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Summary: Replication-transcription conflicts in bacteria 

 

• DNA replication and transcription share the same DNA template. Encounters 
between the replication and transcription machineries can lead to conflicts that result 
in disruption of replication, genome instability and reduced fitness.  

 

• Replication-transcription conflicts can occur at DNA lesions, both during normal 
growth and upon stresses. 

 

• Replication-transcription conflicts can occur when replication and transcription are 
co-directional (when genes are encoded on the leading strand), and are more severe 
when transcription is oriented head-on to replication (genes on the lagging strand). 

 

• Cells utilize various mechanisms to prevent replication-transcription conflicts from 
occurring and to resolve conflicts once they have occurred. 

 

• Factors involved in avoiding and resolving replication-transcription conflicts include 
evolutionary pressures on genome organization that favor genes on the leading strand, 
and accessory helicases, and modulators of transcription and translation. 

 

• When replication-transcription conflicts do occur, cells use a variety of mechanisms to 
repair and restart stalled replication forks. 
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Preface  

DNA replication and transcription use the same template and occur concurrently in 

bacteria. The lack of temporal and spatial separations of these two processes leads to 

their conflict. Failure to deal with these conflicts can result in genome alterations and 

reduced fitness. In recent years, significant advances have been made in understanding 

how cells avoid conflicts between replication and transcription, and how conflicts are 

resolved when they do occur. In this review, we summarize these findings, which shed 

light on the significance of the problem and on how cells deal with unwanted 

encounters between the replication and transcription machineries.  

 

Introduction 

Many bacteria have a circular chromosome with a single origin of replication, oriC. The 

bacterial replication initiation protein DnaA binds to sites in oriC and causes local 

unwinding of a region in the origin. This region serves as a platform for the assembly of 

the replication machinery (the replisome).  The replisome includes the catalytic subunit 

of DNA polymerase, the beta-clamp (processivity clamp) that enables replication to 

proceed processively around the chromosome, the clamp loader complex, the 

replicative helicase that unwinds the duplex DNA during replication, and the primase,  

1, 2. Replication forks proceed bi-directionally in a clockwise and counterclockwise 

manner around the chromosome, duplicating the genome at a rate of approximately 500 

- 1,000 base pairs (bp) per second. Replication finishes in a region known as the 

terminus (ter) located approximately 180° from oriC (Fig. 1A).  

When the forks are moving on the chromosome, they can face various obstacles, 

including the transcription apparatus, other DNA binding proteins, and DNA/RNA 

secondary structures. Encounters between replication and transcription machineries 
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lead to conflicts, and failure to deal with these conflicts can lead to genome instability, 

including chromosomal deletions and rearrangements 3, 4. Recent work shows that 

genome-wide conflicts are more prevalent than previously appreciated. Not only do 

conflicts occur at DNA lesions 5, they also occur independently of preexisting DNA 

damage 6 and replication is disrupted not only upon head-on encounters with the 

transcription machinery 7, 8, but also during co-directional encounters on the 

chromosome 9 and on a plasmid 10. Relatively little is known about what happens to the 

replication machinery at sites of conflict, and different types of conflicts likely result in 

different repair mechanisms.  Some conditions that cause arrest of replication forks 

appear to cause dissociation of some components of the replisome (DnaN) while other 

components remain in place 11, 12.  Even though little is known about what exactly 

happens at sites of conflict and replication arrest, it is clear that cells have a variety of 

strategies to avoid and resolve these conflicts (Figs. 2, 3) and to preserve genomic 

integrity.  

 

Two types of replication-transcription conflicts 

Depending on the orientation of a given gene, the replication machinery can face RNA 

polymerases (RNAPs) in either a head-on or a co-directional manner (Fig. 1B and 1C). 

Genes that are encoded on the leading strand are co-oriented with replication, and 

genes encoded on the lagging strand are in the opposite orientation. Early work in the 

field suggested that head-on conflicts (lagging strand encounters) in bacteria cause 

DNA replication to stall, but co-directional conflicts were generally not detected in vivo 

and were therefore thought to be benign 8, 13-18. However, recent findings indicate that 

both types of conflicts (head-on and co-directional) can disrupt replication in vivo and 

that auxiliary factors are involved in resolution of these conflicts 9, 10.  



 Merrikh, Zhang, Grossman, Wang 5 

 

Head-on conflicts 

Evidence over the years from several different studies in E. coli, B. subtilis and 

eukaryotic cells has shown that head-on conflicts negatively affect DNA replication 

more than co-directional conflicts 8, 13-23. In an early elegant study, a replication origin 

was inserted either upstream or downstream of an rRNA operon in E. coli 13. When the 

rRNA operon was head-on to replication, but not when it was co-directional, significant 

slowing of replication fork progression was observed. Recent studies revealed that 

when rRNA genes were inverted such that transcription and replication were head-on 

in E. coli, replication stalling was observed only when factors that help reduce conflicts 

are mutated 17.  Similar manipulation has stronger consequences in B. subtilis, as 

inverting rRNA genes such that replication faces these genes head-on is sufficient to 

stall and disrupt replication 8, 16.   

