destinations

4-30, traffic departs mainly from DEN (11.2%), ATL (7.5%), LAX (5.4%) and PHX

(5.4%).

Traffic going to or coming from DFW and IAH can be mapped to the C/D flows

on northwest-southeast direction. These C/D flows have focal points in the proximity

of the respective airports. As an example, Figure 4-31 shows the zoomed out view,

with altitude changes, for the traffic to and from DFW, with 10% transparency level.
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Figure 4-31: ZAB98: Zoomed out view and altitude changes for traffic related to
DFW. Green color indicates a climb rate greater or equal to 1000ft/min, red indicates
a descend rate greater or equal to 1000ft/min and blue indicates an absolute altitude
change smaller than 1000ft/min.

DFW is ranked the first traffic destination and the fifth origin, together accounting

for 13.7% of the traffic (the top airport is DEN with 16.2% of the traffic). Figure

4-31 illustrates the C/D flows associated with DFW that can equally be observed for

traffic associated with DEN, IAH, SEA and SLC.

Traffic to and from airports to the east (ATL) or to the west (PHX, LAX, LAS)

of the sector is generally manifest in slowly converging traffic that spans the entire

sectors airspace. Some of this traffic follows more precise paths and pass through the

critical point.

Summary for ZAB98

ZAB98 is an example of a sector where the structural features accommodate several

origins and destinations, following mainly the east-west and the southeast-northwest

directions. This scattered distribution of ODs reflects on the dispersed traffic passing

through the sector. Still some correlation between structural features could be found,

as in Figure 4-31, where traffic from and to DFW is manifested in two laterally offset

C/D flows.
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4.4 Summary

The analysis of structural patterns presented in this Chapter started with a sim-

plified approach, whereby traffic from two weeks of ETMS data was collapsed in

two-dimensional plots. In this first step, several high altitude sectors were analyzed

considering the traffic within the sector’s boundaries (zoomed in view), as well as

extensions of this same traffic up to 200 nautical miles away from the sector (zoomed

out view). This analysis allowed for an appreciation of the enormous structural diver-

sity across the NAS. It also allowed for an understanding of the typology of observed

structural features, such as flows and critical points.

The identified types of flows and critical points were also found to vary significantly

across the NAS. These structural features were observed to manifest in several possible

combinations, yielding structural patterns with different levels of apparent complexity.

It was found that some of the apparent complexity in a sector could be explained when

referring to the external structure. The external structure also helped to understand

deviation of the traffic from what is prescribed from the existing routes.

The dynamics within and between identified structural features were then investi-

gated via an analysis of origins and destinations. Based on the analysis conducted in

the previous Chapter, four sectors categorized in distinct traffic dynamics groups were

analyzed in more detail. The analysis consisted in correlating origins and destinations

in the traffic with the identified structural features.

By analyzing sectors that were classified in different traffic dynamics groups, this

Chapter observed different phenomena, such as altitude transitions, mergings, cross-

ings, splits and combinations thereof. OD groupings could identify the rationale for

different parallel flows (in ZOB59 and ZFW90), the dynamics in the critical point (in

ZBW38), the nature of converging flows (in ZOB59, ZBW38 and ZAB98), existence

of secondary flows (in ZOB59 and ZBW38) and flows in diffuse structures that have

higher apparent complexity (in ZAB98).

Thus, structural features and their dynamics (merges, splits, crossing and alti-

tude transitions) could be correlated with origins and destinations. This observation
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motivated the hypothesis that groups of flights with same planned trajectory might

be the structural features that controllers use to manage the traffic. The correlation

between groups with same planned trajectories and techniques used by the controllers

is the topic of the following Chapter.
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Chapter 5

Analysis of Impact of Structure on

ATC Techniques

The objective of this Chapter is to investigate whether groups of similar planned

trajectories can be correlated with the dynamics of the traffic and the underlying

techniques.

In the previous Chapter, structural features and their dynamics could be corre-

lated with origins and destinations of the traffic. This motivated the hypothesis that

groups of same planned trajectory are correlated with the underlying structural fea-

tures and their dynamics. In addition to that, it was also hypothesized that groups

with similar planned trajectories would manifest similar dynamics and would be man-

aged by the controller with the same sequences of commands. A planned trajectory

is considered to be determined by a flight plan, including planned lateral trajectory

as a sequence of reference elements (routes and navaids) and, naturally, an origin and

destination.

5.1 Methodology

The methodology consisted in observing controllers actions in managing the traffic

and correlating their commands with groups of planned trajectories. The air traf-

fic situation had also to be considered, because it provided the constraints and the
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context for analysis, such as possible conflicts that developed, intents manifested via

requests or presence of weather interference.

Figure 5-1 highlights aspects of the cognitive process model (Histon & Hansman,

2008) that were observed in this analysis. The execution processes were observed

by listening to controller-pilot voice communications. Groupings by flight plans were

identified by carefully looking at planned lateral trajectories and origins and destina-

tions of flights through the sector. Plotting the sector traffic just like in Chapter 4

also enabled the subjective determination of flows and critical points.

The commands that were given to members of a given flight plan grouping were

analyzed in terms of their repeatability within the same group. Inference of stan-

dard techniques was obtained via identification of repetitive sequences of observed

clearances within a group, under the context of the air traffic situation. Finally,

the identified structural features were correlated with groupings by flight plans, also

under the context of the air traffic situation.

Figure 5-1: Cognitive Process Model including observations (adapted from Histon
and Hansman (2008)).
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5.1.1 Evaluation Data

The selection of sectors for analysis was restricted by the availability and quality

of controller-pilot voice communication data. Voice communications were obtained

from www.liveatc.net, a publicly available database that contains audio archives

for some of the ATC facilities. Only sectors located in the higher stratum of the

NAS were considered for this study (ceiling above FL240), since they represent less

complex airspace and they are less impacted by local operational constraints.

Furthermore, in low workload situations, controllers work under the Opportunity

Mode, thereby not enforcing as much the structure and allowing each aircraft to

optimize its own trajectory (Histon & Hansman, 2008). For the objectives of this

work, it was necessary to observe the enforcement of structural patterns and how

they were related to techniques, i.e. the Route Structure Mode (see Figure 2-5).

Thus, sectors with noticeably low level of communications were not used, since

they lacked the time pressure to force controllers to use pre-solved solutions for each

traffic pattern. The measure of channel capacity usage was obtained by truncating

the silence of the 30 min audio files extracted from www.liveatc.net.

Three sectors satisfied these constraints: New York 10 (ZNY10), Chicago 25

(ZAU25) and Miami 40 (ZMA40). The membership of each of these sectors to the

identified clusters in Chapter 3 are presented in Figure 5-2. Notice that there is one

sector classified as climbing (ZNY10), one sector classified as descending (ZAU25) and

one with mixed altitude transitions (ZMA40). The geographical location of these sec-

tors is presented in Figure 5-3. Attention was given to evaluate at least a morning and

an evening traffic without weather and under moderate traffic volume. Bad weather

was identified from the amount of pilot requests due to ride conditions. Provided by

www.liveatc.net, METARs at the same time of the audio archives were also used

as an indication of bad weather.

Once the flights through a sector were identified, their flight plan and radar track

history were extracted from www.flightaware.com. The sector boundaries and struc-

tural framework in the sector location were taken both from www.skyvector.com and
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(a) Membership of sectors to clusters with respect to percentage
of altitude transitions

(b) Membership of sectors to clusters with respect to total traffic and deviation
from main traffic

Figure 5-2: Illustration of analyzed sectors in each cluster.
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Figure 5-3: New York 10 (ZNY10),
Chicago 25 (ZAU25) and Miami 40
(ZMA40) were selected for the communi-
cation analysis. Among the ATC facilities
for which public voice communication was
available, these sectors satisfied the con-
straints of (1) being located in the higher
stratum of the NAS (ceiling above FL240);
and (2) presenting intermediate level of
communications

2009 data provided by FAA. Whenever necessary, sector frequencies were obtained

from www.radioreference.com.

5.1.2 Analysis of voice communication

The voice communications were converted into transcripts. The details of each

controller-pilot communication were coded into a tabulated form, which included

information of the check-in and handoff process, pilot repetitions, pilot requests, traf-

fic information, explicit commands of altitude, direction, vector and speed. A flight

was only considered as checked-in and under the controller’s responsibility after the

salute from the controller. After handoff, the same flight was not considered under

controllers responsibility anymore. A flight was considered as handed off after the pi-

lot’s correct repetition of the next contact frequency. Sometimes the controller would

search for the aircraft and would not get a response, in which case a handoff was also
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assumed.

A MATLAB script interpreted these details of voice communications. Thereby,

the traffic was reconstructed into an animation and the position of each command

was estimated.

Since the audio file and the radar track data came from different data sources,

care should be taken to make sure they were synchronized. Without synchronization,

it is impossible to properly ascertain the position of aircraft when commands were

given. In the checking in process, pilots informed their altitude and the flight level

they were flying to. If at this moment the flight was not level, then it was possible

to use their claimed altitude for synchronizing the time of the radar track data and

of the audio file. This analysis showed that both data sources were synchronized.

Therefore, this additional calculation became only a confirmation test.

Not all flight call signs could be identified from the voice communication. And

some identified call signs, particularly those that were general aviation, did not have

their information available in www.flightaware.com. Without their radar track data,

these flights could not appear in traffic reconstructions. Without their flight plan,

these flights were also not included in any group analysis. Thus, only flights with

complete voice communication available (i.e. from check in to check out) and complete

flight data (i.e. radar track and flight plan) were analyzed. The exact number of the

discarded flights is mentioned when appropriate.

Moreover, it should be noted that the controller-pilot communications were an-

alyzed per chunks of continuous voice communications, named as “traffic interval”.

The chosen length of traffic intervals varied per sector. The reason for variable length

was that each time of the day and each sector presented a different traffic per hour.

The different time intervals of traffic were determined in a ad hoc basis, in order to

get a reasonable number flights from each traffic interval (complete flight data and

communication, as explained). For example, for ZMA40, after analyzing a traffic

interval of one hour, complete radar track data could be obtained for 25 identified

aircraft. But the handoff was not observed for 15 of them, which would allow the

analysis of only 10 aircraft. By including another 30 minutes of traffic, these 15 flights
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could be included, as well as other 10, yielding a total of 35 flights. Thus, there was

no standard length of traffic interval.

The planned trajectories were used to identify flight plan groupings. As part of the

flight plan, same origin or destination and same planned route inside the sector were

used as grouping criteria. A group was generated for a given analyzed traffic period

if a planned trajectory or origin/destination was common for at least two flights. It

was observed that the traffic volume for each group fluctuated with respect to each

traffic interval, which motivated the distinction of groups in terms of how prominent

they were. As such, the identified groups were classified either as a “key group” , as

a “minor group” or as a “minor temporal group”. The distinction is as follows:

1. Key group: This group had at least 2 flights with similar planned trajectory

in all analyzed traffic interval;

2. Minor group: This group had at least 2 flights with similar planned trajectory

in only one traffic interval, or it had zero flights in a given traffic interval;

3. Minor temporal group: This group had at least 2 flights with similar planned

trajectory at different traffic intervals.

5.2 Limitations of Voice Communication Analysis

As presented in Section 5.1, the selection of sectors to analyze was based on availability

and quality of voice communication archives. Moreover, the choice of traffic hours

of the selected sectors was primarily based on weather interference (trying to avoid

weather) and comparable communication length after removal of periods of silence.

Continuous communication length was used as a surrogate for workload and traffic

volume. Attention was also give to extract at least one morning and one evening

traffic period per sector. The voice pilot-controller voice communications were then

converted into a transcript and then, further analysis was conducted on those flights

for which radar track and flight plan could be found.
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A problem with this method is that the identification of flight plan groups, for

any sector, is sensitive to the length of the time window being analyzed. Moreover,

due to day-to-day variabilities of traffic, different groups may or may not be observed.

For instance, the identification as a minor temporal groups may be an artifact of the

specific hours that were analyzed. In order to mitigate this problem, two measures

were taken. It was first observed that the detailed transcript analysis appeared to

work fine for the selected traffic intervals for ZNY10. As such, the observed traffic

volume in ZNY10 was taken as a baseline when choosing the time and length of the

traffic interval to be analyzed. The second measure was to set a very low threshold

for a group to be created. In fact, the chosen threshold of 2 similar flights, is the

smallest threshold possible. Despite of these counter measures, confirmation of the

characteristics of each group is most likely to be obtained after talking with the

respective controllers.

By considering only flights with complete voice communication, radar track data

and flight plan data, part of the picture was inevitably lost. In order to mitigate this

issue, longer traffic intervals were considered. But some general aviation flights could

not be analyzed due lack of data.

