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Reporting Guidelines for Simulation-based Research in Social Sciences  

 

 

 

 

Abstract 

Reproducibility of research is critical for the healthy growth and accumulation of reliable knowledge, 

and simulation-based research is no exception.  However, studies show many simulation-based studies 

in the social sciences are not reproducible.  Better standards for documenting simulation models and 

reporting results are needed to enhance the reproducibility of simulation-based research in the social 

sciences. We provide an initial set of Reporting Guidelines for Simulation-based Research (RGSR) in the 

social sciences, with a focus on common scenarios in system dynamics research. We discuss these 

guidelines separately for reporting models, reporting simulation experiments, and reporting 

optimization results. The guidelines are further divided into minimum and preferred requirements, 

distinguishing between factors that are indispensable for reproduction of research and those that 

enhance transparency. We also provide a few guidelines for improved visualization of research to 

reduce the costs of reproduction. Suggestions for enhancing the adoption of these guidelines are 

discussed at the end. 

Acknowledgments: We would like to thank Mohammad Jalali for providing excellent research assistance 

for this paper. We thank David Lane for his helpful suggestions. 

 

1. Introduction and Motivation 

Reproducibility of research is central to the progress of science. Only when research results are 

independently reproducible can different research projects build on each other, verify the results 

reported by other researchers, and convince the public of the reliability of their results (Laine, Goodman 

et al. 2007). Given the widespread use of computational methods in different branches of science many 

scientists have called for more transparency in documenting computational research to allow 

reproducibility (Schwab, Karrenbach et al. 2000; Code 2010; Peng 2011). Simulation-based research in 

the social sciences has been on the rise over the last few decades (Gilbert and Troitzsch 2005), yet a set 

of reporting guidelines that ensure reproducibility and more efficient and effective communication 

among researchers is lacking.  As a result many research reports lack the information required to 

reproduce the simulation models they discuss or the specific simulation experiments they report.   

To illustrate, we reviewed all the articles published in the System Dynamics Review in the years 2010 and 

2011. Out of 34 research articles 27 reported results from a simulation model. Of these 27, the majority 

(16; 59%) did not include model equations, two (7%) contained partial equations, and the rest reported 
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the complete model, either in the text (3; 11%), in an online appendix (5; 19%), or by referencing 

another publication (1; 4%). Similarly, only eight articles (30%) included the parameter values needed to 

replicate the base case.  Only six (22%) included complete units for all the equations, with three having 

partial coverage of units. Finally, the details of how a reported graph was generated (e.g. scenario 

settings) was missing in eight studies and could not be verified without attempting full reproduction in 

another five.   Despite a long tradition emphasizing model transparency, attention to modeling process, 

and reproducibility of results (Forrester 1961; Sterman 2000) the system dynamics literature is falling 

short of the goals for full reproducibility to which it aspires. Similar challenges to reproducibility are 

reported in a variety of disciplines and journals (Dewald, Thursby et al. 1986; Hubbard and Vetter 1996; 

Ioannidis 2005; McCullough, McGeary et al. 2006; McCullough, McGeary et al. 2008; Koenker and Zeileis 

2009). 

In response guidelines have been developed regarding the reporting of models and simulation results 

across different fields, such as Minimum Information Required in the Annotation of Biochemical Models 

(MIRIAM) (Le Novere, Finney et al. 2005)), Minimum Information About a Simulation Experiment 

(MIASE) in systems biology (Waltemath, Adams et al. 2011), IIE computational research reporting 

guidelines (Lee, Bard et al. 1993), and guidelines for mathematical programmers in reporting 

computational experiments (Jackson, Boggs et al. 1991). Others have called for reproducibility of all 

computational research (Code 2010; Peng 2011) and some go further, calling for provision of the full 

computational environment that produces published results (Donoho, Maleki et al. 2009).  

Here we propose standard reporting guidelines for simulation-based research in the social sciences to 

enhance the reproducibility of research. We focus on common scenarios encountered in the field of 

system dynamics, but the guidelines should be informative for other modeling approaches as well.  