It is not clear what aspect of head-on encounters makes them more deleterious than 

co-directional encounters.  One previously articulated aspect is the asymmetric 

distribution of components of the replication machinery on the two replicating strands; 

for example, the primase and replicative helicase move on the lagging strand template 1, 

2. These factors are ahead of the DNA polymerases and would be the first to encounter 

RNAPs on the lagging strand in a head-on conflict. If encountering RNAP head-on 

inactivates these components, the replication fork will stall. Another potential 

contributing factor to the difference between head-on and co-directional conflict is the 

difference in DNA supercoiling.  As the replisome synthesizes new DNA, it generates 

positive supercoils in front of the replication fork. The same is true for RNAP; as a new 

transcript is being generated, positive supercoils build up in front of the transcription 

machinery. It has been proposed that the over-wound DNA template caught between 
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the two enzymes approaching each other causes replication forks to arrest during a 

head-on encounter 7, 13, 21, 24. The negative supercoiling behind RNAPs in a co-directional 

encounter would cancel the positive supercoils generated by the fork, potentially 

explaining the difference between the two types of conflicts. However, when the 

replication pause sites were mapped they were found to be strictly within the 

transcribed region, implicating direct replication-transcription collision, and largely 

ruling out topological constraints as being the primary cause of replication pausing 

during head-on conflicts 15, 17. There is also asymmetry and directionality to RNAP.  It is 

possible that in co-directional conflicts, RNAP is easier to displace than in head-on 

conflicts.   

 

Co-directional conflicts 

Bacteria, and even some phages, have evolved in such a way that the majority of their 

genes are typically encoded on the leading strand and are transcribed co-directionally 

with replication. Although this co-orientation bias plays a significant role in reduction 

of head-on conflicts, it increases the likelihood of co-directional conflicts. In addition, 

the eventual meeting of replication and co-directional transcription seems inevitable 

because in bacteria the replisome moves 10-20 times faster than the transcription 

complex2, 7. Therefore, potential co-directional encounters between RNA and DNA 

polymerases are likely to be more frequent than head-on encounters.   

The potential for co-directional conflicts has been widely recognized. Two separate 

studies early on suggested that co-directional conflicts could disrupt replication. First, a 

study of phage phi29 replication proteins showed some disruption of replication upon 

encountering a transcription unit in vitro 25. Second, transcription terminators were 

shown to disrupt replication of E. coli plasmids when they were co-oriented with 
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replication 22. However, co-directional conflicts with initiating or elongating RNAPs 

were generally thought to be benign to replication due to a lack of evidence from the in 

vivo studies.  

Recent work indicates that co-directional replication-transcription conflicts are not 

benign. Co-directional conflicts between replication and transcription can occur at 

highly transcribed rRNA genes in vivo in B. subtilis, causing disruption of replication 9. B. 

subtilis helicase loader proteins (DnaD and DnaB), which are required for restart of 

replication forks, were found to preferentially associate with rRNA operons in a 

transcription-dependent manner.  By contrast, in vitro work found co-directional 

collisions between the E. coli replication machinery and a single RNAP were benign 26, 27. 

In these studies, the replication machinery was designed to encounter a single RNAP, 

and this was not disruptive to replication. Under the fast growth conditions in vivo there 

are probably 50-100 RNAPs on each rRNA operon (e.g., see 9), perhaps partly 

accounting for the different findings between in vivo and in vitro situations. In addition, 

co-directional replication and transcription appear to cause double-stranded breaks on a 

plasmid template in vivo, when transcription is induced from the very strong lambda pL 

promoter, and this is likely exacerbated by RNAP backtracking 10.  Together, these 

findings indicate that co-directional transcription of genes can be disruptive to 

replication in vivo, most likely when more than one or an array of RNAPs is 

encountered by the replication apparatus. In agreement with this phenomenon, co-

directional conflicts at rRNA genes were detected under fast growth conditions where 

there is a high level of transcription of rRNA genes, but were not detected under slow 

growth conditions when there is decreased transcription 9. 
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Dealing with conflicts 

In order to preserve genome integrity, cells use various mechanisms to 1) prevent 

conflicts from occurring (Fig. 2), and 2) resolve conflicts once they have occurred (Figs. 2, 

3). Genes involved in both types of mechanisms are crucial for bacterial survival, 

highlighting the fact that conflicts take place in cells routinely. Most avoidance 

mechanisms identified to date involve factors that destabilize or remove RNAP from 

the template, allowing a clearer path for the replisome (Fig. 2).  This occurs during 

normal growth and during periods of stress, and at DNA lesions where RNAP gets 

stuck as well as undamaged DNA regions where RNAP pauses. Below, we discuss the 

key factors involved and their function in reducing replication-transcription conflicts. 

We start with mechanisms of avoidance (genome organization, modulators of RNAP, 

and accessory helicases) and continue with mechanisms of conflict resolution 

(replication fork intermediates, replication restart, and the role of recombination 

proteins).  

