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Abstract 1 

The first biosynthetic system for lactate (LA)-based polyesters was previously created 2 

in recombinant Escherichia coli. Here, we have begun efforts to upgrade the prototype 3 

polymer production system to a practical stage by using metabolically engineered 4 

Gram-positive bacterium Corynebacterium glutamicum as an endotoxin-free platform. 5 

We designed metabolic pathways in C. glutamicum to generate monomer substrates, 6 

lactyl-CoA (LA-CoA) and 3-hydroxybutyryl-CoA (3HB-CoA), for the 7 

copolymerization catalyzed by the LA-polymerizing enzyme (LPE). LA-CoA was 8 

synthesized by D-lactate dehydrogenase and propionyl-CoA transferase, while 3HB-9 

CoA was supplied by -ketothiolase (PhaA) and NADPH-dependent acetoacetyl-CoA 10 

reductase (PhaB). The functional expression of these enzymes led to a production of 11 

P(LA-co-3HB) with high LA fractions (96.8 mol%). The omission of PhaA and PhaB 12 

from this pathway led to a further increase in LA fraction up to 99.3 mol%. The newly 13 

engineered C. glutamicum potentially serves as a food-grade and biomedically 14 

applicable platform for the production of poly(lactic acid)-like polyester.   15 

 16 

Key words: polylactide, biobased plastic, PHA synthase, polyhydroxyalkanoate, 17 

polyhydroxybutyrate 18 
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Introduction 1 

 2 

The severe problem of the dwindling petroleum resources and an increasing emission of 3 

carbon dioxide have increased demand for the development of bio-based plastic as a 4 

means of reducing environmental impact. Poly(lactic acid) (PLA) is a representative 5 

bio-based plastic that is used in packaging, stationery, containers, etc. (Madhavan 6 

Nampoothiri et al., 2010). In addition, the utilization of the polyester has been expanded 7 

to the medical field for drug delivery, resorbable sutures, and as material for medical 8 

implants and other related applications (Auras et al., 2004). PLA is chemically 9 

synthesized by heavy metal-catalyzed ring-opening polymerization of lactide, which in 10 

turn are derived from fermentative lactate (LA) (Auras et al., 2004). However, the 11 

chemo-process often leaves harmful chemical residues that are a cause of health and 12 

safety concerns. The switch from the multistep chemo-bio process to a complete bio-13 

process for LA-based polyester production is thus preferable to overcome this problem.  14 

Recently, a whole-cell biosynthesis system for LA-based polyester production 15 

without heavy metal catalyst has been constructed using engineered Escherichia coli 16 

(Matsumoto and Taguchi, 2009; Taguchi et al., 2008). The discovery of LA-17 

polymerizing enzyme (LPE), which was an engineered polyhydroxyalkanoate (PHA) 18 
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synthase (Taguchi and Doi, 2004), was a key to develop the microbial system. To date, 1 

the E. coli platform has been used to produce various LA-based polymers incorporating 2 

3-hydroxybutyrate (3HB), 3-hydroxyvalerate (3HV) and 3-hydroxyhexanoate (3HHx) 3 

(Shozui et al., 2009; Yamada et al., 2009; Yamada et al., 2010). Most recently, we have 4 

successfully incorporated new 2-hydroxy acids such as 2-hydroxybutyrate and glycolate 5 

using LPE (Han et al., 2011; Matsumoto et al., 2011). However, Gram-negative bacteria, 6 

such as E. coli, are known to produce potentially harmful substances, (i.e., endotoxin 7 

and lipopolysaccharide) (Furrer et al., 2007; Lee et al., 1999; Valappil et al., 2007). In 8 

considering practical applications of LA-based polyester, especially for food grade and 9 

biomedical demands, the use of endotoxin-free Gram-positive bacteria is preferable. 10 

Corynebacterium glutamicum is an aerobic, Gram-positive, non-sporulating, 11 

bacterium with GRAS status that has been extensively employed for the industrial 12 

production of several food-grade amino acids, feed and pharmaceutical products for 13 

several decades based on classical metabolic engineering (Leuchtenberger et al., 2005). 14 

