
Modeling and Sensitivity Analysis of Aircraft Geometry for

Multidisciplinary Optimization Problems

by

David Sergio Lazzara

B.S., University of Southern California (2002)
S.M., Massachusetts Institute of Technology (2004)

Submitted to the Department of Aeronautics and Astronautics
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2012

c© David Sergio Lazzara, MMXII. All rights reserved.

The author hereby grants to MIT permission to reproduce and distribute publicly
paper and electronic copies of this thesis document in whole or in part.

Author .
Department of Aeronautics and Astronautics

May 24, 2012

Certified by. .
Karen E. Willcox

Associate Professor of Aeronautics and Astronautics
Thesis Supervisor

Certified by. .
Mark Drela

Terry J. Kohler Professor of Fluid Dynamics
Thesis Committee

Certified by. .
Robert Haimes

Principal Research Engineer
Thesis Committee

Accepted by .
Eytan H. Modiano

Professor of Aeronautics and Astronautics
Chair, Graduate Program Committee

2

Modeling and Sensitivity Analysis of Aircraft Geometry for

Multidisciplinary Optimization Problems

by

David Sergio Lazzara

Submitted to the Department of Aeronautics and Astronautics
on May 24, 2012, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

A new geometry management paradigm for aircraft design utilizes Computer Aided De-
sign (CAD) systems as the source for consistent geometry models across design phases and
analysis tools. Yet various challenges inhibit the widespread application of CAD models
in aircraft conceptual design because current CAD platforms are not designed for auto-
mated shape optimization. In particular, CAD models built with conventional methods
can perform poorly in automated design frameworks and their associated CAD systems
do not provide shape sensitivities. This thesis aims to remedy these concerns by bridging
the computational geometry tools in CAD with aerospace design needs. A methodology
for constructing CAD models is presented using concepts of multifidelity/multidisciplinary
geometry and design motion. A formalized definition of design intent emerges from this
approach that enables CAD models with parameterization flexibility, shape malleability
and regeneration robustness for automated design settings. Analytic shape sensitivities are
also presented to apply CAD models in gradient-based shape optimization. The parame-
terization and sensitivities for sketches, extrude, revolve and sweep features are given for
mechanical design; shape sensitivities for B-spline curves and surfaces are also presented
for airfoil and wing design. Furthermore, analytic methods modeling the sensitivity of in-
tersection edges and nodes in a boundary representation (BRep) are given. Comparisons
between analytic and finite-difference gradients show excellent agreement, however an er-
ror associated with the finite-difference gradient is found to exist if linearizing the support
points of B-spline curves/surfaces and regenerating with a geometry kernel. This important
outcome highlights a limitation of the finite-difference method when used on CAD models
containing these entities. Finally, various example design problems are shown which high-
light the application of the methods presented in the thesis. These include mechanical part
design, inverse/forward design of airfoils and wings, and a multidisciplinary design space
study. Gradient-based optimization is used in each design problem to compare the impact
of analytic and finite-difference geometry gradients on the final designs obtained. With
each of these contributions, the application of CAD-based geometry management is further
enabled for emerging aircraft design frameworks.

Thesis Supervisor: Karen E. Willcox
Title: Associate Professor of Aeronautics and Astronautics

3

4

Acknowledgments

I have been greatly blessed with the mentoring, friendship and expertise of so many in-

dividuals during my PhD experience at MIT that I could never fully express gratitude to

all who contributed. Within the ranks of faculty, staff and students in the Department of

Aeronautics & Astronautics, I have associated with wonderful individuals who impacted

my personal development in ways they may never know.

I am especially grateful for the members of my Thesis Committee, namely Prof. Karen

Willcox, Prof. Mark Drela and Bob Haimes. Each provided valuable feedback, guidance and

a wealth of technical expertise that is truly unique in their respective fields. They provided

a balance of direction and freedom which enabled me to develop a vision for the thesis work,

and also taught me how to scrutinize, question and push the limits of what I thought was

technically possible. Their prior work has greatly blessed my efforts to do research today.

I am also amazed at how much I have personally grown thanks to the special talents they

shared. I am also indebted to Marian Nemec at NASA Ames and William Jones at NASA

Langley for reading my thesis, participating in my Thesis Defense, and providing important

feedback. Both Marian and Mike Aftosmis at NASA Ames enabled so much of my work

thanks to their development of the Cart3D design framework; their timely support was

always given and will always be remembered.

I extend a hearty thank-you to Jean Sofronas, Meghan Pepin and Beth Marois for their

great support in their respective roles in the department. They truly understood that

although sharing a smile does not cost anything, it is always priceless to the recipient. I

am thankful to Prof. Karen Willcox, Prof. Youssef Marzouk and Prof. Alexandra Techet

for allowing me to collaborate with them as a TA for various courses. I learned much from

observing their role as educators and am thankful they allowed me to participate in their

classes.

My friends in ACDL, both past and present, have always inspired me to learn more,

grow faster and aim farther than I ever have. Each is tremendously gifted and I will always

appreciate their allowing me to mingle among them. A big thanks to my cubicle-mate

Andrew March for sharing so many stories, ideas and questions/answers with me. He is a

great example of a loyal friend to many. Thanks to Hemant Chaurasia for sharing an office

with a tremendous view and helping to clean it all–very thoroughly–before we moved in.

5

I extend much gratitude to all the other ACDL greats. To Masayuki Yano, Josh Krakos,

Huafei Sun, Laslo Diosady, JM Modisette, Julie Andren and Eric Liu for being a part of the

amazing Project-X team. To Chelsea He, Leo Ng, Rhea Liem, Cory Kays, Sergio Amaral

and Beckett Zhou for being a part of the optimization group in the lab with me. Thanks

also to Chad Lieberman and Doug Allaire for their friendship, as well as the UQ folks

Nikhil Galagali, Patrick Conrad, Xun Huan, Alex Gorodetsky, Matthew Parno and Alessio

Spantini. To the code developers David Moro, Joel Saa, Eric Dow, and Patrick Blonigan,

who are gifted in so many ways. I also can’t forget to express gratitude for the friendships

developed with visiting European scholars Marcelo Buffoni and Laura Mainini, or post-

docs Tarek Moselhy and others. There are many others who have gone before, like Garrett

Barter, Todd Oliver and Krzysztof Fidkowski, who were successful in whatever they did.

Thank you also to all those I once knew from the MIT Graduate Soccer Club. We won

it all by playing well. It was a pleasure to share the MIT jersey with you and lead such

an international squad of great players. All the best to you in your future endeavors, and

don’t forget to pass the ball.

Likewise many thanks to all who participated with me in the LDSSA. Prof. Whitney

Newey provided excellent counsel and was one of the nicest people I knew at MIT. We

couldn’t have asked for a better advisor. Thanks also to Prof. Thomas Eagar for assisting

when needed, and especially helping me fund a part of my mission in Idaho by providing

employment in his lab or start-up company. That help rendered much fruit.

There are also many others outside of MIT who deserve accolades for their loyal friend-

ship. I hope to always remind them in person of how good they were to me. Thank you to

Noel Bakhtian at Stanford for her Cart3D help and intense optimism. There are countless

friends and mentors from the local congregations of The Church of Jesus Christ of Latter-

day Saints who have been a strong source of strength and support as well. Heartfelt thanks

go to Mindy McDonald, who is one of the closest examples of a ministering angel I’ve come

to know. To my friends Brittany Baker, Amy Williams, Teppo Jouttenous, Jonathan Hop-

kins, Freddy Espinoza, Jeremy Jacox, Holly Greenburg, Abby Winston (Bushman), Mona

Daniels, Jon Sue-Ho, Aaron Mazzeo, and Lauren Killian for taking the time to share the

burdens of MIT and share the deeper things of life.

How grateful I am for amazing roommates who brought humor, fun and wonderful

experiences. Living at the Dustin St. address has been fantastic for many years thanks to the

6

wonderful friendships of all who lived there at some point, including Allen Stoddard, Doug

Rodermund, Don Mehr, Casey Reeve, Nathan Leishman, Bryan Monson, Matt Steenblick

and Kelin Crane. A large amount of gratitude is owed to Dennis Villa for his friendship and

mentoring; renting in his home brought countless unforgettable experiences, both during

and after. Thanks to Denver Porter for introducing me to him and being so quick to share

his gift of humor.

I am grateful for the inspired counsel given to me by mentors such as Clark Christian,

Thomas Chapman, David Bokovoy, Bill Fogt, and Jonathan Austin at the Boston Institute

of Religion. They all helped expand my mind in ways I had never experienced before in

my academic career. More importantly, they transformed me. Much gratitude also goes to

other mentors, such as Darrell Rigby, Roger Porter and both R. Brent Ririe and Beverly

Ririe, who were truly inspiring during my mission years away from MIT. Lastly, I had the

honor of working with exceptional youth who bring joy every time I see them. They are:

Carlos, Andy, Anthony, Darbet, Exavier, Gismael, Kevin, Christian, Bryam, Gustavo, Jack,

Kerlinks, Miles, Rolldy, Yoceiris, Josh, Roshlyn, Ray, Yancy, Mark, Chris, and others. May

they continue to grow into strong and capable men that will change the world for good. A

car-wash will never be the same without them. Thanks to Rich Alton and Phil Liddiard, and

others, for helping me guide these youth through so many fun and memorable adventures.

To anyone else I forgot to mention from the UW, LP1/2, Cambridge 3rd Spanish branch

and CRW wards I ever knew: thank you for touching my life and leaving it better than you

found it. It was a pleasure to serve with you.

Language cannot express the gratitude I feel for the support my parents, Susana and

Sergio, and my brother Gary have given me throughout these years. Sharing Boston with

my brother was a blessed experience—I will miss our dinners together. My family provided

a perspective no one else could. I am especially thankful that they believed in me and

encouraged me to keep my sights raised high when I thought to do otherwise. I believe

their love, whether spoken or not, somehow helped me in ways I have not fully quantified. I

dedicate this thesis to my parents, who structured their lives for my sake over many many

years. They did so with immense sacrifice and little expectation of something in return.

Whatever I have accomplished thus far is directly connected to something they taught me,

to which I am forever grateful. I don’t think I can ever fully repay the blessings they have

shared with me.

7

Finally, and on an even more personal note, my acknowledgements would be incomplete

if I did not give credit to my Father in Heaven for sending the inspiration behind every

“light-bulb” moment I had during the course of this research. Whenever I asked Him

for help, countless problems and bugs were resolved, challenges were eventually overcome,

peace was granted, and tremendous strength was sent during trying times. The new ideas

in this thesis were literally nuggets of light that splashed into my mind after I pondered the

technical challenges I faced and researched solutions to no avail. Such has been the blessed

way Heavenly Father has let me learn any universal truth. During the course of this project

those moments brought real enlightenment that made this work exciting to pursue. I know

my own faculties were often insufficient, yet He miraculously blessed me with the capacity

to accomplish the work in this thesis. I am indebted to Him for all that He inspired herein.

It is my hope that each reader experiences a “light-bulb” moment of inspiration at some

point when reading this work, for it is when a revelation of truth is distilled to the mind

and understood in the heart that learning occurs.

8

Contents

1 Introduction:

Geometry Management within Conventional Aircraft Design 41

1.1 Geometry Management in Design . 41

1.2 Geometry Generation Methods . 45

1.3 Geometry Sensitivities for Shape Design Optimization 50

1.3.1 Shape Sensitivity Analysis . 51

1.3.2 Geometry Sensitivity Methods . 52

1.4 Thesis Objectives and Contributions . 54

1.5 Thesis Outline . 56

2 Generating CAD Model Geometry 59

2.1 Reasons for Focusing on Model Geometry in

Design Optimization . 59

2.2 The Anatomy of CAD Model Geometry . 61

2.2.1 Modeling Geometry with CAD . 61

2.2.2 The Model Boundary Representation 62

2.2.3 Model Topology Connectivity . 66

2.3 Model Parameterization Taxonomy . 69

2.3.1 Multifidelity Geometry Perspective 69

2.3.2 Embedding Design Space Flexibility 71

2.3.3 Parameterization Examples . 72

2.4 Defining a Model Design Intent . 77

2.5 Generating Multifidelity and Multidisciplinary

Model Geometry . 83

9

2.5.1 Model Construction Methodology . 85

2.5.2 Single Discipline Examples . 88

2.5.3 Multiple Discipline Examples . 94

2.6 Summary . 105

3 Geometry Sensitivities

for Sketches & BRep Faces 107

3.1 Geometry Gradients For Canonical Parametric Surfaces 108

3.2 Geometry Gradients of Sketches for Sketch-Driven Surfaces 113

3.2.1 Solving a Parameterized Sketch . 113

3.2.2 Design Velocity at Sketch Entity End-Points 119

3.2.3 Design Velocity Along Sketch Entities 127

3.2.4 Validation Examples . 131

3.3 Geometry Gradients of Extrude-Feature Surfaces 142

3.4 Geometry Gradients of Revolve-Feature Surfaces 146

3.5 Geometry Gradients of Sweep-Feature Surfaces 151

3.6 Additional Commentary on Feature Geometry Gradients 160

4 Geometry Sensitivities

for BRep Edges & Nodes 163

4.1 Components of Design Velocity . 163

4.2 Closed-Form Intersection Problem . 165

4.3 Geometry Gradients on BRep Edges . 171

4.3.1 Derivation Using the Minimum Velocity Method 171

4.3.2 Additional System Augmentation Options 180

4.3.3 Validation and Comparison of Methods 183

4.4 Geometry Gradients at BRep Nodes . 188

4.4.1 Extending the Trim Curve Sensitivity Derivation 188

4.4.2 Considerations for Redundant Geometry 192

4.4.3 Validation for BRep Nodes . 195

4.5 BRep Intersection Sensitivity Summary . 199

10

5 Geometry Sensitivities

for B-Spline Curves & Surfaces 201

5.1 B-Spline Curve Construction . 201

5.2 B-Spline Curve Geometry Gradient . 204

5.3 B-Spline Surface Construction . 208

5.4 B-Spline Surface Geometry Gradient . 210

5.5 B-spline Curves & Surfaces in CAD Models 211

5.6 Examples of B-Spline Curve Geometry Gradients 216

5.7 Examples of B-Spline Surface Geometry Gradients 223

5.8 Scenarios Creating Inconsistent Finite-Difference Results 228

5.8.1 Analysis for Linearized B-Spline Curves 235

5.8.2 Analysis for Linearized B-Spline Surfaces 242

5.8.3 Potential for Error Correction . 247

6 Geometry Management Demonstrations 251

6.1 Implementing CAD Model Geometry

in Design Frameworks . 251

6.1.1 Overview of CAD Systems . 252

6.1.2 Inventory of Geometry Data . 254

6.1.3 Parameter Associativity to Model Topology 255

6.1.4 Extracting Consistent Geometry Sub-models 256

6.1.5 Impact of Problem Scaling on Geometry Management 256

6.2 Design Framework Demonstrations . 260

6.2.1 3D Single-Discipline Mechanical Design Problem 260

6.2.2 2D Single-Discipline Inverse-Design Problems 264

6.2.3 2D Single-Discipline Design Problem 274

6.2.4 3D Single-Discipline Inverse-Design Problem 279

6.2.5 3D Single-Discipline Design Problem 285

6.2.6 3D Multidisciplinary Design Space Exploration 300

7 Conclusions and Future Work 309

11

A CAD Model Generation 313

A.1 Model Feature Considerations . 313

A.1.1 Perspectives on Generating Loft Features 313

A.1.2 Mirroring Features . 316

A.1.3 Loft Self-Intersection . 316

A.2 Loft Definitions for Lifting-Surfaces . 316

A.3 Loft Definitions for Fuselage-Type Models 326

A.4 Assembly Model Considerations . 334

A.5 Multidisciplinary Geometry Considerations 339

A.6 Model Initialization and Automatic Generation 345

B PASS Parameterization Definitions 349

C Geometry Sensitivity Data

for BRep Faces 351

D B-Spline Surface

Perturbation Results 383

E “Snap” Grid

Design Velocity Results 395

12

List of Figures

1-1 Evolution of aircraft concept representations throughout a typical “in-series”

design paradigm. 43

1-2 With a new design paradigm, a single aircraft representation provides geom-

etry information for multiple disciplines and various analysis fidelity levels. 45

2-1 The outer mold line of a model is punctured by an internal structural com-

ponent at a given design point due to poor model construction. 60

2-2 A conceptual aircraft model BRep depicts 49 faces (grey) bounded by 123

edges (blue) and 82 nodes (red circles). 63

2-3 The trim curve (red) obtained at the wing-body intersection of a wing and

fuselage is an edge in the model BRep. 64

2-4 The trim curve (red) from the model in Figure 2-3 is recalculated as a new

trim curve (blue) when a perturbation in wing incidence angle (a driving

geometry parameter) is done and the model is regenerated. Surfaces are

tessellated before and after the perturbation to show which surfaces are driven

by the parameter. 65

2-5 The intersection of multiple surfaces at a point becomes the node BRep entity. 65

2-6 Illustration of the node topology representation in a BRep. 66

2-7 Illustration of node perturbations where (a) no topology changes are made

and where (b) topology changes are made with added trim curves and nodes. 67

2-8 An illustration of various parameterization levels that define models. Low-

fidelity parameterizations can typically refer to configuration-level variables,

whereas higher-fidelity parameterizations can refer to primitive-level variables. 70

13

2-9 An example of a low-fidelity configuration change is observed between (a)

and (b) by modifying a configuration variable relating the wing and stabi-

lizer location along the fuselage. Furthermore, higher-fidelity control of sur-

face topology is seen between (c), (d) and (e) by varying primitive variables

associated with the airfoil shape. 73

2-10 These SolidWorks 2010 user-guide images are two examples of employing

design intent. In (a) the relative orientation and placement of geometry

features (e.g., the drill holes) remain symmetric to the centerline and maintain

a similar distribution pattern when the hinge length is changed. Figure (b)

illustrates how various model dimensions (e.g., center-hole diameter, block

width and height, hole height, etc.) can be changed and the parts maintain

geometric similarity. 78

2-11 The concepts of design motion, design space, design point, design trajectory

and design velocity are illustrated as a simple graph representation for a

model M(x), driven by a single design space x, to give greater intuition

when describing a new design intent. 80

2-12 (a) Sketch entities are piecewise continuous and driven by parameters, such

as the cone angle θ and height h in this case. The CAD geometry ker-

nel processes the sketch entities and generates associated surfaces for the

cone feature. (b) Adding a cut-operator with a planar face results in a new

model instance and an additional geometry parameter, d. (c)-(d) The final

model topology for this cone-plane feature shows edges {E1, . . . , E7} (lines)

and nodes {N1, . . . ,N5} (circles) bounding faces {F1, . . . ,F4} used to create

the feature. 82

2-13 The design trajectory of the cut-cone model in Figure 2-12 is shown for a

parameter range θ = {25◦, 85◦} at 1◦ increments. Topology is unchanging on

this design trajectory. BRep edges are shown for different θ values, whereas

only the BRep nodes (boxes) are shown at each design point. 83

14

2-14 A node bifurcation is shown as the model passes through θ∗ ≈ 22◦. The

initial node Ni bifurcates into Ni+1,1, Ni+1,2 and Ni+1,3; new edges are also

created. The lower image highlights the “small” cut-plane face that exists

just before the bifurcation occurs, which implies that the tolerance sphere

for the initial node is substantial. 84

2-15 The automated model generation process is illustrated here: (a) depiction of

global datum planes and 3D datum splines; (b) addition of primitive sketches

as children of the datum splines; (c) final loft across the primitive sketches

of each configuration component. 89

2-16 A parameterization consisting of piecewise-continuous line segments and el-

liptical arcs for the fuselage nose profile was defined outside of the CAD

system. Classical primitives were used (elliptical arcs) to define the cross-

sections. This parameterization determined the quadrant and center point

distributions, as seen in (a) side view, and (b) top view. The distribution of

elliptic primitives was driven in the CAD system by this parameterization,

as shown in (c) side view and (d) top view. 90

2-17 A parameterization consisting of piecewise-continuous line segments was de-

fined for the wing leading/trailing edges and quarter-chord. Reference mark-

ers for the airfoil are shown in (a) top view, (c) front view, and (e) isometric

view. The distribution of spline primitives was driven in the CAD system

by this parameterization, as seen in (b) top view, (d) front view, and (f)

isometric view. 91

2-18 The automated model generation process is illustrated here for a flying-wing

configuration: (a) depiction of 3D datum splines; (b) addition of primitive

sketches as children of the datum splines; (c) final loft across the primitive

sketches. 93

2-19 The airfoil stack for the generic flying-wing model is shown in this side-view,

along with the span-wise twist distribution ranging from +1◦ at the root to

−3◦ at the tip. 94

2-20 The airfoil stack for the generic flying-wing model is modified along the in-

board 1/3 span by scaling the airfoils to create a greater center-body volume. 95

15

2-21 The automated model generation process is illustrated here for a lifting-body

configuration: (a) depiction of 3D datum splines; (b) addition of primitive

sketches as children of the datum splines; (c) final loft across the primitive

sketches for each component. 96

2-22 The lifting-body fuselage is based on a NACA 3317 side-view profile and

patched elliptical-linear sections in planform view. Elliptical primitives make

up the cross-sections. 97

2-23 Structural components added to the generic tube-wing example followed the

same geometry generation procedure as the outer mold line. 99

2-24 Spar cross-sections (red) are constructed to reference the wing airfoil defini-

tions (dash-dot profile), thus remaining within the airfoil spline envelope. . 99

2-25 Close-up view of fuselage ribs and stringers in the tapered nose section of

Figure 2-23. 100

2-26 Close-up view of wing ribs and spars near the span break section of Figure

2-23. 100

2-27 Close-up view of ribs and stringers in the tapered aft section of the fuselage

model in Figure 2-23. The rib cross-sections are extruded in the direction

contrary to the fuselage taper direction. 101

2-28 A new design point is obtained after perturbing the fuselage datum spline,

where the outer mold line loft design motion is followed by the internal struc-

ture. 102

2-29 A new design point is obtained after perturbing the wing datum spline. In-

ternal structural components exhibit the same design motion as the outer

mold line. 102

2-30 Another new design point is obtained by modifying the outer mold line loft

definition via perturbation of an airfoil spline. The local internal structure

follows the design motion of the wing loft as expected. 103

2-31 Internal spars and ribs are added to a flying-wing model. Each is driven by

the parent wing loft, which undergoes changes in airfoil definition, twist, and

datum spline deflection. 104

16

2-32 Surface intersections appear symmetrically across the body center-line when

including internal spars and ribs in a flying-wing model. Although each is

driven by the parent wing loft, which undergoes changes in airfoil definition,

twist, and datum spline deflection, modifications of the spar offset distance

is needed at the highlighted locations to remove surface intersections there. 104

2-33 The lifting-body model is given internal structural components which follow

parameterization changes made to the tube-and-wing model. 105

3-1 (a) Sketch entities are piecewise continuous and driven by parameters, such

as the cone angle θ and height h in this case. The CAD geometry ker-

nel processes the sketch entities and generates associated surfaces for the

cone feature. (b) Adding a cut-operator with a planar face results in a new

model instance and an additional geometry parameter, d. (c)-(d) The final

model topology for this cone-plane feature shows edges {E1, . . . , E7} (lines)

and nodes {N1, . . . ,N5} (circles) bounding faces {F1, . . . ,F4} used to create

the feature. 109

3-2 An example model containing two extrusion features, Ω1 and Ω2, consisting

of simple and complex sketch-driving geometry. 113

3-3 (a) An under-defined sketch of two line segments, constrained vertically, that

are coincident to two line segments, constrained horizontally, with corre-

sponding dimensions. (b) A fully-defined version of the sketch in (a) due to

the addition of two additional dimensions (d13 and d14). 114

3-4 The fully-defined driving sketch for feature Ω2 in Figure 3-2. 116

3-5 The fully-defined driving sketch containing elliptical and arc sketch entities

added to the sketch in Figure 3-4. 117

3-6 The design velocity of sketch end-points from Figure 3-5 are shown with

respect to each driving parameter in the sketch. 122

3-7 The design velocity of sketch end-points from Figure 3-5 are shown with

respect to each driving parameter in the sketch. 123

3-8 The design velocity of sketch end-points from Figure 3-5 are shown with

respect to each driving parameter in the sketch. 124

17

3-9 The design velocity of sketch end-points from Figure 3-5 are shown with

respect to each driving parameter in the sketch. 125

3-10 The design velocity of sketch end-points from Figure 3-5 are shown with

respect to each driving parameter in the sketch. 126

3-11 (a) Design velocity vectors of active sketch primitives for P = d21 (step-size

h = 1.0 × 10−4). (b) Offset in horizontal and vertical gradient components

between finite-differencing and the sketch differentiation method. 132

3-12 (a) Design velocity vectors of active sketch primitives for P = d22 (step-size

h = 1.0 × 10−4). (b) Offset in horizontal and vertical gradient components

between finite-differencing and the sketch differentiation method. 133

3-13 (a) Design velocity vectors of active sketch primitives for P = d23 (step-size

h = 1.0 × 10−4). (b) Offset in horizontal and vertical gradient components

between finite-differencing and the sketch differentiation method. 134

3-14 (a) Design velocity vectors of active sketch primitives for P = d25 (step-size

h = 1.0 × 10−4). (b) Offset in horizontal and vertical gradient components

between finite-differencing and the sketch differentiation method. 135

3-15 (a) Design velocity vectors of active sketch primitives for P = d26 (step-size

h = 1.0 × 10−4). (b) Offset in horizontal and vertical gradient components

between finite-differencing and the sketch differentiation method. 136

3-16 (a) Design velocity vectors of active sketch primitives for P = d27 (step-size

h = 1.0 × 10−4). (b) Offset in horizontal and vertical gradient components

between finite-differencing and the sketch differentiation method. 137

3-17 (a) Design velocity vectors of active sketch primitives for P = d28 (step-size

h = 1.0 × 10−4). (b) Offset in horizontal and vertical gradient components

between finite-differencing and the sketch differentiation method. 138

3-18 (a) Design velocity vectors of active sketch primitives for P = d29 (step-size

h = 1.0 × 10−4). (b) Offset in horizontal and vertical gradient components

between finite-differencing and the sketch differentiation method. 139

3-19 (a) Design velocity vectors of active sketch primitives for P = d30 (step-

size h = 1.0 × 10−4(π/180)). (b) Offset in horizontal and vertical gradient

components between finite-differencing and the sketch differentiation method. 140

18

3-20 (a) Design velocity vectors of active sketch primitives for P = d31 (step-size

h = 1.0 × 10−4). (b) Offset in horizontal and vertical gradient components

between finite-differencing and the sketch differentiation method. 141

3-21 Face labels for the extruded sketch in Figure 3-5 are shown in (a) with no

extrude-direction dependence of the design velocity field in (b). 142

3-22 The maximum difference between the analytic and finite-difference geometry

sensitivity (across all feature faces) is shown against the parameters in Figure

3-5. 144

3-23 The addition of geometry “noise” increases the maximum difference between

analytic and finite-difference design velocity. 145

3-24 Face labels for the revolved sketch in Figure 3-5. 146

3-25 The design velocity with respect to d21 is decoupled to the revolve-direction

in (a), whereas with respect to d22 the design velocity field is coupled from

the revolve-direction in (b). 147

3-26 The maximum difference between the analytic and finite-difference geometry

sensitivity (across all feature faces) is shown against the parameters in Figure

3-5. 149

3-27 The addition of geometry “noise” increases the maximum difference between

analytic and finite-difference design velocity. 150

3-28 Face labels resulting from a sweep feature of sketch 3-5. 152

3-29 The design velocity field in (a) preserves the sketch normal-direction, whereas

the field shown in (b) has a normal-following effect on the v-isoparameter line

sketch gradients. Neither exhibit a dependence on the sweep path compared

to the case in (c). 153

3-30 The maximum difference between the analytic and finite-difference geometry

sensitivity (across all feature faces) is shown against the parameters in Figure

3-5. 154

3-31 Comparison of the analytic (blue) and finite-difference (red) design velocity

vectors shows a design motion discrepancy between the pure circular-arc

primitive and the rational B-spline representation on isoparameter lines. . . 155

19

3-32 The design velocity vectors in (a) correctly follow the expected normal-

preserving orientation and show no sweep-trajectory dependence. In (b),

however, the “snap” grid yields non-normal-preserving design velocity results

with a spurious sweep-trajectory dependence. These design velocities reflect

finite-differencing with the parameter P = d21 and step-size h = 1.0× 10−4. 157

3-33 The design velocity vectors in (a) correctly display a continuous derivative

along the u-isoparameter line (as seen in Figure 3-11). In (b), however, the

“snap” grid yields incorrectly discontinuous design velocities along the u-

isoparameter line. These design velocities reflect finite-differencing with the

parameter P = d21 and step-size h = 1.0× 10−4. 158

3-34 The addition of geometry “noise” increases the maximum difference between

analytic and finite-difference design velocity. 159

4-1 The intersection of two cylinders and a plane at a node. 166

4-2 The norm of design motion offsets are plotted across t = [0, 1] for seven

methods with respect to an analytic solution. 184

4-3 The design velocities of seven Methods (labeled 1 through 7) were used to

determine design motion by a linear perturbation of the cone-plane param-

eter δd = 0.0004. The analytic result is labeled 0; the initial lower curve

(blue) overlaps with a tangent vector (green) and the upper curve (red) is

the perturbed curve. 185

4-4 The value of ν̃, or relative design velocity on the curve, as determined by

methods 3, 6 and 7. 186

4-5 The error between design velocity results when geometry tolerances do not

match (geometry “noise”) are shown for both Method 7 and Method 5. . . 187

4-6 Node validation cases tested on (a) a two-surface, four-face node intersection,

(b) a one-surface, four-face intersection, and (c) a five-surface intersection. . 194

4-7 Application of the node algorithm (equivalent to Method #1 for edges) on

(a) a trim curve where ∂r/∂u and/or ∂r/∂v are aligned for both surfaces,

and (b) an edge where both surfaces have ∂r/∂P = 0. 195

20

4-8 Error between “noise-less” and “noisy” design velocity results stemming from

variations in geometry tolerance among BRep entities. This case corresponds

to the three surface, closed-form intersection formulation in Figure 4-1. . . . 196

4-9 Error between “noise-less” and “noisy” design velocity results stemming from

variations in geometry tolerance among BRep entities. This case corresponds

to the scenario in Figure 4-6(a). 197

4-10 Error between “noise-less” and “noisy” design velocity results stemming from

variations in geometry tolerance among BRep entities. This case corresponds

to the scenario in Figure 4-7(a). 197

4-11 Error between “noise-less” and “noisy” design velocity results stemming from

variations in geometry tolerance among BRep entities. This case corresponds

to the scenario in Figure 4-6(c). 198

4-12 Error between “noise-less” and “noisy” design velocity results stemming from

variations in geometry tolerance among BRep entities. This case corresponds

to the scenario in Figure 4-6(b). 198

4-13 Error between “noise-less” and “noisy” design velocity results stemming from

variations in geometry tolerance among BRep entities. This case corresponds

to the scenario in Figure 4-7(b). 199

5-1 (a) Overall design motion of surface control points for a simple loft after

perturbing a single support point (y-coordinate). (b) Zoomed view of the

control point design trajectories. 213

5-2 (a) The variation in number of U knots during design motion and (b) the

design motion for the U knots. 214

5-3 Example B-spline curves interpolated through support points (blue circles)

with a control polygon (red circles) determined by the method in Section 5.1. 217

5-4 (a) Design velocity field with respect to Qk,y for an example cubic B-spline

curve, with (b) a detailed-view around the perturbed parameter location.

The green vector denotes the perturbation direction (unit magnitude). (c)

Offset between finite-difference (knots fixed) and the analytic methodology

gradient results (other gradient components are zero). 218

21

5-5 (a) Design velocity field with respect to Qk,x for an example cubic B-spline

curve, with (b) a detailed-view around the perturbed parameter location.

The green vector denotes the perturbation direction (unit magnitude). (c)

Offset between finite-difference (knots fixed) and the analytic methodology

gradient results (other gradient components are zero). 219

5-6 (a) Design velocity field with respect to Qk,y for an example cubic B-spline

curve, with (b) a detailed-view around the perturbed parameter location.

The green vector denotes the perturbation direction (unit magnitude). (c)

Offset between finite-difference (knots fixed) and the analytic methodology

gradient results (other gradient components are zero). 220

5-7 (a) Design velocity field with respect to Qk,x for an example cubic B-spline

curve. The green vector denotes the perturbation direction (unit magnitude).

(b) Offset between finite-difference (knots fixed) and the analytic methodol-

ogy gradient results (other gradient components are zero). 221

5-8 (a) Design velocity field with respect to Qk,y for an example cubic B-spline

curve, with (b) a detailed-view around the perturbed parameter location.

The green vector denotes the perturbation direction (unit magnitude). (c)

Offset between finite-difference (knots fixed) and the analytic methodology

gradient results (other gradient components are zero). 222

5-9 (a) A SolidWorks model of a generic, solid loft feature with five cross-section

B-spline curves, (b) contour regions denote the gradient magnitude in the

z-coordinate direction with respect to a variation in z at a single support

point, and (c) an overlay of design velocity vectors for the same case. 225

5-10 (a) A SolidWorks model of a generic, solid loft feature constructed with

additional linearly-scaled cross-section B-spline curves, (b) contour regions

denote the gradient magnitude in the z-coordinate direction with respect to a

variation in z at a single support point, and (c) an overlay of design velocity

vectors for the same case. 226

5-11 (a) A SolidWorks model of a generic, solid loft feature with various cross-

section B-spline curves, (b) contour regions denote the gradient magnitude

in the y-coordinate direction with respect to a variation in y at a single

support point, and (c) an overlay of design velocity vectors for the same case. 227

22

5-12 (a) The magnitude of design velocity with respect to a support point y-

component with (b) associated design velocity vectors. 228

5-13 (a)–(c) Comparison of geometry gradient offset from finite-difference (knot-

preserving) and Section 5.5 approaches. The u- and w-component offset are

exactly zero in this case. 230

5-14 (a)–(c) Comparison of geometry gradient offset from finite-difference (non-

preserving knots) and Section 5.5 approaches. 231

5-15 (a) A profile view of the design velocity vectors from the knot non-preserving

central-difference and analytic method results of Figure 5-14. (b) A detailed

view of the design velocity discrepancy. Analytic gradient results are in blue

and finite-difference results (knot non-preserving) are in red. 232

5-16 (a)–(c) Comparison of geometry gradient offset between finite-difference re-

sults and the Section 5.5 approach on a CAD model geometry. 236

5-17 The impact of control point perturbations on knot vector reparameterization

was done using this SolidWorks model geometry of a Blended-Wing-Body

aircraft. 248

6-1 A design framework flow-chart where the geometry management paradigm

has a secondary role. 253

6-2 A design framework flow-chart where the geometry management paradigm

has a primary role. 254

6-3 Timing tests for automated model construction of a loft feature with increas-

ing number of cross-section definitions. 257

6-4 A computational expense study for model regeneration as the number of

model sketches increases (a) with dimensions and (b) without dimensions. . 259

6-5 Timing tests for the geometry gradients of a loft feature with increasing

number of cross-section definitions. Only one design variable per sketch is

considered for differentiation. 260

6-6 (a) A pulley generated as a revolve feature using the sketch primitives pa-

rameterized in (b). 262

23

6-7 (a) Objective function history as influenced by analytic and finite-difference

geometry gradients for the pulley design problem. (b) A comparison of the

initial and final cross-section geometry for the pulley after optimization. . . 263

6-8 Comparison between a developed linear vortex panel code and XFOIL results

with (a) 20 panels (top and bottom) on a NACA 0012 airfoil input geometry

and (b) Cp results. 265

6-9 Comparison between a developed linear vortex panel code and XFOIL results

with (a) 100 panels (top and bottom) on a NACA 0012 airfoil input geometry

and (b) Cp results. 266

6-10 Simple 3D wing lofts were constructed in the SolidWorks CAD system to

represent the (a) NACA 0012 and (b) RAE 2822 airfoil shapes. 267

6-11 (a)–(b) Inverse-design problem for the NACA 0012 airfoil depicting initial

and final design points. 270

6-12 (a) Comparison between the objective function history results using the ana-

lytic and finite-difference design velocity methods for the inverse-design prob-

lem in Figure 6-11. (b) Comparison between the resulting design trajectory

obtained with both methods. 271

6-13 (a)–(b) Inverse-design problem for the RAE 2822 airfoil depicting initial and

final design points. 272

6-14 (a) Comparison between the objective function history results using the ana-

lytic and finite-difference design velocity methods for the inverse-design prob-

lem in Figure 6-13. (b) Comparison between the resulting design trajectory

obtained with both methods. 273

6-15 In using the MSES analysis tool, (a) the initial design point for a NACA 0012

sub-model is driven to a (b) final design point. The airfoil y-coordinates are

scaled to show greater curvature detail. 275

6-16 (a) Comparison between the objective function history results using the ana-

lytic and finite-difference design velocity methods for the inverse-design prob-

lem in Figure 6-15. (b) Comparison between the resulting design trajectory

obtained with both methods. 276

24

6-17 Comparison of objective function and design variable history between an

analytic and finite-difference design velocity method for a drag minimization

problem. 278

6-18 Comparison of Cp distribution between the initial and final design point

results using an analytic and finite-difference design velocity method in a

drag minimization problem. 279

6-19 Initial and final design points for the 3D NACA 0012 wing via inverse design

with the Cart3D design framework. 281

6-20 (a) The objective function history for the 3D NACA 0012 inverse design

problem comparing the analytic and finite-difference gradient methods; (b)

the design trajectory comparison between the two methods. 282

6-21 (a) Initial 3D NACA 0012 wing with spline point perturbation in a 2D anal-

ysis, followed by (b) the final design point obtained via inverse design with

the Cart3D design framework. 283

6-22 (a) The objective function history for the 3D NACA 0012 inverse design

problem comparing the analytic and finite-difference gradient methods; (b)

the design trajectory comparison between the two methods. 284

6-23 Model geometry created using SolidWorks to represent a (a) RAE 2822 airfoil

and (b) Blended-Wing-Body aircraft outer mold line. 286

6-24 Isometric contours of Cp showing the initial and final distributions obtained

with the unconstrained-lift BWB design problem. 291

6-25 Select cross-section Cp distributions are shown from across the BWB semi-

span to compare the impact of initial and final geometry obtained in the

unconstrained-lift design problem. Blue denotes results stemming from an-

alytic geometry gradients and Red denotes results using finite-differences.

Non-smoothness in the inboard Cp distributions reflect a locally more coarse

mesh spacing. 292

6-26 Isometric contours of Cp showing the initial and final distributions obtained

with the constrained-lift BWB design problem. 293

25

6-27 Select cross-section Cp distributions are shown from across the BWB semi-

span to compare the impact of initial and final geometry obtained in the

constrained-lift design problem. Blue denotes results stemming from analytic

geometry gradients and Red denotes results using finite-differences. Non-

smoothness in the inboard Cp distributions reflect a locally more coarse mesh

spacing. 294

6-28 Comparison of objective function history results stemming from analytic and

finite-difference design velocity methods. 295

6-29 The design trajectory of design variable #1 on cross-sections across the BWB

semi-span is shown to compare the impact of analytic or finite-difference de-

sign velocity in the unconstrained-lift problem. Blue denotes results stem-

ming from the analytic method and Red denotes results using finite-differences.296

6-30 The design trajectory of design variable #2 on cross-sections across the BWB

semi-span is shown to compare the impact of analytic or finite-difference de-

sign velocity in the unconstrained-lift problem. Blue denotes results stem-

ming from the analytic method and Red denotes results using finite-differences.297

6-31 The design trajectory of design variable #1 on cross-sections across the BWB

semi-span is shown to compare the impact of analytic or finite-difference de-

sign velocity in the constrained-lift problem. Blue denotes results stemming

from the analytic method and Red denotes results using finite-differences. . 298

6-32 The design trajectory of design variable #2 on cross-sections across the BWB

semi-span is shown to compare the impact of analytic or finite-difference de-

sign velocity in the constrained-lift problem. Blue denotes results stemming

from the analytic method and Red denotes results using finite-differences. . 299

6-33 The 3D source geometry is tessellated to create (a) a complete quad mesh of

the 3D structure surfaces and (b) a sub-model geometry consisting of quad

elements from certain faces on the 3D surface. The mesh representing the

wing skin is not shown. 301

6-34 The assembly connectivity embedded in the full 3D model, seen in (a), is

by necessity conserved in (b) the sub-model assembly seen by the structural

analysis. 303

26

6-35 An unloaded view of a structural sub-model (dark shade) is overlaid with a

deflected sub-model (light shade) under loading to depict proper assembly

connectivity. Improper connectivity would appear with displacements that

violate first-principles. 304

6-36 Aero-structural coupling is captured by mapping a wing pressure distribution

from an aerodynamic sub-model to a structural sub-model. The aerodynam-

ics sub-model (dark shade) shows a wing pressure distribution (Mach 0.8, 0.4

lift-coefficient); the deflected sub-model (light shade) is the static structural

response to the pressure loading. 304

6-37 Scatter plots of the design space obtained by Latin Hypercube sampling. The

labeled points correspond to the structural layouts in Figure 6-38. 305

6-38 (a) A baseline structural layout is compared to various design points (b)–(h)

obtained by automated Latin Hypercube sampling. 307

A-1 A comparison of two methods used to create cross-section sketch planes along

a loft span. Figure (a) shows sketch planes constrained parallel to a global

Cartesian coordinate plane. Figure (b) shows sketch planes constrained nor-

mal to a 3D spline reference datum at its support points; in this case the

cross-sections exhibit out-of-plane design motion. 321

A-2 A comparison between continuous and piecewise continuous (discontinuous

derivatives) datum splines. Figures (a)-(b) show sketch planes normal to a

continuous spline at its spline points. Figures (c)-(d) show points of dis-

continuous derivatives on the piecewise spline, where two sketch planes pass

through each spline point normal to a tangent vector on each side of the

spline point. 322

A-3 With the exception of (a), these loft construction approaches illustrate limited

usefulness for automated surface tessellation downstream of model construc-

tion. In (a) there are no splinter trim curves or faces; however, (b) contains

splinter trim curves and (c) results in splinter faces. Clearly (d) highlights

poor loft construction because a single closed volume is not obtained as desired.323

27

A-4 In (a) the loft can represent asymmetric geometry modes; however, (b) a

loft generated using a mirror feature cannot model asymmetric geometry (a

skeleton of the asymmetric loft is also portrayed for comparison). The loft

construction must embed support for each geometry mode needed in a model. 324

A-5 A loft is hollowed-out to demonstrate a region of self-intersection (grey) that

results from a model design point that spreads two cross-sections too far

apart. The large discrepancy between cross-section thickness also exacer-

bated this design motion for the loft. 324

A-6 A planform view (xy plane) showing the application of the anchor point

mapping in (a), where the reference line and anchor points are on the wing

leading edge. 325

A-7 A front view (yz plane) showing the application of the anchor point mapping

in (a), where the reference line and anchor points are on the wing leading edge.326

A-8 Perspective views showing the application of the anchor point mapping in

(a), where the reference line and anchor points are on the wing leading edge. 327

A-9 A three-view of a wing with constrained datum spline and NACA 0012 airfoil

cross-sections approximated by spline primitives, each of which are indepen-

dent of all other components in the model. 328

A-10 (a) A side-view of a simple fuselage concept with a rounded nose cap (ac-

complished using guide curves along the fuselage top/bottom and sides).

The top guide curve is shown in red to demonstrate inflection-points that

occur after regenerating with smaller aft cross-sections. This occurs because

the tangency vectors at the mid and aft spline points maintain their origi-

nal orientation. (b) A perspective view for a simple fuselage concept with

a sharp nose cap, as seen in supersonic aircraft. In this case the elliptical

cross-sections are visible and centered on a datum spline with fixed spacing

between sketch planes. 331

A-11 A three-view of a fuselage depicting unconstrained cross-sections made of

elliptical primitives that are solely constrained to a reference datum spline.

Each are independent of all other components in the model. 333

28

A-12 A perspective view of a simple fuselage concept assembled with a wing. A

“path mate” is utilized, where the wing longitudinal position along the fuse-

lage datum spline (shown in grey) is set by the central anchor point at the

wing leading edge (shown in green). A relative vertical wing design motion

is not possible in this setup. 334

A-13 A three-view of the reference datum splines that serve as the “skeleton” for

subsequent cross-section sketches in a generic tube-and-wing model. 336

A-14 A three-view of the independent cross-section geometry primitives initialized

after placing sketch planes along each reference datum in Figure A-13. . . . 337

A-15 A three-view of the generic tube-and-wing model after lofting across each set

of cross-section primitives from Figure A-14. 338

A-16 Two 2D splines sharing the same support points, but not the same span,

cannot generate the same space-curve. 339

A-17 The red loft (spar structure) passes through the same cross-section planes

as the grey loft (wing outer mold line), but does not share the same span.

Hence, the spar loft cannot remain inside the envelope of the wing loft. . . . 340

A-18 The design point for a wing-tip deflection exacerbates discrepancies between

the design motion of the red loft (spar structure) and grey loft (wing outer

mold line), leading to surface intersections that may not have occurred earlier

on the model design trajectory. 341

A-19 The red loft (spar structure) passes through the same cross-section planes as

the grey loft (wing outer mold line) and shares the same span. However, the

spar loft still penetrates the envelope of the wing loft due to its construction

method. 342

A-20 The spar is constructed using the wing airfoil profile as a constraint in the

top figure; however, unless it is constructed with an offset from the wing

contour as in the bottom image, the spar loft will more easily create a surface

intersection. 342

A-21 The effect of approximating a loft swath with another loft is shown, where

the wing upper face is approximated by the caps of a thin and box spar

loft. As the spar width increases, the approximation improves and the CAD

system cannot determine the intersection trim curve. 344

29

C-1 Relative offset between the extrude feature differentiation method and centered-

differencing for the extrusion length parameter. 352

C-2 Relative offset between the extrude feature differentiation method and centered-

differencing for parameter P = d21. The w-component data is exactly zero

in this case. 353

C-3 Relative offset between the extrude feature differentiation method and centered-

differencing for parameter P = d22. 354

C-4 Relative offset between the extrude feature differentiation method and centered-

differencing for parameter P = d23. The w-component data is exactly zero

in this case. 355

C-5 Relative offset between the extrude feature differentiation method and centered-

differencing for parameter P = d25. 356

C-6 Relative offset between the extrude feature differentiation method and centered-

differencing for parameter P = d26. 357

C-7 Relative offset between the extrude feature differentiation method and centered-

differencing for parameter P = d27. 358

C-8 Relative offset between the extrude feature differentiation method and centered-

differencing for parameter P = d28. 359

C-9 Relative offset between the extrude feature differentiation method and centered-

differencing for parameter P = d29. 360

C-10 Relative offset between the extrude feature differentiation method and centered-

differencing for parameter P = d30. The w-component data is exactly zero

in this case. 361

C-11 Relative offset between the extrude feature differentiation method and centered-

differencing for parameter P = d31. The w-component data is exactly zero

in this case. 362

C-12 Relative offset between the revolve feature differentiation method and centered-

differencing for parameter P = d21. 363

C-13 Relative offset between the revolve feature differentiation method and centered-

differencing for parameter P = d22. 364

C-14 Relative offset between the revolve feature differentiation method and centered-

differencing for parameter P = d23. 365

30

C-15 Relative offset between the revolve feature differentiation method and centered-

differencing for parameter P = d25. 366

C-16 Relative offset between the revolve feature differentiation method and centered-

differencing for parameter P = d26. 367

C-17 Relative offset between the revolve feature differentiation method and centered-

differencing for parameter P = d27. 368

C-18 Relative offset between the revolve feature differentiation method and centered-

differencing for parameter P = d28. 369

C-19 Relative offset between the revolve feature differentiation method and centered-

differencing for parameter P = d29. 370

C-20 Relative offset between the revolve feature differentiation method and centered-

differencing for parameter P = d30. 371

C-21 Relative offset between the revolve feature differentiation method and centered-

differencing for parameter P = d31. 372

C-22 Relative offset between the sweep feature differentiation method and centered-

differencing for parameter P = d21. 373

C-23 Relative offset between the sweep feature differentiation method and centered-

differencing for parameter P = d22. 374

C-24 Relative offset between the sweep feature differentiation method and centered-

differencing for parameter P = d23. 375

C-25 Relative offset between the sweep feature differentiation method and centered-

differencing for parameter P = d25. 376

C-26 Relative offset between the sweep feature differentiation method and centered-

differencing for parameter P = d26. 377

C-27 Relative offset between the sweep feature differentiation method and centered-

differencing for parameter P = d27. 378

C-28 Relative offset between the sweep feature differentiation method and centered-

differencing for parameter P = d28. 379

C-29 Relative offset between the sweep feature differentiation method and centered-

differencing for parameter P = d29. 380

C-30 Relative offset between the sweep feature differentiation method and centered-

differencing for parameter P = d30. 381

31

C-31 Relative offset between the sweep feature differentiation method and centered-

differencing for parameter P = d31. 382

E-1 Relative offset between the sweep feature differentiation method and centered-

differencing on a “snap” grid for parameter P = d21. 396

E-2 Relative offset between the sweep feature differentiation method and centered-

differencing on a “snap” grid for parameter P = d22. 397

E-3 Relative offset between the sweep feature differentiation method and centered-

differencing on a “snap” grid for parameter P = d23. 398

E-4 Relative offset between the sweep feature differentiation method and centered-

differencing on a “snap” grid for parameter P = d25. 399

E-5 Relative offset between the sweep feature differentiation method and centered-

differencing on a “snap” grid for parameter P = d26. 400

E-6 Relative offset between the sweep feature differentiation method and centered-

differencing on a “snap” grid for parameter P = d27. 401

E-7 Relative offset between the sweep feature differentiation method and centered-

differencing on a “snap” grid for parameter P = d28. 402

E-8 Relative offset between the sweep feature differentiation method and centered-

differencing on a “snap” grid for parameter P = d29. 403

E-9 Relative offset between the sweep feature differentiation method and centered-

differencing on a “snap” grid for parameter P = d30. 404

E-10 Relative offset between the sweep feature differentiation method and centered-

differencing on a “snap” grid for parameter P = d31. 405

E-11 The design velocity vectors in (a) correctly display a continuous derivative

along the u-isocline (as seen in Figure 3-12). In (b), however, the “snap” grid

yields incorrect discontinuous design velocities along the u-isocline. These

design velocities reflect finite-differencing with the parameter P = d22 and

step-size h = 1.0× 10−4. 406

32

E-12 The design velocity vectors in (a) correctly display a continuous derivative

along the u-isocline (as seen in Figure 3-13). In (b), however, the “snap” grid

yields incorrect discontinuous design velocities along the u-isocline. These

design velocities reflect finite-differencing with the parameter P = d23 and

step-size h = 1.0× 10−4. 407

E-13 The design velocity vectors in (a) correctly display a continuous derivative

along the u-isocline (as seen in Figure 3-14). In (b), however, the “snap” grid

yields incorrect discontinuous design velocities along the u-isocline. These

design velocities reflect finite-differencing with the parameter P = d25 and

step-size h = 1.0× 10−4. 408

E-14 The design velocity vectors in (a) correctly display a continuous derivative

along the u-isocline (as seen in Figure 3-15). In (b), however, the “snap” grid

yields incorrect discontinuous design velocities along the u-isocline. These

design velocities reflect finite-differencing with the parameter P = d26 and

step-size h = 1.0× 10−4. 409

E-15 The design velocity vectors in (a) correctly display a continuous derivative

along the u-isocline (as seen in Figure 3-16). In (b), however, the “snap” grid

yields incorrect discontinuous design velocities along the u-isocline. These

design velocities reflect finite-differencing with the parameter P = d27 and

step-size h = 1.0× 10−4. 410

E-16 The design velocity vectors in (a) correctly display a continuous derivative

along the u-isocline (as seen in Figure 3-17). In (b), however, the “snap” grid

yields incorrect discontinuous design velocities along the u-isocline. These

design velocities reflect finite-differencing with the parameter P = d28 and

step-size h = 1.0× 10−4. 411

E-17 The design velocity vectors in (a) correctly display a continuous derivative

along the u-isocline (as seen in Figure 3-18). In (b), however, the “snap” grid

yields incorrect discontinuous design velocities along the u-isocline. These

design velocities reflect finite-differencing with the parameter P = d29 and

step-size h = 1.0× 10−4. 412

33

E-18 The design velocity vectors in (a) correctly display a continuous derivative

along the u-isocline (as seen in Figure 3-19). In (b), however, the “snap” grid

yields incorrect discontinuous design velocities along the u-isocline. These

design velocities reflect finite-differencing with the parameter P = d30 and

step-size h = 1.0× 10−2(π/180). A larger step-size (greater than 1.0× 10−3)

was needed to ensure a non-zero design velocity in this case. 413

E-19 The design velocity vectors in (a) correctly display a continuous derivative

along the u-isocline (as seen in Figure 3-20). In (b), however, the “snap” grid

yields incorrect discontinuous design velocities along the u-isocline. These

design velocities reflect finite-differencing with the parameter P = d31 and

step-size h = 1.0× 10−4. 414

34

List of Tables

1.1 Distinguishing features in traditional aircraft design phases. 42

2.1 Different hierarchy levels of BRep connectivity among the BRep entities. . . 68

2.2 Definitions for the various parameterization levels possible in a model. . . . 69

2.3 These PASS geometry parameters (see Appendix B) are categorized with

respect to geometry level of fidelity for a monoplane aircraft class. Low-

fidelity design variables on the left of the table are separated from high-

fidelity design variables on the right. Italicized parameters with an asterisk

are necessary to create a CAD model, yet are not explicit inputs as PASS

parameters. 74

2.4 A parameterization for fuselage models utilized in the PASS aircraft design

system. 75

2.5 A planform parameterization for lifting-surface models. 75

2.6 These derived variables are a function of the PASS design variables and

provide further information needed to create a wing CAD model. 76

2.7 The application of conventional design intent ideas is appropriate for par-

ticular CAD-based model applications; however, all design scenarios do not

benefit as well from this approach. 79

2.8 The conventional and proposed model construction methodologies yield dis-

tinct model attributes that better serve different post-application uses. . . . 87

3.1 The connectivity hierarchy for the cut-cone model in Figure 3-1. 110

3.2 Analytic surface parameterizations for the vertical plane and cone generated

in Figure 3-1. 110

35

3.3 Analytic representation of partial derivatives for the plane and cone surface

parameterizations in Table 3.2. 111

4.1 Summary of sensitivity information needed to determine the analytic gradient

at node N for the cylinder-cylinder-plane intersection problem. 170

4.2 Comparison between the closed-form method, central-difference approxima-

tion and an analytic solution for the node sensitivity to d1. Underlined digits

denote mismatches with the analytic solution. 171

4.3 Comparison between the closed-form method, central-difference approxima-

tion and an analytic solution for the node sensitivity to R2. Underlined digits

denote mismatches with the analytic solution. 171

4.4 Comparison between the closed-form method, central-difference approxima-

tion and an analytic solution for the node sensitivity to R3. Underlined digits

denote mismatches with the analytic solution. 172

4.5 Advantages and disadvantages of each trim curve sensitivity method. 181

4.6 Validation results for the node sensitivity algorithm on the geometry cases

in Figures 4-6 and 4-7. 196

5.1 A comparison between the U -direction knot vector for the B-spline surfaces

generated in the central-difference problem of Figure 5-14. Underlined digits

denote a variation from the baseline value. The step-size used in this case

was h = 10−5. 234

5.2 The offset between the ith B-spline curve knot vectors U i
+h − U i

−h (i =

1, . . . , 5) obtained in central-differencing for Figure 5-14 are shown for the

non-preserving case. Non-zero offsets exist where the geometry gradient was

computed (h = 10−5). 234

5.3 A comparison between the U knot vector for the B-spline surfaces generated

by finite-differencing the CAD model from Figure 5-16. The step-size used

in this case is h = 10−5, which resulted in no change of the knot vectors. . . 237

5.4 A comparison between the V knot vector for the B-spline surfaces generated

by finite-differencing the CAD model from Figure 5-16. The step-size used

in this case is h = 10−5, which resulted in a minor change of the knot vectors. 237

36

5.5 The offset between the ith B-spline curve knot vectors U i
+h − U i

−h (i =

1, . . . , 5) obtained in finite-differencing the CAD model in Figure 5-16 are

shown. Non-zero offsets exist where the geometry gradient was computed

(h = 10−5). 238

5.6 Perturbation of a B-spline curve control point preserves its knot vector and

support point parameterization. Perturbation size is h = 10−5 in the y-

component of a control point in a cross-section B-spline curve of Figure 5-17. 249

5.7 Perturbation of a B-spline curve support point leads to knot vector and

support parameterization changes. Perturbation size is h = 10−5 in the y-

component of a support point in a cross-section B-spline curve of Figure 5-17.

Underlined digits reflect deviations from the baseline case. 250

6.1 A summary of results for the pulley design problem. The reported computa-

tion time is an average over all geometry gradient computations in a design

run. Underlined digits correspond to deviations from the target solution. . . 264

6.2 Setup data for the inverse design problems on simple NACA 0012 and RAE

2822 model geometry. The differentiated panel code is used for each problem

except the NACA 0012 with the MSES designation. 269

6.3 Results from a design problem for wave-drag minimization wherein analytic

and finite-difference design velocity are used. 277

6.4 Setup data for the inverse design problems on a simple 3D NACA 0012 model

geometry and 2D cross-section case. The design problems are both executed

using the Cart3D design framework. 280

6.5 Results comparison when using the analytic and finite-difference geometry

gradients for an unconstrained-lift and constrained-lift design problem. Sur-

face mesh size is about 196000 elements and average volume mesh size is

about 935500 cells. Computation time is reported for the full geometry gra-

dient. 288

37

6.6 Results comparison when using the analytic and finite-difference geometry

gradients for an unconstrained-lift and constrained-lift design problem. Sur-

face mesh size is about 596000 elements and average volume mesh size is

about 935500 cells. Computation time is reported for the full geometry gra-

dient. 289

6.7 A listing of rib, spar and wing skin thickness for the design point layouts in

Figure 6-38. 306

A.1 A comparison between the B-spline surface parameters of the four faces high-

lighted in Figure A-21. 343

B.1 Wing parameterization used in PASS. 349

B.2 Horizontal tail parameterization used in PASS. 350

B.3 Vertical tail parameterization used in PASS. 350

B.4 Fuselage parameterization used in PASS. 350

D.1 Changing U knot vectors on Faces F4 (semi-ellipse) and F6 (circular-arc)

when finite-differencing with parameter P = d21 and step-size h = 1.0×10−4.

Underlined digits denote a deviation from the baseline knot values. 384

D.2 Changing U knot vectors on Faces F4 (semi-ellipse) and F6 (circular-arc)

when finite-differencing with parameter P = d22 and step-size h = 1.0×10−4.

Underlined digits denote a deviation from the baseline knot values. 385

D.3 Changing U knot vectors on Faces F4 (semi-ellipse) and F6 (circular-arc)

when finite-differencing with parameter P = d23 and step-size h = 1.0×10−4.