 

Selection for Genome Organization 

Virtually all bacteria have their highly transcribed rRNA/tRNA genes co-oriented with 

replication (Table 1).  The majority of other genes also show a co-directional bias, 

although this bias is not 100%.  In B. subtilis, ~75% of all genes are co-oriented with 

replication 28. In E. coli, there is little bias when looking at the entire genome; only ~55% 

of E. coli genes are co-oriented with replication 29. However, ~70% and ~90% of the 

essential genes (i.e. rRNA, tRNA, and other essential genes) in E. coli and B. subtilis, 

respectively, are transcribed co-directionally to replication, with 100% of the 

rRNA/tRNA genes co-directionally oriented 30-34.  
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The quantitative difference of bias between different classes of genes in different 

organisms might be explained by difference of fitness cost due to their inversion.  The 

consequences of inverting a gene from co-directional to head-on range from mild to 

severe. Inverting an extended genomic region with different classes of genes on average 

mildly (~30%) slows replication fork progression 16.  By contrast, inversion of rRNA 

genes not only stalls replication 17, it also disrupts replication forks 8.  Here, disruption is 

defined by observation of DNA repair and recombination events, including the 

induction of the SOS response (the prominent DNA damage response mechanism). 

Disruption of replication is much more deleterious than fork stalling, because the 

former can trigger cell cycle checkpoint and delay cell division. Failure to fix replication 

disruption leads to the complete failure of cell growth 17 and cell death 8.  Other than 

rRNA/tRNA genes, it is not clear what provides the selective pressure for maintaining 

co-orientation of transcription and replication of other highly expressed and essential 

genes.  To further complicate this matter, essential genes are also often highly expressed; 

however, comparative genomic studies indicate that selection is specific for the 

essentiality of the genes, irrespective of their expression levels 31, 32.  Potential 

consequences due to head-on conflicts at essential genes include: 1) the formation of 

truncated mRNAs and/or proteins due to disruption of transcription, 2) the formation 

of aberrant un-translated RNAs (rRNAs and tRNAs) due to disruption of transcription 

and, 3) genome instability due to disruption of replication resulting in loss of function 

or synonymous mutations lowering the expression of a gene. The potential effects of the 

formation of truncated mRNAs and proteins do not appear to be a strong selective 

constraint, as the average 1 kb gene will be replicated in 1-2 seconds, a very small 

fraction of the cell cycle.  Even if truncated mRNAs are generated from replication-

transcription conflicts during this short time, cells have efficient mechanisms to release 



 Merrikh, Zhang, Grossman, Wang 10 

ribosomes from any truncated mRNAs and degrade the resulting protein fragments 35. 

On the other hand, loss of function mutations of any essential gene are detrimental and 

will be removed by selection, hence are more likely to be the major factor influencing 

the co-orientation bias of essential genes.  This issue will only be resolved by systematic 

investigation of the relationship between replication-transcription directionality and 

mutagenesis, as has been done in yeast 36.  Most recently, new evidence has been 

obtained showing that replication-transcription conflict causes genome rearrangement 

near the location of the conflict in E. coli and in Hela cells, providing a good system that 

can be used to investigate the effects of transcription directionality on genome stability 4.  

In summary, the conservation of the co-orientation bias strongly suggests that head-

on conflicts are more detrimental than co-directional ones, and experimental data agree 

with this notion. The evolutionary pressure to maintain co-orientation of genes with 

replication, particularly for highly transcribed and/or essential genes, is at least partly 

to prevent head-on conflicts with transcription, to minimize disruption of replication by 

transcription, to promote the speed of genome duplication, and possibility also to 

maintain genome stability. 

 

RNAP modulators  

Factors that modulate transcription and RNAP can have profound effects on replication 

fork progression. Multiple factors have been identified that act on elongating, stalled, or 

terminating RNAPs, reducing the quantity or stability of the transcription barriers to 

replication.  Genetic evidence indicates that the transcription-repair coupling factor Mfd, 

the small nucleotide ppGpp, and the RNAP secondary channel-interacting proteins 

DksA and GreA/B are involved in avoiding or resolving conflicts between replication 

and transcription 5, 6, 10.  These factors also interact genetically with several DNA repair 
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factors, in particular the Holliday junction resolvase RuvABC, to enable cells to survive 

DNA damage 23.  Recently, the detailed functions of these RNAP modulators in 

preventing replication-transcription conflict have been elucidated, and additional 

factors have been identified, pointing to a new model for the basis of, and 

environmental influence on, replication-transcription conflict.  