In addition, C. glutamicum has extensive ability in assimilating crude sugar, for example 15 

the agricultural by-product, molasses (Schneider et al., 2010; Wittmann et al., 2005). 16 

These advantages make C. glutamicum an attractive candidate as a host for biopolymer 17 

production. 18 
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Therefore, the aim of this study is to construct an endotoxin-free production 1 

system for LA-based polyester using C. glutamicum. We previously reported 2 

productions of P(3HB) and P(3HB-co-3HV) in engineered C. glutamicum harboring 3 

PHA biosynthetic genes, indicating the capability of polyester synthesis of this organism 4 

(Jo et al., 2006; Jo et al., 2007; Jo et al., 2009; Matsumoto et al., 2010). In this study, we 5 

designed a new metabolic pathway in this organism for the production of LA-based 6 

polyester, P(LA-co-3HB). The copolymer is synthesized from glucose as a sole carbon 7 

source through successive enzymatic reactions including, (i) generation of D-LA-CoA 8 

by D-lactate dehydrogenase (D-LDH) and propionyl-CoA transferase (PCT), (ii) 3HB-9 

CoA generation catalyzed by -ketothiolase (PhaA) and NADPH-dependent 10 

acetoacetyl-CoA reductase (PhaB), and (iii) copolymerization of LA-CoA and 3HB-11 

CoA catalyzed by LPE (Fig. 1). The 3HB-CoA pathway was shown to be essential to 12 

the LPE-catalyzed synthesis of LA-based polyester in E. coli system, presumably 13 

because 3HB units act as a primer to activate LPE (Taguchi et al., 2008). For the 14 

synthesis of P(LA-co-3HB), these three steps were needed to be functional. Thus, we 15 

confirmed the expression of each enzyme involved in the pathway in C. glutamicum, 16 

and then combined the pathways to synthesize P(LA-co-3HB). This is the first report of 17 

the production of LA-based polyesters in Gram-positive bacteria. 18 
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 1 

Materials and methods 2 

 3 

Strain, culture conditions and LA analysis in the medium 4 

 5 

C. glutamicum ATCC13803, used as the host strain for P(LA-co-3HB) production 6 

throughout this study, was transformed by electroporation as described previously 7 

(Liebl et al., 1989). For polymer production, the engineered strains were grown in 100 8 

ml nutrient-rich CM2G medium (Kikuchi et al., 2003) at 30°C for 24 h with reciprocal 9 

shaking at 130 rpm. Cells were harvested, washed with distilled water, transferred into 10 

100 ml minimal MMTG medium containing 6% glucose (Kikuchi et al., 2003) and 0.45 11 

mg/l of biotin, and further cultivated for 72 h at 30°C. C. glutamicum does not produce 12 

glutamate under the presence of high concentration of biotin (Shiio and OtSuka, 1962). 13 

When needed, kanamycin (25 μg/ml) and/or chloramphenicol (5 μg/ml) was added to 14 

the medium. After the cultivation, cells were lyophilized for polymer extraction. The 15 

concentration of LA in the MMTG medium after 72 h cultivation was determined using 16 

a D-/L-lactic acid assay kit (R-Biopharm, Roche, Germany). 17 

 18 
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Plasmid constructions 1 

 2 

The kanamycin-resistant shuttle vector for C. glutamicum pPSPTG1 (Kikuchi et al., 3 

2003) was digested with XbaI, and self-ligated after T4 DNA polymerase blunting to 4 

eliminate XbaI site. The resulting plasmid was digested with BstEII and CpoI, and 5 

ligated with a synthetic BstEII-XhoI-GC-XbaI-CpoI linker (Table 1) to yield a new 6 

vector, pPS. Then, a 3.9 kb XbaI/BamHI fragment from the pGEMC1(STQK)AB 7 

plasmid (Takase et al., 2003), containing the S325T/Q481K mutated PHA synthase 8 

gene from Pseudomonas sp. 61-3 [PhaC1Ps(ST/QK)], also termed LPE (Takase et al., 9 