Another problem is the control over certain variables that impact the traffic sit-

uation and/or observed commands. For instance, in the ZNY10 analysis, it was not

possible to find one traffic period that had only the effect of higher traffic or only

the effect of weather. Another important confounding variables is related to who was

responsible for the traffic at what time. Ideally, the analysis of traffic periods should

balance out the number of hours controlled by different air traffic controllers. In this

analysis, controller was not a controlled variable, which makes it difficult to distin-

guish personal versus generic techniques for each sort of pattern. Other more subtle

but still relevant variable is for how long the controller has been working (related to

the development of the ‘picture’ and tiredness).

Due to the lengthly process of carefully analyzing trajectories, air traffic situa-

tions, estimated position of commands, pilot requests and deciphering voice commu-

nications, only few traffic intervals could be analyzed for each sector. This limited
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number of “observed traffic situations” clearly indicate a lack of significance in iden-

tifying all sorts of groups, techniques and their possible variations.

Despite these limitations, this Chapter presents a methodology that can be scaled

up to more hours and sectors. With more appropriate access to data, more con-

trollable experiments can be done. For instance, a greater data source, not being

constrained by availability from web archives and easier access to data (not having

to pull out data, flight by flight, from www.flightaware.com) would allow to:

• Conduct a balanced analysis in terms of who is controlling the traffic, thereby

distinguishing general versus individual techniques on managing the traffic;

• Have more observations for the same traffic volume;

• Consider a wider range of traffic volumes;

• Investigate specific weather effects;

• Analyze sectors with distinct characteristics;

• Analyze sectors that are judged to present similar dynamics or similar structural

pattern (for instance, from analyses as presented in Chapters 3 and 4);

• Observe more variations of techniques for same groups of flight plan

5.3 Results of Voice Communication Analysis

This section presents an overview of the major results for each analyzed sector. The

detailed description of findings includes the following items:

1. General statistics from ETMS data, as computed in Chapter 3;

2. Sector’s structural framework relevant for flight plan group analysis;

3. Selection of days and time of traffic for analysis, including details of traffic

situation, such as traffic volume, usage of channel capacity, weather interference

and amount of pilot requests;
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4. Identified groups of flight plans and general statistics of commands per group

and air traffic situation;

5. Nuances of each group: sequences of commands and variations of these se-

quences; and

6. Summary of major findings of employed techniques and the effect of the air

traffic situation.

In the interest of brevity, all these items are only presented for ZNY10, in order

to illustrate the method. Results corresponding to the nuances of flight plan groups

(item 5) of ZAU25 and ZMA40 are presented in Appendix B.

5.3.1 Communication Analysis: New York 10 (ZNY10)

From the ETMS data, ZNY10 had 1662 aircraft in two weeks of data, 53% climbing,

11% descending and 36% level flights1. The sector was categorized as member of

the climbing cluster in Section 3.2. The sector is from FL220 to FL340. Figure 5-4

below presents the most frequently used jet routes, Q routes and reference points in

ZNY10. These structural elements were identified from the planned routes of flights

that were identified in the sector’s traffic, as well as from www.skyvector.com. The

exact latitudes and longitudes of these elements came from 2009 data provided by

FAA.

Table 5.1 shows the four separate hours that were analyzed for ZNY10 and also

provides some of the context for each observed traffic period.

The third column (number of airplanes, NAC) in this table presents the number

of different airplanes that were heard. The fourth column (not identified or no data,

NIND) presents how many of the heard airplanes could not be analyzed, either be-

cause communication was garbled, or because no radar track and flight plan data

could be found at www.flightaware.com. The next and fifth column (identified but

incomplete communication, IIC) presents how many of the airplanes could not be

1According to the definition of altitude transition in Chapter 3, that is, based on total transition
from entrance to exit greater or equal to 1000ft.
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Table 5.1: ZNY10: General information about analyzed traffic intervals. NAC =
Number of Airplanes; NIND = number of airplanes Not Identified or No Data;
IIC = number of airplanes that were Identified but with Incomplete Communication;
TA = Total Analyzed (NAC −NIND − IIC); W = if there was Weather; CL =
continuous Communication Length after silence removal (in minutes); and ARTR =
ratio of Approved Requests over Total Requests

Day Time NAC NIND IIC TA W CL ARTR
03/18/2011 9:00 59 7 9 43 NO 29:00 5/6

Friday 10:00
06/17/2011 9:00 42 6 8 28 NO 19:45 5/6

Friday 10:00
07/05/2011 17:30 59 6 17 34 NO 29:02 7/7

Tuesday 18:30
06/28/2011 18:00 87 12 28 47 YES 50:07 23/33

Tuesday 19:00

analyzed because complete voice communication from check in to check out could not

be captured. As a result, the sixth column (total analyzed, TA) presents the total

of airplanes that could actually be analyzed. The weather column (W) indicates if

the operation was impacted by weather either inside or outside the boundary of the

Figure 5-4: ZNY10: Structural framework
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sector. The communication length column (CL) shows the usage of the channel ca-

pacity in terms of how much of continuous talk would exist if silence were removed.

The last column (approved requests over total requests, ARTR) presents the ratio

between approved pilot requests and total pilot requests, only considering the flights

counted in column six.

As indicated in Table 5.1, the controller faced a particularly higher traffic de-

mand, together with bad weather, in the evening of June 28. The change in these

two variables (demand and weather presence) impacted the amount of continuous

communication, as well as the total number of requests.

In the evening of June 28, there was bad weather in many states of the country,

forcing the flights to take different routes. ZNY10 had bad ride conditions at FL290

and above, but it still had good weather when compared to its surroundings. Figure 5-

5 below exemplifies this by presenting the planned and executed trajectory for ASA35

for June 28 (Figure 5-5(a)) and July 27 (Figure 5-5(b)). Both ASA35 flights were

scheduled for late afternoon, from Boston to Portland International. Not only flights

going to the northwest, but also those that would otherwise fly along the coast to

southern destinations had to fly through ZNY10. This additional traffic took mainly

(a) Trajectory of ASA35 on June 28 (b) Trajectory of ASA35 on July 27

Figure 5-5: ZNY10 had bad ride conditions at FL290 and above, but it still had
good weather when compared to its surroundings. Flights like ASA35, that normally
would take a different trajectory, filed a route taking J6 through ZNY10. Also flights
that would otherwise fly along the coast to southern destinations had to fly through
ZNY10.Images extracted from www.flightaware.com
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Figure 5-6: ZNY10: Number of flights per group. Only flights with complete voice
communication, radar track and flight plan data are displayed.

jetroute J6 (see Figure 5-4).

Figure 5-6 presents the number of flights with complete voice communication,

radar track and flight plan data per identified flight plan group. Visual inspection

indicates that most of the additional traffic in ZNY10 in the evening of June 28 was

due to incremental traffic in groups 3 and 5. These two groups encompass traffic that

exits New York Center to Washington Center via J6 (see Figure 5-4).

ZNY10 faced peaks in groups 1 and 4 on the evening of July 5. No special reason

for this phenomenon was found. This might be the result of temporal variation of the

traffic patterns. Together with group 2, groups 1 and 4 include the traffic that leaves

New York Center via J230 and Q42.

Selection of Traffic Hours

The morning traffic of March 18 (Friday), with a communication length of 29:00

minutes (Table 5.1), was chosen as one of the busiest mornings that were available

at the time of the analysis and development of the method. As a comparison, the

week from Sep 19 (Monday) to September 25 (Sunday) had an average of 23:09

minutes of continuous voice communication between 9:00AM and 10:00AM. There

was a maximum of 33:17 minutes on Wednesday and a minimum of 11:39 minutes on
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Saturday. For better understanding of the March 18 traffic, it would be desirable to

observe another Friday morning with different traffic volume and also not impacted

by weather. After careful search, the morning of June 17 was included in the analysis.

For the choice of an evening traffic, the week from July 4th (Monday) to July 10th

(Sunday) was analyzed. That week presented an average of 26:33 minutes of used

channel capacity between 5:30PM to 6:30PM. There was a maximum of 29:15 minutes

on Wednesday and a minimum of 24:56 minutes on Monday. July 5 was chosen

because it is little bit to the higher end (29:02 minutes, Table 5.1) and comparable

with March 18.

The evening of June 28 was chosen for analysis of variations on techniques given

a different air traffic situation. June 28 had both poor ride conditions and higher

demand due to reasons already explained. Unfortunately, a traffic situation impacted

only by weather or demand could not be found, so the isolated effect of these two

variables was not investigated.

Figure 5-7 presents all the flights that went through the sector in the morning

traffic of March 18. Note that there are symbols at the estimated location of where

commands were given, with the associated legend presented underneath the map.

This same symbology is used in the entire voice communication analysis of this section.

Notice in Figure 5-7 that red squares (estimated handoff locations) are usually

inside the sector, whereas green circles (estimated check-in locations) are upstream

the flows. This is consistent with the procedure for transfer of control, whereby flights

are handed off to a downstream controller before reaching the actual sector boundary

(Nolan, 2011). As noted by Histon and Hansman (2008), this has consequences from

the cognitive standpoint, thereby yielding the distinction between “area of regard”

and “area of responsibility” or the actual physical boundary of the sector.

Flight plan groups

Six key flight plan groups were found in ZNY10. Each group was identified from

repeatable planned trajectories inside the sector, that is, same flight plan from the

controller’s perspective. A group was generated for a given analyzed traffic period if
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a planned trajectory was common for at least two flights.

Figure 5-8 provides a summary and respective planned trajectories (lateral tra-

jectories and typical origins or destinations) of the identified groups.

Notice that members of groups 1, 2 and 4 are planned to merge around KIPPI

and LARRI. Moreover, groups 2 and 4 have to cross group 3 (through J6) at FLIRT

and and SAAME, respectively. Group 5 is planned to merge with group 3, either at

(a) Estimated location of commands

(b) Legend of commands

Figure 5-7: ZNY10: Trajectories and estimate position of commands for all the traffic
on 03/18, 9:00-10:00AM
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FLIRT or SAAME, depending on the origin of the traffic. And group 6, composed of

departures from Washington DC, crosses groups 1, 2 and 4. Also note from Figure 5-3

that KEWR, KLGA and KJFK are very close to ZNY10. KPHL is even closer and is

associated with groups 2 and 5 (MXE is the departure FIX for that airport). Thus,

from Figure 5-8, some of the merging, crossing and climbing tasks of the controller

Figure 5-8: ZNY10: Summary of identified flight plan groups. Routes and reference
elements related to the planned trajectories of each group are highlighted
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can already be identified.

Figure 5-9 presents the percentage of aircraft that received each kind of command

for groups those groups that were not affected by weather (groups 1, 2, 4 and 6).

Figure 5-10 presents the same data but for groups 3 and 5, that were observed to be

affected by weather. That is, the red bars in Figure 5-10 account only for the traffic

in June 28, the weather impacted hour. It should be emphasized that Figures 5-9

and 5-10 do not indicate the existence of multiple commands of a certain type for the

same aircraft or the typical combination/sequence of commands that were observed.

These nuances are covered next, on the following sub Sections about each group.

Right at the outset, however, one can see in Figures 5-9 and 5-10 how certain types

of commands were prominent for each group. For instance, 93.0% of the members of

group 1 received a direct at some point, 84.6% of members of group 2 received altitude

commands (departures from KPHL) and 73.3% of members of group 4 received direct

at some point. This illustrates how the merging task is performed: group 2 is climbed

due to the proximity of the originating airport and it is treated as the baseline or the

“main flow” for the merging task, whereas the others are directed.

Figure 5-10 highlights the impact of weather. Members of group 3, mainly in level

traffic, received little amendments from the controller under normal weather. With

weather, the percentage of flights that did not received commands decreased from

Figure 5-9: ZNY10: Distribution of commands for flight plan groupings not affected
by weather.
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(a) Distribution of commands for group 3: southwest bound traffic from
KEWR, KLGA and KBOS via jetroute J6

(b) Distribution of commands for group 5: southwest bound traffic from
KJFK and KPHL merging to jetroute J6

Figure 5-10: ZNY10: Distribution of commands for flight plan groupings affected by
weather.

47.4% to 17.4% and the percentage of altitude and direct commands also grew. In

terms of traffic group 3 experienced 6.3 flights per hour on the non-weather hours

and 23 flights per hour on the weather hour, an increase of more than three times.

Moreover, members of group 5, although merging to J6, received only few climbing

and direct commands when there was no weather. With weather, the number of

flights per hour doubled from 4 to 8 flights per hour and the flights received much

more amendments.

The following subsections present more details for each group, including the ob-
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served shift from planned and actual trajectories.

Group 1: westbound traffic from KEWR and KLGA

Figure 5-11 shows planned trajectory, actual trajectories and estimated position of

commands for group 1 on June 17. Group 1 is defined as aircraft that had flight plans

equivalent to: ELIOT – J80 – KIPPI (See Figure 5-8). The traffic is mainly from

Newark Airport (KEWR) and LA Guardia Airport (KLGA), with minor traffic from

other airports. There are no specific destinations. Figure 5-11(d) presents trajectories

and position of commands for group 1, but with respect to time (minutes of analyzed

traffic) and altitude (flight levels or hundreds of feet). Dashed thick blue lines in all

(a) Planned trajectory for group 1 (b) Legend of commands

(c) Top view (d) Side view

Figure 5-11: ZNY10: Results for 7 flights in group 1 on 06/17, 09:00 – 10:00 AM

121



the pictures represent the sector boundary.