Transcription-Repair Coupling Factor Mfd 

DNA template lesions, created by exogenous (e.g., UV and gamma irradiation) and 

endogenous (e.g., reactive oxidative species generated by respiration) damage, can 

block the elongation of RNAP 37.  In E. coli, the transcription-repair coupling factor Mfd 

facilitates the repair of these DNA lesions by carrying out two functions: 1) displacing 

the inactive RNAP that is stalled on the lesion, and 2) binding to UvrA to recruit DNA 

excision repair factors to the lesion site 38 (Fig. 2A).  Mfd displaces the inactive RNAP by 

pushing arrested backtracked RNAP along the direction of transcription to dissociate it 

from DNA or to resume transcription in the presence of substrate NTPs 39. Mfd is 

required to ensure cell viability in the presence of DNA damage by UV irradiation in 

vivo.  In vitro, Mfd promotes replication fork restart after head-on conflict between the 

replisome and stalled RNAP by causing dissociation of RNAP from the template 27.  

ppGpp  

Another RNAP modulator that helps prevent RNAP from blocking replication at DNA 

lesions is the small nucleotide guanosine tetraphosphate, ppGpp 5.  Production of 

ppGpp is induced by multiple stress conditions in bacteria and triggers an array of 

cellular responses to enhance survival 40. In vitro studies have shown that ppGpp can 

reduce the accumulation of RNAP arrays by decreasing the stability of the transcription 

elongation complex 5.  In vivo, high levels of ppGpp and a subclass of stringent RNAP 

mutations (rpo*) that mimic the presence of ppGpp both increase the viability of DNA 
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repair-deficient strains when exposed to UV irradiation 5. These studies indicate that 

ppGpp functions to remove replication barriers by dislodging stalled RNAP complexes 

at pre-existing DNA lesions. 

RNAP secondary channel-interacting proteins: DksA and GreA/B 

GreA, GreB (Gre proteins) and DksA are transcription factors with coiled coil domains 

that insert into the secondary channel of RNAP 41-43. greA and dksA mutants are sensitive 

to UV irradiation, indicating that DksA and Gre also help to promote DNA replication 

across DNA lesions by acting on transcription 5. Recent work has shown that DksA and 

Gre have roles in removing transcription barriers to replication independently of pre-

existing DNA damage 6 (Fig. 2B).  

DksA is a transcription initiation factor that acts with ppGpp to modulate 

transcription of rRNA and many other genes in response to starvation 44. In addition, 

DksA also prevents stalling of transcription elongation complexes at RNAP pause sites 

on a linear phage DNA in vitro 43, suggesting it also acts on transcription elongation 

complexes.  Recent in vivo studies showed that DksA plays crucial roles in reducing 

replication-transcription conflict 6.  Deletion of DksA results in a chronic DNA damage 

response, independently of DNA damaging agents. This indicates that DNA damage 

itself originates from replication-transcription conflicts in the absence of DksA.  DksA 

most likely prevents this conflict by acting during transcription elongation, as the 

replication block in the absence of DksA can be rescued by more processive RNAP 

mutants, by overexpressing the factor GreA that acts on the transcription elongation 

complex, and by overexpressing an apparent separation-of-function mutant of DksA 

that retains its activity in transcription elongation but has greatly reduced activity in 

transcription initiation 6, 43. 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Amino acid starvation dramatically elevates replication-transcription conflicts in 

dksA mutants, fully arresting replication forks 6.  One hypothesis to explain this 

observation is that DksA prevents formation of backtracked RNAP complexes that act 

as replication barriers.  RNAPs can be stalled spontaneously or at regulatory pause sites, 

and undergo backtracking to displace the 3’ end of the transcript from the active site, 

forming stable complexes 45 46, 47. Amino acid starvation causes translational blockage, 

potentially abolishing the coupling between transcription and translation that normally 

prevents RNAP backtracking 10.  Under starvation conditions, in the absence of dksA, 

backtracked RNAP likely creates a barrier to replication that results in replication fork 

stalling and DNA damage.  The requirement of DksA during common environmental 

fluctuations such as nutrient limitation indicates that the intrinsic conflict between 

replication and transcription is far wider than previously assumed. 

In addition to DksA, GreA and GreB also prevent replication-transcription conflict.  

GreA and GreB are transcription cleavage factors that can insert into the secondary 

channel of RNAP and stimulate the intrinsic cleavage activity of RNAP 48,42, 49, and are 

important for reviving stalled transcription complexes 50, 51. In vitro, GreB promotes the 

displacement of arrested transcription elongation complexes when they are 

encountered with head-on replisomes 27.  In vivo, GreA compensates for loss of DksA in 

promoting replication elongation upon amino acid starvation 6. Gre factors prevent loss 

of genome integrity caused by RNAP backtracking especially during translational 

blockage, at least on a plasmid 10. This study shows that by interacting with the 

secondary channel of RNAP, Gre factors remove backtracked RNAP complexes to clear 

the template for replication forks.  

Finally, this conflict-prevention strategy appears to be conserved in other bacteria.  

CarD is a recently identified transcription factor that protects Mycobacterium tuberculosis 
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cells against DNA damage 52.  The N-terminal region of CarD is similar to the region of 

Mfd that interacts with RNAP, suggesting that CarD functions similarly to Mfd in 

facilitating removal of RNAP from DNA. CarD partially compensates for the loss of 

DksA in E. coli 52, indicating that the roles of Mfd-like and DksA-like modulators in 

promoting genome integrity can overlap. 