 

 

Table 1 defines the key concepts we use in this paper.  The scope of these guidelines is limited to the 

reporting of the model and simulation results and does not attempt to specify best modeling or analysis 

practices: reasonable people can disagree about how a system should be modeled, but, we argue, all 

should document their work in such a way that it is fully reproducible by others.1  

 

                                                           
1
 The literature distinguishes between exact replicability and reproducibility.  Replication in the context of 

simulation modeling would entail the ability for an independent third party to generate precisely the same 
numerical results for a model, down to the last decimal.  This is sometimes possible and, when it is, desirable:  for 
example, the World3 model, as a deterministic simulation, should be (and is) replicable.  However, given the 
variations in simulation environments (software, computer hardware), random number generators, and other 
uncontrollable features of simulation-based research, exact replication is sometimes not possible (for example, 
when the realizations of the pseudo-random number generators used in stochastic simulations differ across 
software and hardware).  Here we focus on reproducibility of the reported simulation experiments, meaning that 
substantive results can be reproduced (for example, when the results of reproducing a stochastic simulation yield 
the same confidence intervals and levels of statistical significance for results even though the realizations of the 
random variables in the two sets of simulations may differ).  
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Table 1-Basic definitions for the concepts used in this paper 

Model: A mathematical representation of a social system that can be simulated to generate numerical 
results.  

Exogenous inputs: We distinguish between three types of exogenous model inputs. Model parameters 
are constant numerical values used in the model, including data inputs, parametric assumptions on 
functions used, and other numerical inputs to algorithms used in the model (e.g., the assumed time 
constant for inventory adjustment in a supply chain model). Exogenous variables are time-varying 
inputs that are fixed in advance and capture the dynamics of variables outside the boundary of the 
model (e.g., historical and projected population used in a macroeconomic model).  Pseudo-random 
number streams (used in stochastic models) are generated through a random generation process and 
follow specified distributional assumptions specified by other parameters (e.g., random variations 
around the expected value in the incidence of new cases in an epidemiological model). 

Simulation Run: A single simulation consisting of computational operations on a model generating 
numerical results that represent some aspects of the system of interest given an instance of exogenous 
inputs. In comparing different simulation runs of a model we distinguish between iterations, simulation 
runs that use same parameter and exogenous variables values but differ in the instances of pseudo-
random number streams used in them, and scenarios, that differ in their parameter or exogenous 
variable values. 

Experimental set up: The design of simulation runs, in terms of the scenarios simulated and the number 
of iterations used, that inform simulation and optimization experiments. 

Simulation Experiment: A set of simulation runs that are conducted and some outputs of which are 
reported. 

Optimization experiment: These experiments combine the results of a simulation model with a search 
algorithm to find values for a subset of model parameters that best match a desired outcome. 

 

 

Simulation-based research reports results of simulation and optimization experiments on a model. 

Therefore the guidelines that follow are discussed separately for general visualization, reporting a 

model, reporting simulation experiments, and reporting optimization experiments. An optimization 

experiment often consists of many simulation runs, and as such shall follow the requirements outlined 

for simulation experiments. However, optimization experiments also include additional reporting 

requirements that are discussed separately. For each type of information we identify minimum and 

preferred reporting requirements, where minimum requirements are essential for research 

reproducibility, and preferred requirements are recommended for enhanced communication and 

transparency.  
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2. A Simple Example 

To provide a concrete example of these reporting requirements, in this section we introduce a simple 

model which will be presented following the requirements we propose. The model is illustrative and the 

numerical results reported here do not have any real world significance. The model builds on the 

classical bass diffusion model (Bass 1969; as implemented in Sterman 2000) and incorporates first-order 

auto-correlated noise (Sterman 2000) in the adoption rate (AR) around the expected values.2 Figure 1 

provides a graphical representation of the model. Table 2 specifies the model using the preferred 

requirements for model reporting.  The complete model is also available in the online appendix for 

independent assessment and reproduction. 