Underlined digits denote a deviation from the baseline knot values. 386

D.4 Changing U knot vectors on Faces F4 (semi-ellipse) and F6 (circular-arc)

when finite-differencing with parameter P = d25 and step-size h = 1.0×10−4.

Underlined digits denote a deviation from the baseline knot values. 387

D.5 Changing U knot vectors on Faces F4 (semi-ellipse) and F6 (circular-arc)

when finite-differencing with parameter P = d26 and step-size h = 1.0×10−4.

Underlined digits denote a deviation from the baseline knot values. 388

38

D.6 Changing U knot vectors on Faces F4 (semi-ellipse) and F6 (circular-arc)

when finite-differencing with parameter P = d27 and step-size h = 1.0×10−4.

Underlined digits denote a deviation from the baseline knot values. 389

D.7 Changing U knot vectors on Faces F4 (semi-ellipse) and F6 (circular-arc)

when finite-differencing with parameter P = d28 and step-size h = 1.0×10−4.

Underlined digits denote a deviation from the baseline knot values. 390

D.8 Changing U knot vectors on Faces F4 (semi-ellipse) and F6 (circular-arc)

when finite-differencing with parameter P = d29 and step-size h = 1.0×10−4.

Underlined digits denote a deviation from the baseline knot values. 391

D.9 Changing U knot vectors on Faces F4 (semi-ellipse) and F6 (circular-arc)

when finite-differencing with parameter P = d30 and step-size h = 1.0×10−4.

Underlined digits denote a deviation from the baseline knot values. 392

D.10 Changing U knot vectors on Faces F4 (semi-ellipse) and F6 (circular-arc)

when finite-differencing with parameter P = d31 and step-size h = 1.0×10−4.

Underlined digits denote a deviation from the baseline knot values. 393

39

THIS PAGE INTENTIONALLY LEFT BLANK

40

Chapter 1

Introduction:

Geometry Management within

Conventional Aircraft Design

Challenges in geometry management within contemporary aircraft design motivate the re-

search objectives and contributions presented in this dissertation. This introductory chapter

summarizes the current technology and approaches typically used in geometry management

for aircraft design. This includes the implementation of geometry in design frameworks,

how the geometry is generated, and how geometry sensitivities are determined for opti-

mization. Discussion of these topics begins with the evolution of geometry management

in design. Secondly, conventional methods for generating model geometry are considered

to facilitate geometry management in automated design settings. Finally, to accommodate

gradient-based optimization of geometry, common methods for geometry sensitivities are

introduced to identify areas for improvement. This modern state of geometry management

provides the foundation for the research objectives that follow and bound the scope of this

dissertation.

1.1 Geometry Management in Design

Geometry management in aircraft design has evolved throughout the last 100 years with

the advent of improved design tools. As the analysis sophistication evolved, so did the

41

required geometry representation. Trial-and-error experimentation was the norm in the

Wright Brothers era using manufactured (often by hand) prototype models. Early mul-

tidisciplinary design optimization (MDO) suites contained empirical analysis tools, which

required only a small parameter space to describe an aircraft. Design methodologies utiliz-

ing high-fidelity computational fluid dynamics (CFD) with closed, 3D surface tessellations

of geometry have since followed. Geometry definition has advanced in a similar fashion from

manual drafting, to computer-aided drafting, to three-dimensional CAD model geometry.

Modern design paradigms mature an aircraft design through a sequence of “in-series”

design phases, summarized in Table 1.1, yet give geometry management a secondary role

in the design process. Figure 1-1 depicts this process with geometry evolving from initial

sketches into wireframe and 3D model geometry for medium- and high-fidelity analysis,

respectively. Analysis codes usually dictate the aircraft geometry representation needed in

each phase. For example, low-fidelity codes require only planform geometry information,

while high-fidelity codes require fully-defined 3D model geometry. Initially, since little

geometry information is available, Raymer [66] and others [37, 31, 11] suggest the use of

simple drafting methods, or artist renderings, as the means to cast the parameter-view of

model geometry into a recognizable configuration1. The remaining preliminary and detailed

design phases then commence with the addition of more specific geometry information.

Design Design Scope Analysis Geometry
Phase Fidelity Representation

Model

Conceptual Define the initial aircraft plan-
form

Low Planform parameters

Preliminary Disciplinary trade studies on a
fixed planform

Low to High Planform parameters,
idealized wireframe
model

Detailed Define all specifications for ev-
ery aircraft component

High 3D, closed surfaces

Table 1.1: Distinguishing features in traditional aircraft design phases.

Since the different aircraft geometry representations are independently defined in the

various design phases, there arises the potential for inconsistencies as the design progresses.

1Emphasis is given to the terms configuration, assembly, part, feature and primitive to distinguish com-
ponents and parameter-levels found in a CAD model geometry. These are explained further in Chapter
2.

42

This is possible, for example, when information is lost through the recasting of higher-

order geometry to a lower-order geometry (e.g., a fifth-order B-spline interpolated curve

recast as a third-order B-spline). Since the aircraft geometry representation and analysis

fidelity are coupled, it is unclear how the results for one geometry/analysis pairing should

influence design decisions above another pairing. Ideally the high-fidelity results should

impact design decisions the most. However, the “in–series” paradigm tends to leave high-

fidelity analysis out of early design decisions. Furthermore, the model geometry achieved

in the final design phase can be viewed as an object receiving input sizing-data without

influencing (via feedback of high-fidelity results) the upstream design decisions that provided

those inputs. This means that the 3D aircraft model geometry depends mostly on design

decisions based on low-fidelity tools and simple early geometry representations.

Figure 1-1: Evolution of aircraft concept representations throughout a typical “in-series”
design paradigm.

Emerging conventional design processes with more stringent scheduling constraints and

shorter schedules, will magnify inherent weaknesses in the design paradigms themselves. For

example, Roskam [68] originally reported that design knowledge is inversely proportional

to committed aircraft life-cycle program costs, where 65% of the program costs are often

committed by the time a concept is selected at the end of conceptual design [40, 75, 63, 4];

with current design methods, it is clear that low-fidelity analysis tools are typically used

to establish that cost commitment. However, the empirical nature of low-fidelity analysis

limits its applicability to previous design types alone (e.g., tube-and-wing configurations);

extrapolation of low-fidelity trends to account for new designs or technologies is generally

less effective as well. This is manifest in later stages of the design paradigm, where high-

fidelity analysis or testing informs designers that earlier design decisions were problematic

as a result of insufficient analysis fidelity or geometry information. Therefore, advancing

high-fidelity analysis into the conceptual design phase will likely eliminate these issues and

43

reduce the future cost of implementing engineering work-arounds [10, 28].

It is difficult to implement high-fidelity analysis early in current design paradigms. The

difficulty arises because a fully-realizable 3D model of the aircraft is usually undefined and

unavailable at the onset. These circumstances result in a distinction between the geometry

representation of one design phase to another, as listed in Table 1.1, which reflects a different

design scope, analysis fidelity and design methodology between design phases as well. In

other words, the inconsistency in geometry representation leads to a methodological gap

between each design phase. This results in a disjointed design process instead of the intended

seamless one.

Even though an emerging CAD-based geometry management paradigm is beginning to

gain emphasis (at least within academic circles), the introduction of high-fidelity analysis in

an automated conceptual design setting still requires further research to improve geometry

management. Bowcutt indicated in [10] that many advancements in design technologies

were needed, especially in the generation of parametric geometry. One particular case of

unconventional geometry management is in DEE (Design and Engineering Engine), which

was developed to experiment with a Knowledge Based engineering approach to conceptual

design [47]. This design framework is founded on the idea of having a central aircraft

model geometry contain the data transmitted to all design phases and analysis disciplines,

in contrast to the design phase executed “in–series” seen in Figure 1-1. Crawford et al. use

a similar methodology in the design of a wind turbine [18]. By using these methods a single

aircraft model geometry serves as the primary source of any geometry information which

an analysis code requires (both across multiple disciplines and multiple levels of fidelity),

as shown in Figure 1-2. Compared to the “in–series” paradigm of Figure 1-1, this approach

utilizes a central “hub” of geometry information for all analyses and matures with evolving

design changes.

Amadori et al. [2, 1] and Jounnet et al. [39] are part of a large development in im-

proving conceptual design methodology via a new web-services, CAD-based framework for

multidisciplinary optimization that employs some of the ideas in Figure 1-2. Their work en-

compasses the notion that empirical or statistical methods are appropriate in sizing aircraft,

yet should not be the sole means of providing performance results. They point out that

such methods cannot be extrapolated to include unconventional configurations, or those dis-

similar to those used to create the empirical methods. Amadori et al. also recognize, as do

44

Figure 1-2: With a new design paradigm, a single aircraft representation provides geometry
information for multiple disciplines and various analysis fidelity levels.

others [18], the need to have parameterized 3D model geometry that regenerates successfully

over a continuous range of parameters. In their work, automating the generation of CAD

model geometry is important in order to avoid the tedious manual process. Although their

CAD-generated model geometry contains parameterized data used by the optimizer, their

panel code aerodynamics module utilized a separate surface mesh until further development

permitted tessellating the CAD model directly [1]. As in the case of [76], their work also

utilizes heuristic methods instead of gradient-based optimizers because sensitivities are not

required from the CAD-generated model.

1.2 Geometry Generation Methods

An important aspect of geometry management with CAD is the creation of geometry itself.

A community of CAD–users have developed methods that serve to create a wide variety

of mechanical devices within existing design processes. The shape optimization commu-

nity has also developed analytic methods for representing models outside of conventional

CAD systems, thereby permitting fine surface shape control and geometry differentiation.

Each methodology serves as a useful tool within its respective design process; however,

individually these methods may not fare well in an aircraft design setting where geometry

management supports multidisciplinary optimization or multifidelity tools. Understanding

both realms of model generation leads to an improved method that enables using CAD

models early in design.

45

Geometry Modeling

A 3D CAD-generated solid or model geometry consists of a manifold Boundary Represen-

tation (BRep) that is “closed” within a certain tolerance. To define a solid, groups of

surfaces separate the “inside” of the solid from the “outside.” The computational geometry

engine that generates geometry surfaces, executes intersection algorithms, solves geometry

constraint relations coupled with parameters and outputs a model geometry description

in some standard format (e.g., STEP format, or various BRep representations) is called a

geometry kernel. Further details about the anatomy of CAD-generated models is found in

Chapter 2.

There are at least two methods of working with BReps in practice. First, a Parametric

CAD approach uses an embedded geometry kernel wrapped by a graphical user interface

(GUI) and BRep management tools to manage an analytic description of geometry. To-

gether, this is known as a CAD system, which is intended to simplify manual user-generation

of model geometry by hiding the computational geometry details handled by the geometry

kernel. Users/designers access model geometry via a GUI and conduct 3D solid operations

(i.e., the addition/removal of surfaces) without directly accessing and modifying the ana-

lytic description. Instead, the CAD system maps the user inputs to the BRep and manages

its modifications internally. The second method, a Direct Geometry Construction approach,

provides a set of low-level construction primitives that are ultimately used to build a BRep

by direct use of some geometry kernel (either proprietary or in-house code).

Constructing Geometry with Design Intent

Model geometry is traditionally developed manually (or also via automated scripts) using

a suite of “best-practices” and CAD system tools that users learn through experience and

training. Many commercial CAD systems are available and system-specific instructions

for “best-practices” are provided among numerous publications [48, 77, 78, 53, 52, 71]. In

particular, these practices invoke the concept of design intent, which has steadily evolved

from the realm of 2D CAD to 3D CAD. Many researchers focusing on design frameworks

propose different definitions for design intent, as found by Iyer and Mills [32]. In their

findings the design intent definitions range from the historical list of decisions throughout

the model construction process to the complete set of model features and their attributes.

46

CAD vendors and CAD users also maintain individual views of design intent, typically as

the selection of features and constraints to geometry that make up a model and create a

desired appearance or behavior when design parameters are changed. Since CAD systems

are often used to design mechanical components, users naturally identify design intent as

the steps needed to develop a model into its final form for manufacture.

CAD-based Approach

Parametric, or feature-based, CAD systems have evolved substantially in recent years and

are well suited for design. These systems provide a variety of GUI setups for users to con-

trol model geometry construction. Users manually create a sequence of features, usually by

sketching 2D primitive geometry and applying a 3D operation to the primitive sketches.

The resulting ordered list of construction operations produces a feature-tree that, when

executed (or regenerated), results in an instance of a master-model, which is an ordered col-

lection of features and driving parameters that represents a high-level construction recipe

for a model geometry BRep. Features can be added to the end of the feature-tree sequence

as an independent entity or as an appendage to existing features, which typically means

that previous features are modified (e.g., adding a fillet feature to a prior extrusion). Thus,

the feature-tree perspective produces a high-level parametric abstraction for geometry con-

struction handled by a geometry kernel.

CAD experience indicates that there is no unique feature-tree that creates a given solid

model. Thus, multiple permutations of a feature-tree can create the “same” solid model,

in the sense that the solid model has the same final shape, yet the underlying bound-

ary representation topologies may be different. More importantly, the topology may not

change in the same manner when perturbing driving design variables. Differences between

model feature-trees often reflect a more elegant generation sequence that minimizes the

need for a complex reference datum layout or explicit coupling between various features

across the feature-tree. Furthermore, a difference in regeneration robustness is dependent

on the datum referencing layout and the manner in which primitives are constrained and

dimensioned. In some cases, many combinations of dimension values cannot regenerate

into a new model instance [10]. If these potential differences are acknowledged, it becomes

apparent that the final application of the model geometry begins to drive the feature-tree

development towards fulfilling some intended purpose. This contrasts with the notion that

47

only the final shape of the model geometry matters. Lastly, understanding the CAD sys-

tem strengths and weaknesses are paramount to ensure that models regenerate properly

throughout a continuous range of driving dimensions [12].

Direct Construction Approach

In contrast to the CAD approach, low-level geometry construction is traditionally employed

throughout the early phases of design to represent simplified 2D “idealized” objects (i.e.,

simple, exact geometry cross-sections defined with classical primitives). Surfaces are also

represented by many types of analytic geometry representations. Modification of such an-

alytic definitions provides geometry control used by the shape optimization community. A

survey of extensively-used parameterization methods for analytic model geometry is pre-

sented by Samareh [70]. Of particular interest are the parameterizations for airfoil shapes in

2D and wing surfaces in 3D. Kulfan provided a parameterization method using Bezier curves

and surfaces for airfoils, bodies of revolution and typical surface forms seen in aerospace ap-

plications (e.g., nacelles, wings, and fuselage), with a small set of driving variables [45, 46].

Other formulations include NURBS curves and surfaces [64], parametric lines and arcs,

cubic B-splines (and other spline types) and Bezier curves, all of which provide added lo-

cal surface control. Even with a large variety of analytic approaches to define geometry,

Chen and Tortorelli [14] point out some advantages and disadvantages in using analytical

methods for model construction, which are discussed next.

The benefits of using direct construction include complete control over the shape and

the potential to get analytic geometry derivatives. This is important for any gradient-

based optimization which require sensitivities of the resultant geometry with respect to the

parameters driving the design. By controlling the model construction at the lowest level,

the resulting geometry is consistent with the designer’s intended construction and easily

understood (i.e., a simple isolated wing may always have an intended four surfaces: root,

tip, lower and upper). In this manner, each geometry entity is a form of meta-data for

subsequent analysis or sensitivity calculation.

The disadvantages of using direct construction methods arise from the inherent fixed na-

ture of the resulting geometry definition and the increased coding required to add function-

ality or geometry features. At the extreme end of high complexity, the direct construction

method ends up recreating CAD systems, while at the opposite end it only yields simplis-

48

tic shapes that are clearly insufficient for complex geometries. Regardless of complexity,

however, this construction approach must have the capability to generate water-tight solid

models. Such a model definition is necessary in order to automate the tessellation of its ge-

ometry. The alternative is to close the BRep manually before tessellation is possible. With

manual intervention the automation of design optimization is hindered, although approaches

that utilize Constructive Solid Geometry (CSG) concepts, or a solids-based geometry kernel,

can be used to circumvent the issue2.

Other challenges arise in the application of models generated with direct construction

methods. Since full control of the geometry parameterization is available, there is potential

to have a very large design space when attempting free-form shape design. For free-form

curves or surfaces, the parameters may be control points or interpolation points which

can yield “wavy-like” appearances if perturbed individually. Adjoint methods that utilize

smoothing may circumvent this issue, as in [36], yet there remains a disconnect between the

free-form geometry and traditional parameterizations like chord, sweep, aspect ratio, leading

edge radius, camber and others. Free-form parameterizations may be too unconventional

for designers and lead to difficulty in interpreting optimization results as well.

Finally, importing analytic geometry into a CAD-generated model (as is usually done

later in design phases) may also introduce errors and inconsistencies. For example, im-

porting non-native geometry primitives (such as higher-order splines that the CAD system

does not support) clearly creates an immediate discrepancy between the optimized analytic

geometry and the new CAD-generated model. It is unclear how the optimization results are

interpreted for a distinct geometry representation in this case, nor how later design phases

should incorporate those results when evolving the model. In the end, since manufacturing

will often rely on a CAD-generated model, it is uncertain how its performance will com-

pare to the optimized results stemming from an original analytic model since both model

geometries are inconsistent in definition.

Geometry Parameterizations

Many parameterization options have been studied and applied for shape design optimiza-

tion. Kulfan [46, 45], besides providing parameterization for common aircraft components,

2Applying CSG with the Direct Construction perspective introduces complexity, though, because Boolean
operations on solids result in surface shapes and trim curves that are no longer simple analytics.

49

points out that the chosen parameterization greatly impacts the MDO scheme utilized,

depending on the number of design variables, geometry representation and possibility of

design smoothness or irregularity throughout the design space. Many applications of de-

sign optimization in the literature represent varied parameterizations that are unique to

the problem at hand, as found in [65, 16, 26, 39, 55]. The shape optimization community

also provides a large number of parameterization choices. Engineering parameters, airfoil

shape functions, NURBS surfaces, lines, conic sections, splines, algebraic curves, four-point

curves, Bezier curves, and B-spline curves all contain different parameterization options.

Various examples of parameterization in shape optimization are found in these references:

[69, 14, 81, 6, 57, 58, 34, 42, 61, 9, 29, 70, 74, 15].

In CAD-generated model geometry, parameterization exists at different levels of trans-

parency to the user. For example, the user may dimension geometry in a model via the GUI

and define the dimensioning scheme as the model parameterization, or have such dimensions

driven by external engineering parameters. Internally, though, a CAD system geometry ker-

nel uses proprietary logic to parameterize the surfaces in a non-transparent manner (e.g.,

through surface generation and trimming algorithms) in order to fully construct a closed

volume. Regardless of how the model geometry is driven, it is expected to regenerate within

a predefined, bounded and continuous parameter set. Crawford et al. [18] accomplished this

with wind turbine design. Amadori et al. automated the generation of 3D models in CAD

[1, 2] using specific parameter sets that fixed the design space of the model. Vandenbrande

et al. [79] at Boeing created the General Geometry Generator (GGG) to automate the

construction of analytic models and have full control of its geometry parameterization.

1.3 Geometry Sensitivities for Shape Design Optimization

Once geometry exists for shape design, the calculation of geometry sensitivities becomes the

next important part of geometry management. Zang et al. pointed out that (at the time of

their publication) there was no analytic method for extracting surface sensitivities of CAD-

generated models with respect to the model parameters [82]. Geometry sensitivities for a

parameterized domain remains a topic of current research, much of which is conducted in the

structures community for finite element meshes. Since CAD systems do not support shape

sensitivities, a short summary of analytic, CAD-free and CAD-based geometry gradient

50

methods are presented from the literature.

1.3.1 Shape Sensitivity Analysis

Differentiation approaches used in other settings are often applied to CAD models with

varying degrees of success. For example, automatic differentiation (as available using codes

such as ADIFOR [7] and ADIC [8]) of entire CAD systems is not possible without its source

code. Some researchers [41] prefer developing an in-house CAD system in order to fully

differentiate the geometry kernel. However, such development remains limited in scope,

unless constant scope expansion accommodates for greater design flexibility.

Other researchers utilize variants of shape sensitivity analysis to bypass the need for a

differentiated CAD system. Choi and Kim [15] and Chen et al. [13] present a derivation

of shape sensitivity analysis that is often used for discretizations of CAD geometry. Their

approach introduces the concept of design time as a range of parameter values P that evolve

a geometry from an initial instance to a final instance. Through regularity assumptions,

they show a linear mapping T(r,P) between one geometry instance r and another r′ as

r′(P) = T(r,P) = r + V(r,P)δP,

for parameter perturbations O
(
δP 2 ∂2r(P)

∂P2

)
� 1. The term V(r,P) is designated the design

velocity

V(r,P) =
∂T

∂P
+
∂T

∂r

∂r

∂P
.

It is the determination of design velocity V(r,P) that is of crucial importance in shape

design. Choi and Kim [15], Chen et al. [13] and Hardee et al. [29] each show the derivation

of the objective functional sensitivity to design parameters and include the necessity of

finding the design velocity. Belegundu et al. used a similar derivation while using natural

design variables, where the magnitude of the design variables pertained to a set of fictitious

loads applied to a structural domain [6].

Objective functionals of the form F (P) =
∫

Ω(P) f(r(P)) dΩ (where f(r(P)) can be a

scalar, vector or tensor) evaluated on a geometry domain Ω(P) with boundary ∂Ω(P) are

representative of many performance metrics in structural analysis. For these Choi and Kim

51

[15] derive their sensitivity as:

dF

dP
=

∫
Ω(P)

∂f

∂r
dΩ +

∫
∂Ω(P)

f(V · n) dΓ, (1.1)

where n is the local normal on the geometry. Only the design velocity on the boundary

is required (not in the interior volume) to determine dF/dP, assuming that the partial

derivative for ∂f/∂r can be found (either analytically or numerically). Also, only the

normal component V · n of design velocity is required on ∂Ω(P). Chen et al. [13] further

show that the design velocity is needed only on the active portions of the boundary, meaning

boundaries directly influenced by the parameter P, which saves computational expense.

They also promoted the use of an implicit analytic function, Φ, which required derivation

of the parameter relationship to primitives used in constructing the solid model. This

representation changed the sensitivity outcome to

dF

dP
=

∫
Ω(P)

∂f

∂r
dΩ +

∫
∂Ω(P)

f

|∇Φ|
∂Φ

∂P
dΓ. (1.2)

An advantage of using this method is that an implicit representation is only required for

primitives in the model, and topology changes do not violate the calculation. However,

defining Φ may be very difficult in many cases.

Armstrong et al. and Robinson et al. in [3, 67], respectively, followed a similar proce-

dure as outlined by Choi and Kim and Chen et al. In contrast to the use of an implicit

representation by Chen et al. Robinson et al. utilized finite-differencing of triangulation

element centroids to find the design velocity of the entire domain boundary. Issues with

mesh vertices found on intersecting faces are avoided by using element centroids, yet this

representation of the geometry is of lower-order since a single point is chosen to represent a

planar mesh element. Lastly, Armstrong et al. relied on the Boundary Method for Design

Sensitivity (described in Choi and Kim [15]) by combining adjoint sensitivity maps with

the design velocity field to calculate performance sensitivity in a single analysis.

1.3.2 Geometry Sensitivity Methods

In the simplest scenarios, geometry sensitivity is easily calculated if an analytic expression

exists between an objective functional and geometry. However, this is generally not the

case for most types of geometry representation. Fudge et al. [22] provides a comparison of

52

advantages and disadvantages surrounding both direct construction approaches (also called

CAD-free) and CAD-based methods in gradient-based optimization. In CAD-free scenarios,

where a majority of shape optimization research currently exists, analytic representations of

a domain or a surface tessellation are used with Free-Form Deformation (FFD) techniques,

finite-differencing or adjoint methods to determine geometry sensitivities.

Samareh [70] and others in the shape design community utilize Free-Form Deformation

(FFD) techniques to perturb and deform surface meshes. Chen and Tortorelli [14] provide

geometry sensitivities by using variational geometry on analytic surfaces. Cosentino and

Holst utilized finite-differences on cubic spline support points for airfoil optimization as well

[17]; others utilize spline control points instead to limit potential undulations of the airfoil

shape when finite-differencing. Shape design using adjoint methods with CFD exists for 2D

and 3D geometry created without CAD [38, 25, 35, 34, 54]. In these instances a discretized

geometry is the main geometry representation used in analysis, obtained from analytic

surface definitions or tessellated CAD surfaces (however, the CAD model itself is not part

of the optimization procedure). The geometry sensitivity becomes necessary by considering

the sensitivity of an objective functional to design parameters. For example, consider a

scalar objective functional G = G(P,U(P)) with parameter set P ∈ {P} and CFD flow

solution U that implicitly depends on P. Here the analysis tool is a CFD flow solver that

generates a volume mesh once given a surface tessellation. The sensitivity dG/dP can be

decomposed via the chain rule [82]:

dG

dP
=

(
∂G

∂V

∂V

∂S

∂S

∂P

)
U

+

(
∂G

∂U

)
P

dU

dP
. (1.3)

The first term is computed with fixed CFD solution U, whereas the second term contains

a partial derivative computed at fixed parameters P. At fixed U, the chain rule of terms

begins with the sensitivity of the objective functional, G, to the volume mesh, V. Secondly,

the sensitivity of the volume mesh V to the surface mesh, S, follows. Thirdly, the sensitivity

of the surface mesh to the parameters is required; this term couples the model geometry

to the objective function. With the exception of the geometry sensitivity, the remaining

terms can be computed using an adjoint in an adjoint-based CFD code ([60], [57], [59]). If

the surface mesh is the only geometry representation of interest, then the term ∂S/∂P is

not needed because the mesh coordinates are the parameters in the problem. However, if

53

an underlying CAD geometry drives the surface mesh, then the geometry sensitivity term

must be obtained by differentiating the CAD geometry itself.

Finite-differencing is commonly used to differentiate CAD-free and CAD-based model

geometry [34, 28, 57, 58, 9, 41, 42, 59, 17]. This method is often appealing because it

does not require access to CAD source code nor an understanding of the geometry kernel.

Otherwise, it becomes necessary to “reverse-engineering” how a model is constructed.

One approach with finite-differences avoids meshing multiple geometry instances by uti-

lizing a “snap grid” approach [57]; in this case the nearest point on the perturbed surfaces

is queried using the (u, v) locations of the baseline. A more expensive approach is com-

monly used whereby the meshes corresponding to each perturbed geometry instance are

differenced. The sensitivity of the nodes to the parameter perturbation is determined by

differencing the new and old (x, y, z) coordinates of the vertices projected on the associated

face or edge, at fixed normalized (u, v) values. An important assumption in this method is

that the model topology does not change (i.e., the number of BRep faces does not change

with perturbations). In either finite-difference method the step-size selection for each de-

sign variable is an important consideration. As the number of design variables increases,

limitations on available CAD licenses become an issue since multiple regenerations may be

distributed across numerous CAD installations [60].

1.4 Thesis Objectives and Contributions

The preceding discussion highlights various challenges that arise when conventional CAD

systems are used for aircraft conceptual design. Implementing CAD within automated

geometry management requires bridging computational geometry tools and aerospace design

needs because these systems were not designed for these specific applications. By addressing

the particular challenges surrounding model construction methods and shape sensitivities,

this thesis aims to further enable the application of CAD systems in aircraft conceptual

design.

Three main research objectives provide the scope for work presented in this thesis.

The first objective is to automatically generate CAD-based model geometry suitable for

conceptual design. This includes finding a new approach to CAD-specific construction

methodologies that reforms traditional notions of “design intent” to utilize concepts of “de-

54

sign motion.” The second objective is to develop an analytic formulation for differentiating

CAD models. This includes differentiating commonly used sketch entities, features (such

as extrusions and lofts) and the model boundary representation. Finally, the third objec-

tive is to demonstrate the application of these tools when managing CAD models in design

frameworks.

The first thesis objective is fulfilled by developing a construction methodology for CAD

models that specifically targets their usage in automated conceptual design. The methodol-

ogy stems from a new perspective on “design intent” driven by principles of “design motion”

and geometry fidelity. Model construction tips are also given to avoid potential challenges

that arise when CAD models are not designed for automated shape optimization.

The second thesis objective is fulfilled by formulating analytic geometry gradients of

common CAD components. This includes various methods for calculating sensitivities on

the model boundary representation (i.e., faces, edges, nodes), sketches, extrusions, revolve,

sweep and loft features. These methods collectively yield geometry gradients for use on

discretized geometry, necessary for optimization with high-fidelity analyses. Furthermore,

sources of gradient error are analyzed to prescribe when a finite-difference approach is, or is

not, suitable for a given CAD model. The analysis shows how a gradient error arises when

CAD systems regenerate B-spline curves and surfaces for finite-differencing with respect to

their support points.

The third thesis objective is accomplished by implementing CAD models in various in-

verse/forward design problems and a multidisciplinary design space exploration study. Each

example implements the tools developed with the other thesis objectives. In particular, in-

sight is gained on the usefulness of the new model construction methodology and the impact

of analytic geometry gradients. These examples also portray how the thesis contributions

further enable using CAD within geometry management in aircraft design optimization.

55

1.5 Thesis Outline

Each chapter in the thesis builds on prior material and is organized as follows:

Chapter 2

The aspects of geometry management related to generating CAD models are discussed. Rel-

evant fundamentals in computational geometry are presented to provide consistent notation

and reference material for subsequent chapters. Perspectives are drawn from “design mo-

tion” in the shape-optimization community and a taxonomy for geometry fidelity to develop

a new “design intent” definition. These principles are used in a proposed methodology for

generating parametric CAD models suitable for automated aircraft design optimization.

Chapter 3

The major role of geometry sensitivities in geometry management is discussed. A for-

mulation of geometry gradients for sketches is presented and extended to the surfaces on

extrusion, revolve and sweep features.

Chapter 4

The geometry sensitivity methods are augmented further to include surface intersections

in this chapter. A formulation for gradients on both trim curve and node entities of a

boundary representation is presented. Comparison is made with a three-surface intersection

formulation (a special case) and validation results against finite-differencing are shown.

Chapter 5

Specific attention to B-spline curve and surface sensitivities is given in this chapter for

aerospace applications. The fundamentals of B-spline curve and surface development are

presented as a foundation for their geometry gradient formulation afterward. Analysis and

examples are shown for gradient errors that arise when CAD systems regenerate B-spline

curves and surfaces for finite-differencing with respect to their support points. This marks

an important limitation to this method if applied on many CAD models.

56

Chapter 6

Various practical considerations regarding the geometry management of CAD-generated

models in design frameworks are presented, including the effect of scaling the number of

parameters in a model. Implementation of tools presented earlier in the thesis are done with

a mechanical part design, inverse/forward design problems of 2D airfoils and 3D wings, and

a multidisciplinary design space exploration study. The effect of geometry gradient quality

on final designs is also assessed.

Chapter 7

A concluding discussion is presented that summarizes the thesis contributions. Sugges-

tions are also given for future research that furthers the feasibility of applying CAD in the

geometry management of automated aircraft design optimization.

57

THIS PAGE INTENTIONALLY LEFT BLANK

58

Chapter 2

Generating CAD Model Geometry

Geometry management begins with a methodology for constructing geometry represen-

tations. When managing CAD-generated models this becomes a non-trivial task if the

resulting model must be suitable for automated design optimization. For completeness, a

thorough presentation of CAD model geometry is presented in this chapter. The anatomy

of a CAD-generated model is first presented to introduce terminology. The various param-

eterization levels for such a model are then defined, and a new formal definition for design

intent is given. The focus then shifts to a proposed set of CAD-based model construction

techniques which embed particular attributes requisite in design optimization frameworks.

Various CAD-generated model geometries are explored to discuss the application of these

new concepts.

2.1 Reasons for Focusing on Model Geometry in

Design Optimization

The process of design optimization needs a greater focus on model geometry from the

onset. Compared to research done in other aspects of design optimization (e.g., optimization

algorithms, framework data management, simulation tools, etc.), there is little in the design

optimization literature on the importance of geometry management, including how model

geometries are constructed for implementation in a design framework. The CAD geometry

community focuses on computational geometry and digital geometry representation. The

shape design community focuses on methods for geometry sensitivity calculation, both for

59

CAD models and analytic geometry. The CAD user community typically focuses on the

construction of CAD models for manufacturing. However, a bridge between all these CAD

research activities in the context of design optimization is lacking.

In general, model geometries may hinder a design optimization framework if poorly

managed for various reasons. First, if a model geometry cannot regenerate everywhere

within the feasible design space, an automated optimization system will fail (unless the

system is programmed to handle such exceptions). Secondly, automated analysis tools will

fail or give spurious results if the input geometry is corrupted due to poor construction.

This is evident, for example, if wing surfaces are “punctured” by internal structure after

a new geometry is regenerated. As depicted in Figure 2-1, a high-fidelity aerodynamic

analysis will then “see” a wing surface with sharp corners protruding the previously smooth

airfoil contours and give spurious results. Again, the design system must be tolerant of

these situations to avoid issues such as erroneous finite-difference calculations (otherwise

the optimizer will struggle to determine an appropriate step direction). Thirdly, if the design

space of the geometry is fixed, then the design system cannot explore outside of this design

space. Hence, a completely different model must be constructed for each design space of

interest, which results in added expense in the early time-limited phases of design. Fourth,

if the model geometry is not constructed to morph in expected ways, then impractical

geometry designs may result that cause an automated design system to bifurcate its design

path away from the intended geometry shapes.

Figure 2-1: The outer mold line of a model is punctured by an internal structural component
at a given design point due to poor model construction.

60

In order to address the issues presented here, a focus on CAD-generated model construc-

tion is provided to reduce or eliminate such problems. The intent here is not to develop a

single, “perfect” CAD model geometry that will serve every design scenario. Instead, the

intent is to create guiding principles for development of simple, adaptable models that are

adequate for most design studies. Especially at the onset of design, minimal geometry is

sufficient (e.g., an aircraft outer mold line and simple structural features) since more de-

tailed geometry can be added later. This is also adequate for the low-order models used

early in the design cycle.

Additional reasons for considering model geometry arise in finding geometry gradients of

CAD models and casting non-CAD geometry into CAD models. Without insight into how

CAD systems construct geometry, geometry sensitivities are often obtained through finite-

differences. This gets difficult when changing model topology, or may get too expensive as

the number of design variables increases. Furthermore, since design processes also inevitably

lead to a manufactured model, the multiple geometry representations used early in design

will eventually need to be translated into CAD geometry. This often leads to a loss of

geometry information that makes the resultant CAD model inconsistent with the optimized

geometry coming from prior analysis.

2.2 The Anatomy of CAD Model Geometry

CAD systems describe model geometry by various useful approaches depending on the

level of interaction desired with the underlying geometry. From the perspective of the user

and GUI, a high-level representation of the model is available; for greater access to the

computational geometry representation of the model, the boundary representation with

topology are accessible. These notions of model geometry are discussed here.

2.2.1 Modeling Geometry with CAD

When a designer uses a feature-based CAD system to construct a closed, 3D object, a

complete build procedure must be created in a “top-down” manner. First, the abstract

object is planned as a model containing a set of features {Ωi} that intersect via geometry

operations (e.g., using Constructive Solid Geometry Boolean operations). The ordered

construction of these features makes a build-recipe called the feature-tree, which generally

61

is non-unique for generating a given model, that is driven by a set of design parameters.

The coupled feature-tree and parameter space are embodied in a master-model that defines

an instance of the model representing the original abstract idea. The CAD system geometry

kernel processes the feature-tree and parameters in the master-model, conducts the specified

geometry operations on the features (i.e., generates appropriate surfaces and calculates their

intersections) and subsequently defines a boundary representation (BRep) for the model.

This BRep then becomes the computational geometry representation of the abstract object,

whereas the master-model contains the construction and design information that bridges

the abstract idea to a model and BRep.

Each feature in the model is also constructed by a non-unique build-recipe that correlates

with the intended role of the feature in the model. This construction procedure consists

of multiple 2D or 3D cross-section sketches which drive various geometry operators (e.g.,

extrusions, revolutions, cuts, blends, etc.) when applied. These sketches consist of numerous

sketch entities (e.g., lines, arcs, conic sections, splines, etc.) connected in a piecewise

continuous manner as a closed loop. The individual sketch entities may be driven by

parameters and constraints; in some cases multiple sketch entities may be driven by the

same parameter and constraints. Any parameter may be a stand-alone value driving a

sketch entity, whereas in other cases the parameter may be driven by an expression in the

master-model equation set or an equation outside of the master-model.

2.2.2 The Model Boundary Representation

The CAD geometry kernel will generate a feature by processing its appropriately defined

sketches and applying geometry operators. This begins by “solving” the sketches, meaning

the end-points of sketch entities (which are typically connected in order to create closed-

volumes) are located in Euclidean space in terms of driving dimensions and constraints. The

geometry operators reference the sketches when creating surfaces. Depending on the sketch

complexity, these surfaces may have simple analytic representations (such as a cylinder

or cone) or require NURBS definitions. Since the sketch may result in various surfaces,

the geometry kernel executes surface-intersection algorithms, as needed1, and bounds the

extent of the surfaces according to the underlying sketch end-points. The new feature is

1Typically the resulting surfaces are defined to their full extent per the sketch primitives; however, in
some scenarios trimming is done for planar surfaces, which are of infinite extent and often serve as an
“end-cap” surface to close a volume.

62

also intersected with the model surfaces on previously defined features. The resulting set

of bounded, or trimmed, surfaces are thus labeled faces F . These faces are bounded by

loops of piecewise continuous edges E that correlate with sketch primitive end-points or

result from intersection algorithms. All edges are subsequently trimmed and bounded by

nodes N at the intersection with other edges. These entities define the model boundary

representation.

The BRep entities also make up the model topology, which adds the connectivity infor-

mation between faces, loops, edges and nodes. An example BRep of a conceptual aircraft

model is shown in Figure 2-2, consisting of 49 faces bounded by 123 edges and 82 nodes. In

general, the topology must be manifold and “closed” (i.e., obeying the Euler rules) within a

tolerance in order for the model to be designated a solid model. When this is the case, the

BRep and model topology separate the “outside” of the model from the “inside” volume.

Model topology is also a consequence of the feature-tree and underlying construction of the

model. These entities can be implicitly or explicitly driven by a set of parameters in the

master-model.

Figure 2-2: A conceptual aircraft model BRep depicts 49 faces (grey) bounded by 123 edges
(blue) and 82 nodes (red circles).

A trim curve is generally a B-spline curve that approximates the true intersection space-

curve between surfaces. These result from various trimming algorithms in a geometry kernel

that find points of intersection between surfaces to interpolate with B-splines [56]. Figure

63

2-3 illustrates an example trim curve between a wing and fuselage intersection. Whenever

a driving parameter is changed, the geometry kernel regenerates the model by recomputing

the surfaces and their intersections to create a new model instance. For example, Figure

2-4 illustrates how a new trim curve is defined after changing wing incidence angle for the

model in Figure 2-3. Surface tessellation of the wing and fuselage are also shown to indicate

which surfaces change with this parameter.

Figure 2-3: The trim curve (red) obtained at the wing-body intersection of a wing and
fuselage is an edge in the model BRep.

The intersection at a node, as seen in Figure 2-5, is represented by a single point in R3

by a geometry kernel. These are created by collapsing the end-points of intersecting edges

64

Figure 2-4: The trim curve (red) from the model in Figure 2-3 is recalculated as a new trim
curve (blue) when a perturbation in wing incidence angle (a driving geometry parameter) is
done and the model is regenerated. Surfaces are tessellated before and after the perturbation
to show which surfaces are driven by the parameter.

to a single point, as seen in Figure 2-6. Such end-points are only used if they are within

some relative tolerance sphere of each other. The specifics of these intersection algorithms

and their logic are typically non-transparent to the CAD user.

Figure 2-5: The intersection of multiple surfaces at a point becomes the node BRep entity.

When model parameters are changed, it is possible for the topology at the intersection

nodes to not change. In this case, the parameter change may cause the trim curve end-

points to move in tandem and maintain a relative spacing within a tolerance sphere of

each other, as illustrated in Figure 2-7(a). This new intersection node is based on the

65

Figure 2-6: Illustration of the node topology representation in a BRep.

same initial trim curve end-points. The original topology is conserved in this case because

no additional intersection nodes, trim curves or faces are created. In some instances, the

model may also be constructed to preserve the single intersection node, thus disallowing the

trim curve end-points from moving outside of their relative tolerance sphere. The case of

three intersecting surfaces is a special case where the intersection node is always preserved;

however, this preservation is less likely as the number of intersecting surfaces increases.

It is more likely, though, for parameter changes to cause a topology change at a node.

This occurs when the new trim curve end-points move beyond their relative tolerance sphere

and new intersection nodes and trim curves are created to close the volume. This scenario

is depicted in Figure 2-7(b). As a result of two end-points being perturbed beyond the

tolerance sphere surrounding the two remaining end-points, two additional nodes and trim

curves, shown in blue, are created to close the topology (thus ensuring “watertightness”).

2.2.3 Model Topology Connectivity

A geometry kernel determines the BRep topology connectivity to ensure a closed-volume

from a computational geometry perspective. This connectivity information is also useful to

have if shape sensitivities are desired for a CAD model. As discussed in Chapter 3, knowing

how the BRep entities associate with the master-model information allows a designer to

find how the model geometry is driven by parameters.

A set of intersected features Ω = {Ωi} (i = 1, . . . , nΩ) in a model is represented with a

66

(a)

(b)

Figure 2-7: Illustration of node perturbations where (a) no topology changes are made and
where (b) topology changes are made with added trim curves and nodes.

67

BRep topology, wherein each feature points to the global listing of faces in the model BRep.

For feature Ωi, the associated topology tree exists in hierarchical fashion from shells, faces,

loops, edges and finally nodes. Sets of face, edge and node indices contain connectivity

information as well. Table 2.1 shows the hierarchy for different connectivity levels, where

the sets of topological elements are indexed as

F = {Fj} j = 1, . . . , nF

E = {Ek} k = 1, . . . , nE (2.1)

N = {Nl} l = 1, . . . , nN .

When looping over the feature set Ω, the topology tree is traversed by looping over the

subset of faces {F} ∈ F pertaining2 to Ωi. Each face branches to loops {L} ∈ L; each loop

index also branches to a subset of edges {E} ∈ E; all edge indices then branch to a subset

of nodes {N} ∈ N. Unless otherwise specified by the geometry kernel, each face has nL

loops, which is different for each face.

Entity BRep Connectivity

Features Ω
→ Shells {S}
→ Faces {F} → Loops {L} → Edges {E} → Nodes {N}

Faces F
→ Feature ∈ {Ω}
→ Shell ∈ {S}
→ Loops {L} → Edges {E} → Nodes {N}

Edges E
→ Face ∈ {F}
→ Loop ∈ {L}
→ Nodes {N}

Nodes N
→ Face ∈ {F}
→ Loop ∈ {L}
→ Edge ∈ {E}

Table 2.1: Different hierarchy levels of BRep connectivity among the BRep entities.

Looping over the sets F, E or N yields connectivity information in a different manner.

Each face Fj points to a single generating feature index, {Ω} ∈ Ω, and has a topology tree

that expands as described for the feature set above. From the view of edges, the faces that

2Groups of faces may also be catalogued as a shell and multiple shells {S} may be attributed to a feature.

68

meet along edge Ek are a subset {F} ∈ F and the end-point nodes are a subset {N} ∈ N

(both sets have a cardinality of 2). Finally, from the perspective of nodes, the faces and

edges that intersect at node Nl are a subset {F} ∈ F and {E} ∈ E, respectively (the

cardinality of which are both equal to χl). It is obvious that each node in the BRep is

constructed from a different number of intersecting faces/edges.

2.3 Model Parameterization Taxonomy

The perspective used to categorize parameters in a model geometry is an important con-

sideration when planning the model construction process in a CAD system. The notions of

multifidelity geometry described here are useful to employ when a CAD model is meant to

support multifidelity analysis in a design optimization setting.

2.3.1 Multifidelity Geometry Perspective

There are a number of ways to parameterize a solid model generated in a CAD system.

In the context of aircraft conceptual design, though, a natural choice of parameterization

hierarchy is obtained by starting from a planform-view of the model to a more detailed view.

Using this perspective, a general taxonomy of parameterization levels are identified as: class,

configuration, assembly, part, feature and primitive levels. This taxonomy is helpful in the

context of design frameworks because each level represents a different geometry fidelity that

corresponds with the fidelity of analysis that utilizes such information. Figure 2-8 captures

the essence of a general model parameterization with the levels defined in Table 2.2.

Parameter Level Definition

Class Distinguish configuration layouts

Configuration Distribute and orient a set of assemblies

Assembly Distribute and orient a set of parts

Part Relate the distribution and orientation of a set of features

Feature Dimension a group of primitives

Primitive Dimension properties of a classical or spline primitive

Table 2.2: Definitions for the various parameterization levels possible in a model.

69

2.86

0
.3

5

0.51 0.51

1
.0

7
0.

48

2.96

0.
49

0.78

1.
1

2

Configuration Level
(Set of Assemblies)

Assembly Level
(Set of Parts)

Part Level
(Set of Features)

Feature Level
(Extrude, revolve,
sweep, loft, etc.)

Primitive Level
(Lines, arcs, Bspline
curves, conics, etc.)High-Fidelity

Geometry

Low-Fidelity
Geometry

High-Fidelity
Parameterization

Low-Fidelity
Parameterization

Figure 2-8: An illustration of various parameterization levels that define models. Low-
fidelity parameterizations can typically refer to configuration-level variables, whereas higher-
fidelity parameterizations can refer to primitive-level variables.

The class level is not shown in Figure 2-8 because it serves to distinguish between con-

figurations such as monoplane, bi-plane, blended-wing body and other complex geometries.

Each class embodies the design space illustrated in Figure 2-8, which is of greater interest

here. All red entities in Figure 2-8 become the focus for the subsequent level of parameter-

ization. For example, one of the three assembly blocks in the configuration level is chosen

to highlight its four component parts. One of the four parts is then selected to view the

three features (shown as blocks) used to generate it. By choosing one of the features, the

primitive level geometry and variables are displayed.

This taxonomy of geometry parameterization provides a perspective to view levels of

geometry information. It also assists the designer in planning where driving parameters are

defined within the model. If Figure 2-8 is viewed as a hierarchy of geometry information in

a model, the configuration and assembly variables can be designated low-fidelity geometry

variables because they are typically associated with planform descriptors. At the other

end, the part, feature and primitive variables resolve surfaces in the model and may be

designated high-fidelity geometry variables. This labeling distinction references the amount

of geometry information available at each level. Low-fidelity variables inherently describe a

70

low-fidelity geometry representation which does not provide surface information. The high-

fidelity variables thus describe a high-fidelity geometry representation that does give surface

information. By generating a model that embodies both low- and high-fidelity geometry,

the model is appropriately designated a multifidelity geometry representation. As shown in

subsequent sections, it is interesting to note that the model generation process flows in the

direction of high- to low-fidelity variables; however, in aircraft conceptual design the amount

of available geometry information flows in the direction of low- to high-fidelity variables.

2.3.2 Embedding Design Space Flexibility

Careful consideration of each parameter is needed when planning an intended geometry

morphology for a model. For example, consider a wing that is designated the geometry

level of a part, where its feature-tree may consist of a single loft feature between root

and tip airfoil profiles. The design variable that denotes wing sweep thus becomes a part

variable that is constant across the wing span. Consequently, a future design change that

warrants a break in the wing, resulting in two wing segments with different wing sweep, will

be impossible to represent within the current design space of the model. An entirely new

model would be necessary with an expanded design space consisting of two sweep variables.

However, if the potential for non-constant wing sweep were considered at the start

of model construction, the sweep could be categorized as a feature variable. The wing

construction recipe could potentially be designed with two or more loft features, as follows:

(1) A loft between the root and first break airfoil profiles; (2) a loft between the first and

second break airfoil profiles (repeated for subsequent break locations); (3) a loft between the

final break and tip airfoil profiles. Each loft would be driven by a separate sweep variable

with this plan. As a result, the new model design space obtains an increase in degrees

of freedom while able to represent the smaller design space (proven by setting each sweep

feature variable to the same value).

This trivial example highlights the importance of carefully categorizing the design vari-

ables in the context of how the model may be used after construction. By contemplating if

a design variable has the potential for spanning multiple geometry features during a portion

of the design iteration process, an opportunity exists to embed more degrees of freedom in a

model. Identifying all of the design variables for a complete solid model may not be a trivial

task, though. This obviously depends on the complexity and level of detail a designer wishes

71

to embed into the model for design-space exploration in conceptual design. The initial cost

of planning the model will pay off downstream in design with greater parameterization

flexibility.

2.3.3 Parameterization Examples

Simple examples illustrate the nature of multifidelity parameterizations in models. For in-

stance, the location of the wing and horizontal stabilizer along a fuselage can be defined

as a configuration variable3. Its value causes a change in the aircraft configuration (aft

tail versus canard configuration) within the monoplane class, as seen in Figures 2-9(a) and

(b), without modifying the lifting-surface definitions. Only the trimming of the fuselage

and lifting-surfaces are modified by the geometry kernel. However, the higher-fidelity pa-

rameterization of a spline primitive, which represents the lifting-surface airfoil, allows local

surface control for shape optimization, as observed in Figures 2-9(c)–(e). Changing these

values causes finer control of local surface characteristics in the resulting feature (or part)

without changing the wing assembly, aircraft configuration or class.

There are various schemes for parameterizing an aircraft planform. The Program for

Aircraft Synthesis Studies (PASS) [44] parameterizes a monoplane aircraft4 using the input

geometry parameters in Table 2.3. The fuselage contains additional parameters shown in

Table 2.4. This code is usually designated a low-fidelity analysis due to its usage of empirical

formulations, thus its geometry representation is limited to primarily planform parameters.

An extension of the wing geometry parameters is made to create a new parameterization in

Table 2.5, which allows defining various planform wing panels. In each of these examples the

parameters correspond to the configuration, assembly and part levels of parameterization

for a model.

If the PASS wing parameterization is chosen, for example, additional part and feature

variables must be derived in terms of the given PASS parameters when planning a wing

design. The parameters in the wing portion of Table 2.3 are also given classical notation

in Table 2.6, and also define derived variables needed to construct a wing model. Other

primitive airfoil-shape parameters are needed to define the wing outer mold line necessary

3Model regeneration robustness is improved if this parameter is defined as a percentage of fuselage length
rather than using absolute model coordinates. The former ensures the wing or stabilizer will always reside
within the fuselage length, whereas the latter has no such guarantee.

4See Appendix B for a description of PASS geometry parameters

72

(a) (b)

(c)

(d)

(e)

Figure 2-9: An example of a low-fidelity configuration change is observed between (a) and
(b) by modifying a configuration variable relating the wing and stabilizer location along the
fuselage. Furthermore, higher-fidelity control of surface topology is seen between (c), (d)
and (e) by varying primitive variables associated with the airfoil shape.

73

Configuration Assembly Part Feature Primitive

Wing wingxposition wingdihedral taperw chordextspan tovercw
wingheight arw sweepw x/ctransition

sref lex
tex
Airfoil∗

Horizontal Tail Arm∗ dihedralh taperh sweeph toverch
Tail Tail Height∗ arh Airfoil∗

sh/sref

Vertical ttail – taperv sweepv tovercv
Tail Tail Arm∗ arv Airfoil∗

sv/sref

Fuselage – – fuseh/w nosefineness pilotlength
tailfineness windshieldht
fwdspace Nose Shape∗

aftspace Wing-Body
Junction∗

Fuselage Lobe
Shape∗

Table 2.3: These PASS geometry parameters (see Appendix B) are categorized with respect
to geometry level of fidelity for a monoplane aircraft class. Low-fidelity design variables on
the left of the table are separated from high-fidelity design variables on the right. Italicized
parameters with an asterisk are necessary to create a CAD model, yet are not explicit inputs
as PASS parameters.

74

Fuselage

FuseL Fuselage length
FuseHW Fuselage height-to-width ratio (constant cross-section)
FuseH Fuselage height
NoseFineness Nose fineness ratio (Nose length-to-fuselage width ratio)
Lpilot Longitudinal distance to pilot station from origin
Lradome Longitudinal distance to radome wall from origin
Lextrafwd Longitudinal length of additional constant cross-section added after

the nose (separate from constant cross-section region)
Lextraaft Same as Lextrafwd, yet applied aft of the constant section of fuselage
Lwindow Longitudinal length of pilot window as seen from side-view
TailFineness Tailcone fineness ratio (tailcone length-to-fuselage width ratio)
Hradome Vertical distance from the top of the radome to the global z = 0 line
Hwindow Vertical length of the pilot window as seen from side-view
Hpilot Vertical distance from the start of the pilot station from the z = 0

line
Hnosedroop Vertical length of nose displacement below the centerline of the

constant-section fuselage
Htailconeend Vertical length of the tailcone end-face
Htailcone Vertical distance from tailcone tip (bottom portion) to the bottom

of the fuselage

Table 2.4: A parameterization for fuselage models utilized in the PASS aircraft design
system.

Lifting Surfaces

btotal Total wing span
Stotal Total wing area
b() Vector of partial-span wing segments
S() Vector of partial wing areas corresponding to each wing segment
Sweep() Vector of sweep angles
Dihedral() Vector of dihedral angles
N() Vector containing the number of cross-sections per wing segment
Taper Total taper ratio, similar to that for a trapezoidal reference area (tip

chord to root chord ratio)
WingPositionX Longitudinal distance of the root leading edge to the global origin
WingPositionZ Vertical distance of the root leading edge to the z = 0 line
refline Percentage of wing chord where an orienting reference line passes

through an airfoil profile (e.g., the quarter-chord line) for defining
sweep/dihedral

Table 2.5: A planform parameterization for lifting-surface models.

75

for high-fidelity analysis. Different parameterizations exist for airfoils and one must be

selected a priori (e.g., leading edge radius, boat-tail angle, location of maximum thickness,

or airfoil shape functions). For the tail surfaces, a PASS parameterization similar to that of

the wing is used (excluding the clex and ctex variables). Although the fuselage planform is

described by parameters in Table 2.4, the nose contours, fuselage-lobe shape and wing-body

junction surface are not specified in detail. These aspects of the fuselage are important to

properly capture the total vehicle aerodynamic performance.

Design Derived Equation
Variables Variables

taperw tw Ref. Root Chord c1ref =

(
1

1 + tw

)√
Sref
A

chordextspan bext Ref. Tip Chord cnref
=

(
tw

1 + tw

)√
Sref
A

arw A Ref. Break Chord cbref = (1− bext) c1ref + bextcnref

sweepw Λ Root Chord croot = clex + c1ref + ctex

sref Sref

lex clex

tex ctex

Table 2.6: These derived variables are a function of the PASS design variables and provide
further information needed to create a wing CAD model.

A sensitivity analysis of the solid model shape (with respect to a performance metric)

will indicate which initial surface shapes require greater attention for redesign later. In this

light, a designer can initially design surfaces using their expertise for the sake of creating

a model that captures the entire aircraft configuration. This may entail using a default

wing airfoil, for example, that is compatible with the cruise Mach number for the vehicle.

If multiple configurations utilize that same wing airfoil, then comparison can be isolated

to configuration, assembly and part parameters. Otherwise, poor initial airfoil shapes will

likely cause adverse effects on the overall performance that may negate the positive aspects

of the configuration itself. Since shape optimization is not the main focus of the conceptual

design phase, certainly later design phases can conduct more detailed shape optimization

on primitive and feature variables to further improve performance.

76

2.4 Defining a Model Design Intent

Creation of CAD-generated models typically consists of combining geometry entities and

operations in a particular manner until the model appears as the designer intended. This

suffices for new users learning to use CAD software. However, as experience is gained it

becomes very apparent to the user that a reasonable visual appearance of the model does not

ensure a good design. The nature of any design process is to iterate the design parameters

until an objective optimum is reached to within some degree of satisfaction. Therefore, the

CAD-generated model must have the capacity to appropriately represent design variations,

which means it maintains a designer’s intended shape-change over a spectrum of driving

parameter values.

This abstract notion of model construction is coarsely defined as design intent and

may take on different meanings for different designers. The CAD user community views

design intent as the way in which sketch dimensions/constraints, plus feature selection,

combine to create a digital shape rendering of an abstract object. Others view design

intent as the manner in which model entities move when driving dimensions are modified.

For example, the SolidWorks CAD system user’s-guide states: “Design intent is how your

model behaves when dimensions are modified.” A survey of design intent research provides

another perspective: “The interpretation of design intent in general range from treating it as

a historical record of analyses and decisions that led to the choice of the particular artifact or

feature in question to treating it as the sum of the features (functional, geometric, constraint

etc.) and the attributes of the features” [32]. Some researchers aim to understand design

decisions and quantify design intent through algorithms that analyze features and geometry

operations used on a model. Since those decisions are often influenced by unquantifiable

metrics, such as aesthetics, prior experience in manufacturing, etc., the nature of design

intent becomes very vague indeed.

Each definition of design intent is made in the context of how a CAD model will be

used once it exists. By observing the views on design intent already mentioned, coupled

with the training practices given to CAD users for learning model construction, it becomes

clear that conventional design intent is primarily geared for constructing models to digitally

represent a final, static abstract object, or family of objects that are geometrically similar,

for manufacture. Figure 2-10 illustrates two examples from the SolidWorks 2010 user-guide

77

that support this view of design intent. Both examples are models wherein holes reference

the dimensions of a base extrusion. Either the spacing of holes is driven by the extrusion

dimensions, or a hole is constrained to not be driven by those dimensions. In 2-10(a) the

orientation and spacing of drill holes is maintained even after the hinge length is increased.

In 2-10(b) a family of parts with similar geometric features is possible by modifying vari-

ous driving dimensions and leaving others unchanged. In these examples, the models are

intended to represent manufacturable objects that must maintain a specific overall shape

description without representing different geometry modes or other parameterizations. This

is acceptable for the end-use of such CAD models and particular design processes. How-

ever, this does not apply to all possible design scenarios, especially aircraft design in early

conceptual phases.

(a) (b)

Figure 2-10: These SolidWorks 2010 user-guide images are two examples of employing
design intent. In (a) the relative orientation and placement of geometry features (e.g., the
drill holes) remain symmetric to the centerline and maintain a similar distribution pattern
when the hinge length is changed. Figure (b) illustrates how various model dimensions
(e.g., center-hole diameter, block width and height, hole height, etc.) can be changed and
the parts maintain geometric similarity.

As shown in Table 2.7, the pros and cons of conventional design intent perspectives high-

light the need for a new perspective that especially applies to aircraft conceptual design.

Even though modern CAD systems are designed to implement current design intent per-

spectives, it is possible to still utilize such systems with a new design perspective in mind. In

particular, the application of CAD in aircraft conceptual design brings the need for greater

flexibility in defining the aircraft model via multiple parameterizations. Shape design must

be supported, hence the selection of geometry features require special consideration for

malleability. Finally, the desire to automate the design optimization process entails a need

for greater regeneration robustness, or a lower likelihood of violating geometry construction

78

rules within a geometry kernel as a result of conflicting dimensions/constraints. With these

needs in mind, a CAD model used in aircraft conceptual design should not be intended

to represent a final design for manufacture. Instead, the model intent should be multi-

faceted, possibly driven by various parameterizations, and capable of handling planform or

shape-design changes. This perspective invites designers to consider that

Design Intent = f(a posteriori model application),

meaning that some post-construction usage of a CAD model drives the initial design in-

tent embedded in the model. Usage may refer to “representation of static geometry,” or

“amorphous shape design in an automated design framework containing specific analysis

tools.” In practice, designers need not foresee all possible applications of the CAD model

downstream in their design process because the new perspective allows for model adapta-

tion when additional geometry and analysis information is provided. A model is sufficient

even if it only properly functions within the design circumstances it is exposed to.