R-loops: RNase H, DinG  

The formation of R-loops is a major cause of replication-transcription conflicts in many 

organisms 17, 53.  An R-loop is a nucleic acid structure in which RNA is annealed with 

one strand of otherwise double-stranded DNA causing looping out of the region of 

complementary ssDNA. R-loops often form during transcription and were originally 

characterized for their ability to initiate DNA replication independently of the 

chromosomal origin of replication 54, 55.  Excess R-loops can induce the SOS response in 

E. coli 56, and affect genome stability by inducing chromosome rearrangement and 

recombination in eukaryotic cells 57.  Recent evidence supports the idea that 

transcription-induced R-loop stalls replication forks in E. coli 17, and R-loops cause 

genome rearrangement in E. coli and eukaryotic cells by stalling replication 4.  

Several well-characterized factors that remove R-loops reduce replication-

transcription conflicts. RNase H1 is a major factor that removes R-loops by degrading 

RNA from an RNA:DNA duplex 58.  Over-expression of RNase H1 alleviates the growth 

defect of dinG mutant in the presence of inverted rRNA operons, supporting the 

hypothesis that R-loops cause replication-transcription conflicts at rRNA operons and 

that RNase H1 prevents these conflicts 17. This finding also agrees with the reported 

function of the helicase DinG in unwinding R-loops in vitro 59, indicating that DinG 

might prevent the growth defect caused by transcription of rRNA head-on with 

replication 17.  Overproduction of RNase H1 also can suppress transcription-replication 



 Merrikh, Zhang, Grossman, Wang 15 

conflicts caused by loss of greA, at least on in a plasmid system 10, indicating that R-

loops are likely contributing to these problems.  

It is possible that other factors that reduce R-loop formation might also reduce 

replication-transcription conflicts. The negative supercoiling generated during 

transcription behind an RNAP favors formation of RNA-DNA hybrids 60.  In E. coli the 

topoisomerase TopA removes negative DNA supercoiling behind RNAP, reducing R-

loop formation 61.  It is therefore anticipated that TopA also decreases conflicts between 

transcription and replication via its inhibitory effects on R-loop formation.  In addition, 

RNAP mutations isolated for their ability to suppress replication-transcription conflicts 

caused by inversion of an rRNA operon both lower the stability of RNAP binding to 

DNA and reduce R-loop formation 17, 62.  However, it is not yet clear whether an R-loop 

itself is a replication barrier, or if the RNAPs slowed or stalled by R-loops form the 

replication barrier. 

Transcription termination factors: NusG, Rho 

Transcription termination factors also play a role in reducing replication-transcription 

conflicts. Removal of inactive transcription elongation complexes via transcription 

termination can prevent them from disrupting replication. Bacteria employ two distinct 

types of transcription termination: intrinsic termination mediated by a GC-rich RNA 

hairpin structure followed by a run of Us, and Rho-dependent termination (reviewed in 

63). Rho is a homohexameric helicase that translocates on RNA.  Its ability to cause 

transcription termination requires NusG 64.  Loss of function mutations in NusG and 

RNase H1 are synthetically lethal 65, indicating that Rho-dependent premature 

transcription termination prevents the formation of R-loops on the chromosome.  

Recently, Rho, NusG and another Rho-accessory factor, NusA, were found to be 

important for preventing disruption of replication by transcription elongation 
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complexes and for maintaining genome integrity 10, 66.  Inhibiting Rho activity by the 

drug bicyclomycin has strong synthetic effects with loss of function mutations in nusG, 

nusA and in DNA repair genes, which then can be alleviated by a destabilizing 

mutation in RNAP 66. These findings indicate that Rho-dependent termination facilitates 

replisome progression by releasing stable obstructing transcription elongation 

complexes. 

Transcription-translation coupling 

In bacteria, transcription and translation are coupled both in time and space. Newly 

synthesized transcripts are utilized as templates for translation while transcription 

elongation is still occurring. Structural studies indicate that the transcription and 

translation machineries are physically associated via NusG 67.  The amino-terminal of 

NusG contacts RNAP and the carboxyl-terminal of NusG can bind to the ribosome-

associated NusE, enabling NusG to link transcription with translation 67. In vivo, the rate 

of transcription elongation is controlled by the rate of translation 68. This suggests that 

the coupling between transcription and translation in bacteria is important for 

preventing RNAP backtracking, which recently was shown to cause DNA double 

strand breaks by affecting DNA replication, at least on a plasmid 10. If transcription is 

uncoupled from translation, Rho/NusG and GreA prevent the formation of and 

reactivate the backtracked RNAP complexes, respectively 10. The importance of Rho, 

NusG, Gre and DksA for maintaining genome integrity highlights the potential of 

RNAP backtracking and conflicts with replication due to the absence of translation-

transcription coupling. 
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Accessory helicases 

In order to ensure that replication progresses without disruption, cells possess a variety 

of factors that clear the path for the replication fork. One mechanism by which the 

replisome can successfully translocate across high-traffic, RNAP-coated regions is via 

the activity of specialized accessory helicases that remove these roadblocks. In addition, 

accessory helicases are involved in resolving conflicts after they occur.  The first 

accessory helicase shown to move RNAPs out of the path of the replication fork was the 

Dda helicase of bacteriophage T4 69. It was later shown that a group of helicases perform 

similar functions in yeast (reviewed in 70). These studies established that accessory 

helicases can remove RNAPs that block replication. Inversion of rRNA operons, such 

that they are head-on to replication, does not significantly affect viability in E. coli 17, 71. 