As presented in Figure 5-9, 93.0% of the 43 flights received a direct command

at some point. 47.6% received direct commands at the check-in. In terms of the

destination, 19% of the flights received direct straight to VINSE, 31% were directed

to VINSE and then to Bellaire (AIR) or nearby fix point and 43% received direct

straight to Bellaire (AIR) or nearby fix point. This means that 74% of this group

had Bellaire or nearby FIX as final direct.

The direct commands are part of the technique for merging groups 1, 2 and 4

(Figure 5-8) and also to provide a shortcut from a longer route going through KIPPI.

These directs have the effect of enforcing group 1 to fly along Q42 (compare Figures

5-4 and 5-8). Also concerning the merging task, 27.9% of aircraft in group 1 also

received speed checks or speed amendments.

Flights checked-in still in the climbing phase (Figure 5-11(d)), which naturally re-

flected in the amount of climbing amendments (53.5%). Most notably, 33.3% received

climbing command at check-in.

There were 12 request across all traffic periods in group 1 (Table 5.2). Only

two of those took a while to be approved, all the others being immediately approved.

Requests were mainly characterized by directs to VINSE or Bellaire and specific flight

Table 5.2: ZNY10: Pilot requests from aircraft in group 1.

Traffic Call Sign Request Approved
03/18 MORN AWI3720 direct to VINSE yes
03/18 MORN N801SS to FL380 yes
06/17 MORN N700XF to FL300 yes
06/17 MORN BTA2234 to FL300 yes
07/05 EVEN AAL2223 mach 78 and FL340 yes
07/05 EVEN COA1596 to FL360 yes, in 2 min
07/05 EVEN LOF3535 direct to VINSE yes
07/05 EVEN N1127M direct to VINSE yes
06/28 EVEN BTA2144 to FL300 yes
06/28 EVEN TCF1275 direct to Bellaire yes, in 1:30 min
06/28 EVEN UAL525 normal speed yes
06/28 EVEN UAL525 direct to Bellaire yes
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levels.

Handoffs to the next sector occurred shortly after the flight had changed its course

to its destination. Few flights actually climbed higher than the sector boundary, but

they were only handed off once they were on the right direction.

Group 2: westbound traffic from KPHL

Figure 5-12 shows planned trajectory, actual trajectories and estimated position of

commands for group 2 on March 18. Group 2 is defined as aircraft that had flight

plans equivalent to: MXE – PENSY – J110 (See Figure 5-8) and from there to other

(a) Planned trajectory for group 2 (b) Legend of commands

(c) Top View (d) Side view

Figure 5-12: ZNY10: Results for 5 flights in group 2 on 03/18, 09:00 – 10:00 AM
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waypoint downstream J110, such as VINSE, LEJOY and Bellaire (AIR).Group 2 is

mainly characterized by departures from Philadelphia International Airport (KPHL)

and destinations scattered across the country.

As evidenced in Figure 5-8, group 2 merges with groups 1 and 4. No special

commands were given to group 2 for accomplishing this merging task. This suggests

that group 2 is treated as the “baseline” or main flow to be merged to, even though

it presents lower traffic volume than groups 1 and 4.

A succession of climb commands were observed as part of the crossing technique

of groups 2 and 3. All the flights that received commands (11 or 84.6% of the total)

were given climb commands up to FL300 at or shortly after check-in, and then to

higher altitudes when reaching or crossing J6 around FLIRT (Figure 5-8). Thus,

group 2 was controlled to fly underneath group 3, which flies along J6.

Directs appeared not to be prevalent in group 2, as the traffic was not changing

direction, but climbing along J110. Directs were only given when flights were shifting

from J110 to its parallel, Q42, and an entrance point to that route was necessary.

Controller handed the flights off, once past KIPPI and reaching (or at) final alti-

tude.

Group 3: southwest bound traffic from KEWR, KLGA and KBOS

Figure 5-13 shows planned trajectory, actual trajectories and position of commands

for group 3. This group is identified by flights that take J6 all the way through ZNY10.

This can happen by flight plans that include SAX/PARKE – J6 – BWG/HVQ.

Group 3 is mainly characterized by departures from Newark Airport (KEWR) and

La Guardia Airport (KLGA), but it also includes some traffic from Boston Airport

(KBOS). Destinations are scattered across the country. Table 5.3 summarizes the

pilot requests considering all analyzed traffic hours.

The three traffic periods without weather impact are first considered and then the

weather impact is discussed. Figures 5-13(c) and 5-13(d) correspond to the actual

trajectories for June 17, illustrating a traffic period without weather impact.

The three periods of traffic without weather interference had a total of 19 flights

124



(a) Planned trajectory for group 3 (b) Legend of commands

(c) Top view: 7 flights in group 3 on 06/17, 09:00
– 10:00 AM

(d) Side view: 7 flights in group 3 on 06/17,
09:00 – 10:00 AM

(e) Top view: 23 flights in group 3 on 06/28,
05:30 – 06:30 PM

(f) Side view: 23 flights in group 3 on 06/28,
05:30 – 06:30 PM

Figure 5-13: ZNY10: Results for group 3
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Table 5.3: ZNY10: Pilot requests from aircraft in group 3.

Traffic Call Sign Request Approved
06/17 MORN COA1402 to FL320 no
06/28 EVEN CHQ3037 to FL360 yes
06/28 EVEN COA1737 to Martinsburg yes
06/28 EVEN COA328 to Martinsburg yes
06/28 EVEN EGF4413 to Martinsburg yes
06/28 EVEN N46F to FL340 yes
06/28 EVEN JBU509 to Martinsburg no
06/28 EVEN VNR175 higher altitude no
06/28 EVEN VNR175 any shortcut yes, in 1 min

or 6.3 flights per hour. 9 (47.4%) did not receive any commands and 3 (15.8%) had

speed checked or received speed commands in the vicinities of SAAME. As shown for

the traffic in June 17 in Figures 5-13(c) and 5-13(d), altitude commands were issued

moments after the check-in, directing the aircraft to their final altitude. The early

climbing commands are part of the crossing technique with group 2 and 4, in order

to guarantee separation. Direct command combined with vector were only issued to

flights that were already off J6.

Handoffs occurred usually between the SAAME and FLIRT (intersections with

group 2, 4 and 5). Thus, after solving the merging and crossing problem, the controller

handed the flight off to the next sector in Washington Center, even though the aircraft

was still half way through ZNY10. Flights in group 3 were handed off when reaching

or shortly after reaching their final altitude.

As mentioned earlier, in the evening of June 28, there was bad weather in many

states of the country, forcing flights to take different routes. This had a significant

effect on group 3 in the evening of June 28, as many of the rerouted flights passed

through ZNY10 via J6. On top of that, there were still poor ride conditions in ZNY10.

Figures 5-13(e) and 5-13(f) present the top and lateral view of flights in group 3

under weather effects. Noticeably, many flights did not follow J6 precisely, as the jet

route was clearly saturated. From 5:30 to 6:30 PM of June 28, group 3 had a total of

23 flights. Only 4 (17.4%) of these flights received no commands. 5 (21.7%) airplanes
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had either speed check or speed commands in the proximities of SAAME and FLIRT.

Moreover, via a succession of altitude commands, the controller tightly monitored

the climb of 14 (60.9%) aircraft to assure separation (in addition to this statistic,

notice the number of black triangles in Figures 5-13(e) and 5-13(f)). 6 (26.1%) were

directed to Martinsburg (MRB), Charlie West (HVQ) or other downstream points on

J6, as some of them entered ZNY10 already off J6. There were also 5 pilot requests

for shortcuts and 3 for altitudes with better ride conditions.

It is evident, from visual inspection of Figure 5-13(e) that handoffs in the evening

of June 28 occurred past FLIRT. This delayed handoff is most probably the combi-

nation of two effects: (1) usage of channel capacity close to the limit, not allowing

the controller to hand flights off earlier; and (2) solution of the merging and crossing

problem was postponed due to a harder merging problem, hence delaying the handoff

itself.

Group 4: westbound traffic from KJFK

Traffic in group 4 comes from John F Kennedy Airport (KJFK), with flight plan

including RBV - J230 – LARRI - J230 - AIR. Destinations are scattered just like

in group 1. It should be noted that some temporal variation was observed in group

4: 9 out of the 15 flights in this group were in July 5. Figure 5-14 shows planned

trajectory, actual trajectories and position of commands for group 4 in July 5.

As presented in Figure 5-9, 3 out of the 15 flights in group 4 (20%) did not receive

any command. 10 flights were directed to Bellaire (AIR) and 1 to VINSE and then

to Bellaire. Directs were observed to be part of the merging of groups 1, 2 and 4.

The directs also allowed the flights to cut the corner, not flying to LARRI.

The controller only amended climbing altitude of 3 flights, 2 of these instances in

the bad weather evening of June 28. Most of the flights in group 4 were observed to

cross J6 above group 3. However, it was difficult to identify a clear crossing technique

(as for groups 2 and 3), because of lack of observations on other traffic periods.

Handoffs occurred at the same location, similar altitudes and with same direction

to Bellaire as in group 1 and 2.
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(a) Planned trajectory for group 4 (b) Legend of commands

(c) Top view (d) Side view

Figure 5-14: ZNY10: Results for 9 flights in group 4 on 07/05, 05:30 – 06:30 PM

Only two pilot requests were observed for this group and both were immediately

approved. One was in July 5 asking for Bellaire and the other was in June 28 asking

for FL310.

Group 5: southwest bound traffic from KJFK and KPHL

This is the merging traffic from John F Kennedy Airport (KJFK) and Philadelphia

Airport (KPHL) into J6. The traffic from New York follows RBV – J230 – SAAME

- J6 – HVQ, whereas the traffic from Philadelphia follows MXE – PENSY – J110 –

FLIRT - J6 – HVQ. Destinations are scattered across the country.

Since group 5 was also affected by weather, Figure 5-15 presents a case with-
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(a) Planned trajectory for group 5 (b) Legend of commands

(c) Top view: 5 flights in group 5 on 06/17, 09:00
– 10:00 AM

(d) Side view: 5 flights in group 5 on 06/17,
09:00 – 10:00 AM

(e) Top view: 8 flights in group 5 on 06/28, 05:30
– 06:30 PM

(f) Side view: 8 flights in group 5 on 06/28,
05:30 – 06:30 PM

Figure 5-15: ZNY10: Results for group 5
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out weather interference (Figures 5-15(c) and 5-15(d)) and with weather interference

(Figures 5-15(e) and 5-15(f)).

Table 5.4 summarizes the pilot requests considering all analyzed traffic hours.

In the three days without weather interference, a total of 12 flights were observed,

almost half of them did not receive any commands. 4 flights were merged to group 3

via directs to Martinsburg (MRB) or Charleston (HVQ). There were 3 PHL depar-

tures, 1 in June 17 and 2 in July 5, and they only received climbing commands to

final altitude (FL320 and above). There was one climb request in June 17 that was

immediately approved (Table 5.4)

Handoffs occured usually shortly after the merging point (SAAME or FLIRT),

once they were in J6 reaching final altitude and directed to a downstream waypoint.

In June 17 and July 5, there was less indication of conformance to the structure, as

the combined traffic of groups 3 and 5 were much lower than in March 18.

The situation changed in June 28, when there was weather interference and the

controller of ZNY10 faced a larger traffic demand. There were a total of 8 flights in

this group. All flights received commands, 87.5% received altitude commands and

62.5% got multiple altitude commands. This means that the whole climbing process

had to be controlled more tightly.

Also, the structure could not accommodate the traffic demand from groups 3 and

5 together, and many of the flights only merged to J6 outside the sector, at MRB.

More specifically, 7 flights (87.5%) were directed to MRB or other points for merging.

3 of them were also deviated with vector commands and 2 of the deviated ones did

not enter the actual sector boundary, as illustrated in Figure 5-15(e).

Handoffs were observed to occur past FLIRT, but, as already noted in the group

Table 5.4: ZNY10: Pilot requests from aircraft in group 5.

Traffic Call Sign Request Approved
06/17 MORN JBU353 to FL340 yes
06/28 EVEN MJR932 deviation for weather yes
06/28 EVEN COA1737 to FL280 no
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3 analysis, this might be the combined effect of time pressure for talking with pilots

and actual delayed solution of a harder merging problem.

Group 6: northbound traffic from KDCA and KIAD

Figure 5-16 presents trajectories and position of commands for group 6. Group 6 was

identified as departures from Ronald Reagan Washington National Airport (KDCA)

and Washington Dulles International Airport (KIAD). These flights followed J220

northbound.