Conventional Design Intent Perspective
Pros Cons

— Represent objects with a fixed param-
eterization

— Cannot represent the same object us-
ing multiple parameterizations

— Objects remain geometrically similar
when changing driving dimensions

— Shape design is limited to the embed-
ded parameterization and Feature selec-
tion

— Greater combinations of dimen-
sions/constraints may lead to model re-
generation problems

Table 2.7: The application of conventional design intent ideas is appropriate for particular
CAD-based model applications; however, all design scenarios do not benefit as well from
this approach.

A more formal definition of design intent is proposed here that is suited to meet the needs

inherent to aircraft conceptual design. In order to fully understand this definition, certain

principles from the shape-design optimization community are employed in this context of

CAD models. Using the illustration in Figure 2-11 as a guide, the concept of design motion

for a manifold, closed modelM =M(xj) is defined here to correspond with the movement of

79

the model geometry surfaces, and their intersections, when the jth set of driving parameters

xj (each corresponding to a different chosen parameterization) are modified and a new model

instance is generated. The design space, xj = {Pi}, is the set of parameters Pi ∈ R used

to drive the model geometry. A design time is also considered as Pi ∈ [Pi,initial, Pi,final],

which is the value of a parameter between an initial value Pi,initial and a final value Pi,final.

Since the model M(xj) is a function of the design space, the model geometry and BRep

topology are instantiated at a design point by fixed parameter values. This leads to the

notion of a design trajectory, {M(xj,initial),M(xj,final)}, which is the range of design points

representing model geometry found between an initial and final design time. Finally, the

design velocity, dM(xj)/dxj , is the design point rate-of-change in Euclidean space of an

instance of model geometry with respect to changing parameters (i.e., design sensitivity)5.

Figure 2-11: The concepts of design motion, design space, design point, design trajectory
and design velocity are illustrated as a simple graph representation for a model M(x),
driven by a single design space x, to give greater intuition when describing a new design
intent.

Therefore, the manner in which a model morphs is best quantified by the design motion

of its geometry and BRep. That design motion, whether intended or not in the context

5The shape-design community sometimes defines design velocity as the normal component of the geometry
gradient (as projected onto the local surface normal). Throughout this dissertation, however, a broader
definition is used where design velocity refers to the complete gradient.

80

of other qualitative considerations, is the embedded design intent of the model. With

these definitions for design motion and the guiding principles behind multifidelity geometry

parameterizations, the proposed definition for design intent can be stated as:

Definition 2.4.1. Given a model M = M(xj) with an embedded jth design space of

driving model parameters xj = {Pi}, where Pi ∈ R varies between a span of design time Pi ∈

[Pi,initial, Pi,final], the design intent of a CAD-generated model is the set of design trajectories

{M(xj,initial),M(xj,final)} over which M(xj) successfully regenerates and exhibits design

motion.

It is clear from Definition 2.4.1 that the proposed design intent emphasizes the geometry

response to driving parameters as its main focus. This formal definition of design intent

provides a lens through which a designer can evaluate the a posteriori usage of their CAD

model and its construction methodology, especially if automated design space exploration is

expected. Otherwise, an ambiguous definition of design intent provides a very limited means

to evaluate the effectiveness of a CAD model construction methodology for subsequent

application. An example design trajectory for the cut-cone model in Figure 2-12 is shown

in Figure 2-13 to identify its embedded design intent. The parameter set is {θ, h, d} for this

model geometry, which set the cone half-angle, the cone height and the distance of a vertical

cut-plane from the cone axis, respectively. The design points are instantiated across the

design space θ = {25◦, 85◦} at 1◦ increments. Only the BRep edges and nodes are depicted

for θ = {25◦, 30◦, 55◦, 70◦}, but only BRep nodes are shown for all other design points. The

resulting design trajectory for each BRep entity is intuitive for variations in θ because the

cone is “flattened” with increasing θ. The cone is still cut by the vertical plane at high

θ values because it has infinite extent in all directions. Though when θ = arctan(d) = θ∗

(where θ∗ ≈ 22◦ for d = 0.4), the cone and vertical plane create a difficult situation for

the geometry kernel because both features are coincident solely at a single point. The

cut-operation cannot be accomplished, thus the geometry kernel circumvents that scenario

by modifying the BRep topology accordingly, as described in Section 2.2.2, via a node

bifurcation. If θ → θ∗ from above, then the three nodes N3, N4 and N5 (see Figure 3-1)

are collapsed into N ′ and edges E3, E4 and E7 are removed. If θ → θ∗ from below, then

the initial node N ′ bifurcates into N3, N4 and N5 and edges E3, E4 and E7 are created as

a result of applying the cut-operation. By observing such design motion, the potential for

81

(a) (b)

(c) (d)

Figure 2-12: (a) Sketch entities are piecewise continuous and driven by parameters, such as
the cone angle θ and height h in this case. The CAD geometry kernel processes the sketch
entities and generates associated surfaces for the cone feature. (b) Adding a cut-operator
with a planar face results in a new model instance and an additional geometry parameter, d.
(c)-(d) The final model topology for this cone-plane feature shows edges {E1, . . . , E7} (lines)
and nodes {N1, . . . ,N5} (circles) bounding faces {F1, . . . ,F4} used to create the feature.

82

Figure 2-13: The design trajectory of the cut-cone model in Figure 2-12 is shown for a
parameter range θ = {25◦, 85◦} at 1◦ increments. Topology is unchanging on this design
trajectory. BRep edges are shown for different θ values, whereas only the BRep nodes
(boxes) are shown at each design point.

BRep topology changes can be found along a design trajectory.

In the context of the parameter θ, it is clear that the design intent for the cut-cone

model consists of two piecewise continuous design trajectories. One design trajectory exists

between 0 < θ < θ∗ and the other between θ∗ < θ < π/2. There is no unique design velocity

at the end-points of each span of design time because the cone geometry is undefined at

θ = 0, π/2 as well. The complete design intent for the cut-cone model is obtained by

conducting a similar design motion analysis for parameters d and h and identifying the

feasible design trajectories that result.

2.5 Generating Multifidelity and Multidisciplinary

Model Geometry

Since conventional approaches in constructing model geometry are often tailored for pur-

poses other than automated design optimization, a new perspective is necessary to generate

models that are suitable for such use. The following discussion explains a proposed approach

with various example cases.

83

Figure 2-14: A node bifurcation is shown as the model passes through θ∗ ≈ 22◦. The initial
node Ni bifurcates into Ni+1,1, Ni+1,2 and Ni+1,3; new edges are also created. The lower
image highlights the “small” cut-plane face that exists just before the bifurcation occurs,
which implies that the tolerance sphere for the initial node is substantial.

84

2.5.1 Model Construction Methodology

Once an understanding of CAD model features (see Appendix A.4), parameterization lev-

els, design intent and construction approaches are obtained, a general model construction

methodology can be created that is unique for aircraft models implemented in conceptual

design settings. This is accomplished by combining particular aspects of CAD-based and

Direct Construction approaches (see section 1.2). The useful elements of both construction

approaches are summarized here.

CAD-based Elements

For simplicity, utilize classical primitives to define cross-section characteristics of non-lift-

generating bodies (an exception may be a lifting-fuselage body, though) and spline primitives

for the cross-sections of lift-generating surfaces. Natural geometry constraints (stemming

from geometric similarity) accompany classical primitives if a specific body shape is pre-

sumed to remain consistent throughout design. Otherwise, it is possible to use spline prim-

itives for cross-sections when the “best” final surface is unknown for the application. These

sketches are constrained/dimensioned based on the intended design motion rigidity: less

rigidity provides greater shape control than a fully constrained and dimensioned primitive.

In addition, utilize loft features for a greater range of design motion. Use a global datum

reference layout with minimal primitive-to-primitive or primitive-to-feature referencing.

Direct Construction Elements

Choose a parameterization that will drive the outer mold line of the aircraft. For exam-

ple, a fuselage body profile (planform view, or side view) can be parameterized with conic

sections, linear segments or splines (e.g., see Figure A-11). This parameterization will not

be explicitly defined in the model sketches. Instead, it will serve to orient and distribute

the cross-section primitives in R3 space with respect to the global origin. In the case of a

fuselage body, for example, the coordinates of quadrant points on an elliptical cross-section

primitive will be driven by the outer mold line parameterization and remain independent of

any other feature in the model (except the global coordinate system). The same will hold

for lofted wing cross-sections (e.g., see Figure A-9), which can be driven by multiple airfoil

parameterizations that position spline points in a sketch. This approach allows the designer

85

the option to change the outer mold line parameterization and afterwards map it to driving

dimensions in the same 3D model. This is generally possible if a mapping between the

selected parameterization and the model dimensioning scheme exists6. Through this ap-

proach differences in parameterization can represent differences in the concept design spaces

with the same underlying CAD model. Without this approach, added reference datums,

dimensions and constraints will be needed to restrict the design motion of primitives.

A Combined Approach

A combination of the CAD-based and Direct Construction methods results in a scheme

for model building that is malleable, robust7 and flexible for a general design trajectory.

Malleability stems from control of loft cross-sections, which permits a form of local surface

design. Regeneration robustness is embedded by reducing the coupling of datum references

and geometry to a minimum, the limit of which is sole utilization of the global datum

planes, origin and potentially a reference curve for certain features in the model. Minimal

dimensioning between geometry primitives and other features also reduces the potential for

regeneration hysteresis sometimes seen with CAD systems [79]. Finally, flexibility is ob-

tained by having any parameterization drive the distribution and orientation of independent

primitives in the model.

Automated model generation greatly simplifies the manual and tedious process of creat-

ing complicated models by hand with a CAD system GUI. Although an initial development

cost is required, the automated process reaps large time-savings in the long-term when

multiple models are desired. A scripted procedure also simplifies the global distribution,

orientation and attributes of primitive sketches via parameter distributions (e.g., chord,

airfoil thickness, and radii distributions). Models with greater shape control are possible

by including more primitive sketches along an outer mold line profile, or a minimum num-

ber of sketches is possible to define the 3D geometry in a coarse manner. Such model

characteristics are easily adapted via automated scripts.

Lastly, multidisciplinary 3D modeling becomes feasible by including additional features

6If the CAD system enables scripting a parameterization definition within its master-model, then the
parameterization remains “internal” to the model geometry. However, if the CAD system does not have this
capability, an “external” parameterization can drive the model when an interface to the geometry kernel
exists. This approach is less ideal since the model geometry depends on additional software external to its
definition.

7Throughout this thesis the usage of “robust” implies regeneration robustness, not the more expansive
topic of design robustness that is beyond the scope of this document.

86

or parts to the model that represent other disciplines. For example, the methodology

explained above is applicable for creating internal structures. A distribution of structural

attributes, such as those related to a wing spar, can be parameterized within the context

of the wing outer mold line that already exists. This results in an internal structure that

remains within the outer mold line envelope. In this manner the attributes of malleability,

robustness and flexibility are given to these structural components because they are created

in the same fashion as the outer mold line. It is also possible to develop a library of

structural components that are driven by the outer mold line and also a separate structural

parameterization. The resulting attributes for the assembly of structural components and

outer mold line surfaces are the same as those of the individual components, meaning the

assembly inherits malleability, robustness and flexibility from its parts.

Table 2.8 summarizes the benefits of the model construction methodology and design in-

tent presented thus far. Using these principles, a CAD model is more enabled for automated

design optimization than through conventional approaches.

Model Construction Approaches
Conventional Proposed

— Fixed parameterization only reflects
needed dimensioning to generate desired
shape

— The same shape can be driven by mul-
tiple parameterizations

— Geometry information in the model is
not coupled with any analysis geometry
requirements

— Analysis geometry requirements are
embedded in the CAD model

— Datum referencing, dimension-
ing/constraints are sufficient to restrict
design motion (thus, greater design rigid-
ity) and preserve geometric similarity

— Robustness is achieved with min-
imal datum referencing, dimension-
ing/constraints for greater design motion

— Single geometry mode is representa-
tive of final design shape

— Malleability for shape design is possi-
ble and various geometry modes can be
represented

— Primarily manual construction process
via a GUI

— Minimal surface quality issues (sliver
edges/faces) via Feature-selection

— Primarily automated geometry gener-
ation

Table 2.8: The conventional and proposed model construction methodologies yield distinct
model attributes that better serve different post-application uses.

87

2.5.2 Single Discipline Examples

Three examples are given to demonstrate the model construction methodology summarized

in Section 2.5. First the reference datum layout is explained, followed by the manner in

which sketch primitives are created. Although any parametric CAD system would suffice,

the SolidWorks CAD system [19] was selected for model generation and Visual Basic code

was developed to automate the generation process through the SolidWorks API. Without

the automation, though, the same 3D models could be created manually using the GUI at

a greater time expense.

Tube-and-Wing Model

The reference datum layout establishes how rigid (in a design motion sense) and robust

the model construction is in a design space. Datum planes and lines are often arbitrarily

established in order to create a model that fits a final shape. This can unintentionally

lead to a more rigid design motion for the model. To maximize robustness and model

applicability throughout diverse design trajectories, a minimal datum reference layout is

best. This methodology also has shorter regeneration times and a more compact feature-

tree sequence. Upon initialization of the CAD system, a global coordinate system is created

with associated global datum planes. Sketch planes with greater orientation flexibility are

defined by constraining their origin to the support points of a 3D datum spline primitive

(which is not constrained to a single sketch plane) and constraining their normal vector to

the datum curve tangent. The distribution of support points sets the distribution of sketch

planes, as seen in Figure 2-15(a). The 3D datum spline thus becomes the only parent feature

to the sketch plane. As the tangent vector of the datum spline changes at a support point,

the constrained sketch plane will reorient accordingly.

Once 3D datum splines are created for the fuselage, wing, and empennage, with cor-

responding child sketch planes, geometry primitives are added to the sketch planes, as

observed in Figure 2-15(b). Since each sketch plane has its origin defined at the refer-

ence spline point, a globally-defined parameterization for a cross-section primitive must be

mapped to the local sketch coordinate system. Once all sketch planes are populated with

primitives, a single loft is generated through the appropriate sketches for each component,

as seen in Figure 2-15(c). Guide curves may be necessary to constrain the loft, as in the

88

(a)

(b)

(c)

Figure 2-15: The automated model generation process is illustrated here: (a) depiction
of global datum planes and 3D datum splines; (b) addition of primitive sketches as chil-
dren of the datum splines; (c) final loft across the primitive sketches of each configuration
component.

89

case of explicitly defining the leading/trailing edge of a lifting-surface. A single loft is

advantageous over multiple lofts across a component, as discussed in Section A.1.

The resulting model contains independent components defined by independent primitive

sketches. Designers must inspect the loft quality in order to determine what number of cross-

section primitives is sufficient for a component. Loft overshoots/undershoots may occur in

regions where an abrupt change in surface derivatives occur, requiring greater refinement

with added sketches. Conversely, regions with constant surface derivatives may warrant

fewer sketches.

(a) (b)

(c) (d)

Figure 2-16: A parameterization consisting of piecewise-continuous line segments and el-
liptical arcs for the fuselage nose profile was defined outside of the CAD system. Classical
primitives were used (elliptical arcs) to define the cross-sections. This parameterization
determined the quadrant and center point distributions, as seen in (a) side view, and (b)
top view. The distribution of elliptic primitives was driven in the CAD system by this
parameterization, as shown in (c) side view and (d) top view.

The fuselage and wing profiles were modeled as piecewise-linear segments patched with

conic sections, as illustrated in Figures 2-16(a)–(d) and 2-17(a)–(f), respectively. These

profiles were also driven by the parameters in Tables 2.3 through 2.5. The resulting loft

surfaces could be morphed in numerous ways by manipulating the datum reference curve

90

(a) (b)

(c) (d)

(e) (f)

Figure 2-17: A parameterization consisting of piecewise-continuous line segments was de-
fined for the wing leading/trailing edges and quarter-chord. Reference markers for the airfoil
are shown in (a) top view, (c) front view, and (e) isometric view. The distribution of spline
primitives was driven in the CAD system by this parameterization, as seen in (b) top view,
(d) front view, and (f) isometric view.

91

and/or changing the distribution of sizing parameters among their cross-section sketches.

These parameterization choices permit the shape control possible in free-form design meth-

ods. When assuming that components will maintain a particular profile shape, though,

classical primitives available in the CAD system provide a natural geometry shape con-

straint for body cross-sections.

Depending on the extent of shape design needed, an additional compromise is made in

the decision of which primitives to use when creating cross-sections. Spline primitives can be

defined with numerous degrees of freedom (either via support or control points) to better

represent an intended curve shape. However, enriching the design space in this manner

can increase the likelihood of reaching additional local extrema in design optimization,

especially if aerodynamics analysis is involved. Fine control of surfaces can also lead to

undesirable variations in curvature if support points are changed one at a time. On the

other hand, foregoing fine surface control allows for classical primitives that represent certain

shapes with fewer design variables. These avoid unwanted curvature variations since the

CAD geometry kernel constrains these primitives with geometric similarity (e.g., elliptical

primitives maintain a particular curvature distribution profile regardless of perturbations

in the quadrant point locations). A designer must decide which components benefit from

classical primitives (such as a constant-radii fuselage section) or splines (better suited for

fuselage-nose features and airfoils) while considering problem tractability for optimization.

Flying-wing Model

The main steps in constructing a generic flying-wing configuration are shown in Figure 2-

18. Although seemingly similar to the wing construction for the tube-and-wing model, this

model exemplifies a different wing parameterization. The 3D datum spline in Figure 2-18(a)

serves as the parent to all cross-section sketches defined normal to it. The end-points of

the datum spline are modified to provide sufficient dihedral for modeling winglets. The

cross-sections in Figure 2-18(b) are oriented according to the datum spline and distributed

using the planform parameterization in Table 2.6. In contrast to the main wing in the

tube-and-wing model, the airfoil cross-sections have a twist distribution linearly ranging

from +1◦ at the root, 0◦ at the span-break and −3◦ at the tips. Furthermore, the airfoil

stack consists of three standard airfoil profiles, as shown in side-view in Figure 2-19. The

inboard 1/3 semi-span contains a NACA 23015 shape, followed by the NACA 3317 airfoil in

92

(a)

(b)

(c)

Figure 2-18: The automated model generation process is illustrated here for a flying-wing
configuration: (a) depiction of 3D datum splines; (b) addition of primitive sketches as
children of the datum splines; (c) final loft across the primitive sketches.

93

the next 1/3 semi-span and the NACA 0012 in the final 1/3 outboard panel. The option to

modify the inboard airfoils via scaling is also shown in a three-view portrayal in Figure 2-20,

where the airfoils along the inboard 1/3 span were lengthened to extend the center-body

volume aft.

Figure 2-19: The airfoil stack for the generic flying-wing model is shown in this side-view,
along with the span-wise twist distribution ranging from +1◦ at the root to −3◦ at the tip.

Lifting-body Model

The construction of a generic lifting-body model is shown in Figure 2-21. Compared to

the tube-and-wing model, this model utilizes a very different fuselage parameterization and

empennage. Instead of using a cross-section distribution based on linear segments patched

with conics, the fuselage side-view profile is driven by a NACA 3317 airfoil section, as seen

in the three-view of Figure 2-22. Fuselage cross-sections are elliptical primitives distributed

with higher density near the fuselage nose to capture the higher surface curvature expected

there. The planform (top-view) extent of the cross-sections are based on an elliptical nose

section followed by a straight linear section. The horizontal tail component is adjusted for a

“T-tail” to avoid flying in the fuselage wake at high angles of attack. This is accomplished

by simply relocating its datum spline to the desired position, as shown in Figure 2-21(a).

In this case all lifting-surfaces have NACA 0012 airfoil sections with zero twist.

2.5.3 Multiple Discipline Examples

The traditional CAD concept of top-down design applies to generating structural com-

ponents and layouts. An outer mold line acts as a parent component that constrains the

subsequent child components added internally or externally. These constraints are expressed

94

Figure 2-20: The airfoil stack for the generic flying-wing model is modified along the inboard
1/3 span by scaling the airfoils to create a greater center-body volume.

95

(a)

(b)

(c)

Figure 2-21: The automated model generation process is illustrated here for a lifting-body
configuration: (a) depiction of 3D datum splines; (b) addition of primitive sketches as
children of the datum splines; (c) final loft across the primitive sketches for each component.

96

Figure 2-22: The lifting-body fuselage is based on a NACA 3317 side-view profile and
patched elliptical-linear sections in planform view. Elliptical primitives make up the cross-
sections.

97

as a maximum volume, for example, or as geometry features that provide a constraint of

design motion (either in R2 or R3). Generating additional components within the context

of existing parent components is possible in most CAD systems. An assembly-mode per-

spective permits utilization of existing features, such as datum references and constraining

surfaces, to define new child components. Regeneration of the model is thereafter successful

by maintaining these component-coupling references intact.

Generating the structural components in a manner similar to the outer mold line gen-

eration allows for particular a priori knowledge to become available (see Section A.4 for

further discussion on this). For example, knowing that certain geometry primitives are

used to define the leading and trailing edge of a wing may serve for datum referencing.

Also, knowing the sequence of airfoil sketches used to create the wing loft can simplify

the structural datum referencing layout. Such information is key in order for the outer

mold line and internal structural components to exhibit similar design motion. Without

utilization of such information, the design space of the assembly can become, in a design

motion sense, restricted by the most rigid component. Structural components are added to

the three models presented in Section 2.5.2 to discuss the implementation of these concepts

in different scenarios. The added parts are “merged,” or added in a Boolean sense, to the

existing outer mold line geometry in order to determine if surface intersections occur (a

more in-depth discussion on surface intersections is found in Section A.5).

Tube-and-Wing Model

Structural components were added to the generic tube-wing example, shown in Figure 2-23.

Both forward and aft box-spars were added to lifting-surfaces in addition to ribs. Stringers

were added along the fuselage length with ribs as well. These are seen in Figures 2-25 and

2-26, respectively.

Since the construction of the model outer mold line is known (see Section 2.5.2), the

structural components are created in like manner. For example, the spar cross-sections were

constrained with an offset from the airfoil splines and lofted across the entire wing span.

This was done for the spar loft to remain within the envelope of the wing loft. From a

cross-section view in Figure 2-24, the top/bottom of the spar are always within the airfoil

spline envelope. Since the spar upper/lower surfaces approximate the wing surface, the

design motion will also be similar.

98

Figure 2-23: Structural components added to the generic tube-wing example followed the
same geometry generation procedure as the outer mold line.

Figure 2-24: Spar cross-sections (red) are constructed to reference the wing airfoil definitions
(dash-dot profile), thus remaining within the airfoil spline envelope.

99

The rib structural components were also created with similar considerations in mind.

Figure 2-25 depicts ribs in the fuselage nose section and Figure 2-26 highlights ribs on a

lifting-surface. The ribs in both cases fall within the envelope of the parent lofts. In order

to avoid surface intersections, rib cross-sections were also constrained with an offset from

outer mold line loft and extruded away from any taper direction, as seen in Figure 2-27.

Figure 2-25: Close-up view of fuselage ribs and stringers in the tapered nose section of
Figure 2-23.

Figure 2-26: Close-up view of wing ribs and spars near the span break section of Figure
2-23.

Figure 2-28 depicts a new design point for the fuselage, where a point on the fuselage

datum spline is perturbed in the +z-direction. The fuselage cross-sections respond to this

100

Figure 2-27: Close-up view of ribs and stringers in the tapered aft section of the fuselage
model in Figure 2-23. The rib cross-sections are extruded in the direction contrary to the
fuselage taper direction.

perturbation by moving to a new point on the model design trajectory. The internal struc-

ture follows suit because their design motion is constrained to that of the outer mold line

loft. By referencing the datum spline, the expected out-of-plane design motion of each rib

is also observed. The same is seen in Figure 2-29 for a +z perturbation on the wing datum

spline. In this case the perturbation occurs between two rib locations and the appropriate

design motion occurs without surface intersections. Sometimes the offset values must be

larger in regions of high curvature, unless more cross-sections are used. Finally, Figure

2-30 depicts the design motion of internal structural components when an airfoil spline

definition (which drives the outer mold line loft) is perturbed in the +z-direction. The

neighboring ribs follow the outer mold line design motion locally, as does the forward spar,

by regenerating appropriately.

Flying-wing Model

The flying-wing model is given internal structural components in a similar manner to the

tube-and-wing model, as seen in Figure 2-31. In this case the distribution of spar cross-

sections and ribs are also driven by the wing loft, meaning that the variation in airfoil

profile, twist and dihedral (which models the winglets) are also manifested in the structure.

Compatibility in design motion is equivalent to that of the wing and structure in the tube-

and-wing model. However, care must be taken near the wing tips since a quick change in

span-wise curvature makes the lofts prone to surface intersections (i.e. the top/bottom face

of the wing or spar may “pinch” and intersect with the internal structure surfaces). This

aspect of the model may constrain the extent of its design trajectory. Figure 2-32 shows

101

Figure 2-28: A new design point is obtained after perturbing the fuselage datum spline,
where the outer mold line loft design motion is followed by the internal structure.

Figure 2-29: A new design point is obtained after perturbing the wing datum spline. Internal
structural components exhibit the same design motion as the outer mold line.

102

Figure 2-30: Another new design point is obtained by modifying the outer mold line loft
definition via perturbation of an airfoil spline. The local internal structure follows the design
motion of the wing loft as expected.

surface intersections that appear when a single offset value is used between the spar surface

and local wing loft. An increased offset is required at the highlighted spar stations shown in

Figure 2-32 to remove the surface intersections in those regions (equivalently, mirroring the

modifications to the spar sections at the other wing-tip removes the remaining intersections

in the figure).

Lifting-body Model

The lifting-body model is also given internal structural components, as shown in Figure 2-33.

It is no surprise that the structure in the horizontal tail is repositioned within its outer mold

line in a “T-tail” as well. The fuselage structure, though, faithfully follows the planform

(NACA 3317) and side-view distribution of cross-sections. The circumferential distribution

of stringers is maintained and their width is scaled according to the local cross-section sizing.

Modification of the stringer offset from the local fuselage loft is needed near the nose and

tail to avoid surface intersections due to quickly changing surface curvature. Adding cross-

sections to these areas can also accomplish this. Lastly, the distribution of integer-number

stringers around the fuselage are parameterized by the relative angle from horizontal of their

cross-section. This is the case at each cross-section, however at the trailing edge Figure 2-33

incorrectly suggests the stringers collapse to a point. Close inspection shows that the high

103

Figure 2-31: Internal spars and ribs are added to a flying-wing model. Each is driven by
the parent wing loft, which undergoes changes in airfoil definition, twist, and datum spline
deflection.

Figure 2-32: Surface intersections appear symmetrically across the body center-line when
including internal spars and ribs in a flying-wing model. Although each is driven by the
parent wing loft, which undergoes changes in airfoil definition, twist, and datum spline
deflection, modifications of the spar offset distance is needed at the highlighted locations to
remove surface intersections there.

104

aspect ratio cross-section maintains the appropriate relative-angular parameterization.

Figure 2-33: The lifting-body model is given internal structural components which follow
parameterization changes made to the tube-and-wing model.

2.6 Summary

This chapter presents a new perspective on constructing CAD-based model geometry for

specific usage in an automated design framework. Notions of multifidelity and multidisci-

plinary geometry are proposed, along with ideas of design motion, which lead to a formal

definition of design intent. With that perspective, examples of model geometry are reviewed

with embedded characteristics that make them sufficiently suitable for automated design

settings. Using the guiding principles presented herein, CAD models simplify geometry

management by circumventing problematic design motion. Geometry gradients become the

next focus when gradient-based optimization is desired with such models.

105

THIS PAGE INTENTIONALLY LEFT BLANK

106

Chapter 3

Geometry Sensitivities

for Sketches & BRep Faces

A major component of geometry management in gradient-based optimization is the com-

putation of geometry sensitivities. Doing so with CAD model geometry in an automated

fashion via finite-differencing requires additional work to avoid potential complications.

The alternative of obtaining analytic geometry derivatives requires some knowledge of how

a geometry kernel calculates the final surfaces. Each step of surface generation must be

differentiated in order to achieve gradients with respect to any driving parameter. This

chapter focuses on the “reverse-engineering” efforts needed to obtain such analytic geom-

etry sensitivities for CAD models.1 Without these contributions, the subsequent chapters

focusing on BRep sensitivities could not be fully implemented. This chapter is organized

by first considering the solution of non-linear geometry-constraint systems for sketches.

Secondly, the gradient of sketch entities to driving parameters is presented. Lastly, the ex-

tension of sketch derivatives to geometry gradients on sketch-driven surfaces are discussed

for extrude, revolve and sweep features.

1In this thesis the term “reverse engineering” implies inferring the algorithm model for surface-generation
in a CAD system geometry kernel. This contrasts with a particular usage of the term in the CAD community,
where it is often described as recasting an already existing physical object (via 3D imaging, for example)
into a digital model using a CAD system.

107

3.1 Geometry Gradients For Canonical Parametric Surfaces

Since the faces, edges and nodes in the BRep essentially “sit on” each geometry surface

used to construct the model (within a tolerance), it is clear that the BRep sensitivity will

depend on the sensitivity of the underlying surfaces. Therefore, each surface in the model

must be differentiated with respect to parameters in order to obtain the desired geometry

gradients. As seen in the shape sensitivity analysis for Equation (1.1), only the design

velocity on active boundaries is required. This is convenient for shape design with CAD

geometry because BRep information is readily available and its associativity with surfaces

can be established. To demonstrate this, a simple scenario is first considered for a cone-

plane model geometry by determining its topology connectivity and associating its driving

parameters to its BRep for differentiation.

In Figure 3-1(a) there are four sketch entities (depicted as thick lines) used to create a

cone feature (shown as shaded faces): a vertical line segment, vertical center-line, horizontal

line segment and a diagonal line segment. The driving parameters for the horizontal and

diagonal line segments are the angle θ and height h. When a revolve geometry operator

is applied to this sketch, the CAD geometry kernel determines that a cone surface and

a planar surface are the resulting geometry needed to create the cone feature, as shown

by the shaded cone in Figure 3-1(a). The CAD geometry kernel trim the planar “cap”

surface with the parametric cone, which is also bounded by the sketch entities. The planar

surface in Figure 3-1(a) is associated with the sketched horizontal line segment and the cone

surface is associated with the sketched diagonal line segment. The parameters θ and h are

associated with both surfaces through this sketch-surface associativity. When an additional

feature, a plane-cut, is introduced in the feature-tree, the model in Figure 3-1(b) results

after regeneration. An additional distance parameter, d, drives the new cut feature and the

resulting planar surface alone. At this point, the master-model contains two features (a

cone and plane-cut) in the feature-tree and three parameters. The resulting BRep topology

for the new model is shown in Figures 3-1(c) and 3-1(d) (note that periodic and symmetric

edges are split with a node), containing faces {F1, . . . ,F4}, edges {E1, . . . , E7} and nodes

{N1, . . . ,N5}. In this final form the edges {E3 . . . E7} are trim curves since two planar

surfaces and the cone surface are trimmed. The connectivity hierarchy between these BRep

entities is shown in Table 3.1.

108

(a) (b)

(c) (d)

Figure 3-1: (a) Sketch entities are piecewise continuous and driven by parameters, such as
the cone angle θ and height h in this case. The CAD geometry kernel processes the sketch
entities and generates associated surfaces for the cone feature. (b) Adding a cut-operator
with a planar face results in a new model instance and an additional geometry parameter, d.
(c)-(d) The final model topology for this cone-plane feature shows edges {E1, . . . , E7} (lines)
and nodes {N1, . . . ,N5} (circles) bounding faces {F1, . . . ,F4} used to create the feature.

109

Feature BRep Connectivity
Name Features Faces Loops Edges Nodes

Cone Ω1 F1 1 E1 {N1,N2}
E2 {N1,N3}
E3 {N3,N4}
E6 {N2,N4}

F3 1 E5 {N2,N5}
E6 {N2,N4}
E7 {N4,N5}

F4 1 E1 {N1,N2}
E2 {N1,N3}
E4 {N3,N5}
E5 {N2,N5}

Plane-Cut Ω2 F2 1 E3 {N3,N4}
E4 {N3,N5}
E7 {N4,N5}

Table 3.1: The connectivity hierarchy for the cut-cone model in Figure 3-1.

An additional associativity connection is made between the edges and nodes bounding

each face to the underlying surface for that face. In the case of Figure 3-1, the parameters θ

and h are associated with faces {F1,F3,F4}. The parameter d only drives face F2. In terms

of edges and nodes, the d and θ parameters both drive the trim curves {E3, . . . , E7} and nodes

{N2, . . .N5}, whereas the h parameter only drives edges {E3, E4, E7} and nodes {N3,N4,N5}.

Furthermore, the underlying canonical planar and cone surfaces (r1 = r1(u1, v1; d) and

r2 = r2(u2, v2; θ, h), respectively) are defined using the classical surface parameterizations

in Table 3.2. The parameterizations in Table 3.2 have O1 = [d, 0, 0]T ∈ R3 as the relative

Vertical Plane Cone

r1 = O1 +

 0
v1 − 1/2

u1

 r2 = O2 +

 v2 tan(θ) cos(u2)
v2 tan(θ) sin(u2)

hv2

Table 3.2: Analytic surface parameterizations for the vertical plane and cone generated in
Figure 3-1.

plane origin with d ∈ R as the distance parameter. O2 = [0, 0, 0]T ∈ R3 is the relative cone

origin. θ ∈ R is the cone semi-angle and h ∈ R is the cone height. A global reference frame is

also presumed with an origin at O0 = [0, 0, 0]T ∈ R3. In this example each surface is defined

110

in its own domain space, W1 ∈ R2 and W2 ∈ R2, where W1 = U1 × V1 and W2 = U2 × V2

with U1 = [u1,min, u1,max] ∈ R, V1 = [v1,min, v1,max] ∈ R, U2 = [u2,min, u2,max] ∈ R and V2 =

[v2,min, v2,max] ∈ R and coordinates u1 ∈ U1, v1 ∈ V1, u2 ∈ U2 and v2 ∈ V2. The parameters,

which in the case of Figure 3-1 are θ = 30◦, d = 0.4 and h = 1, were associated with

the BRep topology and surface parameterizations by inspection. Ideally these parameters

must be associated to the appropriate topology and surface equation terms in an automated

fashion. Once this is established, a complete associativity chain is created that links driving

parameters from a sketch to the resulting faces in every feature of the model.

Vertical Plane Cone

∂r1

∂u1
=

 0
0
1

 ∂r2

∂u2
=

 −v tan(θ) sin(u)
v tan(θ) cos(u)

0

∂r1

∂v1
=

 0
1
0

 ∂r2

∂v2
=

 tan(θ) cos(u)
tan(θ) sin(u)

h

∂r1

∂d
=

 1
0
0

 ∂r2

∂θ
=

 v sec2(θ) cos(u)
v sec2(θ) sin(u)

0

∂r2

∂h
=

 0
0
v

Table 3.3: Analytic representation of partial derivatives for the plane and cone surface
parameterizations in Table 3.2.

The geometry gradients of r1 or r2 with respect to any parameter in {θ, h, d} are easily

computed using the formulas in Table 3.3. In an automated geometry management setting,

these relations can be hard-coded and passed the requisite (u, v) and parameter values to

return a partial derivative. The same is true when a model is constructed of features using

any classical geometry surface with canonical parameterizations (these parameterizations

are sometimes made available by the CAD system vendor, such as Pro/ENGINEER [62], or

need to be inferred). If the geometry parameters themselves are defined as explicit functions

of other parameters, say {θ(a), h(b), d(c)}, by the designer, then the partial derivatives in

111

Table 3.3 are augmented via the chain-rule as follows:

∂r1

∂c
=
∂r1

∂d

∂d

∂c
,
∂r2

∂a
=
∂r2

∂θ

∂θ

∂a
,
∂r2

∂b
=
∂r2

∂h

∂h

∂b
.

If the designer creating the model defines the functions θ(a), h(b) and d(c), their partial

derivatives can be easily hard-coded and passed requisite data to return the desired deriva-

tive. It is important to note that in these circumstances the only parameters driving a

surface (and hence BRep faces) are those found explicitly in the surface parameterization

or in added designer-defined functions. No other geometry parameter in a model will impact

the geometry gradient of these surfaces.

A more difficult scenario arises when geometry parameters do not explicitly drive sur-

faces through a canonical parameterization. In particular, these parameters consist of model

dimensions often placed on the end-points of sketch entities that contribute to bounds on

feature surfaces. Without visual inspection of these dimensions, constraints and the sketch

entities defining a feature, it is potentially ambiguous for an automated geometry manage-

ment system to determine how these particular dimensions drive surfaces. The ambiguity

stems first from the fact that the geometry kernel may utilize various rules to define the

nonlinear system of equations incorporating all dimensions and geometry constraints in

a sketch (this process is proprietary, likely non-standard across geometry kernels and po-

tentially composed of parametric or variational approaches [30]). These rules may lead to

multiple non-unique solutions to the sketch-solve as well. In such cases, the geometry kernel

may infer an “intended”2 solution or utilize implicit constraints not imposed explicitly by

the user (see [80], [43], [51] and [23] for discussions on solving geometry constraint problems

for sketches). Secondly, the sketch solution becomes an input to the surface parameteriza-

tions, namely the (u, v) definition, which depend on the sketch geometry and constraints in

a non-transparent manner to the user.

2The “intended” design motion for sketch entities can be inferred by the sketch solve algorithm. However,
the resulting design motion may not actually reflect the designer’s desired design motion for the sketch. This
can occur, for example, in under-constrained sketches.

112

3.2 Geometry Gradients of Sketches for Sketch-Driven Sur-

faces

Since sketch primitives are the starting point for model geometry in a CAD system, under-

standing how parameterized sketches are solved leads to a formulation for sketch sensitiv-

ities. These tools are necessary to determine surface sensitivities on extrude, revolve and

sweep features as well. The geometry sensitivities of B-spline curves and surfaces (i.e., lofts

and blends) are discussed in Chapter 5.

3.2.1 Solving a Parameterized Sketch

Figure 3-2: An example model containing two extrusion features, Ω1 and Ω2, consisting of
simple and complex sketch-driving geometry.

A few examples help illustrate the challenges in automatically associating driving sketch

dimensions to model surfaces. First, many CAD systems permit users to under-define or

fully-define sketches. To see the impact of these two sketch designations, the model in

Figure 3-2 (generated using the SolidWorks CAD system) is analyzed by considering the

extrusion feature Ω1 and its driving sketch. Figure 3-3(a) depicts an under-defined sketch

and Figure 3-3(b) shows the same sketch entities augmented with additional dimensions

to make it fully-defined. In each case the vertices r11 . . . r14 consist of 2D coordinates

(x11, y11) . . . (x14, y14), respectively; the local sketch origin represents O1 = (x10, y10) (which

is known) in both sketches as well. The simple geometry constraints for the sketch in 3-3(a)

113

(a)

(b)

Figure 3-3: (a) An under-defined sketch of two line segments, constrained vertically, that
are coincident to two line segments, constrained horizontally, with corresponding dimen-
sions. (b) A fully-defined version of the sketch in (a) due to the addition of two additional
dimensions (d13 and d14).

114

are summarized as:

x11 − x12 − d11 = 0

x13 − x14 − d11 = 0 (3.1)

y11 − y13 − d12 = 0

y12 − y14 − d12 = 0

A system of linear equations is easily created to solve for (x11, y11) . . . (x14, y14) by writing

1 −1 0 0

0 0 1 −1

1 0 −1 0

0 1 0 −1

x11 y11

x12 y12

x13 y13

x14 y14

 =

d11 0

d11 0

0 d12

0 d12

 . (3.2)

The problem, though, is that the under-defined sketch implies a matrix on the left-hand

side in 3.2 that is singular. In the CAD system the sketch itself is solved in the GUI due

to implicit constraints added to (3.2) by the geometry kernel in order for the left-hand

side coefficient matrix to be non-singular. These hidden internal constraints are not known

a priori and thus make the situation ambiguous for an automated geometry management

system. In particular, only an ambiguous answer is possible to questions such as: should

r11, r12 or both exhibit design motion when d11 is changed in Figure 3-3(a)? The answer to

this will yield very different geometry gradients with respect to d11 for the resulting feature

surfaces.

Conversely, adding the dimensions d13 and d14 in Figure 3-3(b) fully-defines the sketch

by creating a reduction in the degrees of freedom by their defining equations

x14 − x10 − d14 = 0

y14 − y10 − d13 = 0.

Hence a new, non-singular system can be formed to solve for all vertex coordinates in Figure

115

3-3(b):
1 −1 0

0 0 1

1 0 −1

x11 y11

x12 y12

x13 y13

 =

d11 0

d11 + x10 + d14 y10 + d13

0 d12

 . (3.3)

The fully-defined system results in a single solution to the sketch (this was verified us-

ing the SolidWorks CAD system). In general, it is possible to confront both under- and

fully-defined sketch types. Typically the geometry kernel will not permit over-constrained

sketches (where no solution is possible) and request that the user remove redundant or

conflicting dimensions/constraints. In under-constrained sketches (i.e., under-defined), the

geometry kernel may suggest a solution based on its own internal implicit constraints and

permit leaving the sketch seemingly under-defined to the user.

Figure 3-4: The fully-defined driving sketch for feature Ω2 in Figure 3-2.

Complexity increases in the driving sketch of feature Ω2 in Figure 3-2. This sketch is

shown in Figure 3-4 and consists solely of line segments and dimensions (i.e., no geometry

constraints are present). The vertices r21 and r23 are dimensioned relative to vertices r12 and

r14, respectively, from the sketch generating Ω1. The set of geometry constraint equations

116

thus become (again, with respect to the SolidWorks system):

(x21 − x22)2 + (y21 − y22)2 − d2
26 = 0

(x22 − x24)2 + (y22 − y24)2 − d2
24 = 0

(x23 − x24)2 + (y23 − y24)2 − d2
23 = 0

(x22 − x20)2 + (y22 − y20)2 − d2
25 = 0 (3.4)

−x21 + x12 − d27 = 0

y21 − y12 − d28 = 0

−x23 + x14 − d22 = 0

−y23 + y14 − d21 = 0,

which need to be solved iteratively (e.g., using a Newton-Raphson method, or other com-

monly used method [30]). It is important to note that the driving dimensions in these

sketches explicitly drive the end-points of the sketch entities. This inferred detail implies

that the sketch entities themselves are explicitly parameterized by their end-points and

implicitly driven by the sketch dimensions. Therefore, the geometry constraint equations

for sketches will only consist of statements relating the horizontal or vertical placement of

sketch end-points with respect to one another.

Figure 3-5: The fully-defined driving sketch containing elliptical and arc sketch entities
added to the sketch in Figure 3-4.

117

An additional example of a sketch of added complexity is shown in Figure 3-5, where

elliptical and arc sketch entities were added to the sketch chain in Figure 3-4. This scenario

contains added degrees of freedom due to the arc center point, ellipse center point and

floating ellipse quadrant point (r26), as well as an angular dimension (d30) and added

horizontal dimension (d31). The geometry constraint system for this scenario is found to

be:

(x21 − x22)2 + (y21 − y22)2 − d2
26 = 0

(x22 − xc)(x24 − xc) + (y22 − yc)(y24 − yc)−
1

4
(|[x22 − xc, y22 − yc]|+ |[x24 − xc, y24 − yc]|)2 cos(d30) = 0

(x22 − xc)2 + (y22 − yc)2 − (x24 − xc)2 − (y24 − yc)2 = 0

(x23 − x24)2 + (y23 − y24)2 − d2
23 = 0

(x22 − x20)2 + (y22 − y20)2 − d2
25 = 0

−x21 + x12 − d27 = 0

y21 − y12 − d28 = 0

−x23 + x14 − d22 = 0

−y23 + y14 − d21 = 0, (3.5)

x24 − x20 − d29 = 0,

xe − x25 − d31 = 0,

(y25 − ye)2 − (y26 − ye)2 = 0,

(x21 − xe)2 + (y21 − ye)2 − (x23 − xe)2 − (y23 − ye)2 = 0,

(x25 − x21)2 + (y25 − y21)2 − (x25 − x23)2 − (y25 − y23)2 = 0,

(x25 − xe)2 − (x26 − xe)2 = 0,

(x21 − xe)2 − (x23 − xe)2 = 0.

This system can also be solved using a Newton-Raphson approach for all of the sketch entity

end-points, the arc center point, ellipse center point and floating ellipse quadrant point. It is

possible to rewrite some of the geometry constraint equations in (3.5) in a different manner

that results in an equivalent system. Determining these geometry constraint relationships

for sketches in a CAD system is necessary to identify how parameters drive the model at

118

the fundamental level. Once they are obtained for each available sketch primitive in a CAD

system, then differentiation of the sketch geometry with respect to its driving dimensions

is possible. If the given sketch is not fully-defined, then a complete geometry constraint

set cannot be clearly created unless the implicit constraint rules of the geometry kernel

are discovered. Without such information, the sketch system is under-determined and an

infinite number of solutions become possible.

3.2.2 Design Velocity at Sketch Entity End-Points

Once a fully-defined sketch system is obtained and its geometry constraints understood,

the Newton system can be used to obtain geometry gradients for the sketch. The example

of Figure 3-5 serves to demonstrate this point. The degrees of freedom for the sketch are

organized in a vector x. A residual vector f = f(x,P) contains rows with each equation in

(3.5) and a Jacobian J matrix is then created from f :

x = [x21, y21, x22, y22, x23, y23, x24, y24, x25, y25, x26, y26, xc, yc, xe, ye]
T

J =

∂f1

∂x1

∂f1

∂x2
· · · ∂f1

∂x16
...

...
. . .

...

∂f16

∂x1

∂f16

∂x2
· · · ∂f16

∂x16

 .

After linearizing f with Taylor expansions, the sketch is solved via the Newton system

xi+1 = xi − J−1f , (3.6)

where the iterate i is augmented with each x update until the residuals fall below a spec-

ified tolerance. This usually requires 1 to 3 Newton iterations (even with added geometry

“noise”) to converge to within 1.0 × 10−10 for the geometry constraints in (3.5). If the

sketch is solved exactly, then (3.6) is satisfied with xi+1 = xi, leaving

f = 0.

119

If the derivative with respect to a sketch dimension P is desired, then this outcome can be

rewritten as follows since f = f(x,P):

df

dP
=
∂f

∂x

∂x

∂P
+
∂f

∂P
= 0.

By noting that ∂f/∂x = J, this becomes

∂x

∂P
= −J−1 ∂f

∂P
. (3.7)

Solving equation (3.7) results in the derivative of all sketch degrees of freedom with respect

to any driving dimension found in that sketch. The Jacobian J used to solve the sketch

system remains exactly the same when differentiating the sketch. As long as the sketch is

solved, this method will provide geometry sensitivity of the sketch end-points. If the sketch

is unsolved, then geometry sensitivities are clearly unobtainable until sketch problems are

remedied. Once the end-point design velocities are known, the design velocity along sketch

entities can be found next. Due to the associativity of sketch entities to resulting features,

the design velocity of feature surfaces can then be found as well. That is the first step

in completely finding the geometry gradient of a CAD model. Subsequent steps require

determining the design velocity on BRep edges and nodes based on the design velocity of

their parent feature surfaces (this will be further explored in Chapter 4) or sketch primitives.

If the sketch is not solved to machine-precision due to CAD tolerances, then residual

geometry “noise” remains such that xi+1 − xi = εs with εs approximately the same order

of magnitude as the Newton tolerance. This changes the sketch derivative result in (3.7) to

∂x̂

∂P
= −J−1 ∂f

∂P
− ε̃s, (3.8)

where ε̃s = ∂εs/∂P is an error in the sketch derivative of unknown magnitude. This result

implies ∂x̂
∂P 6=

∂x
∂P compared to the true derivative ∂x

∂P . Nevertheless, the sketch derivative

is as accurate as the CAD system tolerance permits because as εs → 0 then ε̃s → 0 and

∂x̂
∂P →

∂x
∂P .

For the sketch in Figure 3-5, the design velocity of the sketch entity end-points were

determined with respect to each parameter P ∈ {d21, d22, d23, d25, . . . , d31}. The resulting

design velocity for each case are shown in Figures 3-6 through 3-10, where the relevant

120

vector magnitudes are scaled for each individual sub-figure separately. The design velocity

information shown in these Figures gives indication of which sketch entities are driven by a

dimension and likewise which feature surfaces will depend on that parameter. As a result

of this methodology for differentiating sketches, the design velocity along the sketch entities

themselves can now be determined.

121

(a) ∂x/∂d21

(b) ∂x/∂d22

Figure 3-6: The design velocity of sketch end-points from Figure 3-5 are shown with respect
to each driving parameter in the sketch.

122

(a) ∂x/∂d23

(b) ∂x/∂d25

Figure 3-7: The design velocity of sketch end-points from Figure 3-5 are shown with respect
to each driving parameter in the sketch.

123

(a) ∂x/∂d26

(b) ∂x/∂d27

Figure 3-8: The design velocity of sketch end-points from Figure 3-5 are shown with respect
to each driving parameter in the sketch.

124

(a) ∂x/∂d28

(b) ∂x/∂d29

Figure 3-9: The design velocity of sketch end-points from Figure 3-5 are shown with respect
to each driving parameter in the sketch.

125

(a) ∂x/∂d30

(b) ∂x/∂d31

Figure 3-10: The design velocity of sketch end-points from Figure 3-5 are shown with respect
to each driving parameter in the sketch.

126

3.2.3 Design Velocity Along Sketch Entities

The parameterization of each sketch entity is required in order to find the analytic design

velocity along its geometry. It is unclear if each CAD system geometry kernel utilizes a

unique parameterization for the sketch entities it supports. Therefore, until other CAD

systems are tested, the parameterizations shown here are only verified for 2D sketches

created in the SolidWorks CAD system.

Line Segments

For a given (xmin, ymin) and (xmax, ymax) as end-points to a line segment, a running param-

eter t ∈ [tmin, tmax] is defined as

tmin = 0

tmax =
√

(xmax − xmin)2 + (ymax − ymin)2. (3.9)

Thus, for a given t ∈ [tmin, tmax], a position r ∈ R2 along the line segment satisfies

r =

(

tmax − t
tmax − tmin

)
xmin +

(
t− tmin

tmax − tmin

)
xmax(

tmax − t
tmax − tmin

)
ymin +

(
t− tmin

tmax − tmin

)
ymax

 (3.10)

The design velocity along the line segment with respect to a parameter P in the sketch then

becomes:

∂r

∂P
=

(

tmax − t
tmax − tmin

)
∂xmin

∂P
+

(
t− tmin

tmax − tmin

)
∂xmax

∂P(
tmax − t

tmax − tmin

)
∂ymin

∂P
+

(
t− tmin

tmax − tmin

)
∂ymax

∂P

 , (3.11)

where the derivatives ∂xmin/∂P, ∂xmax/∂P, ∂ymin/∂P and ∂ymax/∂P are determined by

the end-point geometry gradients resulting from solving (3.7).

Circular-Arc Segments

A circular-arc segment is determined to be parameterized between two known points (xmin, ymin)

and (xmax, ymax) with a given center-point (h, k). The radius for such a circular-arc is de-

127

fined as

R =
|smin|+ |smax|

2
(3.12)

when smin = [xmin − h, ymin − k] and smax = [xmax − h, ymax − k]. The parameterization for

running parameter t ∈ [tmin, tmax] is found as

r = A−1(F + AC), (3.13)

where

A =

 (xmin − h) (ymin − k)

(xmax − h) (ymax − k)

 ,F =

 R2 cos(t− tmin)

R2 cos(tmax − t)

 ,C =

 h

k

 (3.14)

and (using −e1 = [−1, 0])

tmin = cos−1

(
−e1 · smin

|smin|

)
(3.15)

tmax = tmin + d30
π

180
. (3.16)

For this parameterization, the geometry gradient requires differentiation of each component

in (3.13), yielding
∂r

∂P
= A−1

(
∂F

∂P
+
∂A

∂P
(C−X)

)
+
∂C

∂P
. (3.17)

The terms involved in (3.17) are defined as:

∂F

∂P
=

2R

∂R

∂P
cos(t− tmin)−R2 sin(t− tmin)

(
∂t

∂P
− ∂tmin

∂P

)

2R
∂R

∂P
cos(tmax − t)−R2 sin(tmax − t)

(
∂tmax

∂P
− ∂t

∂P

)
 ,

∂R

∂P
=

1

2

(
∂|smin|
∂P

+
∂|smax|
∂P

)
,

∂|smin|
∂P

=
1

|smin|

[
(xmin − h)

(
∂xmin

∂P
− ∂h

∂P

)
+ (ymin − k)

(
∂ymin

∂P
− ∂k

∂P

)]
,

∂|smax|
∂P

=
1

|smax|

[
(xmax − h)

(
∂xmax

∂P
− ∂h

∂P

)
+ (ymax − k)

(
∂ymax

∂P
− ∂k

∂P

)]
,

128

and

∂tmin

∂P
=
−1

|smin|2

(
−e1 ·

∂smin

∂P

)
|smin| − (−e1 · smin)

∂|smin|
∂P√

1−
(
−e1 · smin

|smin|

)2

 ,

∂smin

∂P
=

[
∂xmin

∂P
− ∂h

∂P
,
∂ymin

∂P
− ∂k

∂P

]T
,

∂tmax

∂P
=
∂tmin

∂P
+
∂d30

∂P
,

∂d30

∂P
=

 1, P = d30

0, otherwise

The term ∂t/∂P is typically considered ambiguous because it implies a change in the pa-

rameterization of a curve. When arc-length is used to parameterize a curve, the running

parameter is defined as

t = tmin + (tmax − tmin)η (3.18)

for η ∈ [0, 1]. Here η serves as a percentage between tmin and tmax, thus it is not a function

of a parameter P. This removes ambiguity in finding ∂t/∂P when a curve length depends

on a parameter P, thus giving the explicit expression

∂t

∂P
=
∂tmin

∂P
+

(
∂tmax

∂P
− ∂tmin

∂P

)
η. (3.19)

Semi-Ellipse Segments

The semi-ellipse segment of minor-axis a and major-axis b is found parameterized with a

running parameter t ∈ [tmin, tmax] in the context of two quadrant points with coordinates

(x1, y1) and (x2, y2) and center-point coordinates (h, k). The calculation of r ∈ R2 along

such a semi-ellipse is determined using

a =
√

(x1 − h)2 + (y1 − k)2

b =
√

(x2 − h)2 + (y2 − k)2 (3.20)

129

and

x′ = −a cos(π/2− t)

y′ = −b sin(π/2− t). (3.21)

In order for the ellipse to be oriented properly between two points across its major-axis (in

the case of Figure 3-5 this corresponds to r21 and r23), the ellipse must be rotated about

the angle θ between the sketch unit vector e2 = [0, 1]T and r2hk = [x2 − h, y2 − k]T to be

coincident to both r21 and r23:

θ = − cos−1

(
[0, 1]T · r2hk

|r2hk|

)
.

This results in

r =

 h+ x′ cos(θ)− y′ sin(θ)

k + x′ sin(θ) + y′ cos(θ)

 . (3.22)

The design velocity along the semi-ellipse involves differentiating each aspect of the param-

eterized segment and using the chain-rule. This approach results in

∂r

∂P
=

∂h

∂P
∂k

∂P

+

 cos(θ) − sin(θ)

sin(θ) cos(θ)

∂x′

∂P
∂y′

∂P

+
∂θ

∂P

 − sin(θ) − cos(θ)

cos(θ) − sin(θ)

 x′

y′

 ,
(3.23)

where

∂θ

∂P
=

 1√
1−

(
[0,1]T ·r2hk

|r2hk|

)2

 [0, 1]T ·

(
∂r2hk

∂P
− r2hk

∂|r2hk|
∂P

)
|r2hk|2

 ,
∂r2hk

∂P
=

[
∂x2

∂P
− ∂h

∂P
,
∂y2

∂P
− ∂k

∂P

]T
,

∂|r2hk|
∂P

=

(
x2 − h
|r2hk|

)(
∂x2

∂P
− ∂h

∂P

)
+

(
y2 − k
|r2hk|

)(
∂y2

∂P
− ∂k

∂P

)
,

130

and

∂x′

∂P
= − ∂a

∂P
cos(π/2− t),

∂y′

∂P
= − ∂b

∂P
sin(π/2− t),

∂a

∂P
=

(
x1 − h
a

)(
∂x1

∂P
− ∂h

∂P

)
+

(
y1 − k
a

)(
∂y1

∂P
− ∂k

∂P

)
,

∂b

∂P
=

(
x2 − h
b

)(
∂x2

∂P
− ∂h

∂P

)
+

(
y2 − k
b

)(
∂y2

∂P
− ∂k

∂P

)
.

3.2.4 Validation Examples

With the design velocity at sketch end-points known, the design velocity along sketch

entities is determined using the formulae obtained in the previous sections. The case of

Figure 3-5 is again used for validation of the parameterization reverse-engineering discussed

thus far and the validation of the sketch differentiation method that is presented.

Comparison between the design velocity obtained with the sketch differentiation method

and finite-differencing of the SolidWorks CAD model is conducted for validation. Finite-

differencing is done at various step-sizes (h ∈ [1.0 × 10−4, 1.0 × 10−10]) by perturbing

a given parameter, regenerating the model, then evaluating the coordinates r(t) along

each sketch segment (these segments appear as edges on the BRep of the model on the

sketch plane because the model is a simple extrusion away from the sketch plane) at the

same values of η ∈ [0, 1], thus maintaining consistency of evaluation. The same η val-

ues are used with the sketch differentiation method. The relative offset between design

velocity components ∂r/∂P are compared in magnitude and direction for each approach

to provide validation. The results for design velocities with respect to each parameter

P ∈ [d21, d22, d23, d25, . . . , d31] are shown in Figures 3-11 through 3-20. In each case agree-

ment between the two results are excellent.

131

(a) Design Velocity

(b) Method Comparison

Figure 3-11: (a) Design velocity vectors of active sketch primitives for P = d21 (step-
size h = 1.0 × 10−4). (b) Offset in horizontal and vertical gradient components between
finite-differencing and the sketch differentiation method.

132

(a) Design Velocity

(b) Method Comparison

Figure 3-12: (a) Design velocity vectors of active sketch primitives for P = d22 (step-
size h = 1.0 × 10−4). (b) Offset in horizontal and vertical gradient components between
finite-differencing and the sketch differentiation method.

133

(a) Design Velocity

(b) Method Comparison

Figure 3-13: (a) Design velocity vectors of active sketch primitives for P = d23 (step-
size h = 1.0 × 10−4). (b) Offset in horizontal and vertical gradient components between
finite-differencing and the sketch differentiation method.