To date, three helicases have been identified in E. coli that are important for progression 

of replication forks through inverted rRNA operons: Rep, UvrD, and DinG 17 (Fig. 2C). 

Rep and UvrD are 3' to 5' helicases and DinG is a 5' to 3' helicase 17, 72, 73. A homologue of 

Rep and UvrD, PcrA, has been identified as an accessory helicase in B. subtilis. Below, 

we review the functions of these helicases and their potential roles in conflict avoidance. 

E. coli accessory helicases  

It has been hypothesized that the E. coli accessory helicases cooperate to promote cell 

survival during harmful conflicts between replication and transcription 17. Support for 

this comes from the fact that, in the absence of DinG, both Rep and UvrD are important 

for the fitness of cells harboring inverted rRNA loci 17. Additionally, the roles of Rep 

and UvrD appear to be redundant to some degree, since loss of either helicase is 

tolerated, but the loss of both is lethal 74, 75. This indicates that UvrD and Rep cooperate 

to help cells deal with replication-transcription conflicts. 
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In vitro, both UvrD and Rep can remove DNA-bound proteins from the path of the 

replication machinery 76. Additionally, in vivo, uvrD rep double mutants are sensitive to 

presence of lac operators bound by Lac repressors, implying that UvrD and/or Rep can 

remove DNA-bound proteins 76. UvrD (and to a lesser degree, Rep) is also required for 

the viability of cells in which ectopic replication termination (ter) sites are inserted and 

bound by the replication termination protein Tus 77. Rep seems to be the main motor 

that helps replication get through DNA-protein complexes. Replication fork speed is 

reduced in cells lacking Rep and not in cells lacking UvrD 73, 78, 79. Rep, but not UvrD, 

interacts directly with the main replicative helicase, indicating that Rep is associated 

with the replisome 76.  

UvrD seems to play an important role in turnover of recombination intermediates 

formed at stalled replication forks. Deletion of any of the RecFOR gap repair pathway 

proteins rescues the lethality of a uvrD rep double deletion, implying that UvrD (and/or 

Rep) likely plays an essential role in removing RecA filaments, which are recruited to 

gaps in the DNA by the RecFOR pathway 75, 78, 80. In vitro studies have shown that UvrD 

can remove RecA filaments from DNA. This function has been hypothesized to be 

important for replication fork reactivation in vivo 75, 78, 81-83. Additionally, in vivo, the 

number and intensity of RecA-GFP foci increase in the absence of uvrD 83. RecA 

filaments are postulated to cause formation of toxic recombination intermediates when 

replication forks are stalled and need to be reactivated. These studies together suggest 

that UvrD helps the replisome get through dense transcription units by clearing RecA 

filaments that form when replication forks are stalled and need to be reactivated. 

In summary, Rep and UvrD seem to have complementary, partly redundant, and 

also distinct functions in ensuring that the replisome gets through genomic regions. 

Both helicases have the ability to remove proteins from DNA, but likely different 
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proteins (RNAP vs. RecA) at different stages of replication conflicts. The activities of 

these accessory helicases contribute to the removal of RNAP and other proteins bound 

to DNA and the restart of stalled replication forks.  

B. subtilis accessory helicase PcrA 

PcrA of B. subtilis and other Gram-positive bacteria is a 3' to 5' accessory helicase that is 

essential in B. subtilis and is required for rolling circle replication of plasmids 74. PcrA is 

approximately 40% similar to both Rep and UvrD from E. coli and is a functional 

homolog of UvrD which potentially has some aspects of Rep function. The lethality 

caused by pcrA null mutations is suppressed by deletion in any of the genes in the 

RecFOR recombination pathway 80. Additionally, PcrA can remove RecA filaments from 

DNA in vitro similar to UvrD 84, 85. Expression of B. subtilis PcrA in E. coli complements 

the UV sensitivity defect of a uvrD null mutant 74.  In addition, PcrA can restore growth 

of a uvrD null mutant in which replication is blocked due to ectopic insertions of extra 

copies of replication termination sites 77. Expression of pcrA also rescues the lethality of 

a rep uvrD double mutant, indicating that PcrA might perform some functions of both 

proteins 80. It is not known if PcrA moves with the replication fork or whether it has any 

direct involvement in clearing RNAPs in front of the replication machinery. PcrA does 

interact with the B. subtilis RNA polymerase 86, 87, making this possibility seem plausible. 