2003), and phaA and phaB genes from Ralstonia eutropha (Peoples and Sinskey, 1989) 10 

was inserted into XbaI/BamHI sites of pPS to yield pPSC1(STQK)AB (Fig. 2). Similarly, 11 

a 1.7 kb PstI/XbaI fragment of pGEMC1(STQK)AB containing phaC1(ST/QK) gene 12 

was inserted into BamHI/XbaI site of pPS after T4 DNA polymerase blunting to yield 13 

pPSC1(STQK). 14 

The chloramphenicol-resistant shuttle vector pVC7 (Kikuchi et al., 2003) was 15 

digested with HindIII and EcoRI, and ligated with a synthetic HindIII-KpnI-BamHI-16 

SacI-BglII-PstI-EcoRI linker (Table 1) to yield the new plasmid pVC7-L. The Pcsp 17 

promoter, which is constitutively expressed in C. glutamicum, was amplified from 18 
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pPSPTG1 using primers Pcsp F and Pcsp R (Table 1). The KpnI/BamHI digested PCR 1 

product was inserted into KpnI/BamHI sites of pVC7-L to yield pVC7-LP. D-lactate 2 

dehydrogenase (D-LDH) gene (ldhA) from E. coli was amplified using the primer pair, 3 

Ecoli ldhA F and Ecoli ldhA R (Table 1). The BamHI/SacI digested PCR product was 4 

inserted into BamHI/SacI sites of pVC7-LP to construct pVC7ldhA. Propionyl-CoA 5 

transferase (PCT) gene  (Elsden et al., 1956) was amplified from Megasphaera elsdenii 6 

genomic DNA using a pair of primers, PCT F and PCT R (Table 1). The BglII/PstI 7 

digested PCR product was inserted into BglII/PstI sites of pVC7ldhA to yield 8 

pVC7ldhApct.  9 

 10 

Immunoblot analysis  11 

 12 

C. glutamicum transformants were cultivated at 30°C for 20 h in CM2G medium. Cells 13 

were harvested by centrifugation and re-suspended in 25 mM Tris-HCl buffer (PH 7.5). 14 

The soluble fraction of cell lysate was prepared by sonication and centrifugation 15 

(12,000×g, 4°C, 10 min). Immunoblotting was performed using antisera to PCT and 16 

PhaC1, and Immun-Star Goat Anti-Rabbit (GAR)-HRP Conjugate (BIO-RAD) as 17 

previously described (Jo et al., 2007). Rabbit antiserum to PCT was developed using 18 
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purified PCT expressed in E. coli. The N-terminal His-tag fusion of pct gene was 1 

constructed using pQE31 (Qiagen), and PCT was purified using affinity 2 

chromatography with Ni
+
 NTA resin using a standard protocol.  3 

 4 

Polymer extraction from C. glutamicum cells 5 

 6 

The lyophilized cells (~1 g) were washed with 10 ml methanol three times at room 7 

temperature prior to the polymer extraction. Polymer was extracted by incubation with 8 

10 ml chloroform at 60 °C for 48 h. Cell debris was removed by passing through a 9 

PTFE filter. A 10-fold volume of hexane was then added in order to precipitate the 10 

polymer. The polymer was dried in vacuo at room temperature to determine cellular 11 

polymer content based on cell dry weight and the weights of polymer. The extracted 12 

polymer was used for further analyses.  13 

 14 

Analysis of LA-based polyesters 15 

 16 

The monomer composition of the polymers was determined by gas 17 

chromatography/mass spectroscopy (GC/MS) as described previously (Arai et al., 2002). 18 
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The molecular weights of the polymers were determined by gel permeation 1 

chromatography (GPC) (Shimadzu, Japan) using a TSKgel Super HZM-H (Tosoh, 2 

Japan) with polystyrene standards (Waters, USA) for calibration as described (Taguchi 3 

et al., 2008). The 
1
H and 

13
C NMR spectra of the polymers dissolved in CDCl3 were 4 

obtained using a Bruker MSL400 spectrometer (400 MHz for 
1
H NMR) using 5 

tetramethylsilane as an internal reference.  6 

 7 

Results  8 

 9 

Overproduction of D-lactic acid in C. glutamicum by introduction of a heterologous D-10 

lactate dehydrogenase  11 

 12 

A key factor in the construction of a metabolic pathway to produce LA-based polyesters 13 

in C. glutamicum was the stereochemistry of LA, because it has been demonstrated that 14 