 

 

Figure 1- Graphical representation of the modified Bass diffusion model used as an example throughout this paper. Model 
parameters are identified by green italic font. 

 

  

                                                           
2
 All model variables and parameters include an abbreviation, at the end of the variable name in Figure 1, which is 

in capital letters for variables and in small letters for parameters. We use these abbreviations in presenting model 
equations within the text, but provide full variable names in the simulation models in the online appendix. 
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3. General visualization guidelines 

Logically, reproducibility of research does not depend on how the model and the results are presented 

visually. However, if the goal is to facilitate independent replication of different studies, visualization 

matters. Poor visualization increases the costs of reproduction, leads to confusion and needless error, 

and therefore reduces the incidence and quality of reproducibility. We therefore provide brief 

recommendations for key visualization issues common in reporting models and simulation results in 

social sciences, noting that there is a large literature on visualization (Tufte 2001; Bonneau, Ertl et al. 

2006) and comprehensive coverage of this topic is beyond the scope of the current paper3.  

- Avoid clutter in presenting causal relationships of a model. For example, use multiple views and 

avoid crossing causal links and overlapping variable names. Make sure polarity signs are visible.  

- Use subsystem diagrams, model boundary charts, causal loop diagrams, simplified stock and 

flow maps, and other relevant summary visuals (Sterman 2000) if, due to space limitations, 

presenting the causal diagrams for the full model is infeasible in the main body of the article.  

- Use Sans Serif fonts such as Arial and Helvetica, and avoid Serif fonts (e.g. Times) in 

visualizations. 

- Choose a standard in naming and presenting variables and follow it consistently (e.g. friendly 

algebra with long variable names (Morecroft, Lane et al. 1991) or conventional letter-based 

variable names).  

- Limit the amount of information reported in graphs to the key items you want to discuss. Do not 

include default vertical and horizontal gridlines and other “chart junk” (Tufte 2001). 

- Make sure different lines portraying variables in graphs of simulation output are distinguishable 

whether viewed online or on paper, and in color or black-and-white (e.g., use both different 

colors and line thicknesses for different variables in the same graphs). 

 

4. Model Reporting Requirements 

Reproducibility requires both requirements for the presentation of the model structure and for the 

numerical results that are generated by the model. Model reporting requirements should therefore be 

followed whenever a simulation model is discussed or any results reported. 

Minimum Model Reporting Requirement (MMRR): Any model used to generate research results must 

be reported so that an independent research team can recreate the model and simulate it in the base-

case setting, on a computational platform of their choice, based on information provided in the reported 

research.4 This requirement includes, but is not limited to: 

                                                           
3
 For a historical perspective on visualization in system dynamics see (Lane 2008). 

4
 For our purposes, the research report includes both the main manuscript and any accompanying online 

supplement available to anybody who has access to the main manuscript without the need to contact the authors.  
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- The computational operations the model is designed to perform shall be explained in plain text 

and provided within the paper or in an online appendix. Typically such documentation includes 

equations and algorithmic rules, all model parameters and initial values. The description should 

be sufficient to allow an independent third party to implement and simulation the model. 

- If a model extends a previously published and MSRR-compliant model in the publicly accessible 

literature, only the changes from the previously reported model need to be described. 

Preferred Model Reporting Requirement (PMRR): To increase the incidence and quality of model 

assessment and reproduction studies, modelers should provide information beyond the minimum 

requirements. Such information includes, but is not limited to: 

- Units of measurement for all variables and parameters. 

- Sources of data (qualitative or quantitative) for different equations and algorithmic rules. 

- Definition of all the variables used in the model and the logic behind their formulation. 

- Source code in the original implementation platform, preferably in a format that can be freely 

accessed and simulated (e.g. for a Vensim model a .vpm or .mdl file that can be opened and 

executed by the freely available Vensim Model Reader).  