All of the 9 flights in this group were still in the climbing phase when they checked-

(a) Planned trajectory for group 6 (b) Legend of commands

(c) Top view (d) Side view

Figure 5-16: ZNY10: Results for 2 flights in group 6 on 03/18, 09:00 – 10:00 AM
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in. As such, 6 flights received climbing commands shortly after or at check-in. More-

over, 4 flights received directs for shortcut to their destinations. 8 of the flights were

handed off before reaching FL280, which means that they were vertically separated

from the traffic of other groups.

Background Traffic

Figure 5-17 presents 10 flights that could not be categorized in any specific flight plan

pattern (traffic of July 5 is not presented because there was no background traffic).

6 of these flights passed through the sector without any command. There was no

specific climbing or level traffic pattern in this miscellaneous group. The only flight

(a) 03/18, 09:00 – 10:00 AM (b) 06/17, 09:00 – 10:00 AM

(c) 06/28, 05:30 – 06:30 PM

Figure 5-17: ZNY10: Background traffic
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in June 28 was a wrong check-in.

Summary of ZNY10

Based on the identified flight plan groupings, four main tasks were observed (illus-

trated in Figure 5-18). These are the higher level tasks that the controller has to do.

As presented in the previous sub Sections, the execution of each one of these tasks

has a specific pattern for each group. in accordance with Pawlak et al. (1996), given

that an aircraft is identified as a member of a group, the controller knows the plan

and the set of actions (or technique) to be executed.

Figure 5-18 also presents the standard technique observed for each group, in terms

of the major tasks. Noteworthy is the fact that the presented techniques of groups

3 and 5 were devised from the hours with normal weather. As a result, the sum of

total traffic on the second column does not include groups 3 and 5 on June 28.

The conditional probability of receiving a technique, given that a command was

issued to a member of the group is also presented in Figure 5-18). This measure

indicates that most of the members of the groups received a standard adjustment,

given that a command was issued. That is, there is indication of a technique for each

flight plan group. Figure 5-18) also shows that the technique was not as clear for

group 5, as it was for the other groups.

The tasks are reviewed as follows, in order to summarize the specific pattern of

commands for each group:

Merging Task 1 (merging of groups 1, 2 and 4). Groups 1 and 4 received a

sequence of clearances that ended with final direct to Bellaire. Group 2 was treated

as a baseline for the merging task. Group 1 and 4 had some climb commands due to

the proximity of New York City to ZNY10.

Merging Task 2 (merging of groups 3 and 5). There were speed checks

in group 3, but it was not clear if it was due to the merging task or for limiting

the handoff speed to Washington Center. In group 5, a third of the aircraft received

directs to MRB to cut the corner and a third (corresponding to the KPHL departures)

received final altitude to match with the altitude of group 3. But aircraft usually just
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Figure 5-18: ZNY10: Summary of identified tasks and techniques for flight plan
groups. P (RC) = Proportion of flights that received commands. P (T |RC) = Pro-
portion of flights that received technique, given that they received commands.

changed their heading naturally around FLIRT or SAAME.

Crossing Task 1 (crossing of groups 2 and 4 with group 3). Group 2

received climbing commands first restricting the altitude when aircraft crossed J6.

Then, shortly before crossing J6, these flights received a second amendment to final

altitude. A clear crossing technique could not be observed between groups 3 and 4,

as most of the traffic in group 4 was in July 5, which did not present as much traffic

in group 3. However, it was observed that members of group 3 received final altitude

early after check-in or crossing the sector’s boundary, thereby maintaining vertical

separation with groups 2 and 4.
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Crossing Task 2 (crossing of group 6 with groups 1, 2 and 4). Group 6 re-

ceived climbing commands shortly after check-in and were handed-off before reaching

FL280, which put them underneath the other groups.

Impact of weather. Groups 3 and 5 were the most affected by the weather

and higher demand situation on June 28. Higher demand occurred due to re-routes

of other aircraft that ended up flying through J6 (Figure 5-5). Higher demand was

clearly evidenced by looking at the number of total aircraft in the sector in Table 5.1,

total aircraft per group in Figure 5-7(a) and flights per hour. Higher demand also

changed the nature of the situation, yielding more continuous communication time,

more requests in total and lower rate of approved requests (Figure 5-10).

The combined effect of higher demand and weather also altered the number of

aircraft that received certain types of commands: more altitude and directs were

given for members of each group. For the merging task, group 5 also received far more

vector commands and some of the aircraft did not even entered the sector’s official

boundary, due to saturation of J6. Another evidence of route structure saturation is

the more disperse distribution of flights around centerline of J6.

General observations. Traffic reconstructions and Figure 5-7 also indicated that

handoffs usually occurred after a certain problem or task was solved, such as reaching

final altitude and/or speed, merging the traffic or directing to a certain downstream

point. This early handoff behavior supports the area of regard concept from the

perspective of the upstream controller. Considering that most of the commands are

issued in early minutes after checking-in (Histon & Hansman, 2008), it is noticeable

that the area of regard works as a time buffer for controllers to deal with the traffic

situation.

Under weather conditions, the problem was clearly harder to solve, which could

have been a reason for postponed handoffs. However, the late handoffs could also

have been the lack of sufficient time to properly hand flights off, due to saturation of

the communication channel (Table 5.1).
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5.3.2 Communication Analysis: Chicago 25 (ZAU25)

From the ETMS data, ZAU25 had 1717 aircraft in two weeks of data, 24% climbing,

56% and 20% level flights. The sector spans from FL195 to FL324. The sector was

categorized as a member of the descending cluster in Section 3.2. Figure 5-19 below

presents the most frequently used jet routes and reference points in ZAU25.

Selection of Traffic Hours

Two separate traffic periods were analyzed for ZAU25. The archived audio files at

hand did not present as much traffic volume as in the case study of ZNY10. June 17,

a Friday, was chosen because it was one of the days with most traffic and not affected

by weather. Both morning and evening traffic for the same day were analyzed. Notice

that two hours were considered for each traffic period. The reason was to capture

more traffic in order to increase the chances of observing the patterns, dynamics and

techniques in the sector.

Table 5.5 shows general statistics for each analyzed traffic period. It presents the

number of airplanes that were heard and how many flights ended up being analyzed for

each data point. As it was done for ZNY10, reasons for discarding flights were the non-

identification of the call sign, lack of radar track and flight plan data and incomplete

voice communications. Voice communications were only considered complete if the

check-in and handoff were heard. Note that, despite of considering double of the time

Figure 5-19: ZAU25: Structural framework
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interval, the final number of analyzed aircraft and continuous communication length

are very close to that presented in Table 5.1 for ZNY10.

Table 5.5: ZAU25: General information about analyzed traffic intervals. NAC =
Number of Airplanes; NIND = number of airplanes Not Identified or No Data;
IIC = number of airplanes that were Identified but with Incomplete Communication;
TA = Total Analyzed (NAC −NIND − IIC); W = if there was Weather; CL =
continuous Communication Length after silence removal (in minutes); and ARTR =
ratio of Approved Requests over Total Requests

Day Time NAC NIND IIC TA W CL ARTR
06/17/2011 9:00 77 5 11 60 NO 36:47 2/3

Friday 11:00
06/17/2011 17:00 63 10 8 45 NO 24:21 6/6

Friday 19:00

Flight plan groups

As presented in the methodology, for a given analyzed traffic period, a group was

generated if at least two flights had a planned trajectory or origin/destination in

common. From this method, five key flight plan groups were found in ZAU25. Group

6 was only identifiable in the morning traffic, therefore constituting a minor group.

Figure 5-20 presents how many aircraft were analyzed for each goup. Figure 5-

21 provides information about the common features in each group, as well as an

illustration of the typical flight plans for each group.

Figure 5-20: ZAU25: Number of
flights per group. Only flights
with complete voice communication,
radar track and flight plan data are
displayed.
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Notice that, except for the minor group 6, there is a high correlation between

planned trajectories and ODs for each identified group in ZAU25. Three groups have

high correlation with destinations (group 1 to KORD, group 2 to KCLE and group 4

to KMKE), two groups have high correlation with origins (group 2 from KMSP and

KMKE and group 3 from KDTW). In particular, group 5 represents a specific OD

pair: traffic from KDTW to KORD.

The interrelationship between groups is more diverse and apparently more complex

than it was for ZNY10. For instance, members of group 1 cross all other groups and

present some merging traffic, group 2 and group 6 have opposite directions, group 3

is associated with a diverging traffic and group 4 with a converging traffic (focal point

is located outside ZAU25). Moreover, group 5 also goes to KORD, thereby merging

Figure 5-21: ZAU25: Summary of identified flight plan groups. Routes and reference
elements related to the planned trajectories of each group are highlighted
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Figure 5-22: ZAU25: Types of commands and flight plan groups.

with group 1.

Figure 5-22 presents the percentage of members in each group that received specific

types of commands. One can see in this Figure that the controller used a combination

of several commands when managing each group. Groups 1 and 5 had the most

prevalent pattern of types of commands: all aircraft received descend commands and

many received speed commands, as well as direct commands. Details about each

group can be found in Section B.1. The following section presents a summary of the

major findings.

Summary of ZAU25

Based on the identified flight plan groupings, six main higher level tasks were identified

(illustrated in Figure 5-23). As it was the case for ZNY10, the execution of each one

of these tasks followed a specific pattern for each group. Figure 5-23 also presents the

techniques in terms of the sequence of tasks that must be performed for each group.

The conditional probability of receiving a technique, given that a command was

issued to a member of the group is also presented in Figure 5-23). This indicates how

consistent the techniques were for each flight plan group. The lack of such metric for

groups 4 and 6 is because a clear technique was not observed for these groups, even

though a sequence of potential tasks was identified.

The major tasks were observed to be performed as follows:
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Figure 5-23: ZAU25: Summary of identified tasks and techniques for flight plan
groups. P (RC) = Proportion of flights that received commands. P (T |RC) = Pro-
portion of flights that received technique, given that they received commands.

Sequence to KORD (groups 1 and 5). Groups 1 and 5 were arriving to

KORD. All KORD arrivals received direct to a FIX in the WYNDE3 arrival and re-

ceived final descend command to FL200 prior to the handoff. Moreover, the controller

executed varied speed control, assigning speeds between 280 and 300 knots, both for

speeding up or slowing down.

Flights in group 5 to KORD were managed for a proper merge with group 1,

but the merging task was not explicitly executed by the ZAU25 controller. The

actual merging of the trajectories was underneath ZAU25, and after the controller

had handed-off flights from both groups 1 and 5. As such, handoffs of flights in group

5 to KORD were executed before reaching PMM, thereby providing enough handling

latitude to the downstream controller.
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Merging Task 1 (merging of members in group 1). Merging traffic flying

through ADALE was managed in two possible ways, apparently based on the situ-

ation. In the first way, flights received directs to WLTER or to RHIVR to join the

main stream to KORD, while still in ZAU25. In the second way, they were directed

straight to a FIX in WYNDE3 arrival, thus deferring the final merging task to the

downstream controller. Merging traffic flying through GRR was always merged to the

main stream to KORD. These later flights were also treated in a case-by-case basis

in terms of directs (either to GRR or straight to WYNDE3), since the main stream

in group 1 had not descended enough by GRR.

Merging Task 2 (merging of members in group 4). Group 4 was composed

of traffic merging to a focal point outside the sector, and from there going to KMKE.

The merging appeared to have been solved by upstream controllers. Thus, this group

only required some monitoring and speed control.

Crossing Task 1 (crossing of group 1 with all others). Flights in group 1

received an intermediate altitude before crossing GRR and then, past GRR, received

final to FL200. This altitude control solved the crossing task with groups 2 and 3,

which, in turn, did not receive any amendments for the crossing. Group 4 and 6 also

did not receive amendments, as the former checked-in almost at the sector’s floor and

the latter checked-in almost at the sector’s ceiling, which put their flights separated

from all other groups.

Crossing Task 2 (crossing of group 4 with all others). Traffic in group 4

checked-in in much lower altitude than all other groups. Thus, the controller did not

have to issue any further altitude or lateral amendments to flights in group 4. This

group only required some monitoring and speed control.

Head to head conflict 1 (group 2 with group 5). Group 6 was composed of

flights with opposite flight plans of that of group 2. Group 6 entered in level flight

almost at the sector’s ceiling and they appeared to have been already directed to their

destinations by upstream controllers. Thus, these flights were vertically and laterally

separated from group 2 and the controller only had to monitor these flights.

General observations. As a member of the descending cluster, most of the
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observed altitude commands were for lower altitudes. However, only traffic converg-

ing to KORD presented descending behavior, thereby responding for all descending

commands. As such, these flights also presented vertical handoffs, close to the sectors

floor and within the lateral boundaries.