LPE has strict enantiospecificity toward D-LA-CoA (Tajima et al., 2009; Yamada et al., 15 

2009). However, the C. glutamicum strain used here is known to produce mainly L-LA, 16 

as reported in several previous studies (Inui et al., 2004; Okino et al., 2008; Toyoda et 17 

al., 2009), whereas E. coli can produce D-LA (Bunch et al., 1997; Chang et al., 1999). 18 
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Therefore, C. glutamicum needed to be remodeled as a D-LA over-producer by 1 

introduction of D-LDH. In order to confirm the activity of the heterologously expressed 2 

D-LDH, the engineered C. glutamicum harboring pVC7ldhA was cultured, and D- and L-3 

LA concentrations in the culture medium were measured (Table 2). In the parent strain, 4 

L-LA concentration was determined to be 7-fold higher than that of D-LA, which was 5 

consistent with the previous reports mentioned above. In contrast, the engineered strain 6 

exhibited an enhancement of D-LA production that was 14-fold higher than L-LA, 7 

indicating the functional expression of D-LDH in C. glutamicum. In this engineered 8 

strain, the production of L-LA was decreased by the expression of D-LDH, probably due 9 

to the consumption of pyruvate by D-LDH competing with that of the intrinsic L-LDH. 10 

This result demonstrated that the engineered strain of C. glutamicum was suitable for 11 

production of LA-based polyesters. 12 

 13 

Expression of PCT gene in C. glutamicum 14 

 15 

The next essential step toward synthesis of LA-based polyesters was activation of D-LA 16 

to produce D-LA-CoA. To achieve this, pVC7ldhApct bearing propionyl-CoA 17 

transferase (PCT) gene from M. elsdenii, as well as the ldhA gene, was introduced into 18 
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C. glutamicum. The expression of the pct gene in C. glutamicum was confirmed by 1 

immunoblot analysis. As shown in Fig. 3, the translated product for the pct gene was 2 

detected with the same molecular mass compared with PCT expressed in E. coli, but 3 

was absent in the wild-type strain. This result suggested that the pct gene was 4 

successfully expressed in recombinant C. glutamicum. Together with functional 5 

expression of D-LDH, LA-CoA supplying pathway should be constructed in the strain. 6 

 7 

Functional expression of LPE 8 

 9 

The functions of the enzymes of the 3HB-CoA supplying pathway and LPE were 10 

investigated based on P(3HB) production in C. glutamicum harboring pPSC1(STQK)AB. 11 

The engineered strain accumulated 1.4 wt% of P(3HB), suggesting the functional 12 

expressions of the three enzymes, PhaA, PhaB and LPE. However, the intracellular 13 

polymer content was lower than the previous result of engineered C. glutamicum 14 

harboring the phaC, phaA and phaB genes from R. eutropha (22.5 wt%) (Jo et al., 2006). 15 

Thus, the expression of LPE was further analyzed by immunobloting. The translated 16 

product of the LPE [phaC1(STOK)] gene in C. glutamicum was observed as a clear 17 

band having the same size of LPE expressed in E. coli (Fig. 3). Thus, the low P(3HB) 18 
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content in the engineered strain might be partly due to the relatively low activity of LPE 1 

toward 3HB-CoA compared to PhaC from R. eutropha (Matsumoto et al., 2005). 2 

Regardless, from these results, LPE, PhaA and PhaB were shown to be functionally 3 

expressed in C. glutamicum. 4 

 5 

Construction of metabolic pathway for production of P(LA-co-3HB) in C. glutamicum  6 

 7 

With the expression of the five genes relevant to the biosynthesis of P(LA-co-3HB) 8 

confirmed, the plasmids pVC7ldhApct (for LA-CoA supply) and pPSC1(STQK)AB (for 9 

3HB-CoA supply and polymerization) were co-introduced into C. glutamicum for 10 

construction of the metabolic pathway illustrated in Fig. 1. The engineered strain 11 

harboring the dual plasmids produced 2.4 wt% polymer. GC/MS analysis of the 12 

extracted polymer revealed that the polymer was P(LA-co-3HB) containing a 13 

surprisingly high LA fraction (96.8 mol%) (Table 3). The weight-average molecular 14 

weight of the polymer was 7400, indicating that LA units were incorporated into the 15 

polymer chain.   16 

The result of the incorporation of small quantities of 3HB units into the 17 

polymer prompted us to evaluate the essentiality of the 3HB-supplying pathway. To 18 
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examine this, we introduced plasmids pVC7ldhApct and pPSC1(STQK) encoding D-1 