Example of MMRR and PMRR compliant model descriptions 

Table 2 follows the PMRR for the example model in section 2. One could have achieved an MMRR 

compliant documentation by only including the formulations. The equations are represented using 

letters and short abbreviations for the variable names, as is standard and appropriate for, e.g., scientific 

journals.  Alternatively one could use longer, more explanatory variable names, so-called “friendly 

algebra” (Morecroft, Lane et al. 1991), available in Figure 1, in explaining the equations in the text or in 

an appendix; the choice depends largely on the needs of the intended audience for the work. If only a 

subset of equations is discussed in the main text, full documentation, including all parameter values, 

must also be made available. 

Table 2-Modified Bass diffusion model documentation following Preferred Model Reporting Requirements. MMRR 
compliance would be achieved by reporting the formulas. 

Formulations and Comments Units 

 ( )   ( )  ∫    ( )
 

 

     ( )     ( ) 
Person 

The stock of Potential adopters, P, declines as they adopt the innovation; the total Adoption Rate, AR, 
moves people from potential adopters to the stock of adopters, A. The initial number of potential 
adopters is given by the total population, n, less the initial number of active adopters, A(0). 

 ( )   ( )  ∫   ( )    
 

 

  ( )    
Person 

The number of active adopters, A, accumulates the Adoption Rate, AR.  There is no outflow from the 
adopter stock.  The initial number of adopters is given by A(0), assumed to be a single person..   
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  ( )  (  ( )     ( ))     (      ( )) Person/Year 

The Adoption Rate, AR, is the rate at which potential adopters become active adopters. Adoption arises 
from advertising efforts, Adoption from Advertising, AA, and adoption from word of mouth, WOM.  The 
actual adoption rate equals the expected value given by the sum of AA and WOM, modified by a random 
effect, Adoption Noise, AN, that captures stochastic variations in adoption arising from factors outside 
the boundary of the model. The Max function ensures that the adoption rate remains nonnegative 
regardless of the realization of the random noise term AN.  

  ( )     ( ) Person/Year 

Following the standard Bass model, Adoption from Advertising, AA, depends on the size of the pool of 
potential adopters, with the hazard rate of adoption from advertising given by Advertising Effectiveness, 
a, assumed, as in the Bass model, to be constant. 

   ( )       ( )  
 ( )

 
 

Person/Year 

Adoption by word of mouth, WOM, is the product of the rate at which potential adopters have relevant 
contacts with other individuals, c, the probability that any such contact is with an adopter, given by the 
fraction of adopters, A, in the total population, n, and finally the probability of adoption given such a 
contact with an adopter, i.  Assuming that the probability of contact with an adopter is given by the 
fraction of adopters in the population reflects the implicit assumption of the Bass model that adopters 
and nonadopters are well-mixed and have the same behaviors with respect to their social contacts. 

  ( )    ( )  ∫    ( )    
 

 

 
Dimensionless 

Random variations in adoption are modeled by Adoption Noise, AN, assumed to be first-order auto-
correlated noise (pink noise), which is generated as an exponentially weighted average of white noise, 
WN, specified as identically and identically distributed (iid) Noise, IN, assumed to be normally 
distributed. See Sterman (2000, Appendix B). 

  ( )        (   )                    Dimensionless 

The iid noise, an0, has the same distribution as the pink noise has in steady state and is used to initialize 
the model in stochastic steady-state. 

   ( )  
  ( )    ( )

 
 

1/Year 

The rate of change in or derivative of the adoption noise, DAN, is formulated as first-order exponential 
smoothing of a white noise stream, WN. 

  ( )        (   √(  
  

 
) (
  

 
))                     

Dimensionless 

The white noise, WN, that drives the auto-correlated adoption noise is an independently and identically 
normally distributed random variable with a standard deviation scaled so that the pink Adoption Noise 
variable has the desired standard deviation, s. 

   ( )  ∫   ( )  
  ( )     ( )

 
   

 

 

 
Person/Year 

The peak adoption rate, PAR, is a summary measure of the diffusion dynamic.  The PAR observed up to 
the current time in the simulation is calculated by adjusting the PAR from its current value to the current 
adoption rate, AR, whenever the current adoption rate is larger than the peak adoption rate observed to 
date, as determined by the Peak indicator, PK. 
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  ( )              (  ( )     ( )    ) Dimensionless 

The adoption peak indicator variable, PK, tests is one if the current value of the adoption rate is the 
maximum observed so far and zero otherwise. 