General sets of commands could be found for the other key flight plan groups, but

those sequences of commands were not as consistent as they were for groups 1 and

5. A probable reason for that was the low traffic volume faced by the controller in

the observed traffic periods of ZAU25. As presented in Figure 2-5, low traffic volume

does not enforce controllers to enforce the use of structure, and, therefore, makes it

harder for techniques for each group to be observed. Histon and Hansman (2008)

anticipated that in such circumstances controller would let pilots optimize their own

trajectories. Indeed, half of the flights not belonging to group 1 did not receive any

command (the only pilot-controller communication was check-in and handoff).

The impact of upstream controllers was observable in ZAU25. For instance, group

2, traffic from KMSP and KMKE, had a flight plan which resulted in a line with a

turn inside the sector, but featured a converging pattern to GRR, where it crossed

with the stream of flights in group 1. Likewise, group 6, flying the opposite direction

of group 2, entered the sector already directed to its destinations, thereby requiring

little action from the controller.

Moreover, group 3, traffic from KDTW, presented a split critical point inside the

sector. The splitting was managed either with no interference from the controller or

with directs to scattered destinations.

Once again, there was a confirmation of the area of regard in contrast to the area

of responsibility, or the actual physical boundary of the sector (Histon & Hansman,

2008). Handoffs (red squares) occurred inside the lateral boundaries of the sector,

whereas check-ins (green circles) were upstream the flows. Moreover, there was ev-

idence that handoffs occurred after the major task of each group was accomplished

for groups 1, 2 and 5.
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5.3.3 Communication Analysis: Miami 40 (ZMA40)

ZMA40 had 2909 aircraft in two weeks of ETMS data, 40% of flights were climbing,

18% were descending and 42% were level. The sector spans from FL240 and above.

In the analysis presented in Section 3.2, this sector was categorized as in the cluster

with mixed altitude transitions. Figure 5-24 presents the jet routes and reference

points that were most frequently found in the flight plans in ZMA40.

FLIPR is plotted as an illustrative point of the FLIPR2 STAR to Miami Inter-

national Airport (KMIA). Likewise, WAVUN is a FIX in the WAVUN1 STAR to

Fort Lauderdale/Hollywood International Airport (KFLL). SKIPS and EONNS are

fixes in the SKIPS1 and EONNS1 Standard Instrument Departure (SID) from KMIA.

ZQA is a VOR outside ZMA40. Flights going to ZQA may require coordination with

Nassau FIR or with Miami Center itself. Nassau FIR extends from the surface to

FL180 when Miami Oceanic is online and to FL600 when Miami Oceanic is offline.

The analyzed traffic was handed off to ZMA60 at frequency 127.22 MHz, indicating

that Miami Oceanic was online. TANIA and URSUS interface with Havana FIR.

Figure 5-24: ZMA40: Structural framework
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Selection of Traffic Hours

Table 5.6 shows the three traffic periods that were considered in this analysis. Care

was taken to find an evening without significant weather interference. Weather and

poor ride conditions could be identified from METARS and by briefly listening to

the communications. When extracting the voice archives from www.liveatc.net,

only communications in June and July of 2011 were available, and those months had

systematic poor weather in the evening.

July 11 was chosen because it had an evening without significant weather inter-

ference. Then July 5 was chosen as an evening with weather and with similar level of

communications, when compared to July 11.

The morning of July 23 was selected also due to weather considerations and also

because its level of communication was not too low for a non-weather morning. In

July 23, the observed continuous communication from 9:00AM to 10:00AM was of

17:27 minutes. As it can be seen in Table 5.6, however, the analyzed morning traffic

was actually from 9:00AM to 10:30AM. Half an hour was added due to several in-

complete voice communications from 9:30AM to 10:00AM. This allowed the inclusion

of identified airplanes in the analysis. Therefore, the final continuous communication

was of 30:48 minutes, with a total of analyzed airplanes comparable to the other days.

Table 5.6: ZMA40: General information about analyzed traffic intervals. NAC =
Number of Airplanes; NIND = number of airplanes Not Identified or No Data;
IIC = number of airplanes that were Identified but with Incomplete Communication;
TA = Total Analyzed (NAC −NIND − IIC); W = if there was Weather; CL =
continuous Communication Length after silence removal (in minutes); and ARTR =
ratio of Approved Requests over Total Requests

Day Time NAC NIND IIC TA W CL ARTR
07/05/2011 17:30 41 5 12 24 YES 31:53 5/6

Tuesday 18:30
07/11/2011 17:00 58 10 12 36 NO 35:19 4/6

Monday 18:00
07/23/2011 9:00 45 5 5 35 NO 30:48 2/3
Saturday 10:30
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Flight plan groups

Three key flight plan groups were identified. These three key flight plan groups are

presented in Figures 5-25(a) and 5-25(b).

Traffic in ZMA40 revealed to be very diverse, being entirely composed of interna-

tional flights. There was a large mix of general aviation and commercial flights, as

well as climbing, descending and level traffic. As a result of this diversity, other five

minor flight plan groups and one minor temporal group were also identified (Figures

5-25(c) and 5-25(d)). Groups 4, 5 and 6 were only observed in the morning traffic

and group 7 and 8 were most predominant in the evening traffic. Group 9 had only

one flight on each of the evening traffic intervals, thereby being classified as a minor

(a) Summary of identified key flight plan groups (b) Legend for key flight plan groups

(c) Summary of identified minor flight plan
groups

(d) Legend for minor flight plan groups

Figure 5-25: ZMA40: Summary of identified flight plan groups. Routes and reference
elements related to the planned trajectories of each group are highlighted
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Figure 5-26: ZMA40: Types of commands and flight plan groups.

temporal pattern. Groups 6 and 7 are mainly traffic from and to the Caribbean,

respectively, and the planned lateral trajectories are only illustrative of some of the

members of these groups. Group 9 was composed of traffic from Europe to Cancun

(MMUN) and the planned trajectory is was only illustrative of the trajectories of this

group.

Figure 5-26 shows percentage of aircraft in each key group that received each type

of command. The three key groups responded for 58 analyzed aircraft, or 61.0% of

the total analyzed traffic. Almost all of the traffic to or from Miami International

Airport (KMIA), in groups 1, 2 and 3, received altitude commands at some point. In

the interest of brevity and due the smaller sample sizes for the minor groups, similar

statistics are not presented for groups 4 to 9. However, it is worth noting that all the

traffic to or from Fort Lauderdale (KFLL and KFXE), in groups 4 and 5, received

altitude commands. Details about each group are presented in Section B.2. The

following sub Section presents the major findings for ZMA40.

Summary of ZMA40

The traffic in ZMA40 proved to be very diverse in terms of origins and destinations,

aircraft types and dynamics of the traffic. Furthermore, much more temporal vari-

ability on the groupings was observed, in comparison to ZNY10 and ZAU25. There

was an effort to analyze a traffic period with and another without weather. The
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Figure 5-27: ZMA40: Summary of identified tasks and techniques. P (RC) = Pro-
portion of flights that received commands. P (T |RC) = Proportion of flights that
received technique, given that they received commands.

only observation about weather was that some flights in group 1, traffic to KMIA,

requested deviation.
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Figure 5-27 presents the key and minor groups, the identified major tasks and the

sequence of tasks to be executed for each group. Parenthesis is used when only part

of the group was subject to that kind of task and slash is used when only one of the

tasks applies. As it was the case for ZNY10 and ZAU25, the execution of each one

of these tasks followed a specific pattern for each group. This Figure also emphasizes

the reduced amount of traffic related to each minor flight plan group. Therefore,

the techniques that were identified for these minor groups are mostly illustrative and

should be taken with caution, due to the reduced sample size.

Both Sequence to KMIA (group 1) and Sequence to KFLL/KFXE (group

4) were observed to receive a series of descending commands and being assigned to

final altitude of FL240, prior to handoff. Some flights in group 1 received directs to

a FIX in the arrival procedure, as well as speed commands. Flights in group 4 only

observed to receive only descend commands.

Group 1 and 4 also presented Merging Task 1 and Merging Task 2, respec-

tively. Even though these merging tasks were identified from the flight plans, the

flights in these groups entered the sector already directed to their respective focal

points. Moreover, flights in these groups were handed off before reaching the focal

point, indicating that the final merging was performed by the downstream controller.

Crossing Task 1 (crossing of group 9 with all others). Group 9, a minor

temporal group composed of traffic from Europe to Cancun, checked-in above FL380.

Thus, these flights were vertically separated from the rest of the traffic and the crossing

task was performed without amendments from the controller.

Crossing Task 2 (crossing of groups 6 and 7 with groups 1, 3 and 4

along A301). The separation for the crossing task was guaranteed on the altitude

dimension. Group 6 and 7, flying along A301, were in level traffic above FL340 when

they entered the sector. Group 3, departing from KMIA, was still climbing when

crossing A301 and was handed off before reaching or at FL340. Group 4, descending

to Fort Lauderdale, received early descend commands, usually right after check-in.

Group 1 also received early descend commands after check in and was below FL340

when crossing A301.
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Head to head conflict 1 (groups 2, 5 and 7 with 1, 4 and 6 at URSUS).

This head to head conflict was partially solved laterally by the upstream controllers.

The departing flights of groups 2 entered the sector directed to TANIA, thereby

avoiding the head to head conflict with the other groups. Group 7 entered the sector

directed to downstream destinations and offset from A301, thereby also avoiding the

potential conflict. Thus, part of this task was pre-solved by upstream controllers.

Controller intervention was only observed for group 5. Flights in this group received

direct commands to UCA in the south, effectively forcing them to cross TANIA. These

flights also received final altitude to FL330, thereby lower than group 6.

Head to head conflict 2 (group 1 with 3 at the southeast border). Early

climbing commands to group 3 and early descending commands to group 1 avoided

head to head conflict when crossing the southeast boundary of the sector via Y586.

Directs to group 1 also appeared to further laterally separate these groups. The

controller still had to give one traffic advisory for an instance of a potential conflict.

Head to head conflict 3 (group 3 with 4 at the east border). As mentioned

in the description of Crossing 2, group 4, descending to Fort Lauderdale, received

descend commands usually right after check-in. Since group 3 received early climbing

commands, both streams of traffic were vertically separated.

General observations. Group 6, northbound traffic from Jamaica, and group 7,

southbound traffic to Jamaica, had their planned trajectories overlapping along A301.

Thus, these two groups constituted a case of a head to head conflict. However, group

6 was predominant in the evening and group 7 was predominant in the morning, thus

not providing enough observations of head to head conflict management. Therefore,

this task was not considered in this analysis.

Note that, even tough many potential tasks were identified, few of them actually

demanded active management from the controller. This is likely to be a combination

of some factors. First, many of the flights entered ZMA40 already directed, thereby

pre-solving merging and head to head conflict tasks. Second, vertical handoffs for

arriving traffic were executed very early, which transferred part of the merging and

sequencing tasks to the downstream controller. Third, six of the identified groups were
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minor groups with low traffic, which reduced the occurrence of situations demanding

controller management.

5.4 Summary

This Chapter presented the adopted methodology for identification of techniques with

respect to flight plan groupings in the structure. Pilot-controller voice communication

and the traffic itself were extracted from publicly available databases (www.liveatc

.net and www.flightaware.com, respectively) for airspace sectors that met certain

criteria (explained in Section 5.1.1).

The analysis of details of planned trajectories of ZNY10, ZAU25 and ZMA40

allowed the identification of potential tasks that had to be performed by the controller.

These high level tasks were managing crossings, mergings, splits of traffic, head to

head conflicts and sequencing for arrivals. From analysis of voice communications,

altitude transitions were also identified as major tasks. The observed descending

tasks were all part of the sequencing for arrivals, whereas the observed climbing tasks

were all associated with departures.

Each high level task was observed to be executed with a specific set of commands

for each group. Naturally, each group presented a specific sequence of high level tasks.

These particular sequences of tasks were the source of the techniques, or sequence of

commands, that were identified for each group. These standard modifications to each

group produced noticeable changes from planned to actual trajectories. The actual

trajectories were also observed to repeat across the analyzed traffic intervals. Thus,

the final traffic patterns were intrinsically related to the flight plan groups and their

respective management techniques used by the controller.

Weather impact was also analyzed. In ZMA40, the weather interference was man-

ifest in pilot requests for deviation, but only among those flights arriving to KMIA.

Conversely, ZNY10 provided a case of severe weather effects. In this case, weather was

found to affect only specific groups, mainly because of reroutes that aircraft suffered

due to decremental weather in other parts of the country. Consequently, the analyzed
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weather scenario imposed harder constraints and more user requests. Since this was a

specific case of weather interference and confounded by higher traffic volume, general

conclusions could not be drawn from it.

In summary, for the three analyzed case studies, it was found a relationship be-

tween flight plan groupings and management techniques. Within each group, there

was an identifiable and repeatable set of adjustments, or techniques. These repeated

modifications generated structural features such as flows and critical points, which

were naturally related to the flight plan groupings in the traffic. These findings help

validate the grouping structure-base abstraction introduced by Histon and Hansman

(2008). Moreover, these results motivate the adoption of a grouping-focused analysis

of the traffic for evaluation of how controllers manage the traffic.
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Chapter 6

Conclusion

6.1 Thesis Summary

The ultimate objective of this work was to investigate how distinct structural patterns

are used by controllers for managing air traffic.