 

Conflict resolution 

Although there are several mechanisms in place that prevent conflicts from occurring, 

encounters between replication and transcription do occur in vivo. Depending on the 

extent of the damage to the template and disruption of the replisome components, 

stalled replication forks and the replisome may have to be reactivated.  In vitro, the E. 

coli replication machinery can go past a single RNAP on a DNA template without 
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disruption of the replisome components 27. However, in vivo the situation is much 

different (Fig. 3). Recent work suggests that replication forks can be disrupted during 

encounters with RNAP 5, 6, 66, and that replication-transcription conflicts occur at rRNA 

loci 9. It is not yet clear what the fate of the replisome components are in these conflicts.  

Replication restart proteins (PriA, and helicase loaders DnaB and DnaD of B. subtilis) 

are probably required for reactivation of forks following replication-transcription 

conflicts at rRNA loci (Fig. 3A) 9. These findings imply that at least the replicative 

helicase is either inactivated or released and is then reassembled. PriA is a 3’ to 5’ 

helicase that is essential for origin-independent activation of replication forks 88. PriA 

can recognize both branched structures that form at stalled forks and D-loops that may 

form if there is strand invasion by RecA. It is not yet clear whether one or both of these 

structures are present at sites of replication-transcription conflict. It is possible that 

RecA is needed for reactivation of forks and generation of the PriA substrate for restart. 

If so, upon generation of the PriA substrate, RecA is probably removed by the accessory 

helicases (UvrD and PcrA) in order to prevent unnecessary recombination events. 

Recent work with E. coli found that RecBC is the only recombination enzyme needed 

for resolving head-on transcription-replication conflicts between RNA polymerase and 

the replisome at inverted rRNA loci 89.  Based on analyses of conflict-generated products 

and the genetic requirements, it appears that after these conflicts, there are two 

potential outcomes for the replication fork.  First, prolonged replication stalling can 

block the next round of replication, resulting in replication fork collapse and the 

generation of double strand ends.  This is repaired by homologous recombination 

followed by replication restart (Fig. 3B).  Second, there can be replication fork reversal.  

The reversed fork is processed by either homologous recombination or by direct 

degradation via the RecBCD nuclease. Both pathways produce a replication fork that is 
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further away from the conflict (Fig. 3C) 89. This replication fork can then provide a place 

to load a new replisome, and perhaps accessory helicases (Rep and DinG or UvrD) that 

are involved in removing the obstacle and enabling replication across what had been a 

barrier. 

It is not known if primase is used to generate the initial primer during replication 

fork reactivation. Interesting work recently indicated that the transcript being 

synthesized by RNAP could be used as a primer to reinitiate the replication fork in vitro 

26. In co-directional conflicts, upon encounter with RNAP, leading strand synthesis by 

the replisome was terminated, but then reinitiated using the transcript as a primer 26. 

This is an appealing model for reactivation of replication forks after a conflict, but it is 

not yet clear whether this occurs in vivo.   

 

Conclusions and future directions 

Conflicts between the transcription and replication machineries occur on the DNA 

template.  Head-on conflicts between transcription and replication have adverse effects 

on fitness and genome stability. Additionally, we now know that co-directional conflicts 

can also stall replication and cause breaks in the DNA.  Furthermore, several auxiliary 

factors have been characterized that play important roles in dealing with replication-

transcription conflicts in vivo.   

The current understanding of transcription-replication conflicts and the factors 

involved in avoiding and resolving them provides the potential to answer many of the 

remaining questions.  For example, we still do not understand the mechanisms that 

cause replication fork stalling during encounters with RNAP. Data from in vitro 

experiments indicate that RNAPs dissociate from the DNA template when they 

encounter the replisome. The simplest expectation from these findings is that the 
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replisome should get through transcription by simply pushing RNAPs off of DNA. 

However, most findings, especially in vivo, indicate that the replisome does not easily 

get through chromosomal regions that are coated with RNAP and there is replication 

fork stalling. Further experiments are needed to understand how replication stalls 

during encounters with the transcription machinery.  

Until recently, the significance and occurrence of co-directional conflicts was not 

appreciated.  Clearly, head-on conflicts are more severe than co-directional conflicts, 

and genomes are organized to reduce the head-on conflicts. We can now begin to ask 

questions about the mechanistic differences between head-on and co-directional 

conflicts. Understanding these differences could elucidate the basis of the evolutionary 

selection for a genome that is co-oriented with replication.  

Whereas it is clear that transcription-replication conflicts happen, it is not yet clear 

precisely what happens to the replisome during these conflicts. The involvement of 

auxiliary replication restart factors indicates that replication may need to be reactivated 

in some cases, by reloading of the replicative helicase. This could be due to a break in 

the DNA and a need to reestablish the replication fork. Alternatively, replication restart 

proteins may be involved because some components of the replisome are inactivated or 

dissociated from the fork and need to be reassembled. These possibilities are not 

mutually exclusive and further work is needed to understand what happens to the 

replisome when there is a conflict with the transcription machinery, and how this 

compares to what happens when replication is arrested by other mechanisms.  