  ( )  ∫   ( )  
    ( )

 
   

 

 

 
Year 

The peak adoption time, PT, is a summary measure of the diffusion dynamic. 
The PT observed up to the current time in the simulation is calculated by 
adjusting the PT from its current value to the current time whenever the current 
adoption rate is larger than the peak adoption rate observed to date. 

 

       1/Year 

Advertising results in adoption according the effectiveness of the advertising, a. The assumed hazard 
rate of adoption from exposure to advertising is 1% per year. 

      1/Year 

The rate at which active adopters come into contact with potential adopters, c. We assume one hundred 
person-to-person contacts relevant to the focal innovation per year. 

        Dimensionless 

The fraction of times a contact between an active adopter and a potential adopter results in adoption, i. 
We assume the probability of adoption conditional on a contact between a potential adopter and 
adopter is 1.5%. 

      Person 

The population is assumed to be one million individuals. 

    Dimensionless 

The mean value for the pink noise term influencing the adoption rate. 

      Dimensionless 

The standard deviation of the pink noise in the adoption rate is assumed to be 10% of the expected 
adoption rate. 

     Dimensionless 

The noise seed, ns, specifies the particular pseudo-random number stream that affects adoption. 

    Year 

The time constant for autocorrelation in the adoption noise.  

             Year 

The time step for the simulation, after sensitivity analysis on time step, was set to 0.0078125 (= 2
-7

) 
years. 
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5. Simulation experiment reporting 

A simulation experiment consists of setting up the model and conducting one or multiple simulation 

runs that generate numerical results.  Simulation runs may differ in their parameter settings, i.e., belong 

to different scenarios, or in their driving random number streams, i.e., being different realizations of the 

same scenario. The following reporting requirements apply to results reported from any simulation 

run(s).  

Minimum Simulation Reporting Requirements (MSRR):  Research should provide a detailed description 

of all the steps needed to repeat every reported simulation experiment and reproduce the results. 

Reproduced results shall be consistent with the reported results within the computational error bounds 

expected from reproduction on different platforms, and in the case of stochastic models, differences 

arising from different realizations of pseudo-random numbers. These requirements include, but are not 

limited to reporting of: 

- The software and hardware platform(s) used for the simulation. 

- The simulation algorithm used, such as integration method and time step (for differential and 

difference equation models), meshing method (for spatial models), and event prioritization 

schemes (for discrete event simulations).  

- Any pre-processing (e.g. to generate exogenous inputs to the model) needed on the base-case 

model (described according to the requirement above) to enable reproduction of the reported 

experiments. 

- Parameter settings required to reproduce any reported scenario, including parameter values for 

each scenario and, for Monte-Carlo simulations, the joint distributions for the selection of 

parameters, including distributional forms, generating equations, and/or correlation matrixes 

shall be reported, along with the sampling procedure used. 

- The number of iterations per scenario. 

- All post-processing steps (e.g. aggregation computations, summary statistics, regressions on the 

simulation results) used to transform simulation outputs to reported results. 

Preferred Simulation Reporting Requirements (PSRR): Reports of simulation experiments should 

include information that facilitates the assessment of the results beyond the minimum requirements. 

These include, but are not limited to: 

- Specify if any sensitivity analysis was conducted on robustness of the algorithmic parameters 

(e.g. sensitivity of results to time step or simulation method).  

- Information on computational costs, including simulation time and processor information. This 

is especially important if computational costs are significant.  
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- Random number generation algorithm used and the noise seed (parameters specifying the exact 

stream of resulting pseudo-random numbers) for stochastic models. 

- A measure of uncertainty (e.g. standard deviation, 95% confidence interval) in reported 

statistics in stochastic models and Monte-Carlo analysis. The method used to calculate 

confidence intervals and other measures of uncertainty should be fully specified (e.g. empirical 

confidence interval vs. one calculated assuming variations are normally distributed). 