LDH, PCT, and LPE into C. glutamicum. The phaAB genes were omitted in this 2 

experiment. The new engineered strain accumulated P(LA-co-3HB) with even higher 3 

LA fraction (99.3 mol%). Thus, the introduction of phaAB genes was shown to be not 4 

essential to the production of P(LA-co-3HB). However, it should be noted that a small 5 

amount of 3HB units were incorporated into the polymer without the introduction of 6 

phaAB genes. Thus, this result cannot be a counterexample excluding the essentiality of 7 

3HB-CoA to biosynthesis of P(LA-co-3HB). The polymer content (1.4 wt%) and its 8 

molecular weight (5700) were decreased compared to those produced by the strain 9 

expressing the five relevant LA-copolymer producing genes, including phaAB. These 10 

inverse relationships between LA fraction and polymer content or molecular weight 11 

were consistent with the trends observed in the previously examined E. coli system 12 

(Yamada et al., 2011).  13 

 14 

NMR analysis of LA-based polyesters produced in C. glutamicum  15 

 16 

In order to analyze polymer structure, the samples were subjected to NMR analyses. 17 

The 
13

C NMR of the copolymer with 96.8 mol% LA exhibited strong resonance of LA 18 
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units ( 16.6, 69.0 and 169.6) as well as slight signal for the 3HB units ( 19.7, 40.1 and 1 

67.6) (Fig. 4A). The signal of carbonyl carbon of 3HB (supposed to be  169.1) was not 2 

detected, probably because the peak was overlapped with the neighboring peak of LA 3 

carbonyl carbon. In addition, the 
1
H NMR spectrum of the polymer (Fig. 4B) showed 4 

strong resonances, which were identical to those of chemically synthesized PLA, and 5 

weak resonances of 3HB units. The signal of methyl proton of 3HB unit (4) was not 6 

clear because of impurity, presumably lipid or fatty acids. The 3HB fraction was 7 

determined to be 3.2 mol%, which was consistent with GC/MS result (Table 3). 8 

Previous 
1
H NMR analyses of P(LA-co-3HB)s demonstrated that the resonance of 9 

methine proton of LA units exhibited high-field shift ( 5.0-5.2) compared to that of 10 

PLA that was due to the copolymerization of the LA units and 3HB units (Taguchi et al., 11 

2008; Yamada et al., 2009). The shifted signal of LA units was not detected in the 12 

copolymer with 96.8 mol% LA probably because of a very small 3HB fraction. NMR 13 

analyses of P(99.3 mol% LA-co-3HB) exhibited similar spectra while peaks for 3HB 14 

units were beyond the detectable level (data not shown). These results supported that 15 

the engineered C. glutamicum produced PLA-like polyesters.  16 

 17 

Discussion 18 
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 1 

P(LA-co-3HB)s produced in C. glutamicum exhibited extremely high LA fractions, 2 

approaching 100 mol%. This result had a striking contrast to the results obtained by the 3 

E. coli system using the same set of genes and same carbon source, in which 47 mol% 4 

was the maximum LA fraction (Shozui et al., 2009; Yamada et al., 2009; Yamada et al., 5 

2010). The high LA fraction could be partly due to the weak 3HB monomer supply in C. 6 

glutamicum, which was suggested by the low P(3HB) content (1.4 wt%, Table 3). It is 7 

worth noting that LPE accumulated 40 wt% P(3HB) in E. coli (Takase et al., 2003), 8 

suggesting that the flux toward 3HB-CoA supplying pathway in C. glutamicum was 9 

relatively low compared to that in E. coli. Furthermore, under copolymer-producing 10 

conditions, the flux toward 3HB monomer was further decreased by overexpression of 11 