134

(a) Design Velocity

(b) Method Comparison

Figure 3-14: (a) Design velocity vectors of active sketch primitives for P = d25 (step-
size h = 1.0 × 10−4). (b) Offset in horizontal and vertical gradient components between
finite-differencing and the sketch differentiation method.

135

(a) Design Velocity

(b) Method Comparison

Figure 3-15: (a) Design velocity vectors of active sketch primitives for P = d26 (step-
size h = 1.0 × 10−4). (b) Offset in horizontal and vertical gradient components between
finite-differencing and the sketch differentiation method.

136

(a) Design Velocity

(b) Method Comparison

Figure 3-16: (a) Design velocity vectors of active sketch primitives for P = d27 (step-
size h = 1.0 × 10−4). (b) Offset in horizontal and vertical gradient components between
finite-differencing and the sketch differentiation method.

137

(a) Design Velocity

(b) Method Comparison

Figure 3-17: (a) Design velocity vectors of active sketch primitives for P = d28 (step-
size h = 1.0 × 10−4). (b) Offset in horizontal and vertical gradient components between
finite-differencing and the sketch differentiation method.

138

(a) Design Velocity

(b) Method Comparison

Figure 3-18: (a) Design velocity vectors of active sketch primitives for P = d29 (step-
size h = 1.0 × 10−4). (b) Offset in horizontal and vertical gradient components between
finite-differencing and the sketch differentiation method.

139

(a) Design Velocity

(b) Method Comparison

Figure 3-19: (a) Design velocity vectors of active sketch primitives for P = d30 (step-size
h = 1.0× 10−4(π/180)). (b) Offset in horizontal and vertical gradient components between
finite-differencing and the sketch differentiation method.

140

(a) Design Velocity

(b) Method Comparison

Figure 3-20: (a) Design velocity vectors of active sketch primitives for P = d31 (step-
size h = 1.0 × 10−4). (b) Offset in horizontal and vertical gradient components between
finite-differencing and the sketch differentiation method.

141

3.3 Geometry Gradients of Extrude-Feature Surfaces

A simple extrusion feature creates a closed, solid volume of constant cross-section starting

with a piecewise-continuous, closed chain of sketch entities. The resulting surfaces are pa-

rameterized by (u, v) ∈ R2 coordinates defined within u ∈ [umin, umax] and v ∈ [vmin, vmax].

The u-direction is typically defined along the sketch entities, whereas the v-direction is

typically defined linearly along the extrusion direction. After determining the associativ-

ity of sketch entities with sketch faces (e.g., line segments associate with planar surfaces,

circular-arc segments associate with cylindrical surfaces), it is clear that the sketch end-

points correspond to v-isoparameter lines that bound resulting surfaces into faces. Further-

more, an isoparameter line in v along the extrude direction will usually maintain the same

cross-section definition as the original sketch plane3.

(a) (b)

Figure 3-21: Face labels for the extruded sketch in Figure 3-5 are shown in (a) with no
extrude-direction dependence of the design velocity field in (b).

3A subtlety arises when the CAD geometry kernel converts a sketch entity into a rational/non-rational B-
spline curve and then extrudes, making the resulting surface a rational/non-rational B-spline surface rather
than a canonical extruded surface of a given cross-section. The spline support points must be determined
as sample points along the sketch entity in this case before (3.25) can be applied. The surface is then
differentiated using the methods in Chapter 5.

142

As an example, the closed, piecewise continuous sketch in Figure 3-5 was extruded into

the model geometry seen in Figure 3-21(a) (end-caps not shown). The model associativity

begins with line primitive r21r22 driving F2, circular-arc r22r24 corresponding to F1, line

primitive r23r24 driving F4 and semi-ellipse primitive r21r23 associated with F3.

More formally, due to the nature of the extrude operation the sketch segment r(t)

associated with face F on surface S(u, v) is equivalent to a v-isoparameter line of the

surface S(u, v). Thus

S(u, v)|v=const ≡ r(t). (3.24)

This fact also implies that all parameters P defined solely on sketch entity r(t) only impact

S(u, v) in the u-direction and are decoupled from the extrude-direction. Evidence of this

was seen when finite-differencing the model (step-size 1.0 × 10−4) and observing design

velocity fields decoupled from the extrude direction, as in Figure 3-21(b). This means that

the design velocity field on F is found once sketch differentiation is completed by setting

∂S(u, v)

∂P

∣∣∣∣
v=const

≡ ∂r(t)

∂P
, (3.25)

which indicates the sketch gradient field is propagated unchanged in the extrude-direction.

Only the parameter associated with the extrusion length will yield a design velocity field

that is coupled to the extrude direction. For v = vmaxη and vmax = L, the resulting design

velocity becomes
∂S(u, v)

∂P

∣∣∣∣
u=const

≡ η. (3.26)

The example extrude model from Figure 3-5 was differentiated against parameters

{d21, d22, d23, d25, d26, d27, d28, d29, d30, d31} using the analytic approach and a centered-difference

approach (step-size of h = 1.0 × 10−4 for all parameters except d30, where h = (1.0 ×

10−4)π/180). Gradient results for both approaches are subtracted to show the difference in

each gradient component, where the maximum difference is plotted in Figure 3-22; contour

plots of the relative offset are shown in Appendix C with Figures C-1 through C-11, all of

which demonstrate excellent agreement.

In the event that CAD tolerances vary and increase, the expected maximum difference

will vary as well and agreement between analytic and finite-difference results will diminish.

This is seen in Figure 3-23 as the sketch sensitivity “noise” propagates to the feature surfaces,

143

thereby increasing the maximum difference between analytic and finite-difference design

velocity.

Figure 3-22: The maximum difference between the analytic and finite-difference geometry
sensitivity (across all feature faces) is shown against the parameters in Figure 3-5.

144

(a) u component

(b) v component

(c) w component

Figure 3-23: The addition of geometry “noise” increases the maximum difference between
analytic and finite-difference design velocity.

145

3.4 Geometry Gradients of Revolve-Feature Surfaces

The revolve feature is an extension of an extrude feature in that the piecewise-continuous,

closed chain of sketch entities is revolved around a central-axis some distance rd ∈ [rd,min, rd,max]

from the sketch entities. Hence a revolve can be considered an extrusion wrapped around

a central-axis. As in the extrude case, the sketch segments r(t) associated with a face F

generate a surface-of-revolution S(u, v) parameterized by (u, v) ∈ R2 coordinates defined

within u ∈ [umin, umax] and v ∈ [vmin, vmax]. The v-direction may be defined along the

sketch entities, whereas the u-direction may be defined along the revolve direction (note

this is the reverse convention from the extrude case and all revolve surfaces might not fol-

low a consistent convention). Furthermore, an isoparameter line in u along the revolved

surfaces will usually maintain the same cross-section definition as the original sketch plane.

Figure 3-24: Face labels for the revolved sketch in Figure 3-5.

For example, by employing a revolve feature on the closed-sketch of four entities in

Figure 3-5, a total of eight faces are created (each of the four periodic surfaces are split into

two faces), as labeled in Figure 3-24. Line-entities r21r22 and r23r24 in the sketch result

in faces {F3,F6} and {F1,F8}, respectively, from cone surfaces and the circular-arc r22r24

results in faces {F4,F5} from torus surfaces. The semi-ellipse entity r21r23, though, results

in faces {F2,F7} defined as rational B-spline surfaces4, which represent the semi-ellipse and

approximate a surface-of-revolution. The cone and torus surfaces are expected outcomes

from revolving the sketch in Figure 3-5. However, the rational B-spline surfaces generated

4This is known through the geometry kernel API by checking the control point weights on the surface.
Weights are 1.0 when the surface is non-rational; however, this is not the case for rational B-spline surfaces,
as seen in faces {F2,F7} of the revolve feature.

146

by the semi-ellipse entity are likely unexpected for a designer.

(a) Decoupled design velocity. (b) Coupled design velocity.

Figure 3-25: The design velocity with respect to d21 is decoupled to the revolve-direction in
(a), whereas with respect to d22 the design velocity field is coupled from the revolve-direction
in (b).

The sketch segment r(t) associated with face F on surface S(u, v) is equivalent to an

u-isoparameter line of surface S(u, v). Thus, the sketch entity associated with each face

(where u is in the revolve direction) has

S(u, v)|u=const ≡ r(t). (3.27)

In the extrude case, all parameters P defined solely on sketch entity r(t) only impact

S(u, v) in the u-direction (recall that the u-direction was along the sketch entities in

the extrude case) and are decoupled from the extrude-direction. For each parameter

{d21, d22, d23, d25, d26, d27, d28, d29, d30, d31} in Figure 3-5 the decoupling is indeed true in

the revolve case as well. Evidence of this becomes clear upon observation of the design

velocity field from a finite-difference calculation (using a step-size of 1.0 × 10−4) of regen-

erated model geometry. This is expected due to the intended design motion designed into

the model geometry. Figure 3-25 compares the design velocity fields obtained when an

unexpected design motion is embedded in the model. The case in 3-25(a) shows design ve-

locity vectors oriented along v-isoparameter lines, yet in 3-25(b) the velocity vectors show a

revolve-direction dependence. The situation in 3-25(b) occurs when the axis-of-rotation is

147

dimensioned with respect to one of the active sketch primitives being differentiated. This

creates a design velocity field that contains a translation and rotation effect of the model ge-

ometry (e.g., the individual surfaces can have a translation in their relative axes and origin,

as was the case in 3-25(b)). This can be an unintended aspect of a model design trajectory

due to poor model construction that might only be unveiled by this visual analysis of design

velocities.

For the parameters {d21, d22, d23, d25, d26, d27, d28, d29, d30, d31} this means that the de-

sign velocity field on their associated faces is found once sketch differentiation is completed

by setting
∂S(u, v)

∂P

∣∣∣∣
u=const

≡ ∂r(t)

∂P
, (3.28)

which implies rotating the sketch gradient field unchanged around the revolve-axis for the

feature. Validation of this approach is done for these parameters by comparing to a central-

difference calculation of model geometry at a step-size of 1.0 × 10−4 (a step-size of (1.0 ×

10−4)(π/180) is used for d30). The same Cartesian surface grid is used to evaluate design

velocity on both analytic and central-difference approaches. The difference between the

design velocity fields from both methods are overlaid on the model geometry in Appendix

C with Figures C-12 through C-21. The maximum difference seen on the entire feature is

plotted in Figure 3-26. In each case both methods resulted in excellent agreement.

In the event that CAD tolerances vary and increase, the expected maximum difference

will vary as well and agreement between analytic and finite-difference results will diminish.

This is seen in Figure 3-27 as the sketch sensitivity “noise” propagates to the feature surfaces,

thereby increasing the maximum difference between analytic and finite-difference design

velocity.

148

Figure 3-26: The maximum difference between the analytic and finite-difference geometry
sensitivity (across all feature faces) is shown against the parameters in Figure 3-5.

149

(a) u component

(b) v component

(c) w component

Figure 3-27: The addition of geometry “noise” increases the maximum difference between
analytic and finite-difference design velocity.

150

3.5 Geometry Gradients of Sweep-Feature Surfaces

A sweep feature is a generalization of the operation behind an extrude or revolve feature.

For an extrude feature, a closed, piecewise-continuous sketch of primitives is extruded along

a straight line in a fixed direction. In a revolve feature, the extrude direction constantly

changes along a circular arc of fixed radius. Sweep features generalize the extrude direction

further to any smooth curve (with the exception of curves that result in self-intersecting

model geometry) passing through the sketch plane. There are at least two possible ways of

extruding the sketch profile along the sweep path: (1) a normal-preserving approach and

(2) a normal-following approach. The normal-preserving approach preserves the normal

vector of the sketch profile to coincide with the original normal vector of the sketch plane

along the entire sweep path. The normal-following approach changes the normal vector of

the extruded sketch profile to match the local tangent vector direction of the sweep path.

Other sweep possibilities utilize twisting of the sketch plane along a sweep path or additional

guiding curves along the sweep path.

An example sweep feature is constructed by extruding the closed, piecewise continuous

sketch of Figure 3-5 along a 2D spline curve primitive defined on a sketch plane orthogonal to

the sketch plane of Figure 3-5. The resulting sweep feature shown in Figure 3-28 is normal-

preserving with all faces (excluding the end-caps) generated as either B-spline surfaces or

rational B-spline surfaces. As in the extrude feature case, the u-direction follows the sketch

primitives and the v-direction is along the sweep path. Sketch primitive r21r22 is a line

associated with F5; circular-arc r22r24 associates with F6; line primitive r23r24 associates

with F3 and semi-ellipse r21r23 corresponds to F4. The geometry kernel essentially samples

points on each primitive for interpolation and generates the rational/non-rational B-spline

surfaces in the sweep feature. The line primitives can be well approximated by maintaining

collinear u-direction control points. However, there is no guarantee the circular-arc and

semi-ellipse primitives will be represented exactly unless a rational B-spline surface is used

(the algorithm choice then dictates if the rational B-spline surface properly represents the

intended isoparameter primitives).

As a result of the bicubic rational/non-rational B-spline surface representation, an exact

reverse-engineering of the sweep feature geometry gradient may not be possible by solely

relying on the differentiated sketch primitives. An additional step of differentiating the

151

Figure 3-28: Face labels resulting from a sweep feature of sketch 3-5.

rational/non-rational B-spline surfaces is necessary to fully reverse-engineer the geometry

gradient (see Chapter 5). Once the sketch is differentiated and the surface interpolation

points are found, the sketch derivative values at those interpolation points are then passed

to the B-spline surface gradient algorithm (via the term ∂BQ/∂P in (5.37)), which finally

leads to the complete geometry gradient for that face.

The sketch segment r(t) associated with face F on surface S(u, v) is equivalent to a

v-isoparameter line of surface S(u, v). Thus, the sketch entity associated with each face has

S(u, v)|v=const ≡ r(t). (3.29)

In the extrude case, all parameters P defined solely on sketch entity r(t) only impact

S(u, v) in the u-direction and are decoupled from the extrude direction. For each parameter

{d21, d22, d23, d25, d26, d27, d28, d29, d30, d31} in Figure 3-5 the decoupling is indeed true in the

sweep case as well. Evidence of this becomes clear upon observation of the design velocity

field from a finite-difference calculation (using a step-size of 1.0× 10−4) of model geometry

for both normal-preserving and normal-following examples in Figure 3-29. This is expected

due to the intended design motion designed into the model geometry. However, another

scenario of unintended design motion in a model is apparent with the design velocity field

shown in 3-29(c). This apparent trajectory-dependence is a consequence of constraining the

sweep-path spline primitive to a primitive on the sketch profile. The trajectory is coupled

152

(a) Normal-preserving. (b) Normal-following.

(c) Trajectory-dependence.

Figure 3-29: The design velocity field in (a) preserves the sketch normal-direction, whereas
the field shown in (b) has a normal-following effect on the v-isoparameter line sketch gra-
dients. Neither exhibit a dependence on the sweep path compared to the case in (c).

to the sketch and some sketch geometry gradients are transmitted as a perturbation along

the spline primitive. The resulting design velocity field consists of the sketch gradients plus

the spline primitive gradient along the sweep path.

For the parameters {d21, d22, d23, d25, d26, d27, d28, d29, d30, d31} this means that the de-

sign velocity field on their associated faces is approximated once sketch differentiation is

completed by setting
∂S(u, v)

∂P

∣∣∣∣
v=const

≈ ∂r(t)

∂P
, (3.30)

or essentially propagating the sketch gradient field unchanged along the sweep path. Val-

idation of this approach is done for these parameters by comparing to a central-difference

calculation of model geometry at a step-size of 1.0×10−4 (a step-size of (1.0×10−4)(π/180)

was used for d30). Both methods are evaluated on a Cartesian grid with node spacing set

at a fixed percentage of the total parameterization length (i.e., a percentage of umax−umin

and vmax − vmin). The difference between the design velocity fields from both methods are

overlaid on the model geometry in Appendix C with Figures C-22 through C-31. The max-

imum difference is plotted in Figure 3-30 for the entire feature as well. In each case both

methods result in good agreement only in the w-component of design velocity (meaning

both methods were normal-preserving, as expected), whereas results are not in good agree-

ment for the u- and v-component directions (also anticipated due to the model geometry

153

representation). This discrepancy is primarily seen on F4 and F6, which correspond to the

semi-ellipse and circular-arc primitives, respectively.

Figure 3-30: The maximum difference between the analytic and finite-difference geometry
sensitivity (across all feature faces) is shown against the parameters in Figure 3-5.

The discrepancy arises from finite-differencing rational/non-rational B-spline surfaces

in an inconsistent manner when the knot vectors and/or the support point parameteriza-

tions are not fixed between perturbed model geometry (see Section 5.7 for details on this).

Appendix D tabulates the deviation in knot vector values for Faces F4 and F6 between

perturbed model geometry and the baseline model. With the exception of P = d30 in Table

D.9, the knot vectors change for each case and the finite-difference computation becomes

inconsistent. The case P = d30 does not have changing knot vectors, yet it is possible that

the underlying sampled support point parameterization has changed. This is possible, as

seen in Figure 3-31, because the design velocity discrepancy implies a different design mo-

tion for the rational B-spline isoparameter lines compared to a pure circular-arc primitive.

This notion is supported by comparing the validated circular-arc design velocity vectors in

Figure 3-19 (obtained by analytic differentiation of the sketch) with the finite-difference re-

sults in Figure 3-31. This case implies that the rational B-spline representation stems from

154

a formulation that only approximates the circular-arc (one such formulation can be found

in [33] even though other methods exist that represent conics properly [72]) or the support

point parameterization has changed. In the event of an approximation by the geometry ker-

nel, the design velocity discrepancy stems solely from a variation in design motion between

two different geometry entities. These reasons must also contribute to the design velocity

discrepancy seen for the other sketch parameters as well on F4 and F6.

Figure 3-31: Comparison of the analytic (blue) and finite-difference (red) design velocity
vectors shows a design motion discrepancy between the pure circular-arc primitive and the
rational B-spline representation on isoparameter lines.

These design velocity discrepancies are also unavoidable if a “snapped” Cartesian grid is

used, as discussed in [57], wherein the baseline grid nodes are projected onto the perturbed

finite-difference model geometry. This occurs by querying an inverse evaluation of the

perturbed surfaces using the baseline model grid coordinates (the geometry kernel readily

outputs this type of query) so that the nearest points on the perturbed surface are returned

and become the nodes of the perturbed Cartesian grid for differencing. This approach is a

non-rigorous approximation to design velocity that leads to spurious results, as observed in

[57]. Since the nearest point evaluation is a projection operation (where a baseline point is

projected normal to the perturbed surface), it is unrelated to the actual design motion of

a perturbed surface. Using finite-differences on “snap” grids composed of such points will

result in a calculation that is unrelated to the true geometry gradient, in general5. This is

5This can work, though, when surface design motion aligns with the queried nearest-point direction, as

155

clearly seen in Figures 3-32 and 3-33 for parameter P = d21. Figure 3-32 displays design

velocities with a spurious sweep-trajectory dependence when the “snap” grid option is used.

In addition, Figure 3-33 shows that the design velocity distribution is discontinuous along

the u-isoparameter lines and does not match the expected distribution validated in Figure

3-11 for the parent sketch. As expected, the fixed-spacing grid results are consistent with the

normal-preserving model geometry and the design velocity distribution of Figure 3-11. Sim-

ilar results are seen in Appendix E for the remaining parameters P ∈ {d22, d23, d25, . . . , d31}

of Figure 3-5. Since these results confirm that the nearest-point projection is generally not

related to surface design motion, it is recommended that “snapped” grids be avoided as a

point-tracking strategy for finite-differencing.

In summary, it may be possible to determine how the swept circular-arc and elliptical

primitives are sampled to generate the rational B-spline surfaces. This entails “reverse-

engineering” the surface by computing the sampled support points using the control points

and rational B-spline basis functions. If successful, the design velocity along the primitives

can be prescribed at these support points and the B-spline surface sensitivity method of

Chapter 5 would yield the surface sensitivity. Otherwise, knowledge of the CAD source code

appears necessary to analytically differentiate every face of sweep features. This could be

circumvented, though, if CAD systems somehow permitted regenerating the feature surfaces

with fixed parameterization. As further explained in Chapter 5, attempting to “correct”

the finite-difference sensitivity result would require “reverse-engineering” the surface as well,

thereby making the finite-difference approach unnecessary altogether. The maximum design

velocity error seen when finite-differencing the sweep feature is expected to follow the error

analysis approximations in Chapter 5 once the variation in knot vectors is known on the

B-spline surfaces.

For completeness, even though the discrepancies from finite-differences are already large

for the sweep feature, the addition of geometry “noise” does not help the situation. With

increasing CAD tolerances the expected maximum difference will vary as well and agreement

between analytic and finite-difference results not improve. This is seen in Figure 3-34 as

the sketch sensitivity “noise” propagates to the feature surfaces, thereby impacting the

maximum difference between analytic and finite-difference design velocity.

seen in translating planar surfaces or increasing the radius of circular-arcs. Spurious design velocity estimates
will occur wherever this constraint is violated on a surface.

156

(a) Fixed-spacing Grid

(b) “Snap” Grid

Figure 3-32: The design velocity vectors in (a) correctly follow the expected normal-
preserving orientation and show no sweep-trajectory dependence. In (b), however, the
“snap” grid yields non-normal-preserving design velocity results with a spurious sweep-
trajectory dependence. These design velocities reflect finite-differencing with the parameter
P = d21 and step-size h = 1.0× 10−4.

157

(a) Fixed-spacing Grid

(b) “Snap” Grid

Figure 3-33: The design velocity vectors in (a) correctly display a continuous derivative
along the u-isoparameter line (as seen in Figure 3-11). In (b), however, the “snap” grid
yields incorrectly discontinuous design velocities along the u-isoparameter line. These design
velocities reflect finite-differencing with the parameter P = d21 and step-size h = 1.0×10−4.

158

(a) u component

(b) v component

(c) w component

Figure 3-34: The addition of geometry “noise” increases the maximum difference between
analytic and finite-difference design velocity.

159

3.6 Additional Commentary on Feature Geometry Gradients

The extrude, revolve and sweep feature examples presented in this chapter demonstrate

that geometry kernels often approximate feature surfaces using B-spline surfaces. This is

the case for F3 in the extrude model (Figure 3-21), F2 and F7 in the revolve model (Figure

3-24) and F3, F4, F5 and F6 in the sweep model (Figure 3-28). It is important to extract

BRep information from model geometry in order to identify the B-spline surfaces. As

already noted, finite-difference estimates of design velocity on these surfaces may deviate

from analytic results if the knot vectors on these surfaces change after perturbing the model.

Both the extrude and revolve model demonstrate excellent agreement between the an-

alytic and finite-difference design velocity. This occurs because the underlying semi-ellipse

primitive is represented via rational cubic Bezier isoparameter lines in the u direction (where

conics are a special case for such curves [49]) and the parameterization does not change

with model perturbations. The circular-arc in F1 in the extrude model is modeled properly

as a cylinder, whereas in the revolve model it is properly modeled as a torus section (F4

and F5). For these reasons, the finite-difference design velocity has excellent agreement

with the analytic design velocity on these models. The sweep model uses rational cubic

B-spline isoparameter lines (again in the u direction) to model the semi-ellipse and circular-

arc because these formulations can also represent conics [49]. However it is clear that these

surfaces do not have fixed parameterizations when perturbed, thereby causing discrepancies

when compared to analytic sensitivities.

At this point it is clear that the geometry gradient of a CAD-generated model geometry

is best accomplished by decomposing a model into its component master-model features

and differentiating them. In this manner, topology changes can be tolerated along a design

trajectory because the final set of all BRep faces associate with some pre-defined feature.

An “instantaneous” design velocity for all faces on the complete model geometry is thus

achieved as the superposition of design velocity fields for each feature in the master model.

In this chapter the three most widely used features in CAD-generated model geometry

are reverse-engineered to yield analytic geometry gradients with respect to model parame-

ters. Each requires attention to the individual geometry surfaces resulting from the feature

operation in order to obtain the design velocity field for the entire feature. With this prim-

itive-to-primitive, surface-to-surface, feature-to-feature approach, an entire CAD-generated

160

model can be analytically differentiated. There are additional primitives and features to

reverse-engineer (B-splines and B-spline surfaces are discussed in later chapters) for a given

CAD system, yet those discussed in this chapter also cover the most widely used primitives

and dimensioning schemes. Additional geometry constraints need to be reverse-engineered

as required. Once these are obtained, the process of differentiating sketches and applying

the results to feature surfaces can ensue with the new information. With the geometry

gradient on BRep faces available, the gradient along BRep edges (more specifically trim

curves) and nodes also becomes possible.

161

THIS PAGE INTENTIONALLY LEFT BLANK

162

Chapter 4

Geometry Sensitivities

for BRep Edges & Nodes

The geometry sensitivity methods discussed in Chapter 3 are augmented by considering

the surface intersections of 3D CAD model geometry. A method for the design velocity on

BRep edges (more specifically trim curves) and nodes is presented here. This new approach

implements a minimum-velocity method that does not constrain the design velocity to a

particular direction. The special case of a closed-form, three surface intersection problem is

considered initially. A formulation for trim curves is then presented for two surface inter-

sections, followed by an extension to BRep nodes with three or more surface intersections.

Validation for each approach is presented, as well as comparison with other methods on

example problems.

4.1 Components of Design Velocity

There is a distinction between edges and trim curves in the perspective of design velocity.

Although trim curves are a subset of edges, edges that are not trim curves may not need an

additional design velocity formulation if they represent the boundaries of adjacent surfaces

defined by the full-extent of underlying primitives. In these cases the sketch end-point

design velocity is propagated along the boundary edges as in the extrude, revolve and sweep

examples discussed in Chapter 3. The same is true for nodes that are not “trim nodes”

since these correspond to the sketch node design velocity as well. Trim curves, however, rely

on the underlying surfaces that intersect and generally do not have a direct associativity

163

to design velocity on sketches. The same is true for nodes comprised of intersecting trim

curves. A design velocity formulation for trim curves and trim nodes is presented in this

chapter.

We consider an Euclidean space E ∈ R3 with origin at O0 and write the surface

parameterization for two intersecting faces F1 and F2 in a model geometry BRep using

r1, r2 ∈ E as r1 = r1((u, v)1;Pj) and r2 = r2((u, v)2;Pj). We note that F1 and F2

have domains W1 = U1 × V1 and W2 = U2 × V2, where U1 = [u1,min, u1,max] ∈ R and

V1 = [v1,min, v1,max] ∈ R with coordinates (u, v)1 ∈ W1, whereas U2 = [u2,min, u2,max] ∈ R

and V2 = [v2,min, v2,max] ∈ R with coordinates (u, v)2 ∈ W2. The set of parameters that

drive both F1 and F2 are {P1,P2, . . . ,Pj , . . . ,PJ}.

Trim curves are often cubic B-splines, yet their parameterization is usually not provided

by the surface intersection algorithms in a geometry kernel. Therefore, by using e ∈ E, the

trim curve E shared by F1 and F2 is assumed to have the parameterization e = e(t;Pj)

on the domain T = [tmin, tmax] ∈ R with coordinate t ∈ T . Since the trim curve is a

construction from two intersecting surfaces, it shares the driving parameter set of both

faces.

We first consider the geometry gradient for a face F with respect to a parameter P:

dr

dP
=

∂r

∂P
+
∂r

∂u

∂u

∂P
+
∂r

∂v

∂v

∂P
. (4.1)

By rewriting the components of design velocity in (4.1) with the following substitutions,

ṙ =
∂r

∂P
, ν =

 ν1

ν2

 =

 ∂u/∂P

∂v/∂P

 , ∇ ≡
[
∂/∂u ∂/∂v

]
, (4.2)

a more informative expression is reached:

dr

dP
= ṙ +∇r · ν. (4.3)

The velocity ν in the domain space W of F is projected into the space E by ∇r. In other

words, ν is a relative design velocity term with respect to its parent faces. In an analogous

manner (4.3) can be interpreted from a continuum mechanics perspective. The total design

velocity consists of a term denoting “unsteadiness” of the surface (ṙ), or design velocity of

164

the entire surface, and a second “convective” term (∇r · ν) representing a relative velocity,

or design velocity relative to the surface.

A similar procedure can be followed for the description of design velocity on a trim

curve. Since the actual parameterization of the trim curve is unknown, it is reasonable to

presume the form e = e(t;P). The curve design velocity is initially written as

de

dP
=
∂e

∂P
+
∂e

∂t

∂t

∂P
. (4.4)

The term
∂e

∂t
in (4.4) is obtainable from the CAD geometry kernel as the local tangent to

the trim curve. The remaining terms in (4.4) are unknown since the parameterization of

the trim curve is not given. By making the following substitutions

ė =
∂e

∂P
, ν̃ = [ν̃] = [∂t/∂P], ∇̃ ≡ [∂/∂t],

we can rewrite (4.4) as
de

dP
= ė + ∇̃e · ν̃. (4.5)

In this 1D case, the “unsteady” term (ė) refers to the design velocity of the entire trim curve

and the second “convective” term (∇̃e · ν̃) refers to the relative design velocity with respect

to the original curve (here the relative velocity ν̃ is projected into the space E by ∇̃e). In

other words, the unknown ν̃ can be interpreted as the relative change of a point along the

curve to changes in parameters because the domain coordinate t is usually expressed as a

percentage of total curve length (which may reasonably depend on P).

4.2 Closed-Form Intersection Problem

The case of three intersecting surfaces involves a closed system of geometry constraint

equations. This contrasts with the intersection trim curve problem (see Section 4.3), which

consists of an under-determined system of equations, and the node intersection problem

(see Section 4.4), which uses an over-determined system of equations. In this scenario three

intersecting surfaces (r1, r2 and r3) share a common intersection node N with coordinates

165

Figure 4-1: The intersection of two cylinders and a plane at a node.

η ∈ R3, as seen in Figure 4-1, where the geometry relations are

r1 − r2 = 0

r2 − r3 = 0 (4.6)

r3 − r1 = 0.

Then a first-order Taylor expansion in the neighborhood of the intersection point can be

written for each surface as

r1((u, v)1;P + δP)′ = r1((u, v)1;P) +
dr1

dP
δP (4.7)

r2((u, v)2;P + δP)′ = r2((u, v)2;P) +
dr2

dP
δP (4.8)

r3((u, v)3;P + δP)′ = r3((u, v)3;P) +
dr3

dP
δP (4.9)

(4.10)

Substituting these expansions into the geometry constraint equations then yields

(
dr1

dP
− dr2

dP

)
δP = 0(

dr2

dP
− dr3

dP

)
δP = 0 (4.11)(

dr3

dP
− dr1

dP

)
δP = 0,

166

so that for any δP we have

dr1

dP
− dr2

dP
= 0

dr2

dP
− dr3

dP
= 0 (4.12)

dr3

dP
− dr1

dP
= 0.

By (4.1) it is known that each surface brings two unknowns (
∂ui
∂P

and
∂vi
∂P

) for a total of

six unknowns. Thus, substituting (4.1) for each respective surface within any two equations

in (4.12) allows creation of the following closed system (here the initial two constraint

equations are used):

∂x1

∂u1

∂x1

∂v1
−∂x2

∂u2
−∂x2

∂v2
0 0

∂y1

∂u1

∂y1

∂v1
−∂y2

∂u2
−∂y2

∂v2
0 0

∂z1

∂u1

∂z1

∂v1
− ∂z2

∂u2
−∂z2

∂v2
0 0

0 0
∂x2

∂u2

∂x2

∂v2
−∂x3

∂u3
−∂x3

∂v3

0 0
∂y2

∂u2

∂y2

∂v2
−∂y3

∂u3
−∂y3

∂v3

0 0
∂z2

∂u2

∂z2

∂v2
− ∂z3

∂u3
−∂z3

∂v3

∂u1

∂P
∂v1

∂P
∂u2

∂P
∂v2

∂P
∂u3

∂P
∂v3

∂P

=

∂x2

∂P
− ∂x1

∂P
∂y2

∂P
− ∂y1

∂P
∂z2

∂P
− ∂z1

∂P
∂x3

∂P
− ∂x2

∂P
∂y3

∂P
− ∂y2

∂P
∂z3

∂P
− ∂z2

∂P

. (4.13)

The coefficient matrix and right-hand side is readily evaluated from CAD data. Since (4.13)

is a 6×6 linear system, it can be solved using LU decomposition with pivoting and multiple

back-substitutions to yield

[
∂u1

∂P
∂v1

∂P
∂u2

∂P
∂v2

∂P
∂u3

∂P
∂v3

∂P

]T
. (4.14)

The intersection design velocity is calculated by substituting the solution components into

167

(4.1) for each surface.

[
∂η

∂d1

∂η

∂R2

∂η

∂R3

]
=

[
∂r1

∂u1

∂r1

∂v1

]
∂u1

∂d1

∂u1

∂R2

∂u1

∂R3

∂v1

∂d1

∂v1

∂R2

∂v1

∂R3

+

[
∂r1

∂d1

∂r1

∂R2

∂r1

∂R3

]
.

(4.15)

An analytic solution also exists for validation comparisons. This is derived by parame-

terizing the surfaces as

Plane: r1 = u1ξ̂11
+ v1ξ̂12

+ O1

Horizontal Cylinder: r2 = R2

[
cos(u2)ξ̂21

+ sin(u2)ξ̂22

]
+ v2ξ̂23

+ O2

Vertical Cylinder: r3 = R3

[
cos(u3)ξ̂31

+ sin(u3)ξ̂32

]
+ v3ξ̂33

+ O3.

(4.16)

With global origin O0 ∈ R3 and relative surface origins O1,O2,O3 ∈ R3, these surface

parameterizations have O0 = [0, 0, 0]T , O1 = [0, 0, d1]T , O2 = [0, 0, 0.5]T and O3 = [0, 0, 0]T

for the plane, horizontal and vertical cylinders, respectively. For i = 1, 2, 3, the ith surface is

defined in its own domain space, Wi ∈ R2, where Wi = Ui×Vi with Ui = [ui,min, ui,max] ∈ R

and Vi = [vi,min, vi,max] ∈ R. The surface coordinates are simply ui ∈ Ui and vi ∈ Vi.

Although various parameterization options are possible, these three surfaces are driven

by d1 ∈ R, the distance of the plane from the xy-plane, and the cylinder radii R2, R3 ∈ R.

Thus the parameter set is P = {P1,P2,P3} = {d1, R2, R3}. With this information the

intersection node coordinates are found using elementary trigonometry:

η =

√
R2

3 −
[
R2

2 − (d1 −O23)2
]

−
√
R2

2 − (d1 −O23)2

d1

, (4.17)

where O23 refers to the third component of O2 (i.e., O2 = [O21 , O22 , O23]T). An analytic

168

geometry gradient for node N thus follows as well for each parameter in P:

∂η

∂d1
=

[
d1 −O23√

R2
3 −R2

2 + (d1 −O23)2

d1 −O23√
R2

2 − (d1 −O23)2
1

]T
,

∂η

∂R2
=

[−R2√
R2

3 −R2
2 + (d1 −O23)2

−R2√
R2

2 − (d1 −O23)2
0

]T
, (4.18)

∂η

∂R3
=

[
R3√

R2
3 −R2

2 + (d1 −O23)2
0 0

]T
.

A comparison is also made by considering a linearization at η with respect to each parameter

in P. Perturbing any parameter in P results in a new intersection node η′(d1 + δd1, R2 +

δR2, R3 + δR3) written as

η′(d1 + δd1, R2 + δR2, R3 + δR3) =

√
(R3 + δR3)2 −

{
(R2 + δR2)2 − [(d1 + δd1)−O23]2

}
−
√

(R2 + δR2)2 − ((d1 + δd1)−O23)2

d1 + δd1

.

Hence, a central-difference scheme is written as

∂η

∂d1
≈ η

′(+δd1, 0, 0)− η′(−δd1, 0, 0)

2δd1
(4.19)

∂η

∂R2
≈ η

′(0,+δR2, 0)− η′(0,−δR2, 0)

2δR2
(4.20)

∂η

∂R3
≈ η

′(0, 0,+δR3)− η′(0, 0,−δR3)

2δR3
. (4.21)

Furthermore, the sensitivity information in Table 4.1 is needed to populate the coefficient

matrix and right-hand side in (4.13). The (u, v) values for each surface at η are also required

and obtained by writing the residual equations

R1 = f(u1, v1) = ‖r1 − η‖2 = 0

R2 = f(u2, v2) = ‖r2 − η‖2 = 0 (4.22)

R3 = f(u3, v3) = ‖r3 − η‖2 = 0

169

r1 r2 r3

∂(·)
∂u

ξ̂11
R2

[
− sin (u2) ξ̂21

+ cos (u2) ξ̂22

]
R3

[
− sin (u3) ξ̂31

+ cos (u3) ξ̂32

]
∂(·)
∂v

ξ̂12
ξ̂23

ξ̂33

∂(·)
∂P1

[0, 0, 1]T 0 0

∂(·)
∂P2

0 cos (u2) ξ̂21
+ sin (u2) ξ̂22

0

∂(·)
∂P3

0 0 cos (u3) ξ̂31
+ sin (u3) ξ̂32

Table 4.1: Summary of sensitivity information needed to determine the analytic gradient
at node N for the cylinder-cylinder-plane intersection problem.

as second-order expansions of the form

f(u+ δu, v + δv) = f(u, v) +
∂f

∂u
δu+

∂f

∂v
δv +O(δu2, δv2) + · · · = 0.

With this expansion Newton’s method trivially finds each intersection (u, v) by solving the

linear 2× 2 system

∂f

∂u

∣∣∣∣
1

∂f

∂v

∣∣∣∣
1

∂f

∂u

∣∣∣∣
2

∂f

∂v

∣∣∣∣
2

i

 δu

δv

i

=

 −f(u, v)1

−f(u, v)2

i

(4.23)

for [δu, δv]Ti and iterating with ui+1 = ui + δui and vi+1 = vi + δvi until R1,R2,R3 ≤ ε for

some tolerance, ε. Note that the subscripts 1 and 2 in (4.23) refer to the components in each

vector-equation R1, R2 or R3. Since the sensitivities in Table 4.1 only require information

for (u2, v2) and (u3, v3), only R2 and R3 appear. The initial values (u0, v0) are chosen

to ensure the appropriate intersection node is found by this procedure (two possibilities

exist in this problem formulation and a similar approach is taken by CAD systems when

intersection points are queried). Once (u2, v2) and (u3, v3) are determined, the coefficient

matrix and right-hand side of system (4.13) are filled to calculate the desired sensitivities.

Results from this example problem are displayed in Tables 4.2 through 4.4 for the case

d1 = 0.6, R2 = 0.25 and R3 = 0.5. The central-difference calculations use a step-size of

170

1.0 × 10−8 for each parameter. Excellent agreement is seen among the three methods to

validate the closed-form matrix approach.

∂η

∂d1
x y z

Analytic 0.225017580185205 0.436435780471985 1.000000000000000

Finite- 0.225017582344833 0.436435781958622 1.000000005024759
Difference

Constrained 0.225017580185205 0.436435780471985 1.000000000000000
Method

Table 4.2: Comparison between the closed-form method, central-difference approximation
and an analytic solution for the node sensitivity to d1. Underlined digits denote mismatches
with the analytic solution.

∂η

∂R2
x y z

Analytic -0.562543950463012 -1.091089451179962 0.000000000000000

Finite- -0.562543950310967 -1.091089450733218 0.000000000000000
Difference

Constrained -0.562543950463012 -1.091089451179962 0.000000000000000
Method

Table 4.3: Comparison between the closed-form method, central-difference approximation
and an analytic solution for the node sensitivity to R2. Underlined digits denote mismatches
with the analytic solution.

4.3 Geometry Gradients on BRep Edges

The intersection of two surfaces has insufficient geometry information for a closed-form

formulation. The concepts of design velocity presented in Section 4.1 are applied to derive

the sensitivity of BRep edges (specifically trim curves) using the Minimum Velocity Method.

Different formulations are presented with example results.

4.3.1 Derivation Using the Minimum Velocity Method

From an analytic geometry perspective, the set of intersection for two faces, F1 and F2, will

have the exact spatial coordinates as points on their associated trim curve. This implies

171

∂η

∂R3
x y z

Analytic 1.125087900926024 0.000000000000000 0.000000000000000

Finite- 1.125087903397493 0.000000000000000 0.000000000000000
Difference

Constrained 1.125087900926024 0.000000000000000 0.000000000000000
Method

Table 4.4: Comparison between the closed-form method, central-difference approximation
and an analytic solution for the node sensitivity to R3. Underlined digits denote mismatches
with the analytic solution.

E = F1 ∩ F2 for vertices obtained after discretization of the face and trim curve. Another

way of writing this for an element e ∈ E is e ⊂ F1 and e ⊂ F2, which leads to the following

equations that hold at a point on E :

r1 − r2 = 0

r1 − e = 0 (4.24)

r2 − e = 0

Although the three equations in (4.24) appear redundant, they represent the view of a point

in Euclidean space E as determined by three different parameterizations: r1((u, v)1;P),

r2((u, v)2;P) and e(t;P).

A BRep may identify a trim curve as the intersection of two surfaces even though the

trim curve itself is not part of either surface. This occurs when the trimming algorithms

use Newton’s method to find intersection points and then interpolate them with a B-spline

curve. This trim curve approximates the true intersection space-curve that would be found

with analytic geometry. Each surface and trim curve are then “intersecting” within a

proximity tolerance εtol (defined internal to the geometry kernel) that is typically larger

than machine precision ε in order to improve the computational efficiency of trimming

algorithms and maintain smoothness.

By applying this reality with computational geometry the analytic constraint equations

172

in (4.24) become

r1 − r2 = ε1

r1 − e = ε2 (4.25)

r2 − e = ε3,

where ε1, ε2 and ε3 are the offset reached when the intersection search algorithm terminates

its Newton method and |ε1|, |ε2|, |ε3| ≤ εtol. This indicates that the set of intersection points

E has the property E 6= F1∩F2. A BRep in this circumstance will contain the faces F1 and

F2 (each with adjacent boundaries F1,edge ⊂ F1 and F2,edge ⊂ F2, respectively) along with

the trim curve E . The nearest points between the three BRep entities F1,edge, F2,edge and E

have a relative proximity that is within a ball B of radius εtol. In this light, the constraint

equations in (4.25) are not exactly redundant and still represent the view of an approximated

surface-surface intersection from the perspective of three parameterizations. This approach

ensures that all of the local information from the topology is used in providing an estimate

for the geometry gradient. If the trim curve modeled the true intersection space-curve well,

the first relation in (4.25) would suffice because the trim curve is simply a function of the

intersecting surfaces.

The inexact constraints in (4.25) require some point r∗1 at a (u, v)∗1 ∈W1 that minimizes

|r∗1((u, v)∗1;P) − e(t;P)| for a corresponding t ∈ T on the curve. Similarly, on face F2

some point r∗2 at a (u, v)∗2 ∈ W2 is needed that minimizes |r∗2((u, v)∗2;P) − e(t;P)|. By

providing the vertex coordinates of e(t;P), the geometry kernel can return the points r∗1

and r∗2 (including directional derivative information at these points) on faces F1 and F2,

respectively, that are nearest to e(t;P).

A variational analysis is now used for the geometry gradient on trim curve E . This

derivative is with respect to a parameter P common to F1, F2 and E . It may be possible

that εtol = εtol(P), yet an expression for this could only be arbitrarily specified since access

to the CAD geometry kernel source code is usually not available. Thus, we assume that

εtol 6= εtol(P), as if εtol were a fixed value in the geometry kernel.

A Taylor expansion around r∗1((u, v)∗1;P), r∗2((u, v)∗2;P) and e(t;P) is considered by

173

writing

r∗1((u, v)∗1;P + δP)′ = r∗1((u, v)∗1;P) +
dr∗1
dP

δP +
1

2

d2r∗1
dP2

δP2 + · · ·

r∗2((u, v)∗2;P + δP)′ = r∗2((u, v)∗2;P) +
dr∗2
dP

δP +
1

2

d2r∗2
dP2

δP2 + · · · (4.26)

e(t;P + δP)′ = e(t;P) +
de

dP
δP +

1

2

d2e

dP2
δP2 + · · · .

It is assumed that the parameter perturbation, δP, is sufficiently small such that topology

is preserved after regeneration with the new parameter value P + δP. The regenerated

instance would also yield offset values ε′1, ε′2 and ε′3 in (4.25). In this scenario, |ε′1−ε1| < εtol,

|ε′2−ε2| < εtol and |ε′3−ε3| < εtol are true, which from an implementation standpoint means

ε′1 = ε1, ε′2 = ε2 and ε′3 = ε3. This permits rewriting the first equation in (4.25) as

ε′1 = r∗1((u, v)∗1;P + δP)′ − r∗2((u, v)∗2;P + δP)′

= r∗1((u, v)∗1;P)− r∗2((u, v)∗2;P)︸ ︷︷ ︸
ε1

+

(
dr∗1
dP
− dr∗2
dP

)
δP +

1

2

(
d2r∗1
dP2

− d2r∗2
dP2

)
δP2 + · · ·

0 =

(
dr∗1
dP
− dr∗2
dP

)
δP +

1

2

(
d2r∗1
dP2

− d2r∗2
dP2

)
δP2 + · · · . (4.27)

The second equation in (4.25) can then be rewritten as

ε′2 = r∗1((u, v)∗1;P + δP)′ − e(t;P + δP)′

= r∗1((u, v)∗1;P)− e(t;P)︸ ︷︷ ︸
ε2

+

(
dr∗1
dP
− de

dP

)
δP +

1

2

(
d2r∗1
dP2

− d2e

dP2

)
δP2 + · · ·

0 =

(
dr∗1
dP
− de

dP

)
δP +

1

2

(
d2r∗1
dP2

− d2e

dP2

)
δP2 + · · · . (4.28)

The final equation in (4.25) becomes

~ε′3 = r∗2((u, v)∗2;P + δP)′ − e(t;P + δP)′

= r∗2((u, v)∗2;P)− e(t;P)︸ ︷︷ ︸
ε3

+

(
dr∗2
dP
− de

dP

)
δP +

1

2

(
d2r∗2
dP2

− d2e

dP2

)
δP2 + · · ·

0 =

(
dr∗2
dP
− de

dP

)
δP +

1

2

(
d2r∗2
dP2

− d2e

dP2

)
δP2 + · · · . (4.29)

174

In order for (4.27), (4.28) and (4.29) to hold to first-order in δP, we must have

dr∗1
dP
− dr∗2
dP

= 0

dr∗1
dP
− de

dP
= 0 (4.30)

dr∗2
dP
− de

dP
= 0,

where each term can be expanded as

dr∗1
dP

=
∂r∗1
∂u1

∂u1

∂P
+
∂r∗1
∂v1

∂v1

∂P
+
∂r∗1
∂P

= ṙ∗1 +∇r∗1 · ν1

dr∗2
dP

=
∂r∗2
∂u2

∂u2

∂P
+
∂r∗2
∂v2

∂v2

∂P
+
∂r∗2
∂P

= ṙ∗2 +∇r∗2 · ν2

de

dP
=

∂e

∂t

∂t

∂P
+
∂e

∂P
= ė + ∇̃e · ν̃ .

(4.31)

Then (4.30) is written using (4.31) to form the system of equations,

∇r∗1 −∇r∗2 0 0

∇r∗1 0 −∇̃e −I

0 ∇r∗2 −∇̃e −I

ν1

ν2

ν̃

ė

 =

ṙ∗2 − ṙ1∗

−ṙ∗1

−ṙ∗2

 , (4.32)

which expands to

∂r∗1
∂u1

∂r∗1
∂v1

−∂r∗2
∂u2

−∂r∗2
∂v2

0 0

∂r∗1
∂u1

∂r∗1
∂v1

0 0 −∂e

∂t
−I

0 0
∂r∗2
∂u2

∂r∗2
∂v2

−∂e

∂t
−I

∂u1/∂P

∂v1/∂P

∂u2/∂P

∂v2/∂P

∂t/∂P

∂e/∂P

=

∂r∗2
∂P
− ∂r∗1
∂P

−∂r∗1
∂P

−∂r∗2
∂P

, (4.33)

where I is the identity matrix. The system in (4.33) is over-determined and can be solved in

a least-squares sense as Ax = b. The least-squares solution, x∗, is obtained by minimizing

Rmin = ||Ax∗ − b||2. Since there is no guarantee that Rmin will have order of magnitude

ε, substituting the components of x∗ back into (4.31) may result in violations of (4.30) on

175

the order of O(Rmin):

dr∗1
dP
− dr∗2
dP

= O(Rmin) 6= 0

dr∗1
dP
− de

dP
= O(Rmin) 6= 0

dr∗2
dP
− de

dP
= O(Rmin) 6= 0,

In this situation the vertex at e will need to be assigned one of three possible sensitivity

values:
dr∗1
dP
6= dr∗2
dP
6= de

dP
.

This is remedied by augmenting the system in (4.33) with additional constraint equations

in order to provide a single design velocity vector, V, at any location along E :

V =
∂r∗1
∂u1

∂u1

∂P
+
∂r∗1
∂v1

∂v1

∂P
+
∂r∗1
∂P

=
∂r∗2
∂u2

∂u2

∂P
+
∂r∗2
∂v2

∂v2

∂P
+
∂r∗2
∂P

=
∂e

∂t

∂t

∂P
+
∂e

∂P
. (4.34)

By including these additional constraints into the over-determined system and augmenting

x with V, we obtain the new system

∇r∗1 −∇r∗2 0 0 0

∇r∗1 0 −∇̃e −I 0

0 ∇r∗2 −∇̃e −I 0

−∇r∗1 0 0 0 I

0 −∇r∗2 0 0 I

0 0 −∇̃e −I I

ν1

ν2

ν̃

ė

V

=

ṙ∗2 − ṙ∗1

−ṙ∗1

−ṙ∗2

ṙ∗1

ṙ∗2

0

. (4.35)

We can then write (4.35) in a block structure form with

 A 0

G AI

︸ ︷︷ ︸

A

 x

V

︸ ︷︷ ︸

X

=

 b

bG

︸ ︷︷ ︸

B

, (4.36)

176

where A, x and b are defined as in (4.33) and

G =

− dr

∗
1

du1
−dr

∗
1

dv1
0 0 0 0

0 0 − dr
∗
2

du2
−dr

∗
2

dv2
0 0

0 0 0 0 −de
dt
−I

 , AI =

I

I

I

 , bG =

∂r∗1
∂P
∂r∗2
∂P
0

 .

The system in (4.36) remains over-determined with the form AX = B and is solved in a

least-squares sense to give R̃min = ||AX∗ − B||2 with solution X∗. When R̃min > ε, the

resulting sensitivity vector V is equivalent to a weighted linear combination of the vectors
dr∗1
dP
6= dr∗2
dP
6= de

dP
. Each is obtained by back-substituting the components ν1, ν2, ν̃ and ė

of X∗ into (4.31). In this case, we can write

V = λ1
dr∗1
dP

+ λ2
dr∗2
dP

+ λ3
de

dP

and determine the weights λ1, λ2 and λ3 by setting up a 3× 3 system. On the other hand,

if the solution to the least-squares problem gives O(R̃min) ≈ ε, then the weights become

λ1, λ2, λ3 ≈ 1
3 and

V ≈ dr∗1
dP
≈ dr∗2
dP
≈ de

dP

to within machine-precision.

Minimal Velocity Approach using Singular Value Decomposition

In order to solve the system AX = B in a least-squares sense, it is possible to use the

normal equations, QR decomposition or the singular value decomposition (SVD). The SVD

is known to be the most robust approach when A is rank-deficient, which can be the case

when constructing A with geometry information along a trim curve.

We consider A ∈ Rm×n and write its truncated SVD as A = ÛΣ̃V̂T , where Û ∈ Rm×m,

V̂ ∈ Rm×n and Σ ∈ Rm×n can have nonzero entries σ̃i (denoted singular values) only on

the main diagonal. The singular values are ordered in a non-increasing manner σ̃1 ≥ σ̃2 ≥

· · · ≥ σ̃min ≥ TOL, where TOL ≥ ε · ‖A‖2 and all singular values less than TOL from the

full SVD of A are discarded. This is useful because the solution norm ‖X‖2 will depend on

the inverse of the smallest singular value σ̃min, which otherwise will have magnitude ε in

the full SVD of a rank-deficient A. We can then use the pseudoinverse to obtain a solution

177

as

X =
(
V̂Σ̃−1ÛT

)
B. (4.37)

When A has full rank, the solution X∗ is unique. When this condition is not satisfied the

solution is non-unique because adding any vector projected in the null space of A to X will

also satisfy AX = B. In this case, a unique solution X∗min is chosen from the null space of

A with minimum norm ‖X∗min‖2. Although this choice is standard for the pseudoinverse,

its geometry interpretation implies a conservative estimate of the true intersection design

velocity. The minimum norm solution X∗min has minimum relative velocity magnitudes ν1,

ν2 and ν̃, which leads to the most conservative estimate of sensitivity V from the null space

of A. Other options from that null space have larger relative velocity magnitudes. With V

stemming from X∗min a perturbed intersection curve e(t;P)′ = e(t;P) + VδP is minimally

displaced, with respect to the original intersecting faces and trim curve, compared to using

a different V from other X possibilities. In addition, choosing this design velocity results in

a minimum “design energy” trajectory in the face and trim curve domains, where design

energy can be represented in the domain space of F1, F2 and E as 1
2‖ν1‖22, 1

2‖ν2‖22 and

1
2‖ν̃‖

2
2, respectively.

An additional feature to this minimum velocity approach is that the resulting design

velocity vector contains a component that lies in the direction of the null space of A. This

component direction is actually the tangent vector direction of the trim curve E at the

vertex e. We show this is the case by writing the tangent at e in a conventional manner

using the local directional derivatives of F1 and F2 at the intersection. First, from the

perspective of F1 we write

1

|∂e/∂t|2
∂e

∂t
=

n1 × n2

|n1 × n2|

=
1

|n1 × n2|

(
∂~r1

∂u1
× ∂~r1

∂v1

)
×
(
∂~r2

∂u2
× ∂~r2

∂v2

)
=
∂~r1

∂u1

(
n2 · ∂~r1/∂v1

|n1 × n2|

)
− ∂~r1

∂v1

(
n2 · ∂~r1/∂u1

|n1 × n2|

)
=
∂~r1

∂u1
ω1 +

∂~r1

∂v1
ω2 (4.38)

where n1 is the normal vector at ~r1 on F1 and n2 is the normal vector at ~r2 on F2. Here

178

we also have

ω1 =
n2 · ∂~r1/∂v1

|n1 × n2|
, ω2 = −n2 · ∂~r1/∂u1

|n1 × n2|
.

We then write the tangent from the perspective of F2 as

1

|∂e/∂t|2
∂e

∂t
= − n2 × n1

|n2 × n1|2

= − 1

|n2 × n1|2

(
∂~r2

∂u2
× ∂~r2

∂v2

)
×
(
∂~r1

∂u1
× ∂~r1

∂v1

)
= −∂

~r2

∂u2

(
n1 · ∂~r2/∂v2

|n2 × n1|2

)
+
∂~r2

∂v2

(
n1 · ∂~r2/∂u2

|n2 × n1|2

)
=
∂~r2

∂u2
ω3 +

∂~r2

∂v2
ω4 (4.39)

where

ω3 = −n1 · ∂~r2/∂v2

|n2 × n1|2
, ω4 =

n1 · ∂~r2/∂u2

|n2 × n1|2
.

Both (4.38) and (4.39) have a form similar to (4.31), except with the terms ~̇r1 = 0 and

~̇r2 = 0. Therefore, if we substitute (4.38) and (4.39) into (4.30) we obtain the system

∂~r1

∂u1

∂~r1

∂v1
−∂

~r2

∂u2
−∂

~r2

∂v2
0 0

∂~r1

∂u1

∂~r1

∂v1
0 0 −∂e

∂t
−I

0 0
∂~r2

∂u2

∂~r2

∂v2
−∂e

∂t
−I

ω1

ω2

ω3

ω4

ν̃

ė

=

0

0

0

 (4.40)

Since ω1, ω2, ω3, ω4 6= 0 are already known from the geometry, we can solve for ν̃ and ė to

determine the direction of the null space of A as

x0 =
[
ω1 ω2 ω3 ω4 ν̃ ė

]T
=

[
∂u1

∂P
∂v1

∂P
∂u2

∂P
∂v2

∂P
ν̃ ė

]T
which proves that the null space is in the direction of the trim curve tangent. From (4.36) it

179

is clear that this result applies to A as well because its null space contains the null space of

A. This is a consequence of using the Minimal Velocity method. The design velocity vectors

it computes will always have a component aligned with the local trim curve tangent vector.

This component of the sensitivity estimate may be undesirable if the true sensitivity does

not have it. However, small perturbations along this sensitivity direction will approximate

the trim curve design motion well away from the curve end-points, as seen in Section 4.3.3.

The estimate may not predict design motion well near a node since information about other

edges at the node are not included in this formulation.

4.3.2 Additional System Augmentation Options

The geometry constraint equations for intersection curves can be setup in multiple ways.

Information about each intersecting face and the trim curve can be combined or omitted. In

general, a unique solution does not exist due to lacking geometry information, thus from a

geometry standpoint there is no preferred arrangement and different formulations will yield

results that share the same null space of A.

An argument can be made to use one formulation over another for a specific implemen-

tation. For example, using trim curve information (when available) ensures that the most

relevant geometry is utilized in a design velocity calculation1. Another option is to aug-

ment the geometry constraint system with constraints that enforce the same design velocity

on each intersecting entity. Without this augmentation the design velocity must be con-

structed using X∗min in (4.3) and/or (4.5). A different augmentation also allows the design

velocity to vary among intersecting entities, thus a problem in the setup can be detected

if the velocities do not match. Combinations of these options are presented here as seven

different Methods. Each results in a different design velocity field along a trim curve, yet

similar design motion for small perturbations. The advantage of including less geometry

constraints is seen in a simpler formulation for implementation. However, a tradeoff with

lower quality design velocity occurs in these cases that is not seen when more geometry

constraints are included.

1The trim curve is typically a B-spline curve that interpolates surface intersection points found by the
geometry kernel trim algorithms. Thus, since the trim curve only approximates the true intersection curve,
the design velocity along the trim curve will be driven by the intersecting surfaces and B-spline curve
geometry.

180

Method Edge Info. Constrained Solution
Included Design Velocity Check

1 No Yes No

2 Yes Yes∗ No

3 Yes Yes No

4 No No No

5 No Yes Yes

6 Yes No No

7 Yes Yes Yes

∗ Constrained to a fixed perturbation direction.

Table 4.5: Advantages and disadvantages of each trim curve
sensitivity method.

Method 1: Augmented System with Single V, No Trim Curve Information

This approach is similar to that of (4.35), yet no trim curve information is utilized. A single

design velocity constraint is enforced for each face.

∇r∗1 −∇r∗2 0

−∇r∗1 0 I

0 −∇r∗2 I

ν1

ν2

V

 =

ṙ∗2 − ṙ∗1

ṙ∗1

ṙ∗2

 . (4.41)

Method 2: Constrained Method

This approach constrains the design velocity to a prescribed perturbation direction that is

normal to the local tangent on the curve. A different prescribed direction is also possible,

yet in either case the chosen direction may have no correlation to the true design motion.