- In stochastic models, when differences between metrics across different scenarios are reported, 

the statistical significance of the difference and the significance testing method.  

- The method for determining the number of significant digits presented in tables and graphs.  

When original code is provided, instructions for conducting the simulation experiment in the 

original platform. 

 

Example of MSRR and PSRR compliant reports 

Table 3 reports the results of a sensitivity analysis on the diffusion model described in section 2. The 

analysis changes two of the model parameters over three values each (a full factorial analysis yielding a 

total of 9 scenarios) and runs multiple iterations for each of these scenarios, calculating the sensitivity of 

two outcome variables of interest (Peak Adoption Rate, PAR and Peak Time, PT) to these parameters. 

The table legend provides the MSRR, supplemented by PSRR information in the footnotes for the table. 

Table 3- Results of a set of sensitivity analysis simulations for the sample diffusion model. The experiment includes 9 
different scenarios for model parameters in which the Adoption Fraction (i) and Advertising Effectiveness (a) are varied 
around base values of 0.015 and 0.01, respectively, as specified in the table. The table reports the mean and standard 
deviation for PAR and PT in ensembles of 1000 simulations for each scenario.  Each scenario differs in the realizations of the 
adoption noise, AN, which varies the adoption rate around the expected value with a pink-noise process with a standard 
deviation of 10%. The time horizon for each simulation is 25 years. Simulations were conducted using Vensim™ software 
version 5.11 using Euler integration with a time step of 0.0078125 years. An “*” indicates that the mean for a metric is 
statistically different, at p ≤ 0.01, from the base case results (the center cell in the 3*3 table) based on the t-test for group 
means with unequal variances. 

Mean (Std Dev) of PAR and PT with different i 
and a; Based on 1000 iterations **. 

Adoption Fraction i 

0.005 0.015 0.025 

A
d

ve
rt

is
in

g 
Ef

fe
ct

iv
en

es
s 

a 0.005 
Peak Adoption Rate (PAR) 138125(10428)* 395720(34266) 649324(58901)* 

Peak Time (PT) 9.16(0.85)* 3.82(0.35)* 2.51(0.23)* 

0.01 
Peak Adoption Rate (PAR) 140631(10926)* 397741(34733) 652055(58804)* 

Peak Time (PT) 7.71(0.8)* 3.34(0.32) 2.23(0.21)* 

0.015 
Peak Adoption Rate (PAR) 143237(11288)* 400188(35612) 653820(58936)* 

Peak Time (PT) 6.85(0.75)* 3.07(0.31)* 2.06(0.2)* 
 

Additional notes for PSRR compliance: Results were not sensitive to use of the Runge-Kutta integration methods (RK2, RK4 

and RK-Auto were tested) or smaller time steps. Iterations generated using “NoiseSeed ns” parameters [1-1000]. PAR 

numbers rounded to the closest integer and PT numbers are rounded to two decimals. The pseudo-random number 

generator uses the rand1.c function from Numerical Recipes in C (Press 1992). The 9000 simulations for this analysis, saving 

only the PAR and PT once a year, took 2:20 minutes on a desktop computer with Q9400 Intel Core 2 CPU @ 2.66 GHz with a 

64 bit Windows 7 operating system and 4 Gb of RAM.  
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6. Optimization experiment reporting  

Optimization experiments can be applied to deterministic or stochastic models and are used for policy 

optimization, calibration (estimating parameters of interest by minimizing some function of the error 

between the simulation and data), dynamic programming, and finding equilibria in multi-player games, 

among others. The following information should be provided to enable reproduction of optimization 

experiments.  

Minimum Optimization Reporting Requirements (MORR): Besides following the MSRR, the 

optimization objective function, search algorithm and search space underlying the optimization 

procedure shall be specified with enough detail to enable the reproduction of the optimization 

experiment by independent researchers. Exact numerical reproduction may not be feasible due to 

variations in pseudo-random number streams used in some optimization methods, or other platform-

based differences (e.g., in truncation or round off error). However the reproduced and reported results 

should have similar expected values and, thus with sufficiently large samples, show no statistically 

significant differences. The minimum reporting requirements include, but are not limited to: 

- The software environment in which the optimization has been implemented.  