D-LDH (from 40 to 9.7 mg/L, Table 3), probably because of D-LDH out-competing 12 

pyruvate dehydrogenase for consumption of pyruvate. In addition, acetyl-CoA is 13 

presumably used by PCT for CoA transferring reaction that led to a reduction in 3HB 14 

pathway (Fig. 1). These factors could potentially further increase LA fraction in the 15 

copolymers by decreasing the 3HB-CoA precursor pool. In terms of polymer properties, 16 

it would be of interest to compare LA-based polyesters with the high LA fractions, 17 

ranging from 70 mol% to nearly 100 mol%, with PLA homopolymer. Polymer with LA 18 
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fractions of close to 100% has been hardly prepared in E. coli system. 1 

In the engineered strain, LA fraction in the copolymer should be determined by 2 

two major factors; monomer fluxes and activity of LPE. Since the first P(LA-co-3HB) 3 

with 6 mol% LA was synthesized (Taguchi et al., 2008), LA-reinforcing approaches 4 

using anaerobic culture conditions and an LA-overproducing mutant produced a variety 5 

of higher LA fractions, up to 47 mol% (Yamada et al., 2009). As a result, the LA 6 

concentration in the supernatant of E. coli culture medium (up to 5.7 g/L) was much 7 

higher than the amount of LA units in the copolymer, indicating that sufficient amount 8 

of LA was produced in the engineered E. coli. In order to further increase the LA 9 

fraction in the copolymer, evolution of LPE toward enhanced LA-polymerizing activity 10 

and/or reduction in 3HB monomer flux is necessary. In fact, the engineering of LPE to 11 

increase its activity that led to an increase in LA fraction up to 62 mol% (Yamada et al., 12 

2010). Here, we demonstrated that the latter approach achieved the synthesis of 13 

copolymer with very high LA fractions. This result suggested that regulation of 3HB 14 

monomer flux could also be effective to cover a wide range (from 6 mol% to nearly 100 15 

mol% of LA fraction) of LA fractions in a produced copolymer. The methodology 16 

would also be useful for production of LA-based polyesters, with tailor-made monomer 17 

composition, conducted using various microbial platforms.  18 
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The engineered C. glutamicum harboring D-LDH, PCT and LPE produced 1 

copolymer contained small amount of 3HB units, indicative of an intrinsic 3HB-CoA 2 

supply in C. glutamicum. This result is in good accordance with the fact that 3HB-CoA 3 

should serve as a priming unit for incorporation of LA unit in the initial step of 4 

polymerization (Taguchi et al., 2008 and Tajima et al., 2009). A potential 3HB-CoA 5 

supplying pathway was proposed in the Biocyc databases (Caspi et al., 2009), which 6 

might be catalyzed by homologous enzymes to PhaA and PhaB (YP_226966.1 and 7 

YP_226913.1). Further analysis will be necessary to clarify the roles of these genes in 8 

LA-based polyester biosynthesis. 9 

In this study, we succeeded in establishing an engineered C. glutamicum that 10 

can produce LA-based polyesters. This new endotoxin-free platform should be suitable 11 

for wider range of applications, especially food and medical related uses. The P(LA-co-12 

3HB)-producing pathway should be applicable to other sugars that give pyruvate as a 13 

metabolized product. Thus this process could be more cost effective by using low grade, 14 

low cost sugars, such as molasses, as a carbon source. 15 
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Figure Captions  1 

 2 

Figure 1. Metabolic pathways relevant to production of P(lactate-co-3-3 

hydroxybutyrate) in engineered Corynebacterium glutamicum. L-LDH, L-lactate 4 

dehydrogenase; D-LDH, D-lactate dehydrogenase; PCT, propionyl-CoA transferase; 5 

PhaA, -ketothiolase; PhaB, acetoacetyl-CoA reductase; LPE, lactate-polymerizing 6 

enzyme. Boxed enzymes indicate exogenous enzymes. Thick lines indicate reinforced 7 

pathways. Dashed lines indicate proposed pathways; acetyl-CoA could act as a CoA 8 

donor for CoA transferring reaction using PCT enzyme, and a small amount of 3HB-9 