The design velocity is computed in a second-step by substituting the computed ν1 and ν2

values into (4.3).

 ∇r∗1 −∇r∗2[
∂r∗1
∂u
· s ∂u∗1

∂v
· s
]

0

 ν1

ν2

 =

 ṙ∗2 − ṙ∗1

−ṙ∗1 · s

 . (4.42)

181

Method 3: Augmented System with Single V, Includes Trim Curve Information

This method is discussed in Section 4.3. A single design velocity constraint is used for each

face and the trim curve. If geometry “noise” is present, then this added constraint averages

the differing design velocity from each component.

∇r∗1 −∇r∗2 0 0 0

∇r∗1 0 −∇̃e −I 0

0 ∇r∗2 −∇̃e −I 0

−∇r∗1 0 0 0 I

0 −∇r∗2 0 0 I

0 0 −∇̃e −I I

ν1

ν2

ν̃

ė

V

=

ṙ∗2 − ṙ∗1

−ṙ∗1

−ṙ∗2

ṙ∗1

ṙ∗2

0

. (4.43)

Method 4: No Augmentation or Trim Curve Information

This is the simplest formulation to implement because only information from the two in-

tersecting faces is used. The resulting coefficient matrix is under-determined. The design

velocity is computed in a second-step by substituting the computed ν1 and ν2 values into

(4.3).

[
∇r∗1 −∇r∗2

] ν1

ν2

 =
[

ṙ∗2 − ṙ∗1

]
. (4.44)

Method 5: Augmented System with Multiple V, No Trim Curve Information

This approach is similar to that of Method 1, except that each face is not constrained

to output the same design velocity along the intersection. Different results may occur if

geometry “noise” (due to intersection tolerances) is greater than the tolerance level used in

the pseudoinverse computation. In numerical tests where this was not an issue, the resulting

design velocities are V1 = V2. If V1 6= V2, then this indicates a problem with the geometry

constraint system possibly related to geometry “noise.”

∇r∗1 −∇r∗2 0 0

−∇r∗1 0 I 0

0 −∇r∗2 0 I

ν1

ν2

V1

V2

 =

ṙ∗2 − ṙ∗1

ṙ∗1

ṙ∗2

 . (4.45)

182

Method 6: No Augmentation, Includes Trim Curve Information

This approach pertains to equation (4.32) in the derivation of Section 4.3, prior to augmen-

tation of the system. The design velocity is computed in a second-step by substituting the

computed ν1, ν2 and ν̃ values into (4.31).

∇r∗1 −∇r∗2 0 0

∇r∗1 0 −∇̃e −I

0 ∇r∗2 −∇̃e −I

ν1

ν2

ν̃

ė

 =

ṙ∗2 − ṙ1∗

−ṙ∗1

−ṙ∗2

 , (4.46)

Method 7: Augmented System with Multiple V, Includes Trim Curve Informa-

tion

Similar to Method 3, this approach also employs the possibility of capturing the effects of

geometry “noise” by computing V1, V2 and V3 separately. Again, numerical tests showed

V1 = V2 = V3 when geometry “noise” was not an issue along the intersection curve. This is

not the case, though, when geometry “noise” exceeds the tolerance level in the pseudoinverse

calculation.

∇r∗1 −∇r∗2 0 0 0 0 0

∇r∗1 0 −∇̃e −I 0 0 0

0 ∇r∗2 −∇̃e −I 0 0 0

−∇r∗1 0 0 0 I 0 0

0 −∇r∗2 0 0 0 I 0

0 0 −∇̃e −I 0 0 I

ν1

ν2

ν̃

ė

V1

V2

V3

=

ṙ∗2 − ṙ∗1

−ṙ∗1

−ṙ∗2

ṙ∗1

ṙ∗2

0

. (4.47)

4.3.3 Validation and Comparison of Methods

The same cone-plane intersection problem used in Section 3.1 is used for validation and

comparison of the seven methods explained in Section 4.3. Although the design velocities

do not agree with the analytic case due to the sensitivity component aligned with the edge

tangent, they are each used to determine the design motion of the intersection curve by

linearly perturbing the cutting-plane parameter d by δd = 0.0004. Figure 4-2 illustrates

183

the offset norm in design motion between the analytic and other method results2. There is

better agreement in the design motion sense among these results. The “Regenerated” result

is obtained by evaluating the coordinates of the new curve at the t value of the original

curve after regenerating the model with d+ δd for δd = 0.0004.

Figure 4-2: The norm of design motion offsets are plotted across t = [0, 1] for seven methods
with respect to an analytic solution.

Ambiguity concerning which result is “best” is attributed to the value of ν̃ = ∂t/∂P.

The magnitude of this term impacts the relative design velocity along the curve that occurs

when a parameter is perturbed. The resulting ν̃ value for methods 3, 6 and 7 are plotted

in Figure 4-4 to see how the added trim curve information correlates with relative design

velocity. It is obvious that methods 1, 2, 4 and 5 do not calculate ν̃ and are thus not plotted.

The amount of “stretching” in t occurs by the same magnitude, yet opposite direction, on

either side of the hyperbola midpoint (t = 0.5), where ν̃ = 0, for methods 3, 6 and 7.

The discrepancy in design motion seen in Figure 4-2 occurs because each method has

its own inherent distribution of ∂t/∂P, as shown by the data. For this example problem,

2A design motion comparison is done between methods by checking the coordinates of the new trim curve
they generate at the same t of the original curve.

184

Figure 4-3: The design velocities of seven Methods (labeled 1 through 7) were used to
determine design motion by a linear perturbation of the cone-plane parameter δd = 0.0004.
The analytic result is labeled 0; the initial lower curve (blue) overlaps with a tangent vector
(green) and the upper curve (red) is the perturbed curve.

185

Figure 4-4: The value of ν̃, or relative design velocity on the curve, as determined by
methods 3, 6 and 7.

the location t = 0.5 exhibits design motion normal to the curve tangent, thus each method

collapses to the same design velocity and design motion. This result is encouraging since

each method preserves the symmetry of the problem. Beyond t = 0.5, though, the inherent

relative design velocity in each method indicates that a “perturbation direction” is preferred

in each case, similar to having the constrained Method #2 prefer a perturbation that is

normal to the curve tangent.

Methods #5 and #7 also benefit by computing the design velocity from the perspective

of each surface and trim curve (i.e., V1, V2, V3) at an intersection. As a check these should

be equivalent to within machine-precision, yet it is possible this will not occur if each BRep

entity has its own associated geometry tolerance (a form of “noise” that contributes to the

right-hand side of each Method). Since it is unclear which design velocity result is “more

correct” in this scenario, an average design velocity will simplify implementation. In the

cone-plane example, Figure 4-5 demonstrates that this implementation gives design velocity

results that deviate from a “noise-less” scenario by approximately the order-of-magnitude of

the geometry tolerance offset itself. Since such offsets are expected to be small in geometry

kernels, if they exist, the design velocity deviation is expected to be small compared to the

“noise-less” scenario.

186

(a) Method 7

(b) Method 5

Figure 4-5: The error between design velocity results when geometry tolerances do not
match (geometry “noise”) are shown for both Method 7 and Method 5.

187

4.4 Geometry Gradients at BRep Nodes

The sensitivity formulation on trim curves is a special case of the more-general derivation

shown here for a BRep Node (more specifically, trim nodes). Compared to the closed-

form problem for three surfaces, the general node intersection problem has more geometry

information than is needed to determine a design velocity. Therefore, using the same tools

as in Section 4.3, a derivation of design velocity at BRep nodes is presented using the

Minimum Velocity Method as well. Validation examples are shown for various topology

scenarios.

4.4.1 Extending the Trim Curve Sensitivity Derivation

A node may be considered as a point on a trim curve, however more than two intersecting

trim curves (and hence faces) contribute to its position3. To find the geometry gradient

at a node N using the Minimal Velocity Method, we begin by extending (4.25) for all

combinations of intersecting faces {F1,F2, . . . ,Fn} with n > 2. Coordinates for the node

are written as

η = η(F1,F2, . . . ,Fn;P) ∈ E,

where the parameter P drives some or all of the faces intersecting at N . We also consider

that the geometry kernel intersects trim curves within a tolerance ball of radius εtol at the

node. The intersection of faces at the node also occurs with a tolerance that may or may

not be εtol (the geometry kernel source is required to verify this). For this derivation we

assume the same tolerance εtol is used for each trim curve and face intersecting at a node.

In addition, the point on face Fj that minimizes |rj((u, v)j ;P)−η| is denoted r∗j ((u, v)∗j ;P),

thus the face-face constraint equation in (4.25) becomes

3We emphasize that nodes resulting from the trimming of trim curves may be considered a type of “trim
nodes.” These differ from nodes that correspond to end-points of sketch primitives, which simply define the
extent of primitives without involvement of trimming algorithms.

188

r∗1 − r∗2 = ε1,2

...

r∗1 − r∗n = ε1,n

,

r∗2 − r∗3 = ε2,3

...

r∗2 − r∗n = ε2,n

, · · · ,

 r∗n−2 − r∗n−1 = εn−2,n−1

r∗n−2 − r∗n = εn−2,n

,
{

r∗n−1 − r∗n = εn−1,n

}
,

(4.48)

where each equation is from the perspective of a face relative to all other intersecting faces.

We also note the possibility for an offset between the intersecting faces and the node itself,

where

|ε1,2| ≤ εtol · · · |ε1,n| ≤ εtol

|ε2,3| ≤ εtol · · · |ε2,n| ≤ εtol

|ε3,4| ≤ εtol · · · |ε3,n| ≤ εtol
...

|εn−2,n−1| ≤ εtol · · · |εn−2,n| ≤ εtol

|εn−1,n| ≤ εtol.

We can also add the perspective of each face to the node as

r∗1 − η = εN ,1

...

r∗n − η = εN ,n

 , (4.49)

with similar offsets written as

|εN ,1| ≤ εtol, |εN ,2| ≤ εtol, · · · , |εN ,n| ≤ εtol.

At this point we recognize that the geometry kernel provides no parameterization for η and

continue with a variational analysis. We first write a Taylor expansion around η and each

189

r∗j for j = 1, . . . , n as

η′ = η +
dη

dP
δP +

1

2

d2η

dP2
δP2 + · · · (4.50)

r∗j ((u, v)∗j ;P + δP)′ = r∗j ((u, v)∗j ;P) +
dr∗j
dP

δP +
1

2

d2r∗j
dP2

δP2 + · · · (4.51)

We assume that the parameter perturbation, δP, is sufficiently small to preserve topology

after regenerating with the new parameter P + δP. The new model instance also yields the

offset vectors ε′1,2, ε′N ,1, etc., such that |ε′1,2 − ε1,2| ≤ εtol, |ε′N ,1 − εN ,1| ≤ εtol, etc., as well.

From an implementation perspective, we simplify by setting ε′1,2 = ε1,2, ε′N ,1 = εN ,1, etc.

The first equation in (4.48) is used here to represent how all face-to-face node constraint

equations are written:

ε′1,2 = r∗1((u, v)∗1;P + δP)′ − r∗2((u, v)∗2;P + δP)′2

= r∗1((u, v)∗1;P)− r∗2((u, v)∗2;P)︸ ︷︷ ︸
ε1,2

+

(
dr∗1
dP
− dr∗2
dP

)
δP +

1

2

(
d2r∗1
dP2

− d2r∗2
dP2

)
δP2 + · · ·

0 =

(
dr∗1
dP
− dr∗2
dP

)
δP +

1

2

(
d2r∗1
dP2

− d2r∗2
dP2

)
δP2 + · · · . (4.52)

The first equation in (4.49) is also taken as representative of how to rewrite the face-to-node

constraint equations:

ε′N ,1 = r∗1((u, v)∗1;P + δP)′ − η′

= r∗1((u, v)∗1;P)− η︸ ︷︷ ︸
εN ,1

+

(
dr∗1
dP
− dη

dP

)
δP +

1

2

(
d2r∗1
dP2

− d2η

dP2

)
δP2 + · · ·

0 =

(
dr∗1
dP
− dη

dP

)
δP +

1

2

(
d2r∗1
dP2

− d2η

dP2

)
δP2 + · · · . (4.53)

In order for (4.52) and (4.53) to hold to first-order in δP, the first term in parenthesis must

190

equal 0, which gives the following for each node constraint equation:
dr∗1
dP
− dr∗2
dP

= 0

...

dr∗1
dP
− dr∗n
dP

= 0

,

dr∗2
dP
− dr∗3
dP

= 0

...

dr∗2
dP
− dr∗n
dP

= 0

, · · ·

dr∗n−2

dP
−
dr∗n−1

dP
= 0

dr∗n−2

dP
− dr∗n
dP

= 0

,

{
dr∗n−1

dP
− dr∗n
dP

= 0

}
(4.54)

and
dr∗1
dP
− dη

dP
= 0

...

dr∗n
dP
− dη

dP
= 0

 . (4.55)

Each dr∗j/dP (where j = 1, . . . , n) is also expanded to

dr∗j
dP

=
∂r∗j
∂u

∂u

∂P
+
∂r∗j
∂v

∂v

∂P
+
∂r∗j
∂P

= ṙ∗j +∇r∗j · νj .

Without needing to augment the equation set further (as in the trim curve case) to determine

dr∗j/dP, a linear system is written as

191

∇r∗1 −∇r∗2 0 · · · 0 0

∇r∗1 0 −∇r∗3 0 · · · 0
...

. . .
. . .

. . .
. . .

...

∇r∗1 0 · · · · · · ∇r∗n 0

0 ∇r∗2 −∇r∗3 0 · · · 0

0 ∇r∗2 0 −∇r∗4 · · · 0
...

. . .
. . .

. . .
. . .

...

0 ∇r∗2 0 · · · ∇r∗n 0

...
. . .

. . .
. . .

. . .
...

0 · · · 0 ∇r∗n−1 −∇r∗n 0

−∇r∗1 0 · · · · · · 0 I

0 −∇r∗2 0 · · · 0 I
...

. . .
. . .

. . .
. . .

...

0 · · · · · · 0 −∇r∗n I

︸ ︷︷ ︸

AN

ν1

ν2

ν3

...

νn

dη/dP

︸ ︷︷ ︸

XN

=

ṙ∗2 − ṙ∗1

ṙ∗3 − ṙ∗1
...

ṙ∗n − ṙ∗1

ṙ∗3 − ṙ∗2

ṙ∗4 − ṙ∗2
...

ṙ∗n − ṙ∗2

...

ṙ∗n − ṙ∗n−1

ṙ∗1

ṙ∗2
...

ṙ∗n

︸ ︷︷ ︸

BN

(4.56)

The over-determined system ANXN = BN is also solved in a least-squares sense using the

truncated SVD approach. It is likely that AN may have linearly dependent rows (as seen

in some redundant geometry cases). In these situations the only unique solution we can use

is X∗N , which minimizes ‖ANX∗N − BN ‖2 while having a minimum value for ‖X∗N ‖2. As in

the trim curve case, the geometry perspective for this solution implies a minimum design

velocity embodied in νj for the design velocity of the node relative to the domain space of

Fj , whereas the design velocity for the node in Euclidean space is found with dη/dP.

4.4.2 Considerations for Redundant Geometry

There are various reasons why particular topology scenarios are redundant. For example,

Figure 4-6(a) depicts a canopy-fuselage intersection modeled as a four-surface case with the

192

canopy distance, d, as a parameter of interest. The canopy consists of two ellipsoid swaths

and the fuselage nose consists of two revolved non-linear functions. Although Figure 4-6(a)

depicts seam E1 separating the two-halves of the nose and E4 separating the canopy, this

situation has redundant geometry information compared to the intersection node seen in

Section 4.2. This four-surface intersection node is actually a two-surface intersection node.

Seams E1 and E4 are an isoparameter line on the fuselage and canopy geometry. Unlike the

case of E2 and E3, they do not represent a trim curve between two unique surfaces. The

BRep connects this node to four faces with only two underlying surfaces at the intersection.

The example in Figure 4-6(b) has radius R as the parameter of interest with four faces

and seams E1 . . . E4 intersecting at node N . All four faces share the same underlying cylinder

surface. Seams E1 . . . E4 are in the BRep to split the periodic surface, thus the coefficient

matrix again contains linearly-dependent rows since all edges stem from the same surface.

In the example of Figure 4-6(c) wing chord c is the parameter of interest and redundant

geometry exists at node N because a subset of surfaces have aligned ∂r/∂u or ∂r/∂v

components. This can lead to linearly-dependent rows in the coefficient matrix as well.

Figure 4-7 shows other simple scenarios where redundant geometry may be found. In the

case of 4-7(a) the parameter of interest is the radius R1 and the edge E is an isoparameter

line of both surfaces. The components of ∂r/∂u and ∂r/∂v are also aligned on the edge.

Figure 4-7(b) shows a case where ∂ri/∂P = 0 on each surface for the parameter α. The

curve E also has its tangent aligned with ∂ri/∂v. In these circumstances Method 2 results

in a right-hand side that is zero and a singular coefficient matrix, yet the Minimum Velocity

Method can provide a solution.

Situations of redundant geometry can be handled using the same edge or node algorithms

presented here. No BRep processing is needed to uncover redundant geometry because the

Minimum Velocity Method can provide a solution when the coefficient matrix is rank-

deficient. In general, these solutions stem from the null space of the coefficient matrix even

if redundant geometry information were removed, unless the three-surface intersection case

is recovered by doing so. In the validation cases that follow the Minimum Velocity Method

was used without the added complexity of identifying redundant geometry intersections.

193

(a) (b)

(c)

Figure 4-6: Node validation cases tested on (a) a two-surface, four-face node intersection,
(b) a one-surface, four-face intersection, and (c) a five-surface intersection.

194

(a) (b)

Figure 4-7: Application of the node algorithm (equivalent to Method #1 for edges) on (a) a
trim curve where ∂r/∂u and/or ∂r/∂v are aligned for both surfaces, and (b) an edge where
both surfaces have ∂r/∂P = 0.

4.4.3 Validation for BRep Nodes

The sensitivity method for BRep nodes is validated using the analytic geometry cases seen

in Figures 4-6 and 4-7. For the cases in Figure 4-7 the node algorithm is used (equivalent

to using Method #1 for edges) to test the possibility of using a general algorithm for both

edges and nodes. Results for each case are summarized in Table 4.6. Agreement between

the analytic results and the new methods are excellent.

Numerical experiments also validate the sensitivity methodology when geometry “noise”

exists for each redundant and non-redundant geometry case discussed thus far. Figures

4-8 through 4-13 indicate that in some cases the error between “noise-less” and “noisy”

scenarios approximately follows the order-of-magnitude of the tolerance offset. Cases similar

to Figures 4-9, 4-10 and 4-12 indicate that beyond an offset of 10−9 the pseudoinverse

tolerance is surpassed and more redundant geometry information is used to solve for the

design velocity (making the problem more ill-posed). From a BRep topology perspective,

this threshold also corresponds to the likelihood that the local node topology may change if

tolerances are too coarse. This generates a large design velocity error, as expected, because

the BRep may no longer be closed.

195

Case Sensitivity
x y z

Figure 4-6(a) ∂rN /∂d
Analytic 1.000000000000000 0.000000000000000 0.060412414523193
Node Method 1.000000000000000 -0.000000000000000 0.060412414523193

Figure 4-6(b) ∂rN /∂R
Analytic 0.433012701892219 -0.250000000000000 0.000000000000000
Node Method 0.433012701892219 -0.250000000000000 0.000000000000000

Figure 4-6(c) ∂rN /∂c
Analytic 1.000000000000000 -0.250000000000000 0.000000000000000
Node Method 1.000000000000002 -0.250000000000000 0.000000000000000

Figure 4-7(a) ∂rN /∂R1

Analytic 0.000000000000000 0.750000000000000 0.000000000000000
Node Method 0.000000000000000 0.750000000000000 0.000000000000000

Figure 4-7(b) ∂rN /∂α
Analytic 0.000000000000000 0.000000000000000 0.000000000000000
Node Method 0.000000000000000 0.000000000000000 0.000000000000000

Table 4.6: Validation results for the node sensitivity algorithm on the geometry cases in
Figures 4-6 and 4-7.

Figure 4-8: Error between “noise-less” and “noisy” design velocity results stemming from
variations in geometry tolerance among BRep entities. This case corresponds to the three
surface, closed-form intersection formulation in Figure 4-1.

196

Figure 4-9: Error between “noise-less” and “noisy” design velocity results stemming from
variations in geometry tolerance among BRep entities. This case corresponds to the scenario
in Figure 4-6(a).

Figure 4-10: Error between “noise-less” and “noisy” design velocity results stemming from
variations in geometry tolerance among BRep entities. This case corresponds to the scenario
in Figure 4-7(a).

197

Figure 4-11: Error between “noise-less” and “noisy” design velocity results stemming from
variations in geometry tolerance among BRep entities. This case corresponds to the scenario
in Figure 4-6(c).

Figure 4-12: Error between “noise-less” and “noisy” design velocity results stemming from
variations in geometry tolerance among BRep entities. This case corresponds to the scenario
in Figure 4-6(b).

198

Figure 4-13: Error between “noise-less” and “noisy” design velocity results stemming from
variations in geometry tolerance among BRep entities. This case corresponds to the scenario
in Figure 4-7(b).

4.5 BRep Intersection Sensitivity Summary

Of the various BRep edge sensitivity methods presented, Method #7 is recommended as

the preferred choice in order to incorporate all available BRep information. From a design

motion perspective, the trim curve information is an approximation of the true intersection

space-curve and thereby contributes to design velocity along itself via its own geometry char-

acteristics. Since the tolerance used in generating an intersection trim curve is unknown,

using all descriptors of the trim curve provides the most likely scenario in representing its

design velocity accurately. If the trim curve represented the exact intersection trim curve,

then its inclusion is redundant to the surface information already used because the trim

curve is directly computed from the surfaces. In such a case Method #5 is recommended.

Results for the cone-plane example in Figures 4-2 and 4-3 indicate Method #7 has the small-

est offset from analytic results with Method #5 following, hence these recommendations

are consistent with observed numerical experiment. If the added implementation effort is

undesired, application of Method #5 may suffice with only a minor penalty in accuracy.

The geometry constraint system for nodes in (4.56) is similar to an expanded version

of Method #1. If trim curve geometry is neglected, then it becomes possible to use the

199

same algorithm for both BRep edge and node sensitivities. This combined algorithm would

essentially create AN , XN and BN based on the number of intersecting surfaces at a point

(either on a trim curve or at a node). Although method #1 did not compare as well as

the test results for Methods #5 or #7, this approach simplifies implementation to a single

sensitivity code.

200

Chapter 5

Geometry Sensitivities

for B-Spline Curves & Surfaces

Special consideration of B-spline curves and surfaces is given here for geometry management

of CAD models in aerospace design applications. The development of analytic sensitivities

for B-spline curves and surfaces is presented. First, the derived construction of B-spline

curves and surfaces is discussed from an analytic perspective. This is followed by their

geometry gradient formulations and a discussion of issues stemming from finite-differencing

such geometry with a CAD system. Much of the notation in describing the analytic B-spline

curve and surface construction follows the convention found in the Piegl and Tillers text

The NURBS Book [64].

5.1 B-Spline Curve Construction

A multiple step procedure is usually followed when interpolating a B-spline through support

points. By first understanding the construction of interpolating B-spline curves, the B-spline

design velocity field is subsequently understood. The following example is only one approach

to defining a B-spline curve (i.e., interpolation rather than “fitting”), thus the geometry

gradient method will need to be adapted to other B-spline curve definitions accordingly. In

general, though, an interpolating B-spline curve consists of piecewise polynomial segments

joined at “knots” with continuity Cp−1, where p is the polynomial degree. These serve as

the parameter domain bounds for each piecewise polynomial that make up the final B-spline

curve. Each polynomial segment is generated by a weighted summation of B-spline basis

201

functions, where the weights are called “control points.”

For a given set of support points BQ(P) = {Qk(P)} (possibly driven by some parameter

P), where Qk = (Qk,x, Qk,y, Qk,z) ∈ R3 for k = 0, . . . , n, an interpolating B-spline curve

through the BQ is parameterized by a running parameter t ∈ [0, 1]. Within the domain of

t the support points Qk are mapped to the parameters t̄k, Qk → t̄k. Various approaches

are possible to determine the t̄k, yet one of the most common is called a “chord method,”

where the normalized Euclidean distance between support points (i.e., the chord) is used

as a coarse approximation of the B-spline curve arc-length. The chord method provides

t̄k = t̄k−1 +
|Qk −Qk−1|

D
(5.1)

D =
n∑

s=1

|Qs −Qs−1|. (5.2)

With the t̄k available a knot vector U = {ui}, for i = 0, . . . ,m, can be established. This

consists of knots ui that mark the extent of the t domain where each of n+ 1 B-spline basis

functions are non-zero. Various approaches also exist for defining the knots ui, including

setting them to the t̄k values. A common method is used by averaging the t̄k to obtain a

distribution of ui:

ui =

0, 0 ≤ i ≤ p

1

p

i−1∑
j=i−p

t̄j , 1 + p ≤ i ≤ m− p− 1

1, m− p ≤ i ≤ m

. (5.3)

The number of knots in U is m = n+p+ 1 for a fundamental1 interpolating B-spline curve.

Once a knot vector is known (or chosen, rather) the B-spline basis functions are calculated

with

Ni,p(t) =

0, p = 0 and t /∈ [ui, ui+1)

1, p = 0 and t ∈ [ui, ui+1)
t− ui

ui+p − ui
Ni,p−1(t) +

ui+p+1 − t
ui+p+1 − ui+1

Ni+1,p−1(t), otherwise

(5.4)

The Euclidean coordinates of a support point are then expressed as the sum of weighted

1Here “fundamental” indicates that only interpolating support points are used, compared to more complex
situations where tangent and curvature also parameterize the curve.

202

B-spline basis functions:

Qk(P) =
n∑

i=0

Ni,p(t̄k)Pi, for k = 0, . . . , n, (5.5)

where the set XP = {Pi} contains Pi = (Pi,x, Pi,y, Pi,z) ∈ R3 control points (for i =

0, . . . , n). Having n + 1 support points requires n + 1 basis functions and control points.

The recursive basis functions are evaluated at t̄k using (5.4). However, all n + 1 basis

functions need not be evaluated for each t̄k because only a subset of the basis functions

are non-zero in the knot span t̄k ∈ [ui, ui+p+1), namely Ni−p,p(t̄k), . . . , Ni,p(t̄k) (this is a

property of B-spline curves). By utilizing this property, the control points are obtained

using a closed, invertible linear system as follows:

AN̄XP = BQ (5.6)

where

XP =

...

Pk,x Pk,y Pk,z

...

 , BQ =

...

Qk,x Qk,y Qk,z

...

 ,
and2

AN̄ =

1 0 0 0 0

N0,p(t̄1) . . . Ni,p(t̄1) 0 0
...

...
...

. . .
. . .

. . .
...

...
...

0 . . . 0 Ni−p,p(t̄k) . . . Ni,p(t̄k) 0 . . . 0
...

...
...

. . .
. . .

. . .
...

...
...

0 0 Nn−p,p(t̄n−1) . . . Nn,p(t̄n−1)

0 0 0 0 1

.

The unknown columns of XP are obtained using standard LU-decomposition and Gaussian

Elimination. Since BQ = BQ(P), then XP = XP (P) as well. These control points make

up a control polygon for the B-spline curve which serves as the convex hull of the curve.

It is evident that the B-spline end-points correspond to the control polygon end-points as

2Here we denote that AN̄ = AN̄ (t̄, U), yet for simplified notation the parameters t̄ and U are omitted
since they are implied in context. The same applies later to AN = AN (t, U).

203

well (i.e., this is a clamped B-spline curve), as denoted by the first and last rows of AN̄ .

At this point there is sufficient information to construct the B-spline curve itself for all

t ∈ [0, 1]. If t is discretized into the set {ta} ∈ [0, 1] along the B-spline curve domain, then

the discretized B-spline curve is written as

C(ta;P) =
n∑

i=0

Ni,p(ta)Pi(P) for a = 0, . . . , nC . (5.7)

The right hand side of (5.7) is known and an analogous system to (5.6) can be written to

calculate any point along the B-spline curve:

Y(P) = ANXP (P), (5.8)

where XP is as before and

Y =

...

Ca,x Ca,y Ca,z

...

 ,

AN =

1 0 0 0 0

N0,p(t1) . . . Ni,p(t1) 0 0
...

...
...

. . .
. . .

. . .
...

...
...

0 . . . 0 Ni−p,p(ta) . . . Ni,p(ta) 0 . . . 0
...

...
...

. . .
. . .

. . .
...

...
...

0 0 Nn−p,p(tnC−1) . . . Nn,p(tnC−1)

0 0 0 0 1

.

5.2 B-Spline Curve Geometry Gradient

With the B-spline curve construction method in place, a design velocity field across C(ta;P)

can be derived with respect to a parameter P. This derivation is succinctly described as

the differentiation of the B-spline construction procedure because the knots, control points

and basis functions are coupled through the support points. Although B-spline geometry

gradients are known with respect to control points, differentiating with respect to support

points seems to be overlooked by the research community. In many design instances a B-

spline curve is used to interpolate airfoil coordinates driven by an external parameterization.

204

By differentiating the B-spline curve against its support points and using the chain-rule,

the sensitivity of the B-spline to the external airfoil parameterization is then possible.

A B-spline curve from (5.8) has a design velocity with respect to a parameter P as

dY

dP
=

d

dP
(AN̄XP) . (5.9)

It is clear that the gradient of control points to support points will be required. These are

found by differentiating (5.5) as

dQk

dP
=

d

dP

(
n∑

i=0

Ni,p(t̄k)Pi

)

=
n∑

i=0

(
dNi,p(t̄k)

dP
Pi +Ni,p(t̄k)

dPi

dP

)
. (5.10)

The term
dPi

dP
is unknown. The left-hand side will be a dense vector in general since

Qk = Qk(P). If P = Qk,y, for example, then
dQk

dP
= [0, 1, 0]T and only a single entry is

non-zero.

The term
dNi,p(t̄k)

dP
is expanded by first setting fi,p = (t̄k − ui)/(ui+p − ui) and gi,p =

(ui+p+1 − t̄k)/(ui+p+1 − ui+1) to get the recursive relation

dNi,p(t̄k)

dP
=

d

dP
[fNi,p−1(t̄k) + gNi+1,p−1(t̄k)]

=
dfi,p
dP

Ni,p−1(t̄k) + fi,p
dNi,p−1(t̄k)

dP
+ 0 + 0, (5.11)

where the last two terms go to zero because the basis functions Ni+1,p−1 = 0 within the

knot span of interest. Expanding
dfi,p
dP

as

dfi,p
dP

=
1

(ui+p − ui)2

[
(ui+p − ui)

dt̄k
dP
− (t̄k − ui)

dui+p

dP
+ (t̄k − ui+p)

dui
dP

]
(5.12)

requires the gradient of t̄k, the knots ui and ui+p with respect to P. First, the term
dt̄k
dP

is

found by differentiating (5.1) after setting Vk = Qk −Qk−1 to obtain

dt̄k
dP

=
∂t̄k−1

∂P
+

1

D

{
Vk

|Vk|
·
[
∂Qk,x

∂P
,
∂Qk,y

∂P

]
− Vk

|Vk|
·
[
∂Qk−1,x

∂P
,
∂Qk−1,y

∂P

]}
− |Vk|
D2

∂D
∂P

,

(5.13)

205

where

∂D
∂P

=

Vk

|Vk|

[
∂Qk,x

∂P
,
∂Qk,y

∂P
,
∂Qk,z

∂P

]
− Vk+1

|Vk+1|

[
∂Qk−1,x

∂P
,
∂Qk−1,y

∂P
,
∂Qk−1,z

∂P

]
, k ∈ (0, n)

− V1

|V1|

[
∂Q0,x

∂P
,
∂Q0,y

∂P
,
∂Q0,z

∂P

]
, k = 0

Vn

|Vn|

[
∂Qn,x

∂P
,
∂Qn,y

∂P
,
∂Qn,z

∂P

]
, k = n.

(5.14)

Second, the term
dui
dP

is obtained by differentiating (5.3) to obtain

dui
dP

=

0, 0 ≤ i ≤ p

1

p

i−1∑
j=i−p

dt̄j
dP

, 1 + p ≤ i ≤ m− p− 1

0, m− p ≤ i ≤ m

. (5.15)

Third, a very similar expression for
dui+p

dP
is written by changing the limits of summation

dui+p

dP
=

0, 0 ≤ i ≤ p

1

p

i+p−1∑
j=i

dt̄j
dP

, 1 + p ≤ i ≤ m− p− 1

0, m− p ≤ i ≤ m

. (5.16)

Each term in (5.11) is now defined and a linear system can be written for the unknowns
dPi

dP
by using (5.9). The following notation will be useful:

∂PAN̄ =
d

dP
(AN̄) , ∂PBQ =

d

dP
(BQ) , ∂PX =

d

dP
(XP) .

Since the control points in AN̄XP = BQ are found with XP = A−1
N̄

BQ, differentiating

206

against P will yield:

d

dP
(XP) =

d

dP

(
A−1

N̄
BQ

)
=

d

dP

(
A−1

N̄

)
BQ + A−1

N̄
∂PBQ

= −A−1
N̄
∂PAN̄A−1

N̄
BQ + A−1

N̄
∂PBQ

= A−1
N̄

(∂PBQ − (∂PAN̄)XP) . (5.17)

Solving (5.17) for ∂PXP returns the gradient of the control points Pi. If P is a component

direction for some Qk, then ∂PXP is the control point gradient with respect to support

point Qk.

The gradient of the B-spline curve C(t) becomes possible now at any location t ∈ [0, 1]

in its domain. This derivation holds for the continuous B-spline curve and a discretized B-

spline curve. For example, if t is discretized into a set of distinct {ta} (with a = 0, . . . , nC),

the gradient derivation continues by differentiating (5.7) with respect to P at each ta:

dC(ta)

dP
=

n∑
i=0

[
dNi,p(ta)

dP
Pi +Ni,p(ta)

dPi

dP

]
, (5.18)

where
dNi,p(ta)

dP
is expanded slightly differently than in (5.11) because there is no depen-

dence of ta on P (by construction). Therefore

dNi,p(ta)

dP
=

d

dP
[fNi,p−1(ta) + gNi+1,p−1(ta)]

=
dfi,p
dP

Ni,p−1(ta) + fi,p
dNi,p−1(ta)

dP
+ 0 + 0 (5.19)

and
dfi,p
dP

=
1

(ui+p − ui)2

[
(ui − ta)

dui+p

dP
+ (ta − ui+p)

dui
dP

]
. (5.20)

The knot sensitivities
dui
dP

and
dui+p

dP
are found in the same manner as (5.15) and (5.16),

respectively. Since
dPi

dP
is known from (5.17), the only unknowns in (5.18) are the

dC(ta)

dP
.

Thus the B-spline curve Y = ANXP is differentiated as

∂PY = (∂PAN)XP + AN∂PX, (5.21)

207

where AN , XP and ∂PX are as before, and

∂PY =
d

dP
(Y) , ∂PAN =

d

dP
(AN) .

This is rewritten in a final form by substituting (5.17) and rearranging to obtain

∂PY =
(
∂PAN −ANA−1

N̄
(∂PAN̄)

)
XP + ANA−1

N̄
∂PBQ. (5.22)

At this stage the gradient of a B-spline curve with respect to a parameter P is defined. If P

is the component direction for some support point Qk, then the sensitivity of the B-spline

curve to an interpolating support point is now known.

5.3 B-Spline Surface Construction

The analytic construction of B-spline surfaces is an extension of the formulation for B-

spline curves (only non-rational B-spline surfaces are treated here). A B-spline surface,

S(u, v) ∈ R3, is parameterized by two coordinates (u, v) ∈ R2 which typically range from

(u, v) ∈ [0, 1]× [0, 1]. These surfaces are often generated by interpolating3 a field of support

points Qk,l(P) ∈ R3 (k = 0, . . . , n and l = 0, . . . ,m) with weighted-sums of B-spline basis

functions of degree p and q in the u and v directions, respectively. The B-spline surface

shape is also driven by a selection of knot vectors U and V containing individual knots ūk

and v̄l. As in the case of B-spline curves, various approaches exist to characterize the knot

vectors in some manner related to the Qk,l (e.g., the chord method utilized in constructing

B-spline curves). A unique B-spline surface shape is obtained for each given knot vector U

and V .

The B-spline surface interpolation is written as a tensor product surface:

Qk,l(P) = S(ūk, v̄l;P) =

n∑
i=0

m∑
j=0

Ni,p(ūk)Nj,q(v̄l)Pi,j , (5.23)

where Ni,p and Nj,q are B-spline basis functions of degree p and q in respective u and

v directions (the general case of Qk,l = Qk,l(P) is still considered here). Also, Pi,j ∈ R3

represent basis function “weights” that are also called control points. Once a field of control

3A “fit” approximation to support points is also possible but not treated here.

208

points are calculated from the given Qk,l and knot vectors, any point on the B-spline surface

within the domain of (u, v) is found with

S(u, v;P) =
n∑

i=0

m∑
j=0

Ni,p(u)Nj,q(v)Pi,j . (5.24)

The control points in (5.23) can be found using a matrix formulation and splitting the

problem into two parts. The given Qk,l represent coordinates along a cross-section of the

B-spline surface at locations of constant-v. Since (5.23) is a tensor product surface, it can

be written as

Qk,l(P) =

n∑
i=0

m∑
j=0

Ni,p(ūk)Nj,q(v̄l)Pi,j

=
n∑

i=0

Ni,p(ūk)

 m∑
j=0

Nj,q(v̄l)Pi,j

=

n∑
i=0

Ni,p(ūk)Ri,l, (5.25)

where

Ri,l =
m∑
j=0

Nj,q(v̄l)Pi,j . (5.26)

In this form the control points are calculated using sequential curve interpolations, first in

u and afterwards in v. It is important to note that, unlike the B-spline curve interpolation

addressed earlier, all of the curve interpolations are done using the same U and V vectors

instead of cross-section-specific knot vectors. Writing these equations in matrix form yields

BQ(P) = AN̄ (ū)R

RT = AN̄ (v̄)PT ,

209

where

BQ(P) ≡

Q0,0 Q0,1 · · · Q0,m

...
... Qk,l

...

Qn,0 Qn,1 · · · Qn,m

 , R ≡

R0,0 R0,1 · · · R0,m

...
... Rk,l

...

Rn,0 Rn,1 · · · Rn,m

 ,

P ≡

P0,0 P0,1 · · · P0,m

...
... Pk,l

...

Pn,0 Pn,1 · · · Pn,m

 ,

and AN̄ is defined the same as for B-spline curves. The arguments ū or v̄ imply that the ele-

ments of AN̄ are either Ni,p(ūk) or Nj,q(v̄l), respectively, for i = 0, . . . , n and j = 0, . . . ,m4.

The columns of BQ and R represent the B-spline curve interpolation problem at constant-

v with inputs Qk,l=const. The rows of R and P represent B-spline curve interpolation at

constant-u with the control points of the u-direction B-splines as inputs. These two linear

matrix problems are combined to form a single B-spline surface tensor-product:

BQ(P) = AN̄ (ū)PAT
N̄ (v̄). (5.27)

Once the surface control points P are obtained, it is clear that P = P(P). The Euclidean

coordinates on the B-spline surface are found for any set of discretized {(ua, va)} (a =

0, . . . , nC) using

S(ua, va;P) = AN (ua)P(P)AT
N (va). (5.28)

5.4 B-Spline Surface Geometry Gradient

The geometry gradients of B-spline curves serve as the starting point to develop the B-spline

surface sensitivity. It is clear that differentiating (5.28) will require the gradient of surface

control points to support points:

dS(ua, va;P)

dP
=

d

dP
[
AN (ua)PAT

N (va)
]
. (5.29)

4As in the B-spline curve case, we note that AN̄ (ū) = AN̄ (ū, U), AN̄ (v̄) = AN̄ (v̄, V), AN̄ (u) = AN̄ (u, U)
and AN̄ (v) = AN̄ (v, V). For simpler notation the knot vectors are omitted since they are implied in context.

210

First the calculation of
dBQ

dP
=

d

dP
[
AN̄ (ū)PAT

N̄ (v̄)
]

(5.30)

is considered by splitting the tensor product into two parts. If the coupling between support

points and knot vectors U and V is known, then the notation

∂PAN̄ =
d

dP
(AN̄)

is helpful in writing

dBQ

dP
= ∂P(AN̄ (ū))R+ AN̄ (ū)

dR
dP

(5.31)

dRT

dP
= ∂P(AN̄ (ū))PT + AN̄ (v̄)

dPT

dP
. (5.32)

This expanded formulation can also be combined into a single statement,

dBQ

dP
= ∂P(AN̄ (ū))R+ AN̄ (ū)

[
∂P(AN̄ (ū))PT + AN̄ (v̄)

dPT

dP

]T
= ∂P(AN̄ (ū))R+ AN̄ (ū)P(∂PAN̄)T (v̄) + AN̄ (ū)

dP
dP

AT
N̄ (v̄)

= ∂P(AN̄ (ū))PAT
N̄ (v̄) + AN̄ (ū)P(∂PAN̄)T (v̄) + AN̄ (ū)

dP
dP

AT
N̄ (v̄),

and a solution for the unknown
dP
dP

is obtained via

dP
dP

= A−1
N̄

(ū)

[
dBQ

dP
− ∂P(AN̄ (ū))PAT

N̄ (v̄)−AN̄ (ū)P(∂PAN̄)T (v̄)

]
A−T

N̄
(v̄). (5.33)

The geometry gradient anywhere on the B-spline surface then becomes

dS(ua, va;P)

dP
=

d

dP
[
AN (ua)PAT

N (va)
]

= ∂P(AN (ua))PAT
N (va) + AN (ua)P∂P(AT

N (va)) + AN (ua)
dP
dP

AT
N (va).

(5.34)

5.5 B-spline Curves & Surfaces in CAD Models

It is unclear how the knot vector U is generated for a general B-spline curve within a ge-

ometry kernel. This is made evident by considering how U varies when support points

211

are perturbed. Initially, U knots for a simple B-spline curve may be determined via the

construction method presented in Section 5.1. However, it has been observed that small

changes in the support points yield unintuitive changes in U as calculated by a geome-

try kernel. In some cases it is clear that U is obtained by knot insertion or removal to

expand/contract a fundamental knot vector that is not given to the designer. The exact

algorithm and logic used by the geometry kernel for this is unknown. It is also found that

an end-point tangency is specified by the geometry kernel even if the user does not param-

eterize the B-spline curve with tangency information5. The given tangent direction may

or may not suit the desired design intent for the curve and, as often declared in the CAD

literature [24], may only provide an aesthetically “pleasant” curve shape with no inherent

engineering design consideration. Similar situations arise when considering the U and V

knot vectors for B-spline surfaces6. These cases may yield even more radical knot vectors

despite interpolating across simple cross-section B-spline curves with few support points.

A simple example of this scenario for a B-spline surface is shown in Figure 5-1, where

the design motion of surface control points are depicted by perturbing a single support

point (y-coordinate) between the range [-0.034693,-0.023129]. The subsequent change in

the U knot vector is shown in Figure 5-2(a)–(b). As illustrated in these results, the support

point variation enabled the geometry kernel to allow knot insertion and variations in knot

values of approximately 10−5 in magnitude. This reality implies that the simple, static U

construction in Section 5.1 insufficiently captures the design motion for B-spline curves and

surfaces in a general geometry kernel.

This scenario exhibits two interesting consequences. First, the gradient methodology in

Sections 5.2 and 5.4 can be greatly simplified since the function that maps the Qk support

points to U , Qk → U , is unknown. Therefore, it is proposed that assuming a specific

mapping function is as equally arbitrary as assuming no dependence of U on Qk. This

assumption follows the generation procedure for a B-spline interpolant because the curve

designer chooses the parameter span for each piecewise polynomial segment of a spline and

specifies their end-point continuity (both defined through the knot vector and curve degree).

Due to insufficient geometry information to dictate otherwise, any knot vector generation

5This can vary between CAD system versions as well
6This has been seen for both u and v directions. In such cases AN̄ is augmented with a new second

row as [−1, 1, 0, . . . , 0] and a new penultimate row as [0, . . . , 0,−1, 1] to handle these tangents. BQ is also
augmented in like fashion with entries T that reflect the tangency values at the second and penultimate
rows.

212

(a)

(b)

Figure 5-1: (a) Overall design motion of surface control points for a simple loft after per-
turbing a single support point (y-coordinate). (b) Zoomed view of the control point design
trajectories.

213

(a)

(b)

Figure 5-2: (a) The variation in number of U knots during design motion and (b) the design
motion for the U knots.

214

procedure can be declared plausible if the resulting B-spline satisfies the objective merits

for a needed curve design. By this perspective, the assumption that U is not a function

of Qk allows for ∂PAN̄ = 0. This occurs since ū and U , the sole parameters in the basis

functions Ni,p(u), are assumed to have no dependence on P if they are decoupled from Qk.

Secondly, it is clear that using finite-differences between perturbed B-spline surfaces with

different knots (which is possible even for small perturbations in certain parts of the design

trajectory) will be an inconsistent operation (discussed further in Section 5.7).

These assumptions on U bring a simplification of the B-spline curve and surface geometry

gradients. For B-spline curves the control point gradient simplifies from

d

dP
(XP) = A−1

N̄
(∂PBQ − (∂PAN̄)XP)

to
d

dP
(XP) = A−1

N̄
∂PBQ. (5.35)

The subsequent geometry gradient along the B-spline curve then simplifies from

∂PY =
(
∂PAN −ANA−1

N̄
(∂PAN̄)

)
XP + ANA−1

N̄
∂PBQ

to

∂PY = ANA−1
N̄
∂PBQ. (5.36)

For B-spline surfaces, the control point gradient simplifies from

dP
dP

= A−1
N̄

(ū)

[
dBQ

dP
− ∂P(AN̄ (ū))PAT

N̄ (v̄)−AN̄ (ū)P(∂PAN̄)T (v̄)

]
A−T

N̄
(v̄)

to
dP
dP

= A−1
N̄

(ū)
dBQ

dP
A−T

N̄
(v̄). (5.37)

The subsequent geometry gradient across the B-spline surface then simplifies from

dS(ua, va;P)

dP
= ∂P(AN (ua))PAT

N (va) + AN (ua)P∂P(AT
N (va)) + AN (ua)

dP
dP

AT
N (va)

to
dS(ua, va;P)

dP
= AN (ua)

dP
dP

AT
N (va). (5.38)

215

The final versions of the new sensitivity equation have the form

B-Spline Curve B-Spline Surface

Y′ = A′X′P S′ = A′(u)P′A′T (v)

These equations have the appearance of B-spline curve and B-spline surface definitions,

which means that the geometry gradient of B-spline curves and B-spline surfaces are an-

other B-spline curve or surface. The new “sensitivity B-spline curve” or “sensitivity B-spline

surface” geometry, however, consists of interpolation through support points that are gradi-

ents and returning control polygons that are also gradients. Mathematically the geometry

is represented in the same way, yet in this case interpolation is done through gradient in-

formation instead of Euclidean coordinates. Since the knot vectors for a B-spline curve

or surface are preserved in their geometry gradient form, each exists in a consistent spline

space (described in Section 5.7).

5.6 Examples of B-Spline Curve Geometry Gradients

Figure 5-3 illustrates two generic examples where support points are interpolated by B-spline

curves within corresponding control polygons. Each is generated using the methodology

in Section 5.1. The design velocity method from Section 5.5 is validated against finite-

differencing for these examples using different parameters.

The finite-difference gradient is found by perturbing a baseline support point with a

user-defined step-size (h = ±10−7) and interpolating new cubic B-spline curves through

both perturbed sets of support points. Differencing is done at the same t values across

each B-spline. Comparisons are made between both methods with the assumption that the

knots U = {ui} and parameters t̄k did not depend on the support points (i.e., the knots and

parameters are fixed in the finite-difference computation). Results for these comparisons

are given in Figures 5-4 through 5-8, where the absolute value of offset between both results

are shown for non-zero design velocity components. In all example cases there is excellent

agreement between the proposed analytic method and finite-differencing results.

216

(a)

(b)

Figure 5-3: Example B-spline curves interpolated through support points (blue circles) with
a control polygon (red circles) determined by the method in Section 5.1.

217

(a) (b) Zoomed View

(c) ∂Cy/∂P

Figure 5-4: (a) Design velocity field with respect to Qk,y for an example cubic B-spline
curve, with (b) a detailed-view around the perturbed parameter location. The green vector
denotes the perturbation direction (unit magnitude). (c) Offset between finite-difference
(knots fixed) and the analytic methodology gradient results (other gradient components are
zero).

218

(a) (b) Zoomed View

(c) ∂Cx/∂P

Figure 5-5: (a) Design velocity field with respect to Qk,x for an example cubic B-spline
curve, with (b) a detailed-view around the perturbed parameter location. The green vector
denotes the perturbation direction (unit magnitude). (c) Offset between finite-difference
(knots fixed) and the analytic methodology gradient results (other gradient components are
zero).

219

(a) (b) Zoomed View

(c) ∂Cy/∂P

Figure 5-6: (a) Design velocity field with respect to Qk,y for an example cubic B-spline
curve, with (b) a detailed-view around the perturbed parameter location. The green vector
denotes the perturbation direction (unit magnitude). (c) Offset between finite-difference
(knots fixed) and the analytic methodology gradient results (other gradient components are
zero).

220

(a)

(b) ∂Cx/∂P

Figure 5-7: (a) Design velocity field with respect to Qk,x for an example cubic B-spline
curve. The green vector denotes the perturbation direction (unit magnitude). (b) Offset
between finite-difference (knots fixed) and the analytic methodology gradient results (other
gradient components are zero).

221

(a) (b) Zoomed View

(c) ∂Cy/∂P

Figure 5-8: (a) Design velocity field with respect to Qk,y for an example cubic B-spline
curve, with (b) a detailed-view around the perturbed parameter location. The green vector
denotes the perturbation direction (unit magnitude). (c) Offset between finite-difference
(knots fixed) and the analytic methodology gradient results (other gradient components are
zero).

222

5.7 Examples of B-Spline Surface Geometry Gradients

A solid loft feature (i.e., a B-spline surface) created in the SolidWorks CAD system is

seen in Figure 5-9(a). This loft has five cross-sections containing cubic B-splines and cubic

interpolation span-wise. The gradient magnitude with respect to the z-coordinate of a single

support is shown as a contour plot in Figure 5-9(b). Maximum design velocity is clearly seen

where the driving “perturbation” exists. As expected, a patchwork plot of peaks and valleys

is evident in the design velocity because there is no design velocity along isoparameter lines

corresponding to the knot vector values (ūk, v̄l) in U and V . Only at the intersection of

isoparameter lines corresponding to the differentiated support point is a non-zero design

velocity found. Figure 5-9(c) includes an overlay of design velocity vectors as well. Due to

the local support property of B-spline surfaces, the design velocity magnitude decreases to

zero at the edge of the influence region (i.e., p+ 1 knot spans) for the cubic non-zero basis

functions. In this case the entire B-spline surface encompasses that region.

A second solid loft feature shown in Figure 5-10(a) was created with SolidWorks. This

loft contains nine linearly-scaled cross-section B-splines curves added between each of the

five original cross-sections in the loft of Figure 5-9(a). A contour plot of the resulting

design velocity magnitude field is shown in Figure 5-10(b) for the variation in z-coordinate

direction at a support point. The design velocity vectors are also overlaid in Figure 5-10(c).

Since the extent of non-zero design velocity is limited (by the local support property) to

the knot span where local basis functions are non-zero, the region of influence for a support

point variation is much less expansive here compared to the case in Figure 5-9.

A third example of a solid loft feature is shown in Figure 5-11(a). This loft was cre-

ated with SolidWorks and contains B-spline curves oriented to approximate circular cross-

sections. A contour plot of design velocity corresponding to a variation in y-coordinate for

a single support point is shown in Figure 5-11(b), whereas the design velocity vectors are

included in Figure 5-11(c). The design velocity influence is broad due to the large spacing

between some cross-sections in the knot spans surrounding the varied support point.

As an aside, the design velocity field can also be used to forecast the design motion for

a B-spline curve or surface (or other features as well). Unintended design motion is easily

identified if the non-zero sensitivity region is larger, smaller, or in a different direction than

expected for a given parameter. This information allows a designer to adapt the model

223

construction in order to limit or remove the potential for unintended design motion. The

case of Figure 5-11(a) is illustrative if a designer does not want design motion aft of the

nose when modifying the nose-section. Additional cross-section profiles will be needed in

that region to mitigate its sensitivity to a support point near the nose.

A trade-off may quickly emerge when planning a model design trajectory, as in the case

of Figures 5-9(a) and 5-10(a). Limiting the span-wise influence of a support point requires

additional cross-sections, yet this increases the design space of the model. This may or

may not be a hindrance for the optimization problems conducted with these models. On

the other hand, fewer support points can limit the extent of “wavy” surfaces and provide

a smaller design space. If transonic aerodynamics analysis is conducted on these models,

there is an added concern in having large sensitivity regions with fewer support points,

or “wavy” surfaces with too many support points. Both impact the design space differ-

ently by potentially introducing unexpected local minima. A designer will need to consider

these issues when defining their model design space and construction approach. This is in

accordance with the model construction methodology presented in Chapter 2.

224

(a) (b)

(c)

Figure 5-9: (a) A SolidWorks model of a generic, solid loft feature with five cross-section
B-spline curves, (b) contour regions denote the gradient magnitude in the z-coordinate
direction with respect to a variation in z at a single support point, and (c) an overlay of
design velocity vectors for the same case.

225

(a) (b)

(c)

Figure 5-10: (a) A SolidWorks model of a generic, solid loft feature constructed with addi-
tional linearly-scaled cross-section B-spline curves, (b) contour regions denote the gradient
magnitude in the z-coordinate direction with respect to a variation in z at a single support
point, and (c) an overlay of design velocity vectors for the same case.

226

(a)

(b)

(c)

Figure 5-11: (a) A SolidWorks model of a generic, solid loft feature with various cross-section
B-spline curves, (b) contour regions denote the gradient magnitude in the y-coordinate
direction with respect to a variation in y at a single support point, and (c) an overlay of
design velocity vectors for the same case.

227

5.8 Scenarios Creating Inconsistent Finite-Difference Results

An analytic B-spline surface is generated to compare geometry gradients obtained via finite-

differencing and the analytic approach in Section 5.5. The geometry is a cubic B-spline

surface interpolation of five cross-sectional cubic B-spline curves that crudely approximate

a NACA 0012 profile7. The design velocity field from the analytic method is shown in

Figure 5-12 with respect to a support point y-component.

(a)

(b)

Figure 5-12: (a) The magnitude of design velocity with respect to a support point y-
component with (b) associated design velocity vectors.

Using a finite-difference step-size of h = 10−5 (chord value of 0.5), a knot preserving and

non-preserving comparison is made with the analytic method. The preserving method fixes

the baseline B-spline surface knots (including cross-sectional B-spline curve knots) when

7Few support points are used here in order to highlight discrepancies between the design velocity fields
from both methods instead of resolving the airfoil shape properly.

228

generating the +h and −h geometry perturbations. Conversely, the non-preserving method

recalculates the knots along B-spline curves and the B-spline surface after perturbing with

±h. Figure 5-13 depicts the absolute value offset between design velocity components for the

knot preserving finite-difference method and the analytic approach. In this case agreement

between the two methods is excellent. Figure 5-14 shows the absolute value offset between

the knot non-preserving finite-difference method and the analytic approach. These results

show a discrepancy between the two approaches. A profile view of the design velocity

vectors in Figure 5-15 indicates that the results are similar, yet the finite-difference result

contains non-zero u-components in design velocity.

The reason for the discrepancy in Figure 5-14 is found in the computation of the knot

non-preserving finite-difference operation. It is important to understand that interpolation

with B-spline curves is accomplished as piecewise polynomials that meet at knots with

continuity based on polynomial degree (see Section 5.1). This is very different from in-

terpolation using a single polynomial. An example helps illustrate how this difference in

definition leads to the discrepancy above. A single polynomial, P1, of degree p defined over

a domain t1 ∈ [0, 1] can be compared in a consistent manner with another polynomial, P2,

of degree p defined over the same domain. In other words, both P1 and P2 are defined in

the same polynomial space and share the same domain. This implies that the operation

P1 + P2 = P3 and P3 belongs in the same polynomial space as P1 and P2 in a consistent

manner. However, if P2 were defined over the domain t2 ∈ [−2, 2], then it would exist

in a different domain space unless it were reparameterized such that t2 → t1. Without

reparameterizing P2, then a consistent comparison between P1 and P2 could not be made.

This implies that the operation P1 +P2 = P4 would not be consistent and P4 would not be

in the same domain space as P3.

In like manner, an interpolating B-spline curve can be considered a spline space [5]

which is also a vector space. Piecewise polynomials are segments of a B-spline curve that

originate from a weighted summation of B-spline basis functions defined in a domain space

(typically t ∈ [0, 1]). These segments span half-intervals (i.e., [ui, ui+1)) between the knots

in a knot vector U in that domain. The inclusion of U distinguishes the spline space from

the polynomial space (a polynomial space is a subspace of a spline space). Therefore, a

B-spline curve S1 defined in t1 ∈ [0, 1] with U1 resides in the same spline space as S2 if S2 is

defined over the same domain and knot vector. This allows S1+S2 = S3 to be consistent and

229

(a)

(b)

(c)

Figure 5-13: (a)–(c) Comparison of geometry gradient offset from finite-difference (knot-
preserving) and Section 5.5 approaches. The u- and w-component offset are exactly zero in
this case.

230

(a)

(b)

(c)

Figure 5-14: (a)–(c) Comparison of geometry gradient offset from finite-difference (non-
preserving knots) and Section 5.5 approaches.

231

(a)

(b)

Figure 5-15: (a) A profile view of the design velocity vectors from the knot non-preserving
central-difference and analytic method results of Figure 5-14. (b) A detailed view of the
design velocity discrepancy. Analytic gradient results are in blue and finite-difference results
(knot non-preserving) are in red.

232

S3 belongs to the same spline space as S1 and S2. However, if S2 is defined over the same

domain as S1 but has its own knot vector U2, then S2 belongs to its own spline space unless

it is reparameterized with a new knot vector. The only way for S1 and S2 to exist in the

same spline space if initially U1 6= U2 is for a new knot vector U3 = U1∪U2 to be defined for

both S1 and S2. If this is not done, then S1 +S2 = S4 is not consistent and S4 does not exist

in the same spline space as S1 or S2. Inconsistency stems from the fact that the B-spline

curve is made of piecewise polynomials defined across each knot span. If the knot vectors do

not match between two B-spline curves, then the piecewise polynomials will not share the

same knot span domain. Furthermore, if there are repeated knots in one knot vector that

are not found in the other (multiplicity is greater than 1), then the piecewise polynomials

will not share the same continuity (meaning the differentiability of the polynomials at that

location will not match) at those knot values and a similar inconsistency will occur when

comparing such B-spline curves without reparameterization [5].