- The payoff function to be maximized (minimized) as a function of reported model variables. In 

game theoretic settings the payoff function of all the players involved shall be specified. 

- The parameter space over which search for the best payoff value is conducted. If search 

parameters are not part of the model discussed above (e.g. feature-space definition and 

functional approximations used for approximate dynamic programming (Bertsekas and Tsitsiklis 

1996; Bertsekas 2007) the mapping of search parameters into model variables shall be reported. 

- The search algorithm used shall be specified by references to the original article introducing the 

algorithm and fully explaining any modifications or new search methods. 

- If iterative methods are used, e.g. for finding game-theoretic equilibria (Kim and Kim 1997; 

Sterman, Henderson et al. 2007; Rahmandad and Ratnarajah 2009), the number of iterations 

needed for convergence shall be reported. 

- The actual search that has led to the reported optimization results based on the algorithm used, 

for example the number of restarts of the search in the parameter space, the total number of 

scenarios simulated, and the number of iterations per scenario (for stochastic models). 

Preferred Optimization Reporting Requirements (PORR): Reports of optimization experiments should 

go beyond the minimal requirements to include information that facilitates quick reproduction and the 

assessment of the results. These include, but are not limited to: 

- Optimization implementation codes (e.g. Vensim payoff definition and optimization control 

files).  
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- Information on computational costs, including optimization time and processor information for 

each optimization experiment.  

- For calibration/estimation results, a measure of uncertainty in the estimated parameters (e.g. 

95% confidence interval). 

- A measure of confidence in the generality of optimization results.5  Examples include the 

number of unique local optima discovered divided by the number of restarts, and for stochastic 

models, the confidence level (based on multiple iterations at each local optima) at which the 

best local optimum found (to assess whether the optimal solution selected is statistically 

different from other local optima). 

Example of MORR and PORR compliant reports 

We consider an optimization problem that builds on the diffusion model above to find the advertising 

policy that produces a desired Peak Adoption Rate (PAR). Minimum reporting requirements follow, with 

preferred requirements provided in the footnote and appendix 1. 

In light of the stochastic nature of this model, we need to simulate the model multiple times and find an 

approximate value for the expected PAR. To do so we simulate the model for 1000 iterations (using the 

subscript functionality in Vensim; see Appendix 1) and calculate the sample mean for PAR across these 

1000 iterations. That value is then compared to a goal for PAR, which we set to 600,000 persons per 

year. We use Vensim’s built-in optimization module, which uses a modified Powell conjugate search 

algorithm (taken from numerical recipes in C (Press 1992) but modified to include some additional 

constraints) to search values of “Advertising Effectiveness a” between 0 and 2 and find the value that 

minimizes the squared error between the PAR mean at the final time and the goal (of 600,000). 

Following this process, we find the value of 0.361 for “Advertising Effectiveness a” which leads to the 

desired mean PAR. This value was found after 706 simulations to accommodate 45 random restarts of 

the search in the parameter space.6  

  

                                                           
5
 A global optimum cannot usually be guaranteed in simulation optimization, yet one can assess the probability of 

finding better peaks with additional search based on the expected return to further search when the optimization 
process terminates. 
6
 Additional notes for PORR compliance: The additional model equations to formulate the optimization problem 

and optimization payoff and parameter setting files are available in the appendix 1. All Vensim files are available in 
the e-companion. All 45 restarts found the same peak in the parameter space. Moreover, simulating the model 
with different noise seeds, using the optimum parameter value found above, leads to average PARs that are within 
1% of the goal, thus providing further confidence in the reliability of the results. The optimization, using a compiled 
version of the model, took 15:12 minutes on a desktop computer with Q9400 Intel Core 2 CPU @ 2.66 GHz with a 
64 bit Windows 7 operating system and 4 Gb of RAM. 
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7. Discussion and Recommendations 