CoA was supplied by intrinsic, but uncharacterized, pathway. 10 

 11 

Figure 2. Map of the plasmids used in this study. Pcsp denotes the promoter region. The 12 

pct gene encodes propionyl-CoA transferase from Megasphaera elsdenii. The ldhA gene 13 

encodes D-lactate dehydrogenase from Escherichia coli. The phaC1(STQK) gene 14 

encodes the Ser325Thr/Gln481Lys mutant of PHA synthase from Pseudomonas sp. 61–15 

3 (Lactate-polymerizing enzyme, LPE). The phaA and phaB genes encode -16 

ketothiolase (PhaA) and NADPH-dependent acetoacetyl-CoA reductase (PhaB) derived 17 

from R. eutropha, respectively.  18 
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Figure 3. Immunoblot analysis of PCT and LPE expressed in C. glutamicum. PC 1 

(positive controls), recombinant E. coli expressing PCT and LPE [PhaC1(ST/QK)], 2 

respectively; NC (negative control), wild-type C. glutamicum; Sample, C. glutamicum 3 

expressing PCT and LPE, respectively. 4 

 5 

Figure 4. Analyses of a lactate-based copolymer produced in C. glutamicum.  A; 
13

C 6 

NMR spectrum, B:
 1

H NMR spectrum. LA, lactate; 3HB, 3-hydroxybutyrate. 7 
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Table 1. Oligonucleotide sequences 

Oligonucleotide linkers 

and primers 

Sequences 

BstEII-XhoI-GC-XbaI-

CpoI linker 

5´-GTCACCTCGAGCGTCTAGACG-3´ 

5´-GACCGTCTAGACGCTCGAG-3´ 

HindIII-KpnI-BamHI-

SacI-BglII-PstI-EcoRI 

linker 

5´-AGCTTGGGGTACCCGGGATCCATGAGCTCGAAGATCTAACTGCAGAAG-3´ 

5´-AATTCTTCTGCAGTTAGATCTTCGAGCTCATGGATCCCGGGTACCCCA-3´ 

Pcsp F 5´-CTCGGTACCCAAATTCCTGTGA-3´ 

Pcsp R 5´-ATGGATCCCTCCTTGAATAGGTATCGAAAGAC-3´ 

Ecoli ldhA F 5´- GGATCCGCCACCATGAAACTCGCCGTTTATAG-3´ 

Ecoli ldhA R 5´- GAGCTCAAGATTAAACCAGTTCGTTCG-3´ 

PCT F 5´- AGATCTAGGAGGTAAACAATGAGAAAAGTAGAAATCA-3´ 

PCT R 5´- GAGCTCTGCAGGTTATTTTTTCAGTC-3´ 

 

Table



 

Table 2. Concentration of lactate (LA) isomers in culture supernatants 

strain D-LA (mg/l) L-LA (mg/l) 

Wild-type 3.0 21.7 

Engineered strain 
a
 209.0 14.3 

a
 Cells harboring pVC7ldhA were grown on MMTG containing 6% glucose for 72 h at 

30°C. 

 

 

 

Table 3. Production of polyesters in engineered C. glutamicum strains  

 

Relevant genes 

 

Polymer 

contenta 

(wt%) 

Monomer composition 

(mol%)b 
Yield (mg/l) Molecular weight c 

LA 3HB LA 3HB Mn(×103) Mw(×103) 
Mw

/Mn 

phaC1(STQK), phaAB 1.4 ± 0.1 0 100 0 40 ± 1 8.4 15.1 1.8 

phaC1(STQK), phaAB, 

ldhA, pct 
2.4 ± 0.1 96.8 ± 0.7 3.2 ± 0.6 277 ± 1 9.7 ± 0.4 5.2 7.4 1.4 

phaC1(STQK), ldhA, 

pct 
1.4 ± 0.1 99.3 ± 0.6 0.7 ± 0.3 205 ± 1 1.4 ± 0 4.3 5.7 1.3 

a
 Cells were grown on MMTG containing 6% glucose for 72 h at 30°C. Polymer content 

was determined based on cell dry weight and weight of extracted polymer. 
b
 Monomer 

composition was determined by GC/MS. LA, lactate; 3HB, 3-hydroxybutyrate. 
c 
Mn, 

number-average molecular weight; Mw, weight-average molecular weight; Mw/Mn, 

polydispersity index. Data is average of three independent trials.  
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