In order to accomplish this objective, structural patterns first had to be identified

and then investigated in terms of how they were managed. The search for such struc-

tural patterns started with the identification of different types of sectors, considering

metrics for the dynamics of the traffic. These metrics were motivated by research

on complexity and workload of air traffic controllers, as these metrics were likely to

correlate with the underlying tasks to be performed.

Based on the calculated traffic metrics from ETMS data, a data mining technique

was used in order to identify distinct types of sectors, in terms of traffic dynamics.

Five such types were identified. Three of them had clear distinctions in terms of

altitude transitions: one was predominantly composed of climbing and other was pre-

dominantly composed of descending traffic. The other type presented a significant

mix of altitude transitions. The other two groups presented level traffic and different

combinations of traffic volume and directional variability, what appeared to be dif-

ferent levels of apparent complexity. This typology of sectors allowed the selection of

sectors for further detailed analysis of their structural patterns. Based on the iden-

tified types of dynamics, these sectors were likely to present certain combinations of
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tasks and patterns of traffic.

Then, a descriptive and subjective evaluation of the traffic was conducted, with

the goal of observing variations in the patterns and generating hypothesis about

how controllers manage the traffic. It was found that, by partitioning the traffic

in terms of origins and destinations, much of the dynamics of the traffic could be

identified. Moreover, the origins and destinations suggested many of the potential

tasks that controllers had to execute. This motivated the hypothesis that controllers

might employ common management techniques to common sets of flights with same

planned trajectories.

Descriptive evaluation of the controllers’ commands were added to the descriptive

evaluation of the traffic, in order to investigate how the structural patterns (group-

ings by planned trajectories) were being managed. This detailed pilot-controller voice

communication analysis was presented with respect to elements of the cognitive pro-

cess model, as introduced by Histon and Hansman (2008). From the identification

of flights through the sector, it was possible to distill groupings by flights plans. Via

detailed voice communication analysis, each flight plan grouping was found to be

associated with a specific technique, or sequence of commands

6.2 Conclusion

The grouping structure-based abstraction introduced by Histon and Hansman (2008)

anticipated that controller would collect together similar parts of the situation and

incorporate them into his/her mental model. By capturing these segregated parts of

the traffic, the controller would be able to decompose the tasks into smaller and sim-

pler parts. This work provided evidence that helps validate the grouping abstraction

in terms of flight plan groupings.

The interactions between the identified flight plan groupings allowed the identifi-

cation of potential major tasks, such as mergings and crossings. It was observed that

each major task was performed with a particular set of commands for each group.

More importantly, each group was found to be related to a repeatable and specific
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sequence of commands, or particular management technique. These standard adjust-

ments to the traffic created repeatable changes from planned to actual trajectories,

resulting in patterns in the structure, such as flows and critical points. Therefore,

the structural patterns were found to be related to the standard flight plan groupings

and their respective techniques.

Consequently, these groupings are a critical factor in how controllers abstract and

manage the traffic. This work, however, does not discount the importance of flows

and critical points.

These results motivate the adoption of a grouping-focused decomposition of the

traffic when tackling the issue of how controllers manage the traffic. This type of

analysis should allow for the determination of (1) the impact of sector changes on

how controllers manage the traffic; and (2) comparison of sectors in terms of the

required tasks and management techniques.

For instance, changes in standard routings could result in the addition or removal

of flight plan groupings, thereby impacting the interactions of groupings and, there-

fore, major tasks and techniques. The addition or removal of groupings could be either

static (i.e., as part of a plan for permanently rearranging the traffic) or dynamic (i.e.,

as a response to imbalances of capacity and traffic demand in the airspace). The lat-

ter case fits in the concept of dynamic airspace configuration (also known as flexible

airspace), which is being evaluated by FAA (2010) for better distributing workload

among controllers and reducing impacts of capacity shortages on the system.

Pairwise comparison of sectors, under a grouping-focused perspective, should pro-

vide a listing of differences in tasks and techniques between the traffic structures.

These listings can be used as a roadmap for determining the required differential

training when moving from one facility to another. Therefore, results of these formal

comparative analyses could aid on the cross-training processes, thereby improving the

capability of FAA to move controllers from one airspace to another and increasing

the staffing flexibility of current air traffic controllers.

Interestingly, a NAS-wide grouping-focused analysis could also aid on the identifi-

cation of groups of sectors that already have similar groupings patterns and, therefore,
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require similar tasks and management techniques. This latter type of analysis would

be applicable for the generic airspace concept. This concept, also currently evalu-

ated by the FAA (2010), is imagined as composed of sectors that allow for the easy

transferability of mental models across different facilities. Thus, one can potentially

identify candidates for constituting generic airspace by looking for sectors that already

require similar tasks and management techniques
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Air Traffic Complexity Assessment in New Generation Air Traffic Management
Systems. IEEE Transactions on Intelligent Transportation Systems , 12 (3), 809–
818.

Redding, R. E., Cannon, J. R., Lierman, B. L., Ryder, J. M., Seamster, T. L., &
Purcell, J. A. (1992). Cognitive Task Analysis of Prioritization in Air Traffic
Control (Tech. Rep.). Human Technology, Inc.

Sabhnani, G. R. (2009). Geometric Algorithms for Dynamic Airspace Sectorization.
Doctoral thesis, Stony Brook University. Available from http://www.ncbi.nlm

.nih.gov/pubmed/20170218

Sabhnani, G. R., Yousefi, A., Kierstead, D. P., Kostitsyna, I., Mitchell, J. S.,
& Polishchuk, V. (2010). Algorithmic traffic abstraction and its applica-
tion to NextGen generic airspace. In 10th aiaa aviation technology, inte-
gration, and operations conference, fort worth, texas (pp. 1–10). Available
from http://metron.creativerge.net/documents/publications/yousefi/

4 Traffic abstraction.pdf

Seamster, T. L. T., Redding, R. R. E., Cannon, J. R., Ryder, J., & Others. (1993).
Cognitive task analysis of expertise in air traffic control. The International

162

http://www.ingentaconnect.com/content/hfes/hfproc/2003/00000047/00000001/art00015
http://www.ingentaconnect.com/content/hfes/hfproc/2003/00000047/00000001/art00015
http://doi.wiley.com/10.1016/S0364-0213(86)80010-6
http://doi.wiley.com/10.1016/S0364-0213(86)80010-6
http://stuff.mit.edu/afs/athena/course/16/16.459/OldFiles/www/Pawlak.pdf
http://stuff.mit.edu/afs/athena/course/16/16.459/OldFiles/www/Pawlak.pdf
http://www.computer.org/portal/web/csdl/doi/10.1109/AVSS.2005.1577240
http://www.computer.org/portal/web/csdl/doi/10.1109/AVSS.2005.1577240
http://www.ncbi.nlm.nih.gov/pubmed/20170218
http://www.ncbi.nlm.nih.gov/pubmed/20170218
http://metron.creativerge.net/documents/publications/yousefi/4_Traffic_abstraction.pdf
http://metron.creativerge.net/documents/publications/yousefi/4_Traffic_abstraction.pdf


Journal of Aviation Psychology , 3 (4), 257–283. Available from http://psycnet

.apa.org/psycinfo/1994-23748-001

Simmons, B. (2010). Mid-Term High Altitude Trajectory- Based Generic Airspace
(No. August).

Simon, H. A. (1978). Rationality as Process and as Product of Thought. Ameri-
can Economic Review , 68 (2), 1–16. Available from http://www.jstor.org/

stable/1816653

Sperandio, J. C. (1978, March). The regulation of working methods as a function of
work-load among air traffic controllers. Ergonomics , 21 (3), 195–202. Available
from http://www.ncbi.nlm.nih.gov/pubmed/27350

Vlachos, M., Kollios, G., & Gunopulos, D. (2002). Discovering similar multidimen-
sional trajectories. Proceedings 18th International Conference on Data Engi-
neering , 0 , 673–684. Available from http://ieeexplore.ieee.org/lpdocs/

epic03/wrapper.htm?arnumber=994784

Volpe. (1995, June). Enhanced Traffic Management System (ETMS) Functional
Description, Version 5.0 (Tech. Rep.). Volpe Center.

Warfield, J. N., & Cardenas, A. R. (1995). A Handbook of Interactive Management.
Iowa State University Press.

Wickens, C. D., & Hollands, J. G. (1999). Engineering Psychology and Human
Performance (3rd Edition) (3rd ed.) [Book]. Prentice Hall.

Xue, M. (2010). Three-dimensional sector design with optimal number of sec-
tors. In Proceedings of aiaa guidance, navigation, and control conference (pp.
1–16). Available from http://www.aric.or.kr/treatise/journal/content

.asp?idx=134449

Yousefi, A. (2005). Optimum Airspace Design with Air Traffic Controller Workload-
Based Partitioning. phd, George Mason University. Available from http://

adsabs.harvard.edu/abs/2005PhDT........12Y

Yousefi, A., & Donohue, G. L. (2004). Temporal and spatial distribution of airspace
complexity for air traffic controller workload-based sectorization. In Aiaa 4th
aviation technology, integration and operations (atio) forum, chicago, illinois
(pp. 1–14). Available from http://metron.creativerge.net/documents/

publications/yousefi/8 YousefI Donohue ATIO 2004 FINAL.pdf

Zelinski, S., & Field, M. (2008). Defining critical points for dynamic airspace con-
figuration. In 26th international congress of the aeronautical sciences (pp. 1–
12). Available from http://www.icas-proceedings.net/ICAS2008/PAPERS/

420.PDF

Zelinski, S., & Jastrzebski, M. (2010). Defining Dynamic Route Structure for Airspace
Configuration. In 27th international congress of the aeronautical sciences (pp.
1–13). Available from http://www.icas.org/ICAS ARCHIVE CD1998-2010/

ICAS2010/PAPERS/230.PDF

163

http://psycnet.apa.org/psycinfo/1994-23748-001
http://psycnet.apa.org/psycinfo/1994-23748-001
http://www.jstor.org/stable/1816653
http://www.jstor.org/stable/1816653
http://www.ncbi.nlm.nih.gov/pubmed/27350
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=994784
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=994784
http://www.aric.or.kr/treatise/journal/content.asp?idx=134449
http://www.aric.or.kr/treatise/journal/content.asp?idx=134449
http://adsabs.harvard.edu/abs/2005PhDT........12Y
http://adsabs.harvard.edu/abs/2005PhDT........12Y
http://metron.creativerge.net/documents/publications/yousefi/8_YousefI_Donohue_ATIO_2004_FINAL.pdf
http://metron.creativerge.net/documents/publications/yousefi/8_YousefI_Donohue_ATIO_2004_FINAL.pdf
http://www.icas-proceedings.net/ICAS2008/PAPERS/420.PDF
http://www.icas-proceedings.net/ICAS2008/PAPERS/420.PDF
http://www.icas.org/ICAS_ARCHIVE_CD1998-2010/ICAS2010/PAPERS/230.PDF
http://www.icas.org/ICAS_ARCHIVE_CD1998-2010/ICAS2010/PAPERS/230.PDF


164



Appendix A

Background: Air Traffic Control

System

Air Traffic Control (ATC) is a critical part in the operations of the National Airspace

System (NAS). Nolan (2011) provides a historical evolution of the system and the

logic throughout its development. As currently practiced, ATC is a human-centered

process in which controllers and flight crews or dispatchers negotiate for access to

airport and airspace recourses (Belobaba et al., 2009). This occurs by a contract

where controllers provide a “clearance”, that is executed by the flight crews and its

conformance is monitored by the controller.

The purpose of ATC is to ensure safe and efficient flow of air traffic. In or-

der to achieve this goal, several tasks have to be performed. Histon and Hansman

(2008) segregate these tasks in seven categories: separation, monitoring, constraint,

requests, coordination, information and other tasks. Safety is supported mainly from

the separation and monitoring tasks. Controllers are responsible for keeping minimal

horizontal separation of 5 nautical miles (3 nautical miles in terminal airspace) and

vertical separation of 1000 feet between aircraft. Separation has also to be assured

between aircraft and hazardous weather, terrain and wake vortices of other aircraft.

Monitoring of conformance to current clearance within acceptable tolerances is also

fundamental for providing safety.

In order to fulfill all these tasks, any ATC system is composed of basic compo-
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nents, such as communication, navigation, surveillance and automation systems, the

human air traffic controllers themselves and procedures (Parkinson & Spilker, 1996).

Communication systems, navigation systems and procedures are briefly discussed be-

low.