Much remains to be understood about the nature and mechanistic properties of 

replication-transcription conflicts. The expansion of the field and the advances in the 

technological front should facilitate further progress in understanding transcription-

replication conflicts and conflict resolution. 
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Table 1. Distribution of different types of genes on the leading or lagging strandsa. 

 

 Essential Nonessential rRNA 
operons 

r-protein 
genes 

All genes 

organis
m 

leading lagging leading lagging leading lagging leading lagging leadin
g 

laggin
g 

E. coli 63-76% 24-37% 53-54% 46-47% 100% none 93% 7% 55% 45% 

B. subtilis 93-94% 6-7% 72-73% 27-28% 100% none 94% 6% 74% 26% 
 
 
a Percentages of different classes of genes (essential, nonessential, rRNA operons, all 

genes) in the chromosome of E. coli and B. subtilis that are on the leading or lagging 

strands are shown. Percentages are taken from 28-31, 90.  In cases where the estimates differ 

between references, the ranges are indicated.  
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Figure legends 

Figure 1.  Cartoon of bidirectional replication and co-directional and head-on 

transcription and replication.   

A. Cartoon depicting a partly duplicated bacterial chromosome. Bacterial 

chromosomes are generally circular with a single origin of replication (oriC). The 

replication machinery assembles at oriC and replication occurs bi-directionally, with 

replication forks moving clockwise and counter-clockwise away from the origin. Partly 

duplicated chromosomes have two copies of oriC and other regions that have been 

duplicated.  Replication ends in the terminus region, denoted terC. The ter region 

extends from ~152° to ~187° on the 360° circular map, with most termination events 

occurring at ~172° 91. Replication forks and their directionality are indicated by the black 

arrows.  

B. Co-directional conflicts. A co-directional conflict between replication and 

transcription is depicted. Co-directional conflicts occur when a gene is coded for on the 

leading strand. In these conflicts, transcription occurs in the same direction as leading 

strand replication. Small black arrows represent the direction of movement of the 

replication machinery on each of the two strands. The longer black arrow represents the 

overall movement of the replication fork and the direction of unwinding by the 

replicative helicase. Leading and lagging strands, and directionality of the parent 

strands are indicated. RNAPs are represented by pentagons pointing in the direction of 

transcription. A thin gray arrow marks the beginning of an open reading frame (ORF). 

C. Head-on conflicts. A head-on conflict between replication and transcription is 

depicted. Head-on conflicts occur when a gene is coded for on the lagging strand. In 

these conflicts, transcription occurs in the opposite direction as leading strand 

replication. Shapes are as described for panel B.   



 Merrikh, Zhang, Grossman, Wang 31 

 

Figure 2. Representative mechanisms of avoiding/resolving replication-transcription 

conflicts.   

A.  Conflict at DNA lesions.  RNAP modulators (GreA/B, DksA, ppGpp, Mfd) are 

proposed to inhibit formation of arrays of stalled RNAPs at lesions on the DNA 

template. Mfd (orange), for instance, can dislodge the inactive RNAPs, recruit UvrA2B 

complex (gold) to repair the lesion, and prevent replication forks from encountering an 

array of stalled RNAPs.  

B.  Conflict due to backtracked RNAPs. Coupling transcription with translation 

prevents RNAP backtracking, promoting transcription processivity. The RNAP 

secondary channel factors, DksA and GreA/B (blue) are also proposed to reduce the 

replication-transcription conflict by preventing and resolving RNAP backtracking, 

respectively. For both panels A, and B, the replication forks are shown, but the forks 

likely do not need to be near RNAP for the indicated factors to function.   

C.  Conflict at rRNA (rrn) operons.  DNA accessory helicases DinG, Rep and UvrD 

(green) cooperate to reduce replication-transcription conflict at highly transcribed rrn 

operons.  

 



 Merrikh, Zhang, Grossman, Wang 32 

Figure 3. Possible fates of a stalled replication fork due to conflicts with transcription.  

Three possible fates of stalled replication forks following conflict with RNAP.   

A.  Direct replication restart.  Replication restart proteins (e.g. PriA, and helicase 

loaders DnaB and DnaD in B. subtilis) are recruited to the stalled replication fork and 

directly reactivate replication without DNA recombination.  

B.  Double strand DNA ends.  Prolonged replication stalling can result in the next 

round of replication reaching the stalled fork and generating double strand ends, which 

are repaired by homologous recombination.  

C.  Replication fork reversal. A replication fork encountering conflict with RNAP 

undergoes replication fork reversal.  RecBC(D), RecA and RuvABC are recruited to the 

reversed fork for DNA degradation and homologous recombination, resulting in a 

replication fork at a new position further away from the conflict.  Replication can then 

restart with the help of other auxiliary proteins. 
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