This realization explains the discrepancy seen in Figure 5-14.8 The finite-difference

operation introduces a spurious design velocity in the u-direction because knots in that

direction are recomputed. Even relatively “small” differences between the reparameterized

knots leads to the spurious result. This outcome is seen in Tables 5.1 and 5.2, where the

offset between B-spline surface and curve U knot vectors are shown for the case in Figures

5-14. In contrast, no spurious design velocity results are seen (Figure 5-13) when knots are

preserved in the finite-difference operation.

8Although this discussion pertains to continuous B-spline curves, it extends to continuous B-spline sur-
faces. This discussion also applies to discretized B-spline curves and surfaces, where the piecewise polynomial
segments of a B-spline curve are compared (or patches for B-spline surfaces) at discrete locations rather than
the entire continuous geometry.

233

Baseline U U+h U−h (U+h)-(U−h)

0.000000000000000 0.000000000000000 0.000000000000000 0.000000e+00
0.000000000000000 0.000000000000000 0.000000000000000 0.000000e+00
0.000000000000000 0.000000000000000 0.000000000000000 0.000000e+00
0.000000000000000 0.000000000000000 0.000000000000000 0.000000e+00
0.072929342779053 0.072929342578264 0.072929342979796 -4.015316e-10
0.162220912504359 0.162220912057733 0.162220912950883 -8.931496e-10
0.282837207075283 0.282837206296577 0.282837207853811 -1.557234e-09
0.419686459338646 0.419686456322491 0.419686462354641 -6.032150e-09
0.560361415142910 0.560361412657183 0.560361417628601 -4.971419e-09
0.702491753786752 0.702491751827443 0.702491755746144 -3.918701e-09
1.000000000000000 1.000000000000000 1.000000000000000 0.000000e+00
1.000000000000000 1.000000000000000 1.000000000000000 0.000000e+00
1.000000000000000 1.000000000000000 1.000000000000000 0.000000e+00
1.000000000000000 1.000000000000000 1.000000000000000 0.000000e+00

Table 5.1: A comparison between the U -direction knot vector for the B-spline surfaces
generated in the central-difference problem of Figure 5-14. Underlined digits denote a
variation from the baseline value. The step-size used in this case was h = 10−5.

B-Spline Curve Cross-Sections
1 # 2 # 3 # 4 # 5

0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
0.000000e+00 0.000000e+00 -2.007658e-09 0.000000e+00 0.000000e+00
0.000000e+00 0.000000e+00 -4.465748e-09 0.000000e+00 0.000000e+00
0.000000e+00 0.000000e+00 -7.786171e-09 0.000000e+00 0.000000e+00
0.000000e+00 0.000000e+00 -3.016075e-08 0.000000e+00 0.000000e+00
0.000000e+00 0.000000e+00 -2.485709e-08 0.000000e+00 0.000000e+00
0.000000e+00 0.000000e+00 -1.959350e-08 0.000000e+00 0.000000e+00
0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00

Table 5.2: The offset between the ith B-spline curve knot vectors U i
+h − U i

−h (i = 1, . . . , 5)
obtained in central-differencing for Figure 5-14 are shown for the non-preserving case. Non-
zero offsets exist where the geometry gradient was computed (h = 10−5).

234

Since the actual algorithm for generating U and V knot vectors is not known for a

given geometry kernel, it is expected that finite-differencing B-spline surfaces within CAD

systems may yield as large, or larger, spurious design velocity results and greater knot offsets

than those seen with the analytic example above. The analytic loft example is recreated

in the SolidWorks CAD system (see Figure 6-10(a)) to conduct finite-differencing against

the same support point (with step-size h = 1.0 × 10−5 as well) to validate this. Results

are displayed in Figure 5-16, which shows larger offsets in design velocity and cross-section

knot values than that seen in the analytic case. The reason for this is seen in Tables 5.3

through 5.5. Even though the surface knot vector U does not change (there is a small

change in the V knots which impacts the w-component of design velocity, as seen in Table

5.4), the cross-section B-spline curve does show an offset between perturbed states in Table

5.5. In this case the initial surface U knots match the cross-section knots. Perturbing the

cross-section spline creates new knot vectors that imply new ū values (i.e., support point

parameters), which are set to the interior knot values by the geometry kernel in this case.

Thus, inconsistent finite-differencing occurs when the perturbed surface support points are

reparameterized with different ū values that are not at the end of individual knot spans

in U . This explanation is strengthened by considering the finite-difference derivation for

B-spline curves and surfaces that follows.

5.8.1 Analysis for Linearized B-Spline Curves

For B-spline curves we define

g(BQ;P) = BQ = AN̄ (t̄, U)XP (5.39)

g+(BQ;P + δP) = BQ + δBQ = AN̄+
(t̄+, U+)(XP+ + δXP+)

= AN̄+
(t̄+, U+)X′P+

(5.40)

g−(BQ;P − δP) = BQ − δBQ = AN̄−(t̄−, U−)(XP− + δXP−)

= AN̄−(t̄−, U−)X′P− (5.41)

with X′P+
= XP+ + δXP+ and X′P−

= XP− + δXP− for some control point perturbations

δXP+ and δXP− that result from a parameter perturbation δP/P << 1. Also t̄+ and

t̄− are the new support point parameterizations and U+ and U− stem from non-preserved

knot vectors. By assuming a Taylor expansion representation of the B-spline curve at all t

235

(a)

(b)

(c)

Figure 5-16: (a)–(c) Comparison of geometry gradient offset between finite-difference results
and the Section 5.5 approach on a CAD model geometry.

236

Baseline U U+h U−h (U+h)-(U−h)

0.0000000000 0.0000000000 0.0000000000 0.000000e+00
0.0000000000 0.0000000000 0.0000000000 0.000000e+00
0.0000000000 0.0000000000 0.0000000000 0.000000e+00
0.0000000000 0.0000000000 0.0000000000 0.000000e+00
0.017932446381 0.017932446381 0.017932446381 0.000000e+00
0.051549762576 0.051549762576 0.051549762576 0.000000e+00
0.149305819381 0.149305819381 0.149305819381 0.000000e+00
0.285807155557 0.285807155557 0.285807155557 0.000000e+00
0.413398646288 0.413398646288 0.413398646288 0.000000e+00
0.559853576171 0.559853576171 0.559853576171 0.000000e+00
0.707832022969 0.707832022969 0.707832022969 0.000000e+00
0.83978966222 0.83978966222 0.83978966222 0.000000e+00
1.0000000000 1.0000000000 1.0000000000 0.000000e+00
1.0000000000 1.0000000000 1.0000000000 0.000000e+00
1.0000000000 1.0000000000 1.0000000000 0.000000e+00
1.0000000000 1.0000000000 1.0000000000 0.000000e+00

Table 5.3: A comparison between the U knot vector for the B-spline surfaces generated
by finite-differencing the CAD model from Figure 5-16. The step-size used in this case is
h = 10−5, which resulted in no change of the knot vectors.

Baseline V V+h V−h (V+h)-(V−h)

0.0000000000 0.0000000000 0.0000000000 0.000000e+00
0.0000000000 0.0000000000 0.0000000000 0.000000e+00
0.0000000000 0.0000000000 0.0000000000 0.000000e+00
0.0000000000 0.0000000000 0.0000000000 0.000000e+00
0.2500000000 0.249999999988 0.249999999988 3.885781e-16
0.5000000000 0.5000000000 0.5000000000 0.000000e+00
0.7500000000 0.750000000012 0.750000000012 -3.330669e-16
1.0000000000 1.0000000000 1.0000000000 0.000000e+00
1.0000000000 1.0000000000 1.0000000000 0.000000e+00
1.0000000000 1.0000000000 1.0000000000 0.000000e+00
1.0000000000 1.0000000000 1.0000000000 0.000000e+00

Table 5.4: A comparison between the V knot vector for the B-spline surfaces generated
by finite-differencing the CAD model from Figure 5-16. The step-size used in this case is
h = 10−5, which resulted in a minor change of the knot vectors.

237

B-Spline Curve Cross-Sections
1 # 2 # 3 # 4 # 5

0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
0.000000e+00 0.000000e+00 2.006753e-08 0.000000e+00 0.000000e+00
0.000000e+00 0.000000e+00 5.768741e-08 0.000000e+00 0.000000e+00
0.000000e+00 0.000000e+00 1.670826e-07 0.000000e+00 0.000000e+00
0.000000e+00 0.000000e+00 3.198361e-07 0.000000e+00 0.000000e+00
0.000000e+00 0.000000e+00 4.626190e-07 0.000000e+00 0.000000e+00
0.000000e+00 0.000000e+00 2.895703e-06 0.000000e+00 0.000000e+00
0.000000e+00 0.000000e+00 -3.269543e-07 0.000000e+00 0.000000e+00
0.000000e+00 0.000000e+00 -1.792854e-07 0.000000e+00 0.000000e+00
0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00

Table 5.5: The offset between the ith B-spline curve knot vectors U i
+h − U i

−h (i = 1, . . . , 5)
obtained in finite-differencing the CAD model in Figure 5-16 are shown. Non-zero offsets
exist where the geometry gradient was computed (h = 10−5).

coordinates in its domain, we write

g+(BQ;P + δP) = g(BQ;P) +
dg

dP
δP +

1

2

d2g

dP2
δP2 +

1

6

d3g

dP3
δP3 + · · ·

g−(BQ;P − δP) = g(BQ;P)− dg

dP
δP +

1

2

d2g

dP2
δP2 − 1

6

d3g

dP3
δP3 + · · ·

and subtract to obtain
dg

dP
≈ g+ − g−

2δP
−O(δP2), (5.42)

which is rewritten as

dBQ

dP
≈
(

1

2δP

)[
AN̄+

(t̄+, U+)X′P+
−AN̄−(t̄−, U−)X′P−

]
−O(δP2). (5.43)

When knots and support point parameterizations are preserved, the finite-difference deriva-

tive simplifies because

AN̄+
(t̄+, U+) = AN̄−(t̄−, U−) = AN̄ (t̄, U),

238

with t̄+ = t̄− = t̄ and U+ = U− = U . Also, the perturbed control points become X′P+
= XP+

and X′P−
= XP− , resulting in

dBQ

dP
≈
(

1

2δP

)
AN̄ (t̄, U)

(
XP+ −XP−

)
−O(δP2), (5.44)

which takes a familiar form in the limit of δP → 0 (as found in the analytic case of Section

5.5):

dBQ

dP
= AN̄ (t̄, U)

dXP

dP

⇒ dXP

dP
= A−1

N̄
(t̄, U)

dBQ

dP
. (5.45)

This ideal case is possible when knots and support point parameterizations are preserved.

When this is not the case the finite-difference approximation remains in the form of (5.43),

which results in spurious design velocity components because the control point gradient is

made inconsistent. The issue arises either by differencing B-spline curves that do not reside

in the same spline space (i.e., different U knot vectors) or by using different support point

parameterizations (i.e., different t̄). To see this, we return to (5.43) and consider rewriting

AN̄+
(t̄+, U+) and AN̄−(t̄−, U−) as

AN̄+
(t̄+, U+) = AN̄ (t̄, U) + ε+

AN̄−(t̄−, U−) = AN̄ (t̄, U) + ε−,

for some deviations ε+ and ε− in the basis function matrix. These are used in (5.43) with

δP → 0 and ε = ε+ + ε− to yield:

dBQ

dP
≈
(

1

2δP

)[
(AN̄ (t̄, U) + ε+)X′P+

− (AN̄ (t̄, U) + ε−)X′P−

]
−O(δP2)

≈
AN̄ (t̄, U)(X′P+

−X′P−
)

2δP
+

(ε+ + ε−)(X′P+
−X′P−

)

2δP
−O(δP2)

= (AN̄ (t̄, U) + ε)
dX̂P

dP
. (5.46)

In (5.46) it is clear that the ideal case is not obtained since solving for the control point

sensitivities will yield dX̂P
dP 6=

dXP
dP when the true value is dXP

dP . The deviation from ideal is

estimated by using dX̂P
dP = dXP

dP +δ
(
dXP
dP

)
and expanding (5.46). By adopting the following

239

notation,

∂P(X̂P) =
dX̂P

dP
, ∂P(XP) =

dXP

dP
, δ∂P(XP) = δ

(
dXP

dP

)
we continue with

dBQ

dP
= (AN̄ (t̄, U) + ε) (∂P(XP) + δ∂P(XP))

= AN̄ (t̄, U)∂P(XP) + AN̄ (t̄, U)δ∂P(XP) + ε∂P(XP) + εδ∂P(XP)

(AN̄ (t̄, U) + ε)δ∂P(XP) = −ε∂P(XP). (5.47)

By taking consistent norms and applying the triangle inequality, the deviation magnitude

becomes

‖AN̄ (t̄, U) + ε‖ · ‖δ∂P(XP)‖ ≤ ‖ε‖ · ‖∂P(XP)‖

⇒ ‖δ∂P(XP)‖
‖∂P(XP)‖

≤ ‖ε‖
‖AN̄ (t̄, U)‖+ ‖ε‖

. (5.48)

This result implies that the deviation from ideal is at most the same order of magnitude

as the offset caused by reparameterization of the knot vector or support points. Numerical

experiments with a cross-section B-spline curve from the geometry in Figure 5-14 confirmed

this outcome, where ‖ε‖ = 9.88 × 10−8 created a control point sensitivity deviation of

‖δ∂P(XP)‖ = 4.85 × 10−9 after perturbing a support point by +P = 1.0 × 10−5 (with

‖AN̄ (t̄, U)‖ = 1.13 and ‖∂P(XP)‖ = 0.055 from finite-differences). As expected, when

‖ε‖ → 0 the deviation becomes ‖δ∂P(XP)‖ → 0.

Now that the deviation in control points is known due to the reparameterization error,

this deviation will create an error in each component of design velocity. This is seen by

considering the linearization of a B-spline curve, where the notation ()+ corresponds to the

regenerated curve after perturbing a support point by step-size +δP and ()− corresponds

to the curve obtained after a perturbation by −δP:

∂Y

∂P

∣∣∣∣
FD

=
Y+ −Y−

2δP
. (5.49)

240

Expanding Y+ will suffice since the case for Y− is analogous, thus giving

Y+ = AN (t, U)X′P+
= AN (t, U)A−1

N̄+
(t̄+, U+)BQ+

= AN (t, U)
(
XP+ + δXP+

)
.

Substituting back into (5.49) the finite-difference computation becomes

∂Y

∂P

∣∣∣∣
FD

= AN (t, U)

(
XP+ −XP−

2δP

)
+ AN (t, U)

(
δXP+ − δXP−

2δP

)
δP → 0

=
∂Y

∂P

∣∣∣∣
True

+
∂Y

∂P

∣∣∣∣
Error

, (5.50)

where

∂Y

∂P

∣∣∣∣
True

≡ AN (t, U)

(
XP+ −XP−

2δP

)
(5.51)

∂Y

∂P

∣∣∣∣
Error

≡ AN (t, U)

(
δXP+ − δXP−

2δP

)
. (5.52)

It is possible for (∂Y/∂P)Error 6= 0 even in design velocity components not associ-

ated with a perturbation. This is seen by considering the ()+ perturbation scenario after

perturbing a support point to make BQ+ = BQ + δBQ:

BQ+ = (AN̄ (t̄, U) + ε+)
(
XP+ + δXP+

)
(5.53)

= (AN̄ (t̄, U) + ε+) XP+ + (AN̄ (t̄, U) + ε+) δXP+ . (5.54)

By recalling that BQ+ = AN̄ (t̄, U)XP+ , the deviation simplifies to

δXP+ = − (AN̄ (t̄, U) + ε+)−1 ε+XP+ . (5.55)

Since the right hand side of (5.55) contains only non-zero terms, then δXP+ will always be

non-zero for every component of control point design velocity (the same is true for δXP−).

As ε+ → 0 then δXP+ → 0 as well (likewise as ε− → 0 then δXP− → 0).

These results translate to a non-zero (∂Y/∂P)Error for each component of the B-spline

curve design velocity. Numerical experiments of design velocity error using the analytic

cross-section geometry of Figure 5-15 match the results predicted using this error analysis

241

(to within 1.0 × 10−17) for δXP+ . This implies that the spurious design velocity can be

removed from the finite-difference computation if the baseline and perturbed curves are

“reverse-engineered” to calculate the reparameterization error. Although tests with B-

splines of different order (or other piecewise continuous polynomials written as a sum of

weighted basis functions) were not conducted, these cases represent different values in the

matrices AN̄ (t̄, U) and AN (t, U). The error analysis here is general to any case where

finite-differencing is done between such piecewise continuous polynomials that do not share

the same parameter domain or knot vector.

The magnitude of design velocity error along Y is expected to be

∥∥∥∥∂Y

∂P

∥∥∥∥
Error

≈ O

(∥∥δXP+ − δXP−

∥∥
|δP|

)
. (5.56)

In the case of a cross-section in Figure 5-14, the spurious control point design velocities

were of O(1.0× 10−8) for a support point perturbation of δP = 1.0× 10−5, thus making

∥∥∥∥∂Y

∂P

∥∥∥∥
Error

≈ O
(

1.0× 10−8

1.0× 10−5

)
= 1.0× 10−3,

which is consistent with the spurious design velocity magnitudes seen in Figure 5-14.

5.8.2 Analysis for Linearized B-Spline Surfaces

For B-spline surfaces we define

f(BQ;P) = BQ = AN̄ (ū, U)PAT
N̄ (v̄, V) (5.57)

f+(BQ;P + δP) = BQ + δBQ = AN̄+
(ū+, U+)(P+ + δP+)AT

N̄+
(v̄+, V+)

= AN̄+
(ū+, U+)P′+AT

N̄+
(v̄+, V+) (5.58)

f−(BQ;P − δP) = BQ − δBQ = AN̄−(ū−, U−)(P− + δP−)AT
N̄−

(v̄−, V−)

= AN̄−(ū−, U−)P′−AT
N̄−

(v̄−, V−) (5.59)

with P′+ = P+ + δP+ and P′− = P− + δP− for some control point perturbations δP+ and

δP− that result from a parameter perturbation δP/P << 1. Also ū+, v̄+, ū−, v̄− are the

new support point parameterizations and U+, U−, V+ and V− stem from non-preserved

knot vectors. By assuming a Taylor expansion representation of the B-spline surface at all

242

(u, v) coordinates, we write

f+(BQ;P + δP) = f(BQ;P) +
df

dP
δP +

1

2

d2f

dP2
δP2 +

1

6

d3f

dP3
δP3 + · · ·

f−(BQ;P − δP) = f(BQ;P)− df

dP
δP +

1

2

d2f

dP2
δP2 − 1

6

d3f

dP3
δP3 + · · ·

and subtract to obtain
df

dP
≈ f+ − f−

2δP
−O(δP2), (5.60)

which is rewritten as

dBQ

dP
≈
(

1

2δP

)[
AN̄+

(ū+, U+)P′+AT
N̄+

(v̄+, V+)−AN̄−(ū−, U−)P′−AT
N̄−

(v̄−, V−)
]
−O(δP2).

(5.61)

When knots and support point parameterizations are preserved, the finite-difference deriva-

tive simplifies because

AN̄+
(ū+, U+) = AN̄−(ū−, U−) = AN̄ (ū, U)

AN̄+
(v̄+, V+) = AN̄−(v̄−, V−) = AN̄ (v̄, V),

with ū+ = ū− = ū, v̄+ = v̄− = v̄, U+ = U− = U and V+ = V− = V . Also, P′+ = P+ and

P′− = P−, resulting in

dBQ

dP
≈
(

1

2δP

)
AN̄ (ū, U) (P+ − P−) AT

N̄ (v̄, V)−O(δP2), (5.62)

which takes a familiar form (as found in the analytic case of Section 5.5) in the limit of

δP → 0:

dBQ

dP
= AN̄ (ū, U)

dP
dP

AT
N̄ (v̄, V)

⇒ dP
dP

= A−1
N̄

(ū, U)
dBQ

dP
A−T

N̄
(v̄, V). (5.63)

This ideal case is possible when knots and support point parameterizations are preserved.

When this is not the case the finite-difference approximation remains in the form of (5.61),

which clearly results in spurious design velocity components because the control point gra-

dient is made inconsistent. The issue arises either by differencing B-spline surfaces that do

243

not reside in the same spline space (i.e., different U and/or V knot vectors) or by using

different support point parameterizations (i.e., different ū and v̄). In order to see this, a

derivation similar to that for B-spline curves is pursued. In this case we consider writing

AN̄+
(ū+, U+) = AN̄ (ū, U) + εu+

AN̄−(ū−, U−) = AN̄ (ū, U) + εu−

AN̄+
(v̄+, V+) = AN̄ (v̄, V) + εv+

AN̄−(v̄−, V−) = AN̄ (v̄, V) + εv−

for deviations εu+ , εu− , εv+ and εv− in the basis function matrices. By assuming that

εu+ ≈ εu− ≡ εu and εv+ ≈ εv− ≡ εv, we substitute into (5.61) and apply δP → 0 to get

dBQ

dP
≈
(

1

2δP

)[
(AN̄ (ū, U) + εu)P′+(AT

N̄ (v̄, V) + εTv)

− (AN̄ (ū, U) + εu)P′−(AT
N̄ (v̄, V) + εTv)

]
−O(δP2)

≈
(

1

2δP

)
(AN̄ (ū, U) + εu)(P′+ − P′−)(AT

N̄ (v̄, V) + εTv)−O(δP2)

= (AN̄ (ū, U) + εu)
dP̂
dP

(AT
N̄ (v̄, V) + εTv). (5.64)

It is obvious in (5.64) that the solution dP̂
dP 6=

dP
dP for a true dP

dP . Thus we consider writing

dP̂
dP = dP

dP + δ
(
dP
dP
)

and adopting the notation

∂P(P̂) =
dP̂
dP

, ∂P(P) =
dP
dP

, δ∂P(P) = δ

(
dP
dP

)

in order to rewrite (5.64) as:

dBQ

dP
= (AN̄ (ū, U) + εu)(∂P(P) + δ∂P(P))(AT

N̄ (v̄, V) + εTv)

= (AN̄ (ū, U) + εu)∂PP(AT
N̄ (v̄, V) + εTv) +

(AN̄ (ū, U) + εu)δ∂P(P)(AT
N̄ (v̄, V) + εTv) (5.65)

244

Now consistent matrix norms are taken and the triangle inequality is applied to yield:

∥∥∥∥dBQ

dP

∥∥∥∥ ≤ ‖AN̄ (ū, U) + εu‖ · ‖∂PP‖ · ‖AT
N̄ (v̄, V) + εTv ‖

+ ‖AN̄ (ū, U) + εu‖ · ‖δ∂PP‖ · ‖AT
N̄ (v̄, V) + εTv ‖

‖δ∂PP‖ ≤

∥∥∥dBQ

dP

∥∥∥− ‖AN̄ (ū, U) + εu‖ · ‖∂PP‖ · ‖AT
N̄

(v̄, V) + εTv ‖

‖AN̄ (ū, U) + εu‖ · ‖AT
N̄

(v̄, V) + εTv ‖
. (5.66)

By recalling that
∥∥∥dBQ

dP

∥∥∥ ≤ ‖AN̄ (ū, U)‖ · ‖∂PP‖ · ‖AN̄ (v̄, V)‖, we can simplify further and

write

‖δ∂P(XP)‖
‖∂P(XP)‖

≤ ‖AN̄ (ū, U)‖ · ‖AN̄ (v̄, V)‖
(‖AN̄ (ū, U)‖+ ‖εu‖)(‖AN̄ (v̄, V)‖+ ‖εv‖)

− 1

⇒ ‖δ∂P(XP)‖
‖∂P(XP)‖

≤ 1(
1 + ‖εu‖

‖AN̄ (ū,U)‖

)(
1 + ‖εv‖

‖AN̄ (v̄,V)‖

) − 1. (5.67)

As in the B-spline curve case, the control point derivative error is at most the same order

of magnitude as the deviation in basis functions caused by reparameterization of knots

or support points. Numerical experiments with the B-spline surfaces in the geometry of

Figure 5-14 confirmed this outcome, where ‖εu‖ = 1.98 × 10−8 and ‖εv‖ = 1.31 × 10−13

created a control point sensitivity deviation of ‖δ∂P(XP)‖ = −1.83×10−9 after perturbing

a support point by +P = 1.0 × 10−5 (with ‖AN̄ (ū, U)‖ = 1.13, ‖AN̄ (v̄, U)‖ = 1.62 and

‖∂P(XP)‖ = 0.105 from finite-differences). It is also seen that as ‖εu‖ → 0 and ‖εv‖ → 0

the deviation becomes ‖δ∂P(XP)‖ → 0.

Surface design velocity errors are also introduced by the control point derivative error,

as in the B-spline curve case. The analysis of a linearized B-spline surface shows this, where

it is written as
∂S

∂P

∣∣∣∣
FD

=
S+ − S−

2δP
. (5.68)

By expanding S+ (an analogous derivation is possible with S−), the perturbed surface is

represented as

S+ = AN (u, U)P′+AT
N (v, V) = AN (u, U) (Px + δP+) AT

N (v, V) (5.69)

245

Substituting back into (5.68) yields

∂S

∂P

∣∣∣∣
FD

=AN (u, U)

(
P+ − P−

2δP

)
AT

N (v, V) +

AN (u, U)

(
δP+ − δP−

2δP

)
AT

N (v, V). δP → 0

The design velocity is thereby rewritten as

∂S

∂P

∣∣∣∣
FD

=
∂S

∂P

∣∣∣∣
True

+
∂S

∂P

∣∣∣∣
Error

, (5.70)

where

∂S

∂P

∣∣∣∣
True

≡ AN (u, U)

(
P+ − P−

2δP

)
AT

N (v, V) (5.71)

∂S

∂P

∣∣∣∣
Error

≡ AN (u, U)

(
δP+ − δP−

2δP

)
AT

N (v, V). (5.72)

It is possible that the spurious design velocity (∂S/∂P)Error 6= 0 for all design velocity

components, even those not associated with a support point perturbation. This is seen by

considering the ()+ for perturbed support points BQ+ = BQ + δBQ and writing the new

surface as:

BQ+ = (AN̄ (ū, U) + εu) (P+ + δP+)
(
AT

N̄ (v̄, V) + εTv
)

= (AN̄ (ū, U) + εu)P+

(
AT

N̄ (v̄, V) + εTv
)

+

(AN̄ (ū, U) + εu) δP+

(
AT

N̄ (v̄, V) + εTv
)
.

By recalling that BQ+ = AN̄ (ū, U)PAT
N̄

(v̄, V), the deviation simplifies to

δP+ = −
(
AN̄ (ū, U) + εu+

)−1
[εu+PεTv+

+ AN̄ (ū, U)PεTv+
+

εu+PAT
N̄ (v̄, V)

] (
AT

N̄ (v̄, V) + εTv+

)−1 (5.73)

Since the right hand side of (5.73) contains only non-zero terms, then δP+ will always be

non-zero for every component of control point design velocity (the same is true for δP−).

As both εu+ → 0 and εv+ → 0 then δP+ → 0 as well (and likewise as εu− → 0 and εv− → 0

then δP− → 0).

This result translates to a non-zero (∂S/∂P)Error for each component of the B-spline

246

surface design velocity. Numerical experiments of gradient error using the analytic surface

geometry of Figure 5-14 match the results predicted using this error analysis (to within

1.0×10−13) for δP+. This implies that the spurious design velocity can be removed from the

finite-difference computation if the baseline and perturbed surfaces are “reverse-engineered”

to calculate the reparameterization error. As in the B-spline curve case, tests with B-spline

surfaces of varying order (or other piecewise continuous surfaces written as a sum of weighted

basis functions) were not conducted because they represent different values in the matrices

AN̄ (ū, U), AN̄ (v̄, V), AN (u, U) and AN (v, V). The error analysis here is general to any

cases where finite-differencing is done between such piecewise continuous surfaces that do

not share the same parameter domain or knot vector.

The magnitude of design velocity error along S is expected to be

∥∥∥∥ ∂S

∂P

∥∥∥∥
Error

≈ O
(
‖δP+ − δP−‖

|δP|

)
. (5.74)

In the case of the surface in Figure 5-14, the spurious control point design velocities were

of O(1.0× 10−8) for a support point perturbation of δP = 1.0× 10−5, thus making

∥∥∥∥ ∂S

∂P

∥∥∥∥
Error

≈ O
(

1.0× 10−8

1.0× 10−5

)
= 1.0× 10−3,

which is consistent with the spurious design velocity magnitudes seen in Figure 5-14.

5.8.3 Potential for Error Correction

The previous sections show that finite-difference sensitivities of support points are incon-

sistent when a geometry kernel computes perturbed surfaces with reparameterized knot

vectors and/or support points. Design velocity error is quantified as well for the B-spline

curve and surface cases if the curve or surface is analytically defined. This information

permits correcting the finite-difference computation by writing

∂Y

∂P

∣∣∣∣
True

=
∂Y

∂P

∣∣∣∣
FD

− ∂Y

∂P

∣∣∣∣
Error

∂S

∂P

∣∣∣∣
True

=
∂S

∂P

∣∣∣∣
FD

− ∂S

∂P

∣∣∣∣
Error

.

247

However, since correctly calculating the sensitivity error requires “reverse-engineering” the

analytic definition of the curve or surface, the finite-difference method is unnecessary be-

cause sufficient information then exists for the analytic sensitivity method. Having found

AN̄ (t̄, U) guarantees this for B-spline curves and having both AN̄ (ū, U) and AN̄ (v̄, V) guar-

antees this for B-spline surfaces. The same goes if a mapping approach is considered instead

of the linear-correcting approach above:

∂Y

∂P

∣∣∣∣
True

= M
∂Y

∂P

∣∣∣∣
FD

∂S

∂P

∣∣∣∣
True

= M
∂S

∂P

∣∣∣∣
FD

,

with both mappings M and M requiring knowledge about the analytic surface definition

found in (∂Y/∂P)True and (∂S/∂P)True, respectively.

Figure 5-17: The impact of control point perturbations on knot vector reparameterization
was done using this SolidWorks model geometry of a Blended-Wing-Body aircraft.

In contrast to the results seen from perturbing support points, numerical test results

summarized in Tables 5.6 and 5.7 show that perturbing control points instead of support

points does not change the knot vector U or support point parameterization t̄ on a cross-

section spline (at least when using the SolidWorks geometry kernel). This example uses

a step-size of 1.0 × 10−5 in the y-component of either a support or control point on a

cross-section B-spline curve of the CAD model in Figure 5-17. The research literature cites

various shape design examples where finite-differencing of control points is used instead of

support points. Although using control points as optimization parameters is less intuitive

for many designers, this approach appears to circumvent the issues discovered thus far when

248

finite-differencing support points. If manipulation of control points is possible outside of

the CAD system9, then this is a viable alternative to the support point design variables for

consistent finite-differencing.

B-Spline Curve Control Point Perturbation

Baseline +h Perturbation −h Perturbation

0.0000000000000000 0.0000000000000000 0.0000000000000000
0.00664434497888606 0.00664434497888606 0.00664434497888606
0.0159796083917612 0.0159796083917612 0.0159796083917612
0.0291008230580382 0.0291008230580382 0.0291008230580382
0.0676990990527782 0.0676990990527782 0.0676990990527782

t̄ 0.122328812951516 0.122328812951516 0.122328812951516
0.315346062269475 0.315346062269475 0.315346062269475
0.599716141077589 0.599716141077589 0.599716141077589
0.886354975172199 0.886354975172199 0.886354975172199
0.970646767300137 0.970646767300137 0.970646767300137
1.0000000000000000 1.0000000000000000 1.0000000000000000

0.0000000000000000 0.0000000000000000 0.0000000000000000
0.0000000000000000 0.0000000000000000 0.0000000000000000
0.0000000000000000 0.0000000000000000 0.0000000000000000
0.0000000000000000 0.0000000000000000 0.0000000000000000
0.00664434497888606 0.00664434497888606 0.00664434497888606
0.0159796083917612 0.0159796083917612 0.0159796083917612
0.0291008230580382 0.0291008230580382 0.0291008230580382
0.0676990990527782 0.0676990990527782 0.0676990990527782

U 0.122328812951516 0.122328812951516 0.122328812951516
0.315346062269475 0.315346062269475 0.315346062269475
0.599716141077589 0.599716141077589 0.599716141077589
0.886354975172199 0.886354975172199 0.886354975172199
0.970646767300137 0.970646767300137 0.970646767300137
1.0000000000000000 1.0000000000000000 1.0000000000000000
1.0000000000000000 1.0000000000000000 1.0000000000000000
1.0000000000000000 1.0000000000000000 1.0000000000000000
1.0000000000000000 1.0000000000000000 1.0000000000000000

Table 5.6: Perturbation of a B-spline curve control point preserves its knot vector and
support point parameterization. Perturbation size is h = 10−5 in the y-component of a
control point in a cross-section B-spline curve of Figure 5-17.

9As of this writing the CAPRI API did not support this with SolidWorks.

249

B-Spline Curve Support Point Perturbation

Baseline +h Perturbation −h Perturbation

0.0000000000000000 0.0000000000000000 0.0000000000000000
0.00664434497888606 0.00664434489760022 0.00664434506018314
0.0159796083917612 0.0159796081962693 0.0159796085872802
0.0291008230580382 0.0291008227020235 0.0291008234141022
0.0676990990527782 0.0676990982245583 0.0676990998811125

t̄ 0.122328812951516 0.122328811454965 0.122328814448274
0.315346062269475 0.315346067654938 0.31534605688325
0.599716141077589 0.599716145974597 0.599716136179904
0.886354975172199 0.886354976562514 0.886354973781692
0.970646767300137 0.97064676765924 0.970646766940985
1.0000000000000000 1.0000000000000000 1.0000000000000000

0.0000000000000000 0.0000000000000000 0.0000000000000000
0.0000000000000000 0.0000000000000000 0.0000000000000000
0.0000000000000000 0.0000000000000000 0.0000000000000000
0.0000000000000000 0.0000000000000000 0.0000000000000000
0.00664434497888606 0.00664434489760022 0.00664434506018314
0.0159796083917612 0.0159796081962693 0.0159796085872802
0.0291008230580382 0.0291008227020235 0.0291008234141022
0.0676990990527782 0.0676990982245583 0.0676990998811125

U 0.122328812951516 0.122328811454965 0.122328814448274
0.315346062269475 0.315346067654938 0.31534605688325
0.599716141077589 0.599716145974597 0.599716136179904
0.886354975172199 0.886354976562514 0.886354973781692
0.970646767300137 0.97064676765924 0.970646766940985
1.0000000000000000 1.0000000000000000 1.0000000000000000
1.0000000000000000 1.0000000000000000 1.0000000000000000
1.0000000000000000 1.0000000000000000 1.0000000000000000
1.0000000000000000 1.0000000000000000 1.0000000000000000

Table 5.7: Perturbation of a B-spline curve support point leads to knot vector and support
parameterization changes. Perturbation size is h = 10−5 in the y-component of a support
point in a cross-section B-spline curve of Figure 5-17. Underlined digits reflect deviations
from the baseline case.

250

Chapter 6

Geometry Management

Demonstrations

Geometry management with CAD models places geometry at the center of a design frame-

work and enables it to support automated multidisciplinary design optimization. This

chapter highlights a few examples wherein CAD models fulfill this role using the concepts

presented in prior chapters. First a discussion is given about important details behind

CAD-based design frameworks. Various design examples are then presented, beginning

with a 3D mechanical part design and both 2D/3D wing design. Each is conducted using

gradient-based optimization. A multidisciplinary design space study with aero/structural

analysis is also presented to illustrate the usefulness of CAD models in such settings.

6.1 Implementing CAD Model Geometry

in Design Frameworks

CAD-based design frameworks differ from traditional approaches by pre-processing, con-

structing and mapping a central geometry representation into the various geometry models

required by analysis tools. Conventional methodologies only require constructing model

geometry for specific analysis tools. Each model solely exists for its specific analysis and

is independent of other geometry models used with different analysis tools. Geometry pro-

cessing and mapping is later conducted, though often with great difficulty, when an attempt

is made to map the various models into a single, consistent representation.

251

A high-level overview is given here about some important details in a CAD-based design

framework. Initially a review of available CAD systems and interfacing software is given.

This is followed by various details pertaining to geometry processing, namely creating an

inventory of geometry data, associating parameters to model topology, extracting consistent

sub-model geometry, and issues with scaling design problems.

6.1.1 Overview of CAD Systems

Many commercial CAD systems are available and extensively used throughout multiple in-

dustries. Proprietary systems such as SolidWorks, ProENGINEER, Catia and Unigraphics

have been developed over many years around proprietary geometry kernels, such as Para-

solid. Open-source geometry kernels such as OpenCascade are also available. With the

exception of OpenCascade, CAD systems typically require manual interaction with a GUI

to generate model geometry. Each also supports an API to query, manipulate or generate

the model geometry.

Numerous API routines are defined within each CAD system. These facilitate program-

ming geometry processing and automated primitive and feature creation. For example, the

SolidWorks system used throughout this dissertation contains an API that allows auto-

matic generation of all primitives and features in the model geometry examples of Chapter

2. Information about the resulting BRep and master-model are also extracted via the API

interface. For example, there exist API calls to query B-spline surfaces for U and V knot

vectors, control points and surface coordinates for a given (u, v) location. Querying other

surfaces, such as planes, cylinders, etc., also returns their parameterization information. The

master-model parameter list is available through the API, thereby allowing direct manipu-

lation of model geometry through its embedded driving parameters. Model regeneration is

executed after varying driving parameters through the API as well.

In order to implement a CAD model within an existing design framework, an inter-

face between the two software systems must exist. The CAD system API permits such

an interface. One example of this is the Computational Analysis PRogramming Interface

(CAPRI) developed by Haimes [27]. The CAPRI API tools provide calling routines for

non-CAD software to interface with the CAD system API. These tools include geometry

manipulation, regeneration, tessellation, querying and saving model instances. A design

framework loads the CAD system along with “back-end” dynamic libraries for CAPRI to

252

communicate with the geometry kernel. This interface can occur on the same workstation

or via a web services client/server setup, wherein a server communicates with the design

framework and the geometry kernel remotely. Once the CAD system is loaded, the design

framework can manage geometry at any time through the CAPRI API in an automated

fashion. With this functionality in place, geometry management of CAD models becomes

a reality for automated design frameworks.

Geometry management is evolving from a typical conventional setup seen in Figure

6-1 to the geometry-centered approach shown in Figure 6-2 and discussed in Chapter 1.

The scenario in Figure 6-2 is employed throughout the demonstration frameworks used in

Section 6.2, wherein a CAD model is the central source of geometry information for analysis.

A conventional framework similar to Figure 6-1 has independent geometry representations

for each analysis tool. The framework in Figure 6-2 manipulates, queries and extracts

sub-models automatically from a central-geometry source for passage to model analysis

management as needed.

Figure 6-1: A design framework flow-chart where the geometry management paradigm has
a secondary role.

253

Figure 6-2: A design framework flow-chart where the geometry management paradigm has
a primary role.

6.1.2 Inventory of Geometry Data

Using the construction principles explained in Chapter 2 (with additional detail covered in

Appendix A), a 3D model geometry is generated within a CAD system to be the central

geometry representation of the design framework. This model defines the high-fidelity, or

fully-realizable, description of the design, where no other representation of the same design

can contain more levels of geometry information. The central geometry representation must

resolve each level of requisite geometry fidelity, either by explicit inclusion from the start

or through added features as design matures1.

Once a 3D model is generated, the geometry- and design-specific information contained

in its master-model must be catalogued. Access to the master-model simplifies this impor-

tant step (in this work the CAPRI API provided this access). Without such information, it

is unclear how various components are described topologically because the CAD system in-

ternally conducts the surface trimming, union/subtraction and other geometry operations

in a non-transparent manner to the user. Such information is vital to create algorithms

that extract lower-fidelity geometry information from the complete high-fidelity model in

1In the case of aircraft design, it is convenient to define the outer mold line first and adapt an “outside-in”
approach to adding features pertaining to internal subsystems. Place-holder (skeletal) geometry [18] handles
are required for geometry information that is not known a priori, but relevant to later analysis.

254

an automated fashion.

Parameter information must also be catalogued to setup design problems properly for

a given CAD model. Applicable bounds can be determined through a design motion study

or design of experiments. Design variables can also include the suppression status of a

feature-tree branch, thus suppression information must be obtained from the parametric

model. Explicitly naming model components, features and parameters also encourages a

consistent reference system that sub-models refer to. Furthermore, the model regeneration

robustness is also better understood by obtaining the parent-child relationships across the

master-model. A greater number of “children” branching from any part of the feature-tree

may hint to design motion limitations and a potential for lower regeneration robustness

across the feasible design space.

6.1.3 Parameter Associativity to Model Topology

The taxonomy of parameterization levels discussed in Chapter 2 also assists in categorizing

which parameters drive the resulting BRep topology for a model. Although not strictly

important from the perspective of model generation, the associativity of driving parameters

to the resulting model surfaces is important for conducting geometry sensitivities. Knowing

which faces are driven by certain parameters simplifies the sensitivity algorithm. This

avoids wasted computational time in computing the sensitivity of surfaces to unassociated

parameters. Constructing this associativity table is non-trivial, however.

Three possible approaches may be taken to create the parameter associativity table.

Further study is needed to identify which is the best approach, or if another is preferred

altogether. First, the associativity table may be created manually as the model geometry is

constructed. The addition of extra features in the model will expand the associativity table.

By doing this, a sensitivity algorithm can be custom-tailored to the final model and be more

computationally efficient. Second, if a CAD model of unknown construction is used, then

it may be feasible to infer an associativity table by suppressing all features in the model

and perturbing each parameter to see which faces show a non-zero design velocity. As each

additional feature is un-suppressed, the parameter perturbations may permit inference of

new associativity information for the new faces. Perturbation sizes will need to be less-than

any critical value that induces topology changes in the model. Knowledge of such limiting

perturbation sizes can be obtained via a design motion study on the model beforehand.

255

Third, if equations defining model geometry surfaces are known and the master-model

parameters directly link to those equations, then tracing the parent/child dependencies in

the model feature-tree can lead to an associativity table for models.

6.1.4 Extracting Consistent Geometry Sub-models

Geometry information extracted from a CAD model becomes a geometry “sub-model.”

These are inherently lower-fidelity geometry representations of the full high-fidelity model.

The extraction of sub-models is a crucial step in developing a CAD-based design framework

because many analysis tools only require lower-fidelity geometry information. The process

for creating these sub-models must be automated, robust and able to meet all the analysis-

specific geometry criteria. When analysis models are coupled, their geometry sub-models

must be consistent in order to be coupled properly as well. Inconsistent sub-models are

difficult to use when analysis solutions need to be passed from one discipline to another.

Consistency between sub-models can occur naturally when each originates from the

same source geometry. Individually the sub-models are independent. Yet they are coupled

by sharing the parent geometry features from which lower-fidelity geometry is extracted.

For example, separate edges enclosing a face may appear in distinct sub-models, yet those

edges are coupled by sharing a face in the CAD model BRep. In this manner, multi-

disciplinary coupling is obtained by the connection of disciplinary sub-models to parent

geometry. Discipline-specific analysis results can thus be mapped in a consistent fashion

from one geometry sub-model to another by including the source geometry in the mapping

procedure.

6.1.5 Impact of Problem Scaling on Geometry Management

There is an expected increase in the computational cost associated with geometry process-

ing as the number of parameters in a CAD model increases. If the larger parameter set is

also dimensioned, then the geometry constraint set increases for the CAD model as well.

A scaling study was conducted using the SolidWorks CAD system with a single-loft rep-

resentation of a Blended-Wing-Body (see Figure 6-23 in Section 6.2.5). Execution time

for automated model construction, regeneration and differentiation were quantified as the

number of parameters in the model increased.

The timing results for automatic model construction are shown in Figure 6-3 for indi-

256

vidual models containing a loft feature with the indicated number of cross-section sketches.

Each sketch contained the same B-spline curve airfoil that is scaled according to its span-

wise position. When dimensions are needed, the CAD system “Fully Defined Sketch” option

is used to automatically dimension each support point with respect to the sketch origin for a

total of 46 dimensions per sketch. The added dimensions create a larger geometry constraint

set to solve as more sketches are added. Overall, as the model size increases the geometry

kernel appears to require greater computational resources to process the model. It is also

observed that the CAD system memory management may contribute added overhead if a

series of larger models are constructed consecutively. Performance degrades if models are

not released before larger models follow. This can be true whether in model construction,

model loading or regeneration and is likely CAD system dependent. Different versions of

the same CAD system may also display variability in performance. Results shown here

pertain to the SolidWorks 2011 version. A scaling study like this should be conducted with

a CAD-based design framework in order to identify the tractability of design optimization

problems under consideration.

Figure 6-3: Timing tests for automated model construction of a loft feature with increasing
number of cross-section definitions.

257

Different timing results are shown in Figure 6-4 for model regeneration. This process

is decomposed into the following sequence of steps: loading the model, loading the master-

model, regenerating the model after perturbing a single parameter and finally releasing

the model. Whether with or without dimensions, the model regeneration time is fairly

constant. However the master-model processing appears to drive the overall execution time

as the number of parameters increases. This effect is exacerbated when dimensions are used

in the sketches.

The combined computational expense of processing the model geometry and calculating

B-spline surface sensitivities (for a tessellation of about 200000 elements) are shown in

Figure 6-5. In this case the model geometry used in the prior timing tests is reused and

a geometry gradient is calculated with respect to a single support point on each sketch.

Clearly the analytic gradient benefits from doing only one tessellation and can compute all

the necessary gradients in less time. As the model size increases, the finite-difference method

suffers from potential overhead costs within the CAD system since a baseline model and

two perturbed models may be loaded at a time for a central difference solution. This can

hinder processing of the master-model significantly, but is less of a concern in the analytic

case because only one model is loaded at a time.

258

(a)

(b)

Figure 6-4: A computational expense study for model regeneration as the number of model
sketches increases (a) with dimensions and (b) without dimensions.

259

Figure 6-5: Timing tests for the geometry gradients of a loft feature with increasing number
of cross-section definitions. Only one design variable per sketch is considered for differenti-
ation.

6.2 Design Framework Demonstrations

Example design frameworks are presented here with increasing complexity to demonstrate

the tools developed in this thesis and various aspects of a CAD-based design framework.

First, a single-discipline design problem of a mechanical part is presented with gradient-

based optimization. This is followed by 2D/3D single-discipline design problems of airfoils

and wings also using gradient-based optimization. Lastly, a multidisciplinary parameter

study is shown that incorporates both aerodynamic and structural analysis.

6.2.1 3D Single-Discipline Mechanical Design Problem

The pulley in Figure 6-6(a) is designed as a revolve feature using the sketch primitives

parameterized in Figure 6-6(b). Ten linear dimensions and various geometry constraints

drive the sketch end-points. The symmetric pulley is explicitly modeled by mirroring the

sketch primitives about the horizontal axis as well. The design motion of this part, though,

is limited to a bounded design space wherein sketch primitives do not cross (a constraint

imposed by the CAD system). Otherwise, the pulley will not regenerate in those unfeasible

260

portions of the design space.

A constrained design problem is posed to find the dimension values that yield a reduction

in the baseline pulley volume V0 by a factor β = 0.8:

min
x

J = (βV0 − V (r; x))2

s.t. xLB ≤ x ≤ xUB

(6.1)

where the sketch dimensions are the design variables x = {Pi} = {d1, . . . , d10} constrained

within side bounds xLB = 0.5x0 and xUB = 5x0 for baseline values x0. The r refers to the

sketch primitive parameterization. V (r; x) is the pulley volume returned by the geometry

kernel after regenerating a given design point x. This volume computation was “reverse-

engineered” by treating the model as a surface-of-revolution and integrating the sketch

primitives. Validation of the analytic volume calculation was done by changing dimension

values in x and comparing the results with the geometry kernel answer. Excellent agreement

was seen between the two results.

Having the analytic volume model also enabled an analytic computation of ∂V/∂r. After

determining the geometry constraint set for the sketch, the sketch derivative is found as

∂r/∂x and the objective function sensitivity becomes

∂J
∂x

=
∂V

∂r

∂r

∂x
,

where finite-differences validated both components of this analytic gradient.

A wrapper function provided the fmincon optimizer in Matlab with sensitivity infor-

mation, while a separate geometry management module provided access to the pulley CAD

model for regeneration and volume queries. Optimization runs were conducted using the

analytic geometry gradients or finite-differencing of the CAD model (with a step-size of

1.0 × 10−2 for dimensions of O(100)). Figure 6-7(a) shows the objective function history

comparison and Figure 6-7(b) shows both the initial and final pulley cross-section geometry.

As shown in Table 6.1, both gradient methods reached the same local minimum. However,

the analytic gradient provided less overall computational expense than the finite-difference

gradient, as expected.

261

(a)

(b)

Figure 6-6: (a) A pulley generated as a revolve feature using the sketch primitives param-
eterized in (b).

262

(a)

(b)

Figure 6-7: (a) Objective function history as influenced by analytic and finite-difference
geometry gradients for the pulley design problem. (b) A comparison of the initial and final
cross-section geometry for the pulley after optimization.

263

Analytic Finite-Difference
Sensitivity Sensitivity

Starting Volume [m3] 2.30769 2.30769

Target Volume [m3] 1.8461520 1.8461520

Final Volume [m3] 1.846151986 1.846151965

Final J Value [m3] 1.81976× 10−16 1.16494× 10−15

Avg. Sensitivity Computation Time [min:sec]
0:37 7:40

Table 6.1: A summary of results for the pulley design problem. The reported computation
time is an average over all geometry gradient computations in a design run. Underlined
digits correspond to deviations from the target solution.

6.2.2 2D Single-Discipline Inverse-Design Problems

A 2D linear vortex panel method (with Karman-Tsien compressibility correction) was de-

veloped in order to have access to the source code and manually differentiate with respect

to flow parameters and discretization. This allows for a complete derivative to be computed

for use in a gradient-based optimization design framework. An input geometry represen-

tation consists of airfoil coordinates that serve as the panel definition. For validation, the

Cp distribution results for an inviscid, incompressible 2D flow over a NACA 0012 airfoil is

compared to XFOIL [20] results for various discretization choices. Two results shown in

Figures 6-8 and 6-9 demonstrate excellent agreement between the two codes for an α = 3.0

case.

Using this newly developed 2D panel code, an inverse-design problem is posed wherein

the cross-section from an existing 3D CAD-generated loft is extracted, perturbed and sub-

sequently driven to its target baseline shape via gradient-based optimization. Two simple

3D lofts of a NACA 0012 wing and RAE2822 wing were created in the SolidWorks CAD

system. The lofts consist of five defining cross-sections made of two cubic B-splines each,

as shown in Figure 6-10. Both the top and bottom B-splines utilize 10 support points in

approximating the NACA 0012 shape, whereas 15 support points are used for the RAE

2822 shape. Each wing has an aspect ratio A = 1.0, planform area S = 1.0 and chord

c = 0.5. For a 3D design problem this planform shape results in large 3D-effects due to

the low A value, however the 2D analysis does not take this into account. When applied

264

(a)

(b)

Figure 6-8: Comparison between a developed linear vortex panel code and XFOIL results
with (a) 20 panels (top and bottom) on a NACA 0012 airfoil input geometry and (b) Cp

results.

265

(a)

(b)

Figure 6-9: Comparison between a developed linear vortex panel code and XFOIL results
with (a) 100 panels (top and bottom) on a NACA 0012 airfoil input geometry and (b) Cp

results.

266

to a 3D analysis, the B-spline surface geometry gradient can be validated with these same

model geometry because 3D aerodynamic effects are dominant.

(a) NACA 0012 (b) RAE 2822

Figure 6-10: Simple 3D wing lofts were constructed in the SolidWorks CAD system to
represent the (a) NACA 0012 and (b) RAE 2822 airfoil shapes.

In each case the CAD model consists of a single loft feature with four faces (including

two trimmed planar end-caps), six edges and four nodes in its topology. Due to the simple

construction approach, where the top and bottom airfoil splines have initial and final support

points at the leading and trailing edge, the four loft faces consist of two end-cap planar faces

and two cubic B-spline surfaces constrained at the leading/trailing edge2. The top/bottom

B-spline surfaces are driven solely by the respective top/bottom B-spline curves in each

cross-section profile.

Cross-section knot vectors, support points and control points are accessed through the

CAPRI API, as are the B-spline surface knot vectors and control points. The middle airfoil

section is selected for 2D analysis, thus the B-spline curve parameters are obtained and ana-

lytically reconstructed outside of the CAD system. This permits an arbitrary discretization

of the B-spline curve since it is not an edge in the model topology that can be queried via

the API3. Therefore, extraction of this particular B-spline curve results in a sub-model of

lower-fidelity for use in the panel code analysis. A particular support point on this sub-

model is chosen to be perturbed by some amount and the entire CAD model is regenerated,

thereby resulting in an initial point for the design problem. As the optimizer determines

new design points, new sub-models are obtained by regenerating the entire wing loft and

2This setup leads to a “sharp” leading edge. This can be remedied by clustering more support points
near the leading edge to create a “rounded” shape or specifying the tangent vector at the initial support
point.

3Since the model construction is sufficiently simple, it is possible to query the loft along a v = 0.5
isoparameter line and obtain a discretization that would closely represent the underlying B-spline curve
cross-section. Since the curve knot vector and surface knot vector are not exactly the same, the isoparameter
line and cross-section curve may not be exactly the same.

267

again extracting the corresponding B-spline curve cross-section. This allows the final design

point to be reflected in the sub-model and the 3D CAD model in a consistent fashion.

Using the baseline, unperturbed sub-model lift-coefficient as the target solution, an

inverse-design problem is created to drive the perturbed starting point to a target pressure

distribution and sub-model geometry. Constraints in the problem are set to limit a minimum

thickness t/c = 7% at x/c = {15%, 65%} and a maximum thickness anywhere at t/c = 25%.

These constraints are evaluated by querying the sub-model B-spline curves (top and bottom)

at the corresponding x/c location and calculating the thickness normal to the chord-line.

Finally, the design variable in the problem is the perturbed coordinate of the initially

perturbed support point on the sub-model. This particular setup is selected in order to test

the quality of the B-spline curve design velocity algorithm developed in Section 5.5. By

driving a perturbed sub-model to a known baseline, it is fair to conclude that the design

velocity prescribed to the optimizer is correct. A comparison using finite-difference design

velocity is also used, where the CAD model geometry is perturbed by h = 1.0 × 10−5 and

the new sub-model B-spline curves are extracted for differencing in object space.

For both the NACA 0012 and RAE 2822 inverse-design problems, the optimization

problem is written as

min
x

J = w(Cl − C∗l)2

s.t. xLB ≤ x ≤ xUB,

7%− (t/c)1 ≤ 0,

7%− (t/c)2 ≤ 0,

(t/c)− 25% ≤ 0

(6.2)

where Cl is the lift-coefficient at a given design point, C∗l is the target lift-coefficient,

x is the y-coordinate of the perturbed support point and w is a weighting factor. The

subscripts “LB” and “UB” denote the lower and upper side bounds on x, respectively.

Values for these parameters are summarized in Table 6.2. Flow conditions are set atM = 0.0

(incompressible, infinite sound velocity) and α = 3.0. Thickness constraint gradients are

also taken from the B-spline design velocity as follows:

∂(t/c)

∂P
=

1

c

(
∂Y(t)upper

∂P
− ∂Y(t′)lower

∂P

)
, (6.3)

268

where the appropriate t and t′ values are found on the upper/lower B-splines in order to

compute the thickness normal to the chord.

The gradient-based algorithm named fmincon in Matlab is used to drive the initial

design point to a final design point resulting in J ≤ 1.0 × 10−12 or a change in design

variable less than 1.0 × 10−9. For both wing loft cases, Figures 6-11 and 6-13 show the

initial design point and the final design point obtained when the optimizer reaches a local

minimum. In both examples the agreement between the final design point and the target

are excellent. This serves as validation of the B-spline curve geometry gradient as well.

Furthermore, this method also agrees well with the results using finite-difference design

velocity, as seen in the objective history in Figure 6-12(a) and Figure 6-14(a), or the design

trajectory in Figure 6-12(b) and Figure 6-14(b).

NACA 0012 RAE 2822 NACA 0012
(MSES)

Initial Perturbation 2.0y 1.8y 1.12y

Side Bounds [0.5y, 2.5y] [0.5y, 3.1y] [0.8y, 1.15y]

C∗l 0.178045 0.292885 0.283510

wl 1.0× 106 1.0× 106 4.0× 106

C∗dw 3.244189× 10−3

wd 5.0× 108

Table 6.2: Setup data for the inverse design problems on simple NACA 0012 and RAE 2822
model geometry. The differentiated panel code is used for each problem except the NACA
0012 with the MSES designation.

An additional 2D inverse-design problem is done using the MSES Euler code [21] on

the RAE 2822 geometry. Wave-drag is now included in the objective functional and only

side bound constraints on x are needed. Tighter bounds on the design space were chosen

to avoid additional local minima seen with larger bounds4. This did not warrant using the

thickness constraints from the previous examples. The optimization problem then became

4Other local minima were reached due to the presence of multiple shocks. In some instances one shock
diminished in strength while the other increased in strength. The combined effect would null a change in
total wave-drag or cause a net-increase. This caused a design trajectory to terminate at local minima away
from the intended target. The chosen side bounds in this problem avoided this situation.

269

(a) NACA 0012 Initial

(b) NACA 0012 Final

Figure 6-11: (a)–(b) Inverse-design problem for the NACA 0012 airfoil depicting initial and
final design points.

270

(a)

(b)

Figure 6-12: (a) Comparison between the objective function history results using the ana-
lytic and finite-difference design velocity methods for the inverse-design problem in Figure
6-11. (b) Comparison between the resulting design trajectory obtained with both methods.

271

(a) RAE 2822 Initial

(b) RAE 2822 Final

Figure 6-13: (a)–(b) Inverse-design problem for the RAE 2822 airfoil depicting initial and
final design points.

272

(a)

(b)

Figure 6-14: (a) Comparison between the objective function history results using the ana-
lytic and finite-difference design velocity methods for the inverse-design problem in Figure
6-13. (b) Comparison between the resulting design trajectory obtained with both methods.

273

min
x

J = wl(Cl − C∗l)2 + wd(Cdw − C∗dw)2

s.t. xLB ≤ x ≤ xUB

(6.4)

The complete objective functional gradient is only approximated by the B-spline geom-

etry gradient because the MSES code was not differentiated. This code utilizes the same

discretization points obtained from the sub-model in the panel code problem. With this

input the MSES suite generates a cubic B-spline interpolation and a subsequent flow-field

mesh. An inverse-design problem is run at M = 0.7 and α = 3.0◦ using the problem data in

Table 6.2. The same optimizer is used as in the panel code problem and the target design

is recovered within 0.99969y. This is an excellent result given the gradient circumstances.

Figure 6-15 depicts the initial and final design points for this inverse problem. This again

validates the quality of the B-spline curve geometry gradient algorithm through a non-ideal

case. Comparison with a finite-difference gradient also yields excellent agreement, as seen in

the objective function history in Figure 6-16(a) and the design trajectory in Figure 6-16(b).