Currently, most of ATC communications occur via voice radio channels. These

channels are shared between pilots and controllers and they operate in very high-

frequency (VHF) reserved for aviation use. Only one communication can be con-

ducted at a time, otherwise there is a painful “squeal”. Therefore, multiple com-

munications end up blocking the channel and there is a requirement for read-back

of ATC clearances. Ambiguity and sources of error are also reduced by the use of

standard phraseology.

The navigation system provides the basis for definition of airways and reference

points, which are then critical for the controllers when issuing commands and orga-

nizing the traffic. Navigation on the en-route system must cover long-range distances,

while on the approach system it must be more precise for collision avoidance (Belobaba

et al., 2009).

The fundamental airspace elements for navigation are radio beacons such as Very

High Frequency Omni-Directional Ranges (VORs), Nondirectional Radio Beacons

(NDBs) and Very High Frequency Omni-Directional Ranges /Tactical Air Navigation

(VORTACs). Like any VHF radio communication, the VOR system is limited to line

of sight, so a network of these stations is required.

New technologies have emerged as a means to complement the VOR network.

These include the Inertial Navigation System (INS) and satellite-based navigation

systems, such as Global Positioning System (GPS). The guidance provided by these

systems is space-based and worldwide in scope, so they are not limited to support

navigation between pairs of stations, there is no line of sight restriction and there are

no associated symbols on aeronautical charts. As such, these systems are very useful

above Oceans or in any region with limited or no ground station network.

Standard Operating Procedures (SOPs) are defined for most ATC systems (Belobaba

et al., 2009). In Table 10-5 of Appendix III, Histon and Hansman (2008) provide a
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list of examples for identified SOPs. The identified categories of procedures were

routing requirements, crossing restrictions, control delegation, coordination, sequenc-

ing responsibilities, holding, military airspace / training routes, automated handoff

transfers an simultaneous approaches / protected airspace.

FAA Order 7110.65 determines air traffic control procedures and phraseology for

use by those providing air traffic control services in the US. An overview of standard

procedures, the delegation of responsibility and phraseology can also be found in

Nolan (2011). One important example of standard procedure is the standard altitude

for flights: westbound flights are assigned even thousands of feet, whereas eastbound

flights are assigned odd thousands of feet. There exist also published standard rout-

ings, such as Standard Instrument Departures (SIDs) and Standard Terminal Arrival

Routes (STARs). Another SOP is the holding pattern, which is a racetrack-like tra-

jectory. Holding patterns are used as buffers in the systems by delaying aircraft in

the air. They are particularly useful when aircraft cannot be handed off to the next

sector, when there is weather or for any other reason. There are also specialized

procedures that the ATC system adopts in order to cope with local conditions. These

are Letters of Agreement (LOA) and they usually define interface conditions between

areas of responsibilities, such as restrictions on handoffs.

A.1 The Airspace

FAA categorizes the airspace above the United States in four main categories (Nolan,

2011; Neufville & Odoni, 2003):

• In positive controlled airspace, the FAA either absolutely prohibits VFR

operations or separates both VFR and IFR aircraft.

• In controlled airspace, the FAA separates IFR aircraft. Under permitting

weather situations, IFR aircraft are also responsible for separating themselves

from VFR aircraft. And VFR aircraft flying in controlled airspace are also

responsible for separating themselves from other aircraft.
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• ATC separation services are not provided by the FAA in uncontrolled airspace.

All aircraft must provide their own separation, regardless of their type

• The FAA also specifies airspaces wherein certain activities are confined or re-

strictions must be imposed on nonparticipating aircraft. This constitutes on the

special use airspace category, where special operating restrictions and rules

are applied. Special use airspace can be situation inside controlled and uncon-

trolled airspaces, thereby affecting aircraft in these regions. Types of special use

airspace are prohibited, restricted, warning, military, alert and controlled firing

areas. Table 3-4 in Nolan (2011) details each of the special use airspaces, includ-

ing a general description, entry requirements, IFR restrictions, VFR restrictions

and how they are displayed in charts.

The airspace can also be divided in Classes. Within positive controlled airspaces,

there are Classes A and B. Within controlled airspaces, there are Classes C, D and E.

Class G is uncontrolled. Each Class of airspace has different characteristics in terms

of dimensions, geographical location, entry requirements, services provided to IFR

flights, services provided to VFR flights, minimum visibility for VFR and minimum

distance from clouds for VFR (Nolan, 2011).

Of special interest in this work is Class A airspace. Evolved from the jet advisory

areas created in the 1960s to provide advisory services to turbojets at high altitudes,

Class A currently extends from 18,000 feet MSL up to and including FL600 (Nolan,

2011). As a positively controlled airspace, FAR 91.135 requires all aircraft flying in

Class A to operate under IFR at a route and altitude assigned by ATC, in addition to

be transponder equipped. Pilots also must have proper ratings for instrument flight.

With the increase of traffic volume in airports surrounding areas, FAA responded

with the creation of terminal control areas (TCAs), which then evolved to the

current Class B airspace. This airspace extends up to 10,000 feet MSL, usually within

an “upside down wedding cake” shape. The dimensions and format is such to accom-

modate all published instrument procedures (STARs and SIDs) of the respective

airports.
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Initially implemented as airport radar service in 1984, Class B airspace sur-

rounds medium activity airports up to 4,000 feet AGL. Class D airspace is defined

from the ground up to 2,500 feet above the airport elevation. It surrounds airports

that possess an operational control tower. Class E airspace is generally what is not

Class A, B, C or D and is still controlled airspace. Most of the uncontrolled airspace,

Class G, is far from major airports and below 1,200 feet AGL.

The FAA further delegates the separation responsibility to 24 air route traffic

control centers (ARTCC) in the United States. Due to the extensive dimension of

the geographical areas assigned to these centers, separation responsibility is further

partitioned both vertically and horizontally into airspace sectors. The current shape,

dimensions and design of sectors is a consequence of traffic and the arrangement of

reference elements (Chatterji et al., 2008; Nolan, 2011).

Within ARTCCs, sectors are usually separated into low (ground to 18,000 feet

MSL) and high (18,000 feet MSL to FL600) sectors. In busier centers, however,

there is a further stratification where high sectors range from FL180 to FL350 and

super-high sectors range from FL360 to FL600. Notwithstanding, this definition is

not standard among studies involving high altitude concepts and different researchers

such as Chatterji et al. (2008); Kalbaugh and Levin (2009); Simmons (2010); Cho,

Histon, Albuquerque Filho, and Hansman (2010) have adopted different criteria.

Each controller is tasked with aircraft separation with the his or her own are of

responsibility. Typically, the transferring controller directs the pilot to contact

the receiving controller on a different radio frequency prior to crossing the sector

boundary, in a process named transfer of communication (Nolan, 2011). Handoffs

constitute on “the process of transferring control and communication of an aircraft

from one controller to another” (Nolan, 2011).

Each sector typically has 1 to 3 controllers: flight data controller (D-side), radar

controller (R-side), radar associate (ATA, non-radar controller). D-side is responsible

for assisting the other controllers, handling pertinent flight information, detecting

potential conflicts and coordinating with other controllers. R-side provides separation

between all IFR flights, in compliance with the various standard procedures and
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letters of agreement and facilities directives that may apply to the sector. This is

executed by the R-side by communicating and issuing altitude, heading, or airspeed

changes to the pilots. The non-radar controller duty is to update the flight strips and

to help the radar controller to separate aircraft that are not in the radar screen.

There are also the air traffic control towers (ATCTs). An overview of control

tower procedures can be found at Nolan (2011).Within the control tower, there is

ground control, responsible for taxing aircraft and any ground vehicles operating on

airport movement areas (Nolan, 2011). Also in the tower, there is the local control,

responsible for runway control and for aircraft operating in the most immediate sur-

rounding are of the airport (5 miles around the airport and up to 2500 or 3000 ft

AGL) (Belobaba et al., 2009). At busy facilities there might be also approach and

departure control. In even larger and busier airports, there may be a separate facility

for arrivals and departure control, the terminal radar approach control (TRACON).

The terminal airspace under responsibility of TRACON facilities usually extends 50

miles from the airport and up to 18,000 AGL (Belobaba et al., 2009).
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Appendix B

Flight Plan Groups and Techniques

This Appendix provides detailed observations from the flight plan groups in sectors

ZAU25 and ZMA40, from the analysis described in Chapter 5. General information

about the sector, the selection of traffic times and a summary of major findings can

be found in the main text.

B.1 Flight Plan Groups: Chicago 25 (ZAU25)

Group 1: traffic to KORD

Figure B-1 presents planned trajectory, actual trajectories and estimated position of

commands for group 1 on June 17. Group 1 is characterized by arrivals to Chicago

O’Hare International Airport (KORD). Besides the destination to KORD, the flights

had WYNDE3 at the ending of the flight plan. Table B.1 presents pilot requests for

group 1 for each analyzed data point. Ride conditions were worse at higher altitudes

during the evening.

All of the 45 flights in group 1 checked-in at level flight, then received descend

commands down to FL200. 28 (62.2%) flights were directed to a FIX in the KORD

WYNDE3 arrival procedure (Figure B-2). Some flights were first assigned to an

intermediate altitude (such as FL260 or FL280) and only after crossing GRR they

received direct to WYNDE3 and descend to FL200. 26 (57.8%) flights also received
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(a) Planned trajectory for group 1 (b) Legend of commands

(c) Top view (d) Side view

Figure B-1: ZAU25: Results for 28 flights in group 1 on 06/17, 09:00 – 11:00 AM

speed commands, both for speeding up and speeding down. The speed restriction

was usually between 280 and 300 knots. Once the aircraft was properly directed to a

FIX in the WYNDE3 procedure and descending to FL200, the controller handed it

off before RHIVR.

There is also merging traffic from the north. Some of these flights had ADALE

– WYNDE3 or GRR – WYNDE3 in their flight plan. Those flying through ADALE

Table B.1: ZAU25: Pilot requests from aircraft in group 1.

Traffic Call Sign Request Approved
06/17 MORN TCF3526 lower yes
06/17 EVEN BTA5811 lower yes
06/17 EVEN EGF3792 lower yes
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Figure B-2: ZAU25: WYNDE THREE Arrival Procedure. Source:
www.flightaware.com

were directed to WLTER or to RHIVR as they approached the stream going to

KORD. Since most of group 1 had not descended enough by GRR, the merging traffic

through GRR ended up being treated in a case-by-case basis, in terms of directs.

Note that many descending, descending with direct, direct and speed commands

overlap from the check-in location to the check-out location. This is a consequence

of the need for several descending, speed and direct commands both to the straight

and the merging traffic.

Group 2: southeast bound traffic

Figure B.2 shows trajectories and position of commands for group 2, which is de-

fined as aircraft that had flight plans equivalent to: DLL – BAE – ADALE – GRR

– HASTE - ALPHE or simply J34 eastbound (See Figure 5-21). Departures are

from Minneapolis-St Paul International Airport (KMSP) or General Mitchell Inter-

national Airport (KMKE) and destination is usually to Cleveland-Hopkins Interna-

tional Airport (KCLE), but also including flights to Washington DC, Philadelphia

and Pittsburgh. Table B.2 presents pilot requests in this group.

Since this group flies eastbound, aircraft take odd flight levels (FL250 and FL270

in Figure B-3(d)). The controller limited the altitude to FL260 or FL280 to some

aircraft in group 1, thereby guaranteeing separation with group 2. After the crossing
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(a) Planned trajectory for group 2 (b) Legend of commands

(c) Top view (d) Side view

Figure B-3: ZAU25: Results for 5 flights in group 2 on 06/17, 05:00 – 07:00 PM

Table B.2: ZAU25: Pilot requests from aircraft in group 2.

Traffic Call Sign Request Approved
06/17 MORN CHQ1964 reduce speed yes
06/17 EVEN BTA3004 via Gran Rapids yes
06/17 EVEN DAL1664 higher ATC convinces current

ride conditions are better

point, aircraft in group 1 were directed to WYNDE3 arrival procedure and descended

to FL200 and aircraft in group 2 were handed off.

Half of the flights in group 2 did not get amendments from the controller and

there were no specific patterns in terms of speed and direct commands.
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Group 3: westbound traffic from KDTW

Figure B-4 shows trajectories and position of commands for group 3. This group is

composed of departures from Detroit Metropolitan Wayne County Airport (KDTW)

that take DUNKS – J70 – PMM. From PMM they take all sorts of destinations, such

as J94-547 and J70. Table B.3 presents pilot requests in this group.

Table B.3: ZAU25: Pilot requests from aircraft in group 3.

Traffic Call Sign Request Approved
06/17 MORN DAL2149 direct no
06/17 EVEN DAL1217 higher ATC convinces current

ride conditions are better
06/17 EVEN MES2566 to FL280 yes

(a) Planned trajectory for group 3 (b) Legend of commands

(c) Top view (d) Side view

Figure B-4: ZAU25: Results for 12 flights in group 3 on 06/17, 09:00 – 11:00 AM
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The 18 departures from KDTW in group 3 checked-in above FL200, but outside

the lateral limits of the sector. 8 of them received no commands. 5 of them received

climbing commands only. Direct commands, when issued, were to varied downstream

waypoints. Speed commands were only to resume normal speed. As illustrated in

Figure B-4(c), handoffs occurred in different locations, some of them almost at the

sector boundary.