The guidelines developed in this article provide a starting point to standardize the reporting of 

simulation results in social science research. Such guidelines need to be updated based on the feedback 

from the community of researchers who use them, therefore we encourage the community to engage in 

using the guidelines and suggesting revisions and enhancements.  A more challenging task is to promote 

the active adoption of these guidelines within the research community. While each researcher benefits 

from using RGSR compliant research by others, the additional work needed to develop such reports 

creates a collective action problem. We recommend the following steps to help address this challenge: 

- Developing good reporting habits should start early in the training of researchers. Advisors 

should require their students to follow these standards in all internal reports and external 

papers. Such a requirement is likely to speed and improve communication between advisors and 

students and thus benefit the productivity of the research group overall, including that of the 

advisor.  

- Senior faculty should promote these guidelines by highlighting RGSR compliance of research in 

their discussions with students and junior faculty, seminars, and other public encounters. 

- Reproduction of published simulation research and assessment of its RGSR compliance can be a 

very useful training method for graduate students. It will also create pressure on other 

researchers to ensure RGSR compliance. 

- Journals and conferences should ask authors to identify the compliance of their submitted work 

to the different components of RGSR. The additional transparency and reviewer trust that 

accompanies such voluntary disclosure will provide an incentive for individual researchers to 

develop RGSR compliant articles. Journals more heavily focused on simulation research should 

also require minimum RGSR compliance for all submissions.  

- Journals and conferences should also add additional questions to their review forms so that 

referees can report the degree of RGSR compliance of submitted articles. 

- Recognizing that the System Dynamics Review publishes a range of papers, including 

practitioner-oriented research, we recommend the journal require Minimum RGSR compliance 

for all research-focused papers. This will allow the journal to remain open to practice-based 

manuscripts in which the authors may not be able to reveal the full details of proprietary 

models, while setting appropriate standards for more academic publications. 

Application of RGSR will allow researchers to better understand each other’s work, engage in more 

collaborations, train their students more efficiently, identify errors in their work earlier, and gain the 

trust of the public. These benefits far outweigh any costs associated with developing RGSR compliant 

reports. It is also the right thing to do: reproducibility of research is at the core of science. 

e-companions:  All the Vensim files used for the example analysis, along with instructions for 

reproducing the reported results are available as an e-companion on the Journal’s website. 
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Appendix 1- The Vensim optimization details for section 6 

Additional equations for optimization section 

All model equations reported in Table 2 remain valid, however, variables (but not model constants) are 

subscripted to be replicated for 1000 instances of subscript “Itr”. Additional equations for calculating the 

optimization payoff (PF) are added as follows: 

Itr:(i1-i1000)          Dimensionless 

 The subscript range Itr is defined to include 1000 members, i1…i1000. 

APAR=Sum(PAR[Itr!])/Elmcount(Itr)      Person/Year 

The average PAR value is calculated by summing the PAR over all Itr instances and dividing the 

result by the number of elements of Itr (1000 in this case). 

PF= if then else(Time=FINAL TIME, 1,0)*(APAR-r)^2    Person2/Year2 

 Payoff is calculated by comparing Mean PAR and Desired PAR at the end of simulation. 

r= 600000         Person/Year 

 The desired Peak Adoption Rate is set to 600,000 people per year. 

Text of optimization settings file (.vpd) 

*P 

Payoff PF/-1  

Text of optimization settings file (.voc) 

:OPTIMIZER=Powell 

:SENSITIVITY=Off 

:MULTIPLE_START=Random 

:RANDOM_NUMER=Linear 

:OUTPUT_LEVEL=On 

:TRACE=Off 

:MAX_ITERATIONS=1000 

:RESTART_MAX=0 

:PASS_LIMIT=2 

:FRACTIONAL_TOLERANCE=3e-005 

:TOLERANCE_MULTIPLIER=21 

:ABSOLUTE_TOLERANCE=1 

:SCALE_ABSOLUTE=1 

:VECTOR_POINTS=25 

0<=Advertising Effectiveness a<=2 
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