The target design is recovered within 0.99968y using finite-differences.

6.2.3 2D Single-Discipline Design Problem

A forward design problem is presented here to highlight the impact of errors in the finite-

difference gradient on design trajectories of B-spline curves. A sub-model geometry is

extracted from the mid-plane cross-section of the BWB model in Figure 6-23, which already

contains a +1◦ incidence angle. This sub-model consists of cubic B-spline curves on the top

and bottom airfoil that meet at the leading/trailing edges. The discretized sub-model is

passed to MSES for analysis. The y-component of two support points are selected as design

variables on the top B-spline curve. With the RAE 2822 airfoil as the initial design point

shape, a M = 0.725 flow at α = 0.125◦ provides conditions for a weak shock on the upper

surface that results in a wave-drag coefficient of Cd,w = 0.000245. A constrained gradient-

based minimization problem is written for this experiment with the intent of removing

wave-drag:

274

(a) Initial

(b) Final

Figure 6-15: In using the MSES analysis tool, (a) the initial design point for a NACA 0012
sub-model is driven to a (b) final design point. The airfoil y-coordinates are scaled to show
greater curvature detail.

275

(a)

(b)

Figure 6-16: (a) Comparison between the objective function history results using the ana-
lytic and finite-difference design velocity methods for the inverse-design problem in Figure
6-15. (b) Comparison between the resulting design trajectory obtained with both methods.

276

min
x

J = w(Cd − C∗d)2

s.t. xLB ≤ x ≤ xUB,

7%− (t/c)1 ≤ 0,

7%− (t/c)2 ≤ 0,

(t/c)− 25% ≤ 0

(6.5)

where the target drag coefficient is C∗d = 0.0 and the weight is w = 5.0 × 108. The

constraints enforce minimum thickness at chord locations (x/c)1 = 15% and (x/c)2 = 65%

and a maximum thickness everywhere on the airfoil in the same manner as in Section 6.2.2.

Side bounds for both design variables are set as [0.8y, 1.12y]. Both the analytic design

velocity method from Section 5.5 and a finite-difference method are used for comparison.

Table 6.3 summarizes results from cases using both methods. The analytic method

provides a design trajectory that results in much lower wave-drag than that found using

finite-differences. The execution time for the analytic case is much faster than the finite-

difference case as well. Figure 6-17 illustrates the objective function and normalized design

variable history, where a design trajectory bifurcation is visible between the analytic and

finite-difference cases. Figure 6-18 also shows the initial and final Cp distributions for both

design velocity cases. It appears that two design variables are insufficient to eliminate the

shock. Each changing support point has a competing influence on the shock since both

contribute to the airfoil design motion fore/aft of the shock. The bifurcation in design

Gradient Method Initial Cd Final Cd Execution
Time [min.]

Analytic 0.000245 0.000074 43.93

Finite-Difference 0.000245 0.000172 203.93

Table 6.3: Results from a design problem for wave-drag minimization wherein analytic and
finite-difference design velocity are used.

trajectory between the analytic and finite-difference case is a consequence of the geometry

gradient quality. As discussed in Section 5.8, this design problem exhibits inconsistent finite-

difference computations throughout its design trajectory. Due to the sensitive nature of the

transonic flow-field with weakening shocks along the airfoil upper surface, the geometry

gradient errors appear sufficient in magnitude to bifurcate the design trajectory. This is an

277

(a) Objective Function History

(b) Normalized Design Variable History

Figure 6-17: Comparison of objective function and design variable history between an
analytic and finite-difference design velocity method for a drag minimization problem.

278

Figure 6-18: Comparison of Cp distribution between the initial and final design point re-
sults using an analytic and finite-difference design velocity method in a drag minimization
problem.

important realization since many practical design problems of interest in aerospace require

shape design to eliminate shocks. This example shows that finite-differencing support points

on CAD-generated B-spline curves can lead to different results since knots and/or support

points are reparameterized by the geometry kernel in a non-transparent manner. Without

the analytic method to compare, the finite-difference result is typically considered sufficient

since the location of local minima are initially unknown in the design space. Scrutiny of

such results is necessary when employing finite-differences methods on this type of model

geometry.

6.2.4 3D Single-Discipline Inverse-Design Problem

The inverse-problem conducted in 6.2.2 is repeated in a 3D setting using the Cart3D design

framework [59] for the NACA 0012 wing (Figure 6-10(a)) at M = 0.5 and α = 3.0◦. In this

design framework, volume mesh and residual sensitivities are computed in a non-transparent

manner within the framework and an internal SQP optimizer is utilized. Surface tessellation

sensitivities are provided using the B-spline surface geometry gradient algorithm introduced

in 5.5. The surface tessellation has about 378000 triangular elements and the volume mesh

279

has about 661000 cells. A modification of the optimization problem is done by specifying

a new target C∗L, corresponding to the Cart3D baseline result, and removing the thickness

constraints to give

min
x

J = w(CL − C∗L)2 ,

s.t. xLB ≤ x ≤ xUB

(6.6)

where the problem data is defined in Table 6.4. Results for this case are shown in Figures 6-

19 through 6-20, where the objective function history demonstrates that the baseline shape

and pressure distribution are recovered very well. In this case a local minimum near the

target coordinate value is found before the design trajectory reaches the target geometry

itself. This test case also serves to validate the quality of the B-spline surface geometry

gradient since there is excellent agreement with the finite-difference results.

Model Initial Side Bounds C∗L w
Geometry Perturbation

NACA 0012 (3D) 1.3y [0.88y, 1.4y] 0.011988 1.0× 106

NACA 0012 (2D) 1.09y [0.88y, 1.12y] 0.266244 1.0× 106

Table 6.4: Setup data for the inverse design problems on a simple 3D NACA 0012 model
geometry and 2D cross-section case. The design problems are both executed using the
Cart3D design framework.

The same design framework can conduct 2D flow analysis by taking the 3D input geom-

etry and only discretizing the volume mesh along a “planar-cut” 1-cell deep, resulting in a

volume mesh with about 5500 cells. This analysis mode is used as a lower-fidelity analysis

to repeat the inverse design problem above. The problem uses the same NACA 0012 wing

model, but different constraints, target C∗L and initial perturbation magnitude, as summa-

rized in Table 6.4. B-spline surface geometry gradients are also provided as before. The

results in Figure 6-21 and 6-22 validate the quality of the geometry gradient once again as

the baseline shape and target C∗L are reached. Agreement is excellent between the analytic

and finite-difference design velocity methods as well. With both design velocity methods a

local minimum is found before reaching the target support point y-component value.

280

(a) Initial

(b) Final

Figure 6-19: Initial and final design points for the 3D NACA 0012 wing via inverse design
with the Cart3D design framework.

281

(a)

(b)

Figure 6-20: (a) The objective function history for the 3D NACA 0012 inverse design prob-
lem comparing the analytic and finite-difference gradient methods; (b) the design trajectory
comparison between the two methods.

282

(a) Initial

(b) Final

Figure 6-21: (a) Initial 3D NACA 0012 wing with spline point perturbation in a 2D analysis,
followed by (b) the final design point obtained via inverse design with the Cart3D design
framework.

283

(a)

(b)

Figure 6-22: (a) The objective function history for the 3D NACA 0012 inverse design prob-
lem comparing the analytic and finite-difference gradient methods; (b) the design trajectory
comparison between the two methods.

284

6.2.5 3D Single-Discipline Design Problem

Once the geometry gradients are validated via the previous inverse design problems, an

unconstrained-lift and constrained-lift forward design problem is tested to further illustrate

the usefulness of the analytic gradient approach. A Blended-Wing-Body (BWB) SolidWorks

model is created with an airfoil stack consisting of nine RAE 2822 cross-section profiles. A

trapezoidal planform area is used to distribute the airfoils and both wing area and aspect

ratio are determined from a prior study [50]. In addition to using 5◦ of dihedral, a linear

twist distribution is used from root-to-tip, where the root airfoil contains a +1◦ incidence

angle and a −3◦ washout is set at the wing tips. As in the previous example models, the

airfoils are divided at the leading and trailing edge with a cubic B-spline interpolating 12

support points (obtained from RAE 2822 coordinates) in a half-cosine manner, thereby

better resolving the leading edge radius of curvature. The resulting lofts interpolating

these airfoil sections are a bicubic B-spline surface for the top and bottom. The geometry is

tessellated with about 196000 triangulation elements in a small-mesh case and about 596000

elements in a large-mesh case. Mesh parameters are reused for tessellating model geometry

at each design point in each design problem.

Both design problems consist of reducing drag in a transonic flow with M = 0.8 and an

initial α = 5◦. Two support points on each of the airfoil upper B-spline curves are design

variables (y-coordinate) in addition to α for a total of 19 design variables. The gradient-

based Cart3D design framework is again utilized and loft geometry gradients are calculated

using the algorithm presented in this work.

The unconstrained-lift problem is formulated as

min
x

J = wD(CD − C∗D)2,

s.t. xLB ≤ x ≤ xUB

(6.7)

with a weight wD = 1.0× 103 and a target drag C∗D = 0.0. The set x consists of two upper

spline support points at each cross-section of the BWB and α. Upper and lower bounds for

the support points are [0.7yi, 1.1yi] for the ith y-coordinate and ±10◦ for α.

Although a shock initially exists, a local minimum is found that reduces the shock and

drag from CD = 0.04614 to CD = 0.01522 in the small mesh case. This again confirms

the quality of the geometry gradient algorithm for forward design. Figure 6-24 illustrates

285

(a)

(b)

Figure 6-23: Model geometry created using SolidWorks to represent a (a) RAE 2822 airfoil
and (b) Blended-Wing-Body aircraft outer mold line.

286

the initial and final Cp contours across the top of the BWB loft and Figure 6-25 shows the

initial and final cross-section Cp distributions at select span-wise locations.

The constrained-lift problem is formulated as

min
x

J = wD(CD − C∗D)2

s.t. xLB ≤ x ≤ xUB,

CL − C∗L = 0,

(6.8)

where C∗L = 0.3. This is reformulated by augmenting the objective function with a penalty

on lift-coefficient as follows:

min
x

J = wD(CD − C∗D)2 + wL(CL − C∗L)2 ,

s.t. xLB ≤ x ≤ xUB

(6.9)

where the lift-coefficient weight is also set to wL = 1.0 × 103. The design variable set and

initial flow conditions are exactly the same as in the previous unconstrained-lift problem.

With the same starting point and the small mesh case, the initial drag of CD = 0.04614 is

reduced to CD = 0.025998. The lift-coefficient is driven from the initial value CL = 0.36896

to CL = 0.29452, which is close to the desired value of CL = 0.3. This again confirms

the quality of the geometry gradient algorithm. Figure 6-26 illustrates the initial and final

Cp contours across the top of the BWB loft and Figure 6-27 shows the initial and final

cross-section Cp distributions.

In both the constrained-lift and unconstrained-lift design problems a local minimum is

found that yields an improved aerodynamic design compared to the initial design. Due to

the typically large sensitivity of transonic flow to changes in geometry, the design space is

non-linear and other local minima are possible. Choosing different spline support points

(or more of them) as design variables results in different local minima as well for the same

objective functional. In these cases a “wavy” airfoil shape often emerges with multiple

shocks when changing an increasing number of support points. It is possible to see a single

support point strengthen some shocks and weaken others since its design velocity field

influences design motion upstream and downstream along the airfoil. The changes in shock

strength by one design variable in a region may cancel due to the combined design motion

effect of multiple design variable changes in another. Such airfoil shapes may be avoided

287

Design Problem Initial Target Analytic Finite-Difference
Gradient Gradient

Unconstrained-lift CD 0.04614 0.0 0.01522 0.02496

Constrained-lift CD 0.04614 0.0 0.025998 0.033496
CL 0.36896 0.3 0.29452 0.31200

Avg. Sensitivity Computation Time [min:sec / Design Iteration]

Unconstrained-lift 7:22 23:07

Constrained-lift 6:27 22:29

Table 6.5: Results comparison when using the analytic and finite-difference geometry gra-
dients for an unconstrained-lift and constrained-lift design problem. Surface mesh size is
about 196000 elements and average volume mesh size is about 935500 cells. Computation
time is reported for the full geometry gradient.

by constraining against inflection points along the airfoil.

A last comparison is made between design velocity methods in both the unconstrained-

lift and constrained-lift problems. The geometry gradient is first computed using the algo-

rithm developed herein and in a separate run a finite-difference computation provides the

gradient. All other geometry and flow conditions are exactly the same for both cases. Re-

sults from both types of runs are surprisingly different, where the analytic geometry gradient

obtains superior drag results in both the constrained-lift and unconstrained-lift problems

and more closely meets the CL constraint. In each case the average execution time for the

full geometry gradient per design iteration is much less for the analytic method than the

finite-difference method. These results are summarized in Table 6.5 for the small-mesh case

and Table 6.6 for the large-mesh case. The only significant change due to mesh size is seen

in the finite-difference result for CD in the unconstrained-lift case. The objective function

history for both problems, seen in Figure 6-28, shows the analytic case reaching a differ-

ent local minimum compared to the finite-difference case. Design trajectory comparisons

between the two methods are also seen in Figures 6-29 through 6-32, where each design

variable trajectory per cross-section across the semi-span is recorded. It is clear that the

varying design velocities between methods causes a different traversal of the design space

towards separate local minima.

The difference in results between the finite-difference and analytic geometry gradients

are attributed to an inherently different quality in the computed gradient direction. This

288

Design Problem Initial Target Analytic Finite-Difference
Gradient Gradient

Unconstrained-lift CD 0.046153 0.0 0.015164 0.032265

Constrained-lift CD 0.046153 0.0 0.026023 0.033441
CL 0.369088 0.3 0.294527 0.311856

Avg. Sensitivity Computation Time [hr:min:sec / Design Iteration]

Unconstrained-lift 0:33:42 1:42:51

Constrained-lift 0:38:51 1:39:24

Table 6.6: Results comparison when using the analytic and finite-difference geometry gra-
dients for an unconstrained-lift and constrained-lift design problem. Surface mesh size is
about 596000 elements and average volume mesh size is about 935500 cells. Computation
time is reported for the full geometry gradient.

result is consistent with the results seen in the 2D example of Section 6.2.3. As explained

in Section 5.8, the finite-difference computation may easily become incorrect if the B-spline

surface knot vectors are different when perturbing the model (in these cases it is clear that

the finite-difference approach creates non-zero geometry gradients in all three component

directions, which is symptomatic of an inconsistency since only one direction should be

non-zero). Since the analytic gradient avoids this condition, it appears to provide a higher

quality geometry gradient that allows an optimizer to find different local minima for both

deterministic problems tested here. In especially sensitive flow regimes, as in the transonic

case considered here, a bifurcation in design trajectory is possible based on the design

velocity quality. In contrast, the examples in Sections 6.2.2 and 6.2.4 did not show the

sensitivity to design velocity required to bifurcate a design trajectory between the analytic

and finite-difference cases even though the finite-difference gradients are inconsistent. In

those cases the flow-field is less-sensitive to the geometry because the shock is stronger

or non-existent. As seen in the example of Section 6.2.3, though, weakening or emerging

shocks make the flow-field very sensitive to design velocity. 3D effects may exacerbate this

sensitivity further in certain situations.

It is noteworthy to point out that a finite-difference case starting from the final design

obtained with analytic gradients also stayed at that same local minimum. However, starting

the analytic gradient case from the original finite-difference final design resulted in a new

design trajectory to a different local minimum altogether (this was an improved design

289

compared to the local minimum found previously with analytic gradients). This implies

that the finite-difference gradient error may cause a stall in progression along a design

trajectory towards a true local minimum.

These scenarios can frequently occur in practical design, thus attention is needed on

the design velocity quality when employing finite-difference methods with support points.

Potentially adding “noise” to a finite-difference computation may provide insight about the

sensitivity of design trajectory to design velocity in a particular problem if the B-spline

curve or surface information is unavailable. Finally, a comparison between the results from

different surface discretizations show that CD appears more sensitive to the discretization.

This may impact the finite-difference gradient and the design trajectory in more sensitive

flow regimes when CD is part of the objective functional. The results presented here show

only a minor dependence on mesh size for the analytic method.

These outcomes shed further light on the need to scrutinize optimization results when

employing finite-difference geometry gradients of support points on B-spline curves and sur-

faces, especially when analysis is sensitive to geometry. In the BWB design case considered

here the finite-difference results would have been declared sufficient if knowledge of their

inconsistent nature were unknown and an analytic comparison were unavailable. Although

the finite-difference approach may suffice for other parts of a model BRep, it is clear that

this approach must be used cautiously on support points for B-spline curves and surfaces

because a geometry kernel may modify their knot vectors and/or support point parameter-

izations. This leads to inconsistent finite-difference geometry gradients that may create a

bifurcation in design trajectory.

290

(a) Initial

(b) Final (Analytic)

(c) Final (Finite-Difference)

Figure 6-24: Isometric contours of Cp showing the initial and final distributions obtained
with the unconstrained-lift BWB design problem.

291

(a) Initial y = 0 (b) Final y = 0

(c) Initial y = 40 (d) Final y = 40

(e) Initial y = 80 (f) Final y = 80

(g) Initial y = 120 (h) Final y = 120

Figure 6-25: Select cross-section Cp distributions are shown from across the BWB semi-span
to compare the impact of initial and final geometry obtained in the unconstrained-lift design
problem. Blue denotes results stemming from analytic geometry gradients and Red denotes
results using finite-differences. Non-smoothness in the inboard Cp distributions reflect a
locally more coarse mesh spacing.

292

(a) Initial

(b) Final (Analytic)

(c) Final (Finite-Difference)

Figure 6-26: Isometric contours of Cp showing the initial and final distributions obtained
with the constrained-lift BWB design problem.

293

(a) Initial y = 0 (b) Final y = 0

(c) Initial y = 40 (d) Final y = 40

(e) Initial y = 80 (f) Final y = 80

(g) Initial y = 120 (h) Final y = 120

Figure 6-27: Select cross-section Cp distributions are shown from across the BWB semi-span
to compare the impact of initial and final geometry obtained in the constrained-lift design
problem. Blue denotes results stemming from analytic geometry gradients and Red denotes
results using finite-differences. Non-smoothness in the inboard Cp distributions reflect a
locally more coarse mesh spacing.

294

(a) Unconstrained-lift Problem

(b) Constrained-lift Problem

Figure 6-28: Comparison of objective function history results stemming from analytic and
finite-difference design velocity methods.

295

(a) y = b/2 (b) y = 3b/8

(c) y = b/4 (d) y = b/8

(e) y = 0

Figure 6-29: The design trajectory of design variable #1 on cross-sections across the BWB
semi-span is shown to compare the impact of analytic or finite-difference design velocity in
the unconstrained-lift problem. Blue denotes results stemming from the analytic method
and Red denotes results using finite-differences.

296

(a) y = b/2 (b) y = 3b/8

(c) y = b/4 (d) y = b/8

(e) y = 0

Figure 6-30: The design trajectory of design variable #2 on cross-sections across the BWB
semi-span is shown to compare the impact of analytic or finite-difference design velocity in
the unconstrained-lift problem. Blue denotes results stemming from the analytic method
and Red denotes results using finite-differences.

297

(a) y = b/2 (b) y = 3b/8

(c) y = b/4 (d) y = b/8

(e) y = 0

Figure 6-31: The design trajectory of design variable #1 on cross-sections across the BWB
semi-span is shown to compare the impact of analytic or finite-difference design velocity in
the constrained-lift problem. Blue denotes results stemming from the analytic method and
Red denotes results using finite-differences.

298

(a) y = b/2 (b) y = 3b/8

(c) y = b/4 (d) y = b/8

(e) y = 0

Figure 6-32: The design trajectory of design variable #2 on cross-sections across the BWB
semi-span is shown to compare the impact of analytic or finite-difference design velocity in
the constrained-lift problem. Blue denotes results stemming from the analytic method and
Red denotes results using finite-differences.

299

6.2.6 3D Multidisciplinary Design Space Exploration

A parametric design space study is presented for wing structural layouts consisting of the

wing skin, spars and ribs. Aerodynamics analysis provides the loading for structural analysis

and both utilize sub-models extracted from a CAD model. This model is constructed using

the principles introduced in Chapter 2. Structural components may be resized, suppressed

or un-suppressed to identify various structural layouts within the design motion of the

wing. Stresses and displacements throughout the wing structure are evaluated at various

design points as well. The selected analysis tools for use in this study include Cart3D

for aerodynamics and NASTRAN [73] (a linear and non-linear structural element analysis

suite) for structural analysis. As a design space exploration example, this study does not

directly include structural or aerodynamic optimization. Instead this is an important step

in defining specific optimization problems in promising regions of the global design space

that are found via Latin Hypercube sampling.

Both the NASTRAN and Cart3D analyses require a discretized geometry representation

of the CAD model components. Multifidelity structural analysis is possible with NASTRAN

by importing different quad meshes representing structural elements. High-fidelity analysis

is available by utilizing all quad elements on the 3D surface of a structural member, as seen in

Figure 6-33(a). Low-fidelity analysis is also an option by employing the quad meshes placed

on some faces of the structural members, as shown in Figure 6-33(b). These 2D sub-models

are a satisfactory representation of “thin” shell components (meaning that the component

cross-section has thickness-to-height ratio much less than 1), where stress distributions are

presumed to change substantially along the span of the component and negligibly across

its thickness (e.g., spar shear web). The shell thickness is obtained from the 3D model

thickness parameter for each structural component.

In this study multiple structural members are analyzed as a structural system, thus the

CAD model assembly connectivity must be captured by the NASTRAN sub-models. The

CAD model structural assembly is visualized in Figure 6-34(a). Creating the structural

sub-model entails traversing the full structural quad mesh to find the elements on the

faces of interest. Another search is done for edges that connect the adjacent structural

components and edges that are constrained in some fashion. Given the need for automation,

the geometry extraction algorithms are performed in a pre-analysis step. For NASTRAN

300

(a)

(b)

Figure 6-33: The 3D source geometry is tessellated to create (a) a complete quad mesh of
the 3D structure surfaces and (b) a sub-model geometry consisting of quad elements from
certain faces on the 3D surface. The mesh representing the wing skin is not shown.

301

input, the components are “welded” by (1) specifying rigid connections between the nodes

on connecting component faces and (2) constraining edges connecting the wing and spar

root to the fuselage as fixed. Such a definition requires a search for the nearest nodes on

adjacent components to create the “weld” connector (connectors are defined for edges-to-

face or face-to-face welds). A resulting sub-model assembly is seen in Figure 6-34(b), where

the top and bottom faces of the wing skin are also extracted. Sub-models for spars are

chosen from 3D spar faces that have their normal pointing inside the wing box. Sub-models

for ribs are taken from 3D rib faces that have their normal pointing towards the fuselage.

The deflection vectors for the structural sub-model assembly are viewed after a structural

analysis to determine proper component connectivity (i.e., all components exhibit expected

relative displacements). Figure 6-35 illustrates proper sub-model assembly connectivity. In

this example the structure responds to loading with uniform deflection across the wing span

that is consistent with first-principles intuition. If the sub-model connectivity were faulty,

the component displacements would violate first-principles (e.g., ribs would not deflect due

to missing weld-joints with the wing skin).

Multidisciplinary coupling between disciplinary sub-models can also be modeled intu-

itively through their parent CAD model. Since the aerodynamic results specify the struc-

tural loading condition, the aerodynamic information must be mapped from the aero sub-

model to the structural sub-model via their parent geometry. The Cart3D solution contains

pressure information at each node of the surface triangulation sub-model. The NASTRAN

sub-model for the wing skin, though, is a quad mesh with nodes that do not coincide with

the triangulation nodes. Both the triangulation and quad mesh are derived from the same

(u, v) parameterizations of outer mold line faces, thus allowing for interpolation of pressure

information in uv-space. In this case, the pressure at a quad node (u, v)q is determined by

a linear interpolation of pressure data from the triangle element nodes (ui, vi)t that contain

(u, v)q. By doing this for each quad node, an average pressure value could be applied for

each quad element (a requirement for NASTRAN loading definitions).

The case in Figure 6-36 is selected to illustrate the results of this multidisciplinary

mapping procedure. It depicts a pressure distribution at Mach 0.8 with a lift-coefficient of

0.4. This flow condition simulates a strong loading case that causes substantial deflection

(7075-T6 Aluminum is used with typical thickness values for airliners). A strong shock

exists at about 70% chord along the wing span, thus creating a 3D, non-uniform loading

302

(a) Full Model Geometry

(b) Structural Sub-Model

Figure 6-34: The assembly connectivity embedded in the full 3D model, seen in (a), is by
necessity conserved in (b) the sub-model assembly seen by the structural analysis.

303

Figure 6-35: An unloaded view of a structural sub-model (dark shade) is overlaid with
a deflected sub-model (light shade) under loading to depict proper assembly connectivity.
Improper connectivity would appear with displacements that violate first-principles.

Figure 6-36: Aero-structural coupling is captured by mapping a wing pressure distribution
from an aerodynamic sub-model to a structural sub-model. The aerodynamics sub-model
(dark shade) shows a wing pressure distribution (Mach 0.8, 0.4 lift-coefficient); the deflected
sub-model (light shade) is the static structural response to the pressure loading.

304

condition that induces bending and torsion loads on the wing skin and internal structure.

Deflection of the structural sub-model is also shown in comparison to its initial unloaded

state.

An additional comment is needed regarding this mapping procedure. The quad mesh

size must be sufficient to adequately resolve the features in the pressure distribution, such

as shocks. Otherwise the mapped pressure distribution will “smear” the original pressure

distribution and diminish the loading consistency between the two sub-models. Therefore,

the quad mesh should be as fine as the surface triangulation to avoid this problem. It is

important to also note that the case in Figure 6-36 is for a “static” load. To properly resolve

aero/structural coupling, geometry displacement must be sent to the aerodynamics analysis

in order to update the flow solution. This is iterated until the difference in displacements

is within a user-specified tolerance, meaning the final structural response is consistent with

the final pressure distribution. Options for accomplishing this are not pursued here and left

for future work efforts.

Figure 6-37: Scatter plots of the design space obtained by Latin Hypercube sampling. The
labeled points correspond to the structural layouts in Figure 6-38.

The sizing parameters and suppression status for each structural component make up

the design variable set. Latin Hypercube sampling of the design space is automated to

create a set of design points for analysis. A baseline 3D model is then updated and regener-

ated at each sampled point to create the new model instances. Since only static loading is

305

Design Point Num. of Rib Spar Skin Layout
Ribs Thickness Thickness Thickness Mass

[ft.] [ft.] [ft.] [lbm.]

Figure 6-38 (a) 10 0.145 0.145 0.010 3750
(b) 8 0.016 0.027 0.020 609
(c) 7 0.016 0.025 0.018 572
(d) 2 0.025 0.030 0.023 638
(e) 6 0.022 0.022 0.020 543
(f) 5 0.027 0.027 0.022 625
(g) 5 0.021 0.023 0.016 472
(h) 7 0.015 0.021 0.023 465

Table 6.7: A listing of rib, spar and wing skin thickness for the design point layouts in
Figure 6-38.

considered, a single Cart3D aerodynamics solution provides the loading conditions for the

structural analysis using the previously explained mapping procedure. Through the CAPRI

API the geometry kernel is queried to obtain volume information for the structural compo-

nents. The structural mass is then determined using given material densities (Aluminum is

used in this case) for the components. Figure 6-37 illustrates a portion of the design points

created by Latin Hypercube sampling. The maximum Von Mises stresses and weight for

each structural layout are also depicted for comparison.

An excerpt of design point sub-models are depicted in Figure 6-38 to illustrate the

variety of geometry obtained in this example by an automated exploration of the design

space. Table 6.7 also shows the corresponding component thickness and total layout weight

for the design points in 6-38. The baseline structural layout is shown for comparison.

It is clear in this problem that the single CAD model is capable of representing topolog-

ically different structural layouts. Since suppression status is a design variable, the CAD

model can regenerate across multiple structural design spaces. Each individual design space

can serve as the starting point of a structural optimization problem as well. However, we

emphasize that if a CAD model is created for one such structural layout, it will not have

the capacity to represent other layouts unless a new geometry model is generated each time.

As a result of the CAD-based geometry management in this design framework, this issue is

successfully circumvented with a single CAD model.

306

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 6-38: (a) A baseline structural layout is compared to various design points (b)–(h)
obtained by automated Latin Hypercube sampling.

307

THIS PAGE INTENTIONALLY LEFT BLANK

308

Chapter 7

Conclusions and Future Work

In Chapter 1 the application of CAD models in aircraft design optimization was introduced

and many limitations were discussed that inhibit their widespread implementation. The

need to bridge existing computational geometry tools with aerospace design needs became

apparent since CAD systems are not explicitly designed for usage in automated design

frameworks. Two particular concerns were described as the focal point for advancing the

state-of-the-art in CAD-based geometry management in this thesis, namely model construc-

tion methods and shape sensitivity methods. These were addressed with solutions using

theory and example demonstrations that further enable the use of CAD models in aircraft

design optimization.

Three specific research objectives are fulfilled by the thesis contributions presented

herein, namely:

1. Create a methodology for CAD-generated model geometry that is suitable for a con-

ceptual design setting.

2. Create an analytic formulation for geometry gradients of CAD-generated model ge-

ometry.

3. Demonstrate the implementation of CAD-generated model geometry and analytic

geometry gradients within design frameworks to demonstrate the effectiveness of each

contribution above.

New perspectives on CAD-generated model geometry are presented in Chapter 2 with

notions of multifidelity/multidisciplinary geometry and design motion. With these guiding

309

principles a formal definition of design intent is given that is more suitable for CAD mod-

els used in aircraft conceptual design. Along with suggested construction methods, these

notions bring to light the importance of creating CAD-based models that are sufficiently

flexible, malleable and robust in regeneration to support automated design optimization.

In the realm of geometry gradients, Chapter 3 presents the “reverse engineering” of

highly utilized features in a CAD system to provide the analytic design velocity with respect

to any sketch dimension for extrusions, revolutions and sweeps. Chapter 4 presents analytic

approximations to the design velocity along trim curves and nodes in a BRep to resolve the

issues associated with conventional approaches. Chapter 5 shows other analytic methods

to differentiate B-spline curves and surfaces for loft features as well.

An added contribution in Chapter 5 is made in discovering an error in finite-difference

methods applied to B-spline curves and surfaces when linearizing support points. Although

this method is still appropriate when differentiating other entities in a model geometry

BRep, an error can arise when a geometry kernel regenerates B-spline curves and surfaces

because their parameterization may change. This inconsistency is explained by a presen-

tation of theory and examples. Due to the prevalent usage of this gradient method in the

literature, this finding calls for an awareness to scrutinize design trajectory results when

varying B-spline support points in a regime of strong physics sensitivity to geometry. In

these cases the finite-difference gradient error may lead to less-desirable design trajectories

compared to those found with analytic gradients.

The sensitivity methods presented in this thesis are applicable for any CAD system if the

parameterizations are equivalent to those found here (which correlate with the SolidWorks

CAD system). An extension to higher-order derivatives is also possible if those derivatives

exist for a given parameterization. However, if the parameterizations are different, the

overall algorithms are still applicable given the new parameterization information is used

instead. As mentioned in the future-work discussion below, verification of the presented

parameterizations is needed for other CAD systems.

Finally, various design framework implementations of CAD models are demonstrated

in Chapter 6 using the analytic geometry gradients presented in this work. These serve to

validate the geometry gradient algorithms in both inverse and forward design problems. In

comparison to finite-difference methods, the analytic approach also demonstrates improved

results, both in computational time and in some cases even with improved design trajectory.

310

To summarize, the scope of this project was narrowed to the geometry perspective of

design because it is an evolving field that impacts how effectively CAD models are used in

aircraft conceptual design. With the current state of design tools, geometry modelers and

design methodologies, these contributions will further efforts towards a seamless aircraft

design process that is better suited for conventional and unconventional designs of the

future.

Further work is possible to enable widespread application of CAD models in aircraft

conceptual design. As new design frameworks continue to apply CAD systems in their

geometry management, ample work remains to fully “reverse engineer” other features and

constraints in order to obtain analytic geometry gradients properly. There is also a need to

automatically create an associativity table between design parameters in the master-model

and the model BRep. With this development the connectivity between parameters, sketch

entities and surfaces is required to generate the differentiation code automatically. These

efforts can lead to automated pre-processing of CAD models and thereby free designers from

deciphering the CAD system internals. Otherwise, designers need to “reverse-engineer”

the CAD model components and construct their sensitivity formulations manually. The

additional option also exists to develop new CAD systems that are suitable for automated

design optimization frameworks. Unlike the systems available today, a new system can

internally incorporate all necessary information for analytic geometry gradients and generate

models with desired design motion characteristics. The innovative work presented in this

thesis sets the stage for these additional developments, thus making more feasible the ability

to streamline aircraft design with a new paradigm in CAD-based geometry management.

311

THIS PAGE INTENTIONALLY LEFT BLANK

312

Appendix A

CAD Model Generation

A general procedure for developing CAD-generated models is not given here because it is

beyond the scope of this work. Such an endeavor is intractable due to a large number of

possible design scenarios, model uses, etc. Instead, an approach is detailed that is most rel-

evant for representing aircraft models in a conceptual design setting. This discussion begins

with preliminary considerations of CAD system features that will impact the usefulness of

the model in an automated design setting. Secondly, a methodology for model construction

is explained that provides flexibility, robustness and malleability for use in those design

settings as well.

A.1 Model Feature Considerations

Despite the many ways to generate a model geometry in a CAD system, a detailed look

at the effects of feature construction on model design motion and model robustness are

important to make the model suitable for automated design optimization. Loft features are

discussed in particular due to their common usage in aircraft design.

A.1.1 Perspectives on Generating Loft Features

Most CAD systems support 3D loft features, which are typically cubic B-spline surfaces

which interpolate cross-section primitives. The CAD geometry kernel ensures these features

are “closed” (i.e., watertight) and likewise acceptable for automated tessellation. These

features are a natural choice for representing aircraft lifting-surfaces. However, care must

be taken in how these features are constructed in order to maintain a completely watertight

313

model.

Two possible options for setting up a loft feature are:

1. Define a datum plane that is offset and parallel to a plane defined by the global

Cartesian axes, such as the xy-plane. Constrain a spline primitive to remain fixed

at a predetermined location on its sketch plane. This anchored point can be used to

define the spline location with respect to the global origin.

2. Define a spline with 3D points on which all desired sketch planes will be coincident.

Create a datum plane that is normal to the 3D-spline at a desired spline point (also

referred to as an “anchor point”) and ensure that this point becomes the origin of the

datum plane. After ensuring the datum plane sketch axes are in the proper orientation,

sketch and constrain a 2D spline primitive with a support point coincident to this

datum plane origin.

In the first case, as seen in Figure A-1(a), the cross-section spline has a design motion that

is limited to translation, rotation or scaling along its sketch datum plane without any out-

of-plane motion. The datum plane definition becomes the hindrance if the representation

of an out-of-plane geometry mode is desired. To provide the desired orientation for the

datum plane, additional datum lines and curves will be needed. These also require angular

dimensioning to recreate Euler angles and orient the datum plane in the desired manner.

The process for doing this becomes cumbersome and iterative due to the need for careful

location of additional datum references and dimensioning. Furthermore, this approach could

reduce regeneration robustness due to greater coupling between datum references.

In the second case, as seen in Figure A-1(b), a simpler approach is taken. The spline

primitive resides on a datum plane that is not constrained to the global Cartesian planes.

Instead, the 3D datum spline orients the datum plane passing normal to a tangent vector

at the anchor point, which also acts as the normal to the plane. This tangent vector can

essentially point anywhere and the airfoil sketch will be oriented as desired. This apparent

out-of-plane design motion capability is inherent to the sketch plane and not the spline

primitive itself. This approach is beneficial, for example, in the case where the initial

datum spline represents a structural bending axis on a wing. The undeformed state might

have airfoil sections parallel to the plane of symmetry of the wing, yet the deformed state

will appear to have airfoil sections translated and rotated out of their initial plane.

314

Lifting-surfaces are often designated a single sweep angle and taper ratio because the

planform is modeled as a trapezoid geometry. These two parameters, though, are a simple

case of a lifting-surface with multiple sweep angles and panel taper ratios. In order to

represent the higher-dimensional design space, a lifting-surface loft may be constructed

with piecewise continuous datum splines. Here a discontinuous derivative exists at the

spline end-points instead of creating a single datum spline primitive that enforces continuous

derivatives at each support point. A potential benefit of this construction is greater loft

shape control between the cross-section sketches. Such an option may be useful for modeling

a wing break, where dihedral may be discontinuous.

Caution must be had if the piecewise datum spline approach is taken. When piecewise

continuous datum splines are used the merged loft features may create splinter faces or trim

curves at the location of discontinuous derivative. For example, if a single loft is created

between three cross-section sketches, as seen in Figure A-3(a), no splinter faces or trim

curves are created. However, if the “thin” attribute is selected for the loft (meaning the

loft volume is hollowed-out to within a specified wall thickness), then splinter trim curves

are created, as shown in Figure A-3(b), on the outside or the inside of the loft (depending

on which direction the thin-attribute was applied). These BRep topology artifacts can be

problematic in automatic tessellation because they are small-scale features that a mesher

will attempt to tessellate. Tessellation of the “outer” loft surface may be improved by

keeping splinter trim curves along the inner loft faces, yet the designer has little to no

control of how the CAD geometry kernel determines the location of these BRep entities.

If two separate loft features are created between three cross-section sketches using piece-

wise continuous datum splines, the thin-attribute will create splinter faces. Even though

two loft features are given the same thickness value, the discontinuous derivative at their

intersection causes one loft feature to be tangent to the end-point derivative of the other.

Figure A-3(c) shows that the inner, or outer, face of one loft is extended beyond the normal

to its own spline end-point until it is tangent to the other loft. Therefore, one loft uses

the derivative on the wrong side of the merge-point. This scenario cannot be avoided when

choosing to merge two loft features instead of creating a single loft feature. Lastly, if each

loft were created with its sketch profiles normal to the end-point derivatives of their respec-

tive datum spline (without being merged), the two lofts would intersect and not result in a

single closed volume, as seen in Figure A-3(d).

315

A.1.2 Mirroring Features

Many conventional CAD model construction methodologies rely on the inherent symmetry

of aircraft components to simplify the construction recipe. There are examples of asym-

metric design motion, though, that the model needs to comply with in order to represent

additional geometry modes. For example, asymmetric gust loading yields a lifting-surface

response that is also asymmetric. Figure A-4(a) illustrates an asymmetric model, whereas

Figure A-4(b) demonstrates the design motion limitation of a similar model constructed

using a mirrored loft feature. Although easier to construct, the model in Figure A-4(b)

cannot represent certain geometry modes due to design motion rigidity embedded in its

construction. If such geometry modes are not meant to be represented, then the mirror

feature will suffice. Prudence in the model construction depends heavily on the a posteriori

application of the model.

A.1.3 Loft Self-Intersection

Self-intersection of loft surfaces becomes an issue if the loft construction has insufficient

number of cross-sections across its span, as seen in Figure A-5. “Guiding datum curves”

(i.e., guide curves) that span a loft through the point of maximum thickness (top and

bottom) on each sketch provide some protection against self-intersection. However, these

only constrain a narrow band of the loft surface. If the design motion of anchor points move

the cross-sections further apart at some point in a design trajectory, the loft may intersect

the top and bottom surfaces. This may be unavoidable at certain design points because the

loft is a cubic interpolation that may over/undershoot between its defining cross-sections.

In the case of lifting-surfaces, this is often an issue when increasing the loft span between a

thick airfoil section to a thin airfoil section. In addition, when the thin-attribute is applied

to the inside of a loft the design trajectory may be hindered in regions of minimal thickness

along the wing span.

A.2 Loft Definitions for Lifting-Surfaces

In attempting to control the orientation of loft cross-section sketches in Euclidean space,

the concept of “anchor points” can provide sufficient location information without excessive

dimensioning of the sketch to a global origin. In some CAD systems, the processing time

316

for a model may increase significantly with an increase in dimensioned primitives because

the master-model equation set requires more time to solve (see Section 6.1.5). The anchor

points may also serve as a sketch origin for orientation and placement of loft cross-section

sketches.

The datum spline mentioned above may refer to the wing quarter-chord line, the wing

leading or trailing edge. Depending on its usage, the datum spline (or linear segments)

passes through the anchor points1, which may be spaced at irregular intervals along a

straight line or a space-curve in R3. Regardless of their starting location, the anchor points

can be mapped in such a way to satisfy orientation requirements, such as sweep and dihedral

angle, for each loft segment across its span. This perspective is relevant to the construction

of lofts representing lifting-surfaces.

Given a set of anchor points {ri} ∈ R3 (where ri = [xi, yi, zi]
T for i = 1, 2, . . .) that

are written in sequence from one end of a datum curve to the other, the following linear

transformation is possible when orienting the vectors ri − ri−1:

ri,new = T(Λi,new)T(δi,new)T(δi,old)−1T(Λi,old)−1 (ri,old − ri−1,old) + ri−1,new, (A.1)

where the rotation matrices are

T(Λi) =

cos (Λi) sin (Λi) 0

− sin (Λi) cos (Λi) 0

0 0 1

 , (A.2)

T(δi) =

1 0 0

0 cos (δi) − sin (δi)

0 sin (δi) cos (δi)

 . (A.3)

The “new” and “old” subscripts correspond to the desired and original orientation, respec-

tively, of a reference line passing through anchor points. Since only the original anchor

1In some CAD systems it is important that all anchor points be explicitly coincident to the datum
spline. Otherwise, regeneration will not create the desired design motion of all components in a loft. These
coincidence constraints may need to be manually set even after generating the datum spline through the
anchor points.

317

point locations are known, the orientation of each segment ri − ri−1 is determined by:

cos (Λi) =
yi − yi−1√

(xi − xi−1)2 + (yi − yi−1)2
(A.4)

cos (δi) =

√
(xi − xi−1)2 + (yi − yi−1)2

(xi − xi−1)2 + (yi − yi−1)2 + (zi − zi−1)2 . (A.5)

These orientation angles correspond to Λi,old and δi,old, whereas the desired orientation

angles are substituted into Λi,new and δi,new in (A.1).

For lofts representing lifting-surfaces, the common orientation angles of each loft segment

corresponds to sweep and dihedral angles. When the usual aircraft body coordinate system

is employed (i.e., the +y axis points out the right wing in planform view, +x axis points

from the aircraft nose to tail, +z axis points normal to the xy plane), positive sweep Λ is

measured on the xy plane as the clockwise rotation of a vector about the z axis (planform

view). Positive dihedral δ is measured in the yz plane by clockwise rotation of a vector

about the z axis (front view).

An example of this lifting-surface construction methodology is conducted for an arbitrary

flying-wing configuration, as seen in Figures A-6 through A-8. First, a continuous spline

is created through anchor points across the wing span. These anchor points serve as the

sketch origin for each airfoil sketch plane, which are constrained normal to the datum spline

at each anchor point. The generic airfoil sketches consist of two continuous splines (top and

bottom) created through three spline points each (leading edge, max thickness point, and

trailing edge). Tangency control and proportional sizing (meaning the spline primitives are

scaled by a constant) are chosen as additional simple parameterizations for these airfoils.

Chord length, airfoil tangency conditions and airfoil thickness vary across the wing span

in a symmetric manner across the wing centerline. No explicit mirroring of features or

primitives is used.

An input set of anchor points, arranged sequentially from the centerline to the wing tip,

are mapped according to Equation (A.1). The final desired sweep and dihedral angles are

(in degrees):

Λi ∈ {35, 35, 35, 35},

δi ∈ {0, 15, 0,−2},

318

where each angle value pertains to wing segment i = 1, . . . , 4. The local wing segments are

rotated with respect to the global z (for sweep) and x (for dihedral) axes by using the new

anchor coordinates obtained in Equation (A.1).

The flying wing images in Figures A-6 through A-8 compare the original model flying-

wing to the mapped regenerated model. Since Equation (A.1) is an affine transformation,

the Euclidean distance between anchor points is preserved. Figures A-6(a), A-7(a) A-8(a)

highlight the initial and mapped anchor point reference line from different viewing perspec-

tives, whereas Figures A-6(b)–(c), A-7(b)–(c) and A-8(b)–(c) show the model response from

various views.

The intended mapping of the flying wing configuration is accomplished with airfoil

sketches remaining normal to the leading edge reference line. In some cases this may be

permitted in order for an airfoil section to “see” a component of the freestream flow velocity

(in other cases the airfoil section is defined parallel to the aircraft centerline). Another

observation in Figure A-6 (c) is that the leading edge is non-linear near the centerline. This

occurs because the leading edge is created as a spline with continuous derivatives at the

anchor points. The trailing edge is constructed with piecewise linear segments that exhibit

no “rounding” as a result of discontinuous derivatives at its anchor points (which correspond

to the airfoil trailing edge point). This is another example of a non-intuitive design motion

of loft surfaces if a designer is careless in their loft construction approach. Unless the loft

construction features are properly selected, this design motion may be problematic due to

the leading edge rounding or the top-surface folding seen near the centerline trailing edge

(Figure A-8(c)). Lastly, the orientation of airfoil sketches may need to remain parallel to the

model centerline, hence constraining their design motion to remain normal to the leading

edge may also be an issue if it is not desired.

To overcome these potential issues, the datum spline and anchor points can be con-

strained along the y-direction, thus allowing the cross-sections to remain parallel to the

aircraft centerline. The sweep and dihedral angles are preserved by considering the leading

edge of a spline primitive as pseudo-anchor points. The relative horizontal/vertical location

of this pseudo-anchor point on the sketch plane will result in the appropriate model sweep

and dihedral (due to the constraint along y, this mapping will not be affine).

Figure A-9 shows a three-view of a trapezoidal-planform wing with NACA 0012 air-

foil cross-sections approximated by spline primitives. Constructed using the modified loft

319

procedure with a constrained datum spline (not shown), it is evident that cross-sections

are parallel to the wing centerline and both sweep/dihedral are preserved (in this case

Λ = 25◦ and δ = 5◦ everywhere). The positioning of cross-sections is driven by the PASS

parameterization for wings seen in Tables 2.3 and 2.6. Furthermore, the cross-sections are

positioned via pseudo-anchor points at the spline primitive leading edges without dimen-

sioning, thereby keeping each cross-section decoupled from the rest of the model. This

attribute permits controlling the cross-sections via any chosen parameterization, minimizes

regeneration time and increases regeneration robustness.

320

(a) Global reference plane used.

(b) Spline datum reference used.

Figure A-1: A comparison of two methods used to create cross-section sketch planes along
a loft span. Figure (a) shows sketch planes constrained parallel to a global Cartesian
coordinate plane. Figure (b) shows sketch planes constrained normal to a 3D spline reference
datum at its support points; in this case the cross-sections exhibit out-of-plane design
motion.

321

(a) Continuous spline. (b) Continuous spline with loft.

(c) Piecewise continuous spline. (d) Piecewise continuous spline with loft.

Figure A-2: A comparison between continuous and piecewise continuous (discontinuous
derivatives) datum splines. Figures (a)-(b) show sketch planes normal to a continuous
spline at its spline points. Figures (c)-(d) show points of discontinuous derivatives on the
piecewise spline, where two sketch planes pass through each spline point normal to a tangent
vector on each side of the spline point.

322

(a) Single loft feature. (b) Single “thin” loft feature.

(c) Two merged “thin” loft features. (d) Two intersecting “thin” loft features.

Figure A-3: With the exception of (a), these loft construction approaches illustrate limited
usefulness for automated surface tessellation downstream of model construction. In (a)
there are no splinter trim curves or faces; however, (b) contains splinter trim curves and
(c) results in splinter faces. Clearly (d) highlights poor loft construction because a single
closed volume is not obtained as desired.

323

(a) Asymmetric loft. (b) Mirrored loft.

Figure A-4: In (a) the loft can represent asymmetric geometry modes; however, (b) a
loft generated using a mirror feature cannot model asymmetric geometry (a skeleton of
the asymmetric loft is also portrayed for comparison). The loft construction must embed
support for each geometry mode needed in a model.

Figure A-5: A loft is hollowed-out to demonstrate a region of self-intersection (grey) that
results from a model design point that spreads two cross-sections too far apart. The large
discrepancy between cross-section thickness also exacerbated this design motion for the loft.

324

(a) Anchor point reference line.

(b) Baseline. (c) After mapping.

Figure A-6: A planform view (xy plane) showing the application of the anchor point map-
ping in (a), where the reference line and anchor points are on the wing leading edge.

325

(a) Anchor point reference line.

(b) Baseline.

(c) After mapping.

Figure A-7: A front view (yz plane) showing the application of the anchor point mapping
in (a), where the reference line and anchor points are on the wing leading edge.

A.3 Loft Definitions for Fuselage-Type Models

Fundamentally a fuselage-type loft is different from a lifting-surface loft only in its cross-

sectional shape. Its construction differs because it generally needs a different design motion.

Various approaches surrounding the construction of fuselage-type lofts are presented to

highlight potential issues.

In one case, piecewise continuous guide curves, such as linear or elliptical primitives,

serve to confine the extent of cross-section shapes from a planform or side-view. Cross-

sections are also defined using classic geometry primitives of specific shape (e.g., ellipses

326

(a) Anchor point reference line.

(b) Baseline.

(c) After mapping.

Figure A-8: Perspective views showing the application of the anchor point mapping in (a),
where the reference line and anchor points are on the wing leading edge.

327

Figure A-9: A three-view of a wing with constrained datum spline and NACA 0012 airfoil
cross-sections approximated by spline primitives, each of which are independent of all other
components in the model.

328

or circles). This restricts the loft design motion to that of classical shapes due to their

geometric similarity. The advantage in this scenario is that the loft has “natural” geometry

constraints that enforce a specific cross-section shape, regardless of the driving parameter

values. The disadvantage is that other cross-section profiles cannot be modeled, even if such

a design trajectory would yield an improved objective function value during optimization.

In another approach no guide curves are used and the positioning of cross-sections is

calculated outside of the CAD system by the designer. Classical primitives are replaced

by spline primitives in defining cross-section shapes as well. This requires additional effort

upfront in order to ensure that the fuselage cross-sections have the intended design motion as

driving parameters are varied (i.e., the cross-sections will not maintain geometric similarity).

The advantage is that the model is very malleable because any desired surface curvature

is possible by properly choosing a profile and re-orienting it in R3. Spacing between cross-

sections can be varied to better resolve regions of higher curvature, such as near the fuselage

nose. In addition, the design space is not restricted to a single parameterization because

the designer can change the cross-section definition at any location along the fuselage. This

permits usage of custom shape functions, for example.

Another model construction issue arises when considering how cross-section sketches are

placed. For example, a straight spline datum line can be set along the x-axis (body axis) in

order to constrain sketch planes normal to it. This permits proper out-of-plane deformation,

as in the lifting-surface case. It is important to properly understand the design motion of

the cross-section if the elliptic primitive center-point is offset from the sketch plane origin

(which may be constrained to the datum spline points for convenience). Otherwise, by

initializing the model with the datum spline passing through cross-section center-points

that are not collinear (which can occur if ellipse center-points are not coincident to the

sketch origin), the sketch planes will remain normal to an undulating datum spline. Any

primitives sketched on these particular sketch planes will not result in a loft surface with

the intended planform or side-view geometry. This is an issue to consider because designers

may define shape functions, external to the CAD system, by assuming the sketch planes

are always parallel.

Without guide curves, a potential issue arises if sketch planes are too close in a region

of quickly changing derivatives. The loft may overshoot between sketch profiles because

a sudden change in the local tangent vector occurs in a small region. Either the cross-

329

sections need to be spaced further apart or the change in derivative needs to be reduced

(e.g., smaller taper angle for the tail-cone portion of the fuselage). These loft overshoots

will prove problematic in high-fidelity aerodynamic analysis results. Another option is to

divide the single problematic loft into two lofts that merge at the point of quickly changing

derivative (similar to that discussed in Section A.1). As seen before, merging lofts in this

manner may create sliver trim curves and faces, especially if the thin-attribute is used.

Other fuselage construction methodologies include utilizing guide curves that constrain

the top/bottom and side contours after cross-sections are defined. One potential benefit

of this approach is that the nose cap may be resolved properly in the context of the first

cross-section. Otherwise, constraining a separate nose cap loft to be coincident and tangent

to the fuselage loft can be troublesome. Problems sometimes arise when attempting to

make all of the nose cap splines tangent to the loft face and coincident to the adjacent

cross-section primitive. When the model centerline (datum spline) is straight there is no

apparent problem with this technique. However, perturbing the datum spline point adjacent

to the nose can cause regeneration problems because the tangent-matching constraints are

violated.

The loft feature can be fragile (in a regeneration sense) when using guide curves to

constrain its perimeter shape. The loft may not follow all guide curves properly, meaning

the loft surface is only influenced locally by the guide curve. However, using a “boss/base

boundary” feature (instead of a loft) may circumvent this issue. With this feature the guide

curves serve as profiles in one direction while the cross-sections serve as profiles in a second

direction. The thin-attribute can also be applied successfully when terminating this feature

with a sharp nose cap.

An issue with the guide curve approach appears when a cross-section parameter is

changed. The guide curve will be modified due to the change in location of the cross-

section point it is constrained to. However, the previous or following spline point will

not translate to a new location and the tangent vector at those spline points will remain

unchanged. Therefore, as seen in Figure A-10(a), points of inflection may occur between

two cross-sections. It may be possible to avoid this by constructing the guide curve with

piecewise continuous splines that have discontinuous derivatives at the spline points. This

adds extra complexity to the model since each tangent vector must be accounted for by

the designer. Instead, it may be better to only allow tangency control at certain spline

330

(a)

(b)

Figure A-10: (a) A side-view of a simple fuselage concept with a rounded nose cap (accom-
plished using guide curves along the fuselage top/bottom and sides). The top guide curve is
shown in red to demonstrate inflection-points that occur after regenerating with smaller aft
cross-sections. This occurs because the tangency vectors at the mid and aft spline points
maintain their original orientation. (b) A perspective view for a simple fuselage concept
with a sharp nose cap, as seen in supersonic aircraft. In this case the elliptical cross-sections
are visible and centered on a datum spline with fixed spacing between sketch planes.

331

points, thus removing the need for the designer to calculate appropriate tangent vectors

that conform with the changing cross-section geometry. Points without tangency control

will have their local tangent vector varied by the CAD system when cross-sections are

perturbed. This situation is also evident when perturbing a centerline guide curve (or

datum spline) because all cross-sections and perimeter guide curve tangency are modified.

This is a concern if the tangent vector orientation is not constrained with the intended

local taper-angle, as mentioned above, and surface undulations are thus possible. If a shape

function drives the guide curve, it can be differentiated to control the local tangent.

The fuselage loft may be terminated with a rounded or sharp nose cap, depending on the

application. Rounded nose caps can be created using a “dome” feature. This requires the

fuselage loft to terminate prior to a datum spline end-point with a solid face (this feature

will likely not work if the loft terminates with an open face created by the thin-attribute).

Dome features attempt to match the surface tangent of the adjacent loft surface and then

terminate coincident to a point or have a specified radius. Sharp nose caps can be created

by including the datum spline end-point in the loft profile sequence. An example is seen

in Figure A-10(b). Attempting to round a sharp loft, which is possible by controlling the

tangency of a perimeter guide curve, is difficult since the tangency condition does not behave

like that of a revolved guide curve (which creates a surface of revolution). The guide curves

often only impose local conditions instead of driving the entire loft surface. As expected,

sharp nose caps may give regeneration problems when coupled with a thin-attribute due to

the degeneracy at the tip.

An example fuselage model is shown in three-view format in Figure A-11. This model

is constructed using classical elliptical primitives as cross-sections, the extent of which

are bounded by a planform and side-view parameterization defined by linear and elliptical

distributions. Parameterization is also accomplished using the PASS parameters in Tables

2.3 and 2.4. As done in the wing case, each cross-section is independent of all other model

components and is only coupled with a datum spline (not shown) spanning the x-direction

(the body axis). As before, this permits flexibility in changing the parameterization and

increases robustness with minimal dimensioning and constraints.

332

Figure A-11: A three-view of a fuselage depicting unconstrained cross-sections made of
elliptical primitives that are solely constrained to a reference datum spline. Each are inde-
pendent of all other components in the model.

333

A.4 Assembly Model Considerations

When multiple parts are assembled in a model their individual and collective design motion

must be taken into account. For an aircraft representation, the wing and fuselage lofts can

be assembled using various options. Since aircraft are predominantly symmetric about their

centerline, the plane of symmetry for the wing and fuselage can be constrained coincident.

Also, conventional design often places the global coordinate system origin at the fuselage

nose, hence the wing loft can be positioned with respect to that. A third option is to mate

a wing anchor point on the datum spline for the fuselage. However, this does not provide

for variation in wing height with respect to the fuselage, as seen in Figure A-12.

It becomes clear that planform design motion of the wing relative to the fuselage is best

obtained by not explicitly mating the two lofts at some topological entity or datum object.

The wing loft has the most flexible design motion if its own origin is used as the anchor

point for the entire loft. Assembly variables then become the position coordinates of the

wing origin with respect to the fuselage origin.

Figure A-12: A perspective view of a simple fuselage concept assembled with a wing. A
“path mate” is utilized, where the wing longitudinal position along the fuselage datum
spline (shown in grey) is set by the central anchor point at the wing leading edge (shown
in green). A relative vertical wing design motion is not possible in this setup.

Three-views of a generic tube-and-wing model assembled in this manner are seen in

Figures A-13 through A-15, where the wing from Figure A-9 and the fuselage from Figure

A-11 are assembled. These figures depict the main steps of model generation within the

CAD system: (1) establish a reference datum system, (2) allocate cross-section geometry

primitives and (3) loft the corresponding sets of cross-section geometry. The wing and

empennage positions are parameterized by anchor point coordinates relative to the fuselage

length and height, as shown in Figure A-13. Doing this for each part permits independent

design motion among the four components. Furthermore, the cross-section primitives of

334

each component are defined by part-level parameters relative to their corresponding refer-

ence datums, as implied in Figure A-14. The final single-assembly configuration in Figure

A-15 thus maintains the individual design motion of each part and allows for the relative

design motion among parts. This means the part and assembly design motion are uncoupled

(which is consistent with the hierarchy viewpoint of parameterization levels). As discussed

in Sections A.2 and A.3, the wing and fuselage parts are parameterized at the part level for

uncoupled design motion from the assembly-level parameterization.

335

Figure A-13: A three-view of the reference datum splines that serve as the “skeleton” for
subsequent cross-section sketches in a generic tube-and-wing model.

336

Figure A-14: A three-view of the independent cross-section geometry primitives initialized
after placing sketch planes along each reference datum in Figure A-13.

337

Figure A-15: A three-view of the generic tube-and-wing model after lofting across each set
of cross-section primitives from Figure A-14.

338

A.5 Multidisciplinary Geometry Considerations

Multidisciplinary CAD models have additional considerations to take into account. The

most important consideration for these models is avoiding surface intersections between

parts. When part sizing permits placement of parts within the interior volume of another,

this is of less concern unless the interior parts have a design trajectory that eventually cause

surface intersections. In other cases, sub-discipline parts are constructed in the context

of parent parts pertaining to another discipline. For example, a wing spar is typically

constrained within the interior volume of a wing outer mold line, hence the structure shape

is locally driven by the wing loft shape. If constructed poorly, this scenario can easily lead

to surface intersections that are non-intuitive.