Group 4: traffic to KMKE

Figure B-5 shows trajectories and position of commands for group 4. This group

is characterized by arrivals to General Mitchell International Airport (KMKE) and

Waukesha County Airport (KUES). The flight plan has an ending equivalent to MKG

– V2 – SUDDS. This common section of the flight plan, however, is outside the

(a) Planned trajectory for group 4 (b) Legend of commands

(c) Top view (d) Side view

Figure B-5: ZAU25: Results for 6 flights in group 4 on 06/17, 05:00 – 07:00 PM
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boundaries of ZAU25.

As depicted in Figure B-5(c), these 9 flights constituted a fan pattern with focal

point external to the sector. As illustrated in Figure B-5(d), group 4 is a lower altitude

traffic that entered the sector below FL240 and did not receive climbing commands.

Moreover, all aircraft entered in the sector already direct to MKG.

Due to this lower altitude, this traffic interferes very little with other groups,

thereby not requesting much management from the controller. And since everyone

was already properly directed, there was no need for lateral interference from the con-

troller. Indeed, only two airplanes got speed commands. CHQ1933 got 260 knots for

sequencing and then resume to normal speed; and BTA2350 got 310 knots or greater

for sequencing. Therefore, the controller technique was to monitor the sequencing of

the fan flow and to issue direct or speed commands when necessary.

Group 5: traffic from KDTW to KORD

Figure B-6 shows trajectories and position of commands for group 5. This group is

composed of departures from Detroit Metropolitan Wayne County Airport (KDTW)

to KORD that take DUNKS – J70 – PMM – WYNDE3.

The 6 flights in this group were climbing at the check-in and were already de-

scending before reaching PMM. All of them received directs to WYNDE and descend

command to FL200 (not necessarily in this order). Speed commands varied among

these flights. In order to maintain separation along J70 or to properly merge this

group with group 1, 4 flights received speed commands, either for speeding up or

for slowing down. Once an aircraft was properly directed to a FIX in the WYNDE

THREE procedure and descending to FL200, the controller handed it off before PMM.
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(a) Planned trajectory for group 5 (b) Legend of commands

(c) Top view (d) Side view

Figure B-6: ZAU25: Results for 4 flights in group 5 on 06/17, 05:00 – 07:00 PM

Group 6: northeast bound traffic

Flights in group 6 have the exact opposite planned route of group 2 inside ZAU25:

ALPHE – HASTE – GRR – ADALE – BAE or J34 westbound. There were no

predominant origin or destination in this group. This pattern could only be seen

in the morning traffic. Therefore, for the purposes of this analysis, group 6 was

considered a minor group. Further investigation would have to be done to assert if

this is due to time variations of the traffic, weather or wind.

Figure B-7 presents the 5 flights observed in this group. None of them received

any command. Moreover, flights in this group didnt necessarily follow the planned

route. All of the flights entered and exited at level flight and, except for one, all the

flights were already directed to a downstream destination. As such, the controller

did not issue any command to any of these flights. Also there was no pilot request
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(a) Planned trajectory for group 6 (b) Legend of commands

(c) Top view (d) Side view

Figure B-7: ZAU25: Results for 5 flights in group 6 on 06/17, 09:00 – 11:00 AM

from flights in this group. Therefore, the controller only monitored these aircraft that

crossed the sector.

Background Traffic

Figure B-8 presents 12 flights that could not be categorized in any specific flight plan

pattern. 7 (1 in the morning, 6 in the evening) of which did not receive any com-

mands. 3 flights received climbing commands and 2 received descending commands.

Both evening and morning traffic had a fair mix of short and long haul flights. Some

takeoffs within sector boundaries were also observed. For instance, FFT253 climbed

from Gerald R. Ford International Airport (KGRR), thereby receiving climbing in-

structions and speed command to resume normal speed. None of the commands

issued to the background traffic were pilot initiated.
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(a) 06/17, 09:00 – 11:00 AM (b) 06/17, 05:00 – 07:00 PM

(c) Legend of commands

Figure B-8: ZAU25: Background traffic
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B.2 Flight Plan Groups: Miami 40 (ZMA40)

Group 1: traffic to KMIA

Group 1 is characterized by arrivals to Miami International Airport (KMIA). Flights

had FLIPR2 STAR at the ending of the flight plan (see Figure 5-25). Figure B-9

shows trajectories and position of commands for group 1.

All of 34 flights were assigned final altitude to FL240 before handoff. As presented

in Figure B-9, the descending commands were given shortly after crossing the sectors

boundary. 10 of the flights were directed to FLIPR, a point in the FLIPR2 STAR.

8 flights received speed commands. The speed commands varied depending on the

traffic situation, such as “ do not exceed 290 knots for spacing” or “ when able main-

(a) Planned trajectory for group 1 (b) Legend of commands

(c) Top view (d) Side view

Figure B-9: ZMA40: Results for 10 flights in group 1 on 07/05, 05:30 – 06:30 PM

181



tain 310 knots or greater for spacing”. Pilot requests were either to start descending

to KMIA or, in July 5th, to deviate for weather. Table B.4 illustrates the requests.

Table B.4: ZMA40: Pilot requests from aircraft in group 1.

Traffic Call Sign Request Approved
07/05 EVEN AAL1078 deviation for weather yes
07/05 EVEN AAL1830 to FL400 before start down yes, in 20 sec
07/05 EVEN AAL1880 deviation for weather yes
07/11 EVEN AAL1832 lower yes
07/11 EVEN TAM8094 descent yes
07/23 MORN AAL464 lower yes, in 100 sec

The origins of the traffic in this group were very diversified and not within the

United States. For instance, there wasnt a single Origin repetition in the same traffic

period being analyzed. Not surprisingly, group 1 presented a merging pattern with

focal point at FLIPR.

Group 2: traffic from KMIA, EONNS ONE Departure

Group 2 is characterized by departures from Miami International Airport (KMIA)

that had EONNS1 Standard Instrument Departure (SID) and then EONNS – A509

– URSUS (or equivalent route) in their flight plan (see Figure 5-25). A total of 13

flights were observed, 10 going to South America and 3 going to Central America.

All of them received climbing instructions to flight levels ranging from 290 to 370.

No speed or vector commands were given.

It can be seen in Figure B-10 that these flights checked in around FL180. De-

spite planned to pass through URSUS, the flights were consistently crossing TANIA

instead, without controller interference. The upstream controller had most probably

directed them, in order to allow for a shorter route or to avoid head to head conflict

with flights in group 1 and 6 that enter via URSUS.

Requests in this group were mainly for higher altitudes and not associated with

weather conditions, as presented in Table B.5.

182



Table B.5: ZMA40: Pilot requests from aircraft in group 2.

Traffic Call Sign Request Approved
07/11 EVEN AAL917 to FL350 yes, in 216 sec
07/11 EVEN AAL927 to FL370 no
07/11 EVEN AVA7 to FL410 no

(a) Planned trajectory for group 2 (b) Legend of commands

(c) Top view (d) Side view

Figure B-10: ZMA40: Results for 7 flights in group 2 on 07/11, 05:00 – 06:00 PM

Group 3: traffic from KMIA, SKIPS ONE Departure

Group 3 is also composed of KMIA departures, but they follow the SKIPS1 SID,

and then they take either BR53V or Y586 (see Figure 5-25). Figure B-11 presents

trajectories and estimated position of commands for traffic in group 3 in July 23.

Table B.6 presents the pilot requests, which were mainly meant for expediting the
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(a) Planned trajectory for group 3 (b) Legend of commands

(c) Top view (d) Side view

Figure B-11: ZMA40: Results for 6 flights in group 3 on 07/23, 09:00 – 10:30 AM

Table B.6: ZMA40: Pilot requests from aircraft in group 2.

Traffic Call Sign Request Approved
07/05 EVEN AAL1267 to FL370 no
07/11 EVEN AAL729 heavy, stay at FL350 yes
07/23 MORN AAL645 to FL350 yes

climbing process.

A total of 11 flights were observed, 9 of them going to the Caribbean and 2 of them

to Central America. All flights received climbing commands, some receiving multiple

altitudes in the climbing process. The final climb altitudes were FL330, FL350 and

FL370. 6 flights were directed to scattered destinations.
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In July 23rd, airplanes did not follow Y586 precisely. It is evident that these

flights conflict with group 1, as both cross the southeast boundary of ZMA40 with

ZMA60. The separation is assured via early descend and climb commands being

issued to groups 1 and 3, respectively. Directing arrivals to FLIPR also cleared them

out of the way of the departures. There was, however, one time-critical event involving

AAL1647 (group 3) and ALL748 (group 1), where the controller had to hold the group

1 flight at FL360 while the group 3 departure exited at FL350. Traffic advisories were

issued for potential conflict:

10:21AM, ATC: “American 748 company traffic at your 12-o-clock and 20 miles

opposite direction at FL350 maintain FL360.”

10:21AM, AAL748: “American 748.”

10:21AM, ATC: “American 1647 company traffic 12-o-clock 18 miles at FL360.”

10:21AM, AAL1647: “Yeah we’re looking thanks American 1647.”

10:22AM, AAL748: “Traffic in sight American 748.”

Minor Groups

Six minor groups (Figure 5-25(c)) were identified in the analyzed traffic, due to fluc-

tuations of traffic volume across traffic intervals (specific criteria explained in Section

5.1.2. These minor groups are presented in Table B.7 below, with the respective

traffic count (complete data and complete voice communication). In the interest of

brevity, trajectories and estimated position of commands for the minor groups are

not presented.

Members of group 4 had WAVUN1 or DEKAL2 standard arrival procedures,

depending if they were going to Fort Lauderdale/Hollywood International Airport

(KFLL) or Lauderdale Executive Airport (KFXE), respectively. Group 4 received a

series of descending commands, being handed off with final altitude to FL240.

Flights from KFLL (group 5) had BEECH2 SID in their flight plans, they received

directs to UCA (south of ZMA40, specific location not found on the available data

sources) and climbing commands up to FL330.

Group 6 consisted of traffic from Sangster International Airport (MKJS), in Mon-
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Table B.7: ZMA40: Minor flight plan groups and traffic count for each traffic period.

Group 07/05 EVEN 07/11 EVEN 07/23 MORN Description
4 3 4 - to KFLL / KFXE
5 1 2 - from KFLL
6 2 5 - mainly from MKJS
7 - 1 5 mainly to MKJS and MKJP
8 1 1 2 from MYNN
9 1 1 - to MMUN

tego Bay, Jamaica (Figure 5-25(c)). Flights in this group entered the ZMA40 area

of responsibility either through TANIA (1), URSUS (4) or BORDO (1). Group 6

presented scattered destinations in the United States and Canada and, as such, its

flights received direct commands to varied points, shortly after checking in. Airplanes

entered in level flight, mostly at FL340 and then received small altitude amendments,

being handed off with final altitude either of FL350 or FL370.

Group 7 was predominant in the morning traffic (Table B.7). The traffic in this

group had dispersed origins, converging to A301 usually at ZBV. Aircraft had flight

plans that were equivalent to A301 – URSUS – UCA – UG437. Note that past URSUS

the common trajectory (UCA – UG437) is outside ZMA ARTCC. The destinations

were either to MKJS or to Norman Manley International Airport (MKJP), also in

Jamaica. Group 7 received climb command to an odd flight level: FL350, FL370 or

FL390 and were directed to UCA prior to handoff.

Group 8 was composed of departures from the nearby Lynden Pindling Interna-

tional Airport (MYNN) in Nassau, Bahamas. These flights fanned out following one

of two lateral trajectories: ZQA – BR54V – ISAAC or MAJUR – BR22V – FLL, de-

pending on the destination. Climb commands were observed at the check-in. Directs

to FLL were observed for the subgroup with the latter flight plan.

The analyzed flights of group 9 were composed of departures from Barajas Interna-

tional Airport (LEMD) in Madrid, Spain, to Cancun International Airport (MMUN).

Flights from other origins in Europe were also identified to belong to this group, but
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were not analyzed due to incomplete voice communication. The flights in this group

checked-in above FL380 and did not receive any amendment from the controller.

Background Traffic

A total of 8 flights did not fit in any specific flight plan or Origin and Destination

patterns. Figure B-12 presents the lateral trajectories of the background traffic for

each analyzed traffic period. 6 flights of the background traffic were level flights and 2

were climbing flights. The issued commands appeared to be issued on a case-by-case

basis and no pattern was found.

(a) 07/05, 05:30 – 06:30 PM (b) 07/11, 05:00 – 06:00 PM

(c) 07/23, 09:00 – 10:30 AM (d) Legend of commands

Figure B-12: ZMA40: Background traffic
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