There are two ways in which parts constructed in the context of another can lead to

unexpected surface intersections. Both require an understanding of loft and spline genera-

tion in a geometry kernel. First, the internal part must reside within the envelope of the

external part in order to avoid intersection. To accomplish this with lofts generated in the

context of other lofts, it is necessary that both lofts pass through the same cross-section

plane and have the same span. Figure A-16 demonstrates how avoiding this suggestion

is problematic in the example of 2D splines passing through the same cross-section planes

across different wing spans. The underlying cubic B-spline formulation will not generate

the same space-curve in both instances, which appears as over- and under-shoots of the

half-span spline compared to the full-span spline. It is obvious that this also occurs if the

two splines did not share the same support points.

Figure A-16: Two 2D splines sharing the same support points, but not the same span,
cannot generate the same space-curve.

Since a B-spline surface contains B-splines spanning two-directions as isoparameter lines,

339

the same outcome will occur if the scenario in Figure A-16 is extended to B-spline surfaces,

as seen in Figure A-17. In this case the internal spar structure loft passes through the same

cross-section planes as the wing outer mold line loft, but only at half-span (wing root to

tip). It is clear that the spar loft cannot reside within the envelope of the wing outer mold

line and surface intersections occur. In other instances, this may not be a problem until

some later point in the model design trajectory. For example, Figure A-18 demonstrates

how the design point modeling a wing-tip deflection creates a surface intersection. This is

due to design motion discrepancies between the wing loft and internal spar loft. Earlier

design points for this model did not experience such surface intersections. The deflection

was modeled by setting the z-coordinate of each wing datum spline point to

z = Ay2 + dz,offset,

where y is the span-wise coordinate, dz,offset is the wing z-offset from the global origin and

A is a constant. Therefore, the loft construction suggestions given here are necessary, but

not sufficient to guarantee zero surface intersections generally. These suggestions reduce the

likelihood of surface intersections occurring along a design trajectory. Further improvements

are possible if the internal lofts span many more cross-sections constrained between the outer

loft sections, thereby reducing the possibility of surface over/under-shoots in regions of fast

derivative changes.

Figure A-17: The red loft (spar structure) passes through the same cross-section planes as
the grey loft (wing outer mold line), but does not share the same span. Hence, the spar loft
cannot remain inside the envelope of the wing loft.

The second manner in which unexpected surface intersections may occur deals with

340

Figure A-18: The design point for a wing-tip deflection exacerbates discrepancies between
the design motion of the red loft (spar structure) and grey loft (wing outer mold line),
leading to surface intersections that may not have occurred earlier on the model design
trajectory.

poor model construction. Figure A-19 shows a flying-wing model with two internal spar

structures penetrating the outer mold line. The internal spar lofts use the same cross-

section planes as the wing loft and also share the same span. However, it is clear in the

zoomed-in images of Figure A-19 that the spar penetrates the wing loft to a “small” extent.

A tessellation of this model will generate sliver elements that disrupt the wing surface

curvature (akin to a boundary layer trip) and lead to spurious aerodynamic results in an

automated design setting. Unlike the top image in Figure A-20, the spar profile must

reference an internal offset of the wing contour, as shown in the bottom image of Figure

A-20. This will maintain the spar loft within the envelope of the wing loft.

The geometry explanation for the problem seen in Figure A-19 arises in how the geom-

etry kernel creates new profiles that reference other features. In the case of Figure A-19, a

cross-section of the wing loft is created at the intersection of the wing and a datum plane.

Subsequently the local airfoil is referenced on a new sketch as a constrained spline prim-

itive. Added sketch entities may reference this spline since it will be driven by its parent

loft. The spar in Figure A-19 uses only a portion of the reference spline to define the spar

caps (the intended design motion is that the spar top/bottom always follows the contour of

the local airfoil regardless of its chord-wise placement). In creating these caps, the reference

spline is “cut” into a smaller spline that spans the spar web (modeled by two vertical line

segments). The geometry kernel essentially re-splines the “un-cut” portion of the reference

spline (shown as the solid black line contrasting against the broken-line of the reference

341

Figure A-19: The red loft (spar structure) passes through the same cross-section planes as
the grey loft (wing outer mold line) and shares the same span. However, the spar loft still
penetrates the envelope of the wing loft due to its construction method.

Figure A-20: The spar is constructed using the wing airfoil profile as a constraint in the
top figure; however, unless it is constructed with an offset from the wing contour as in the
bottom image, the spar loft will more easily create a surface intersection.

342

airfoil in Figure A-20) as a local approximation of the airfoil. Since the approximation is

within a tolerance (internal to the geometry kernel), lofting through the spar profiles (albeit

at the same cross-section planes as the wing profiles) implies not lofting through the actual

airfoil contours, hence a minor surface intersection is created. Table A.1 compares the B-

spline surface parameters (except for the U knot vector) for the wing face F4, intersection

face F12 and F5 on both the thin and box spar of Figure A-21. It is evident that in the

chord-wise direction (u-direction) the approximated airfoil shape is done with fewer control

points than on the wing loft, although this improves for the box spar. The V knot vector

does not match between wing face F4 and the others, which explains why the span-wise loft

distribution does not match for the thin spar and wing. Even though these share the same

span and cross-section planes, the B-spline surface knot vectors differ span-wise, meaning

that these parameters fundamentally express different isoparameter lines in the v-direction

and intersection will occur.

Wing Intersection Thin Spar Box Spar
Face 4 Face 12 Face 5 Face 5

u degree 3 3 3 3
v degree 3 3 3 3
nCPs,u 20 4 4 42
nCPs,v 11 11 11 11
nknots,u 24 8 8 46
nknots,v 15 15 15 15

v knots 0.000000000000 0.000000000000 0.000000000000 0.000000000000
0.000000000000 0.000000000000 0.000000000000 0.000000000000
0.000000000000 0.000000000000 0.000000000000 0.000000000000
0.000000000000 0.000000000000 0.000000000000 0.000000000000
0.115811274145 0.113456193256 0.113456193256 0.115037954177
0.231653293268 0.226913437165 0.226913437165 0.230277505523
0.348544315764 0.347137775904 0.347137775904 0.347264243894
0.465484487420 0.467081892501 0.467081892501 0.465810371185
0.582447859963 0.586646240182 0.586646240182 0.584227365889
0.706375691400 0.712996164702 0.712996164702 0.708449030395
0.843981652496 0.847525717338 0.847525717338 0.845009777551
1.000000000000 1.000000000000 1.000000000000 1.000000000000
1.000000000000 1.000000000000 1.000000000000 1.000000000000
1.000000000000 1.000000000000 1.000000000000 1.000000000000
1.000000000000 1.000000000000 1.000000000000 1.000000000000

Table A.1: A comparison between the B-spline surface parameters of the four faces high-
lighted in Figure A-21.

343

Figure A-21: The effect of approximating a loft swath with another loft is shown, where
the wing upper face is approximated by the caps of a thin and box spar loft. As the spar
width increases, the approximation improves and the CAD system cannot determine the
intersection trim curve.

344

In this scenario the designer’s intent is not captured by the geometry kernel and the

proposed solution in Figure A-20 must be considered. It is interesting to note that extending

the spar width to cover a greater percentage of the chord, as in the case of the box spar,

allows the cut-spline approximation to improve. The resulting spar loft better fits within

the wing loft envelope and the CAD system cannot calculate an actual surface interference

since the model becomes non-manifold (i.e., two faces approach being coincident). The

designer must determine what offset value is appropriate to avoid this issue in a particular

CAD system2.

A.6 Model Initialization and Automatic Generation

By synthesizing the considerations explained thus far, a set of programmable “rules” be-

come apparent that facilitate the automatic generation of CAD models of aircraft. CAD

systems often support API programming in various languages in order to accommodate

this. There are many benefits to capturing the model construction methods discussed here

and embedding an appropriate design intent in a model. This serves multiple purposes,

some of which are listed here:

1. Manual creation of the model using the CAD GUI is greatly reduced (a time savings).

2. Parameter distributions are easily handled.

(a) Chord and thickness distributions; span-wise airfoil distribution.

(b) Distribution of cross-section extent in planform or side-view.

3. Model generation code is similar to model parameter-update code.

4. Easily switch through various parameterizations when generating models.

5. Similar geometry is easily created (e.g., lifting-surfaces).

6. Fast turn-around time when adjustments are needed for new models.

2The spar caps may be closed via line segments, instead of the airfoil spline approximation, as another
option. If the spar web end-points are coincident to the reference spline the same surface intersection issues
will occur. This again stems from the discrepancy in the V knot vectors between the wing loft and spar cap
face.

345

Creating CAD models manually through a GUI requires more time as the model com-

plexity increases. This approach is intractable for an aircraft conceptual design setting be-

cause numerous configurations need evaluation during a small time frame. Using pre-built

models for new designs is inefficient because the designer may not know what the intended

design trajectory is for the model components, hence time is spent reverse-engineering the

design intent. Only an automated geometry generator utilizing the CAD system API will

permit the fastest model production time for conceptual design. In this work all CAD

models are created with an automated geometry generator using the API in the SolidWorks

CAD system. Manual work on a model is only done for post-generation steps if a particular

feature is not executed properly through the CAD API.

Whether creating a model manually or through automatic generation, the designer must

decide the level of geometry detail it will capture in the first iterations of a model. The

geometry representation in aircraft conceptual design usually lacks the information available

in later design phases. Thus an initial estimate of certain geometry information is necessary

in order to construct a full 3D model. For example, by choosing the parameterization

options found in Tables 2.4 and 2.5 the designer is left with a choice of airfoil for each

lifting-surface. Since the wing airfoil stack will generally require further design iterations,

the designer may approximate a known airfoil (via spline primitives) that is sufficient for

the mission at hand in order to initialize a model. The designer’s past experience with

such configurations, coupled with any additional expert opinion, allows this initial airfoil

selection to be adequate for early trade studies. Otherwise, a poorly modeled airfoil stack

will result in poor drag predictions that may dominate and misrepresent the performance

of a candidate configuration.

There is a tradeoff when initializing an airfoil stack for lifting-surfaces. On one hand,

the spline primitive approximation of each airfoil must produce the Cp distribution of the

“true” airfoil shape, which is typically done by using about O(100) spline support points

to interpolate the airfoil. On the other hand, shape optimization of an airfoil with O(100)

support points becomes problematic primarily for two reasons: (1) the number of design

variables becomes prohibitively large for optimization, and (2) numerous sign-fluctuations

in the surface curvature occur as a result of the local-support property inherent to splines.

Overcoming this drawback requires fewer spline support points, which may result in a poor

Cp approximation of the “true” airfoil.

346

An optimization problem can be setup off-line to determine where O(10) spline support

points should be placed to best approximate the Cp distribution of a given airfoil. With

a known “true” distribution C∗p(x̂) as the target at locations x̂ = {x̂j , ŷj}n̂j=0 across the

airfoil, an inverse design problem is setup as follows:

arg min
x

(
C∗p(x̂)− Cp(x̂)

)2
s.t. g(x̄) ≤ 0 ,

(A.6)

where the design variables x = {xi, yi}ni=0 are the spline support point coordinates and

n � n̂. The constraints g(x̄) pertain to minimum thickness at two chord fractions f1 and

f2 such that x̄ = {f1c, f2c} becomes position along the chord. This can be solved using a

gradient-based optimization algorithm with the starting coordinates x0 ⊂ x̂.

347

THIS PAGE INTENTIONALLY LEFT BLANK

348

Appendix B

PASS Parameterization Definitions

The following tables list the parameters describing a monoplane geometry representation

as utilized in the PASS aircraft design software.

Wing

Parameter Definition Units

sref The reference trapezoidal (trap) wing area. ft2

arw The wing aspect ratio based on the reference area. n.d.
sweepw The sweep of the trapezoidal wing quarter chord. Deg.
tovercw The average wing thickness to chord ratio. n.d.
taperw Tip to root chord ratio for the trapezoidal reference

wing.
n.d.

supercritical (0) peaky or (1) supercritical section properties 0,1
lex Leading edge extension added forward of the trape-

zoidal wing root chord.
Units of trap root
chord

tex Trailing edge extension added aft of the trapezoidal
wing root chord.

Units of trap root
chord.

chordextspan The span of the leading and trailing edge extensions. Semi-span per-
centage

wingdihedral Wing dihedral angle. Deg.
wingheight (0) Low wing or (1) high wing 0,1
wingxposition Wing root leading edge (actual wing, not reference

wing) relative location on fuselage.
Percentage of
fuselage length

alphalimit Maximum angle of attack limit at Cl,max. Deg.
x/ctransition Fraction of chord on lifting-surfaces with laminar flow. n.d.

Table B.1: Wing parameterization used in PASS.

349

Horizontal
Tail

Parameter Definition Units

sh/sref The ratio of gross horizontal tail area to wing reference
area.

n.d.

arh Horizontal tail thickness to chord ratio. n.d.
sweeph Sweep of horizontal tail quarter chord. Deg.
toverch Horizontal tail thickness to chord ratio. n.d.
taperh Horizontal tail tip chord/root chord. n.d.
dihedralh Horizontal tail dihedral. Deg.
clhmax Clmax of horizontal tail. n.d.

Table B.2: Horizontal tail parameterization used in PASS.

Vertical
Tail

Parameter Definition Units

ttail (0) low tail and (1) for T-tail, or anything in between. 0,1
sv/sref Ratio of vertical tail area to wing reference area. n.d.
arv Aspect ratio of vertical tail: height2/area n.d.
sweepv Sweep of vertical tail quarter chord line. Deg.
tovercv Thickness-to-chord ratio of vertical tail. n.d.
taperv Vertical tail taper ratio. n.d.

Table B.3: Vertical tail parameterization used in PASS.

Fuselage

Parameter Definition Units

fuseh/w Ratio of fuselage height to width. n.d.
nosefineness Nose fineness ratio (nose length/fuselage width) n.d.
tailfineness Tailcone fineness ratio. n.d.
windshieldht Height of windshield. ft.
pilotlength Length of pilot station. ft.
fwdspace Extra space forward of seats in constant section. ft.
aftspace Extra space aft of seats in constant section. ft.

Table B.4: Fuselage parameterization used in PASS.

350

Appendix C

Geometry Sensitivity Data

for BRep Faces

Surface plots depicting the difference between analytic geometry sensitivities and finite-

difference results are shown.

• Figures C-1 through C-11 correspond to the extrude feature in Section 3.3.

• Figures C-12 through C-21 correspond to the revolve feature in Section 3.4.

• Figures C-22 through C-31 correspond to the sweep feature in Section 3.5.

351

(a) (b)

(c)

Figure C-1: Relative offset between the extrude feature differentiation method and centered-
differencing for the extrusion length parameter.

352

(a) (b)

(c)

Figure C-2: Relative offset between the extrude feature differentiation method and centered-
differencing for parameter P = d21. The w-component data is exactly zero in this case.

353

(a) (b)

(c)

Figure C-3: Relative offset between the extrude feature differentiation method and centered-
differencing for parameter P = d22.

354

(a) (b)

(c)

Figure C-4: Relative offset between the extrude feature differentiation method and centered-
differencing for parameter P = d23. The w-component data is exactly zero in this case.

355

(a) (b)

(c)

Figure C-5: Relative offset between the extrude feature differentiation method and centered-
differencing for parameter P = d25.

356

(a) (b)

(c)

Figure C-6: Relative offset between the extrude feature differentiation method and centered-
differencing for parameter P = d26.

357

(a) (b)

(c)

Figure C-7: Relative offset between the extrude feature differentiation method and centered-
differencing for parameter P = d27.

358

(a) (b)

(c)

Figure C-8: Relative offset between the extrude feature differentiation method and centered-
differencing for parameter P = d28.

359

(a) (b)

(c)

Figure C-9: Relative offset between the extrude feature differentiation method and centered-
differencing for parameter P = d29.

360

(a) (b)

(c)

Figure C-10: Relative offset between the extrude feature differentiation method and
centered-differencing for parameter P = d30. The w-component data is exactly zero in
this case.

361

(a) (b)

(c)

Figure C-11: Relative offset between the extrude feature differentiation method and
centered-differencing for parameter P = d31. The w-component data is exactly zero in
this case.

362

(a)

(b)

(c)

Figure C-12: Relative offset between the revolve feature differentiation method and
centered-differencing for parameter P = d21.

363

(a)

(b)

(c)

Figure C-13: Relative offset between the revolve feature differentiation method and
centered-differencing for parameter P = d22.

364

(a)

(b)

(c)

Figure C-14: Relative offset between the revolve feature differentiation method and
centered-differencing for parameter P = d23.

365

(a)

(b)

(c)

Figure C-15: Relative offset between the revolve feature differentiation method and
centered-differencing for parameter P = d25.

366

(a)

(b)

(c)

Figure C-16: Relative offset between the revolve feature differentiation method and
centered-differencing for parameter P = d26.

367

(a)

(b)

(c)

Figure C-17: Relative offset between the revolve feature differentiation method and
centered-differencing for parameter P = d27.

368

(a)

(b)

(c)

Figure C-18: Relative offset between the revolve feature differentiation method and
centered-differencing for parameter P = d28.

369

(a)

(b)

(c)

Figure C-19: Relative offset between the revolve feature differentiation method and
centered-differencing for parameter P = d29.

370

(a)

(b)

(c)

Figure C-20: Relative offset between the revolve feature differentiation method and
centered-differencing for parameter P = d30.

371

(a)

(b)

(c)

Figure C-21: Relative offset between the revolve feature differentiation method and
centered-differencing for parameter P = d31.

372

(a)

(b)

(c)

Figure C-22: Relative offset between the sweep feature differentiation method and centered-
differencing for parameter P = d21.

373

(a)

(b)

(c)

Figure C-23: Relative offset between the sweep feature differentiation method and centered-
differencing for parameter P = d22.

374

(a)

(b)

(c)

Figure C-24: Relative offset between the sweep feature differentiation method and centered-
differencing for parameter P = d23.

375

(a)

(b)

(c)

Figure C-25: Relative offset between the sweep feature differentiation method and centered-
differencing for parameter P = d25.

376

(a)

(b)

(c)

Figure C-26: Relative offset between the sweep feature differentiation method and centered-
differencing for parameter P = d26.

377

(a)

(b)

(c)

Figure C-27: Relative offset between the sweep feature differentiation method and centered-
differencing for parameter P = d27.

378

(a)

(b)

(c)

Figure C-28: Relative offset between the sweep feature differentiation method and centered-
differencing for parameter P = d28.

379

(a)

(b)

(c)

Figure C-29: Relative offset between the sweep feature differentiation method and centered-
differencing for parameter P = d29.

380

(a)

(b)

(c)

Figure C-30: Relative offset between the sweep feature differentiation method and centered-
differencing for parameter P = d30.

381

(a)

(b)

(c)

Figure C-31: Relative offset between the sweep feature differentiation method and centered-
differencing for parameter P = d31.

382

Appendix D

B-Spline Surface

Perturbation Results

The following tables refer to changes in knot vectors for faces on a sweep feature analyzed

in Section 3.5. The changing knot vectors appear in finite-difference perturbations that lead

to spurious design velocity results.

383

Baseline U U+h U−h

F4

0.466890834616315 0.466891102701769 0.466890566530759
0.466890834616315 0.466891102701769 0.466890566530759
0.466890834616315 0.466891102701769 0.466890566530759
0.466890834616315 0.466891102701769 0.466890566530759
0.596167182504661 0.596167385475848 0.596166979533398
0.596167182504661 0.596167385475848 0.596166979533398
0.596167182504661 0.596167385475848 0.596166979533398
0.596167182504661 0.596167385475848 0.596166979533398

F6

0.000000000000000 0.000000000000000 0.000000000000000
0.000000000000000 0.000000000000000 0.000000000000000
0.000000000000000 0.000000000000000 0.000000000000000
0.000000000000000 0.000000000000000 0.000000000000000
0.116902392787021 0.116902836780837 0.116901948793038
0.116902392787021 0.116902836780837 0.116901948793038
0.116902392787021 0.116902836780837 0.116901948793038
0.116902392787021 0.116902836780837 0.116901948793038

Table D.1: Changing U knot vectors on Faces F4 (semi-ellipse) and F6 (circular-arc) when
finite-differencing with parameter P = d21 and step-size h = 1.0× 10−4. Underlined digits
denote a deviation from the baseline knot values.

384

Baseline U U+h U−h

F4

0.466890834616315 0.466891173803889 0.466890495429981
0.466890834616315 0.466891173803889 0.466890495429981
0.466890834616315 0.466891173803889 0.466890495429981
0.466890834616315 0.466891173803889 0.466890495429981
0.596167182504661 0.596167443216163 0.596166921794282
0.596167182504661 0.596167443216163 0.596166921794282
0.596167182504661 0.596167443216163 0.596166921794282
0.596167182504661 0.596167443216163 0.596166921794282

F6

0.000000000000000 0.000000000000000 0.000000000000000
0.000000000000000 0.000000000000000 0.000000000000000
0.000000000000000 0.000000000000000 0.000000000000000
0.000000000000000 0.000000000000000 0.000000000000000
0.116902392787021 0.116902957924563 0.116901827651693
0.116902392787021 0.116902957924563 0.116901827651693
0.116902392787021 0.116902957924563 0.116901827651693
0.116902392787021 0.116902957924563 0.116901827651693

Table D.2: Changing U knot vectors on Faces F4 (semi-ellipse) and F6 (circular-arc) when
finite-differencing with parameter P = d22 and step-size h = 1.0× 10−4. Underlined digits
denote a deviation from the baseline knot values.

385

Baseline U U+h U−h

F4

0.466890834616315 0.466890149094674 0.466891520138963
0.466890834616315 0.466890149094674 0.466891520138963
0.466890834616315 0.466890149094674 0.466891520138963
0.466890834616315 0.466890149094674 0.466891520138963
0.596167182504661 0.596166532648647 0.596167832361366
0.596167182504661 0.596166532648647 0.596167832361366
0.596167182504661 0.596166532648647 0.596167832361366
0.596167182504661 0.596166532648647 0.596167832361366

F6

0.000000000000000 0.000000000000000 0.000000000000000
0.000000000000000 0.000000000000000 0.000000000000000
0.000000000000000 0.000000000000000 0.000000000000000
0.000000000000000 0.000000000000000 0.000000000000000
0.116902392787021 0.116901610708219 0.116903174867686
0.116902392787021 0.116901610708219 0.116903174867686
0.116902392787021 0.116901610708219 0.116903174867686
0.116902392787021 0.116901610708219 0.116903174867686

Table D.3: Changing U knot vectors on Faces F4 (semi-ellipse) and F6 (circular-arc) when
finite-differencing with parameter P = d23 and step-size h = 1.0× 10−4. Underlined digits
denote a deviation from the baseline knot values.

386

Baseline U U+h U−h

F4

0.466890834616315 0.466891233345886 0.46689043588624
0.466890834616315 0.466891233345886 0.46689043588624
0.466890834616315 0.466891233345886 0.46689043588624
0.466890834616315 0.466891233345886 0.46689043588624
0.596167182504661 0.596167484544275 0.596166880464667
0.596167182504661 0.596167484544275 0.596166880464667
0.596167182504661 0.596167484544275 0.596166880464667
0.596167182504661 0.596167484544275 0.596166880464667

F6

0.000000000000000 0.000000000000000 0.000000000000000
0.000000000000000 0.000000000000000 0.000000000000000
0.000000000000000 0.000000000000000 0.000000000000000
0.000000000000000 0.000000000000000 0.000000000000000
0.116902392787021 0.116903053284258 0.116901732288951
0.116902392787021 0.116903053284258 0.116901732288951
0.116902392787021 0.116903053284258 0.116901732288951
0.116902392787021 0.116903053284258 0.116901732288951

Table D.4: Changing U knot vectors on Faces F4 (semi-ellipse) and F6 (circular-arc) when
finite-differencing with parameter P = d25 and step-size h = 1.0× 10−4. Underlined digits
denote a deviation from the baseline knot values.

387

Baseline U U+h U−h

F4

0.466890834616315 0.466890913622128 0.466890755611384
0.466890834616315 0.466890913622128 0.466890755611384
0.466890834616315 0.466890913622128 0.466890755611384
0.466890834616315 0.466890913622128 0.466890755611384
0.596167182504661 0.596167242351953 0.596167122658037
0.596167182504661 0.596167242351953 0.596167122658037
0.596167182504661 0.596167242351953 0.596167122658037
0.596167182504661 0.596167242351953 0.596167122658037

F6

0.000000000000000 0.000000000000000 0.000000000000000
0.000000000000000 0.000000000000000 0.000000000000000
0.000000000000000 0.000000000000000 0.000000000000000
0.000000000000000 0.000000000000000 0.000000000000000
0.116902392787021 0.116901985216810 0.116902800358852
0.116902392787021 0.116901985216810 0.116902800358852
0.116902392787021 0.116901985216810 0.116902800358852
0.116902392787021 0.116901985216810 0.116902800358852

Table D.5: Changing U knot vectors on Faces F4 (semi-ellipse) and F6 (circular-arc) when
finite-differencing with parameter P = d26 and step-size h = 1.0× 10−4. Underlined digits
denote a deviation from the baseline knot values.

388

Baseline U U+h U−h

F4

0.466890834616315 0.466891044261623 0.466890624971686
0.466890834616315 0.466891044261623 0.466890624971686
0.466890834616315 0.466891044261623 0.466890624971686
0.466890834616315 0.466891044261623 0.466890624971686
0.596167182504661 0.596167337536957 0.596167027473071
0.596167182504661 0.596167337536957 0.596167027473071
0.596167182504661 0.596167337536957 0.596167027473071
0.596167182504661 0.596167337536957 0.596167027473071

F6

0.000000000000000 0.000000000000000 0.000000000000000
0.000000000000000 0.000000000000000 0.000000000000000
0.000000000000000 0.000000000000000 0.000000000000000
0.000000000000000 0.000000000000000 0.000000000000000
0.116902392787021 0.116902736793652 0.116902048781681
0.116902392787021 0.116902736793652 0.116902048781681
0.116902392787021 0.116902736793652 0.116902048781681
0.116902392787021 0.116902736793652 0.116902048781681

Table D.6: Changing U knot vectors on Faces F4 (semi-ellipse) and F6 (circular-arc) when
finite-differencing with parameter P = d27 and step-size h = 1.0× 10−4. Underlined digits
denote a deviation from the baseline knot values.

389

Baseline U U+h U−h

F4

0.466890834616315 0.466890852043850 0.466890817189048
0.466890834616315 0.466890852043850 0.466890817189048
0.466890834616315 0.466890852043850 0.466890817189048
0.466890834616315 0.466890852043850 0.466890817189048
0.596167182504661 0.596167195601239 0.596167169408286
0.596167182504661 0.596167195601239 0.596167169408286
0.596167182504661 0.596167195601239 0.596167169408286
0.596167182504661 0.596167195601239 0.596167169408286

F6

0.000000000000000 0.000000000000000 0.000000000000000
0.000000000000000 0.000000000000000 0.000000000000000
0.000000000000000 0.000000000000000 0.000000000000000
0.000000000000000 0.000000000000000 0.000000000000000
0.116902392787021 0.116902421564924 0.116902364009563
0.116902392787021 0.116902421564924 0.116902364009563
0.116902392787021 0.116902421564924 0.116902364009563
0.116902392787021 0.116902421564924 0.116902364009563

Table D.7: Changing U knot vectors on Faces F4 (semi-ellipse) and F6 (circular-arc) when
finite-differencing with parameter P = d28 and step-size h = 1.0× 10−4. Underlined digits
denote a deviation from the baseline knot values.

390

Baseline U U+h U−h

F4

0.466890834616315 0.466891073359879 0.46689059587661
0.466890834616315 0.466891073359879 0.46689059587661
0.466890834616315 0.466891073359879 0.46689059587661
0.466890834616315 0.466891073359879 0.46689059587661
0.596167182504661 0.596167363354087 0.596167001658159
0.596167182504661 0.596167363354087 0.596167001658159
0.596167182504661 0.596167363354087 0.596167001658159
0.596167182504661 0.596167363354087 0.596167001658159

F6

0.000000000000000 0.000000000000000 0.000000000000000
0.000000000000000 0.000000000000000 0.000000000000000
0.000000000000000 0.000000000000000 0.000000000000000
0.000000000000000 0.000000000000000 0.000000000000000
0.116902392787021 0.116902788266754 0.116901997313681
0.116902392787021 0.116902788266754 0.116901997313681
0.116902392787021 0.116902788266754 0.116901997313681
0.116902392787021 0.116902788266754 0.116901997313681

Table D.8: Changing U knot vectors on Faces F4 (semi-ellipse) and F6 (circular-arc) when
finite-differencing with parameter P = d29 and step-size h = 1.0× 10−4. Underlined digits
denote a deviation from the baseline knot values.

391

Baseline U U+h U−h

F4

0.466890834616315 0.466890834616315 0.466890834616315
0.466890834616315 0.466890834616315 0.466890834616315
0.466890834616315 0.466890834616315 0.466890834616315
0.466890834616315 0.466890834616315 0.466890834616315
0.596167182504661 0.596167182504661 0.596167182504661
0.596167182504661 0.596167182504661 0.596167182504661
0.596167182504661 0.596167182504661 0.596167182504661
0.596167182504661 0.596167182504661 0.596167182504661

F6

0.000000000000000 0.000000000000000 0.000000000000000
0.000000000000000 0.000000000000000 0.000000000000000
0.000000000000000 0.000000000000000 0.000000000000000
0.000000000000000 0.000000000000000 0.000000000000000
0.116902392787021 0.116902392787021 0.116902392787021
0.116902392787021 0.116902392787021 0.116902392787021
0.116902392787021 0.116902392787021 0.116902392787021
0.116902392787021 0.116902392787021 0.116902392787021

Table D.9: Changing U knot vectors on Faces F4 (semi-ellipse) and F6 (circular-arc) when
finite-differencing with parameter P = d30 and step-size h = 1.0× 10−4. Underlined digits
denote a deviation from the baseline knot values.

392

Baseline U U+h U−h

F4

0.466890834616315 0.466890331634007 0.466891337599707
0.466890834616315 0.466890331634007 0.466891337599707
0.466890834616315 0.466890331634007 0.466891337599707
0.466890834616315 0.466890331634007 0.466891337599707
0.596167182504661 0.596167617554458 0.596166747453928
0.596167182504661 0.596167617554458 0.596166747453928
0.596167182504661 0.596167617554458 0.596166747453928
0.596167182504661 0.596167617554458 0.596166747453928

F6

0.000000000000000 0.000000000000000 0.000000000000000
0.000000000000000 0.000000000000000 0.000000000000000
0.000000000000000 0.000000000000000 0.000000000000000
0.000000000000000 0.000000000000000 0.000000000000000
0.116902392787021 0.116902266847871 0.116902518726444
0.116902392787021 0.116902266847871 0.116902518726444
0.116902392787021 0.116902266847871 0.116902518726444
0.116902392787021 0.116902266847871 0.116902518726444

Table D.10: Changing U knot vectors on Faces F4 (semi-ellipse) and F6 (circular-arc) when
finite-differencing with parameter P = d31 and step-size h = 1.0× 10−4. Underlined digits
denote a deviation from the baseline knot values.

393

THIS PAGE INTENTIONALLY LEFT BLANK

394

Appendix E

“Snap” Grid

Design Velocity Results

The figures presented here compare design velocity results from the analytic method in

Section 3.5 and finite-differencing with “snap” grids. These two methods do not compare

well, as seen in Figures E-1–E-10, because the “snap” grid approach does not model design

velocity rigorously. Spurious design velocity distributions are seen in Figures E-11–E-19

when using a “snap” grid. As concluded in Section 3.5, these results confirm that the

nearest-point projection is generally not related to surface design motion. Therefore, it

is recommended that “snapped” grids be avoided as a point-tracking strategy for finite-

differencing.

395

(a)

(b)

(c)

Figure E-1: Relative offset between the sweep feature differentiation method and centered-
differencing on a “snap” grid for parameter P = d21.

396

(a)

(b)

(c)

Figure E-2: Relative offset between the sweep feature differentiation method and centered-
differencing on a “snap” grid for parameter P = d22.

397

(a)

(b)

(c)

Figure E-3: Relative offset between the sweep feature differentiation method and centered-
differencing on a “snap” grid for parameter P = d23.

398

(a)

(b)

(c)

Figure E-4: Relative offset between the sweep feature differentiation method and centered-
differencing on a “snap” grid for parameter P = d25.

399

(a)

(b)

(c)

Figure E-5: Relative offset between the sweep feature differentiation method and centered-
differencing on a “snap” grid for parameter P = d26.

400

(a)

(b)

(c)

Figure E-6: Relative offset between the sweep feature differentiation method and centered-
differencing on a “snap” grid for parameter P = d27.

401

(a)

(b)

(c)

Figure E-7: Relative offset between the sweep feature differentiation method and centered-
differencing on a “snap” grid for parameter P = d28.

402

(a)

(b)

(c)

Figure E-8: Relative offset between the sweep feature differentiation method and centered-
differencing on a “snap” grid for parameter P = d29.

403

(a)

(b)

(c)

Figure E-9: Relative offset between the sweep feature differentiation method and centered-
differencing on a “snap” grid for parameter P = d30.

404

(a)

(b)

(c)

Figure E-10: Relative offset between the sweep feature differentiation method and centered-
differencing on a “snap” grid for parameter P = d31.

405

(a) Fixed-spacing Grid

(b) “Snap” Grid

Figure E-11: The design velocity vectors in (a) correctly display a continuous derivative
along the u-isocline (as seen in Figure 3-12). In (b), however, the “snap” grid yields incorrect
discontinuous design velocities along the u-isocline. These design velocities reflect finite-
differencing with the parameter P = d22 and step-size h = 1.0× 10−4.

406

(a) Fixed-spacing Grid

(b) “Snap” Grid

Figure E-12: The design velocity vectors in (a) correctly display a continuous derivative
along the u-isocline (as seen in Figure 3-13). In (b), however, the “snap” grid yields incorrect
discontinuous design velocities along the u-isocline. These design velocities reflect finite-
differencing with the parameter P = d23 and step-size h = 1.0× 10−4.

407

(a) Fixed-spacing Grid

(b) “Snap” Grid

Figure E-13: The design velocity vectors in (a) correctly display a continuous derivative
along the u-isocline (as seen in Figure 3-14). In (b), however, the “snap” grid yields incorrect
discontinuous design velocities along the u-isocline. These design velocities reflect finite-
differencing with the parameter P = d25 and step-size h = 1.0× 10−4.

408

(a) Fixed-spacing Grid

(b) “Snap” Grid

Figure E-14: The design velocity vectors in (a) correctly display a continuous derivative
along the u-isocline (as seen in Figure 3-15). In (b), however, the “snap” grid yields incorrect
discontinuous design velocities along the u-isocline. These design velocities reflect finite-
differencing with the parameter P = d26 and step-size h = 1.0× 10−4.

409

(a) Fixed-spacing Grid

(b) “Snap” Grid

Figure E-15: The design velocity vectors in (a) correctly display a continuous derivative
along the u-isocline (as seen in Figure 3-16). In (b), however, the “snap” grid yields incorrect
discontinuous design velocities along the u-isocline. These design velocities reflect finite-
differencing with the parameter P = d27 and step-size h = 1.0× 10−4.

410

(a) Fixed-spacing Grid

(b) “Snap” Grid

Figure E-16: The design velocity vectors in (a) correctly display a continuous derivative
along the u-isocline (as seen in Figure 3-17). In (b), however, the “snap” grid yields incorrect
discontinuous design velocities along the u-isocline. These design velocities reflect finite-
differencing with the parameter P = d28 and step-size h = 1.0× 10−4.

411

(a) Fixed-spacing Grid

(b) “Snap” Grid

Figure E-17: The design velocity vectors in (a) correctly display a continuous derivative
along the u-isocline (as seen in Figure 3-18). In (b), however, the “snap” grid yields incorrect
discontinuous design velocities along the u-isocline. These design velocities reflect finite-
differencing with the parameter P = d29 and step-size h = 1.0× 10−4.

412

(a) Fixed-spacing Grid

(b) “Snap” Grid

Figure E-18: The design velocity vectors in (a) correctly display a continuous derivative
along the u-isocline (as seen in Figure 3-19). In (b), however, the “snap” grid yields incorrect
discontinuous design velocities along the u-isocline. These design velocities reflect finite-
differencing with the parameter P = d30 and step-size h = 1.0 × 10−2(π/180). A larger
step-size (greater than 1.0× 10−3) was needed to ensure a non-zero design velocity in this
case.

413

(a) Fixed-spacing Grid

(b) “Snap” Grid

Figure E-19: The design velocity vectors in (a) correctly display a continuous derivative
along the u-isocline (as seen in Figure 3-20). In (b), however, the “snap” grid yields incorrect
discontinuous design velocities along the u-isocline. These design velocities reflect finite-
differencing with the parameter P = d31 and step-size h = 1.0× 10−4.

414

Bibliography

[1] Amadori, K. and Johansson, B. and Krus, P. Using CAD-Tools and Aerodynamics
Codes in a Distributed Conceptual Design Framework. In 45th AIAA Aerospace Sci-
ences Meeting and Exhibit, Reno, Nevada, 8-11 January 2007. American Institute of
Aeronautics and Astronautics. AIAA 2007-964.

[2] Amadori, K. and Jouannet, C. A Framework for Aerodynamic and Structural Op-
timization in Conceptual Design. In 25th AIAA Applied Aerodynamics Conference,
Miami, Florida, 25-28 June 2007. American Institute of Aeronautics and Astronautics.
AIAA 2007-4061.

[3] Armstrong, C. G. and Robinson, T. T. and Ou, H. and Othmer, C. Linking Ad-
joint Sensitivity Maps with CAD Parameters. In Neittaan aki, P. and Périaux, J.
and Tuovinen, T., editor, Evolutionary Methods for Design, Optimization and Control,
Barcelona, Spain, 2007. CIMNE.

[4] Badufle, C. and Homsi, P. Value Improvement through a Virtual Aeronautical Collab-
orative Enterprise. In Symposium on Applied Aerodynamics and Design of Aerospace
Vehicles SAROD 2005, Bangalore, 8-9 December 2005.

[5] Bartels, Richard H. and Beatty, John C. and Barsky, Brian A. An Introduction to
Splines for use in Computer Graphics and Geometric Modeling. Morgan Kaufmann
Publishers, Inc., 1987.

[6] Belegundu, A.D. and Rajan, S.D. A Shape Optimization Approach Based on Natural
Design Variables and Shape Functions. Computer Methods in Applied Mechanics and
Engineering, 66:87–106, 1988. Elsevier Science Publishers B.V. (North-Holland).

[7] Bischof, C. and Carle, A. and Khademi, P. and Mauer, A. ADIFOR 2.0: Automatic
Differentiation of Fortran 77 Programs. IEEE Computational Science and Engineering,
3(3):18–32, 1996.

[8] Bischof, C. and Roh, L. and Mauer, A. ADIC–an Extensible Automatic Differentiation
Tool for ANSI-C. Software–Practice and Experience, 27(12):1427–1456, 1997.

[9] Botkin, M. E. Three-Dimensional Shape Optimization Using Fully Automatic Mesh
Generation. AIAA Journal, 30(7):1932–1934, 1991.

[10] Bowcutt, K. G. A Perspective on the Future of Aerospace Vehicle Design. In 12th
AIAA International Space Planes and Hypersonic Systems and Technologies, Norfolk,
Virginia, 15-19 December 2003. American Institute of Aeronautics and Astronautics.
AIAA 2003-6957.

415

[11] Brandt, S. A. and Stiles, R. J. and Bertin, J. J. and Whitford, R. Introduction to
Aeronautics: A Design Perspective. AIAA Education Series, 2 edition, 2004.

[12] Carty, A. and Davies, C. Fusion of Aircraft Synthesis and Computer Aided Design. In
10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, Albany,
New York, 30 August - 1 September 2004. American Institute of Aeronautics and
Astronautics. AIAA 2004-4433.

[13] Chen, J. and Freytag, M. and Shapiro, V. Shape Sensitivity of Constructive Rep-
resentations. In SPM, pages 85–96, Beijing, China, 4-6 June 2007. Association for
Computing Machinery, Inc.

[14] Chen, S. and Tortorelli, D.A. Three-dimensional shape optimization with variational
geometry. Structural Optimization, 13:81–94, 1997. Springer-Verlag.

[15] Choi, K. K. and Kim, N. Structural Sensitivity Analysis and Optimization, chapter 6.
Springer, 2005.

[16] Choi, S. and Alonso, J. J. and Kroo, I. M. and Wintzer, M. Multi-Fidelity Design Op-
timization of Low-Boom Supersonic Business Jets. In AIAA/ISSMO Multidisciplinary
Analysis and Optimization Conference, Albany, New York, 30 August - 1 September
2004. American Institute of Aeronautics and Astronautics. AIAA 2004-4371.

[17] G. B. Cosentino and T. L. Holst. Numerical optimization design of advanced transonic
wing configurations. Journal of Aircraft, 23(3):192–199, 1986.

[18] Crawford, C. A. and Haimes, R. Synthesizing an MDO Architecture in CAD. In
42nd AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, 5-8 January 2004.
American Institute of Aeronautics and Astronautics. AIAA 2004-281.

[19] Dassault, Systemes. SolidWorks. http://www.solidworks.com/.

[20] Drela, M. Xfoil. http://web.mit.edu/drela/Public/web/xfoil/.

[21] Drela, M. Newton solution of coupled viscous/inviscid multielement airfoil flows. In
AIAA, Fluid Dynamics, Plasma Dynamics and Lasers Conference, Seattle, WA, June
1990. American Institute of Aeronautics and Astronautics. AIAA 90-1470.

[22] Fudge, D. M. and Zingg, D. W. A CAD-Free and a CAD-Based Geometry Control
System for Aerodynamic Shape Optimization. In 43rd AIAA Aerospace Sciences Meet-
ing and Exhibit, Reno, Nevada, 10-13 January 2005. American Institute of Aeronautics
and Astronautics. AIAA 2005-451.

[23] Fudos, I. and Hoffmann, C. M. Constraint-based parametric conics for CAD.
Computer-Aided Design, 28(2):91–100, 1996.

[24] G. Farin and G. Rein and N. Sapidis and A.J. Worsey. Fairing cubic B-spline curves.
Computer Aided Geometric Design, 4(12):91 – 103, 1987.

[25] Giles, Michael B. and Pierce, Niles A. An Introduction to the Adjoint Approach to
Design. Flow, Turbulence and Combustion, 65:393–415, 2000.

416

[26] Goraj, Z. and Frydrychewicz, A. and Ransom, E.C.P. and Self, A. and Wagstaff,
P. Aerodynamic, dynamic and conceptual design of a fire-fighting aircraft. IMechE,
215(G):125–146, 25 April 2001.

[27] Haimes, R. and Follen, G. Computational Analysis PRogramming Interface. In Cross,
Eiseman, Hauser, Soni and Thompson, editor, Proceedings of the 6th International
Conference on Numerical Grid Generation in Computational Field Simulations, July
1998.

[28] Haimes, R. and Merchant, A. Direct CAD Access for Analysis and Design. In Schilling
R., Haase, W., Periaux, H. Baier, and Bugeda, G., editor, Evolutionary and Deter-
ministic Methods for Design, Optimization and Control with Applications to Industrial
and Societal Problems, FLM, Munich, 2005. EUROGEN.

[29] Hardee, E. and Chang, K. and Tu, J. and Choi, K. K. and Grindeanu, I. and Yu, X. A
CAD-based design parameterization for shape optimization of elastic solids. Advances
in Engineering Software, 30:185–199, 1999.

[30] Hoffmann, C. M. Constraint-Based Computer-Aided Design. JCISE, 5(3):182–187,
2005.

[31] Howe, D. Aircraft Conceptual Design Synthesis. Professional Engineering Publishing
Limited, 2000.

[32] Iyer, G. R. and Mills, J. J. Design Intent in 2D CAD: Definition and Survey. Computer-
Aided Design & Applications, 3(1-4):259–267, 2006.

[33] Jamaludin, M. A. and Said, H. B. and Majid, A. A. Shape control of parametric cubic
curves. In J. Zhou, editor, Society of Photo-Optical Instrumentation Engineers (SPIE)
Conference Series, volume 2644 of Society of Photo-Optical Instrumentation Engineers
(SPIE) Conference Series, pages 128–133, March 1996.

[34] Jameson, A. and Sriram and Martinelli, L. and Haimes, R. Aerodynamic Shape Opti-
mization of Complete Aircraft Configurations using Unstructured Grids. In 42nd AIAA
Aerospace Sciences Meeting and Exhibit, Reno, Nevada, 5-8 January 2004. American
Institute of Aeronautics and Astronautics. AIAA 2004-533.

[35] Jameson, Antony. Aerodynamic design via control theory. Journal of Scientific Com-
puting, 3(3):233–260, 1988.

[36] Jameson, Antony. Automatic Design of Transonic Airfoils to Reduce the Shock Induced
Pressure Drag. In Proceedings of the 31st Israel Annual Conference on Aviation and
Aeronautics, Tel Aviv, Israel, February 1990.

[37] Jenkinson, L. R. and Simpkin, P. and Rhodes, D. Civil Jet Aircraft Design. AIAA
Education Series, 1999.

[38] Joaquim R. R. A. Martins and Juan J. Alonso and James Reuther. Aero-Structural
Wing Design Optimization Using High-Fidelity Sensitivity Analysis. In In Proceedings
CEAS Conference on Multidisciplinary Aircraft Design Optimization, pages 211–226,
2001.

417

[39] Jouannet, C. and Krus, P. Direct Simulation Based Optimization for Aircraft Concep-
tual Design. In 7th AIAA Aviation Technology, Integration and Operations Conference
(ATIO), Belfast, Northern Ireland, 18-20 September 2007. American Institute of Aero-
nautics and Astronautics. AIAA 2007-7827.

[40] Kesseler, E. Advancing the State-of-the-Art in the Civil Aircraft Design: A Knowledge-
Based Multidisciplinary Engineering Approach. In Wesseling, P., Oñate, J. Périaux,
editor, European Conference on Computational Fluid Dynamics, TU Delft, Delft The
Netherland, 2006.

[41] Kleinveld, S. and Roge, G. and Daumas, L. and Dinh, Q. Differentiated paramet-
ric CAD used within the context of automatic aerodynamic design optimization.
In AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, Victoria,
British Columbia Canada, 10-12 September 2008. American Institute of Aeronautics
and Astronautics. AIAA 2008-5952.

[42] Kodiyalam, S. and Kumar, V. and Finnigan, P. M. Constructive Solid Geome-
try Approach to Three-Dimensional Structural Shape Optimization. AIAA Journal,
30(5):1408–1415, May 1992.

[43] Kondo, K. Algebraic method for manipulation of dimensional relationships in geometric
models. Computer-Aided Design, 24(3):141–147, 1992.

[44] Kroo, I. M. An Interactive System for Aircraft Design and Optimization. In Aerospace
Design Conference, Irvine, California, 3-6 February 1992. American Institute of Aero-
nautics and Astronautics. AIAA 92-1190.

[45] Kulfan, B. M. Universal Parametric Geometry Representation Model. Journal of
Aircraft, 45(1):142–158, January-February 2008.

[46] Kulfan, B. M. and Bussoletti, J. E. ”Fundamental” Parametric Geometry Represen-
tations for Aircraft Component Shapes. In AIAA/ISSMO Multidisciplinary Analysis
and Optimization Conference, Portsmouth, Virginia, 6-8 September 2006. American
Institute of Aeronautics and Astronautics. AIAA 2006-6948.

[47] La Rocca, G. and van Tooren, M. Development of Design and Engineering Engines to
support multidisciplinary design and analysis of aircraft. In Delft Science in Design–
A congress on interdisciplinary Design, Delft, Netherlands, 2005. Delft University of
Technology.

[48] Lamit, L. Moving from 2D to 3D CAD for Engineering Design: Challenges and Op-
portunities. BookSurge Publishing, 2007.

[49] Leslie Piegl and Wayne Tiller. Curve and surface constructions using rational B-splines.
Computer-Aided Design, 19(9):485 – 498, 1987.

[50] Liebeck, R. H. and Page, M. A. and Rawdon, B. K. Blended-Wing-Body Subsonic
Commercial Transport. In 36th Aerospace Sciences Meeting and Exhibit, Reno, NV,
12-15 January 1998. American Institute of Aeronautics and Astronautics. AIAA 98-
16309.

[51] Light, Robert and Gossard, David. Modification of geometric models through varia-
tional geometry. Computer-Aided Design, 14(4):209–214, 1982.

418

[52] Lombard, M. SolidWorks Surfacing and Complex Shape Modeling Bible. Wiley, 2008.

[53] Lombard, M. SolidWorks 2009 Bible. Wiley, 2009.

[54] Mavriplis, Dimitri J. A Discrete Adjoint-Based Approach for Optimization Problems
on Three-Dimensional Unstructured Meshes. In 44th AIAA Aerospace Sciences Meeting
and Exhibit, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference
Series, Reno, Nevada, January 2006. American Institute of Aeronautics and Astronau-
tics.

[55] Mawhinney, P. and Price, M. and Armstrong, C. and Raghunathan, S. and Ou, H. and
Murphy, A. and Curran, R. Using Idealised Models to Enable Analysis Driven De-
sign. In AIAA’s 3rd Annual Aviation Technology, Integration, and Operations (ATIO)
Tech, Denver, Colorado, 17-19 November 2003. American Institute of Aeronautics and
Astronautics. AIAA 2003-6747.

[56] Mortenson, M. E. Geometric Modeling. John Wiley & Sons, 1985.

[57] Nemec, M. and Aftosmis, M. J. Adjoint Algorithm for CAD-Based Shape Optimiza-
tion Using a Cartesian Method. In 17th Computational Fluid Dynamics Conference,
Toronto, Ontario Canada, 6-9 June 2005. American Institute of Aeronautics and As-
tronautics. NAS-05-014.

[58] Nemec, M. and Aftosmis, M. J. Aerodynamic Shape Optimization Using a Cartesian
Adjoint Method and CAD Geometry. In 24th AIAA Applied Aerodynamics Confer-
ence, San Francisco, California, 5-8 June 2006. American Institute of Aeronautics and
Astronautics. NAS-06-007.

[59] Nemec, M. and Aftosmis, M. J. Parallel Adjoint Framework for Aerodynamic Shape
Optimization of Component-Based Geometry. In 49th AIAA Aerospace Sciences Meet-
ing, Orlando, FL, 4-7 January 2011. American Institute of Aeronautics and Astronau-
tics. AIAA 2011-1249.

[60] Nemec, M. and Aftosmis, M. J. and Pulliam, T. H. CAD-Based Aerodynamic De-
sign of Complex Configurations Using a Cartesian Method. In 42nd AIAA Aerospace
Sciences Meeting and Exhibit, Reno, Nevada, 5-8 January 2004. American Institute of
Aeronautics and Astronautics. AIAA 2004-113.

[61] Othmer, C. CFD Topology and Shape Optimization with Adjoint Methods. In Inter-
nationaler Kongress Berechnung und Simulation im Fahrzeugbau. VDI Fahrzeug- und
Verkehrstechnik, September 2006.

[62] Parametric Technology Corporation. Pro/TOOLKIT Reference Manual, Release 18.0.
PTC, 1997.

[63] Pardessus, T. Concurrent engineering development and practices for aircraft design at
Airbus. ICAS2004, 2004.

[64] Piegl, L. and Tiller, W. The NURBS Book. Springer, 2 edition, 1997.

[65] Raymer, D. P. Notional Design of an Advanced Strike Fighter. In 1st AIAA Aircraft
Engineering, Technology, and Operations Congress. American Institute of Aeronautics
and Astronautics, 1995. AIAA 95-3922.

419

[66] Raymer, D. P. Aircraft Design: A Conceptual Approach. AIAA Education Series, 4th
edition, 2006.

[67] Robinson, T. T. and Armstrong, C. G. Collaborative investigation by QUB and VW
into the automatic calculation of parametric sensitivity, 2007.

[68] Roskam, J. Airplane design, Part VIII: Airplane cost estimation: design development,
manufacturing and operating. RAEC, Ottawa, 1991.

[69] Samareh, J. A. Survey of Shape Parameterization Techniques for High-Fidelity Multi-
disciplinary Shape Optimization. AIAA Journal, 39(5):877–884, May 2001.

[70] Samareh, J. A. Aerodynamic Shape Optimization Based on Free-form Deformation. In
10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, Albany,
New York, 30 August - 1 September 2004. American Institute of Aeronautics and
Astronautics. AIAA 2004-4630.

[71] Samuel, S. and Rymarz, P. and Kelley, M. and Pragada, A. Practical Unigraphics NX2
Modeling for Engineers: A Project Oriented Learning Manual. BookSurge Publishing,
2007.

[72] Sarfraz, M. and Habib, Z. Conic representation of a rational cubic spline. In Informa-
tion Visualization, 1999. Proceedings. 1999 IEEE International Conference on, pages
232–237, 1999.

[73] Siemens. NX Nastran 6 Release Guide. Siemens Product Lifecycle Management Soft-
ware Inc., 2008.

[74] Sobester, A. and Kean, A. J. Airfoil Design via Cubic Splines–Ferguson’s Curves
Revisited. In AIAA Infotech@Aerospace 2007 Conference and Exhibit, Rohnert Park,
California, 7-10 May 2007. American Institute of Aeronautics and Astronautics. AIAA
2007-2881.

[75] Sträter, O. Cognition and safety. Ashgate, 2005.

[76] Takenaka, K. and Obayashi, S. and Nakahashi, K. and Matsushima, K. The Applica-
tion of MDO Technologies to the Design of a High Performance Small Jet Aircraft–
Lessons learned and some practical concerns. In Fluid Dynamics Conference and Ex-
hibit, Toronto, Ontario Canada, 6-9 June 2005. American Institute of Aeronautics and
Astronautics. AIAA 2005-4797.

[77] Tickoo, S. CATIA V5R18 for Designers. CADCIM Technologies, 2008.

[78] Townsend, R. and Schmidt, G. R. Pro/ENGINEER Solutions Advanced Techniques
and Workarounds. OnWord Press, 1999.

[79] Vandenbrande, J. H. and Grandine, T. A. and Hogan, T. The search for the perfect
body: Shape control for multidisciplinary design optimization. In 44th AIAA Aerospace
Sciences Meeting and Exhibit, Reno, Nevada, 9-12 January 2006 2006. American Insti-
tute of Aeronautics and Astronautics. AIAA 2006-928.

[80] William, B. and Fudos, I. and Hoffmann, C. M. and Cai, J. and Paige, R. Geometric
constraint solver. Computer-Aided Design, 27(6):487–501, 1995.

420

[81] Yamazaki, W. and Mouton, S. and Carrier, G. Efficient Design Optimization
by Physics-Based Direct Manipulation Free-Form Deformation. In AIAA/ISSMO
Multidisciplinary Analysis and Optimization Conference, Victoria, British Columbia
Canada, 10-12 September 2008. American Institute of Aeronautics and Astronautics.
AIAA 2008-5953.

[82] Zang, T. A. and Green, L. L. Multidisciplinary Design Optimization Techniques:
Implications and Opportunities for Fluid Dynamics Research. In AIAA Fluid Dynamics
Conference, Norfolk, Virginia, 28 June - 1 July 1999. American Institute of Aeronautics
and Astronautics. AIAA 99-3798.

421

	Introduction: Geometry Management within Conventional Aircraft Design
	Geometry Management in Design
	Geometry Generation Methods
	Geometry Sensitivities for Shape Design Optimization
	Shape Sensitivity Analysis
	Geometry Sensitivity Methods

	Thesis Objectives and Contributions
	Thesis Outline

	Generating CAD Model Geometry
	Reasons for Focusing on Model Geometry in Design Optimization
	The Anatomy of CAD Model Geometry
	Modeling Geometry with CAD
	The Model Boundary Representation
	Model Topology Connectivity

	Model Parameterization Taxonomy
	Multifidelity Geometry Perspective
	Embedding Design Space Flexibility
	Parameterization Examples

	Defining a Model Design Intent
	Generating Multifidelity and Multidisciplinary Model Geometry
	Model Construction Methodology
	Single Discipline Examples
	Multiple Discipline Examples

	Summary

	Geometry Sensitivities for Sketches & BRep Faces
	Geometry Gradients For Canonical Parametric Surfaces
	Geometry Gradients of Sketches for Sketch-Driven Surfaces
	Solving a Parameterized Sketch
	Design Velocity at Sketch Entity End-Points
	Design Velocity Along Sketch Entities
	Validation Examples

	Geometry Gradients of Extrude-Feature Surfaces
	Geometry Gradients of Revolve-Feature Surfaces
	Geometry Gradients of Sweep-Feature Surfaces
	Additional Commentary on Feature Geometry Gradients

	Geometry Sensitivities for BRep Edges & Nodes
	Components of Design Velocity
	Closed-Form Intersection Problem
	Geometry Gradients on BRep Edges
	Derivation Using the Minimum Velocity Method
	Additional System Augmentation Options
	Validation and Comparison of Methods

	Geometry Gradients at BRep Nodes
	Extending the Trim Curve Sensitivity Derivation
	Considerations for Redundant Geometry
	Validation for BRep Nodes

	BRep Intersection Sensitivity Summary

	Geometry Sensitivities for B-Spline Curves & Surfaces
	B-Spline Curve Construction
	B-Spline Curve Geometry Gradient
	B-Spline Surface Construction
	B-Spline Surface Geometry Gradient
	B-spline Curves & Surfaces in CAD Models
	Examples of B-Spline Curve Geometry Gradients
	Examples of B-Spline Surface Geometry Gradients
	Scenarios Creating Inconsistent Finite-Difference Results
	Analysis for Linearized B-Spline Curves
	Analysis for Linearized B-Spline Surfaces
	Potential for Error Correction

	Geometry Management Demonstrations
	Implementing CAD Model Geometry in Design Frameworks
	Overview of CAD Systems
	Inventory of Geometry Data
	Parameter Associativity to Model Topology
	Extracting Consistent Geometry Sub-models
	Impact of Problem Scaling on Geometry Management

	Design Framework Demonstrations
	3D Single-Discipline Mechanical Design Problem
	2D Single-Discipline Inverse-Design Problems
	2D Single-Discipline Design Problem
	3D Single-Discipline Inverse-Design Problem
	3D Single-Discipline Design Problem
	3D Multidisciplinary Design Space Exploration

	Conclusions and Future Work
	CAD Model Generation
	Model Feature Considerations
	Perspectives on Generating Loft Features
	Mirroring Features
	Loft Self-Intersection

	Loft Definitions for Lifting-Surfaces
	Loft Definitions for Fuselage-Type Models
	Assembly Model Considerations
	Multidisciplinary Geometry Considerations
	Model Initialization and Automatic Generation

	PASS Parameterization Definitions
	Geometry Sensitivity Data for BRep Faces
	B-Spline Surface Perturbation Results
	``Snap'' Grid Design Velocity Results

